
e-Informatica Software Engineering Journal, Volume 10, Issue 1, 2016, pages: 51–67, DOI 10.5277/e-Inf160103

Automatic SUMO to UML translation

Bogumiła Hnatkowskaa
aFaculty of Computer Science and Management, Wrocław University of Science and Technology

bogumila.hnatkowska@pwr.edu.pl

Abstract
Existing ontologies are a valuable source of domain knowledge. This knowledge could be extracted
and reused to create domain models. The extraction process can be aided by tools that enable
browsing ontology, marking interesting notions and automatic conversion of selected elements to
other notations. The paper presents a tool that can be used for SUMO to UML translation. Such
a transformation is feasible and results in a high-quality domain model which is consistent, correct,
and complete, providing that input ontology has the same features.

Keywords: SUMO ontology, information retrieving, domain model, UML, class diagram

1. Introduction

A domain model is a key development artifact. It
captures the most important types of objects in
the context of the domain, i.e. entities that exist
or events that transpire in the environment in
which the system works [1,2]. The domain model,
besides business object models and glossary [1],
is used to document the domain to which the
system relates. The domain model could be repre-
sented with the use of different notations, among
which the most popular are Entity Relationships
Diagrams and UML class diagrams.

Domain models should be of high quality to
reduce the number of changes when the develop-
ment proceeds. Among quality factors the most
important are [3]: consistency, completeness, and
correctness (3C).

Consistency and completeness could be per-
ceived from 2 perspectives: external and internal,
from which the external one is more difficult
to achieve. External completeness means that
we have identified all important entities and re-
lationships in the domain, while external con-
sistency means that we have documented the
identified elements in a way that preserves their
semantics [4]. On the other hand, the domain
model is internally consistent when it contains

no contradictions and it is internally complete
when it does not include any undefined object,
no information is left unstated or is to be deter-
mined [2].

The definition of model correctness is much
vaguer. Some authors define it as a mixture of
consistency and completeness [3], others [4] re-
fer it to syntactic correctness (this meaning of
correctness is used further in the paper).

A business analyst typically elaborates a do-
main model during a business modelling or re-
quirement specification phase [2].

Different elicitation techniques serve to dis-
cover entities in the domain, e.g. interviews. How-
ever, the obtained results strongly depend on the
complexity of the domain, business analyst ex-
perience and the quality of information sources.
The more difficult domain, the less experienced
an analyst or poor quality sources, the more likely
worse quality of the resultant domain model.

On the other hand, domain knowledge is often
included in existing ontologies and could be ex-
tracted from them. The extraction process could
be (partially) automated, which would result in
a high- quality domain model. Consistency and
correctness of such a model could be guaranteed
by construction, assuming that the source (on-
tology) itself is correct and consistent with the

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_10/eInformatica2016Art3.pdf

52 Bogumiła Hnatkowska

domain. The model completeness, at least the
internal one, could also be checked.

Many papers prove that the domain knowl-
edge represented by ontology can be widely used
in the design process of information systems. For
example, in [5] author analyses the role of ontolo-
gies in software engineering process. The author
claims that ontology is a significant source of
knowledge in the conceptualization phase and
proposes the ontology life cycle as the background
for a software development. A similar view is pre-
sented in [6] where the authors state that the
integration with ontology can improve software
modelling. An application of domain ontologies
to conceptual model development is also in pre-
sented in [7].

There are many high-level ontologies cur-
rently developed, e.g. BFO, Cyc, GFO, SUMO.
The last one, SUMO, seems to be very promis-
ing because it became the basis for the devel-
opment of many specific domain ontologies. A
particularly useful feature is that the notions
of SUMO have formal definitions (expressed in
SUO-KIF language) and at the same time they
are mapped to the WordNet lexicon [8]. SUO-KIF
is a variant of the KIF (Knowledge Interchange
Format) language [9]. Knowledge is described
declaratively as objects, functions, relations, and
rules. SUMO and related ontologies form the
largest formal public ontology in existence today
[8,9]. What is more, the ontologies that extend
SUMO, are available under GNU General Public
License.

The paper presents a tool for automatic
SUMO to UML translation. It is thought as
a support for a business analyst collaborating
with business experts. The main functionalities
include: browsing ontology content, selection of
interesting elements, and translation of selected
elements to a UML class diagram. The solution
presentation covers the meta-model of SUMO
notions (the main input to the transformation
process), tool architecture and an example of the
domain model which results from tool applica-
tion. The genesis of the tool (related works) is
also shortly described as well as the problems
met during implementation, and the elements
that will be included in the next release.

The only tool available on the Internet that
supports SUMO is SUMO browser, called Sigma
[10]. Tools that allow to create a UML class dia-
gram from the existing ontology exist for other
formalisms, e.g. OWL [11], but not for SUO-KIF.
However, SUO-KIF could be translated to other
formalisms, e.g. DLP [12].

SUMO was selected from existing ontologies
for the following reasons:
– It constitutes the biggest set of ontologies

which is freely available; SUMO contains def-
initions of more than 21 thousands of terms,
and more than 70 thousands of axioms; more-
over, the mapping of SUMO notion to Word-
Net is also available [9];

– SUO-KIF language is very flexible; it allows
to handle relations among three or more
things directly (e.g. OWL does not); it sup-
ports statements and rules written not only
in First-Order Logic, but also (at least par-
tially) in the Higher-Order Logic (e.g. “(be-
lieves John (likes Bob Sue))”, when the second
argument of “believes” is a proposition) [9];

– Existing translation of SUMO to OWL is
a provisional and necessarily lossy [9], which
calls into question its usefulness; on the other
hand, it is possible to perform the reverse
translation from OWL to SUMO, which seems
more promising, because the result could be
extended with the usage of SUO-KIF features;

– The flexibility of SUO-KIF is very similar to
the SBVR standard [13], promoted by OMG,
defining the meta-model for representation
of business vocabulary, and business rules;
SBVR statements could be directly translated
either to SUO-KIF or UML.
UML was selected as the target language

for translation because it is a general purpose
modeling and specification language commonly
used not only by programmers but also by busi-
ness analysts. Besides, the Entity Relationship
Diagram is a frequently selected notation to
describe domain models. Together with OCL
it forms a very useful tandem to define con-
straints on the domain behavior in a formal
way. The UML class diagram could be eas-
ily translated to other representations, either
more business oriented like SBVR (e.g. [13]) or

Automatic SUMO to UML translation 53

more program oriented like Java, C++, SQL
(e.g. [14]).

