
e-Informatica Software Engineering Journal, Volume 1, Issue 1, 2007

Program Verifications, Object Interdependencies,

and Object Types

Cong-Cong Xing∗

∗Department of Mathematics and Computer Science, Nicholls State University

cmps-cx@nicholls.edu

Abstract

Object types are abstract specifications of object behaviors; object behaviors are ab-
stractly indicated by object component interdependencies; and program verifications
are based on object behaviors. In conventional object type systems, object component
interdependencies are not taken into account. As a result, distinct behaviors of ob-
jects are confused in conventional object type systems, which can lead to fundamental
typing/subtyping loopholes and program verification troubles. In this paper, we first
identify a program verification problem which is caused by the loose conventional ob-
ject typing/subtyping which is in turn caused by the overlooking of object component
interdependencies. Then, as a new object typing scheme, we introduce object type graphs
(OTG) in which object component interdependencies are integrated into object types.
Finally, we show how the problem existing in conventional object type systems can be
easily resolved under OTG.

1 Introduction and Related Work

Although much of the recent year’s work on object-oriented programming (OOP) has fo-
cused on large entities such as components, environments, and tools, investigations on
issues related to object-oriented languages themselves are still an on-going research and
many new improvements can be expected. In particular, typing and program verification
are still a critical issue and a problem-prone area in the formal study of object-oriented
languages, especially when type-related subjects, such as subtyping and inheritance, are
considered. In the contexts of OOP theory research, there are three major lines: Abadi-
Cardelli’s ς-calculus [2], Fisher-Mitchell’s lambda calculus of objects [14, 19, 18, 4], and
Bruce’s PolyTOIL [7, 6]. The type systems of all these calculi are conventional in the
following sense: the major behavior indicator of objects – object component interdepen-
dencies – is not reflected in object types.

The result of not having such component interdependency information represented in
object types is that two behaviorally distinct objects which deserve to be typed differently,
may have the same type. For example, let objects a and b be defined, using the ς-
calculus [2] notation, as follows: a

def

= [l1 = 1, l2 = 1], b
def

= [l1 = 1, l2 = ς(s :Self)s.l1] where
s is the self variable and Self is the type of s. The behavioral difference between a and b
can be revealed by the following computations: Suppose we would like to update l1 in a
to 2.

78 Cong-Cong Xing

It is easy to see that before and after this updating operation, the “status” of l2 in a
remains the same, namely, a.l2 = 1 and (a.l1⇐ 2).l2 = [l1 = 2, l2 = 1].l2 = 11. However,
when the same operation (updating l1 to 2) is applied to b, the “status” of l2 in b would
be changed after the operation, namely, b.l2 = 1 but (b.l1⇐ 2).l2 = [l1 = 2, l2 = ς(s :
Self)s.l1].l2 = 2 due to the fact that l2 “depends on” l1 (l2 calls l1) in b. In conventional
type systems, this behavioral difference between a and b is not captured in their types;
a and b are of the same type: [l1 : int, l2 : int]. As a result, elusive programming errors
and program verification problems will inevitably occur when subtyping is considered (as
shown in the next section).

In this paper, we introduce, as a new way to represent object types, object type graphs
(OTG) in which object component interdependency information is abstractly revealed, and
show that OTG provides an effective support for program verifications. Section 2 presents
a program verification problem caused by object typing. Section 3 defines a formal object-
oriented language TOOL in which object component interdependencies are to be studied.
Sections 4 and 5 define OTG and typing/subtyping under OTG respectively. Section 6
demonstrates how the program verification problem shown in Section 2 can be resolved
under OTG. Section 7 concludes this paper.

There are some research work in the literature that are (somehow) related to our work.
Behavioral subtyping is introduced in [20]. Although object behavior and subtyping are
the common interests in both [20] and our paper, our typing approach is fundamentally
different from that in [20] where object interdependencies are not considered. Labeled types
and width subtyping are proposed in [3, 4, 19], where the type of a method is labeled by
a set of methods that it uses. While the idea of labeled types is somewhat related to our
idea of object interdependency, they differ substantially in quality and in quantity. For
example, the notion of object interdependency is precisely defined in our work whereas
the issue of method usages is not formally addressed in labeled types. Furthermore, in our
work, object interdependencies fully participate and decisively reshape object subtyping
whereas in labeled types the method usages information is barely used in object subtyping.
The notion of object state typing can be found in, for example, [9, 21]. Just like [20] (as
opposed to our work), this approach deals with the issue of object behavior and subtyping
in a fundamentally different way from ours, which makes it orthogonal and complemental
to our approach.

2 The Problem and Motivation

Points with additional attributes (e.g., color points [5, 8, 15], movable points [2, 4, 15])
have been an interesting study-case in the fundamental research of object-oriented lan-
guages. Here, we observe a new problem that is associated with movable points. We first
present this problem on a theoretical basis and then demonstrate it using Java.

1a.l1⇐2 means that field/method l1 in a is updated to 2.

Program Verifications, Object Interdependencies, and Object Types 79

2.1 ς-calculus Description of the Problem

We stipulate that a point is colored (or non-colored, respectively), if this point (object) has
a (or has no, respectively) color attribute. Let us consider non-negative movable points2.
For 1-d movable points, we assume that all points greater than 1 are colored points and
all other points are non-colored points (Figure 1). For 2-d movable points, similarly, we
assume that all points with a distance from the origin greater than 1 are colored points
and all other points are non-colored points (Figure 2). This assumption can be easily
extended for higher-dimensional points.

10

pts w/o color pts w/ color

x

Figure 1: 1-d Colored and non-colored points

1

1

0

y

x

pts w/ color

pts w/o
color

Figure 2: 2-d Colored and non-colored points

For instance, using the ς-calculus (second-order) notation [2], we can define a 1-d
non-colored movable point and a 1-d colored movable point as follows:

p1n
def

=

x = 0.5
mvx = ς(s :Self)λ(i :real)(s.x⇐s.x + i)
dist = ς(s :Self)s.x

 ,

p1c
def

=

x = 2.0
mvx = ς(s :Self)λ(i :real)(s.x⇐s.x + i)
dist = ς(s :Self)s.x
clr = blue

,

where mvx moves the point to a new position on the x-axis and dist returns the dis-

2For the sake of simplicity, we only consider non-negative points here. The case for negative points can
be easily duplicated with slight changes.

80 Cong-Cong Xing

tance from the origin to the current position of the point. The⇐ is the method updat-
ing/overriding operation in ς-calculus. The intentions of fields x and clr are obvious.

