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Abstract
Background. Common approaches to software verification include static testing techniques,
such as code reading, and dynamic testing techniques, such as black-box and white-box testing.
Objective. With the aim of gaining a better understanding of software testing techniques,
a controlled experiment replication and the synthesis of previous experiments which examine the
efficiency of code reading, black-box and white-box testing techniques were conducted. Method.
The replication reported here is composed of four experiments in which instrumented programs were
used. Participants randomly applied one of the techniques to one of the instrumented programs.
The outcomes were synthesized with seven experiments using the method of network meta-analysis
(NMA). Results. No significant differences in the efficiency of the techniques were observed.
However, it was discovered the instrumented programs had a significant effect on the efficiency. The
NMA results suggest that the black-box and white-box techniques behave alike; and the efficiency
of code reading seems to be sensitive to other factors. Conclusion. Taking into account these
findings, the Authors suggest that prior to carrying out software verification activities, software
engineers should have a clear understanding of the software product to be verified; they can apply
either black-box or white-box testing techniques as they yield similar defect detection rates.

Keywords: software verification, software testing, controlled experiment, experiment
replication, meta-analysis, network meta-analysis, quantitative synthesis

1. Introduction

Currently, due to the increase in both the size
and complexity of software products, verification
plays an important role in the software prod-
uct development (or maintenance) process. The
aim of software verification is to enssure that
a software product fully satisfies all the require-
ments defined by the customer. It typically in-
cludes such activities as code executions, reviews,
walkthroughs and inspections of the artifacts
produced in the development or maintenance
process.

Software verification is performed at different
phases of the software development (or main-

tenance) process by following two approaches:
reviewing or inspecting artifacts, such as docu-
ments and a source code (static approach) or an
executing code (dynamic approach).

In the software construction phase, common
techniques used in software verification include
code reading (static approach), black-box and
white-box testing (dynamic approach), and var-
ious other techniques, such as regression test-
ing [1].

With the aim of gaining a better understand-
ing of various software testing techniques applied
during the software construction phase, in this
work, the authors pursue two goals: 1) running
a controlled experiment replication on the effi-

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_11/eInformatica2017Art4.pdf


78 Omar S. Gómez, Karen Cortés-Verdín, César J. Pardo

ciency of testing techniques expressed in terms of
the number of defects detected per hour by each
of the techniques: code reading, black-box and
white-box (this carried out through the applica-
tion of an experimental paradigm [2–4]), and 2)
carrying out a synthesis of existing experiments
which also address the efficiency of the related
testing techniques.

Our replication is the extension of previous
experiments reported in [5–12], where the effec-
tiveness of the aforementioned software testing
techniques was the main issue examined. In these
experiments, the effectiveness was measured ei-
ther as the percentage or as the number of defects
observed in these testing techniques. Complemen-
tary to effectiveness, efficiency is another aspect
that deserves attention. Due to the limitations
of time and resources it is often raised in the
software verification phase, it is worth consider-
ing which of the testing techniques behave in an
optimal way (e.g. the fastest technique detecting
defects). The authors have found some controlled
experiments that also address the efficiency of
the testing techniques [5–8,11].

In order to corroborate the previous findings
and also generate new knowledge with regard to
the study of software testing techniques efficiency,
this work reports the findings of a controlled ex-
periment replication that examines efficiency in
terms of the number of defects detected per hour
of the following testing techniques: code reading,
black-box and white-box testing. The replication
results are then incorporated to existing related
experiments following a quantitative synthesis
approach. According to [13], this experiment can
be considered as a conceptual replication of the
original experiment reported in [5], only the con-
structs are maintained; these are the three testing
techniques (causal constructs) and the efficiency
(effect construct).

In science, replication is a key mechanism
which allows for the verification of previous find-
ings and for the consolidation of the body of
knowledge [14,15]. Replication is still a pending
issue to be addressed in Software Engineering,
since there is evidence showing a minimal amount
of controlled experiments that have been repli-
cated [16,17]. If an experiment is not replicated

or verified, there is no way to distinguish whether
its outcome was produced by chance, artificially
or it conforms to a reality. The results of this
replication serve as a mechanism for verification,
and they also contribute to the consolidation of
the body of knowledge in the software verification
research area. Although a number of experiments
related to our replication have been conducted, it
is worth to note that increasing the number of re-
lated experiments (experiments family) will allow
other researchers to apply quantitative synthesis
methods in a more confident way, the synthe-
sis outcome will be strengthened by the pooled
samples sizes of the related experiments.

The rest of the document is organized as
follows. In Section 2, the related work is pre-
sented. In Section 3, the baseline experiment of
the presented replication is described. In Sec-
tion 4, the studied software testing techniques
are studied. Sections 5 presents the context of
our experiment replication. In Section 6,there is
the statistics used for analysis and the results
obtained. In Section 7, a quantitative synthesis
using the obtained results and the results from
related experiments is carried out. In Section 8,
the findings are discussed and finally in Section 9
the conclusions are presented.

2. Related work

This section presents the summary of the em-
pirical studies (family or series of experiments)
related to the experiment replication reported
here. The authors considered the controlled ex-
periment reported in [5] as the baseline for their
experiments. The aim of this experiment is to
examine the effectiveness, efficiency and cost
of three software testing techniques: black-box
by equivalence class partitioning and boundary
value analysis, white-box by sentence coverage
and code reading by stepwise abstraction.

The authors of [5] carried out two replications
of their experiment. Years later, the authors
of [6, 7] performed the other two replications.
A few years later, the authors in [8] conducted
another replication. The authors of [9, 10] also
carried out several replications. Recently, the au-
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thors of [11] and [12] replicated the experiment
as well.

Note that these replications do not take as
reference the same baseline experiment. For ex-
ample, the second and third replication reported
in [5] takes as baseline their first experiment. The
experiment reported in [6, 7] is the replication
of [5]. In the case of the experiment reported
in [8], the authors used the experiment repli-
cation package of [6, 7], thus considering this
experiment the replication of [6, 7]. Experiments
of the authors of [9, 10] are based on the repli-
cation packages of [6, 7] and [8]. With regard
to the experiment in [11], it is related to the
replication package of [6, 7]. In the case of the
experiment reported in [12], the authors adapted
the replication package of [9,10]. Table 1 presents
some characteristics of these experiments.

2.1. Constructs and operationalizations
studied

2.1.1. Cause constructs and operationalizations

The cause constructs examined in these experi-
ments are: the black-box [5–12], white-box [5–12]
and code reading [5–11] techniques. Regarding
black-box, it was operationalized either as equiv-
alence class partitioning and boundary value
analysis [5–8, 11] or as equivalence class parti-
tioning [9, 10,12]. Concerning white-box, it was
operationalized either as sentence coverage [5]
or as branch coverage [6–12]. In the case of code
reading, in all the experiments [5–12] it was op-
erationalized by the use of stepwise abstractions
approach [18]. Secondary cause constructs, also
examined, are the instrumented program (soft-
ware type) [5–12], the participant expertise [5],
the defect type [9, 10] and the version of the
instrumented programs [9, 10].

2.1.2. Effect constructs and operationalizations

The effect constructs examined in these experi-
ments are: effectivenesses [5–12], efficiency [5–8,
11], fault visibility [9] and cost [5–7,11].

The effectiveness construct was operational-
ized as the number of observed defects [5, 8], the

percentage of observed defects [5–7,11,12], the
number of observable defects [5], the percentage
of observable defects [5, 12], the percentage of
participants who detect a given defect for each
defect in the instrumented program [9, 10], the
percentage of participants that are able to gener-
ate a test case that uncovers the failure associated
with a given defect [9,10], the number of isolated
defects [8], and the percentage of isolated defects
[6, 7, 11]. Efficiency was operationalized as the
number of defects detected per hour (detection
rate) [5–8,11], and as the number of defects iso-
lated per hour (isolation rate) [6,7]. Finally cost
was operationalized as the time spent applying
the testing techniques [5–7,11], defect isolation
time [6, 7, 11], cpu-time [5], connect time [5] and
number of programs runs [5].

2.2. Findings

In this section some relevant findings of these
experiments are presented. These findings are
organized according to the different effect con-
structs examined.

2.2.1. Effectiveness

Number of observed defects (operational-
ization o1.1). For the umd82 experiment [5],
either code reading or black-box were signifi-
cantly more effective than white-box. Concerning
umd83 experiment [5], no significant differences
were observed between the three testing tech-
niques. In the case of umd84 [5], code reading
was significantly more effective than black-box
and white-box, also black-box was significantly
more effective than white-box. In the case of
uos97 [8], the authors observed a significant dif-
ference in the effectiveness of the techniques,
however, it is not described which of the pairwise
techniques was significantly different. It seems
that black-box and white-box behave in a similar
way and that these techniques are more effective
than code reading. With regard to the studied
secondary factors and interaction effects:
– Software type (instrumented programs). The

effectiveness of the techniques (measured as
the number of observed defects) was signifi-
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Table 1. Characteristics of the aforementioned family of experiments

Experiment Participants Programs and number of defects Language Country

umd82 [5] CS (under)graduates p1(9), p2(6), p3(7) Simplt USA
umd83 [5] CS (under)graduates p1(9), p2(6), p4(12) Simplt USA
umd84 [5] Professionals p1(9), p3(7), p4(12) Fortran USA
ukl94 [6, 7] CS undergraduates nt(11),cm(14),na(11) C Germany
ukl95 [6, 7] CS undergraduates nt(6), cm(9), na(7) C Germany
uos97 [8] CS undergraduates nt(8), cm(9), na(8) C UK
upm00 [9] CS undergraduates nt(9), cm(9), na(9), tr(9) C Spain
upm01 [9,10] CS undergraduates nt(7), cm(7), na(7) C Spain
upm02 [10] CS undergraduates nt(7), cm(7), na(7) C Spain
upm03 [10] CS undergraduates nt(7), cm(7), na(7) C Spain
upm04 [10] CS undergraduates nt(7), cm(7), na(7) C Spain
upm05 [10] CS undergraduates nt(7), cm(7), na(7) C Spain
uds05 [10] CS undergraduates nt(7), cm(7), na(7) C Spain
upv05 [10] CS undergraduates nt(7), cm(7), na(7) C Spain
ort05 [10] CS undergraduates cm(7), na(7) C Uruguay
uok11 [11] CS graduates nt(8), cm(9), na(8) C India
uady13 [12] CS undergraduates nt(7), cm(7) C Mexico

cantly affected by the instrumented programs
used in umd84 [5] and uos97 [8]. On the other
hand, the effectiveness is not affected by soft-
ware type in umd82 and umd83 [5].