A tool for automatic SUMO to UML transla-
tion can be useful for anyone (especially a busi-
ness analyst) who would like to familiarize with
some specific domain. Theoretically, he or she
can read the ontology definition for that pur-
pose. Unfortunately, even if the SUMO browser
is in use, knowledge extraction from SUMO is
a challenge. SUMO is expressed in the textual
SUO-KIF language which is not not commonly
known. After a while, a reader is overloaded with
textual definitions. The aim of the paper is to
propose a solution to this problem. The solution
is based on the observations that: (1) UML is
a universal specification and modeling language
to present data models, software architecture
or business models; moreover it is supported by
many tools (CASE, IDE), (2) graphical notations
are easier to understand especially if the model is
complex, with many relationships among model
elements.

The rest of the paper is structured as follows.
Section 2 presents related works and clearly states
the paper’s contribution. The proposed SUMO
meta-model which supports the transformation
process is described in Section 3. The tool and
its main functional components are presented
in Section 4. Newly introduced transformation
rules for SUMO attributes and their relations
are the subject of Section 5. Section 6 shortly
defines existing transformation rules. An exam-
ple of a transformation with a short discussion
of its shortcomings is given in Section 7. Section
8 presents the problems to be addressed in the
future. Section 9, the last one, concludes the
paper.

2. Related Works

The paper [15] is the first in a series consider-
ing the SUMO ontology as a source for domain
modelling. It presents an initial set of mapping
rules between SUMO notions and UML notions,
and identifies the elements difficult to extract,
e.g. attributes.

The paper [16] presents an outline of a sys-
tematic approach to the development of a domain

model on the basis of selected SUMO ontologies.
It involves only a few steps. It starts with needs
description, next it goes through the identifica-
tion of business processes in the area of interests
which help to decide if a notion of an ontology
is in the area of interests (and should be trans-
lated to UML) or not. After the analysis of the
selected elements, they are translated (manually)
to a UML class diagram. The approach was tested
on a few examples. Some SUMO-UML mappings
were also refined. The biggest problems the au-
thors found are:
– ontology size – it contains many irrelevant

(out of scope) elements,
– domain knowledge is spread over many on-

tologies (files),
– some facts are defined at a very general level

(predicates between Object, Physical) which
makes the interpretation more difficult.
In the paper [17] the refined version of the

approach from [16] is presented. It also consists of
only a few steps, but their definition is much more
formal and close to implementation needs. The
main idea of the approach is a guided selection of
the SUMO extract, which will be further trans-
lated to UML. The paper also proposes some new
transformation rules, e.g. transformation of unary
functions. The general finding of that work is that
the process of knowledge extraction must be sup-
ported by a tool. Otherwise, the process, even if
the results are promising, is very time-consuming,
and error prone.

The contributions of this paper are as follows:
– The meta-model of SUMO notions used

within a transformation process (see Section
3).

– Definition of a tool architecture (see Section
4).

– New transformation rules for SUMO at-
tributes and their relations (see Section 5).

– Verification and correction of transformation
rules defined in [15–17]; the subset of imple-
mented rules (including the changed ones) is
presented in Section 6.
The transformation process between two mod-

els can be specified and performed in many ways.
If the source and targeted models are expressed
in the XML language, the transformation pro-
cess can be defined as the Extensible Stylesheet

54 Bogumiła Hnatkowska

Language Transformation (XSLT) and executed
by a dedicated engine (see [18] for an exam-
ple). This approach suffers from low readability
and maintainability, this is why the transforma-
tion between meta-models is considered more
often (e.g. [19]). In this approach at first the
meta-models of the source and target models
are prepared or adopted, and next the transfor-
mation rules between meta-classes are defined.
Transformation rules can be expressed either in
operative languages, like the Atlas Transforma-
tion Language (ATL), java or declarative ones
like QVT-Relations. In the paper, the approach
based on meta-models is in use. The SUMO
meta-model is defined by the author of that pa-
per. The UML meta-model is freely available
(eclipse.uml2 framework).

The SUMO to UML transformation rules de-
fined in [15–17] answer the question how to map
elements such as classes and their hierarchies or
relations and their hierarchies but they do not
address SUMO attributes and their relationships.
The problem with the SUMO attributes is that
they are represented differently than attributes
in the UML language. In SUMO the attribute is
defined as “a quality which we cannot choose not
to reify into subclasses of Objects” [8]. Because
of that, attributes are assigned not to classes
as in UML but to class instances. This paper
fills this gap. The thorough analysis of SUMO
relations between attributes is conducted here.
On that basis the mapping of SUMO attributes
to UML language is proposed. The mapping in-
volves the definition of a UML profile, presented
in Section 5.

The set of transformation rules defined in
[15–17] was verified and extended in the mean-
time. The newly introduced transformation rules
(including those defined for attributes), and the
changed transformation rules with their justifica-
tion are presented in Section 6.

3. Meta-model of SUMO Notions

To support the SUMO to UML transformation
process the content of SUO-KIF files has to be
represented at the higher abstraction level, which

enables both: checking static consistency rules
and performing the transformation process it-
self. It is achieved with so called meta-model of
SUMO notions – see Fig. 1. The initial version of
the meta-model was presented in [20]. Here the
diagram is extended by new meta-classes.

