
e-Informatica Software Engineering Journal, Volume 11, Issue 1, 2017, pages: 117–141, DOI 10.5277/e-Inf170106

Machine Learning or Information Retrieval
Techniques for Bug Triaging: Which is Better?

Anjali Goyal∗, Neetu Sardana∗

∗Jaypee Institute of Information Technology, Noida, India
anjaligoyal19@yahoo.in, neetu.sardana@jiit.ac.in

Abstract
Bugs are the inevitable part of a software system. Nowadays, large software development projects
even release beta versions of their products to gather bug reports from users. The collected bug
reports are then worked upon by various developers in order to resolve the defects and make the
final software product more reliable. The high frequency of incoming bugs makes the bug handling
a difficult and time consuming task. Bug assignment is an integral part of bug triaging that aims
at the process of assigning a suitable developer for the reported bug who corrects the source code
in order to resolve the bug. There are various semi and fully automated techniques to ease the
task of bug assignment. This paper presents the current state of the art of various techniques
used for bug report assignment. Through exhaustive research, the authors have observed that
machine learning and information retrieval based bug assignment approaches are most popular in
literature. A deeper investigation has shown that the trend of techniques is taking a shift from
machine learning based approaches towards information retrieval based approaches. Therefore, the
focus of this work is to find the reason behind the observed drift and thus a comparative analysis
is conducted on the bug reports of the Mozilla, Eclipse, Gnome and Open Office projects in the
Bugzilla repository. The results of the study show that the information retrieval based technique
yields better efficiency in recommending the developers for bug reports.

Keywords: bug triaging, bug report assignment, developer recommendation, machine
learning, information retrieval

1. Introduction

The explosive growth in size and scale of software
systems has led to the creation of various open
source bug tracking repositories. Bug tracking
repositories gather, organize and keep track of
all the reported bugs. Although, a large number
of bug reports help to make the final software
product error free, it is really challenging for the
bug triager to handle such a large volume of re-
ported bugs. When a new bug is reported, a bug
triager analyses the feasibility of bug to verify
if the reported bug is not a mere duplicate and
contains enough information to be reproduced.
If the bug is found to be feasible, it is assigned
to a developer for resolution. For effective bug
resolution, it is extremely important to assign
the reported bug to a suitable developer. Bug

assignment is an integral part of bug triaging
whose goal is the process of assigning a suit-
able developer to the reported bug. The assigned
developer performs various checks and changes
in the source code to rectify the reported issue.
The selection of a suitable developer for the bug
report is a challenging process as it significantly
affects time and cost incurred in the project.
Thus, it is imperative to make an appropriate
developer assignment who is an expert in the
area of the reported bug.

In the past, software projects were small
in size and the count of bugs was minimal. In
those days, it was possible for the bug triager
to perform developer assignment manually but
with passing time software projects grew in scale
and size. Subsequently, software projects became
more complex and in the current scenario, it has

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_11/eInformatica2017Art6.pdf


118 Anjali Goyal, Neetu Sardana

become really cumbersome for the bug triager
to be aware of the expertise of all the develop-
ers in a triaging team. To ease the task of the
bug triager, various semi and fully automated
bug assignment approaches have been proposed
in the literature. These approaches gather the
information related to developer expertise from
various sources and utilize it to make developer
recommendations. However, the availability of
a huge amount of bug assignment approaches
appeals for a comprehensive overview.

At present there is no in-depth and focused
survey available specifically in the area of bug
triaging. It has been observed that only J. Zhang
et al. [1] and T. Zhang et al. [2] reported short
discussions on bug triaging in their broad cate-
gory survey on bug handling. This paper per-
forms a systematic, in-depth and focused lit-
erature survey on bug triaging. In this paper,
75 papers from peer reviewed, refereed confer-
ences and journals published during years 2004
to 2016 are summarised in an organized manner.
The existing approaches are classified into seven
categories: machine learning (ML), information
retrieval (IR), auction, social network, tossing
graphs, fuzzy set and operational research based
techniques. The authors further perform an anal-
ysis of these approaches in two perspectives: cu-
mulative frequency distribution and year wise
trend analysis. In addition, they compare the
identified bug triaging techniques inferred from
analytical analysis to find the best bug triaging
technique.

The rest of this paper is organized as follows:
Section 2 presents the anatomy of a bug report
and its life cycle. Section 3 describes the system-
atic survey process. Section 4 reviews the work
on bug report assignment and presents a compar-
ative study on two most popular bug assignment
techniques. Section 5 concludes this paper and
provides some interesting future research direc-
tions.

2. Anatomy of a bug report

A bug report is a detailed record constituting
a full description related to a bug discovered

in any software. It is generally created by the
customers, users, developers or testers of software
system. A decent bug report ought to comprise
three underlying components:
1. Steps to replicate the bug.
2. What is the reporter expected to see?
3. What did the reporter actually see?

A bug report constitutes a collection of vari-
ous categorical and free form textual data. The
categorical data (or meta-fields) constitute fields,
such as bug id, product, component, resolution,
status, version, priority, creation date, operat-
ing system. The free form textual fields contain
keywords, summary, description and comments
posted by the developers for discussing a proba-
ble solution for fixing the bug report. Figure 1
shows an instance of a bug report in the Mozilla
project.

Throughout its lifetime, a bug report goes
through a number of stages. Various fields, such
as status and resolution, vary many a times.
When a bug is reported, the status of bug report
is marked as New. The triager then assigns the
bug to a developer and its status is marked as
Assigned. The developer then fixes the issue and
the bug is marked as Resolved. If the tester finds
the fix to be correct, the bug is marked as Verified
and if not, it is Reopened. After the verification
of the bug, it is Closed. At the Resolved status,
there are multiple resolutions such as Fixed, Du-
plicate, Won’t Fix, Non-reproducible and Invalid.
Figure 2 shows the basic life cycle of a bug report.

3. Systematic review process

This section presents the survey process used in
this work. The guidelines of the systematic lit-
erature review (SLR) by Kitchenham and Char-
ters [3] were used in this work.

3.1. Survey process

The review process was started with an initial
search where the renowned journals and confer-
ence proceedings which contained papers con-
cerning bug triaging were selected. Other used
materials encompassed even e-sources relevant to



Machine Learning or Information Retrieval Techniques for Bug Triaging: Which is Better? 119

Figure 1. An instance of bug report

Opened New Assigned Resolved

Reopened Verified

Closed

FIXED
INVALID
WONTFIX
DUPLICATE
NON-
REPRODUCIBLE

Figure 2. Life cycle of a bug report

software engineering: IEEExplore, ACM Digital
library, Google scholar, Citeseer library, Inspec,
ScienceDirect and EI Compendex. Selecting such
venues ensured that the selected articles meet
worthy standards.