To characterize the behaviors of 1-d movable points, we define the following types:

P
def

= ς(Self)

x : real
mvx : real → Self
dist : real

 ,

CP
def

= ς(Self)

x : real
mvx : real → Self
dist : real
clr : color

,

NCP
def

= P,

where P is the type of all 1-d movable points, CP is the type of 1-d colored points, and
NCP is the type of 1-d non-colored points. Given the objects and types defined as the
above, it is easy to check that in conventional object type systems, we have p1n : NCP ,
p1c : CP , CP <: P , and NCP <: P .

Now, suppose we would like to write a program, ms (“move and see”), which takes a
1-d point and moves it along the x-axis. Due to the co-existence of colored and non-colored
points on the x-axis, the movement cannot be arbitrary. We specify the behavior of ms as
follows: (a) ms moves the argument point to its right a certain amount of distance if the
argument point is colored (so that it will not mix with non-colored points). (b) ms moves
the argument point to its left half of the distance from the origin to the current position of
the argument point if the argument point is non-colored (so that it will not mix with colored
points). (c) Let p′ be the newly resulted point in cases (a) and (b). In case (a), ms uses the
property p′.dist > 1 of p′ to carry out the computation arcsin(1/p′.dist); in case (b), ms
uses the property p′.dist ≤ 1 of p′ to carry out the computation arcsin(p′.dist). Because
of subtyping and subsumption, inevitably, ms will take higher dimensional points as its
arguments. To ensure that ms works fine with higher dimensional points, we require that,
in such cases, the higher dimensional point be moved (right or left) along the x-axis, and
the amount of distance to be moved follows the same guideline stated above. For example,
given a 2-d point p with coordinates (x, y), if p is colored (which means

√

x2 + y2 > 1), we
move it to the right along the x-axis over a distance δ > 0. The distance from the origin to
the new position of the point then would be

√

(x + δ)2 + y2 >
√

x2 + y2 > 1, indicating
that the point is still in the colored point area on the x-y plane. If p is non-colored (which
means

√

x2 + y2 ≤ 1), we move it to the left along the x-axis half of x. The distance from

the origin to the new position of the point then would be
√

(1
2x)2 + y2 <

√

x2 + y2 ≤ 1,

indicating that the point is still in the non-colored point area. Thus the specification of
the program ms is sound and feasible.

Program Verifications, Object Interdependencies, and Object Types 81

With little effort, we can write ms as follows:

ms
def

= λ(p : P)
if (p.dist > 1) // p is colored

sin-1 (1/(p.mvx (δ)).dist) // δ > 0
else // p is non-colored

sin-1 ((p.mvx (−1
2p.x)).dist)

endif

Figure 3: The function ms

Now, the question we have is: does ms perform to its specification with all permissible
arguments? Or simply, is ms reliable? Can we verify its correctness?

It is easy to check that ms works as expected with p1n and p1c. We now define one
colored 2-d point and two non-colored 2-d points as follows:

p2c
def

=

x = 2.0
y = 2.0
mvx = ς(s :Self)λ(i :real)(s.x⇐s.x + i)
mvy = ς(s :Self)λ(i :real)(s.y⇐s.y + i)

dist = ς(s :Self)
√

(s.x)2 + (s.y)2

clr = blue

,

p2n
def

=

x = 0.5
y = 0.3
mvx = ς(s :Self)λ(i :real)(s.x⇐s.x + i)
mvy = ς(s :Self)λ(i :real)(s.y⇐s.y + i)

dist = ς(s :Self)
√

(s.x)2 + (s.y)2

,

p′2n
def

=

x = 0.5
y = ς(s :Self) 1

4(s.x)

mvx = ς(s :Self)λ(i :real)(s.x⇐s.x + i)
mvy = ς(s :Self)λ(i :real)(s.y⇐s.y + i)

dist = ς(s :Self)
√

(s.x)2 + (s.y)2

.

Note that p2c and p2n can be regarded as “free” 2-d points since their x and y fields are
independent each other, whereas p′2n can be regarded as a “constrained” 2-d point since its
y coordinate depends on its x coordinate. Also note that p′2n is a legitimate non-colored
point since its coordinate is (0.5, 0.5) which shows that the distance from the origin to
this point is less than 1. Moreover, note that although p2c, p2n, and p′2n are defined from
scratch, they could have been defined through inheritance from (the classes of) p1c or p1n

in class-based object-oriented languages (as shown in the next subsection).

82 Cong-Cong Xing

Under conventional object type systems, p2c and p2n have types

CP2
def

= ς(Self)

x : real
y : real
mvx : real → Self
mvy : real → Self
dist : real
clr : color

and

NCP2
def

= ς(Self)

x : real
y : real
mvx : real → Self
mvy : real → Self
dist : real

respectively, and p′2n has the same type as p2n. That is, p′2n : NCP2. Furthermore,
CP2 <: P and NCP2 <: P , so ms(p2c), ms(p2n) and ms(p′2n) all type-check.

It is easy to check that ms(p2c) and ms(p2n) work just fine. What about ms(p′2n)?
It is supposed to return the degree of an angle. Unfortunately, the execution of ms(p′2n)
produces a run-time error, as outlined below: The current position of p′2n is (0.5, 0.5) with
p′2n.dist =

√
0.52 + 0.52 < 1. So it is moved to the left 0.5

2 = 0.25 units of distance resulting
in another point, say, p′′2n. The position of p′′2n is (0.25, 1

4×0.25) = (0.25, 1) and the distance

from the origin to p′′2n is p′′2n.dist =
√

0.252 + 12 > 1. The execution sin-1 (p ′′

2n
.dist) thus

crashes because sin−1 is undefined for argument greater than 1.
What goes wrong is clear: when the x-coordinate of p′2n is moved (decreased), its

y-coordinate is implicitly moved too (increased) due to the interdependency between x
and y (y = 1

4(s.x)). The combination of these two movements makes p′2n (a non-colored

point) go into the colored point area of the x-y plane, resulting in a point with distance
greater than 1 and creating semantics confusions. The importance of object component
interdependencies to object behaviors can be seen clearly here. Conceptually, for ms to
safely fulfill its specifications, it should not take an arbitrary point as its argument. Any
points in which some methods depend on x and affect dist at the same time, for example
p′2n, will potentially make the behavior of ms unpredictable and endanger the execution
of ms when they are submitted to ms. Thus, allowing points like p′2n to be submitted to
ms is a “wrong idea”, in the sense that ms(p′2n) does not work as specified and therefore
ms is unreliable.

