
e-Informatica Software Engineering Journal, Volume 1, Issue 1, 2007

A User-Centered Approach to Modeling BPEL

Business Processes Using SUCD Use Cases

Mohamed El-Attar∗, James Miller∗

∗STEAM Laboratory � Electrical and Computer Engineering Deparment, University of Alberta

melattar@ece.ualberta.ca, jm@ece.ualberta.ca

Abstract

BPEL is being widely used to specify business processes through the orchestration, com-
position and coordination of web services. It is now common practice to begin the
process of modeling the �work�ows� within a set of BPEL business processes using UML
Activity Diagrams since they can be automatically mapped down onto BPEL code. How-
ever activity diagrams were not intended to explicitly model user goals and interactions
with external systems o�ering web services. However, since the chief purpose of BPEL
business processes is to �rst and foremost provide services to their users, using activity
diagram modeling alone will not allow an E-commerce analyst to explicitly capture and
model the users' goals. In this paper we propose an approach to solve this issue; initially
model BPEL business processes using Use Cases to capture users' perspective, and to
systematically develop activity diagrams from Use Case models. A Travel Agency system
case study is presented illustrates the feasibility of the proposed approach.

1 Introduction

Web services o�er their users an e�cient means to solicit and research publicly available
services. A user maybe interested in acquiring the best deal on a particular service or
a product from a number of competitors that o�er that service or product. For example,
a customer interested in purchasing a particular book will be interested in obtaining the
best price from a number of book vendors. Alternatively, users can be interested in the
collaboration of a number of web services to attain a higher level goal. For example, a user
can be interested in a set of web services provided by couriers that can interact with each
other to provide tracking and history details of a current shipment. BPEL processes can
be created to specify the invocation order of web services to achieve the desired goal.
Using BPEL, a great deal of interaction information between web services and the BPEL
process user can be speci�ed, commonly known as de�ning a business process. Every BPEL
business process has a purpose to achieve; this purpose is usually to provide a service to
the process's user. It is not necessary that the user must be human; the user of a business
process can be another system. In any case, it is the responsibility of an E-commerce
analyst to de�ne BPEL business processes that provide the services that are in demand.

BPEL provides support to specify complex business processes that contain sequences,
loops, conditions, exception handling, variable declarations and data editing. In essence,



60 Mohamed El-Attar, James Miller

a BPEL business process de�nes a work�ow. Therefore, it is common practice to model
these work�ows using the Uni�ed Modeling Language (UML) activity diagrams, since it
can be mapped directly onto BPEL code. In this paper, an activity diagram that represents
a BPEL business process will be referred to as BPEL activity diagram. A BPEL activity
diagram needs to posses a great deal of quality. A high quality BPEL activity diagram
can be de�ned as one that accurately represents the work�ow required to satisfy a business
requirement. In the analysis phase, an E-commerce analyst will develop BPEL activity
diagrams directly from a set of business requirements. This might be problematic for the
following reasons:

• Activity diagrams are not geared towards capturing the user-centric perspective of
business work�ows. It is important to model such a perspective since the user is
the principle bene�ciary of the BPEL business process. Therefore, it is crucial to
understand the means by which the user(s) will interact with the host system(s)
during the execution of a BPEL business

• Activity diagrams do not capture the intricacies of interactions occurring between
web services (external systems) and the host system that runs the BPEL business
process process.

• It is common to de�ne a set of related services using a set of BPEL business processes.
This concept is illustrated through the Travel Agency System case study presented
in Section 4. Activity diagrams are not designed to provide a mechanism to discover
common activities, interactions and sub-services provided by a set of related BPEL
services. Not being able to discover and factor out such commonalities might re-
sult in unnecessary e�ort required for implementing redundant functionalities at the
end system; and since BPEL processes potentially have highly extended execution
periods, these redundancies can be signi�cant.