To further ensure that no important papers
in bug assignment are missed, certain keywords
closely related to bug report assignment were
identified in the articles obtained from the above
venues. A google search was performed to find the
identified keywords: bug triaging, bug fixing, bug
resolution, bug report assignment and bug AND

developer recommendation. These keywords were
intentionally broad enough to cover as many arti-
cles as possible, although many were less relevant
to the present scope of the study. After perform-
ing the preliminary keywords and venue search,
the studies that propose new bug assignment
algorithms were identified. A large number of pa-
pers in the keyword search also resulted in papers
other than bug report assignment, such as bug du-
plication, bug localization, severity/priority pre-
diction. All such papers were excluded from this
review. After reviewing the titles, abstracts and



120 Anjali Goyal, Neetu Sardana

Table 1. Distribution of reviewed papers among various sources

Type Acronym Description No. of papers

Journal

JSEP Journal of Software: Evolution and Process 3
JSS Journal on Systems and Software 2
JSW Journal of Software 2
TSE IEEE Transaction on Software Engineering 2

Others 7
Total 16

Conference

APSEC Asia Pacific Software Engineering Conference 2
ESESC/FSE European Software Engineering Conference/ ACM 3

SIGSOFT Symposium on the Foundations of Software Engineering
ICSEA International Conference on Software Engineering Advances 2
ICSE International Conference on Software Engineering 5
ICPC International Conference on Program Comprehension 2
ICSM International Conference on Software Maintenance 3
ICT-KE International Conference on ICT and Knowledge Engineering 2
MSR Mining Software Repository 7
PROMISE International Conference on Predictive Models in Software Engineering 2
SAC ACM Symposium on Applied Computing 3
SEKE International Conference on Software Engineering and Knowledge

Engineering
2

ESEM International Symposium on Empirical Software Engineering
and Measurement

3

COMPSAC International Conference on Computers, Software and Applications 2
Others 21
Total 59

TOTAL PAPERS (16 + 59) 75

skimming through full articles wherever required,
finally 75 papers were reviewed in this study.
Each paper was thoroughly verified to assure
its the correctness and relevance. Table 1 enlists
the distribution of papers across various sources
concerning bug report assignment. The venues
at which only one surveyed paper was published
are grouped together in the “Others” category.

3.2. Inclusion and exclusion criteria

This paper surveys the articles meeting the fol-
lowing inclusion and exclusion criteria:

Inclusion criteria:
1. Papers must relate to developer assignment

in bug repositories.
2. Papers must describe the methodology and

experimental evaluation of proposed algo-
rithms.

3. Papers must be published in peer reviewed
journals and conferences.
Exclusion Criteria:

1. Papers that are duplicates of similar work.

2. Papers that do not describe the methodology
and experimental evaluation.

3. Papers that are not published in peer re-
viewed venues.

3.3. Related surveys

In the past, J. Zhang et al. [1] and T. Zhang
et al. [2] performed surveys closely related to
this work. These surveys cover all the stages
of bug handling, i.e. bug report analysis, bug
triaging and bug fixing as shown in Figure 3.
Short discussions related to all these stages were
carried out in their respective studies. However,
a comprehensive overview on each individual
stage of bug handling is still missing. This paper
focuses on the second stage of bug handling, i.e.
bug triaging (or bug report assignment). Bug
triaging is an integral stage of bug handling which
focuses on the selection of a suitable developer
for bug fixing. Hence, this work presents the first
large-scale, in-depth, and focused study of bug
report assignment. J. Zhang et al. [1] reviewed



Machine Learning or Information Retrieval Techniques for Bug Triaging: Which is Better? 121

Figure 3. Classification scheme for bug handling process

14 papers whereas T. Zhang et al. [2] reviewed
21 papers related to bug report assignment in
their respective studies. The range of surveyed
papers covered in this work is larger than in these
earlier works. This investigation encompassed the
reviews of 75 papers on bug report assignment.
It covers papers published before July 2016..
Hence, this study is more comprehensive and
up-to-date as compared to the other surveys.

3.4. Research contribution

The following new research contributions differ-
entiate this work from the prior studies:
1. This paper presents the first in-depth, sys-

tematic and focused survey on bug triaging
considering 75 papers from peer reviewed,
refereed conferences and journals published
during years 2004 to 2016.

2. Inference drawn from the systematic litera-
ture review illustrates ML and IR to be the
most popular bug triaging techniques. Thus,
a comparison of these popular techniques was
done to identify the best bug triaging tech-
nique.

3. The paper presents the experimental results
of the empirical analysis of two four scale
open source projects, Mozilla, Eclipse, Gnome
and Open Office of the Bugzilla repository.

4. Bug report assignment

Numerous researchers proposed different bug as-
signment approaches to semi or fully automate

the developer recommendation process. Bug as-
signment approaches can be classified by the
methodology used in the recommendation pro-
cess. It can be divided into two broad categories:
activity profiling of developers [4–8] and location
based techniques [9,10]. The general idea behind
the activity profile based techniques is to develop
an expertise profile of each developer by using
topic modelling. A list of topics is made on the
basis of historically fixed bug reports and a mem-
bership score is computed for each developer with
respect to each topic. This score represents the
involvement of a developer in a particular topic
in the past. For any new bug report, the topics
are extracted and the developer with maximum
score corresponding to the obtained topics is
recommended. The activity profiling of develop-
ers suffers from two major problems: a) Obso-
lete profiles after some time, b) The developers
switch teams or new developers are added, which
changes the developer profiles to a major extent
thus reducing the recommendation accuracy after
some time. However, the high efficiency achieved
by activity profile based approaches when the
profiles are updated cannot be overlooked.

The location based bug triaging techniques,
on the other hand, locate the source code files
that need to be updated in order to resolve the
issue. The developers who had earlier worked
upon these files are considered to be suitable for
further updating of these files. These approaches
usually make use of the version control repository
of the project and thus the data source is more re-
liable. However, the two-level predictions, firstly
the source code files that need to be changed in



122 Anjali Goyal, Neetu Sardana

• Machine Learning,
• Information Retrieval,
• Tossing Graphs,
• Fuzzy Sets,
• Euclidian Distance.

• Machine Learning,
• Topic Model,
• Expertise Based Models,
• Tossing Graphs,
• Social Networks.

• Machine Learning,
• Information Retrieval,
• Tossing Graphs,
• Fuzzy Sets,
• Social Networks,
• Topic Model,
• Auction based model,
• Operational Research.