How can we fix this problem? Is the function ms composed incorrectly? Is there a
way to rewrite ms so that we can prove that ms works as specified for all permissible
arguments? It seems unlikely. Note that ms is written with P as the type of its argument.
ms cannot foresee what kind of extra methods there are in its actual arguments. When p′2n

is submitted to ms, p′2n’s y-coordinate is invisible to ms. ms does not know the existence

Program Verifications, Object Interdependencies, and Object Types 83

of the y-coordinate, and of course, has no way of knowing the interdependencies between
y and other methods and the ensuing behavior of p′2n. This is especially the case if p′2n

is constructed via inheritance from p1c or p1n. This situation causes the behavior of ms
(with various permissible arguments) unpredictable, and is inevitable in OOP supported
by conventional object type systems.

2.2 Java Version of the Problem

To show that the problem exists not only in object-based languages, but in classed-based
languages as well, we present a Java version of the problem with two running scripts in
Figure 4.

Classes P, CP, CP2, and NCP2 correspond to types P (and NCP), CP , CP2, and NCP2

respectively. Similarly, objects p1n, p1c, p2n, p2c and p2na correspond to points p1n, p1c,
p2n, p2c, and p′2n respectively. MPP and MPP1 are two applications that use these points.
Due to the “class-serves-as-type” feature of Java, the Java version of the problem is twisted
a bit: The types of p2n and p2na are NCP2 and NCP2a respectively. These two types are
not the same but enjoy a subtyping relationship NCP2a <: NCP2. This is different from
ς-calculus where p2n and p′2n have the same type, but does not affect the illustration of
the problem.

Note that in class NCP2a of Figure 4, in order to faithfully implement the desired fact
that “y-coordinate depends on x-coordinate”, we need to use the combination of the field
y and the method y() to simulate it. This is due to the imperative feature of Java. Field
y, as an instance variable, once acquires a value, will evaluate to the same value each time
it is evaluated. So field y does not “depend on” anyone in this sense. Then how can we
code “y-coordinate depends on x-coordinate”? The use of an auxiliary method y() which
depends on x (as desired) comes into help.

From the execution script of MPP, we can clearly see that submitting the “constrained”
point p2na to the function ms causes a run-time bug, which demonstrates that the type
NCP2a of p2na should not be regarded as a subtype of the type P although NCP2a is inher-
ited (indirectly) from P. Considering that all ms(p1c), ms(p2c), ms(p2n) work fine and
all the classes (types) of the three objects p1c, p2c, p2n are inherited (indirectly) from
P too, we need to distinguish (all) inheritances in Java so that some inheritances (e.g.,
those as CP, CP2, and NCP2) may imply subtyping and others (e.g., those as NCP2a) do
not. This can be done by using object interdependency as a measurement. Unfortunately,
Java thinks “all inheritance is subtyping”. What is more interesting is that due to the way
in which Java handles NaN (Any arithmetic operation involving NaN and other operands
produces a NaN, but any relational operation involving NaN and other operands produces
either true or false3.), this run-time bug can become hidden and difficult to find if the
relevant expression is (deeply) involved with other computations. MPP1 is such an exam-
ple; by just examining the execution script of MPP1, it is hard to tell that ms(p2na) has
actually caused a run-time bug.

3There are other means in Java to make the “illegal value” NaN legal, e.g., (int)(Math.asin(2)) evaluates to 0,
which could also help to conceal the NaN run-time bugs.

84 Cong-Cong Xing

// class P. Note that this is also class

// NCP since NCP is defined as P.

public class P {

protected double x = 0.5;

public double getx()

{ return x; }

public void mvx(double i)

{ x = x+i; }

public double dist()

{ return getx();}

}

// class CP, inherited from P

public class CP extends P { String clr = "blue";

public CP()

{ x = 2.0;}

}

// class CP2, inherited from CP

public class CP2 extends CP {

protected double y;

public CP2()

{ y = 2.0;}

public double gety()

{ return y; }

public void mvy(double i)

{ y = y+i; }

public double dist()

{ return Math.sqrt(getx()*getx() + gety()*gety());}

}

// class NCP2, inherited from P

public class NCP2 extends P {

protected double y;

public NCP2()

{ y = 0.3;}

public double gety()

{ return y; }

public void mvy(double i)

{ y = y+i; }

public double dist()

{ return Math.sqrt(getx()*getx() + gety()*gety());}

}

// class NCP2a, inherited from NCP2. Need the combination

// of y and y() to simulate "y depends on x". Note that

// "y depends on x" is what we want to do, without the use

// of y(), fields x and y would be independent

public class NCP2a extends NCP2

{

public NCP2a()

{ y = y(); } // calling y() to get

// value for y

public double y() // implementation of

{ return 1/(4*x);} // "y depends on x"

public double gety()

{ y = y(); // calling y() to get

return y; // value for y

}

}

// Application that uses P, CP, CP2, NCP2, and NCP2a

public class MPP {

public static void ms(P p)

{ if (p.dist() > 1)

{System.out.println(" This is a colored point");

p.mvx(1); // move p as specified

System.out.println(" The result is: "+Math.asin(1/p.dist()));

}

else

{System.out.println(" This is a non-colored point");

p.mvx(-0.5*p.getx()); // move p as specified

System.out.println(" The result is: "+Math.asin(p.dist()));

}

}

public static void main(String args[])

{ P p1n = new P();

CP p1c = new CP();

CP2 p2c = new CP2();

NCP2 p2n = new NCP2();

NCP2a p2na = new NCP2a();

System.out.println("making call ms(p1n)..."); ms(p1n);

System.out.println("making call ms(p1c)..."); ms(p1c);

System.out.println("making call ms(p2n)..."); ms(p2n);

System.out.println("making call ms(p2c)..."); ms(p2c);

System.out.println("making call ms(p2na)..."); ms(p2na);

}

}

// Application that uses P, CP, CP2, NCP2, and NCP2a

public class MPP1 {

public static void ms(P p)

{ System.out.print(" Check to see if the result > PI/4:");

if (p.dist() > 1)

{ p.mvx(1); // move p as specified

if (Math.asin(1/p.dist()) > (Math.PI)/4)

System.out.println (" yes");

else

System.out.println (" no");

}

else

{ p.mvx(-0.5*p.getx()); // move p as specified

if (Math.asin(p.dist()) > (Math.PI)/4)

System.out.println (" yes");

else

System.out.println (" no");

}

}

public static void main(String args[])

{ // omitted, same as the part in MPP }

}

C:\MyJavaPrograms\Point\movable pt problem>java MPP making call ms(p1n)...