The diagram reflects the logical structure of
the SUO-KIF file which can be perceived as a set
of sentences. A SUMO sentence is represented
by the Sentence abstract class – the parent of
all possible kinds of statements in SUMO. Each
sentence belongs to exactly one OntologySegment
(SUO-KIF file). Below there is a short description
of concrete sentence classes:
1. LogicalSentence – a sentence starting with

a logical operator, e.g. “(=> . . .), (<=> . . .)”;
a tautology built with an implication and/or
an equivalence operator;

2. QuantifiedSentence – a sentence starting ei-
ther with a universal or existential quantifier:
“(forall . . .) or (exists . . .)”;

3. RelationalSentence – a sentence starting with
a name of function or relation: “(name . . .)”;
a fact in the considered domain stating, for
example, that John likes Karin.
It is assumed that only sentences written at

the first level are instantiated by the SUMO to
UML translator, e.g. the text: “(=> (instance
?REL BinaryPredicate) (valence ?REL 2))” will
be instantiated as one sentence even if it contains
two internal sub-sentences. The parser omits
SUMO comments.

The right side of the class diagram shows the
structure of SUMO notions. The Entity is “the
root node of the ontology” [8]. It is associated
with all sentences it belongs to (as a part).

Entity is the parent for two UML classes in-
teresting in the context of the considered trans-
formation:
– Relation – definition of a SUMO relation or

function, together with its domains and/or
range (see Fig. 2);

– Type – represents a SUMO notion that can be
instantiated, e.g. BinaryPredicate; types that
represent SUMO Attributes are distinguished
with isAttribute=true field.
Each instance of RelationalSentence is linked

to one Relation (basicRelation role) and many

Automatic SUMO to UML translation 55

Figure 1. Meta-model of SUMO notions – main elements

Entities involved (params role), e.g. the sentence:
“(domain part 1 Object)” is linked to domain
relation, and has three parameters.

Sometimes relational sentences point out
a type indirectly by referencing to a function
which returns a type; see the sentence: “(sub-
class Fodder (FoodForFn DomesticAnimal))” for
example. Fodder is a subclass of the type re-
turned by the function FoodForFn called with
the DomesticAnimal parameter. According to the
specification this function returns a subclass of
SelfConnectedObject. Such cases are represented
in the proposed SUMO meta-model by a Com-
plexType class. An instance of the ComplexType
class refers to the function it is built upon (basic
role) – FoodForFn – and remembers the func-
tion parameters (params role) – DomesticAni-
mal.

Some specific relational sentences (defined in
the SUMO upper ontology) play a crucial role
in the transformation process. Up to now seven
types of such sentences have been identified:
1. Documentation sentence (Documentation-

Sent) – a sentence starting with “(documen-
tation. . .)”; contains documentation (an in-
stance of SymbolicString) in a specific lan-
guage for a specific entity;

2. Instance sentence (InstanceSent) – a sentence
starting with “(instance. . .)”; is associated
with an entity (instance) and a type for that
instance;

3. Subclass sentence (SubclassSent) – a sentence
starting with “(subclass. . .)”; used to describe
inheritance hierarchy between SUMO classes;
it is associated with parent and child types;

4. Subrelation sentence (SubrelationSent) –
a sentence starting with “(subrelation. . .)”;
allows to describe the inheritance hierarchy
between SUMO relations; it is associated with
parent and child relations;

5. Domain sentence (DomainSent) – a sentence
starting either with “(domain. . .)” or “(do-
mainSubclass. . .)”; it represents the domain
element (Type) for a specific relation;

6. Range sentence (RangeSent) – a sentence
starting either with “(range. . .)” or “(range-
Subclass. . .)”; represents a range (Type) for
a function (Relation with isFunction attribute
set to true);

7. Partition sentence (PartitionSent) – a sen-
tence starting either with “(partition. . .)”
or “(disjointDecomposition. . .)” or “(exhaus-
tiveDecomposition. . .)”; all sentences repre-
sent partition of class C into subclasses but

56 Bogumiła Hnatkowska

Figure 2. Meta-model of SUMO notions – hierarchy of relational sentences

they are characterized by different proper-
ties represented by PartitionSent attributes
(isOverlapping, isComplete); i.e. a normal
partition assumes that the subclasses are
mutually disjoint and cover C ; disjoint-
Decomposition requires only that the sub-
classes are disjoint; and exhaustiveDecom-
position disallows to have instances of C
which do not belong to any of its sub-
classes (the subclasses do not need to be dis-
joint).

4. Architecture of the SUMO to UML
Translator

The SUMO to UML translator is implemented
in Java 8 with the Swing library. The main func-
tional elements of the translator are presented
on a component diagram – see Fig. 3.

An end-user is allowed to select any subset
of ontology SUO-KIF files (called ontology seg-
ments) to be read by the tool. The loading process
is controlled by a SumoLoadConttroller compo-
nent and is presented – with the use of a sequence
diagram – in Fig. 4.

SumoLoadController runs SumoParser to: (a)
check the syntax correctness of the file, (b) walk
through all tokens in the file and call Sumo-
ModelBuilder to translate SUMO sentences into
an internal SUMO meta-model representation.
SumoParser was generated with antlr [21] from
the SUO-KIF context-free grammar [22].

Unfortunately, it turned out that SUMO on-
tology suffered from some bugs that could not
be found by the parser (according to the rules
formulated in context-free grammar). The bugs
could negatively influence the correctness of the
intended transformation process. So, there was
a strong need to implement the SumoChecker
component whose main functionality is to per-
form different consistency checks. The buggy ele-
ments are marked and reported by the tool, so
the user has an opportunity to correct the input.

As it was mentioned in the previous Sec-
tion, domain knowledge is spread over different
SUO-KIF files which is not very convenient for
transformation. That is why a separate compo-
nent – SumoReasoner – was introduced. Its main
responsibility is to update the previously gener-
ated SUMO model by inferring information indi-
rectly defined in SUMO, e.g.: a subrelation could

Automatic SUMO to UML translation 57

Figure 3. Architecture (functional view) of SUMO to UML translator

Figure 4. Processing of an ontology segment

inherit the domain definition from its parents; in
such a case SumoReasoner copies domains from
the parent to all its children.