J. Zhang et al. [1] J. Zhang et al. [2]

Present study

Figure 4. Classification categories in different studies

order to fix the bug and secondly the developer
choice, limit the accuracy of the location based
approaches as compared to the activity profile
based approaches. Therefore, the activity pro-
file based approaches are more popular for bug
report assignment in industry.

4.1. Classification based on
popular techniques

J. Zhang et al. [1] conducted their study in 2015
and identified bug triaging into five categories:
machine learning, information retrieval, tossing
graphs, fuzzy set and the Euclidean distance.
T. Zhang et al. [2] conducted their study in 2016
and identified bug triaging into the categories:
machine learning, topic model, tossing graphs,
social networks and expertise model based tech-
niques. In this study, seven categories for bug
report assignment were identified after careful
inspection. The categories considered first are
the ones which were present in both studies, i.e.
machine learning and tossing graphs. Next, the
papers related to topic modelling and the ex-
pertise based model in the category information
retrieval were added. The categories which are

present in either of the previous studies, i.e. fuzzy
sets and social networks, were also considered. In
addition, two new categories were identified: auc-
tion based techniques and operational research
(OR) based approaches. Further, the OR based
category include the work related to the areas:
Euclidean distance, genetic algorithm and greedy
optimization. Hence, after a systematic evalua-
tion of literature, finally seven categories for bug
report assignment were inferred: machine learn-
ing, information retrieval, auction, social net-
work, tossing graphs, fuzzy set and operational
research based techniques. Figure 4 shows the
classification categories considered in different
studies. Among the seven identified categories,
machine learning and information retrieval based
techniques are automated and the others are
semi-automated. The literature was classified
and reviewed under these seven heads as follows:
Machine learning based approaches (see
Tab. 2). These approaches train a supervised or
unsupervised machine learning classifier with bug
reports fixed in the past and then use it for the
selection of prominent developers for new bug re-
ports. Cubranic et al. [11] presented one of the few
initial bug report assignment approaches based on



Machine Learning or Information Retrieval Techniques for Bug Triaging: Which is Better? 123

supervised machine learning classification. They
considered the report developer assignment as
a text classification problem and trained the ma-
chine learning classifier using the tokens obtained
from a textual description of fixed bug reports.
They correctly classified 30% of Eclipse bug report
assignments using supervised Bayesian learning.
Xuan et al. [12] highlighted a drawback resulting
from the deficiency of labelled bug reports in bug
repositories. They first labelled all the unlabelled
bug reports using a combination of Naïve Bayes
and the Expectation Maximization algorithms
and then used the labelled data for training
machine learning classifiers.

Anvik et al. [13] recommended to use eight
information sources for developer assignment in
contrast to the usage of tokens obtained only
from a textual description of bug reports. They
proposed to use the textual description, compo-
nent, operating system, hardware, version, de-
veloper who owns the code, current workload of
developers and developers actively participating
in the project to select a prominent developer
for a new bug report. They classified bug reports
using the support vector machine algorithm and
obtained 57% precision for the Eclipse project
and 64% precision for the Mozilla project [14]. Al-
though, the inclusion of eight information sources
augmented the proficiency of bug assignment se-
lection, sometimes it is still not probable that all
the designated eight parameters from each bug
tracking system will be obtained.

For instance, large open source bug reposi-
tories do not distribute the data concerning the
workload of their developers. Thus, it is not al-
ways practical to incorporate all the eight fields.
Anvik et al. [15,16] extended their work in order
to equate various machine learning classifiers,
such as Naïve Bayes, Support Vector Machine
(SVM), C4.5, Expectation Maximization, Con-
junctive Rules and the Nearest Neighbour (NN)
algorithm. Their experimental results exhibited
that SVM is the most efficient tool for bug as-
signment. Similarly, Lucca et al. [17] compared
k-NN, SVM and the probabilistic model for bug
report assignment.

Bhattacharya et al. [18] surveyed the influ-
ence of different dimensions on bug report as-

signment. They studied how different dimensions
such as the choice of a classifier, feature selection,
the inclusion of tossing graphs and incremental
learning affects bug triaging. Their investigation
showed that the Naïve Bayes classifier and the
product-component pair as the parameters and
the inclusion of tossing graphs along with in-
cremental learning are the best suited dimen-
sions for bug triaging. Their approach achieved
significant reduction in tossing lengths. Hu et
al. [19] presented a developer-component-bug
based bug triaging framework, BugFixer. Xuan
et al. [20] focused on the problem of using large
datasets for bug assignment, thereby increas-
ing the computation time and complexity of
different algorithms. They utilized the combi-
nation of feature and instance selection algo-
rithms to choose a dataset for the training of
a classifier. Their results demonstrated that scal-
ing down the dataset significantly diminishes
the computation complexity and also increases
the classification accuracy. Xia et al. [21] pro-
posed DevRec, a dual analysis model which
consists of bug report (BR based) and devel-
oper (D based) analysis. DevRec is tested on
five large projects: GNU, Compiler Collection,
Open Office, Mozilla, NetBeans and Eclipse. The
precision@5 and precision@10 of DevRec vary
from 21.00% to 31.96% and 13.31% to 18.59%,
respectively [22].

Machine Learning based approaches consider
bug report assignment as a single-label learn-
ing problem. In the previous studies, Naïve
Bayes is the most popular classifier in ma-
chine learning based approaches and it is ex-
tensively experimented on in the bug reports
of the Bugzilla repository.

Information retrieval based approaches
(see Tab. 3). These approaches consider bug re-
ports as documents and transform them to fea-
ture vectors which are then processed for optimal
developer assignment. These approaches work on
the principle that developers with similar exper-
tise towards a certain kind of bugs are proficient
enough to solve the new bug report of a similar
kind. These techniques consider developer’s past
expertise towards historically fixed bug reports
so as to select a prominent developer.



124 Anjali Goyal, Neetu Sardana

Moin et al. [23] presented an n-gram based
string matching algorithm for bug triaging in
the Eclipse JDT project. They transformed the
historically fixed bug reports to n-gram tokens.
The proposed an approach which matches the
n-grams of a new bug report to the n-grams of
historically fixed bug reports and allows to find
the related fixed bug report. The developer who
had fixed the historically similar bug report is
designated for the new bug report as well. Matter
et al. [4] utilized vocabulary obtained from the
source code contributions of developers to build
a term-author matrix. Each entry in the matrix
represents the frequency of term with respect
to a developer. This frequency is considered the
expertise of a particular developer with respect
to a particular term. For a new bug report, the
vocabulary obtained from the textual description
of new bug report is matched with the vocabulary
of the term-author-matrix and a developer with
the highest expertise is designated for the new
bug report. Similarly, other researchers used the
smoothed unigram model [24], latent semantic
indexing [7,25,26], similarity computation [27,28],
vector space modelling [28–30] and topic or term
modelling approaches [5, 6, 31–37] for developer
recommendation. Ahsan et al. [25] implemented
dimensionality reduction using feature selection
and latent semantic indexing in the expertise
matrix.