This is a non-colored point

The result is: 0.25268025514207865

making call ms(p1c)...

This is a colored point

The result is: 0.3398369094541219

making call ms(p2n)...

This is a non-colored point

The result is: 0.40118821299725976

making call ms(p2c)...

This is a colored point

The result is: 0.2810349015028136

making call ms(p2na)...

This is a non-colored point

The result is: NaN

C:\MyJavaPrograms\Point\movable pt problem>java MPP1 making call ms(p1n)...

Check to see if the result > PI/4: no

making call ms(p1c)...

Check to see if the result > PI/4: no

making call ms(p2n)...

Check to see if the result > PI/4: no

making call ms(p2c)...

Check to see if the result > PI/4: no

making call ms(p2na)...

Check to see if the result > PI/4: no

Figure 4: Java Code of the Movable Point Problem

Program Verifications, Object Interdependencies, and Object Types 85

Summarizing what is described in this section, we can state the problem as follows:

• In OOP supported by conventional object type systems, there is no way to implement
programs like ms reliably and verify its correctness.

Motivated by this problem, we propose, in the subsequent sections, a new typing
scheme for objects.

3 A Simple Typed Object-Oriented Language

To illustrate our approach, we define a simple typed object-oriented language (TOOL) in
this section.

3.1 Syntax

The terms and types of TOOL are defined as follows.

M ::= x | λ(x :σ).M | M1M2 | M.l | M.l⇐ ς(x :S(A))M ′

| [li = ς(x :S(A))Mi]
n
i=1

σ ::= κ | t | σ1 → σ2 | µ(t)σ | A | S(A)
A ::= ι(t)[li(Li) :σi]

n
i=1 Li ⊆ {l1, . . . , ln} for each i

Terms in TOOL are standard λ-terms and ς-terms [2]. In particular, [li = ς(x :
S(A))Mi]

n
i=1 represents an object, M.l represents method invocation, and M.l⇐ ς(x :

S(A))M ′ represents method updating.
Types in TOOL are standard ground type, function type, recursive type, and the

newly proposed object type. In object type ι(t)[li(Li) : σi]
n
i=1, ι is the self-type binder,

each method li has type σi, and Li is the set of links of li (defined in the next subsection).
S(A) denotes the self type induced by the object type A. A = ι(t)[li(Li) :σi(t)]

n
i=1 if and

only if A = [li(Li) :σi(S(A))]ni=1.
We provide a simple example to illustrate the syntax of types and terms. Let

A
def

= ι(t)

l1({l2, l3}) : t
l2(∅) : int
l3({l2}) : int → int

 .

It specifies that l1, l2, and l3 are of self type (associated with A), int , and int → int
respectively. The sets of links for l1 and l3 are {l2, l3} and {l2}. l2 has no links. An object
of type A could be

a
def

=

l1 = ς(s :S(A))s
l2 = 1
l3 = ς(s :S(A))λ(x : int)(x + s.l2)

 .

86 Cong-Cong Xing

3.2 Definition of Links

Links are used to signify the structure of component dependency of objects. Informally,
in object type ι(t)[li(Li) : σi]

n
i=1, lj ∈ Li means that the value of method li depends

(partially) on the value of method lj . The link mechanism makes the types of objects in
TOOL substantially different from that in conventional object type systems.

Definition 1 (Link) Given an object a = [li = ς(s : S(A))Mi]
n
i=1, (1) li is said to be

dependent on lj(i 6= j) if there exists a M such that a.li and (a.lj⇐ ς(s : S (A))M).li
evaluate to different values; (2) li is said to be directly dependent on lj(i 6= j) if (a) li
is dependent on lj , and (b) if all such lk(i 6= k, j 6= k) where li is dependent on lk and lk
is dependent on lj , are removed from a, li is still dependent on lj ; (3) The set of links of
li (or equivalently, of Mi with respect to object a), denoted by L(li) (or equivalently, by
La(Mi)), contains exactly all such lj on which li is directly dependent.

Example 1 Take the object a and its type A defined at the end of section 3.1, by the
definition of links, we see that the links of the methods in a are:

L(l1) = La(s) = {l2, l3}
L(l2) = La(1) = ∅
L(l3) = La(λ(x : int)(x + s.l2)) = {l2}

which match the corresponding link specifications in type A.

4 Object Type Graphs

4.1 Definitions

To reveal the structure of object component interdependencies more clearly and facilitate
the study of object subtyping and behaviors, we introduce a graphical representation of
object types – object type graphs. We define directed colored graphs first.

Definition 2 (Directed Colored Graph) A directed colored graph G is a 6-tuple
(GN , GA, C, sr, tg, c) consisting of: (1) a set of nodes GN , and a set of arcs GA; (2) a
color alphabet C; (3) a source map sr : GA → GN , and a target map tg : GA → GN ,
which return the source node and target node of an arc, respectively; and (4) a color

map c : GN ∪ GA → C, which returns the color of a node or an arc.

Definition 3 (Ground Type Graph) A ground type graph is a single-node colored di-
rected graph which is colored by a ground type.

Definition 4 (Function Type Graph) A function type graph (s, G1, G2)(GN ,GA,C,sr,tg,c)

is a directed colored graph consisting exactly of a starting node s ∈ GN , and two type
graphs G1 and G2, such that, (1) c(s) =→; (2) there are two arcs associated with the
starting node s, left arc l ∈ GA and right arc r ∈ GA, such that c(l) = in, c(r) = out;

Program Verifications, Object Interdependencies, and Object Types 87

l connects G1 to s by sr(l) = sG1
, tg(l) = s, and r connects s to G2 by sr(r) = s,

tg(r) = sG2
, where sG1

and sG2
are the starting nodes of G1 and G2, respectively; (3)

G1 and G2 are disjoint; (4) if there is an arc a ∈ GA with c(a) = rec, then sr(a) = sGi
,

tg(a) = s, c(sGi
) =→, i = 1, 2.

Definition 5 (Object Type Graph) An object type graph (s, A, R, L, S)(GN ,GA,C,sr,tg,c)

is a directed colored graph consisting exactly of a starting node s ∈ GN , a set of method

arcs A ⊆ GA, a set of rec-colored arcs R ⊆ GA, a set of link arcs L ⊆ GA, and a set of
type graphs S, such that (1) c(s) = self. (2) ∀a ∈ A, sr(a) = s, tg(a) = sF for some type
graph F ∈ S, and c(a) = m for some method label m; c(a) 6= c(b) for a, b ∈ A, a 6= b. (3)
∀r ∈ R, c(r) = rec, tg(r) = s, sr(r) = sF for some F ∈ S, and c(sF) = self. (4) ∀l ∈ L,
sr(l) = sF , tg(l) = sG for some F, G ∈ S, and c(l) = bym for some method label m.