Therefore, in addition to knowing what the goals are, it is essential to know how the user
will utilize the BPEL business process. It can be argued that understanding the user's
participation in the business process will actually yield to creating higher quality activity
diagrams, in the sense that the activity diagrams created will more accurately represent
the user's involvement in the business process and the involvement of the available web
services. To combat the issues presented above, we propose using Use Cases to model the
user's perspective. Whereby, consequent activity diagrams can be developed based upon
the Use Case models. Use Case modeling has become the de-facto technique for modeling
user-centric systems. A Use Case model will detail the intricacies of interactions that
occur between the BPEL business process users and the web services provided by external
systems. Use Case modeling prompts E-commerce analysts to consider common behavior
and sub-services allowing the development of simpler and more modular systems.

There are two main requirements to develop high quality BPEL activity diagrams.
Firstly, it is crucial to develop a high quality Use Case model. It is intuitive that if one
artifact is developed based on another artifact, the quality of the source artifact will ex-
tensively in�uence the quality of the resultant artifact. Utilizing the Structured Use Case



A User-Centered Approach to Modeling BPEL Business Processes Using SUCD Use Cases 61

Descriptions (SUCD) form to develop Use Case descriptions can help achieve this goal. Use
Cases described in the SUCD form will be referred to as SUCD Use Cases. Secondly, an
equally important requirement is to provide a systematic transition between the Use Case
model and the corresponding set of BPEL activity diagrams. This can be achieved by us-
ing the AGADUC (Automated Generation of Activity Diagrams from Use Cases) process.
AGADUC is a systematic approach to transform Use Case models into UCADs (Use Case
Activity Diagrams). UCAD is a notation introduced in [9] that represents the work�ows
embedded in SUCD Use Cases. The UCADs produced can be considered as BPEL activity
diagrams upon which the implementation of the BPEL processes will be based. A principle
advantage of using AGADUC is that it is supported by the tool AREUCD (Automated
Reverse Engineering of UC Diagrams). Automating the transformation process reduces
the time and e�ort required to develop BPEL activity diagrams. Therefore, E-commerce
analysts can further focus on the development of high quality Use Case models. Further-
more, automating the transformation process will ensure consistency between Use Case
models and activity diagrams by eliminating errors injected by analysts, and eliminate
�inspection-like� e�ort required to ensure such consistency. An overview of the AGADUC
process is shown in Figure 1.

Figure 1: An overview of the AGADUC process

Activity diagrams are traditionally used to model BPEL processes since activity dia-
grams are designed to support the speci�cation of work�ows. Work�ows that may contain
loops, branches and conditions, and concurrent �ows, and can be easily visualized using
activity diagrams. E-commerce analysts have avoided adopting Use Cases to model their
BPEL process, since Use Case models are not intended for expressing work�ows, but rather
actor-system interactions. It is rather cumbersome to express work�ow features using Use
Cases in a concise and understandable manner. Traditional Use Cases are described us-
ing unstructured natural language that makes it impossible to automatically extract and
represent their embedded work�ows using activity diagrams. SUCD helps overcome the
limitations endured when using Use Cases to model work�ows. As will be discussed in
great detail in Section 3, SUCD contains enough structure to support the concise model-
ing of work�ows. There will be no additional e�ort in creating the corresponding activity
diagrams, since AREUCD automatically performs this operation. Therefore, SUCD allows



62 Mohamed El-Attar, James Miller

E-commerce analysts to utilize the user-centered approach to modeling their BPEL pro-
cesses without sacri�cing the bene�ts of visualizing their BPEL processes using activity
diagrams!

The remainder of this paper is structured as follows: Section 2 discusses previous
work related to modeling BPEL processes. Section 3 introduces the SUCD structure and
the AGADUC process and how it can be utilized to describe BPEL business processes and
automatically generate BPEL activity diagrams. In Section 4, a Travel Agency System case
study is presented to illustrate feasibility of our proposed approach, and to demonstrate
the application of the AREUCD tool. Section 5 concludes and discusses future work.