– Expertise. The effectiveness (in terms of the
number of observed defects) was significantly
affected by the expertise, advanced expertise
participants detected more defects than either
intermediates or juniors (umd84 [5]).

– Interaction effects. In umd83 [5] and uos97 [8],
the authors report a significant interaction
effect between the testing techniques and the
instrumented programs. A three-way interac-
tion between techniques, programs and ex-
pertise was observed in umd84 [5].

Percentage of observed defects (o1.2). Ei-
ther code reading or black-box were significantly
more effective than white-box (in umd82 [5]).
Code reading was significantly more effective
than black-box and white-box, and also black-box
was significantly more effective than white-box
(in umd84 [5]). There are no significant differ-
ences between the testing techniques (umd83 [5],
ukl94, ukl95 [6, 7], uok11 [11] and uady13 [12]).
In the case of secondary factors and interaction
effects:
– Software type. The effectiveness of the tech-

niques (measured as the percentage of ob-
served defects) was significantly affected by

the instrumented programs in umd82, umd83,
umd84 [5], ukl94 [6, 7] and uok11 [11].

– Expertise. The effectiveness significantly
varies with regard to the level of expertise
(in umd84 [5]). The percentage of observed
defects was significantly higher for the par-
ticipants with advanced expertise, this differ-
ence is significant only with respect to juniors.
There were not significant differences between
intermediates and juniors in umd82, umd83,
umd84 [5].

– Interaction effects. In umd83 [5] an interac-
tion effect between the testing techniques
and the instrumented programs was observed.
A three-way interaction between techniques,
programs and expertise was observed in
umd84 [5].

Number of observable defects (o1.3). In the
case of umd82 [5], the number of observable de-
fects was significantly higher for black-box (in
comparison to white-box). Significant differences
were not found in umd84 [5].
Percentage of observable defects (o1.4).
The percentage of observable defects is signif-
icantly higher for black-box than for white-box
in umd82 [5]. Significant differences were not
found in umd84 [5] and uady13 [12].
Percentage of participants who detect
a given defect for each defect in the instru-
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mented program (o1.5). The effectiveness is
affected by the testing techniques. Code reading
is significantly less effective than black-box and
white-box, and black-box and white-box behave
in a similar way (upm00 [9], upm01, upm02,
upm03, upm04, upm05 and uds05 [10]). Concern-
ing secondary factors and interaction effects:
– Software type. The effectiveness of the tech-

niques was significantly affected by the in-
strumented programs in upm00 [9].

– Defect type. In upm00 [9], the effectiveness
of the techniques was significantly affected by
the defect types injected in the instrumented
programs.

– Interaction effects. In upm00 [9] an interac-
tion effect between the testing techniques
and the instrumented programs was observed.
Also an interaction effect between the instru-
mented programs and the defect types was
observed.

Percentage of participants that are able to
generate a test case that uncovers the fail-
ure associated with a given defect (o1.6).
The effectiveness did not impact black-box
and white-box (upm01, upm02, upm03, upm04,
upm05, uds05 and upv05 [9, 10]). Black-box
is significantly more effective than white-box
(ort05 [10]). In the case of secondary factors and
interaction effects:
– Software type. The effectiveness of the tech-

niques was significantly affected by the instru-
mented programs in upm01, upm05, uds05,
upv05 and ort05 [10].

– Defect type. In upm04, uds05, upv05 and
ort05 [10], the effectiveness of the techniques
was significantly affected by the defect types
injected in the instrumented programs.

– Program version. The version of the instru-
mented programs was not affected in upm01,
upm02, upm03, upm04, upm05, uds05, upv05
and ort05 [10].

– Interaction effects. In upm00, upm01, upm02,
upm03, upm04, upm05, upv05 and ort05 [9,
10] an interaction effect between the testing
techniques and the instrumented programs
was observed. An interaction effect between
the instrumented programs and the defect
types was observed in upm00, upm02, upm04,

upm05, uds05, upv05 and ort05 [9,10]. An in-
teraction effect between techniques and defect
types was observed in upm01, upm03, upm05
and uds05 [10]. An interaction effect between
program version and defect types was ob-
served in upm03, upv05 [10]. Another inter-
action effect between the technique and the
program version was observed in uds05 and
upv05 [10]. Three-way interactions between
instrumented programs, techniques and de-
fect types, and also between instrumented
programs, program versions and defect types
were observed in ort05 [10].

Number of isolated defects (o1.7). Al-
though some information about this is presented
in uos97 [8] neither descriptive nor inferential
analysis is discussed.
Percentage of isolated defects (o1.8). The
effectiveness of the testing techniques behaves
in a similar way (ukl94 [6, 7] and uok11 [11]).
The percentage of isolated defects is significantly
affected by the testing techniques in ukl95 [6, 7],
although a post-hoc is missing, it seems that
black-box and code reading show better effective-
ness than white-box. The findings for secondary
factors and interaction effects are:
– Software type. The effectiveness of the tech-

niques was significantly affected by the in-
strumented programs (in ukl94 [6, 7] and
uok11 [11]).

– Technique application order (sequence). The
effectiveness of the techniques is significantly
affected by the order in which techniques are
applied (in ukl94 [6, 7]).
Summarizing. It can be observed that the

effectiveness construct has the greatest number
of operationalizations. It was operationalized in
several ways. It can also be seen that secondary
factors such as instrumented programs and exper-
tise may have an impact on the techniques effec-
tiveness. It is not so clear which of the techniques
is more effective due to contradictory findings.

2.2.2. Efficiency

Defects detected per hour (o2.1). The three
testing techniques showed similar defect detec-
tion rates in umd82, umd83 [5] and uok11 [11].
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Code reading showed the higher defect detec-
tion rate in comparison to either black-box or
white-box (umd84 [5]), this difference was signi-
ficant. The authors of ukl94 and ukl95 experi-
ments [6,7] report a significant difference between
the techniques, however, a post-hoc analysis did
not show the pairwise significant differences, it
seems that black-box shows the higher defect de-
tection rate. In the case of uos97 [8], the authors
did not report the inferential statistics for this
metric, however, black-box seems to yield the
higher defect detection rate, white-box appears
to be the second most efficient technique. The
findings from secondary factors and interaction
effects are:
– Software type. The efficiency of the tech-

niques (measured as the number of defects
detected per hour) was significantly affected
by the instrumented programs in umd82,
umd84 [5] and uok11 [11].

– Expertise. The efficiency did not vary with
regard to the level of expertise (umd83,
umd84 [5]). Intermediate participants de-
tected defects at a significantly faster rate
than juniors did (umd82 [5]).

– Technique application order (sequence). The
efficiency of the techniques is significantly af-
fected by the order in which they are applied
(in ukl95 [6, 7]).

– Interaction effects. A two-way interaction be-
tween techniques and instrumented programs
was observed in umd84 [5].

Defects isolated per hour (o2.2). The three
techniques behave in a similar way (ukl94 [6, 7]).
However, in the case of ukl95 [6,7] and uok11 [11],
the defect isolation rate is significantly affected
by the techniques, although a post-hoc analysis
is missing, in ukl95 [6, 7] it seems that black-box
shows a higher defect isolation rate. In the case of
uok11 [11] it seems that white-box and black-box
show higher defect isolation rates than code read-
ing. With regard to secondary factors:
– Technique application order (sequence). The

defect isolation rate is significantly affected
by the order in which techniques are applied
(ukl94 [6, 7]).
Summarizing. Similar findings can be ob-

served for the efficiency construct, secondary fac-

tors, such as instrumented programs, expertise
and the technique application order, may have
an impact on the techniques efficiency. At first
sight, it is hard to conclude which of the tech-
niques is more efficient due to some contradictory
findings.

2.2.3. Cost

Time spent applying the testing tech-
niques (o3.1). The time spent applying the
three testing techniques is similar (in umd83,
umd84 [5] and uok11 [11]). Applying white-box
requires significantly more time than applying
either code reading or black-box (umd82 [5]).
Although a significant difference was observed in
ukl94 and ukl95 [6,7], the authors did not present
a post-hoc analysis to assess which of the tech-
niques requires significantly less time, however, it
seems that applying code-reading requires more
time than applying white-box; black-box requires
less time than white-box (ukl94, ukl95 [6, 7]). In
the case of secondary factors and interaction
effects:
– Software type. The time spent applying the

techniques was significantly affected by the
instrumented programs in umd82, umd84 [5]
and uok11 [11].

– Expertise. The time spent applying the tech-
niques did not vary with regard to the level
of expertise (umd82, umd83, umd84 [5]).

– Technique application order (sequence). The
time spent applying the techniques is signif-
icantly affected by the order in which they
are applied (in ukl95 [6, 7]).

– Interaction effects. A two-way interaction be-
tween techniques and instrumented programs
was observed in umd84 [5].

Defect isolation time (o3.2). The experi-
ments in ukl94, ukl95 [6,7] and uok11 [11] report
a significant difference between the techniques,
however, a post-hoc analysis does not identify
pairwise significant differences. Code reading
seems to require less time for isolating defects
than the other techniques.
Cpu-time (o3.3). Black-box required signif-
icantly more cpu-time than white-box (in
umd84 [5]).
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Connect time (o3.4). Participants applying
black-box black-box spent significantly more
minutes of connect time than those applying
white-box (in umd84 [5]).
Number of program runs (o3.5). This met-
ric did not show significant differences between
black-box and white-box (in umd84 [5]).

