
e-Informatica Software Engineering Journal, Volume 1, Issue 1, 2007

An Empirical Evaluation of Refactoring

Dirk Wilking∗, Umar Farooq Khan∗, Stefan Kowalewski∗

∗Embedded Software Laboratory, RWTH Aachen University

wilking@informatik.rwth-aachen.de, umar.khan@ixi.informatik.rwth-aachen.de,

kowalewski@informatik.rwth-aachen.de

Abstract
This paper presents a process evaluation for the agile technique of refactoring based
on the language C. The basis for this evaluation is made up by an experiment which
is targeted on the aspects of increased maintainability and modifiability. Although the
maintainability test shows a slight advantage for refactoring, results show no significant
strength here. Concerning modifiability, the overhead of applying refactoring appears to
even weaken other, positive effects. The analysis of secondary variables provides hints on
advantages of the refactoring technique like reduced resource consumption and a reduced
occurrence of complicated control structures.

1 Introduction

Maintenance of software is reported as a serious cost factor [24]. One solution proposed to
reduce maintenance effort is refactoring [8] which is a method to continuous restructure
code according to implicit micro design rules. Its new aspects are the smooth integration
into an existing development process where it is used continuously in the background.
Developers are forced to think about their code structure and to identify parts which
“smell” - which is the best description that can be given for this subjective concept. After
identification, the according code is changed based on a catalogue of change steps referring
to the problem. These steps range from renaming of variables, extraction of methods to
the extraction of complete classes from the existing code.

Refactoring is assumed to positively affect non-functional aspects, presumably extensi-
bility, modularity, reusability, complexity, maintainability, and efficiency as stated in [24].
However, additional negative aspects of refactoring are reported, too. They consist of
additional memory consumption, higher power consumption, longer execution time, and
lower suitability for safety critical applications.

Most research concerning refactoring is done on the technical side in order to apply
refactoring in a computer aided way. The general aim here is to either integrate a new
technical aspect to refactoring like languages ([15, 21]), to support refactoring by a tool
for analysis ([22, 30, 31, 35]) or to support the actual execution of refactoring ([10, 23]).
Empirical evidence of the effect of refactoring is rarely to be found. One example for an
empirical evaluation is the influence of refactoring on changeability as evaluated in [12]
reporting a lower change effort. Other empirical results provide a taxonomy for bad smells
as presented in [22].



28 Dirk Wilking, Umar Farooq Khan, Stefan Kowalewski

Experience reports show a mixed picture of refactoring. One application of refactoring
is reported to show non-satisfactory results [28]. It is reported that bad tool support
along with the size of a legacy system created the problems. A code evolution analysis
[19] investigates one of the main artifacts minimized by refactoring: copied code (code
clones). It states that not every code clone should be subject to refactoring and that for
some clones, appropriate refactorings are missing. One successful examination in terms of
an increase in program performance due to refactoring is reported in [13]. A secondary,
nonetheless interesting aspect mentioned there is the compliance to the design principle
of information hiding after the application of refactoring.

Concerning agile methods in general, a limited empirical evaluation took place so
far [2]. Most work has been done for pair programming [1] as this seems to be the most
important aspect of extreme programming. As in addition refactoring is a major technique
which can be used on its own, this report presents an experiment which intends to help
assessing agile methods and this technique more precisely.

2 Design of the Experiment

The general approach followed by this experiment consisted of a group of 12 students using
the same requirements specification to develop a program. Six students used refactoring
continuously during development while the rest was asked to continuously document each
function programmed. The assignment to a treatment group was done at random. The
later treatment is regarded as a placebo in order to omit a Hawthorne effect [29] and to
apply the same level of disturbance to this control group.

As the effects of refactoring were assumed to have an impact on non-functional aspects,
two hypothesis were of special interest. The first one was the effect of refactoring on main-
tainability. Regarding this aspect, a direct evaluation method as proposed in [17] which
is mainly based on a metric definition was not done. As in this case participants were
available, a measurement with the help of the participants was done. Maintainability was
tested by randomly inserting defects into the code and measuring the time needed to fix
them (thus classified as corrective maintainability [3]). The second hypothesis was an
improved modifiability caused by refactoring. In order to test this, small additions were
added to the specification as new requirements and the time and physical lines of code
(LOC) needed to implement them were measured.