2 Related Work

Schader et el. [3] and Aagedel et al. [13] have shown through a number of case stud-
ies the limitations of using activity diagrams for business process modeling. Dumas et
al. [4] extended this work by examining the expressiveness and adequacy of UML Activ-
ity Diagrams with respect to specify work�ows in particular. The result of their study
shows that activity diagrams possess features that allow for capturing situations arising in
practice that usually cannot be captured by most Work�ow Management Systems. How-
ever, their study also revealed that activity diagrams su�er from limitations inherited from
statecharts, which stem from the fact that activity diagrams are a special type of state
machines.

Korherr et al. [5] presented an extension to the UML Activity Diagram. The extension
allows for modeling process goals and performance measures in a visual manner by the
de�nition of a UML pro�le. The pro�le allows the extended activity diagrams to be
mapped onto BPEL. Mantell also created a UML pro�le that supports the systematic
transformation of activity diagrams to BPEL code [8]. Mantell's work featured tool support
that automates the transformation process and generates skeletons of BPEL code.

In 1997, it was argued by Keung et al. that there was little contribution made to make
goals explicit during the modeling of business processes [7]. Today, a large number of
business modeling languages have been introduced such as the Business Process Modeling
Language [6], the Event-driven Process Chain [11] and UML Activity Diagrams [10], how-
ever none of them provide means to model business process goals [1]. Towards achieving
this objective, this paper proposes a use-centered approach to modeling BPEL business
process using Use Cases.

3 The Structural Elements of SUCD

SUCD is in large based on the structure presented by [2]. Use Cases described using the
SUCD structure contain �ve structured main sections, these are: (a) Use Case Name, (b)
Basic Flow, (c) Alternative Flows, (d) Sub�ows and (e) Extension Points. Meanwhile,
other sections in a Use Case description that do not require structure are described using
natural language. There have many templates presented in the literature for describing
Use Cases. This section will provide details about the SUCD structural elements that



A User-Centered Approach to Modeling BPEL Business Processes Using SUCD Use Cases 63

are relative to supporting the speci�cation of work�ows. A complete description of the
SUCD structure and a mini-tutorial can be located at [12]. The systematic mapping of the
SUCD structural elements to activity diagram notation and the underlying transformation
algorithm is also presented in this section. The formalized mapping rules also serves as
a mechanism to ensure inter-diagrammatic consistency between the Use Case model and
the activity diagrams.

The following list outlines the structural elements of SUCD that support the speci�ca-
tion of work�ows which will be described in detail in the subsequent sections:

• Headers and Actions

� Transforming Headers and Actions

� Swimlanes

� Nested Activity Diagrams

• Concurrency and Loop Support using the `RESUME' and `AFTER' Statements

• Condition Evaluation and Branching Support using `AT' and `IF' Statements

3.1 Headers and Actions

The basic building block comprising all structured components is headers. A header con-
tains a number of actions that carryout certain behavior. The name of the header indicates
the behavior that is carried out by its actions. A header is comprised by a pair of match-
ing tags. An `opening' tag is comprised of curly brackets that contain the header's name
<header> pre�xed with the keyword `BEGIN'. Its corresponding `closing' tag must con-
tain the same header name and is pre�xed with the keyword `END'. A header's enclosed
actions are normally listed in bullet form. For example, in a library system, a header may
represent the actions required to enter information regarding how a new library member:

{BEGIN enter member information}
- Librarian → enters member’s name
- Librarian → enters member’s address
- Librarian → enters member’s phone number
{END enter member information}

This header Enter Member Information contains three actions. In this paper, perform-
ing a header indicates that all of its enclosed actions are performed. Each header inside
a Use Case must have a unique name. It can be easily deduced that the purpose behind
performing the three actions shown above is to enter a member's information into the sys-
tem. Moreover, all three actions must be performed to carryout the underlying purpose of
the header. A header groups together a set of actions that must all be performed in order
to carryout complete and meaningful behavior.