Summarizing. Secondary factors, such as
instrumented programs, expertise and the tech-
nique application order, may have an impact
on the cost of applying the testing techniques.
With regard to the the application time of these
techniques, it is hard to identify which of the test-
ing techniques incurs fewer costs. However, code
reading seems to require less time for isolating
defects. Concerning cpu-time and connect time,
black-box seems to demand more resources.

To conclude this section, Table 2 shows the
global summary of the findings found in this
family of experiments.

3. Baseline experiment

Following the proposed guidelines for report-
ing experiment replications [19], this section de-
scribes the original experiment. In [5], the au-
thors report results from three controlled ex-
periments which were conducted as controlled
experiments where different types of participants
(undergraduate, graduate students and practi-
tioners) applied three software testing techniques
(code reading, black-box testing and white-box
testing) to four instrumented programs.

The participants in these experiments were
representative of three levels of computer sci-
ence expertise: junior (0–2 years of experience),
intermediate (2.5–6.2 years of experience) and
advanced (10 years of experience). A total of 29,
13 and 32 people participated in three respective
experiments. In the first two experiments, the
participants were either upper-level computer
science majors or graduate students. In the third
experiment, the participants were programming
professionals from NASA and the Computer Sci-
ences Corporation.

The instrumented programs used in these
experiments were coded in Fortran and Simpl-T.

The four programs are related to a text pro-
cessor (p1), a mathematical plotting routine
(p2), a numeric abstract data type (p3) and
a database maintainer program (p4). Table 3
shows some characteristics of the used programs,
such as source lines of code (SLOC), cyclomatic
complexity (VG) and the number of defects
injected.

It is worth noting that the authors did not
use all the programs in the three experiments.
Programs p1, p2 and p3 were used in the first
experiment; programs p1, p2 and p4 were used
in the second experiment, and programs p1, p3,
and p4 were used in the third one.

The testing techniques examined in [5]
were code reading by stepwise abstraction [18],
black-box testing through equivalence parti-
tioning and boundary value analysis [20, 21]
and white-box testing through statement cov-
erage [21, 22]. Table 4 shows the efficiency ob-
served (in terms of defects detected per hour) in
the experiments and their standard deviations.
The authors only report a significant difference
(at α < 0.0003) in the third experiment. This
difference shows an enhanced efficiency for the
code reading technique.

Regarding the defect detection rates in the
instrumented programs used in the experiments,
Table 5 shows the defect detection rates per
program and their standard deviations. The
authors report a significant difference in the
first (at α < 0.01) and third experiment (at
α < 0.0001). In both experiments, the testing
techniques showed higher levels of efficiency in
program p3 (Data type).

The authors also examined the efficiency of
the participants according to their differing lev-
els of expertise: junior, intermediate and ad-
vanced. Table 6 shows the efficiency rates of
these types of participants and their standard
deviations.

The athors report a significant difference only
in the first experiment. Intermediate participants
detected defects at a faster rate than junior
participants. In the remaining experiments, the
authors did not observe any significant differ-
ence in defect detection rates between expertise
levels.
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Table 3. Characteristics of instrumented
programs used in [5]

Program SLOC VG Defects

Formatter (p1) 169 18 9
Plotter (p2) 145 32 6
Data type (p3) 147 18 7
Database (p4) 355 57 12

Table 4. Average and standard deviation of defect
detection rates per software testing technique

Technique umd82 [5] umd83 [5] umd84 [5]

Code reading 1.90 (1.83) 0.56 (0.46) 3.33 (3.42)
Black-box 1.58 (0.90) 1.22 (0.91) 1.84 (1.06)
White-box 1.40 (0.87) 1.18 (0.84) 1.82 (1.24)

Table 5. Average and standard deviation of defect
detection rates per software program

Program umd82 [5] umd83 [5] umd84 [5]

Formatter (p1) 1.60 (1.39) 0.98 (0.67) 2.15 (1.10)
Plotter (p2) 1.19 (0.83) 0.92 (0.71) –
Data type (p3) 2.09 (1.42) – 3.70 (3.26)
Database (p4) – 1.05 (1.04) 1.14 (0.79)

Table 6. Average and standard deviation of defect
detection rates according to level of expertise

Expertise umd82 [5] umd83 [5] umd84 [5]

Junior 1.36 (0.97) 1.00 (0.85) 2.14 (2.48)
Intermediate 2.22 (1.66) 0.96 (0.74) 2.53 (2.48)
Advanced – – 2.36 (1.61)

4. Description of the studied software
testing techniques

The following subsections summarize the soft-
ware testing techniques known as code reading,
black-box and white-box testing which were used
in this experiment replication.

4.1. Code reading

The aim of code reading is to find defects in code
documents without executing the code or the
software (static approach).

The studied code reading technique is known
as stepwise abstraction [18]. In code reading by
stepwise abstraction, a software engineer identi-
fies methods (or functions) in the source code,
and then he or she abstracts from them the soft-
ware program functionality. A set of abstractions
builds up to other abstractions which represent
modules and so forth. This process is followed
until a conceptual understanding of the prime ab-
straction emerges and brings into view an overall
picture of the examined code. This abstraction is

then compared to the product specification with
the aim of finding inconsistencies or defects in
the source code.

4.2. Black-box testing

This type of software testing technique is based
on the software product specification. Once a soft-
ware engineer has the specification, he or she
starts to design a set of test cases. The software
to be verified is seen as a black-box whose be-
havior is only determined by studying its inputs
and examining its outputs. Nevertheless, because
examining all the possible inputs is impractical,
only a subset of inputs is selected for testing
during the software product verification.

The software engineer assumes that the soft-
ware product to be verified contains a set of in-
puts that will probably cause the product to fail.
As a consequence of introducing these inputs, the
product yields outputs which reveals the presence
of defects. Because exhaustive testing is imprac-
tical, the main goal is to find a set of data inputs
whose probability of belonging to the set of in-
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puts that produce a failure in the product is as
high as possible [21, 23]. There are strategies for
designing test cases to reveal these inputs. Two
such strategies are known as: equivalence class
partitioning (ECP) and boundary-value analy-
sis (BVA). The authors worked with the ECP
approach, where an equivalence class represents
a set of valid or invalid states that are defined
as input conditions. A typical input condition
is a specified numerical value, a range of values,
a set of related values (such as categories) or
a logical condition.

4.3. White-box testing

It is also known as crystal or transparent testing,
the aim of this technique is to design test cases
that are able to exhaustively cover the software
code, examining all aspects of the structure and
logic of the software product. The main idea is to
design test cases that execute all code sentences
at least once and that also execute all branches
of code containing conditions (evaluating both
branches by using both true and false expres-
sions) [21,23]. Because examining all paths of the
software code can be impractical, various strate-
gies exist for achieving adequate code coverage.
Some of these strategies include: statement cover-
age, decision (or branch) coverage and condition
coverage. The authors worked with the branch
coverage approach where a set of test cases is
designed to ensure that each control structure is
executed at least once. To assess this technique,
the programs with the Java JCov coverage, a tool
which provides a means to measure and analyze
dynamic code coverage of Java programs, were
instrumented.

5. Experiment replication context

The experiment replication reported here is com-
posed of four comparative studies (controlled
experiments) carried out in December 2014 at
the Technical School of Chimborazo (ESPOCH)
as part of a software verification workshop. The
participants were undergraduate students in their
last semester of the software systems engineering

bachelor degree. According to [24], the partici-
pants were categorized as advanced beginners,
i.e. students having a working knowledge of the
key aspects of software development practice.

The workshop was offered at no cost and it
was intended for students in their last semester
so as to complement their technical skills with
a software verification course. Since the workshop
was voluntary and free of charge, coercion was
avoided. The participants were told that they
could leave the workshop at any moment. Verbal
consent was given from all the participants; the
main goals of the experiment were explained to
the participants and they were told that the
experiment was part of a software verification
workshop.

A differently instrumented software program
was used in each experiment. The program sizes
ranged between 253 and 392 SLOC. Programs
were coded in the Java programming language.
The average cyclomatic complexity (VG) of
programs was around 40. Each program had
the same type and number of defects injected
(6 defects). As reference, the defect classification
scheme of [25] was used, it is the same scheme as
the one used in the baseline experiment [5] and
also in the family discussed in Section 2. However,
regarding one of the defect classification schemes,
only three defect types (cosmetic, initialization
and control) were used instead of the six used
in [5] (cosmetic, initialization, control, data, in-
terface and computation). The change was made
to have better contol over experimental condi-
tions, and thus havie the same number and defect
types. The defects injected in each instrumented
program were as follows:
– omission – cosmetic (F1),
– omission – initialization (F2),
– omission – control (F3),
– commission – cosmetic (F4),
– commission – initialization (F5),
– commission – control (F6).

It can be seen that all defect types were
equally balanced in each software program, thus
there was more experimental control over the
instrumented programs.

The same defect counting scheme as the one
used here was also applied in [6, 7], a failure is
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Table 7. Characteristics of instrumented programs
used in the study

Program SLOC VG Defects Session type n

Triangle 41 1 1 Training 16
Deviation 184 14 3 Training 15
Banking 253 28 6 Experiment 1 15
Nametbl 392 43 6 Experiment 2 13
Ntree 349 46 6 Experiment 3 13
Cmdline 300 45 6 Experiment 4 12

observed if the participant applying one of the
techniques records the deviate behaviour of the
instrumented program with regard to its specifi-
cation. In code reading, an inconsistency (analog
to a failure) is observed if the participant records
the inconsistency between his or her abstractions
and the specification. False positives which are
perceived defects reported by participants that
are not in fact defects were ignored.

The experiments were run as part of a soft-
ware verification workshop. This workshop con-
sisted of ten sessions conducted on alternate
days, where each session lasted between two and
three hours. The first sessions were used to teach
the use of the software testing techniques. Two
sessions were used for training, where the par-
ticipants applied the testing techniques to two
instrumented programs. Table 7 shows the used
program characteristics, the session type and the
number of participants per session.