2.1 Variables and Measurement

The independent variable of this experiment was the treatment which was a single, dichoto-
mous factor. Either a participant was assigned to the refactoring or to the documentation
treatment. In order to control the execution of the particular treatment, a simple tool was
established disturbing every participant every 20 minutes. During each disturbance, the
participant was asked to either work on a refactoring checklist or to document the last
functions he programmed. In the case of documentation, changing the code was prohibited
during this step.



An Empirical Evaluation of Refactoring 29

One dependent variable of this experiment was the LOC metric together with the time
to implement a new version based on additional features. LOC is considered to be a rough
measure for the size of the resulting product. Both were used to measure the additional
effort a developer needed to add new, unmentioned features to his code. These two thus
were regarded as an indicator for system modifiability.

For maintainability, a special test was prepared. It consisted of a time measurement
for the fixing task of randomly induced syntactical and semantical failures. These were
directly created in the participants source code by randomly removing lines of source code.
The tests consisted of a short description of the failure (in case of a semantical failure)
and the measuring consisted of the time needed to locate and fix them. The measuring
was done in seconds and supervised by a member of the chair.

A measurement of a difference in the abstract syntax tree is currently executed in
order to assess a general difference in the micro structure of the different versions (cf.
[14, 18, 20]).

2.2 Hypothesis

The main hypothesis of an improved modifiability for different versions measured by the
time t was formalized by

H0 : tmodRef
≥ tmodDoc

with tmodRef
being a version’s mean development time for the refactoring group and tmodDoc

being the according value for the documentation group. Thus, the resulting alternative
hypothesis was

H1 : tmodRef
< tmodDoc

Concerning corrective maintainability, the corresponding hypothesis was that the mea-
sured time for maintainability tmain during the maintainability test was greater for the
documentation group leading to the null hypothesis of

H0 : tmainRef
≥ tmainDoc .

The expected hypothesis thus was

H1 : tmainRef
< tmainDoc .

2.3 Procedure

The execution of the experiment started with a video introduction explaining the micro-
controller, the development environment, and the general conditions of the experiment.
Only the last video was different for each participant group as it either explained the
refactoring or documentation task. By using videos it was made sure that each partic-
ipant received the same introduction and that no treatment group was favored. After
that, an initial survey was carried out in order to assess the participant’s overall program-
ming knowledge and knowledge about refactoring. In order to avoid motivation effects
refactoring was named reorganization within the documents and videos. Additionally, the



30 Dirk Wilking, Umar Farooq Khan, Stefan Kowalewski

participants were asked to develop the software without any additional software engineer-
ing techniques to avoid interference of other factors. At last, the participants were not
told what kind of measurement was done in the end in order to avoid preparation for
requirement additions in terms of architecture.

The development started by reading the requirements document which was the same
for all participants. After that, programming started until each requirement was imple-
mented. The development task consisted of a game based on a reaction and a memorization
part. The reason for this type of application was the low domain knowledge required. In
addition, different types of hardware programming were needed in order to use the buttons
(with debounce), LCD, LEDs and interrupts.

Concerning the execution of refactoring, only a subset of applicable refactoring steps
was chosen with the addition of macro refactorings as discussed in [9] and [10]. The reason
for excluding certain refactorings is the utilization of the language C. Only non-object
oriented programming features were used during this experiment.

As the participants were not supposed to be accustomed to refactoring, a special, con-
trolled execution was intended. First, the frequency of refactorings was set to a rate of
20 minutes. This was done to assure continuous refactoring together with a reminder of
executing refactoring at all. The disadvantage of this approach are the occasions where a
refactoring was initiated without the actual need for it. As the execution of refactoring
steps was uncommon and the perception of bad smells was not based on participant expe-
rience, a checklist based on [8] was used in order to control both aspects. The execution
of a refactoring is regarded non problematic whereas the detection of bad smells is subject
to personal interpretation because of the nature of this term. Thus, only an informal
description of this basic concept was given.

The final code size differed between individuals and was not affected by the treatment.
The size ranged from 745 to 2214 lines of code. For each version, an acceptance test was
executed checking the basic functionality and new features which were added. In case
of an imprecise requirement definition, the implementation was accepted in the way the
participant understood the requirement.