Somasundaram et al. [38] merged information
retrieval with a machine learning based technique
for effective developer recommendation. They re-
viewed three algorithms, SVM-TF-IDF (Support
Vector Machine–Term Frequency–Inverse Docu-
ment Frequency), SVM-LDA (Latent Dirichlet
Allocation) and LDA-KL (Kullback Leibler Di-
vergence) and determined LDA-KL to be most
effective for developer selection. Shokripur et
al. [39] mined information from the version con-
trol repository of the project to propose a lo-
cation based technique for bug triaging. Unlike
other approaches, they did not utilize the in-
formation obtained from bug tracking systems.
Their approach allowed data to be used in new
projects also as the underlying data used for rec-
ommendation which does not get obsolete after
some time.

Shokripur et al. [9] used only the index of
unigram noun terms for bug triaging. They con-
cluded that using only unigram noun terms short-
ens the token index and does not affect the recom-
mendation accuracy. They associated the noun
terms with the source code files of the project and
then fetched developers who had earlier worked
on the linked files for recommendation. Time
based expertise decay is also efficient for devel-
oper selection in bug report assignment [40–43].
The knowledge of a developer degrades with time.
Hence, the calculation of developers’ expertise
should also comprise time usage as a factor for
frequency normalization. This normalization low-
ers the weight for terms that were previously used
and keeps the training data updated. This capa-
bility of information retrieval based techniques
makes them popular for optimal bug report as-
signment.

The information retrieval based approaches
consider the developer’s expertise for bug re-
port assignment. They utilize a large number
of the meta-fields of bug reports along with
tokens obtained from textual contents. Term
frequency modelling is the most popular IR
based bug assignment approach.

Auction based approaches (see: Tab. 4). Hos-
seini et al. [44] proposed an auction based tech-
nique for developer recommendation in bug repos-
itories. Upon receipt of a new bug report, the
bug triager auctions off the bug report to de-
velopers. The software developers who want to
work on the auctioned bug report bid to gain it.
The bug report is assigned to one of the inter-
ested developers on the basis of their bids and
current workload status. These techniques are
advantageous as the chances of success in such
approaches are high as the bidders themselves
desire to take the responsibility for fixing the
bug. Such approaches usually benefit by moving
the style from ‘doing the job right’ to ‘doing the
right job’. However, they usually suffers from time
delays as the time required for suitable developer
assignment is long.

The auction based approach leads to a slower
developer assignment process. However, this
increases developer’s confidence towards
a bug.



Machine Learning or Information Retrieval Techniques for Bug Triaging: Which is Better? 125

Social network based approaches (see
Tab. 5). A social network refers to the network of
social interactions and personal relationships. So-
cial network approaches utilize the relationships
between developers and bug reports for the selec-
tion of a suitable developer. They compute the
developer expertise based on various influencing
factors of the network. Various past studies used
social network based approaches for bug report
assignment [45–49].

The social network based approaches are a re-
cent development in bug triaging. They con-
sider various parameters for decision making
and additionally incorporate complex compu-
tations in bug triaging task.

Tossing graph based approaches (see
Tab. 6). In a normal scenario, a bug triager as-
signs a bug report to a software developer who
makes source code changes in order to fix the bug.
If the assigned developer is not able to resolve
the bug, then a new developer is assigned for the
bug report. Such a process of switching over the
bug to new developers is known as bug tossing.
Bug tossing is a major problem in bug triaging
as approximately 93% of bug reports are tossed
at least once in their lifetime [50]. Various re-
searchers propose the use of tossing graph based
approaches for bug report assignment in the lit-
erature [50–52]. These approaches consider the
historical tossing chains illustrating the switching
of developers in the past. For a new bug report,
the developer is selected on the basis of previous
expertise and then tossing chains are checked to
identify the most suitable developer.

The tossing graph based approaches help
to significantly reduce tossing path lengths.
They use various bug meta-fields and topics
obtained from textual parameters for similar-
ity calculation and then use historical tossing
chains to find the most suitable developer.

Fuzzy set based approaches (see Tab. 7).
Fuzzy sets are sets whose elements have de-
grees of membership. Fuzzy set based bug
triaging approaches compute the expertise (or
membership score) of developers with respect
to various topics obtained from bug param-
eters. Tamrawi et al. [53, 54] proposed the
fuzzy set based approaches in the past. These

approaches formulate the term frequency val-
ues of IR based approaches into fuzzy set
memberships. When a new bug report arrives,
matching tokens are obtained and the corre-
sponding membership scores are aggregated.

The fuzzy set based approaches use the fuzzy
set theory in which the most descriptive terms
characterizing each developer are collected
and then used to measure the suitability of
a developer for a new bug report.

Operational research based approaches
(see Tab. 8). Bug report assignment is an NP
hard problem. Hence, different practitioners and
researchers have used mathematical techniques,
such as greedy optimization, genetic algorithm,
the Euclidean distance, to resolve the problem
of bug report assignment. Niknafs et al. [55] pre-
sented a study on using the genetic algorithm
and the multi criteria decision making technique
in the personnel assignment problem. Rahman
et al. [56] proposed the usage of the greedy opti-
mization technique for developer assignment in
bug tracking systems. Xia et al. [21] proposed
a machine learning based approach for bug as-
signment where the similarity between developer
and bug report is calculated using the Euclidean
distance. Panagiotou et al. [57] proposed the
STARDOM approach for bug report assignment
and concluded that the analytic hierarchy process
(AHP) should be used for the profile construction
of developers and for the ranking of developers.

The operational research based approaches
utilize mathematical models for bug report as-
signment. However, scalability issues in such
models for large scale open source projects
are still questionable.

4.2. Key observations

In this work, the authors have reviewed 75
research papers published during the years
2004-2016. As a result seven categories of bug
assignment approaches have been identified. The
categories, as mentioned earlier, are: machine
learning, information retrieval, auction based,
social network, tossing graphs, fuzzy set and
operational research based techniques. Based on
this in-depth survey, this study is analysed from



126
A
njaliG

oyal,N
eetu

Sardana
Table 2. Comparison of machine learning based approaches

Paper Year Technique used Experimental
dataset

Parameters
(#Parameters)

Method summary and merits Remarks/demerits

Cubranic
et al. [11]

2004 Machine learning
(Naïve Bayes)

Eclipse Summary and
description (2)

Tokens generated from the textual
parameters for classification are considered.