It is also planned (this feature has not been
implemented yet), that SumoReasoner will com-
municate with a selected theorem prover to rea-
son knowledge from the rules. The new version of
the Sigma tool [10] is prepared to collaborate with
E prover [23]. E prover can deliver answers for
specifically marked conjecture formulas. Sigma
implemented mapping rules between SUO-KIF
and TPTP formalism used by E prover. In con-
sequence, a user can formulate questions like:
“(instance ?X BinaryPredicate)” to find out all
instances of BinaryPredicate.

The SumoUMLTranslator component con-
ducts the transformation process. It produces
– with the use of eclipse.emf and eclipse.uml2

frameworks – an instance of a UML model (ver-
sion 2.5 [24]) and stores it in a file (*.uml) which
can be read in a form of a tree or can be visual-
ized on a diagram with additional tools, like e.g.
Papyrus [25].

5. Translation of SUMO Attributes
and Their Relations to UML

This section presents a proposal of SUMO at-
tributes translation to UML.

5.1. Attributes and Attributes’ Relations
in SUMO

The Attribute in SUMO is a subclass of the Ab-
stract class. Instances of the Abstract class “can-

58 Bogumiła Hnatkowska

not exist at a particular place and time without
some physical encoding or embodiment” [8]. In
other words, attributes represent some properties
or the characteristics of instances.

The Attribute class has two direct sub-
classes (InternalAttribute, and RelationalAt-
tribute) which in turn have many own subclasses.
The hierarchy of attributes is more than five
levels deep.

Attribute as a class is the domain of several
SUMO relations (given below in an alphabetical
order):
– contraryAttribute: Attribute x . . . x Attribute –

is used to define “a set of Attributes such that
something cannot simultaneously have more
than one of these Attributes. For example,
(contraryAttribute Pliable Rigid) means that
nothing can be both Pliable and Rigid” [8];

– exhaustiveAttribute: AttributeSubclass x At-
tribute x . . . x Attrbute – “relates a class to
a set of Attributes, and it means that the
elements of this set exhaust the instances of
the class. For example, (exhaustiveAttribute
PhysicalState Solid Fluid Liquid Gas Plasma)
means that there are only five instances of
the class PhysicalState” [8];

– subAttribute: Attribute x Attribute – means
that “the second argument can be ascribed
to everything which has the first argument
ascribed to it” [8]; it is a partial ordering
relation which means that the hierarchy of
attributes can form a tree;

– successorAttribute: Attribute x Attribute –
means that the second attribute comes imme-
diately after the first attribute on the scale
that they share, e.g. “(successorAttribute
DeluxeRoom SuiteRoom)”; subAttribute tu-
ples have nothing in common (are disjoint)
with successorAttribute tuples; moreover, suc-
cessorAttribute is not a partial ordering rela-
tion which means that the involved attributes
must be directly ordered;

– successorAttributeClosure: Attribute x At-
tribute – means that there is a chain of suc-
cessorAttribute assertions connecting the first
and the second parameter, e.g. “(successorAt-
tributeClosure StandardRoom SuiteRoom)”.

An assignment of an attribute instance to
an entity instance can be done with a property
relation (or one of its subrelations), e.g. “(prop-
erty ?Entity ?Attr)” means that ?Entity has the
attribute ?Attr.

The extended version of SUMO meta-model,
covering the newly introduced relations, is pre-
sented in Fig. 5. The successorAttributeClosure
relation is not included as it will not be trans-
lated to the UML. The meta-class represent-
ing contraryAttribute relation (contraryAttribute-
Sent) inherits all necessary assotiations from
its parent.

5.2. Mappings of SUMO Attributes and
Attributes’ Relations to UML

5.2.1. Mappings of SUMO Attributes

Transformations of SUMO notions to UML
should preserve the original semantics as much
as it is possible. An existing transformation
rule maps any SUMO class to a UML class
with the same name. This rule needs to be
refined for attributes (understood as classes).
As an attribute can have many instances (e.g.
Solid, Fluid, Liquid, Gas, Plasma are instances of
PhysicalStateemph attribute), it would be valu-
able to represent directly these instances on
a UML class diagram. So this is why the At-
tribute class and their subclasses are mapped to
a UML enumeration data type with the same
name. “As a specialization of classifier, enu-
meration can participate in generalization re-
lationships” [8]. This feature enables to repre-
sent also the inheritance hierarchy between At-
tribute subclasses. An enumeration value cor-
responds to one of user-defined enumeration
literals.

These literals are used to represent attribute
instances.

Not all relations between SUMO attributes
can be represented graphically on a class diagram.
Fortunately, UML is a very flexible language
which can be extended for a specific purpose
with the use of profiles.

Automatic SUMO to UML translation 59

Figure 5. Extended version of the SUMO meta-model – definition of attributes’ relations

5.2.2. UML Profile for Modelling SUMO
Attributes

A UML profile is a lightweight extension mech-
anism to the UML by defining custom stereo-
types, tagged values, and constraints. Profiles
allow to adapt the UML metamodel for differ-
ent domains [26]. UML profiles were defined for
other ontology languages, e.g. OWL [27]. In the
paper “UML Profile for OWL” authors define
two-way mappings between the ontology defini-
tion meta-model (ODM) and the ontology UML
profile.

The UML profile is defined as a specific
package, containing stereotypes and constrains.
These stereotypes can have meta-attributes called
tagged values. “A stereotype is a profile class
which defines how an existing metaclass may be
extended as part of a profile. It enables the use
of a platform or domain specific terminology or
notation in place of, or in addition to, the ones
used for the extended metaclass” [27].

UML profile for SUMO attributes introduces
only two stereotypes (see Fig. 6):
– «Attribute» which is applied to enumerations,

and

– «AttributeInstance» which is applied to enu-
meration literals being owned by the enumer-
ation with «Attribute» stereotype; this stereo-
type has one property (pos: Integer), which
introduces a tag definition; its semantics is
explained in subsection 5.1.

Figure 6. UML profile to represent SUMO attributes

5.2.3. Mappings of Attributes’ Relations

This subchapter defines possible mappings for all
relations between SUMO attributes, identified in
Section 5.1, to UML language.