2.4 External Conditions and Limitations

The time span for this experiment was 3 months. During this time, all participants
worked on the tasks until they finished them or the maximum of 40 hours was reached.
Each participant worked in a different room and a simple room management was done
as only three different rooms were available. The event that a participant wanted to
work and no room available could be circumvented by this. Files were separated on
network drives so that no participant could see the results of the other. The complete
development environment was accessible in each room and participants worked on their
own. Interruption sometimes occurred, but the frequency was not very high. For questions,
an instant messaging server was setup and all messages were logged which was known and
had to be accepted by the students.



An Empirical Evaluation of Refactoring 31

2.5 Participants

The experiment was carried out with twelve graduate students. All of them were students
at the RWTH Aachen University. The experiment had been advertised on the university’s
mailing list, notice boards and in the courses. Applications from 14 students had been
received of whom 12 students had been selected randomly. Their field of study was mainly
computer science, with one participant working in the field of mechanical engineering. All
participants were paid and received a forty hour student helper contract. The students had
programming knowledge of Java, whereas the language C was new to some. As mentioned
above, refactoring was new to them except for one student who had practical knowledge.

As explained in [33], this type of participants is sufficient for evaluating basic effects or
an initial hypothesis. In addition, [16] states that at least last-year software engineering
students have a comparable assessment ability compared to professional developers and in
[4] no general difference could be found for different programming expertise between these
groups.

2.6 Technical Background

The experiment used an ATMEL ATmega16 microcontroller clocked with 6MHz as de-
velopment platform. The software was written in C and developed with WINAVR 2 and
ATMEL AVR Studio 3. For the LCD programming, an additional C-header was given
to the students as this was regarded standard. Some tools were used in the background
which comprised the disturber mentioned above and a code gathering tool which copied
the code base every time a compilation was done. This last step was done in order to
study code evolution.

3 Validity

This section critically examines practices and ancillary conditions. The procedure, mea-
surements and theoretical concepts are structured as proposed in [36].

3.1 External Validity

Although in general students can be regarded as average programmers, they do not repre-
sent the often demanded professional developers. As stated above, they are regarded suffi-
cient to show an effect within an initial method evaluation [33]. Regarding the treatment,
the use of additional, unmentioned features can be regarded as in favor for refactoring.
The event of changing requirements and thus the need for new features is not regarded
artificial but normal industrial development. Regarding the environment, especially the
lack of an object oriented language might have changed the influence of refactoring. This
is not regarded as an artificial interaction because refactoring is regarded a method that
can be applied in general to improve the design of a program. Technical factors like
an exceptional good development environment or a method specific language might blur
a method’s effect and thus the lack of it is not regarded problematic.



32 Dirk Wilking, Umar Farooq Khan, Stefan Kowalewski

3.2 Internal Validity

One of the major internal threats is the application of refactoring itself consisting mainly
of a checklist and a periodical call for the application of it. This artificial treatment
was chosen because of the high control. The downside of this is that the concept of
a bad smell may require much more experience than provided by the checklist and that
the application of refactoring may require a higher degree of freedom for an individual
developer than allowed by such a list.

History and maturation are not regarded a threat as there is no repeat in the sense of
reoccurring tasks or measurements except for the maintainability test were the code knowl-
edge may have increased for each test. As an additional precaution, the main measurement
tasks (additional requirements and failure inducing) were not known to the participants
so that they could not prepare their code for this.

As some participants could not fulfill the requirements for all versions, they may have
suffered from demoralization effects. But because of the fact that each participant worked
on his own and no results where revealed to others, social threats are regarded a minor
threat.

Concerning the communication between participants, only a contract specifying the
participants duties and rights could be used as controlling device. As the development
took a few weeks per participant, the possibility of private communication could not be
eliminated.

3.3 Construct Validity

A clear theory in the sense of an abstraction of the effects is not easy to define for refac-
toring. There are several effects which are accumulated in the term refactoring. One of
the major points is the abstract design principle of “once and only once” suggested by the
inherent term “factor” [8]. Another effect might be the constant rereading and rethinking
of existing code. By this, a continuous awareness of all parts of the source code might by
achieved revealing positive effects like simpler reuse of code and faster navigation. This
might be considered a constant reviewing process, too. One last aspect is an implicit ef-
fect of refactoring with the existence of a good structure being indirectly postulated. This
effect may force developers to maintain a certain quality for every part of the code which
may not be the case for non-refactoring based development.

However, by following the combined approach of bad smell and collection of refactoring
steps, the common usage of this technique is adopted and its general influence assessed.
Consequently, an abstract construct was not used.