30.5% accuracy for
eclipse bug reports

Xuan et al.
[12]

2010 Machine learning
(Naïve Bayes,
expectation
maximization

Eclipse Summary and
description (2)

The problem of the deficiency of labelled
bug reports is considered.
Classification efficiency improved by 6% as
compared to using only the Naïve Bayes
classifier.

Additional overhead
to calculate the
label of a bug report
first.

Bhattacharya
et al. [18]

2012 Machine learning
(Naïve Bayes,
Bayesian
Network, J48,
SVM)

Mozilla and
Eclipse

Product, component
(2)

It examined the impact of various
dimensions such as classifier selection,
feature selection, inclusion of tossing graphs
and incremental learning on bug triaging.
The Naïve Bayes algorithm is concluded for
classifier, product-component pair for
features and the use of tossing graphs with
incremental learning as the best suited
model for bug assignment.
Significantly reduced tossing length.

High computational
time and cost

Zou et al.
[70]

2011 Machine learning
(feature selection,
instance
selection, Naïve
Bayes)

Eclipse Summary and
description (2)

Feature selection is used for removing noisy
data.
It removed 50% of bugs after training set
reduction. The performance of original
Naïve Bayes algorithm is improved by up
to 5% for the Eclipse project.

It used only the
Eclipse bug for
experimentation. It
needs to be applied
on more
datasetsand also
needs more features.

Lin et al.
[71]

2009 Machine learning
(J48)

Proprietary
Chinese
dataset

Summary, description,
step, bug type, bug
class, phase Id,
submitter, module Id,
bug priority (9)

It proposed a bug assignment model for the
Chinese bug dataset.
It demonstrated that the non- text based
approach outperformed the text based
approach.

The proprietary
Chinese dataset is
used for evaluation.
It needs more
features.



M
achine

Learning
or

Inform
ation

R
etrievalTechniques

for
B

ug
Triaging:

W
hich

is
B

etter?
127

Banitaan
et al. [72]

2013 Machine learning
(Naïve Bayes)

Mozilla,
Eclipse,
NetBeans,
Free Desktop

Summary, reporter,
component (3)

It demonstrated that the component is the
most influential parameter in bug
assignment.

It needs more
evaluation
parameters.

Anvik et al.
[73]

2006 Machine learning
(Naïve Bayes,
SVM, J48)

Mozilla,
Eclipse, gcc

Summary and
description (2)

The obtained precision was 57% for the
Mozilla and 64% for the Eclipse project.

Test set size is too
small. 170 for
Mozilla and 22 for
Eclipse.

Xia et al.
[21]

2013 Machine learning
(k-Nearest
Neighbour)

Mozilla,
Eclipse,
Netbeans,
Open Office,
gcc

Product, component,
summary, description ,
developer Id (5)

It proposed Devrec, a composite model
which performs two types of analysis:
developer based (to find a set of prominent
developers) and bug report based analysis
(to find similar bug reports).

It needs more
features for bug
similarity
calculation.

Sharma
et al. [74]

2015 Machine
Learning
(association rule
mining)

Thunder
Bird, Addon
SDK,
Mozilla

Severity, Priority,
Summary (3)

It proposed a novel association rule mining
based on bug triaging algorithm.

Reported accuracy
up to 81% for top-3
recommendations.
More rigorous
testing on large
dataset required.

Table 3. Comparison of information retrieval based approaches

Paper Year Technique used Experimen-
tal
dataset

Parameters
(#Parameters)

Method summary and merits Remarks/demerits

Woo et al.
[75]

2011 Information
retrieval (topic
modelling)

Apache,
Eclipse,
Linux
Kernel,
Mozilla

Version, platform,
milestone, textual
description (4)

A content boosted collaborative filtering
model which reduces cost without
significantly sacrificing accuracy is
proposed.

Important bug
features, such
component in
parameter selection,
are missing.



128
A
njaliG

oyal,N
eetu

Sardana
Matter
et al. [4]

2009 Information
retrieval
(vocabulary
expertise based
model)

Eclipse A developer owns the
associated code and
description, active
participation of
developers (3)

The term author matrix to model the
expertise of developers was coined here. No
need to train the data. The used time decay
factor for developers is 3 months.

Low precision value
(33.6% for top-1
developer list size in
the Eclipse Project)

Shokripour
et al. [9]

2013 Information
retrieval
(location based
technique)

Mozilla and
Eclipse

Noun terms extracted
from source code files,
comment messages
and identifiers (1)

It proposed a two-phased location based
technique for bug report assignment. The
first phase predicts the source code files to
be updated and second phase lists the
probable developers. Reported accuracy up
to 89.41% for the Eclipse and 59.76% for
Mozilla project for top-5 recommendation
list.

Evaluation datasets
too small.
Test set size:100
No. of unique
developers in
dataset: 9 and 57
only

Shokripour
et al. [40]

2015 Information
retrieval (term
frequency)

Eclipse,
NetBeans,
ArgoUML

Noun terms (1) It proposed a time-based approach term
weighting approach. Experimental
evaluation shows accuracy improvement up
to 11.8%.

No. of unique
developer in the
dataset too small

Naguib
et al. [6]

2013 Information
retrieval (term
frequency)

Atlas Recon-
struction,
Eclipse
BIRT,
UNICASE

Component and
description (2)

Proposed an activity profile based
technique for bug report assignment.

Considered small
datasets for
experimentation

Xie et al.
[31]

2012 Information
retrieval (topic
modelling)

Mozilla and
Eclipse JDT

Frequent topics in bug
report (1)

In the proposed approach Dretom models
the developer’s expertise based on topic
models built from historical fixed bug
reports.

Requires more
features.

Alenezi
et al. [32]

2013 Information
retrieval (topic
modelling)

Eclipse,
NetBeans,
Maemo

Bug ID, Assignee,
Opened, Changed,
Summary, Component
(6)

Investigated the use of four term selection
methods, namely Log Odds Ratio,
Chi-Square, Term Frequency Relevance
Frequency and mutual information.

Chi-Square was
found to be the best
technique.

Alijarah
et al. [7]

2011 Information
retrieval (latent
semantic
analysis)

Eclipse Textual description
(1)

It modelled a bug term matrix to compute
similar bug reports. The developers are
then assigned according to the past
expertise.