60 Bogumiła Hnatkowska

Figure 7. Transformation of
the subAttribute relation

Figure 8. Transformation of successorAttribute
relation

Transformation of contraryAttribute rela-
tion
The contraryAttribute relation is used to describe
the fact that two specific attributes cannot be
assigned to the same instance. Such a demand
can be represented by an Object Constraint Lan-
guage (OCL) invariant. OCL [28] is the language
which enables to formally define constraints on
UML models. Thus, any SUMO sentence of the
form “(contraryAttribute atr1 atr2)” will be trans-
formed as an invariant defined in the context of
Entity class, according to the schema:
context Entity :
inv : not Entity . a l l I n s t a n c e s ()−> e x i s t s (e |

e . hasProperty (’ atr1 ’)
and e . hasProperty (’ atr2 ’))

where hasProperty(name: String): Boolean is an
auxiliary function which checks whether a specific
entity e has assigned the attribute with a name
equal to the input parameter.
Transformation of the exhaustiveAttribute
relation
The exhaustiveAttribute relation lists all instances
of a given attribute class. The list of instances
cannot be further extended. To achieve the same
semantics in the UML language, the UML class
representing a SUMO attribute will be marked
as a leaf class (isLeaf = true).
Transformation of subAttribute relation
The subAttribute relation defines the hierarchy
of attribute instances. One attribute instance
can be a parent for many sub-attributes, e.g.
“(subAttribute Antropologist Scientist)”, “(sub-
Attribute Archeologist Scientist)”. It would be
valuable to present all these sub-attributes di-
rectly on a UML class diagram in the same way
the other attributes’ instances are represented,

i.e. as enumeration literals. However, the chil-
dren of a specific instance should be grouped
together.

To achieve the demands mentioned above
the following transformation rule is proposed.
Each sentence of the form “(subAttribute atrSpec
atrGen)” will be transformed according to the
schema:
– If it does not exists a new artificial enumer-

ation data type with «Attribute» stereotype
and name atrGen_SubAttributes is created,
e.g. Scientists_SubAttributes; the newly cre-
ated enumeration will inherit from the enu-
meration data type for which atrGen is an
enumeration literal; in the example the Sci-
entists_SubAttributes enumeration data type
will inherit from the Proffesion enumeration
data type (see Fig. 7);

– atrSpec is defined as a new enumeration lit-
eral in the atrGen_SubAttributes enumera-
tion data type; e.g. the Anthropologist enu-
meration literal will be added to the Scien-
tists_SubAttributes enumeration.

Transformation of the successorAttribute
relation
The successorAttribute relation defines the di-
rect order between attributes. Such an order can
be represented by UML tag definitions ({pos
= value}). An attribute instance which is the
first “in the queue” will have pos set to 1, its
direct successor – pos set to 2, etc. For exam-
ple, see Fig. 8 on which the transformation of
SUMO sentence: “(successorAttribute Standard-
Room DeluxeRoom)” is presented.
Transformation of the successorAttribute-
Closure relation
The successorAttributeClosure relation can be in-

Automatic SUMO to UML translation 61

ferred from successorAttribute relation, and this
is why it is not translated to UML.

6. Examples of Transformation Rules

This section shortly presents the implemented
transformation rules focusing on those that were
changed in comparison to the previous publica-
tions [15–17]. Selected transformation rules are
described below.

6.1. Rule 1

SUMO Element : Direct or indirect subclass of
Entity, e.g. City, Nation
UML Element : Class
Comment : Data values like Integers are also rep-
resented as separate classes (which results in uni-
form representation of relations).

6.2. Rule 2

SUMO Element : Binary (including self) and
higher arity relations with all domains defined
in the form “(domain relation int class)”, e.g.
“(domain citizen 1 Human)”, “(domain citizen 2
Nation)”
UML Element : Association with a proper arity,
e.g. citizen, capitalCity
Comment : Previously, when one of the domains
in a relation was a data value, e.g. Integer, the
relation was represented either as an attribute
(for a binary relation) or an association class; now,
all binary or higher arity relations are represented
in the same way as associations.

6.3. Rule 3

SUMO Element : A relation domain or a func-
tion range defined in the form “(domainSubclass
relation int class)”, e.g. “(domainSubclass room-
Amenity 1 HotelUnit)”, or “(rangeSublcass func-
tion class)”, e.g. “(rangeSublcass FoodForFn Self-
ConnectedObject)”

UMLElement :Generalization set, e.g.HotelUnit_-
Subclasses, SelfConnectedObject_Subclasses
Comment : domainSublcass is a constraintmeaning
that the int’th element of each tuple in relation
must be a subclass of a specific class; similarly,
rangeSubclass stays the same for function ranges;
that this notion is represented by the UML gener-
alization set.

6.4. Rule 4

SUMO Element : Binary (including self) and
higher arity relations for which at least one do-
main is defined in the form “(domainSublcass
relation int class)”, e.g. “(domainSublcass room-
Amenity 1 HotelUnit)”, “(domainSubclass roomA-
menity 2 Physical)”
UML Element : Association among the results of
the transformation of relation domains including
generalization sets, e.g. roomAmenity (associa-
tion between Physical_Subclasses and HotelU-
nit_Subclasses)
Comment : The previous transformation was in-
correct (misinterpreted semantics); the associa-
tion used to link classes; the new association links
generalization sets.

6.5. Rule 5

SUMO Element : Subrelation relationship
“(subrelation child-relation parent-relation)”
e.g.“(subrelation geographicSubregion located)”
UML Element : An association with a “sub-
setted” property; the association ends of the
child-relation will be the subsets of association
ends of parent-relation; e.g. geographicSubregion
association ends will be the subsets of located
association ends
Comment : A subrelation is a constraint meaning
that every tuple of a child relation is also a tuple
of a parent relation; in the UML 2.5 such a feature
is represented by a subset constraint.