Concerning the outcome expected to be caused by refactoring, only the variables of
maintainability and modifiability were measured. For other non-functional aspects like
modularity, reusability, complexity, and efficiency no direct measurement construct could
be found. The quality of the actual measurement consisted only of a single variable for
maintainability, whereas multiple measurements in the form of LOC and time were done
for modifiability.



An Empirical Evaluation of Refactoring 33

The generalizability of the treatment suffers from the hard 20 minute interrupts. One
the one hand, as refactoring is executed on demand when a problem has been discovered,
this treatment is artificial. On the other hand, it is the only way of assuring a constant
execution. In addition, the reminder of looking for bad code aspects is regarded helpful
for unexperienced participants. The general idea of changing bad code continuously thus
is considered as maintained.

3.4 Conclusion Validity

Concerning the experiment’s power, the low number of participants (n = 6) is a problem-
atic point. Power is described in [5] as the probability of rejecting the null hypothesis and
thus directly describes how good the experiment can show an effect. As the importance
of that aspect may be exaggerated (compare [26] to [25]) given the quality of variables
for empirical software engineering, the value for n still is too low. As described in [7], a
bootstrap power calculation can be done by sampling (with replacement) a higher number
of participants based on the original data. Table 1 depicts the probability p of show-
ing a difference of the mean fixing time of 12 seconds or more. This can be regarded a
rough indicator, as a only point estimator is used and 12 seconds is a rather low difference
(five percents regarding the mean fixing time of 240 seconds). Regarding a refactoring
group size of 48 participants, the experiment starts to have an appropriate probability of
showing the expected effect. An interesting application of this sample size oriented power
calculation is proposed in [32] suggesting a continuous review of an experiment’s power.

N : 6 12 24 48
p(d ≥ 12) 0.68 0.74 0.83 0.91

Table 1: Power calculation of a difference in means of 12 seconds for different sample sizes N

As the hypothesis and the assumed effects of refactoring have been clearly stated, “fish-
ing for results” may only occur for secondary variables for this experiment. Nevertheless,
these variables are investigated and interpreted, as they may give ideas for other effects
caused by refactoring. Their unreliable nature (significant results cannot be regarded as
such) is emphasized in the text.

The reliability of the measures is difficult to assess. LOC is always a point of discussion,
but it nevertheless can be regarded a rough measure for system size. The measurement
of relative time (compared to the first, full version) used to assess modifiability has the
advantage that it includes the main benefit expected for refactoring: a decrease of effort
when adding features. In addition, this variable is simple to measure. The special test for
maintainability which randomly induces failures into the participant’s code simulates the
same effect as a real case of corrective maintainability: a system failure is reported, its
cause has to be found in the code and it has to be fixed. Its reliability is regarded above
average as time is used as main variable and the failure creation is based on a random
process.



34 Dirk Wilking, Umar Farooq Khan, Stefan Kowalewski

4 Analysis

4.1 Main Hypothesis

4.1.1 Maintainability

The measurement of maintainability, which consisted of a random insertion of 15 syntac-
tical and 10 non-syntactical errors, was measured in seconds. The errors were created
by removing lines of code randomly. The resulting error were divided into syntactical
and non-syntactical nature. Because of the randomization and the rather uncommon test
method, a more detailed rating of the severeness of an error was note feasible. The results
were gathered for all twelve participants and the corresponding mean error correction
times were aggregated into the box plot of figure 1. Here, a minor advantage for the
refactoring treatment can be seen, but the results were not significant when a bootstrap
test was executed for α = 0.05. The assumption of better maintainability thus cannot be
answered according to this, but the slightly lower value for the refactoring treatment lead
to the impression of only a minor effect of refactoring.

Documentation Refactoring

Treatment

150,00

200,00

250,00

300,00

350,00

M
ea

n 
 fi

xi
ng

 ti
m

e 
in

 s
ec

on
ds

Seite 1

Figure 1: Box plot of mean fixing time of each participant divided by treatment group,
6 data points per group

4.1.2 Modifiability

Concerning modifiability, the measurement consisted of an additional implementation of
minor, new requirements added to the main task. The effect of each addition was evaluated
by counting the lines of code that were added, changed, and deleted for a version and by
measuring the time needed to fulfill the new requirements. It must be noted that due to
the different performance of the participants only 10 results were included for version 1.1,
and only 9 participants could be included for version 1.2 and 1.3.