More rigorous
testing is needed.



M
achine

Learning
or

Inform
ation

R
etrievalTechniques

for
B

ug
Triaging:

W
hich

is
B

etter?
129

Anjali
et al. [41]

2016 Information
retrieval (term
frequency)

Mozilla and
Eclipse

Component, severity,
priority, operating
system (4)

It proposed a time decay based technique
for bug triaging which uses bug meta-fields
to create a term author matrix. The
frequency values in the matrix are then
degraded according to the last usage time.

More features are
needed.

Table 4. Auction based approach

Paper Year Technique
used

Experi-
mental
dataset

Parameters (#Parameters) Method summary and
merits

Remarks/demerits

Hosseini
et al. [44]

2012 Auction
based
technique

Mozilla
and
Eclipse

Bug id, creation date, last updated date,
classification id, product, component,
version, platform, operating system, bug
status, resolution, duplicate id, bug file
location, keywords, priority, bug severity,
target milestone, dependent bugs, blocked,
votes, reporter name, assigned to name and
number of comments (22)

The developers place their
own bids as per their own
interest/expertise. It
reduces the chances of bug
tossing. Overall the method
saves bug rectification time.

Slow developer assignment
process. Low Accuracy
values up to 33.54% and
25.14% obtained for the
Mozilla and Eclipse projects,
respectively.

Table 5. Comparison of social network based approaches

Paper Year Technique used Experi-
mental
dataset

Parameters
(#Parameters)

Method summary and merits Remarks/demerits

Wu et al.
[45]

2011 Social network Mozilla Summary and
description (2)

It finds historical similar bug reports with the
help of the k-Nearest Neighbour search and
then uses in-degree, out-degree, page rank,
betweenness and closeness metrics to rank
developers from a social network. The
obtained recall value is up to 0.60 for the
Mozilla project.

Additional cost to
adjust algorithmic
parameters.



130
A
njaliG

oyal,N
eetu

Sardana
Zhang
et al. [46]

2012 Social network JBoss Summary and
description (2)

It builds the concept profile with the topic
terms of bug reports and then uses the social
network of developers to find the developer
with the highest probability of fixing.

Additional cost to
maintain social
network of developers.
Computationally
intensive.

Xuan
et al. [47]

2012 Social network Mozilla
and
Eclipse

Bug ID, reporter,
fixer, summary,
description, creation
time, and comments
(7)

It models the bug report assignment as the
developer prioritization problem by extending
a socio-technical approach. In the proposed
approach, the out-degree of developers is used
to construct a social network which is then
used in prioritization.

Low accuracy values
(up to 50%).

Yang
et al. [48]

2014 Social network JBoss Bug ID, description,
number of comments,
summaries, developer
ID, component (6)

It proposed a multi developer network based
approach for bug report assignment. Potential
contributors are extracted from similar
component and keyword matching.

Additional bug
parameters should be
used for similarity
matching.

Zhang
et al. [49]

2013 Social network Mozilla
and
Eclipse

It utilized objects
such as developers,
bugs, comments, and
components, as well as
links denoting
different relations
among these objects.
(2)

It introduced a heterogeneous developer
contribution network to model the multiple
types of contribution from developers to
components in software bug repositories.

Computationally
complex process.

Table 6. Comparison of tossing graph based approaches

Paper Year Technique used Experi-
mental
dataset

Parameters
(#Parameters)

Method summary and merits Remarks/demerits

Bhattacharya
et al. [50]

2010 Tossing graph Mozilla
and
Eclipse

Bug Id, developer Id,
product, component,
keywords obtained
from summary and
description (6)

It utilized multi-feature tossing graphs along
with machine learning classifiers to reduce the
tossing path lengths and improve the
efficiency of a bug recommender. Reduced
tossing length up to 86%

More bug parameters
should be added for
the construction of
tossing graphs.



M
achine

Learning
or

Inform
ation

R
etrievalTechniques

for
B

ug
Triaging:

W
hich

is
B

etter?
131

Jeong et al.
[51]

2009 Tossing graph Mozilla
and
Eclipse

Tossing information of
developers (1)

It introduced the use of Markov chains based
on tossing graphs for efficient developer
recommendation. Reduced tossing events by
up to 72%.

Additional cost to
obtain the path from
the first
recommendation to
the final fixer.

Chen et al.
[52]

2011 Tossing graph Mozilla
and
Eclipse

Tossing information of
developers, reporter,
classification,
component, product
and summary (6)

It introduced an approach to improve bug
assignment using a bug tossing graph and bug
similarity (vector space model).

Better bug similarity
techniques could be
employed.

Table 7. Comparison of fuzzy set based approaches

Paper Year Technique used Experimental
dataset

Parameters
(#Parameters)

Method summary and merits Remarks/demerits

Tamrawi
et al. [53]

2011 Fuzzy sets Eclipse Bug ID, developer ID,
summary, description
(4)

It introduced the fuzzy set based model
for developer recommendation by using
membership functions.

Low accuracy: 37.81%

Tamrawi
et al. [54]

2011 Fuzzy sets Mozilla,
Eclipse,
Apache,
NetBeans,
FreeDesktop,
Gcc and Jazz

Bug ID, developer ID,
summary, description,
creation/fixing time
(5)

It developed the fuzzy set and cache based
approach, Bugzie for the calculation of
developer expertise. Lower response time
and better accuracy as compared to the
SVM based classification.

Additional overhead in
topic modelling and
calculating fuzzy
numbers.



132
A
njaliG

oyal,N
eetu

Sardana
Table 8. Comparison of operational research based approaches

Paper Year Technique used Experimen-
tal
dataset

Parameters
(#Parameters)

Method summary and merits Remarks/demerits

Nikanfs
et al. [55]

2010 Operational
research based
technique (genetic
algorithm)

Eclipse JDT
and two
industrial
projects

Current
workload of
developers (1)

Proposed the genetic algorithm based
technique for developer recommendation.

Requires rigorous
experimental evaluation.

Rahman
et al. [56]

2011 Operational
research based
technique (greedy
optimization)

Industrial
project

Fluency,
contribution,
effectiveness
and receny (4)

It proposed a profile creation and
maintenance module. The importance
factor of developers is calculated based on
various features which are further
prioritized on the basis of various
properties.

Difficult to implement
due to the calculation of
various extracted
parameters.

Karim
et al. [22]

2016 Operational
research based
technique (genetic
algorithm)

Eclipse Component, no.
of file changes,
fix time. (3)

It proposed a single objective (minimization
of bug fix time) and as a bi-objective
(minimization of bug fix time and cost).
The developer assignment algorithm uses
the genetic algorithm.