Remarks: Directed colored graph is the foundation of graph grammar theory [10, 11,
12, 13, 22]. Object type graphs are adapted from directed colored graphs. Ground type
graphs are trivial. Function type graphs are straightforward. They need to be defined
because an object type graph may include them as subgraphs. An object type graph is
formed by a starting node s and a set S of type graphs with each F ∈ S being connected
to s by a method arc that goes from s to F . The starting node s is colored by self and is
used to denote the self type. The method interdependencies are specified by arcs in L. If
L(m) is the set of links of method m, then for each l ∈ L(m) there is an arc (colored by
byl) that goes from l to m. Recursive object types are specially indicated by rec-colored
arcs in R.

For the sake of brevity, we drop the subscripts in (s, G1, G2)(GN ,GA,C,sr,tg,c) and
(s, A, R, L, S)(GN ,GA,C,sr,tg,c) whenever possible throughout the paper.

4.2 Examples of Object Type Graphs

We now provide some examples to illustrate the definition of object type graphs.

Example 2 In Figure 5, A, B, and C are the type graphs for ground types int, real, and
bool respectively. D is the type graph for function type int → int and E is the type graph
for (int → real) → (real → int).

int int

in
out

in
out

in out in out

int real intrealint real bool

A B C D E

Figure 5: Examples of Ground Type Graphs and Function Type Graphs

88 Cong-Cong Xing

Example 3 In Figure 6, graph A denotes the object type [x : int, y : int], where methods
x and y are independent of each other. Graph B denotes the type [x : int, y({x}) : int]
where y depends on x. Note that the direction of the link arc in B is from x to y, (not
from y to x), signifying the fact that changes made to method x will affect method y.

x y

self
s

intint

x y

self
s

intint
byx

A B

Figure 6: Examples of Object Type Graphs

Example 4 In Figure 7, graph C represents the object type µ(t)ι(s)[a : int, b : t, c : s].
Method a is of type int; method b is of recursive object type C. Method c is of the self
type induced by the object type C. Note the structural difference between the type of b
and the type of c revealed in the type graph4. Graph D represents the type of a simplified
1-d movable point [x = 1, mvx = ς(s :S(D))λ(i : int)(s.x⇐ s.x + i)]. The facts that mvx
depends on x and returns a modified self are indicated by the byx-colored arc and the
out-colored arc in D.

a
b

self

selfint

x mvx

self
s

int
byx

A B

c

rec

int
in

out

Figure 7: Examples of Object Type Graphs

Example 5 Two more object type graphs are shown in Figure 8. They are the types of
some variations of point objects. Graph A is the type of the object

x = 1,
m1 = ς(s :S(A))λ(i : int)p
m2 = ς(s :S(A))λ(i : int)s

4This structural setting, potentially, will allow the type of c to remain as self type and the type of b to
be changed after some operations on graph C are performed.

Program Verifications, Object Interdependencies, and Object Types 89

where p is some point object of type A. Graph B is the type of the object

x = 1
y = 2
d = ς(s :S(B))(s.x + s.y)/2
e1 = ς(s :S(B))λ(p :B)(p.x = s.x ∧ p.y = s.y)
e2 = ς(s :S(B))λ(p :S(B))(p.x = s.x ∧ p.y = s.y)

.

m1 m2

self

A

x

rec

selfint int

int

in
out in

out

byx

self

B

rec

real

intint

inout

in

out
bool boolself

x y

d

e1 e2

byx

byx

byx byy

byy

byy

bym1

Figure 8: Examples of Object Type Graphs

5 Object Typing/Subtyping Under OTG

We now investigate the issue of typing/subtyping under OTG. We first define object
subtyping through a series of definitions and then present the typing/subtyping rules with
a brief discussion. Note that OTG is just another way (a graphical way, specifically)
to represent object types. There is a natural 1-1 correspondence between OTG and the
normal textual representations of object types in TOOL. So the typing rules presented
in this section naturally apply to object type graphs. What makes OTG significant is
its facilitation of the formulation of object subtyping with the presence of links in object
types (as addressed below).

Definition 6 (Type Graph Premorphism) Let Φ be the set of ground types. Given two
type graphs G = (GN , GA, C, sr, tg, c) and G′ = (G′

N , G′

A, C ′, sr′, tg′, c′), a type graph

premorphism f : G → G′ is a pair of maps (fN : GN → G′

N , fA : GA → G′

A), such that
(1) ∀a ∈ GA, fN (sr(a)) = sr′(fA(a)), fN (tg(a)) = tg′(fA(a)), and c(a) = c′(fA(a)); (2)
∀v ∈ GN , if c(v) ∈ Φ, then c′(fN (v)) ∈ Φ; otherwise c(v) = c′(fN (v)).

Definition 7 (Base, Subbase) Given an object type graph G = (s, A, R, L, S). The base

of G, denoted by Ba(G), is the graph (s, A, t(A), L), where t(A) = {tg(a) | a ∈ A}.
A subbase of G is a subgraph (s, A′, t(A′), L′) of Ba(G), where A′ ⊆ A, L′ ⊆ L, t(A′) =
{tg(a) | a ∈ A′}, and for each l ∈ L′ there exist a1, a2 ∈ A′ such that sr(l) = tg(a1) and
tg(l) = tg(a2).

90 Cong-Cong Xing

self

x

y

zu

int

intselfint

int

real

real

in

out

m

n

byx

byz

byy

self

u x

int

self

u
x

int
byx

y

byxbyy

(a) G

byx
self

x

y

zu

int

intself

byx

byz

byybyx

self

(b) Ba(G) (c) D (d) Cl(D)

Figure 9: (a) An object type graph G; (b) The base Ba(G) of G;
(c) A subbase D of G; (d) The closure Cl(D)

Definition 8 (Closure, Closed) The closure of a subbase D = (s, A′, t(A′), L′) of an
object type graph G = (s, A, R, L, S), denoted by Cl(D), is the union D ∪ E1 ∪ E2,
where (1) E1 = {l ∈ L | ∃a1, a2 ∈ A′ with tg(a1) = sr(l), tg(a2) = tg(l)}, and (2)
E2 = {l, h, a, t(l) | l, h ∈ L, a ∈ A, a 6∈ A′, tg(l) = sr(h) = tg(a), and ∃a1, a2 ∈
A′ such that tg(a1) = sr(l), tg(a2) = tg(h)}. A subbase D is said to be closed if D =
Cl(D).