An Empirical Evaluation of Refactoring 35

Documentation Refactoring
Treatment

30

60

90

120

150

180

210

LO
C

 fo
r v

er
si

on
 1

.1

12

Seite 1

Documentation Refactoring
Treatment

0

50

100

150

200

LO
C

 fo
r v

er
si

on
 1

.2

8

Seite 1

Documentation Refactoring
Treatment

40

60

80

100

120

LO
C

 fo
r v

er
si

on
 1

.3

Seite 1

Figure 2: Box plots for changed LOC per version categorized by treatment,
6 data points per treatment

Figure 2 displays the change needed for each development version. Changing incorpo-
rates the actions of addition, deletion and modification of a line of source code. Concerning
the difference in LOC, it becomes obvious that the refactoring treatment contradicts the
initial assumption that refactoring has a benefit on system modifiability. The median of
the changed lines for the refactoring group is above that of the control group in two cases.

Documentation Refactoring
Treatment

0,00

0,02

0,04

0,06

0,08

0,10

R
el

at
iv

e 
ef

fo
rt

 fo
r v

er
si

on
 1

.1

10

4

Seite 1

Documentation Refactoring
Treatment

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

R
el

at
iv

e 
ef

fo
rt

 fo
r v

er
si

on
 1

.2

Seite 1

Documentation Refactoring
Treatment

0,01

0,02

0,03

0,04

0,05

0,06

R
el

at
iv

e 
ef

fo
rt

 fo
r v

er
si

on
 1

.3

12

10

2

Seite 1

Figure 3: Box plots for fraction of development time compared to first version per modification
categorized by treatment, 6 data points per treatment

The observation of figure 2 from above is supported by the time measurement for each
treatment group as presented in figure 3. Although these two variables are linked together
(more lines of code will take longer to write), the overall impression of additional effort for
refactoring is strengthened. In this case, refactoring has a bad effect on all three versions.

Regarding the main hypotheses of better maintainable systems and a better overall
modifiability, these results could not show an effect in favor of these non-functional aspects,



36 Dirk Wilking, Umar Farooq Khan, Stefan Kowalewski

but rather give a hint on strong side effects of refactoring. An additional interpretation of
these main results is given in section 5.

4.2 Analysis of Secondary Variables

Regarding the execution of the experiment, additional variables were measured during
the programming procedure. One interesting aspect was the memory usage of a program
which was reported by the compiler after each compile cycle. The memory types for the
system consisted of SRAM and flash-RAM. SRAM is used for heap memory allocation, as
stack memory and for initialized and non-initialized data fields. Flash is mainly used as
program memory, meaning that the text of a program is stored here.

Simulation of mean Flash−RAM for version 1.0

Flash memory of documentation group − refactoring group

F
re

qu
en

cy

−4000 −2000 0 2000 4000

0
50

0
10

00
15

00

Observed
1.62%

Value
2278

Figure 4: Bootstrap simulation of mean memory difference

When comparing the results of both groups, the difference of the mean flash memory
usage for both groups was significantly different. While the documentation group needed
less SRAM, the usage of flash was higher as shown by the bootstrap simulation [6] for the
mean memory usage of both groups of figure 4. The simulation compares the observed
memory difference to differences created by randomized groups. It starts by randomly
dividing the observed memory values in two groups of the same size as in the original
experiment. From each of these groups, the mean value is calculated and the values
are subtracted. This is repeated 10000 times and the results are given in form of the
histogram in figure 4. The original value of 2278 is rarely observed (only 1.62%) which
can be interpreted as a non-random occuring event. Thus, memory consumption might



An Empirical Evaluation of Refactoring 37

be effected by refactoring. The implication of this observation and possible causes for this
difference are explained in section 5.

An advantage of bootstrap is that for randomization of groups, the values measured
during the experiment are taken. Thus, it reuses (bootstraps) its own data to compare
the values to a more problem specific population. Compared to t-test and u-test, assump-
tions concerning the distribution of the data are lower making it more usable for smaller
experimental groups [34].

4.3 Analysis of Refactoring Techniques

Another data source originates from the checklists of the participants. Here, each time
a student was disturbed, the refactoring techniques applied during the process had to be
checked. Based on the frequency of usage, a ranking of the importance for each refactoring
technique could be created as shown in figure 5.

Extract Method
Rename Method

Comments
Replace Magic Number with Symbolic ...