Regarding program functionality, the Trian-
gle software program determines the type of tri-
angle defined given three input values. Devia-
tion calculates the average and standard devi-
ation of n numbers. The banking program im-
plements basic functions for managing bank ac-
counts. Nametbl implements basic functions for
managing a table of symbols. Ntree implements
functions for managing an N-ary tree. Finally,
cmdline implements the basic functionality of
a command line program. All the programs were
developed and instrumented by a student en-
rolled in his last year of the software engineering
bachelor degree, he was under our supervision
during a semester. The following programs were
used as reference: nametbl, ntree and cmdline
used in [10], these three programs were entirely
rewritten to the Java programming language and

instrumented with the previously mentioned de-
fects.

5.1. Experiment replication goal

Following the GQM approach [26] this controlled
experiment replication was defined as: “Analyze
the testing techniques black-box, white-box and
code reading for the purpose of comparison with
regard to their efficiency (defects detected per
hour) from the point of view of the researcher
in an academic controlled context using small
instrumented Java programs.”

5.2. Research questions

For this controlled experiment replication, the
following main research questions were stated:
– RQ1. Is efficiency affected by the studied

testing techniques?
– RQ2. Do instrumented software programs

impact the efficiency of the software testing
techniques?

– RQ3. Does the relationship between tech-
niques and programs affect the efficiency?
With the collected data of this experiment

replication it is possible to define a secondary
research question linked to a secondary analysis
(defect analysis). This secondary question seeks
to explore a possible impact on the software test-
ing techniques efficiency and the defect classifica-
tion schemes used in the instrumented programs.
This secondary research question (SRQ1) was
defined as follows:
– SRQ1. Do defect types (according to used

defect classification schemes) impact the ef-
ficiency of the studied software testing tech-
niques?
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Table 8. Factorial design structure used

Technique/ Exp. 1 Exp. 2 Exp. 3 Exp. 4
Program Banking (ba) Nametbl (na) Ntree (nt) Cmdline (cm)

Code reading (cr) cr, ba cr, na cr, nt cr, cm
Black-box (bb) bb, ba bb, na bb, nt bb, cm
White-box (wb) wb, ba wb, na wb, nt wb, cm

The efficiency construct is operationalized
according to the number of defects detected per
hour after applying the testing techniques. To
answer the previous research questions, three
hypotheses were defined. For RQ1, the null hy-
pothesis is defined as follows: All the testing
techniques studied have similar or equal levels of
efficiency. For RQ2, the null hypothesis to test
is as follows: The type of software program does
not affect the efficiency of testing techniques. For
RQ3, the null hypothesis is defined as follows:
Efficiency is not affected by the relationship be-
tween testing techniques and the type of software
program. With regard SRQ1 the null hypothesis
is defined as: the defect classification schemes
used in the instrumented programs do not affect
the efficiency of the testing techniques.

5.3. Design and execution

The four experiments constitute a factorial de-
sign (3 × 4) with two factors (technique and
program), where the factor technique is com-
posed of three levels (code reading, black-box
and white-box testing) and the factor program
is composed of four levels (banking, nametbl,
ntree and cmdline programs). A factorial design
allows for the study of several factors and the
interactions among them. The factorial design
layout for this replication is shown in Table 8.
A completely randomized design was used in each
experiment. At the beginning of each session,
treatments (techniques) were randomly assigned
to participants. In each session, every participant
applied a testing technique to an instrumented
software program.

The experiments were conducted in December
2014 as part of a workshop on software verifica-
tion at ESPOCH. Participants used a web appli-
cation for registering information regarding the
application of the software testing technique to

a given instrumented program. In a non-invasive
way, this web application collected the time that
participants spent performing the testing tech-
niques. Below, we provide an overview of how
each testing technique is applied on an instru-
mented program during the training and experi-
ment sessions.
Code reading. Participants used code reading
by stepwise abstraction [18]. Each participant
receives the source code of the software. Then
the participant inspects the code and starts to
generate abstractions in a natural language. Af-
ter the participant has constructed the prime ab-
straction, he or she is provided with the product
specification. Then the participant compares his
or her abstractions with the product specification
and any inconsistencies observed are registered
as defects. The time elapsed for carrying out the
previous activities is taken into account for com-
puting the number of defects detected per hour.
Black-box. Participants followed the equiva-
lence class partitioning approach. Each partici-
pant receives the software product specification
and then begins to generate valid and invalid
equivalence classes. Next, the participant designs
test cases from the equivalence classes defined
and registers the expected outputs. The partic-
ipant then executes the test cases by running
the software program and registers the observed
output from each test case. The participant then
compares the expected outputs to the observed
outputs, and any inconsistencies are registered
as defects.
White-box. Participants receive the source code
and the instrumented software program. Each
participant then starts to generate test cases with
the aim of achieving 100% branch coverage of
the source code. The participant then registers
the observed outputs after running the program.
For this testing technique, software programs
were instrumented with the Java JCov coverage
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Table 9. The collected defect detection rate measurements

Technique/ Exp. 1 Exp. 2 Exp. 3 Exp. 4
Program Banking (ba) Nametbl (na) Ntree (nt) Cmdline (cm)

Code reading (cr) 0, 1.56, 0.45 1.58, 0.67 0, 1.07 0, 0.71
0, 0 0, 0 1.86, 0.6 0, 0.72

Black-box (bb) 0.55, 2.26, 0.91 0.89, 0 0.43, 1.12, 0 0, 0.5
1.09, 1.07 0, 0 0.44, 0 0, 0.47

White-box (wb) 1.1, 0.5, 0 1.28, 1.38, 0 1.03, 0 0.47, 0
1.1, 4.44 1.04, 0.26 0.52, 0 0, 0

tool, so the participants using this technique were
able to see the percentage of coverage achieved
after each test case execution. Once a partici-
pant achieves the maximum coverage level, he or
she the gains access to the product specification.
Next, the participant registers the expected out-
puts as defined by the product specification. He
or she then compares the observed outputs with
the expected outputs, and any inconsistencies
are registered as defects.

In the case of the two dynamic techniques
(black-box and white-box), the time elapsed for
generating and running the test cases (which
encompasses the activities previously mentioned)
is taken into account for computing the number
of defects detected per hour.

With the aim of striving towards better re-
search practices in SE [27] all the collected mea-
surements are reported. These raw data will help
other researchers to verify or re-analyze [28] the
experiment results presented in this work. Table 9
shows all the efficiency measurements (defect de-
tection rates) collected during the experiment
sessions (the raw data is available in Appendix).
A total of 53 measurements were collected, this
sample size is slightly greater than the average
sample size used in software engineering experi-
ments [16].

6. Analysis and results

This section presents both the collected descrip-
tive and inferential statistics for the efficiency
measurements. Table 10 shows the mean defect
detection rates and their standard deviations
for the testing techniques assessed in the four
experiments.

As shown in Table 10, there is not a clear
distinction between the efficiency of the differ-
ent testing techniques. In the first and second
experiments, white-box testing seems to be more
efficient than black-box testing and code reading,
however, in the third and fourth experiments,
code reading performs better. With respect to
the instrumented programs, Table 11 shows the
mean defect detection rates and their standard
deviations for the instrumented programs used
in the four experiments.

As shown in Table 11, efficiency seems to
vary depending on the program. The software
program identified as banking, on average, yields
an efficiency rate of 1 defect per hour. This pro-
gram has the data point with the maximum
efficiency rate. Conversely, cmdline shows the
worst efficiency rate; on average, the efficiency
in this program yielded 0.24 defects detected per
hour.

Descriptive statistics give us an overview of
basic features of the collected efficiency measure-
ments, but at this point, it is not possible to
draw any confident conclusions with respect to
possible differences between treatments. Once
the overview of the data is provided, it is possi-
ble to continue testing the hypotheses previously
stated using inferential statistics The four exper-
iments can be arranged in a factorial experiment
design [3]. The statistical model employed ac-
cording to the factorial design (3 × 4) is defined
in Equation (1).

yijk = µ+ αi + βj + (αβ)ij + εijk . (1)

In this equation µ is the grand mean, αi rep-
resents the effect of software testing technique
i, βj represents the effect of program j, (αβ)ij

is the interaction effect between treatments i
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Table 10. Average defect detection rates and standard deviations of
the software testing techniques

Technique Exp. 1 Exp. 2 Exp. 3 Exp. 4

Code reading 0.4 (0.68) 0.56 (0.75) 0.88 (0.79) 0.36 (0.41)
Black-box 1.18 (0.64) 0.22 (0.44) 0.4 (0.46) 0.24 (0.28)
White-box 1.43 (1.75) 0.79 (0.62) 0.39 (0.49) 0.12 (0.24)

Table 11. Average defect detection rates
and standard deviations per instrumented program

Program Exp. 1 Exp. 2 Exp. 3 Exp. 4

Banking 1 (1.15) – – –
Nametbl – 0.55 (0.62) – –
Ntree – – 0.54 (0.58) –
Cmdline – – – 0.24 (0.31)

and j, k is the number of replications in each
treatment combination, and ε is the random
error which assumes N(0, σ2). The analysis of
variance (ANOVA) [2–4] is used to assess the
components of the model (such as technique,
program and the interaction between technique
and program).

Before drawing any conclusions related to the
components of the model, it is necessary to assess:
1) that the collected measurements are indepen-
dent (independence), 2) that the variance is the
same for all the measurements (homogeneity),
and 3) that the measurements follow a normal
distribution (normality).

The first assumption is addressed by the prin-
ciple of randomization used in the four experi-
ments; all the measurements of one sample are
not related to those of the other sample. The
second and third assumptions are assessed by
using the estimated residuals [2, 3]. To assess
the homogeneity of variances, the Levene test
for homogeneity of variances was applied [29].
The Levene test allowed to obtain a p-value of
0.7043, which suggests that variance in all treat-
ment combinations (technique and program) are
equal (null hypothesis of this test). Thus, the
null hypotheses in favour of homogeneity were
accepted. The third assumption (normality) was
evaluated by applying the Kolmogorov-Smirnov
test for normality [30,31]. After applying this test,
a p-value of 0.2882 was obtained, which suggests
that the residuals fit a normal distribution (null

hypothesis of this test). Thus, the null hypothesis
in favour of normality was accepted.