Definition 9 (Covariant, Invariant) Given an object type graph (s, A, R, L, S). Let
t(A) = {tg(a) | a ∈ A}. For each v ∈ t(A), if v is not incident with any links, or if
v is the target node of some links but not the source node of any links, then v is said to
be covariant; otherwise, v is said to be invariant.

Definition 10 (Object Subtyping) Given two object type graphs G = (sG, AG, ∅, LG, SG)
and F = (sF , AF , ∅, LF , SF). F <: G if and only if the following conditions are satis-
fied: (1) There exists a premorphism f from Ba(G) to Ba(F) such that f(Ba(G)) =
Cl(f(Ba(G))). That is, f(Ba(G)) is closed. (2) For each node v in f(Ba(G)), let u be its
preimage in Ba(G) under f , Fv ∈ SF be the type graph with v as its starting node, and
Gu ∈ SG be the type graph with u as its starting node. (i) If v is invariant, then Fv

∼= Gu.
(ii) If v is covariant, then Fv <: Gu.

Remarks: Type graph premorphism is adapted from graph morphism which is a
fundamental concept in algebraic graph grammars [13, 10, 22, 11, 12]. It preserves the
directions and colors of arcs and the colors of nodes up to ground types. The base of an
object type graph singles the method interdependency information out of the entire object
type graph so that the structure of the method interdependencies can be better studied.
The closure of a subbase captures the complete behavior of the subbase by including, in
addition to all methods and links in the subbase, a set E2 of methods (and associated
links) outside of the subbase in the following way: for any method l in E2, (1) l depends
on some methods inside the subbase, and (2) there exist some methods inside the subbase
that depend on l. An example of base, subbase, and closure is shown in Figure 9. Object
subtyping is defined using the ideas of type graph premorphism, base, subbase, closure, and
variance property. It first ensures that the behavior of a subobject (indicated by method

Program Verifications, Object Interdependencies, and Object Types 91

interdependencies) is the same as that of a superobject through the closure requirement.
Then, it uses the variance information of each method to check the subtyping feasibility of
each method type (graph) in a subobject with its counterpart in a superobject5. Note that
in the definition of object subtyping, we only consider the case R = ∅ (i.e., no recursive
object types). The case R 6= ∅ requires complicated graph grammar operations and is
beyond the scope of this paper.

The typing/subtyping rules of TOOL are shown in Table 1. The rules that are affected
by links are (TObj) and (TUpd). Note that in these rules, the set of links computed from
terms are checked against the set of links specified in types.

∅ � ⋄
(TC∅)

Γ � σ x 6∈ dom(Γ)

Γ, x :σ � ⋄
(TCVar)

Γ � M : σ x 6∈ dom(Γ)

Γ, x :τ � M : σ
(Tx)

Γ � ⋄

Γ � κ
(TyCons)

Γ � σ Γ � τ

Γ � σ → τ
(TyFun)

Γ � σi ∀i ∈ {1, . . . , n}

Γ � ι(t)[li(Li) :σi(t)]ni=1

(TyObj, Li ⊆ {l1, . . . , ln} for each i)

Γ � ⋄ x :σ ∈ Γ

Γ � x :σ
(TVar)

Γ, x :σ � M :τ

Γ � λ(x :σ).M : σ → τ
(TAbs)

Γ � M :σ → τ Γ � N :σ

Γ � MN : τ
(TApp)

Γ, s :S(A) � Mi :σi Li = La(Mi) ∀i ∈ {1, . . . , n}

Γ � a : A
(TObj,

a = [li = ς(s :S(A))Mi]
n
i=1

A = ι(t)[li(Li) :σi(t)]
n
i=1

)

Γ � M : A j ∈ {1, . . . , n}

Γ � M.lj : σj(A)
(TInv1, A = ι(t)[li(Li) :σi(t)]

n
i=1 = [li(Li) :σi(S(A))]ni=1)

Γ � s : S(A) j ∈ {1, . . . , n}

Γ � s.lj : σj(A)
(TInv2, A = ι(t)[li(Li) :σi(t)]

n
i=1 = [li(Li) :σi(S(A))]ni=1)

Γ � N :A Γ, s :S(A) � M :σi Li = LN (M) i ∈ {1, . . . , n}

Γ � N.li⇐ ς(s :S(A))M : A
(TUpd, A = ι(t)[li(Li) :σi(t)]

n
i=1)

Γ � σ

Γ � σ <: σ
(SRefl)

Γ � σ <: τ Γ � τ <: δ

Γ � σ <: δ
(STran)

Γ � a :A Γ � A <: B

Γ � a :B
(SSump)

Γ � σ′ <: σ Γ � τ <: τ ′

Γ � σ → τ <: σ′ → τ ′
(SFun)

Γ � GA <: GB

Γ � A <: B
(SObj,

GA and GB are the OTGs of A and B respectively

A = ι(t)[li(Li) :σi(t)]
n
i=1, B = ι(t)[l′i(L

′

i) :σ′

i(t)]
n′

i=1

)

Table 1: Typing and Subtyping Rules for TOOL

We would like to emphasize that the purpose of object type graphs is to facilitate
the formulation and reasoning of object subtyping when method interdependencies are
considered in object types. This can be seen in the object subtyping rule (SObj) where
the determination of A <: B for object types A and B depends on whether their object

5Ground subtyping and function subtyping which are involved in object subtyping are standard as in
the literature.

92 Cong-Cong Xing

type graphs GA and GB have a subtyping relationship which, in turn, can be decided by
the Definition 10. (Definition 10 suggests an immediate algorithm for how to compute
GA <: GB.)

6 Verification of the Program ms under OTG

We have shown, in section 2, that under conventional object type systems, there is no way
to code the function ms satisfactorily in the sense that we are unable to prove that ms
performs to its specification for all permissible arguments. In this section, we show that
this problem can be easily resolved under OTG typing/subtyping. That is, we show that
ms can be coded reliably under OTG typing/subtyping and prove that it performs to its
specification in all situations.