Remove Parameter
Introduce Explaining Variables

Substitute Algorithm
Replace Assignment with Initialization

Rearrange the code
Renaming a Macro

Replace Parameter with Explicit Methods
Reverse Conditional

Split Temporary Variables
Inline Function

Adding Parameters to a Function
Inline Method

Consolidate Conditional Expression
Consolidate Duplicate Conditional ...

Remove Control Flag
Add Macro Definition Replacing Values i...

Decompose Conditional
Replace Nested Conditional with Guard ...

Replace Temp with Query
Const vs Volatile Variable

0 10 20 30 40
Frequency of use

Seite 1

Figure 5: Accumulated occurrences of refactoring techniques for 6 participants

Regarding the techniques used, only some techniques may be of importance for average
programming tasks. The extract method principle of aggressively dividing code blocks
into smaller chunks appears to be by far the most important technique when refactoring
is applied. Additionally, better naming schemes for methods appear to be important
which might be understood as a change on the semantic level of the code. The addition
of code comments seems to head for the same goal by giving a better explanation for
blocks of source code. One single refactoring may have a high ranking only because of



38 Dirk Wilking, Umar Farooq Khan, Stefan Kowalewski

the C language programming: replacing a magic number with a symbolic constant. Here
again, a better explanation seems to be the aim of the refactoring technique.

This refactoring list may give hints on tool support for refactoring. One problem with
this list is that even the most important technique (extract method) will be difficult to
implement, as it requires syntactical knowledge of the source code for the according tool
in oder to do the refactoring. This is regarded non standard for most source code editors.

4.3.1 Difference in Metrics

In order to describe the structural change that is caused by refactoring, the McCabe
metric of cyclomatic complexity is used. Figure 6 shows the cyclomatic complexity plotted
against the according lines of code for each function and each treatment group. While
the midpoints of both groups do not differ, the number of functions with high cyclomatic
complexity appears to be higher for the documentation group. About 11% of the functions
created in the control group had a complexity of more than 10, while only 3% of the
functions created with active refactoring had a higher value than 10. This may be a hint
on the principle of simple design constituting one of the goals of refactoring.

0 50 100 150 200

LOC

0

10

20

30

40

cy
cl

om
. C

om
pl

ex
ity

Group: Documentation

Seite 1

0 50 100 150 200

LOC

0

10

20

30

40

cy
cl

om
. C

om
pl

ex
ity

Group: Refactoring

Seite 1

Figure 6: Cylomatic complexity versus LOC scatter plot for functions of both groups

5 Interpretation

The direct effect of an increased maintainability and a better modifiability caused by
refactoring could not be shown within this experiment. Although rigid control of the
application of refactoring techniques took place, the resulting system did not seem to have
a better structure in terms of ability to understand the structure faster for maintainability.
Modifiability, which might benefit from the idea of “once and only once”, and simplicity,
did not seem be of significantly different, either. Instead, the results rather hint to an
overhead when refactoring is applied leading to actually more effort when new requirements



An Empirical Evaluation of Refactoring 39

are added to a system. The question arising from that overhead is if the accumulated time
needed for refactoring pays off in bigger systems with more complex architectural aspects.
For short projects, the probable benefit of refactoring may reveal itself too late and the
resulting overhead may be a waste of time. For long projects, refactoring may have a more
positive effect.

Regarding other variables measured during this experiment, the aspect of lower mem-
ory usage for program memory is a positive side effect. The basic principle of “once and
only once” directly pays off as similar code is reused more often or, in other words, copied
code for similar programing tasks is omitted. As this was not part of any hypothesis, this
observation has to be regarded carefully.

The main criticism regarding this experiment is its size. The time frame of 40 hours
is more than in other experiments, but not sufficient in terms of process assessment.
The number of 12 participants is low, too, but as the modifiability results point into the
opposite direction, the length of the experiment is regarded more problematic. One other
source of criticism might be the use of refactoring without unit tests ([11, 27]). As this
can be regarded a major technique to control side effects when a refactoring is executed,
it is most often regarded a necessary addition to refactoring. It was omitted, because of
the effect this kind of testing might have on software development. Its application would
have made an evaluation of refactoring as a single factor more difficult.

One last argument against the experiment is that expert developers would constitute
a much better evaluation basis. Their knowledge concerning better system design and
areas of “smells” might increase the effect of refactoring. This argument is somewhat
misleading, as first of all the effect of refactoring should occur even in the case of average
programmers. In addition, using experts in the sense of 1% of available developers appears
as an unrealistic modification compared to normal software development.