Once there is a valid statistical model, it is
possible to draw reliable conclusions about the
model components (technique, program and the
interaction or relationship between technique and
program). Table 12 shows the ANOVA results of
the model stated in Equation (1).

If an α level of 0.05 is set, none of the compo-
nents shows a significant difference with respect
to efficiency. However, if the alpha level has the
value of 0.1, which represents a confidence level
of 90%, a significant difference is obtained with
respect to efficiency in the program component.
This suggests that at least one of the programs
has a different level of efficiency than the others.
To determine the significant difference the Tukey
test for treatment comparisons was used [32]. Ta-
ble 13 shows program comparisons with respect
to efficiency.

As shown in Table 13, it can be observed that
there is a significant difference with respect to
efficiency between the banking and cmdline pro-
grams. This difference has an estimated value of
0.76 defects detected per hour, and suggests that
the software program affects, to some degree, the
efficiency of the three assessed software testing
techniques, as shown in Figure 1.

Since the program component showed a sig-
nificant difference with respect to efficiency (at
α = 0.1), it is important to estimate the ex-
tent by which efficiency is affected by a software
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Table 12. Results of the analysis of variance (ANOVA)

Component Df Sum Sq Mean Sq F -value p-value

Technique 2 0.418 0.2089 0.359 0.7003
Program 3 4.072 1.3574 2.335 0.0879
Technique: program 6 3.933 0.6555 1.128 0.3636
Residuals 41 23.835 0.5813

Table 13. Pairwise comparisons with respect to the
defect detection rates

Program comparisons Difference p-value

Banking – cmdline 0.7628 0.0621
Nametbl – cmdline 0.4558 0.4022
Ntree – cmdline 0.4581 0.3978
Nametbl – banking −0.3069 0.7469
Ntree – banking −0.3046 0.7512
Ntree – nametbl 0.0023 1.0000
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Figure 1. Interaction plot between the technique
and the program

program type. Cohen’s f was selected as the
coefficient for assessing the average effect in the
ANOVA program component across all its lev-
els [33]. This coefficient can take values from zero
to indefinitely large values. Cohen [33] suggests
that values of 0.10, 0.25, and 0.40 represent small,
medium, and large effect sizes, respectively. Af-
ter estimating this coefficient, an effect size of
f = 0.41 was obtained, which suggests a large
effect size regarding the type of the used program.

With the effect size f estimated, it is pos-
sible to assess how sensitive (power test) any
of the ANOVA components were in detecting
an effect. We applied a post-hoc test to assess
the degree of power achieved by the ANOVA
program component. The power in a statistical
test is equal to 1−β, where β is the probability of
making a Type II error. For program component
we obtained a power of 0.79 (at α level = 0.1),
which suggests that the acceptable level of power
for the estimated effect size (f = 0.41) and the
used sample size (53 collected measurements).

6.1. Defect analysis

In order to extend the previous efficiency analysis,
the type of defects injected in the instrumented
programswere scrutinized. The aim of this sec-

ondary analysis is to determine what classes
of defects are detected by the studied testing
techniques. As previously discussed in Section 5,
defects were characterized by two classification
schemes [5, 25]: Scheme 1 consisting of omission
and commission defects, and scheme 2 consisting
of cosmetic, initialization and control defects.
Figure 2 shows the percentage of observed de-
fects of the testing techniques (black-box [bb],
white-box [wb] and code reading [cr]) split into
the two defect classification schemes.

Figure 2 shows that participants using the
code reading technique seem to observe more
initialization defects than participants using the
other techniques. Conversely, code reading and
white-box seem to behave worse detecting cos-
metic defects than black-box.

Similar to Figure 2, Figure 3 shows the per-
centage of observed defects by an instrumented
programandbyadefect type.As shown inFigure 3,
all the techniques seem to produce worse results in
the detection of cosmetic defectsthan black-box.
Conversely, cosmetic defects injected in nametbl
(na) andcmdline (cm)programs seemtonegatively
impact the percentage of observed defects.

Figures 2 and 3 give us an overview of the
observed defects in these two schemes, however,
an inferential analysis is needed to examine pos-
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Figure 3. Types of defects observed by instrumented
program

Table 14. Results of the analysis of variance (ANOVA) for defect
classification scheme 1 (omission and commission defects)

Component Df Sum Sq Mean Sq F -value p-value

Technique 2 62 30.9 0.052 0.9497
Program 3 4573 1524.2 2.548 0.0615
Scheme1 1 168 167.7 0.280 0.5979
Technique: program 6 3577 596.1 0.997 0.4334
Technique: scheme1 2 580 290.1 0.485 0.6175
Program: scheme1 3 5250 1749.8 2.925 0.0387
Tech.: prog.: scheme1 6 6086 1014.3 1.695 0.1325
Residuals 82 49056 598.2

sible significant differences. Next the ANOVA
results are presented according to the used defect
classification schemes.

6.1.1. ANOVA results for defect classification
scheme 1

The statistical model employed for this ANOVA
is shown in Equation (2).
yijkl = µ+ αi+βj + γk + (αβ)ij + (αγ)ik

+(βγ)jk + (αβγ)ijk + εijkl .
(2)

In this equation µ is the grand mean; αi repre-
sents the effect of software testing technique i,
βj represents the effect of program j, γk repre-
sents the effect of defect type k on the deffect
classification scheme 1, (αβ)ij is the interaction
effect between treatments i and j, (αγ)ik is the
interaction effect between treatments i and k,
(βγ)jk is the interaction effect between treat-
ments j and k, (αβγ)ijk is the interaction effect

between treatments i, j and k, l is the number of
replications in each treatment combination, and
ε is the random error which assumes N(0, σ2).
The ANOVA results of this model are shown in
Table 14.

As shown in Table 14 the program and the
program:scheme1 components show a significant
difference at alpha level of 0.1 and 0.05, respec-
tively. To inspect the significant differences in
these two components, the Tukey test for treat-
ment comparisons was used [32]. Table 15 shows
the pairwise comparisons of the program com-
ponent and the interaction component (this be-
tween program and scheme 1).

A significant difference of 18% is observed
between banking (ba) and cmdline (cm) pro-
grams. Participants applying the testing tech-
niques observed more defects in the banking
(ba) program. Another significant difference was
observed between the omission defects of the
banking program and the commission defects
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Table 15. Significant pairwise comparisons for defect classification scheme 1

Pairwise comparisons Difference (%) p-value

Banking – cmdline 18.3333 0.0374
Banking: omission – cmdline: commission 32.3414 0.0213075
Nametbl: omission – banking: omission −27.6415 0.0698521

of the cmdline program. Omission defects were
the most commonly observed in these two pro-
grams. The third significant difference was ob-
served between omission defects in the nametbl
and banking programs, omission defects were
the most commonly observed in the banking
program.

Concerning model assumptions, the Levene
test for homogeneity of variances [29] shows
a non-significant p-value (0.9292), suggesting
that variance in all treatment combinations (tech-
nique, program and defect classification scheme)
are equal (the null hypothesis of this test). The
assumption of normality was checked with the
Kolmogorov-Smirnov test for normality [30,31].
In this case the test showed a significant dif-
ference (p-value = 0.00012). Because measure-
ments are represented as proportions (or per-
centages), these kinds of measurements can be
prone to departures from normality, as shown
in Figure 4.
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Figure 4. Normal Q-Q plot of standardized residuals
given the model presented in Equation (2)

6.1.2. ANOVA results for defect classification
scheme 2

Next the inferential analysis concerning the sec-
ond defect classification scheme which is com-
posed of cosmetic, initialization and control de-

fect types is presented. Using the same statistical
model as in Equation (2), but changing γk, repre-
senting now the effect of the defect type k of the
defect classification scheme 2. Table 16 shows
the results of the analysis of variance.

The results presented in Table 16 suggest
a significant difference (at an alpha of 0.05) in
the program component. The Tukey [32] was run
to examine which of the program pairwise com-
parisons show significant differences. Table 17
shows the pairwise comparisons of the program
component.

Table 17 suggests a significant difference of
18% between the banking (ba) and the cmd-
line (cm) program. Participants using the testing
techniques observed a significantly larger number
of defects in the banking program than in the
cmdline program.

In relation to the model assumptions, the Lev-
ene test for homogeneity of variances [29] shows
a non-significant p-value of 0.7501 in favor of the
equality variances among treatments, however,
in the same way as in the previous analysis, some
departures from normality were observed with
the Kolmogorov-Smirnov test [30, 31], a signifi-
cant p-value of 0.00012 was observed.

7. Network meta-analysis

The results of the replication reported here can
be incorporated in the existing evidence of re-
lated experiments. With the quantitative infor-
mation available in similar experiments [5–8,11]
it is possible to carry out a network meta-analysis
in order to offer better informed decisions on the
efficiency of the testing techniques reported in
previous experiments along with the one dis-
cussed in this work.

The network meta-analysis approach
(NMA) [34,35], also known as multiple treatment
comparison or mixed treatment comparison, has
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Table 16. Results of the analysis of variance (ANOVA) for scheme 2
(cosmetic, initialization and control defects)

Component Df Sum Sq Mean Sq F -value p-value

Technique 2 93 46.3 0.055 0.946
Program 3 6859 2286.3 2.727 0.047
Scheme2 2 2296 1147.8 1.369 0.258
Technique: program 6 5365 894.2 1.067 0.386
Technique: scheme2 4 3826 956.6 1.141 0.340
Program: scheme2 6 5224 870.7 1.039 0.404
Tech.: prog.: scheme2 12 3904 325.3 0.388 0.966
Residuals 123 103125 838.4

Table 17. Significant pairwise comparisons for defect
classification scheme 2

Pairwise comparisons Difference (%) p-value

Banking – cmdline 18.3333 0.0274

been increasingly widespread in recent years in
the health care arena [36–38].