Given the code of ms in Figure 3 and under the OTG notation, the type of the point
p1n (which is also the type of the parameter in the function ms) and the type of the point
p′2n are depicted as P and Q′

2n in Figure 106. Let f be the premorphism from base Ba(P)
to base Ba(Q′

2n), f(Ba(P)) and its closure Cl(f(Ba(P))) are also shown in Figure 10. By
the OTG object subtyping definition (Definition 10), we can see that Q′

2n 6<: P because
f(Ba(P)) 6= Cl(f(Ba(P))) (i.e., f(Ba(P)) is not closed). Hence, p′2n cannot be viewed
as having type P and ms(p′2n) does not type-check. The run-time error of ms(p′2n) is
therefore prevented by type checking at compile-time. Hence, the code of ms in Figure 3
is safe under the OTG typing/subtyping.

self

real

real

x
mvx

byx

byx

in

real

out

dist

dist

x y

mvx mvy

byx byy

real

real realself

real real

byx byy

in

out

in

out

byx

P 2nQ’

dist

x

mvx

byx

real

real self

dist

x y

mvx

byx byy

real

real realself

byx

byx

f(Ba(P)) Cl(f(Ba(P)))

Figure 10: Resolution of the Movable Point Problem in OTG

To fully revisit of the movable point problem in the context of OTG, the type graphs
of p1c, p2c, and p2n are depicted in Figure 11 as Q1c, Q2c, and Q2n, respectively. We can
easily check, using Definition 10, that Q1c <: P , Q2c <: P , and Q2n <: P all hold. This
shows that the desired executions ms(p1c), ms(p2c), and ms(p2n) are all supported by
OTG typing/subtyping scheme.

From Figure 10 and Figure 11, we see that the type of p′2n and the type of p2n are
different under OTG (as opposed to the same in conventional type systems). The fact that
method y depends on method x in p′2n and method y does not depend on method x in

6For the sake of conciseness, some unimportant links that do not affect the result of illustration, such
as the link from method dist to method mvx, are not shown in Figure 10.

Program Verifications, Object Interdependencies, and Object Types 93

self

real

real

x
mvx

byx

byx

in

real

out

dist

dist

x y

mvx mvy

byx byy

real

real realself

real real

byx byy

in
out

in out

dist

x y

mvx mvy

byx byy

real

real realself

real real

byx byy

in

out

in

out

byx

Q Q
1c 2n2c Q

clr

color

color

clr

Figure 11: Types of p1c, p2c, and p2n in OTG

p2n (i.e., p2n and p′2n have different behaviors) is faithfully captured in their type graphs
as the presence/absence of a link from method x to method y. Indeed, this distinction
is necessary in order to prevent run-time errors such as those caused by ms(p′2n). This
observation leads to the following proposition.

Proposition 1 Let A be the type of an object a in which there is a link between method
x and method y. Let B be the type of an object b which is modified from a by deleting the
link between method x and method y. Then A 6= B.

Also note that in Figure 10 and Figure 11, we have Q′

2n 6<: Q2n (we can easily verify this
by Definition 10). This disallowance of subtyping is also necessary in order to statically
prevent similar run-time errors caused by ms(p′2n). Thus,

Proposition 2 Let A and B be as specified in Proposition 1. Then A 6<: B.

We now show the correctness of ms in Figure 3 under the OTG typing scheme. We
assume that all arguments (1-d points, 2-d points, . . .) submitted to ms are “correctly”
coded. In particular, if p is an n-dimensional point with coordinates x1, . . . , xn, then
its method dist must have

√

x2
1 + · · · + x2

n as the body; and its method mvx must have
λ(i :real)s.x⇐(s.x + i) as the body; how other methods in p are coded is irrelevant to the
proof. This is a reasonable assumption, for if p is coded “incorrectly” or arbitrarily (say,
p’s dist body is

√

x2
1 + 4x2

2 + · · · + n2x2
n), then there would be no way to expect what kind

of behavior ms can have with p as its argument.
To facilitate the proof, we rewrite the functional program ms in Figure 3 equivalently

into an imperative one in Figure 12, where a holds the computation result. We would like
to prove, under the framework of Hoare logic (e.g. [16, 17]), that the two Hoare triples

(|p.dist > 1 ∧ p :P |)ms(p)(|p.dist > 1 ∧ p :P |)
(|p.dist ≤ 1 ∧ p :P |)ms(p)(|p.dist ≤ 1 ∧ p :P |)

are valid for any point p of type P in Figure 10. The first triple specifies that ms keeps
a colored point in the colored point area after moving it. The second triple specifies that
ms keeps a non-colored point in the non-colored point area after moving it. Before proving
the validity of the triples, we prove a lemma first. Let colored points and non-colored points
be defined as in section 2, we can show that

94 Cong-Cong Xing

ms
def

= fun(p : P) {
real a;
if (p.dist > 1){

p.mvx(δ); // δ > 0
a = sin-1 (1/p.dist);

}
else {

p.mvx(−1
2p.x);

a = sin-1 (p.dist);
}

}

Figure 12: The Imperative Version of the Program ms.

Lemma 1 Given an n-dimensional point p, if p is a non-colored point and is of type P
in Figure 10, then after being moved, along the x-axis and towards the origin, half of the
projection of the distance from the origin to p’s current position over the x-axis, p is still
in the non-colored point area in the space.

Proof: Without loss of generality, we assume that the coordinates of p are x1, x2, . . . , xn

(n > 1) with x1 being the x-coordinate, x2 being the y-coordinate, Since p is a non-
colored point, we have

√

x2
1 + · · · + x2

n ≤ 1. After p is moved as specified, its x-coordinate
would be changed to 1

2x1. Since p is n-dimensional and n > 1, the actual type of p must
be a subtype of P . By the definition of OTG subtyping (Definition 10), we know that the
x-coordinate change of p will not affect any other coordinates x2, · · · , xn of p because all
x2, · · · , xn occur in the method dist of p and dist appears in type P 7. Thus, x2, . . . , xn all
retain their old values after p’s move. Therefore, the distance from the origin to the new

position of p is
√

(1
2x1)2 + x2

2 + · · · + x2
n <

√

x2
1 + x2

2 + · · · + x2
n ≤ 1, indicating the p is

still in the non-colored point area. 2

The validity of the second Hoare triple is given in Theorem 1 below. The proof of the
first Hoare triple is similar and omitted.

Theorem 1 Given the program ms in Figure 12, the Hoare triple

(|p.dist ≤ 1 ∧ p :P |)ms(p)(|p.dist ≤ 1 ∧ p :P |)
is valid.