6 Conclusions and Future Works

6.1 Future Works

Regarding the long term effect of refactoring, a more indirect approach may be beneficial
in the future. For example, instead of the execution of refactoring, the effects countered
by refactoring might be subject to investigation. The habit “of copy and paste code” may
be regarded as development laziness. If the occurrence of this behavior could be shown,
the negative effects on the system might be measured leading to an indirect justification
for refactoring. Another point closely related to the general application of agile methods
is whether the first development solution found is the optimal one in terms of simplicity,
understandability, performance, future-applicability and so on. If shortcomings in this area
can be shown, refactoring might be the technique to give an increase in these variables.
Another starting point for research is the underlying aim of refactoring: what are the
reasons to change code, when to change it and, ultimately, do these reasons accumulate
for a given code basis? This would need a formalization of the subjective term “smell”.

A rather different approach more related to code evolution or metrics as proposed in
[17] is done on an additional data source collected during the experiment. It consists of



40 Dirk Wilking, Umar Farooq Khan, Stefan Kowalewski

the complete code basis of every participant which was saved every time a compilation
was executed. The idea here is to analyze the abstract syntax tree of the code in order to
find the cause for a specific refactoring.

6.2 Conclusions

In this paper, a controlled experiment is presented assessing the effect of refactoring on
non-functional aspects. However, a general effect of refactoring on maintainability or
modifiability could not be shown. Instead, an overhead for the modifiability aspect seems
to exists as refactoring itself needs a certain amount of time for its execution. A positive
aspect of refactoring might be found in the “once and only once” design principle, as
this seems to reduce the memory requirements of a system. As an addition, the three
most important refactoring found during this experiment appear to be “extract method”,
“rename method”, and “comments” which might be a starting point for basic refactoring
support in software tools. In addition, a different approach to assess the importance of
refactoring is presented focusing on indirect assumptions of why refactoring is applied and
what problems it might solve.

References

[1] P. Abrahamsson and J. Koskela. Extreme Programming: A Survey of Empirical Data from
a Controlled Case Study. In Proceedings of the 2004 International Symposium on Empirical
Software Engineering (ISESE04), 2004.

[2] P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen. New directions on agile
methods: a comparative analysis. ICSE ’03: Proceedings of the 25th International Conference
on Software Engineering, pages 244–254, 2003.

[3] V. Basili, L. Briand, S. Condon, Y.-M. Kim, W. L. Melo, and J. D. Valett. Understanding
and Predicting the Process of Software Maintenance Releases. In Proceedings of the 18th
International Conference on Software Engineering, 1996.

[4] J.-M. Burkhardt, F. Deétienne, and S. Wiedenbeck. Object-Oriented Program Comprehen-
sion: Effect of Expertise, Task and Phase. Empirical Software Engineering, 7:115–156, 2002.

[5] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Asso-
ciates, 1988.

[6] A. C. Davison. Bootstrap Methods and their Application. Cambridge University Press, 1997.

[7] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall/CRC,
1998.

[8] M. Fowler. Refactoring. Improving the Design of Existing Code. Addison Wesley, 1999.

[9] A. Garrido and R. Johnson. Challenges of refactoring c programs. IWPSE: International
Workshop on Principles of Software Evolution, 2002.

[10] A. Garrido and R. Johnson. Refactoring c with conditional compilation. In 18th IEEE
International Conference on Automated Software Engineering (ASE 2003), Montreal, Canada,
2003.



An Empirical Evaluation of Refactoring 41

[11] B. Georgea and L. Williams. A structured experiment of test-driven development. Information
and Software Technology, 46:337–342, 2004.

[12] B. Geppert, A. Mockus, and F. Rößler. Refactoring for changeability: A way to go? In 11th
IEEE International Software Metrics Symposium (METRICS 2005).

[13] B. Geppert and F. Rosler. Effects of refactoring legacy protocol implementations: A case
study. In METRICS ’04: Proceedings of the Software Metrics, 10th International Symposium
on (METRICS’04), pages 14–25, Washington, DC, USA, 2004. IEEE Computer Society.

[14] D. M. German. An empirical study of fine-grained software modifications. In 20th IEEE
International Conference on Software Maintenance, 2004, 2004.