The network meta-analysis approach can inte-
grate direct and indirect evidence in a collection
of studies (or experiments). This approach pro-
vides information on the relative effects of three
or more treatments for the same outcome [39].
Conversely to classical meta-analysis, NMA si-
multaneously compares the effects of three or
more treatments.

Given the evidence of the present replication
(pooling together the four experiments as one
experiment replication) along with the evidence
of seven related experiments [5–8,11], NMA with
the ‘netmeta’ R package [40] was performed to
assess the available evidence of the efficiency of
the testing techniques: black-box (bb), white-box
(wb) and code reading (cr). Table 18 shows the
sample sizes (n), average defect detection rates
(mean) and the standard deviations (sd) of the
three testing techniques examined in the afore-
mentioned experiments.

With the information available in Table 18
it is possible to carry out NMA. Asa result of
conducting all these experiments to examine the
same three testing techniques it can be concluded
that they conform to a single design providing
only direct evidence. NMA can also be applied to
estimate indirect evidence, however, not in this
case. For example, suppose there are experiments

examining treatments A and B and experiments
examining treatments A and C (for the same
outcome), these experiments can be pooled to-
gether in NMA to obtain an indirect estimate
for indirect comparison between treatments B
and C by means of a common comparator, that
is treatment A.

Table 19 shows the resulting NMA obtained
on the basis of the information of Table 18. The re-
sults are presented in the matrix of estimated over-
all effect sizes (with lower and upper confidence
limits) belonging to all the pairwise treatment
comparisons. Effect sizes were computed using
the standardized mean difference (Hedges’ g) [41].
The guidelines proposed by Cohen [33] suggest
that effect sizes of 0.2, 0.5 and 0.8 represent small,
medium and large effect sizes, respectively. Due to
possible context differences in these experiments,
the effect sizes shown in Table 19 were estimated
according to a random effects model, assuming
that the underlying effects in the experiments
of the same treatment comparison come from
a common normal distribution, i.e. an account
for unexplained heterogeneity was assumed.

To obtain valid conclusions from NMA, the
resulting network of treatments should be as-
sessed against the transitivity and consistency
assumptions [42–44]. In the case of the transitiv-
ity assumption, the network is assumed to main-
tain transitivity whenever pairwise treatment
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Table 18. Sample sizes, average defect detection rates and standard deviations of
the testing techniques examined in eight experiments

Experiment nbb meanbb sdbb nwb meanwb sdwb ncr meancr sdcr

umd82 [5] 29 1.58 0.90 29 1.40 0.87 29 1.90 1.83
umd83 [5] 13 1.22 0.91 13 1.18 0.84 13 0.56 0.46
umd84 [5] 32 1.84 1.06 32 1.82 1.24 32 3.33 3.42
ukl94 [6, 7] 27 4.67 2.27 27 2.92 1.59 27 2.11 1.12
ukl95 [6, 7] 21 3.08 1.28 18 2.00 1.59 17 1.74 0.67
uos97 [8] 47 2.47 1.10 47 2.20 0.94 47 1.06 0.75
uok11 [11] 18 2.46 0.58 18 2.50 0.83 18 2.16 0.55
epch14 18 0.54 0.60 18 0.73 1.06 17 0.54 0.64

Table 19. Pairwise treatment overall effect size estimates, lower and upper
95% confidence limits under a random effects model

Technique Black-box (bb) Code reading (cr) White-box (wb)

Black-box (bb) – 0.576 (0.110, 1.042) 0.239 (−0.224, 0.701)
Code reading(cr) −0.576 (−1.042,−0.110) – −0.337 (−0.802, 0.127)
White-box (wb) −0.239 (−0.701, 0.224) 0.337 (−0.127, 0.802) –

effects are similarly distributed across the stud-
ies (experiments). For example, suppose some
studies assessing treatments A, B, C for the same
outcome, if treatment A performs better than B,
and treatment B performs better than C, then
treatment A has to perform better than C (transi-
tivity is met). Departures from transitivity arise
when significant heterogeneity is present across
one or more pairwise treatment comparisons in
the network. On the other hand, the consistency
assumption states that both direct and indirect
evidence in a given pairwise treatment compar-
ison (network edge) should be similar. This as-
sumption only applies to situations where there
is both direct and indirect evidence in one or
more edges of the network [42].

In a similar way when the Q statistic is used
in pairwise meta-analysis, a generalization of
such index is used in NMA. In NMA, the Q
statistic measures the deviation from heterogene-
ity/inconsistency. Index Q can be separated into
parts for each pairwise treatment comparison and
a part for the remaining inconsistency between
all the treatment pairwise comparisons [43].

Given the resulting NMA in Table 19, the
statistical test for assessing the heterogene-
ity/inconsistency of the network is run. In the
same manner as in pairwise meta-analysis, in
NMA the used Q statistic follows a Chi-Squared

distribution. The test showed a Q-value of 74.12,
corresponding with a significant p-value smaller
than 0.0001, thus suggesting a significant degree
of heterogeneity in the network. The I2 index
that represents the percentage of heterogeneity
also showed a high value of 81.1%.

The heterogeneity found in the network sug-
gests that at least one pairwise treatment com-
parison contains contradictory effect size esti-
mates, yielding a significant heterogeneity in the
network edge. Because of this situation, it was
decided to assess the heterogeneity (under clas-
sical meta-analysis also using Hedges’ g [41]) in
each network edge, i.e. with the following pair-
wise comparisons: black-box (bb) vs. code read-
ing (cr), black-box (bb) vs. white-box (wb) and
code reading (cr) vs. white-box (wb). Table 20
shows the Q and I2 coefficients in each network
edge.

Table 20. Assessment of
heterogeneity in each network edge

Edge Q p-value I2

bb, cr 60.81 <0.0001 88.5%
bb, wb 11.40 0.1221 38.6%
cr, wb 42.40 <0.0001 83.5%

According to Table 20 the pairwise compari-
son between black-box and white-box yields con-
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Figure 6. Forest plot with the overall effect size estimates
and confidence limits of the testing techniques

sistent results (p-value is non-significant) suggest-
ing a degree of homogeneity among effect size
estimates of the eight experiments. The resulting
I2 coefficient indicates that experiments in this
edge present a low level of heterogeneity which
is non-significant. As observed in Table 20, the
rest of pairwise comparisons show a significant
difference. Figure 5 shows the resulting network
graph with the pairwise treatments. The network
is laid out in a plane where nodes correspond to
the treatments (bb, wb and cr) whereas edges
represent the pairwise treatment comparisons;
the observed consistent edge is highlighted in
black. The thickness of the lines represents the
number of experiments available for each treat-
ment, in this case, eight experiments.

Figure 6 displays a forest plot of pairwise
overall effect size estimates using the white-box
technique as the reference treatment. As it was
discussed ealier, only the pairwise comparison
between black-box and white-box shows homo-
geneity in its effect size estimates. It is visible
that a small effect size of 0.24 is observed in
favour of the black-box technique, however, the
estimated confidence limits indicate that the over-
all effect size could be zero, thus suggesting that
both black-box and white-box yield similar defect
detection rates.

8. Discussion

Having presented the analysis, in this section the
findings in reference to the research questions
stated and previous work are discussed.

According to the evidence collected in the
four experiments, all the testing techniques
showed similar levels of efficiency (no significant

difference was observed); this suggests that effi-
ciency is not affected by the testing techniques
(RQ1). Evidence suggesting that the type of
used software program affects the efficiency of
the studied testing techniques has been found
(RQ2). In addition, the current evidence sug-
gests that efficiency is not affected by the relation-
ship between techniques and software programs,
i.e. both factors are independent (RQ3).

In relation to the baseline experiment, the
results support the results presented in experi-
ments umd82 and umd83 [5], the three testing
techniques behave in a similar way. With regard
to the efficiency of testing techniques, Table 21
shows a comparison between the reported results
in [5] and the pooled results. These results indi-
cate the average number of defects detected per
hour.

As shown in Table 21, this replication sup-
ports the results of the umd82 and umd83 ex-
periments [5]. In these experiments, the null hy-
pothesis is accepted because the three testing
techniques do not show significant differences in
the defect detection rates. However, this differ-
ence is significant in umd84 [5]. One possible
reason for this significant difference could be the
participants’ expertise. In the third experiment
reported in [5], participants were programming
professionals with high levels of technical skill.

As noted in Table 21, the obtained rates of
efficiency were lower than those reported in [5],
perhaps the number of defects injected in the
instrumented programs (six per program) or the
participants’ expertise yielded a lower efficiency
rate. One point worth noting about the umd82
and umd83 experiments in [5] is that although
similar kinds of participants were used, the effi-
ciency measurements in the first experiment are
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Table 21. Average defect detection rates per a testing technique
reported in [5] and in replication

Technique umd82 [5] umd83 [5] umd84 [5] epch14

Code reading 1.90 0.56 3.33 0.54
Black-box 1.58 1.22 1.84 0.54
White-box 1.40 1.18 1.82 0.73

slightly higher than those in the second experi-
ment. One possible reason for this is that both
the software type and the injected defects af-
fected the efficiency. In the three experiments re-
ported in [5], the authors did not use the same in-
strumented programs in all experiments. It is also
important to note that in [5], each program had
a different number of defects with respect to both
defect classification schemes; i.e. the used pro-
grams were not equally balanced regarding the
number of defects and defect types. It is highly
probable that differences in the program type and
the used defects produced an interaction effect
with the testing techniques, as mentioned in [5].
With the aim of avoiding this effect interaction,
the same number and the same type of defects
were employed in the instrumented programs,
and only the type od software program varied.

With respect to the average defect detection
rate per program, the obtained results support
those in umd82 and umd84 [5], the type of soft-
ware impacts on the efficiency of the testing
techniques. Table 22 shows the average defect
detection rates of umd82, umd83, umd84 and
the results obtained here, the efficiency seems to
vary depending on the software type.