6.6. Rule 6

SUMO Element : Partition relationship in the
form “(partition C C1 C2. . .)”
UML Element : Generalization set with isOver-

62 Bogumiła Hnatkowska

lapping=false and isComplete=true
Comment : New.

6.7. Rule 7

SUMO Element : Exhaustive decomposition rela-
tionship in the form “(exhaustiveDecomposition
C C1 C2. . .)”
UML Element : Generalization set with isOver-
lapping=true and isComplete=false
Comment : New.

6.8. Rule 8

SUMO Element : Disjoint decomposition relation-
ship in the form “(disjointDecomposition C C1
C2. . .)”
UML Element : Generalization set with isOver-
lapping=false and isComplete=false
Comment : New.

6.9. Rule 9

SUMO Element : Attribute class or its subclass
UML Element : Enumeration data type with «At-
tribute» stereotype
Comment : New.

6.10. Rule 10

SUMO Element : Attribute instance
UML Element : Enumeration literal with «At-
tributeInstance» stereotype in the enumeration
data type
Comment : New.

6.11. Rule 11

SUMO Element : subclass relation between At-
tribute classes, e.g. “(subclass HotelRoomAt-
tribute RelationalAttribute)”
UML Element : Generalization relationship be-
tween enumerations
Comment : New.

6.12. Rule 12

SUMO Element : contraryAttribute relation, e.g.
“(contraryAttribute Dirty Clean)”

UML Element : An OCL invariant defined in the
context of Entity class
Comment : New.

6.13. Rule 13

SUMO Element : exhaustiveAttribute relation,
e.g. “(exhaustiveAttribute SexAttribute Female
Male)”
UML Element : Property isLeaf in the class rep-
resenting the attribute is set to true
Comment : New.

6.14. Rule 14

SUMO Element : subAttribute relation, e.g. “(sub-
Attribute Anthropologist Scientist)”
UML Element : A new enumeration data type
gathering all sub attributes (left parameter) of
the right parameter as literals; this new data
type inherits from the enumeration data type
representing the right parameter
Comment : New.

6.15. Rule 15

SUMO Element : successorAttribute relation,
e.g. “(successorAttribute StandardRoom Deluxe-
Room)”
UML Element : Tag definitions assigned to enu-
meration literals with pos tag set to the order
number of the attribute instance
Comment : New.

7. SUMO to UML
Transformation Example

The functionality of SUMO to UML transla-
tor will be presented with the use of a sim-
ple example. It aims at elaborating an ini-
tial version of domain diagram based on
the Countries and Regions ontology and the
ontologies it is based upon (e.g. Merge.kif,
Mid-level-ontology.kif, Goverment.kif, all down-
loaded on the 1st January 2016) [8]. Fig-
ure 9 shows a form which allows a user
to select interesting ontologies (ontology seg-
ments).

Automatic SUMO to UML translation 63

Figure 9. SUMO to UML translator – the initial form

After file loading the SumoChecker compo-
nent reports found bugs. SUMO sentences which
are the source of bugs are marked in red in the
main window. Examples of such bugs are pre-
sented below:
– Entity: DeviceNormal has two different infor-

mal documentation sets.
– Relation: defendant 1st domain: Cogni-

tiveAgent does not fit parent: patient domain:
Process.

– Type: PostalAddressText lacks its documen-
tation.
Let us assume that a user wants to propose

a domain model to represent the structure of
geographic areas, their types, inclusions, as well
as capital cities for particular geopolitical regions.
He needs to find among SUMO notions those to
be translated to UML and to mark them. The tool
helps to identify interesting concepts by providing
all sentences in which a given concept is used,
grouped by their type; for example, for a relation
the documentation sentence is presented first,
next relation domains, sub-relations and relation
instances (see Fig. 10).

Within the main window, a user can search or
browse SUMO content. On the left there is a list
of all entities found in selected SUMO ontologies.
Because the number of entities is huge, the view
could be limited only to entities whose names
start with a specific letter. On the right, there
is a set of sentences the entity is part of. There
is also Rule tab containing axioms referring to
a selected entity.

By a double click a user can select either
entities or sentences to be translated to UML. Se-
lected elements are marked in yellow – see Fig. 10.
If a relation is selected, its domains are auto-
matically selected as well. For example, among
relationships in which the City class is involved,
capitalCity was chosen to be translated into UML.
When the selection process is completed, the user
runs the translation process.

Figure 11 presents the result of a transforma-
tion made by the translator. The resulting UML
class diagram has a form of a tree with properties
set for classes and associations.

For readability purposes the generated file
was rewritten in the Visual Paradigm tool and
presented as a graph in Fig. 12. Examples of
elements that cannot be visualized (e.g. subset
constraint for association ends) are given in com-
ments.

As one can observe, the resulting class dia-
gram may consist of more than one sub-graphs –
see the located association between Object and
Physical classes. There could be the following
reasons for that:
– The user did not mark SUMO sentences de-

scribing the inheritance hierarchy to be trans-
formed; e.g. GeographicArea is an indirect
child of Object and Physical which means,
that – in this context – located relation can
happen between GeographicAreas.

– Some knowledge is contained in qualified sen-
tences which are not processed at that mo-
ment in any way.

64 Bogumiła Hnatkowska

Figure 10. SUMO to UML translator – the main window

Figure 11. SUMO to UML transformation example (automatic translation)

SUMO ontologies form a set. The upper layer
is included in Merge.kif file. At this level, many
basic relations are defined, including located, so
this is why their domains are top classes from
SUMO class hierarchy (Physical and Object for
located relation). When considering a specific do-
main, e.g. countries and regions, one deals with
subclasses of the top level classes; the instances
of these subclasses can be used in all places where
their parents are allowed. It means that an inter-

esting relation could be defined between classes
being far away (in the inheritance hierarchy) from
classes of the considered domain. To solve this
problem, the translation tool can add indirect in-
heritance relationships between classes presented
on the class diagram.