Proof: The proof, shown in Figure 13, is an application of the standard imperative program
verification rules (see e.g. [17]). In Figure 13, p.d and p.m stand for p.dist and p.mvx , and
A, B, C, D, E, F , G stand for the following triples respectively:

7Here is a subtle point indicated by the OTG object subtyping: if any of the coordinates x2, . . . , xn,
say xi, does not occur in method dist (or in any other method included in type P), then we allow xi be
affected by the changes of x1 while requiring that the type of p is a subtype of type P .

Program Verifications, Object Interdependencies, and Object Types 95

(|p.d ≤ 1 ∧ p : P |){p.m(−1
2p.x)}(|p.d ≤ 1 ∧ p : P |),

(|p.d ≤ 1 ∧ p : P |){a = sin-1 (p.d)}(|p.d ≤ 1 ∧ p : P |),
(| ⊥ |){p.m(δ); a = sin-1 (1/p.d)}(|p.d ≤ 1 ∧ p : P |),
(|p.d ≤ 1 ∧ p : P |){p.m(−1

2p.x); a = sin-1 (p.d)}(|p.d ≤ 1 ∧ p : P |),
(|p.d ≤ 1 ∧ p : P ∧ p.d > 1|){p.m(δ); a = sin-1 (1/p.d)}(|p.d ≤ 1 ∧ p : P |),
(|p.d ≤ 1 ∧ p : P ∧ p.d ≤ 1|){p.m(−1

2p.x); a = sin-1 (p.d)}(|p.d ≤ 1 ∧ p : P |),
(|p.d ≤ 1 ∧ p : P |)ms(p)(|p.d ≤ 1 ∧ p : P |).
The validity of triple A on the top of the proof tree is provided by Lemma 1. 2

C

E
(implication)

A
(Lemma 1)

B
(assignment)

D
(composition)

F
(implication)

G
(if-statement)

Figure 13: The Proof of ms’s Property

7 Conclusion and Future Work

Typing is an efficient means in program verifications. Object component interdependency
information is critical in determining and predicting object behaviors and in shaping object
types. If this information is not captured in object typing, as is the case in conventional
object type systems, then a statically well-typed program may go wrong at run-time
causing run-time errors and program verification troubles. We proposed object type graphs
(OTG) as an initial treatment for handling object component interdependencies in object
typing and program verifications. We have seen that due to OTG’s ability of revealing
more information about object behaviors,

• Programs that go wrong at run-time in conventional object type systems can be
effectively detected at compile-time under OTG typing/subtyping.

• Program verifications that cannot be done with conventional object type systems
can be easily carried out with the support of OTG typing/subtyping.

This demonstrates that OTG is a safer typing scheme than conventional ones, and
provides a valuable support for OOP program verifications. The following issues are of
immediate interests for future work:

• Devise a link computation algorithm and assess its complexity.

• Prove/disprove that the standard properties of type systems, such as subject reduc-
tion and soundness, hold under OTG.

• As far as applying the idea of OTG to practical object-oriented languages is con-
cerned, we believe that a direct approach would be to adapt OCaml [1] by modifying
its type for classes. Influenced by OOP theory research, Ocaml, unlike other object-
oriented languages (e.g. Java) where classes are the sole type of objects, gives a

96 Cong-Cong Xing

type for each of its classes. In a sense, the type of a class in OCaml is the (more
abstract) type of the object generated by that class. This is a typical case where
practice benefits from theory, and it would be very interesting to keep extending
OCaml along this line.

References

[1] http://caml.inria.fr/ocaml/. 2007.

[2] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, New York, 1996.

[3] V. Bono, M. Bugliesi, M. Dezani-Ciancaglini, and L. Liquori. Subtyping for Extensible,
Incompete objects. Fundamenta Informaticae, 38(4):325–364, 1999.

[4] V. Bono and L. Liquori. A subtyping for the Fisher-Honsell-Mitchell lambda calculus of
objects. In Proc. of International Conference of Computer Science Logic, number 933 in
LNCS, pages 16–30. 1995.

[5] K. Bruce. A paradigmatic object-oriented programming language: Design, static typing and
semantics. Journal of Functional Programming, 4(2):127–206, 1994.

[6] K. Bruce. Foundations of Object-Oriented Languages. MIT Press, 2002.

[7] K. Bruce, A. Schuett, R. van Gent, and A. Fiech. Polytoil: A type-safe polymorphic object-
oriented language. ACM Transactions on Programming Languages and Systems, 25(2):225–
290, 2003.

[8] W. Cook, W. Hill, and P. Canning. Inheritance is not subtyping. In Proceedings of the 17the
Annual ACM Symposium on Principles of Programming Languages, pages 125–135, 1990.

[9] R. Deline and M. Fahndrich. Typestates for objects. In ECOOP 2004, 2004.

[10] H. Ehrig. Introduction to the algebraic theory of graph grammars. In Graph-Grammars and
Their Applications to Computer Science and Biology, volume 73 of Lecture Notes in Computer
Science, pages 1–69. Springer-Verlag, 1978.

[11] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of Graph Grammars
and Computing by Graph Transformation, volume 2. World Scientific, 1999.

[12] H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of Graph
Grammars and Computing by Graph Transformation, volume 3. World Scientific, 1999.

[13] H. Ehrig, M. Pfender, and H. J. Schneider. Graph grammars: An algebraic approach. In
IEEE Conference of Automata and Switching Theory, pages 167–180, 1973.

[14] K. Fisher, F. Honsell, and J. Mitchell. A lambda calculus of objects and method specialization.
Nodic Journal of Computing, 1:3–37, 1994.

[15] J. Hickey. Introduction to OCaml, http://caml.inria.fr/tutorials-eng.html. 2002.

[16] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12:576–580, 1969.

[17] M. Huth and M. Ryan. Logic in Computer Science. Cambridge University Press, 2nd edition,
2004.

[18] L. Liquori. On object extension. In ECOOP’98 Object-oriented Programming, number 1445
in Lecture Notes in Computer Science, pages 498–522. Springer–Verlag, 1998.

Program Verifications, Object Interdependencies, and Object Types 97

[19] L. Liquori and G. Castagna. A Typed Lambda Calculus of Objects. Number 1179 in Lecture
Notes in Computer Science, pages 129–141. Springer–Verlag, 1996.

[20] B. Liskov and J. Wing. A Behavioral Notion of Subtyping. ACM Transactions on Program-
ming Languages and Systems, 16(6):1811–1841, 1994.

[21] O. L. Madsen. Towards Integration of State Machines and Object-Oriented Languages. In
Technology of Object-Oriented Languages and Systems (TOOLS Europe’99), 1999.

[22] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Transforma-
tion, volume 1. World Scientific, 1997.