It is possible that the low rates of efficiency
observed in the replication are due to the exper-
tise level of the participants. According to our
evidence, it seems that participants had a bet-
ter understanding of the domain related to the
banking instrumented program than the domains
related to the other programs. Cyclomatic com-
plexity is discarded as a possible factor that could
affect efficiency. Programs nametbl, ntree and
cmdline have similar levels of VG (43, 46 and
45, respectively), however, cmdline still showed
the worst efficiency rate. This evidence seems
to reinforce the idea that the knowledge of the
program domain could affect the efficiency of
software testing techniques.

Concerning the defect analysis (secondary
research question, SRQ1), no significant differ-
ences in the two defect classification schemes
were observed in the case of the testing tech-
niques. The results in the baseline experiment [5]
suggest that participants applying code reading
and those applying black-box observed signifi-
cantly more omission defects than those applying
white-box. In the case of the conducted experi-
ments no significant difference between omission
and commission defects was observed.

With regard to the second defect classifica-
tion scheme the authors in [5] observed that
participants using code reading and those us-
ing black-box observed significantly more ini-
tialization defects than those using white-box.
Participants using code reading observed signif-
icantly more interface defects than those using
either black-box or white-box. Participants using
black-box observed significantly more control de-
fects than those using the other two techniques.
Participants using code reading observed signifi-
cantly more computation defects than those us-
ing white-box. With regard to data and cosmetic
defects the authors in [5] did not observe signifi-
cant differences. In the case of the experiments
described here, it was observed that code read-
ing seemed to detect more initialization defects
than white-box and black-box but the difference
was not significant. It was also found out that
white-box and black-box seemed to detect more
control defects than code reading, but again, this
difference was not significant.

However, with respect to the instrumented
programs, significant differences were observed,
more omission defects were detected in the bank-
ing program compared to cmdline program (de-
fect classification scheme 1). Similarly there were
more cosmetic, initialization and control defects
(defect scheme 2) observed in the banking pro-
gram than in the cmdline program. Although
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Table 22. Average defect detection rates per program
reported in [5] and in replication

Program umd82 [5] umd83 [5] umd84 [5] epch14

Formatter 1.60 0.98 2.15 –
Plotter 1.19 0.92 – –
Data type 2.09 – 3.70 –
Database – 1.05 1.14 –
Banking – – – 1
Nametbl – – – 0.55
Ntree – – – 0.54
Cmdline – – – 0.24

same defect types (for both schemes) were equally
injected in the four instrumented programs, they
were observed in a similar way, perhaps these
findings suggest that the knowledge of the do-
main of the program to be tested may impact
the efficiency of the testing techniques.

The replication results along with the related
existing ones allowed to carry out a quantita-
tive synthesis using the network meta-analysis
(NMA) approach. Taking into account the quan-
titative information of eight experiments run in
five countries (USA, Germany, UK, India and
Ecuador) only consistent results were observed
among black-box and white-box techniques, both
techniques yielded similar efficiency rates. The
code reading technique compared with either
black-box or white-box techniques showed in-
consistent results (presence of heterogeneity).
These results suggest that the code reading tech-
nique shows a greater level of sensitivity. In
umd84 [5], code reading was significantly more
efficient than black-box and white-box, probably
in this experiment the expertise had an impact
on this technique. In the umd84 experiment, par-
ticipants were programming professionals with
an overall average of ten years of professional
experience. However, the expertise factor does
not seem to significantly affect the efficiency of
the black-box and white-box, in this treatment
comparison (bb vs. wb), participants used in
the pooled experiments spanned different ex-
pertise levels, such as undergraduate, graduate
and professionals. In the case of the other treat-
ment comparisons (cr vs. bb, and cr vs. wb),
further subgroup analyses [45, 46] can be per-

formed to identify moderators affecting the out-
comes.

For the purpose reporting this experiment
replication, the guidelines of [19] were taken as
reference, however, it is not so clear how to pro-
ceed when reporting a replication in the con-
text of a family of related experiments. In this
sense, the authors propose that the family of
experiments be explained in terms of the main
treatments studied along with the contextual
information. It is also proposed that the find-
ings of the family be organized, first, according
to the cause and effect constructs and, second,
according to the cause and effect operational-
izations that the related experiments address.
The findings of the family can be presented as
a narrative or quantitative synthesis (or both
of them).

The authors also propose to describe the
baseline experiment, this activity underlies the
essence of the replication, which refers to the
repetition of a previously run experiment [14],
it is recomended to describe the main findings
and contextual information of the baseline ex-
periment. Once the family and the baseline have
been described, the replication and the analysis
of the results should be described. Next, the
replication findings should be analyzed in rela-
tion to the baseline experiment along with the
related experiments of the family. Depending
on the type of analysis done, this activity can
be performed as a qualitative or quantitative
synthesis (or both of them). Finally, a discussion
of the consistency or inconsistency of the findings
should be addressed.
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Regarding the limitations of the experiment
replication reported here, below the strategies
used to minimize the threats to validity are de-
scribed [47]. With respect to conclusion validity,
the measurements collected in these experiment
sessions satisfy the principles of independence,
homogeneity and normality. With respect to in-
ternal validity, participants were randomly as-
signed to treatments, which reduced learning
effects. Boredom or fatigue was reduced by us-
ing alternate sessions. Participants were in the
same classroom, working under the same con-
ditions, and sitting apart with no interaction.
With respect to construct validity, cause and ef-
fect constructs were operationalized in the same
way as is reported in [5] and in [9]. With re-
spect to external validity, the use of students
instead of practitioners might have compromised
this type of validity. However, there exists some
evidence suggesting that in some contexts, the
results of empirical studies that employ students
with enough technical skills are equivalent to the
results of empirical studies that use practition-
ers [48]. For example, using students in their last
academic year of an undergraduate program as
experiment participants may be comparable to
using junior practitioners as participants. In fact,
it is common for students in their last academic
year to work part-time in IT-related companies.
In this sense, the results presented here may be
generalizable to junior practitioners.

9. Conclusions

In this work the efficiency of three software test-
ing techniques has been assessed. The replication
was composed of four experiments where several
instrumented software programs were used. The
obtained results suggest that software testing
techniques perform in a similar way, but the do-
main related to the software to be tested might
have an effect on the defect detection rates of
the testing techniques. We suggest that software
verification activities such as software testing
be performed only after software engineers have
a clear understanding of the software product
domain.

The main contributions of this work are the
following: 1) the execution of a controlled ex-
periment replication in order to verify previous
findings, and 2) the realization of a quantitative
synthesis with the aim of consolidating the find-
ings belonging to a family of related experiments.

Acknowledgements

This research study received support from the
Prometeo project 20140697BP funded by the
Government of the Republic of Ecuador’s De-
partment of Higher Education, Science, Technol-
ogy and Innovation (Senescyt). Special thanks to
Jahzeel J. Coss who developed and instrumented
the programs used in the experiment replication
reported here. César Pardo acknowledges the
contribution of the University of Cauca, where
he works as an assistant professor.

References
[1] S. McConnell, Code Complete, 2nd ed. Redmond,

WA, USA: Microsoft Press, 2004.
[2] G.E.P. Box, W.G. Hunter, J.S. Hunter, and W.G.

Hunter, Statistics for Experimenters: An Intro-
duction to Design, Data Analysis, and Model
Building. John Wiley & Sons, Jun. 1978.

[3] R. Kuehl, Design of Experiments: Statistical
Principles of Research Design and Analysis,
2nd ed. California, USA: Duxbury Thomson
Learning, 2000.

[4] N. Juristo and A.M. Moreno, Basics of Software
Engineering Experimentation. Kluwer Academic
Publishers, 2001.

[5] V. Basili and R. Selby, “Comparing the effec-
tiveness of software testing strategies,” IEEE
Trans. Softw. Eng., Vol. 13, No. 12, 1987, pp.
1278–1296.

[6] E. Kamsties and C.M. Lott, An Empirical Eval-
uation of Three Defect-Detection Techniques.
Berlin, Heidelberg: Springer, 1995, pp. 362–383.

[7] E. Kamsties and C. Lott, “An empirical evalua-
tion of three defect detection techniques,” Dept.
Computer Science, University of Kaiserslautern,
Kaiserslautern, Germany, Tech. Rep. ISERN
95-02, 1995.

[8] M. Roper, M. Wood, and J. Miller, “An empir-
ical evaluation of defect detection techniques,”
Information and Software Technology, Vol. 39,
No. 11, 1997, pp. 763–775.



100 Omar S. Gómez, Karen Cortés-Verdín, César J. Pardo

[9] N. Juristo and S. Vegas, “Functional testing,
structural testing and code reading: What fault
type do they each detect?” in Empirical Meth-
ods and Studies in Software Engineering, ser.
Lecture Notes in Computer Science, R. Conradi
and A. Wang, Eds. Berlin, Heidelberg: Springer,
2003, Vol. 2765, pp. 208–232.

[10] N. Juristo, S. Vegas, M. Solari, S. Abrahao,
and I. Ramos, “Comparing the effectiveness of
equivalence partitioning, branch testing and code
reading by stepwise abstraction applied by sub-
jects,” in IEEE Fifth International Conference
on Software Testing, Verification and Validation
(ICST), Apr. 2012, pp. 330–339.

[11] S.U. Farooq and S. Quadri, “An externally repli-
cated experiment to evaluate software testing
methods,” in Proceedings of the 17th Interna-
tional Conference on Evaluation and Assessment
in Software Engineering, ser. EASE ’13. New
York, NY, USA: ACM, 2013, pp. 72–77.

[12] O.S. Gómez, R.A. Aguilar, and J.P. Ucán, “Efec-
tividad de técnicas de prueba de software apli-
cadas por sujetos novicios de pregado,” in En-
cuentro Nacional de Ciencias de la Computación,
(ENC), M.D. Rodríguez, A.I. Martínez, and J.P.
García, Eds., Ocotlán de Morelos, Oaxaca, Méx-
ico, Nov. 2014.