The domain diagram resulting from the trans-
formation process is a starting point to under-
stand a given domain. It is consistent with do-
main ontology by construction, but it can lack

Automatic SUMO to UML translation 65

Figure 12. SUMO to UML transformation example – results presented as a class diagram

some important information. The quality of the
diagram strongly depends on the initial step per-
formed by a system analyst – identification of
SUMO notions to be translated. This problem is
addressed in [29].

8. Problems to be Addressed

8.1. Meta-classes and Meta-relations

SUMO, similarly to UML, is described in SUMO
itself. Some elements of SUMO play the role of
meta-classes, i.e. classes the instances of which
are functions or relations; examples include Bi-
naryPredicate, IrreflexiveRelation. Meta-classes
are not directly translated to a UML class dia-
gram, but they define important properties of
other transformed elements, e.g. the arity of re-
lations or functions. At this moment, only arity
is transformed. Another relation properties, e.g.
the “reflexivity” constraint is not translated, but
that could be done with the use of OCL.

Meta-relations are the relations describing re-
lationships between 2 or more classes or 2 or more
relations; examples include: subclass, partition,
disjoint for classes, and subrelation, disjointRe-

lation for relations. In the current version of the
tool most of them are addressed (see Sections
4–6 for details) but still some other can be taken
into consideration, e.g. disjointRelation.

8.2. Axioms

SUMO axioms introduce constraints on ontology
instances. The example below states that every
instance of EuropeanCity must be part of Europe.

(=>
(in s t anc e ?CITY EuropeanCity)
(part ?CITY Europe)
)

The other example stays that if an instance
belongs to VirginIslands it must be also an in-
stance of Island.

(=>
(member ?ISLAND Vi r g i n I s l and s)
(i n s t anc e ?ISLAND Is l and)
)

Some of such axioms could be expressed di-
rectly in UML (e.g. with the use of a composition
relationship), some other could be translated into
OCL. The current version of the SUMO to UML

66 Bogumiła Hnatkowska

transformation tool allows reading axioms but
they cannot be selected for transformation.

9. Summary

The paper presents an approach to SUMO-UML
translation. The translation is defined as a set of
transformation rules between SUMO and UML
meta-models.

The SUMO meta-model was proposed for this
purpose. The initial set of transformation rules,
identified and described in [15–17], was revised
and extended with new rules e.g. for SUMO at-
tributes and their relations.

The results of the tool applications are promis-
ing. The obtained domain class diagrams are con-
sistent, correct and complete to the level to which
the input ontology has these features. These are
the main benefits the tool can bring to potential
users. Business expert or business analyst can
use the tool to find out interesting notions, select
them, and translate to a UML class diagram with
a set of OCL constraints with one click. The user
is warned about incompleteness and inconsisten-
cies found in the original files. He or she can
experiment with transformation results, select-
ing new elements or un-selecting the previously
selected ones. The obtained UML model can be
re-factored, and next transformed to other repre-
sentations, e.g. programming languages, database
schemas, etc.

The tool to be effectively used needs a quali-
fied business analyst or business expert to select
all interesting SUMO notions for transformation.
Otherwise, the resulting domain model will be
incomplete. To address this matter a research
group, the author of this paper belongs to, is try-
ing to propose an algorithm to extract knowledge
from ontology on the basis of limited input only
– see [29].

A kind of a side effect of the tool implemen-
tation is the definition of static consistency rules
which allow to detect inconsistencies in existing
ontologies. In the future, this module can be used
as a part of an ontology editor.

The next release of the tool will address
problems presented in Section 8. Additionally,

the transformations at the instance level, rep-
resented by object diagrams, are planned to be
implemented. It seems to be especially impor-
tant because in domain ontologies more than
half of sentences represent instances and links
among them, e.g. “(instance Mauritius Nation)
(geographicSubregion Mayotte SouthernAfrica)”
for CountiresAndRegions.kif.

References

[1] K. Bittner and I. Spencer, Use Case Modeling.
Addison-Wesley Professional, 2002.

[2] I. Jacobson, G. Booch, and J. Rumbaugh,
The Unified Software development process.
Addison-Wesley Professional, 1999.

[3] D. Zowghi and V. Gervasi, “The three cs of
requirements: Consistency, completeness, and
correctness,” in Proceedings of 8th International
Workshop on Requirements Engineering: Foun-
dation for Software Quality, (REFSQ ’02, 2002,
pp. 155–164.

[4] P. Mohagheghi, V. Dehlen, and T. Neple, “Def-
initions and approaches to model quality in
model-based software development – a review of
literature,” Information and Software Technol-
ogy, Vol. 51, No. 12, Dec. 2009, pp. 1646–1669.

[5] W. Hesse, “Ontologies in the software engineering
process,” in EAI 2005: Enterprise Application In-
tegration – Proceedings of the 2nd GI-Workshop
on Enterprise Application Integration, R. Lenz,
U. Hasenkamp, W. Hasselbring, and M. Reichert,
Eds., 2005.

[6] H.J. Happel and S. Seedorf, “Applications of
ontologies in software engineering,” in Proc. of
Workshop on Sematic Web Enabled Software En-
gineering"(SWESE) on the ISWC, 2006, pp. 5–9.

[7] F. Gailly and G. Poels, “Conceptual model-
ing using domain ontologies: Improving the
domain- specific quality of conceptual schemas,”
in Proceedings of the 10th Workshop on
Domain-Specific Modeling, ser. DSM ’10. New
York, NY, USA: ACM, 2010, pp. 18:1–18:6.

[8] Suggested Upper Merged Ontology, last
access: 10 Jan 2016. [Online]. http:
//www.ontologyportal.org

[9] A. Pease, Ontology: A practical Guide. Articulate
Software Press, 2011.

[10] Sigma, last access: 10 Jan 2016. [Online]. http:
//sourceforge.net/projects/sigmakee/files/

[11] I. Istochnick, OWL2UML, last access: 10 Jan
2016. [Online]. http://protegewiki.stanford.edu/
wiki/OWL2UML

http://www.ontologyportal.org
http://www.ontologyportal.org
http://sourceforge.net/projects/sigmakee/files/
http://sourceforge.net/projects/sigmakee/files/
http://protegewiki.stanford.edu/wiki/OWL2UML
http://protegewiki.stanford.edu/wiki/OWL2UML

Automatic SUMO to UML translation 67

[12] F. Suchanek, “Ontological reasoning for natural
language understanding,” Master Thesis in Com-
puter Science, Saarland University, Germany,
March 2005.