A header may contain other lower-level headers that comprise parts of the behavior
required to carryout the main behavior represented by the higher-level header. Therefore,



64 Mohamed El-Attar, James Miller

a Use Case description will contain a virtual tree of headers, whereby actions become
the roots (see Fig. 2). A high-level header may have actions of its own. Performing a
higher-level header forces the all of its lower-level headers in addition to its own actions to
be performed. When a lower-level header is completely performed, its higher-level header
resumes performance. Actions listed under a header represent the actual behavioral details

Figure 2: Headers in a Use Case descriptions form a virtual tree structure

of a Use Case. Actions must be listed in bullet form and described using natural language.
Listing actions in bullet form will allow analysts and designers to trace back design artifacts
and decisions to individual actions in a Use Case description. Only one actor may perform
an action, unless the action is performed by the system itself. The name of the actor that
performs a given action is pre�xed to that action. For the Enter Member Information
header shown above, the Librarian actor performs all three actions shown. Actions that
are performed by the system itself are pre�xed with the keyword `SYSTEM'.

3.1.1 Transforming Headers

Since headers are the basic building blocks for the three types of �ows, it is only appropriate
to start with the transformation of headers to activity diagram elements. Each action
enclosed in a header is directly represented by an activity in an activity diagram. The
Enter Member Information header presented in section 3.1 is translated into the following
activities as shown in Fig. 3.

3.1.2 Swimlanes

Swimlanes are used to associate each activity with an actor. This assigns the responsibilities
of each actor. In SUCD Use Cases, each action is designated an actor, unless it is performed
by the system (where the keyword `SYSTEM' is used). Hence, assigning each action to
the appropriate swimlane is straightforward (see Fig. 3).



A User-Centered Approach to Modeling BPEL Business Processes Using SUCD Use Cases 65

Figure 3: Headers and swimlanes

3.1.3 Nested Activity Diagrams

Each activity diagram maybe nested. Nesting in activity diagrams is used to model a hier-
archy between the activities and to manage the complexity of the activity diagram. Nesting
activity diagrams do not change the semantics behind the activity diagrams. Therefore,
whether the activity diagrams were nested or not, should not change the underlying con-
cepts and work�ows presented by the diagrams. Hence, there is no `hard and fast' rule as
to what sections in an activity diagram should be nested. Nesting sections of an activity
diagram is a judgment call made by the E-commerce analysts and designers. The proposed
Use Case description structure only provides guidelines to what can be nested.

SUCD uses headers only to show what can be nested, as supposed to what should
be nested. A set of actions can be abstracted to show their corresponding header as an
activity. Lower-level headers can be abstracted to show corresponding higher-level header
as an activity. Assuming a header named Enroll New Member that is composed of three
lower-level headers; Enter Member Information, Enter Record into Library Database and
Produce Library Card For New Member. As shown in �gure 4, the lower-level headers
can be abstracted to show the higher-level header as an activity. The Enter Member
Information header presented in Section 3.1 is composed of actions. The actions can be
abstracted to show its header as an activity (see Fig. 4).



66 Mohamed El-Attar, James Miller

Figure 4: Di�erent nesting levels for presentation purposes

3.2 Concurrency and Loop Support

Activity diagrams have features such as forking and joining to support activity synchro-
nization. As already discussed, forking and joining execution �ows in activity diagrams
are modeled using the `RESUME' and `AFTER' statements in the Use Case descriptions.