Two level prediction (fix
time and prominent
developer) minimizes the
accuracy.

Rahman
et al. [76]

2009 Operational
research based
technique (greedy
optimization)

Eclipse Lines of code
(1)

It proposed the greedy optimization
algorithm for bug report assignment.

Line of code is a weak
metric for any kind of
prediction as the coding
styles of developers vary
to a great extent.



Machine Learning or Information Retrieval Techniques for Bug Triaging: Which is Better? 133

two perspectives: the frequency wise distribution
of techniques and the year wise distribution of
each technique.
– Frequency wise distribution of each bug
assignment technique: In this perspective,
the popularity of all bug triaging techniques
identified in this study was analysed. The
frequency of each technique was accumu-
lated and the cumulative frequency distribu-
tion was developed. The resultant histogram
is presented in Figure 5b. A similar analy-
sis was performed on the papers from the
existing surveys [1, 2]. The frequency dis-
tribution of techniques in their studies is
shown in Figure 5a. The conducted analy-
ses show, Figure 5a and 5b, that the ma-
chine learning and information retrieval based
techniques are most popular for bug assign-
ment.

Another analysis was done in order to check the
year wise trend of the bug assignment techniques
in the last two decades.
– Year wise distribution of each bug as-
signment technique: a) From the above
analysis, ML and IR were identified to be
the most popular techniques among all cate-
gories of bug triaging. To further analyse the
on-going trend among the popular techniques,
the year wise frequency distribution of ML
and IR based techniques was plotted. Figure
6a shows the year wise frequency distribu-
tion of ML and IR based techniques in the
existing study [2]. Since, J. Zhang et al. [1]
surveyed very few papers on bug triaging, the
trend analysis will not give any significant
insights. Hence, it is believed that this sur-
vey is not useful for this analysis. Figure 6b
represents the year wise trend analysis of ML
and IR based techniques in the current study.
It was observed that there is a considerable
trend shift from ML to IR. Researchers pre-
fer to use the IR based technique for bug
triaging.

To further examine the reason behind this trend
shift, an empirical study on two most popular
techniques, ML and IR for bug triaging, was
performed.

4.3. Comparative study of machine
learning and information retrieval
techniques

To evaluate the efficiency of the machine learn-
ing and information retrieval based techniques,
the techniques based on the bug reports of four
large scale popular projects of Bugzilla repository,
Mozilla, Eclipse, Gnome and Open Office, were
applied. Bugzilla is the most popular open source
bug repository used by many varied size software
projects. The projects selected for the compara-
tive study contain large number of bug reports
and are widely used in Bugzilla. They have been
developed for years and thus now they are aged.
This increases the confidence of researchers in the
use of these projects for experimental evaluations
in their work.

The datasets for the comparative study were
collected from the issue tracking system (ITS)
of the Mozilla, Eclipse, Gnome and Open Office
projects. Bug reports submitted over the span
of 6 years (from January 01, 2011 to December
31, 2016) were collected in this study. Only bug
reports with their resolution marked as fixed
and the status marked as resolved, verified or
closed were extracted. This extraction scheme
will ensure the presence of developers who had
actually fixed the bug. In this study, four most
important bug meta-fields were used: component,
severity, priority and operating system. These
parameters are selected as they contain the most
important information related to a bug and are
extensively used in literature [13,77]. Moreover,
these fields generally do not contain any missing
values for both fixed and new bug reports. This
allows enough training and testing tokens for op-
timized bug report assignment. Initially, a total
of 68,904 bug reports was obtained for all the
four projects (20,483 bug reports for the Mozilla
project, 39,758 for the Eclipse project, 6,326 for
the Gnome project and 2,337 for the Open Office
project). The collected bug reports were fixed
by 3,301 unique developers (1,218 developers for
the Mozilla project, 1,342 for the Eclipse project,
611 for the Gnome project and 130 for the Open
Office project).



134 Anjali Goyal, Neetu Sardana

(a) Past studies

(b) Present study

Figure 5. Frequency distribution

For pre-processing, the bug reports in which
the assigned-to field was unspecified were re-
moved. In the Bugzilla repository, there are de-
velopers who had fixed few bugs. The inclu-
sion of such developers would deteriorate the
model performance so the parameter was fur-
ther tuned, (N ≥ 10), i.e., the number of bug
reports fixed by a developer in the past. Hence,
finally a total of 59,448 bug reports were ob-

tained for all four projects (15,017 bug reports
for the Mozilla project, 37,425 for the Eclipse
project, 4,947 for the Gnome project and 2,059
for the Open Office project). The pre-processed
bug reports were fixed by 940 unique developers
(267 developers for the Mozilla project, 505 for
the Eclipse project, 140 for the Gnome project
and 28 for the Open Office project). Table 9
shows various details of the datasets used for



Machine Learning or Information Retrieval Techniques for Bug Triaging: Which is Better? 135

(a) Past study (T. Zhang et al. [2])

(b) Present study
Figure 6. Year wise distribution

comparison: start date, end date, number of col-
lected bugs, number of distinct assignees (or de-
velopers), number of bug reports with N ≥ 10,
number of assignees who have fixed more than
10 bug reports in the past, unique number of
tokens in various meta-fields of bug reports,
such as component, severity, priority and op-
erating system. A total 500 fixed bug reports
randomly selected from each project were used
for testing.

For the machine learning based classification,
the use of four machine learning algorithms was
investigated: Naïve Bayes, J48, Random tree and
Bayes Net. These algorithms were selected as

they covered different categories of supervised
machine learning algorithms. The Weka toolkit
was used for experimentation. Table 10 shows
the results of the 10-fold cross validation of the
machine learning based approach. Different clas-
sifiers achieved the best classification accuracy
among different projects. For instance, in the
Mozilla project the J48 classifier obtained the
best classification accuracy of 44%, whereas the
Naïve Bayes, Random Tree and Bayes net clas-
sifiers achieved 35%, 40% and 39% accuracy, re-
spectively. Similarly, for the Eclipse project J48
and Random Tree obtained the best classifica-
tion results of 44% accuracy. For the Gnome



136 Anjali Goyal, Neetu Sardana

Table 9. Dataset Details

Mozilla Eclipse Gnome Open Office
Start Date 01/01/2011 01/01/2011 01/01/2011 01/01/2011
End date 31/12/2016 31/12/2016 31/12/2016 31/12/2016
#bug reports collected 20,483 39,758 6,326 2,337
#assignees 1,218 1,342 611 130
#bug reports (N>=10) 15,017 37,425 4,947 2,059
#assignees(N>=10) 267 505 140 28
#component 367 498 400 100
#severity 7 7 7 6
#priority 5 5 5 5
#operating system 27 30 11 28

project, the J48 classifier obtained an accuracy
of 53% and for the Open Office project the
Random Tree classifier achieved the best accu-
racy of 45.2%. Overall, it was found out that
a single classifier could not be declared as the
best one for all the projects and different classi-
fiers perform variably for different projects. How-
ever, it was observed that tree based classifiers,
J48 and Random Tree are best suitable for bug
report assignment.