[13] O.S. Gómez, N. Juristo, and S. Vegas, “Under-
standing replication of experiments in software
engineering: A classification,” Information and
Software Technology, Vol. 56, No. 8, 2014, pp.
1033–1048.

[14] N. Juristo and O.S. Gómez, “Replication of
software engineering experiments,” in Empirical
Software Engineering and Verification: LASER
Summer School 2008–2010, ser. Lecture Notes
in Computer Science, B. Meyer and M. Nordio,
Eds. Berlin, Heidelberg: Springer, Nov. 2011, Vol.
7007, pp. 60–88.

[15] O.S. Gómez, “Tipología de replicaciones para
la síntesis de experimentos en ingeniería del
software,” Ph.D. dissertation, Facultad de Infor-
mática de la Universidad Politécnica de Madrid,
Campus de Montegancedo, 28660, Boadilla del
Monte, Madrid, España, May 2012.

[16] D. Sjøberg, J. Hannay, O. Hansen, V. Kampenes,
A. Karahasanovic, N.K. Liborg, and A. Rekdal,
“A survey of controlled experiments in software
engineering,” Software Engineering, IEEE Trans-
actions on, Vol. 31, No. 9, Sep. 2005, pp. 733–753.

[17] F. da Silva, M. Suassuna, A. França, A. Grubb,
T. Gouveia, C. Monteiro, and I. dos Santos,
“Replication of empirical studies in software engi-
neering research: A systematic mapping study,”

Empirical Software Engineering, Vol. 19, No. 3,
2014, pp. 501–557.

[18] R.C. Linger, B.I. Witt, and H.D. Mills, Struc-
tured Programming; Theory and Practice the Sys-
tems Programming Series. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc.,
1979.

[19] J. Carver, “Towards reporting guidelines for ex-
perimental replications: A proposal,” in Pro-
ceedings of the 1st International Workshop on
Replication in Empirical Software Engineering
Research (RESER), Cape Town, South Africa,
May 2010.

[20] W. Howden, “Functional program testing,”
IEEE Transactions on Software Engineering,
Vol. 6, 1980, pp. 162–169.

[21] G.J. Myers, The Art of Software Testing. New
York: John Wiley & Sons, 1979.

[22] B. Marick, The craft of software testing:
subsystem testing including object-based and
object-oriented testing. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1995.

[23] B. Beizer, Software testing techniques, 2nd ed.
New York, NY, USA: Van Nostrand Reinhold
Co., 1990.

[24] H.L. Dreyfus and S. Dreyfus,Mind over Machine.
The Power of Human Intuition and Expertise
in the Era of the Computer. New York: Basil
Blackwell, 1986.

[25] V. Basili and B. Perricone, “Software errors and
complexity: An empirical investigation,” Com-
mun. ACM, Vol. 27, No. 1, 1984, pp. 42–52.

[26] V. Basili, G. Caldiera, and H. Rombach, “Goal
question metric paradigm,” in Encyclopedia
of Software Engineering, J.J. Marciniak, Ed.
Wiley-Interscience, 1994, pp. 528–532.

[27] P. Louridas and G. Gousios, “A note on rigour
and replicability,” SIGSOFT Softw. Eng. Notes,
Vol. 37, No. 5, Sep. 2012, pp. 1–4.

[28] O.S. Gómez, N. Juristo, and S. Vegas, “Replica-
tion, reproduction and re-analysis: Three ways
for verifying experimental findings,” in Inter-
national Workshop on Replication in Empirical
Software Engineering Research (RESER), Cape
Town, South Africa, May 2010.

[29] H. Levene, “Robust tests for equality of vari-
ances,” in Contributions to probability and statis-
tics, I. Olkin, Ed. Palo Alto, CA: Stanford Univ.
Press, 1960, pp. 278–292.

[30] A.N. Kolmogorov, “Sulla determinazione em-
pirica di una legge di distribuzione,” Giornale
dell’Istituto Italiano degli Attuari, Vol. 4, 1933,
pp. 83–91.



Efficiency of Software Testing Techniques: A Controlled Experiment Replication and Network Meta-analysis 101

[31] N.V. Smirnov, “Table for estimating the good-
ness of fit of empirical distributions,” Ann. Math.
Stat., Vol. 19, 1948, pp. 279–281.

[32] J. Tukey, “Comparing individual means in the
analysis of variance,” Biometrics, Vol. 5, No. 2,
1949, pp. 99–114.

[33] J. Cohen, Statistical power analysis for the be-
havioral sciences. Hillsdale, NJ: L. Erlbaum As-
sociates, 1988.

[34] T. Lumley, “Network meta-analysis for indirect
treatment comparisons,” Statistics in Medicine,
Vol. 21, No. 16, 2002, pp. 2313–2324.

[35] G. Lu and A.E. Ades, “Combination of direct
and indirect evidence in mixed treatment com-
parisons,” Statistics in Medicine, Vol. 23, No. 20,
2004, pp. 3105–3124.

[36] T. Greco, G. Biondi-Zoccai, O. Saleh, L. Pasin,
L. Cabrini, A. Zangrillo, and G. Landoni, “The
attractiveness of network meta-analysis: A com-
prehensive systematic and narrative review,”
Heart, Lung and Vessels, Vol. 7, No. 2, 2015,
pp. 133–142.

[37] A. Bafeta, L. Trinquart, R. Seror, and
P. Ravaud, “Reporting of results from net-
work meta-analyses: Methodological system-
atic review,” BMJ, Vol. 348, 2014. [Online].
http://www.bmj.com/content/348/bmj.g1741

[38] A. Nikolakopoulou, A. Chaimani, A.A. Veroniki,
H.S. Vasiliadis, C.H. Schmid, and G. Salanti,
“Characteristics of networks of interventions: A
description of a database of 186 published net-
works,” PLoS ONE, Vol. 9, No. 1, Dec. 2014, pp.
1–10.

[39] A. Chaimani and G. Salanti, “Visualizing as-
sumptions and results in network meta-analysis:
The network graphs package,” Stata Journal,
Vol. 15, No. 4, 2015, pp. 905–950.

[40] G. Rücker, G. Schwarzer, U. Krahn, and
J. König, netmeta: network Meta-Analysis us-
ing Frequentist Methods, 2016, R package ver-

sion 0.9-0. [Online]. https://CRAN.R-project.
org/package=netmeta

[41] L.V. Hedges and I. Olkin, Statistical methods for
meta-analysis. Orlando: Academic Press, 1985.

[42] F. Song, Y.K. Loke, T. Walsh, A.M. Glenny, A.J.
Eastwood, and D.G. Altman, “Methodological
problems in the use of indirect comparisons for
evaluating healthcare interventions: Survey of
published systematic reviews,” BMJ, Vol. 338,
2009.

[43] J.P.T. Higgins, D. Jackson, J.K. Barrett, G. Lu,
A.E. Ades, and I.R. White, “Consistency and in-
consistency in network meta-analysis: Concepts
and models for multi-arm studies,” Research Syn-
thesis Methods, Vol. 3, No. 2, 2012, pp. 98–110.

[44] J.P. Jansen and H. Naci, “Is network
meta-analysis as valid as standard pairwise
meta-analysis? it all depends on the distribu-
tion of effect modifiers,” BMC Medicine, Vol. 11,
May 2013, pp. 159–159.

[45] M. Borenstein, L.V. Hedges, J.P. Higgins, and
H.R. Rothstein, Introduction to Meta-Analysis.
United Kingdom: John Wiley & Sons, Ltd, 2009.

[46] M. Ciolkowski, “What do we know about
perspective-based reading? An approach for
quantitative aggregation in software engineer-
ing,” in Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering
and Measurement, ser. ESEM ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp.
133–144.

[47] T. Cook and D. Campbell, The design and con-
duct of quasi-experiments and true experiments
in field settings. Chicago: Rand McNally, 1976.

[48] P. Runeson, “Using students as experiment sub-
jects – an analysis on graduate and freshmen
student data,” in Proceedings of the 7th Inter-
national Conference on Empirical Assessment
in Software Engineering, Keele University, UK,
2003, pp. 95–102.

Appendix: Experiment replication raw data

In this appendix we provide the measurements collected in our experiment replication. Table A
shows the defects observed and the time that participants spent applying the testing techniques.
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Table A. Observed defects and time spent applying the testing techniques

Case Technique Program F1 F2 F3 F4 F5 F6 Minutes

1348 white-box cmdline • 127
1349 white-box cmdline 94
1350 white-box cmdline 116
1351 white-box cmdline 280
1343 black-box cmdline 106
1342 black-box cmdline • 120
1344 black-box cmdline 105
1345 black-box cmdline • 127
1355 code reading cmdline 79
1356 code reading cmdline • 84
1358 code reading cmdline 163
1357 code reading cmdline • • 166
1291 white-box banking • • 109
1292 white-box banking • 120
1293 white-box banking 219
1294 white-box banking • • 109
1295 white-box banking • • • • 54
1285 black-box banking • 110
1286 black-box banking • • • • 106
1287 black-box banking • • 132
1288 black-box banking • • 110
1289 black-box banking • 56
1297 code reading banking 138
1298 code reading banking • • • • 154
1299 code reading banking • 134
1300 code reading banking 137
1301 code reading banking 87
1312 white-box nametbl • • 94
1310 white-box nametbl • • 87
1311 white-box nametbl 142
1314 white-box nametbl • • 115
1313 white-box nametbl • 230
1306 black-box nametbl • • 135
1304 black-box nametbl 146
1305 black-box nametbl 134
1307 black-box nametbl 134
1316 code reading nametbl • • • 114
1319 code reading nametbl • 89
1317 code reading nametbl 72
1318 code reading nametbl 250
1329 white-box ntree • • 116
1331 white-box ntree 141
1330 white-box ntree • 115
1332 white-box ntree 285
1323 black-box ntree • 141
1324 black-box ntree • • 107
1327 black-box ntree 113
1325 black-box ntree • 137
1326 black-box ntree 108
1336 code reading ntree 85
1335 code reading ntree • • 112
1338 code reading ntree • • • 97
1337 code reading ntree • 100
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