A header can explicitly state the header(s) to be performed next. This can be achieved
using the `RESUME' statement. The `RESUME' statement consists of the keyword `RE-
SUME' followed by a list of header(s) that will follow. This is used to model the concept
of �ow forking. Finally, a header may explicitly state the headers that must be completed
before it can commence. This is achieved using the `AFTER' statement. Similarly, the
`AFTER' statement consists of the keyword `AFTER' followed by a list of headers that
need to be completed �rst (see Fig. 5):

Figure 5: Forking and joining using SUCD



A User-Centered Approach to Modeling BPEL Business Processes Using SUCD Use Cases 67

3.3 Supporting Condition Evaluation and Branching

Work�ows may contain decision points where a condition is evaluated. Decision points
are indicated using the `AT' statement. The `AT' statement consists of the keyword `AT'
followed by a header where the stated conditions are evaluated. By default, the conditions
are evaluated for each action within the speci�ed header. Alternatively, the conditions
can be evaluated only at certain actions within the speci�ed header. This is achieved by
specifying these actions after the `AT' statement.

Conditions evaluated at each `AT' statement are indicated using `IF' statements. An
`IF' statement consists of the keyword `IF', followed by a condition described in natural
language.

An `AT' statement will cause the creation of a decision diamond following the activ-
ity(s) that represent the header(s) listed in the `AT' statement. An `IF' condition will
be displayed as an activity diagram condition at the corresponding decision diamond (see
Fig. 6). A `RESUME' statement is used afterwards to specify the action where the �ow
will be heading towards.

Figure 6: Modeling conditions and braches

3.4 Formalizing the SUCD Structure

It is essential for the grammar and constructs of the SUCD structure to be formalized.
Formalizing the SUCD structure will provide a strict guideline to Use Case authors in
composing Use Case descriptions, so that there is no disagreement or ambiguity as to
what is allowed and what is not. The grammar of the SUCD structure is de�ned below
in E-BNF (see Table 1). Due to space restrictions, only the grammar of SUCD's higher
structural constructs are shown below, while the grammar of minor structural constructs
are excluded. However, the entire E-BNF is located at [12].

3.5 The AGADUC Process Mapping Rules

In order for the AGADUC process to be tool supported, the mapping rules for transforming
SUCD Use Cases in activity diagrams must be formalized. A complete speci�cation of the
implementation of the mapping rules will require many pages in length. A summarized
pseudo code version of the mapping rules are presented below (see Fig. 7).

The mapping process is carried out by four main algorithms [12]. The �rst algorithm is
responsible for scanning through the headers and actions of a SUCD Use Case and creating
a hierarchy of activities that represent this hierarchy. Algorithm 1 will also assign activi-
ties representing actions to their corresponding swimlanes. Finally, the �rst algorithm will



68 Mohamed El-Attar, James Miller

S ::= UseCaseDescrption+ Actor+

Actor ::= Abstract? ActorName Implements? Specializes?

UseCaseDescrption ::= NameSection BasicFlowSection?
AlternativeFlowSection? Sub�owsSection? ExtensionPointsSection?

NameSection ::= `Use Case Name:' Abstract? UseCaseName
Implements? Specializes?

Abstract ::= `ABSTRACT'

Implements ::= `IMPLEMENTS' UseCaseName

Specializes ::= `SPECIALIZES' UseCaseName

BasicFlowSection ::= `Basic Flow:'
`BEGIN Use Case'
Header*
`END Use Case'

Header ::= `BEGIN' HeaderName `'
AfterStatement?
Contents*
ResumeStatement?
`END' HeaderName `'

AlternativeFlowsSections ::= `Alternative Flows:' AF*

AF ::= AtStatement IfStatement AFHeader

Table 1: E-BNF grammar for the SUCD structure

set control �ow link between the actions of a header, and save any information regard-
ing RESUME and AFTER statements detected. The second algorithm is responsible for
building and maintaining a list of swimlanes detected from the actions. The third algo-
rithm is responsible for creating synchronization bars and creating control �ow links that
connect activities with the synchronization bars. The execution of this algorithm depends
on the information saved earlier regarding the RESUME and AFTER statements. The
third algorithm requires that Algorithm 1 must be executed �rst. Finally, the fourth algo-
rithm is responsible for creating the decision diamonds and conditions according to the AT
and IF statements. The fourth algorithm requires that Algorithm 1 and Algorithm 3 are
executed �rst. Due to space restricitions, only Algorithm 1 is shown below; the remaining
Algorithms can be found at [12].