[13] Semantics of Business Vocabulary and Business
Rules (SBVR). Version 1.3, OMG, (2015, May).
[Online]. http://www.omg.org/spec/SBVR/1.3/

[14] A. Marinos, S. Moschoyiannis, and P.J. Krause,
“An SBVR to SQL compiler,” in Proceedings of
the RuleML-2010 Challenge, at the 4th Interna-
tional Web Rule Symposium, 2010.

[15] B. Hnatkowska, Z. Huzar, I. Dubielewicz, and
L. Tuzinkiewicz, “Problems of SUMO-like ontol-
ogy usage in domain modelling,” in Intelligent
Information and Database Systems, ser. Lecture
Notes in Computer Science, N. Nguyen, B. At-
tachoo, B. Trawinski, and K. Somboonviwat,
Eds. Springer International Publishing, 2014,
Vol. 8397, pp. 352–363.

[16] I. Dubielewicz, B. Hnatkowska, Z. Huzar, and
L. Tuzinkiewicz, “Domain modelling in the con-
text of ontology,” Foundations of Computing and
Decision Sciences, Vol. Volume 40, No. 1, 2015,
pp. 3–15.

[17] B. Hnatkowska, Z. Huzar, I. Dubielewicz, and
L. Tuzinkiewicz, “Development of domain model
based on SUMO ontology,” in Theory and Engi-
neering of Complex Systems and Dependability,
ser. Advances in Intelligent Systems and Com-
puting, W. Zamojski, J. Mazurkiewicz, J. Sugier,
T. Walkowiak, and J. Kacprzyk, Eds. Springer
International Publishing, 2015, Vol. 365, pp.
163–173.

[18] D. Gasevic, D. Djuric, V. Devedzic, and V. Dam-
janovi, “Converting UML to OWL ontologies,”
in Proceedings of the 13th International World
Wide Web Conference on Alternate Track Papers
&Amp; Posters, ser. WWW Alt. ’04. New York,
NY, USA: ACM, 2004, pp. 488–489.

[19] J. Zedlitz, J. Jörke, and N. Luttenberger,
Knowledge Technology. Berlin, Heidelberg:
Springer-Verlag, 2012, ch. From UML to OWL 2,
pp. 154–163.

[20] B. Hnatkowska, From requirements to software:
research and practice. Warszawa: Polish Infor-
mation Processing Society, 2015, ch. Towards
automatic Sumo to UML translation, pp. 87–99.

[21] ANTLR, last access: 10 Jan 2016. [Online].
http://www.antlr.org/

[22] A. Pease, Standard upper ontology
knowledge interchange format, (2009).
[Online]. http://sigmakee.cvs.sourceforge.net/
viewvc/sigmakee/sigma/suo-kif.pdf

[23] S. Schulz, “System description: E 1.8,” in
Logic for Programming, Artificial Intelligence,
and Reasoning, ser. Lecture Notes in Com-
puter Science, K. McMillan, A. Middeldorp,
and A. Voronkov, Eds. Berlin Heidelberg:
Springer-Verlag, 2013, Vol. 8312, pp. 735–743.

[24] Unified Modeling Language. Version 2.5,
OMG, (2013, September). [Online]. http:
//www.omg.org/spec/UML/

[25] Papyrus modeling environment, last access:
10 Jan 2016. [Online]. http://www.eclipse.org/
papyrus/

[26] UML profile diagrams, last access: 28 May 2016.
[Online]. http://www.uml-diagrams.org/profile-
diagrams.html

[27] D. Djurić, D. Gašević, V. Devedžic, and V. Dam-
janović, Proceedings of the Web Engineering:
4th International Conference. Berlin, Heidelberg:
Springer-Verlag, 2004, ch. UML Profile for OWL,
pp. 607–608.

[28] Object Constraint Language. Version 2.4,
OMG, (2014, February). [Online]. http:
//www.omg.org/spec/OCL/2.4/

[29] B. Hnatkowska, Z. Huzar, L. Tuzinkiewicz,
and I. Dubielewicz, Intelligent Information
and Database Systems, ser. Lecture Notes
in Computer Science. Berlin, Heidelberg:
Springer-Verlag, 2016, Vol. 6592, ch. Conceptual
Modeling Using Knowledge of Domain Ontology,
pp. 554–564.

http://www.omg.org/spec/SBVR/1.3/
http://www.antlr.org/
http://sigmakee.cvs.sourceforge.net/viewvc/sigmakee/sigma/suo-kif.pdf
http://sigmakee.cvs.sourceforge.net/viewvc/sigmakee/sigma/suo-kif.pdf
http://www.omg.org/spec/UML/
http://www.omg.org/spec/UML/
http://www.eclipse.org/papyrus/
http://www.eclipse.org/papyrus/
http://www.uml-diagrams.org/profile-diagrams.html
http://www.uml-diagrams.org/profile-diagrams.html
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/

	Introduction
	Related Works
	Meta-model of SUMO Notions
	Architecture of the SUMO to UML Translator
	Translation of SUMO Attributes and Their Relations to UML
	Attributes and Attributes' Relations in SUMO
	Mappings of SUMO Attributes and Attributes' Relations to UML
	Mappings of SUMO Attributes
	UML Profile for Modelling SUMO Attributes
	Mappings of Attributes' Relations

	Examples of Transformation Rules
	Rule 1
	Rule 2
	Rule 3
	Rule 4
	Rule 5
	Rule 6
	Rule 7
	Rule 8
	Rule 9
	Rule 10
	Rule 11
	Rule 12
	Rule 13
	Rule 14
	Rule 15

	SUMO to UMLTransformation Example
	Problems to be Addressed
	Meta-classes and Meta-relations
	Axioms

	Summary
	References