[15] S. Hanenberg, C. Oberschulte, and R. Unland. Refactoring of aspect-oriented software. In 4th
Annual International Conference on Object-Oriented and Internet-based Technologies, Con-
cepts, and Applications for a Networked World (Net.ObjectDays), 2004.

[16] M. Höst, B. Regnell, and C. Wohlin. Using students as subjects – a comparative study of
students and professionals in lead-time impact assessment. Empirical Software Engineering,
5:201–214, 2000.

[17] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya. A quantitative evaluation of maintainability
enhancement by refactoring. In Proceedings of the International Conference on Software
Maintenance (ICSM02), 2002.

[18] M. Kim and D. Notkin. Using a clone genealogy extractor for understanding and supporting
evolution of code clones. In MSR ’05: Proceedings of the 2005 international workshop on
Mining software repositories, pages 1–5, New York, NY, USA, 2005. ACM Press.

[19] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical study of code clone genealo-
gies. In ESEC/FSE-13: Proceedings of the 10th European software engineering conference
held jointly with 13th ACM SIGSOFT international symposium on Foundations of software
engineering, pages 187–196, New York, NY, USA, 2005. ACM Press.

[20] R. Leitch and E. Stroulia. Understanding the economics of refactoring. In The 7th Interna-
tional Workshop on Economics-Driven Software Engineering Research, 2005.

[21] H. Li, C. Reinke, and S. Thompson. Tool support for refactoring functional programs. In
Haskell ’03: Proceedings of the 2003 ACM SIGPLAN workshop on Haskell, pages 27–38,
New York, NY, USA, 2003. ACM Press.

[22] M. Mäntylä, J. Vanhanen, and C. Lassenius. A taxonomy and an initial empirical study of
bad smells in code. In Proceedings of the International Conference on Software Maintenance
(ICSM03), 2003.

[23] B. McCloskey and E. Brewer. Astec: a new approach to refactoring c. In ESEC/FSE-13:
Proceedings of the 10th European software engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of software engineering, pages 21–30,
New York, NY, USA, 2005. ACM Press.

[24] T. Mens and T. Tourwé. A survey of software refactoring. IEEE Transactions on Software
Engineering, 30(2), 2004.

[25] J. Miller. Statistical significance testing – a panacea for software technology experiments?
The Journal of Systems and Software, 73:183–192, 2004.



42 Dirk Wilking, Umar Farooq Khan, Stefan Kowalewski

[26] J. Miller, J. Daly, M. Wood, M. Roper, and A. Brooks. Statistical power and its subcom-
ponents – missing and misunderstood concepts in empirical software engineering research.
Journal of Information and Software Technology, 1997.

[27] M. Müller and O. Hagner. Experiment about test-first programming. IEE Proceedings Soft-
ware, 149(5):131–136, October 2002.

[28] M. Pizka. Straightening spaghetti code with refactoring? Software Engineering Research and
Practice, 2004.

[29] L. Prechelt. Kontrollierte Experimente in der Softwaretechnik. Springer, 2001.

[30] J. Ratzinger, M. Fischer, and H. Gall. Improving evolvability through refactoring. In MSR ’05:
Proceedings of the 2005 international workshop on Mining software repositories, New York,
NY, USA, 2005. ACM Press.

[31] F. Simon, F. Steinbrückner, and C. Lewerentz. Metrics based refactoring. In Proceedings of
the Fifth European Conference on Software Maintenance and Reengineering, 2001.

[32] J. L. Simon. Resampling: The New Statistics. Resampling Stats, 1999.

[33] D. I. K. Sjøberg, B. Anda, E. Arisholm, T. Dyb̊a, M. Jørgensen, A. Karahasanović, and
M. Vokáč. Challenges and recommendations when increasing the realism of controlled software
engineering experiments. ESERNET 2001–2003, LNCS 2765, pages 24–38, 2003.

[34] J. B. Todman and P. Dugard. Single-Case and Small-N Experimental Designs: A Practical
Guide to Randomization Tests. Lawrence Erlbaum Associates, 2000.

[35] B. Walter and B. Pietrzak. Multi-criteria detection of bad smells in code with uta method.
In H. Baumeister, M. Marchesi, and M. Holcombe, editors, Extreme Programming and Agile
Processes in Software Engineering, XP 2005, Sheffield, UK, 2005. Springer.

[36] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlson, B. Regnell, and A. Wesslén. Experimentation
in Software Engineering. An Introduction. Kluwer Academic Publishers, 2000.