4 Business Traveler Case Study

The following case study is used to demonstrate how SUCD Use Cases can be used to by
the AGADUC process to generate UCADs. The case study is about a simpli�ed Business
Traveler System that allows employees of a certain company to travel using the best o�ers
for plane ticket(s) and travel insurance. The system provides three BPEL business pro-
cesses. The �rst business process allows an employee to retrieve the best plane ticket o�er



A User-Centered Approach to Modeling BPEL Business Processes Using SUCD Use Cases 69

Figure 7: Algorithm 1. Detecting activities and creating main �ow links



70 Mohamed El-Attar, James Miller

from two web services provided by American Airlines and Delta Airlines. The second busi-
ness process allows an employee to receive the best travel insurance o�er for an upcoming
trip from two web services provided by Northern Insurance and Paci�c Insurance. When
searching for the best plane ticket o�er or the best travel insurance o�er, the employee's
travel status must be checked. The travel status of an employee allows the company to
determine which class that employee can use to travel, such as: business, �rst or economy
class. The travel status also allows the company to determine the corresponding travel
insurance package that the employee is entitled to receive. The travel status checking pro-
cess is performed by the third BPEL process called �Check Employee Travel Status�. The
Use Case diagram of the system is presented below in Figure 8.

Figure 8: The Travel Agency System Use Case Diagram

As discussed in Section 3, BPEL business processes represent services that are o�ered
by a system to its user(s). Therefore, the BPEL business processes are represented as Use
Cases. The web services and the user of the BPEL processes interact with the �Use Cases�
to attain their services. Therefore the web services and users are modeled as actors.

This case study is an expansion of the BPEL business process example presented in
[14]. In [14], only one BPEL business process was discussed which combined the �Acquire
Best Plane Ticket O�er� and �Check Employee Travel Status� BPEL processes shown
below. The reason the �Check Employee Travel Status� BPEL process was created in our
case study is to allow the �Acquire Best Travel Insurance O�er� to use its o�ered service.
Therefore, using a Use Case driven approach, it was possible to identify and factor out



A User-Centered Approach to Modeling BPEL Business Processes Using SUCD Use Cases 71

common behavior, which will help avoid the implementation of any redundant functionality
and save development costs.

The BPEL activity diagram for the �Acquire Best Travel Insurance O�er� BPEL pro-
cess is presented in Fig. 9. The BPEL business process was then implemented. Therefore,
in this case study we will shed the light on the �Acquire Best Travel Insurance O�er� BPEL
process since it was discussed in [14], to show that using a Use Case driven approach can
produce the same BPEL activity diagram. Moreover, this case study will show how using
Use Cases can overcome the limitations su�ered by using the traditional development ap-
proach presented earlier in Section 1. Once again due to space resatrictions, the Use Case
descriptions for the �Acquire Best Plane Ticket O�er� BPEL process is presented below
using the SUCD structure, while the Use Case description of the �Check Employee Travel
Status� BPEL process can be located at [12].

Use Case Name:
Acquire Best Plane Ticket O�er

Brief Description:
This Use Case describes a simple business process that selects the best airline �ight ticket
o�er. The business process is carried out as a web service. Currently, there are two com-
peting Airline companies that have subscribed to this web service, namely (a) American
Airlines, and (b) Delta Airlines.

Preconditions:
The Employee must have approval to travel.

Basic Flow:
{BEGIN Use Case}

{BEGIN Receive the initial request}
- Employee→ requests to search for the best plane ticket offer
- Employee→ specifies his/her name
- Employee→ specifies the destination
- Employee→ specifies the departure date
- Employee→ specifies the return date
{END Receive the initial request}

{BEGIN Prepare the input for the Employee web service}
- SYSTEM→ retrieves the information inputted by the Employee and prepares for the Employee Travel Sta-
tus Web Service
{END Prepare the input for the Employee web service}

{BEGIN Retrieve the employee travel status}
- SYSTEM → sends the Employee Travel Status Web Service the Employee information to check for the
Employee’s travel status



72 Mohamed El-Attar, James Miller

- INCLUDE Check Employee Travel Status
{END Retrieve the employee travel status}

{BEGIN Prepare the input for both Airline web services}
- SYSTEM → uses information provided by the Employee and the Employee Travel Status Web Service to
prepare inquiry requests for both Airlines
RESUME {Acquire plane ticket offer from American Airlines} {Acquire plane ticket offer from Delta Airlines}
{END Prepare the input for both Airline web services}

{BEGIN Acquire plane ticket offer from American Airlines}
- American Airlines: Airlines Web Service→ retrieves information about the requested plane ticket(s)
- American Airlines: Airlines Web Service→ checks for tickets availability
- American Airlines: Airlines Web Service → if the requested ticket(s) are available the web service sends
back an offer for the ticket(s). Otherwise, if the tickets were unavailable, the web service sends back a re-
sponse indicating that
{END Acquire plane ticket offer from American Airlines}

{BEGIN Wait for a callback from American Airlines}
- SYSTEM → waits for a response from the American Airlines Web Service {END Wait for a callback from
American Airlines}

{BEGIN Acquire plane ticket offer from Delta Airlines}
- Delta Airlines: Airlines Web Service→ retrieves information about the requested plane ticket(s)
- Delta Airlines: Airlines Web Service→ checks for tickets availability
- Delta Airlines: Airlines Web Service→ if the requested ticket(s) are available the web service sends back
an offer for the ticket(s). Otherwise, if the tickets were unavailable, the web service sends back a response
indicating that
{END Acquire plane ticket offer from Delta Airlines}

{BEGIN Wait for a callback from Delta Airlines}
- SYSTEM→ waits for a response from the Delta Airlines Web Service
{END Wait for a callback from Delta Airlines}

{BEGIN Select the best offer}
AFTER {Wait for a callback from American Airlines} {Wait for a callback from Delta Airlines}

- SYSTEM→after receiving a response from both Airlines web services, the SYSTEM selects the best offer
{END Select the best offer}

{BEGIN Return the offer}
- SYSTEM→ returns to the Employee a response indicating the best offer for the requested plane tickets
{END Return the offer}

{END Use Case}



A User-Centered Approach to Modeling BPEL Business Processes Using SUCD Use Cases 73

Postconditions:
A response must be provided to the Employee with the best o�er for the requested plane
tickets. If no tickets were available, a response must be provided to the Employee indicat-
ing that.

Special Requirements:
An internet connection must be available for the BPEL process to operate.

Upon inputting the SUCD Use Cases (all three of them) into the tool AREUCD,
the AGADUC process will be performed and the UCADs for the SUCD Use Cases are
generated. Due to space limitations, only the UCADs of the �Acquire Best Plane Ticket
O�er� and �Check Employee Travel Status� BPEL processes are shown below (see Fig. 9
and Fig. 10).

In contrast with using the activity diagram for the �Acquire Best Plane Ticket O�er�
business process, it can be deduced that describing the business process using a SUCD
Use Case have provided an explicit representation of the user goals and have also provided
much more details about the interactions between the BPEL process and the user and
other web services.

Figure 9: The resulting BPEL activity diagram for the �Acquire Best Plane Ticket O�er�
BPEL business process



74 Mohamed El-Attar, James Miller

Figure 10: The resulting BPEL activity diagram for the �Check Employee Travel Status�
BPEL business process

5 Conclusion

In this paper we presented proposed a user-centered approach to modeling BPEL business
processes. The approach is based on using Use Cases to explicitly model the services of-
fered to the business processes' users. Traditionally, BPEL business processes are modeled
using UML activity diagrams only, which did not support the explicit modeling of user
goals. Another advantage of using Use Cases is that the interaction intricacies between
the business processes and the web services o�ered by other systems can be captured. Use
Case modeling provides a high level overview of the services that are provided by a set
of related BPEL business processes. This will allows E-commerce analysts to discover
common services and functionality which in turn will save time and e�ort by avoiding the
implementation of redundant functionality.

Modeling BPEL business processes using activity diagrams appeals to E-commerce an-
alysts since activity diagrams is an excellent technique to model and visual work�ows.
Moreover, it can be directly mapped to BPEL code to kick start the implementation
phase. Traditional Use Cases are described using unstructured natural language. Describ-
ing work�ows concisely using unstructured natural language is di�cult since work�ows
contain features such as loops, conditions and branches and concurrent �ows. In this pa-
per, we utilize the SUCD structure to describe Use Cases. The SUCD structure features
structural elements that allow E-commerce analysts to describe the BPEL work�ows con-
cisely and accurately. Using the AGADUC process, which is implemented by the AREUCD
tool, E-commerce analysts will be able to e�ortlessly generate activity diagrams that ac-
curately represent the work�ows described by SUCD Use Cases. This allows E-commerce
analysts to utilize a user-centered approach to model their BPEL processes without losing
the advantages of activity diagrams.

Future work can be directed towards developing a Use Case driven approach to sys-
tematically generate test suites that will check the validity of the BPEL processes.



A User-Centered Approach to Modeling BPEL Business Processes Using SUCD Use Cases 75

References

[1] A-W Scheer. ARIS � Business Process Modeling. Springer Verlag, 1999.

[2] J. Aagedal and Z. Milosevic. ODP enterprise language: An UML perspective. In In Proc. of
The 3rd International Conference on Enterprise Distributed Object Computing. IEEE Press,
1999.

[3] K. Bittner and I. Spence. UC Modeling. Addison-Wesley, 2002.

[4] M. Dumas and A. ter Hofstede. UML Activity Diagrams as aWork�ow Speci�cation Language.
In Proc. of the UML 2001 Conference, 2001.

[5] B. P. M. Initiative. BPMI: Business Process Modelling Notation � Speci�cation v1.0, Novem-
ber 2004.

[6] B. Korherr and B. List. Extending the UML 2 Activity Diagram with Business Process Goals
and Performance Measures and the Mapping to BPEL. In 2nd International Workshop on
Best Practices of UML (BP-UML'06). Spinger Verlag, Lecture Notes in Computer Science,
November 2006.

[7] P. Kueng and P. Kawalek. Goal-based business process models: creation and evaluation.
Business Process Management Journal, Volume 3(1):17�38, 1997. MCB Press.

[8] B. List and B. Korherr. An Evaluation of Conceptual Business Process Modelling Languages.
In Proceedings of the 21st ACM Symposium on Applied Computing (SAC'06). ACM Press,
April 2006.

[9] M. B. M. B. Juric and P. Sarang. Business Process Execution Language for Web Services.
Second Edition. PACKT Publishing, 2006.

[10] J. M. M. El-Attar. AGADUC: Towards a More Precise Presentation of Functional Require-
ments in Use Case Models. In 4th ACIS International Conference on Software Engineering,
Research, Management and Applications, 2006.

[11] K. Mantell. From UML to BPEL � http://www-106.ibm.com/developerworks/webservices/
library/ws-uml2bpel, September 2003.

[12] I. Object Management Group. UML 2.0 Superstructure, http://www.omg.org/cgi-bin/apps/
doc?formal/05-07-04.pdf, November 2006.

[13] M. Schader and A. Korthaus. Modeling business processes as part of the BOOSTER approach
to business object-oriented systems development based on UML. In Proc. of The Second
International Enterprise Distributed Object Computing Workshop. IEEE Press, 1998.

[14] STEAM laboratory website at the University of Alberta. http://www.steam.ualberta.ca/main/
research_areas/Requirements_Capture.htm, Dec 2006.