For the information retrieval based technique,
the term frequency (TF) based approach was
used as it is most widely used in the literature
[5,6,40]. First a term-author-matrix was created,
M [i, j], from the tokens obtained from the dif-
ferent meta-fields of bug reports (component,
severity, priority and operating system). In the
term-author-matrix, M denotes all the unique
developers, i are authors and all the values in
the various tokens in the meta-fields of a bug
report are considered as terms, j. Each entry
in the matrix represents the frequency, fij of
developer, i with respect to a term, j. Frequency
fij represents the expertise of a developer, i with
respect to a term, j based on the work done
by the developer in the past. Figure 7 shows
an instance of a term-author-matrix. In the fig-
ure, gui, general, regression represents various
distinct terms (or tokens) obtained from the var-
ious meta-fields of bug report and pollman, jaze
and rick are the developers in the bug repository.
The numeric values in the matrix represent the
expertise values of developers while w.r.t. the
terms in the past fixed bug reports.

To identify a suitable developer for a new
bug report, its terms are extracted from the

meta-fields and are considered as a search query.
Columns from term-author-matrix matching the
terms in the search query are extracted. To cal-
culate the final expertise score for each devel-
oper, the frequency values of each developer
are aggregated. The developer with a higher
score is considered to be suitable as they have
more expertise in the areas of the new bug re-
port. Table 10 shows the results of the top-k
(k = 5 and 10) recommendation list sizes in the
informational retrieval based approach. In the
Mozilla project, the achieved maximum accuracy
is 52% for the top-10 list size. Similarly, the
maximum achieved accuracy is 49.6%, 72% and
87% for the Eclipse, Gnome and Open Office
projects, respectively.

Comparing the results of the machine learn-
ing and information retrieval based techniques,
it was found out that the information retrieval
based techniques yield better accuracy as com-
pared to the machine learning based technique.
Thus, information retrieval is a better technique
for activity profile based bug report assignment
approaches. In the Mozilla project, the J48 ma-
chine learning algorithm gives 44% accuracy
which increases by 6% for the top-10 recommen-
dation list in information retrieval. Similarly, in
the Eclipse, Gnome and Open Office projects
the accuracy of the information retrieval based
technique is significantly higher than in the ma-
chine learning based approach. This supports the
view that the information retrieval based tech-
nique achieves better accuracy and thus there
is a trend shift in bug assignment approaches
from the machine learning based techniques to
the information retrieval based technique.



Machine Learning or Information Retrieval Techniques for Bug Triaging: Which is Better? 137

Terms
︷ ︸︸ ︷

gui general regression

Developers/
Authors





Pollman 8 6 5 Expert values of
Jaze 4 1 8 developers w.r.t.
Rick 3 4 2 terms

Figure 7. An instance of term-author-matrix

Table 10. Classification accuracy of Machine Learning and Information Retrieval algorithms

Mozilla Eclipse Gnome Open Office

Machine Learning

Naïve Bayes 35% 33% 43% 44.2%
J48 44% 44% 53% 42.3%
Random Tree 40% 44% 52% 45.2%
Bayes Net 39% 35% 47% 44.2%

Information
Retrieval

Top-5 47% 45.2% 60% 62%
Top-10 52% 49.6% 72% 87%

5. Conclusion and future work

Bug report assignment is a time consuming and
tedious task for a bug triager. This paper presents
a review and classification of 75 research pa-
pers in the area of automated bug assignment.
Seven categories of bug assignment approaches
have been identified in this study. The identified
categories are machine learning, information re-
trieval, auction, social network, tossing graph,
fuzzy set and operational research based tech-
niques. We systematically organized 75 surveyed
papers in one of the seven identified techniques
of bug triaging. Further, we analysed the sur-
veyed papers in two perspectives: the frequency
wise distribution of techniques and the year wise
distribution of each technique. Interesting facts
are captured in this analytical study. First, the
machine learning and information retrieval based
techniques are most popular for automatic bug
report assignment. Second, the current trend of
bug assignment approaches is shifting from ma-
chine learning to the information retrieval based
techniques.

To examine the reason behind this shift,
an empirical study was performed on the ma-
chine learning and information retrieval based
bug triaging technique. The study was done
on real time, large scale, open source projects,
Mozilla, Eclipse, Gnome and Open Office. The

results of the analysis showed an increase of
up to 12.8% in the efficiency for the top-5 list
size in the information retrieval based tech-
nique. Thus, the information retrieval based tech-
niques are the best choice for bug triaging. The
possible reasons for this shift are better effi-
ciency, ability to consider the current expertise
of developers and the ability to cooperate with
other techniques.

Although a high volume of literature is avail-
able in the area of automated bug assignment,
there is still a deficiency of a technique which
presents an acceptable efficiency to be used in
the real time environment. There are three ma-
jor difficulties in bug handling. a) Sheer volume
of information available in bug repositories, b)
collaborative work by developers for bug rectifica-
tion, and c) continuous evolvement of project or
software systems. These difficulties lead to a se-
ries of open issues in bug assignment approaches,
such as profiling new developers, maintaining up-
dated profiles, workload balancing, assignment
of reopened bugs and most importantly the reli-
ability of the data in bug tracking repositories.
In the future, we plan to implement an informa-
tion retrieval based technique which considers
the time-based expertise computation and to
test it on a large dataset considering a huge
number of developers as is the case in real time
environment.



138 Anjali Goyal, Neetu Sardana

References

[1] J. Zhang, X. Wang, D. Hao, B. Xie, L. Zhang,
and H. Mei, “A survey on bug-report analysis,”
Science China Information Sciences, Vol. 58,
No. 2, 2015, pp. 1–24.

[2] T. Zhang, H. Jiang, X. Luo, and A.T. Chan,
“A literature review of research in bug resolu-
tion: Tasks, challenges and future directions,”
The Computer Journal, Vol. 59, No. 5, 2016, pp.
741–773.

[3] B. Kitchenham and S. Charters, “Guidelines
for performing systematic literature reviews
in software engineering,” Software Engineering
Group, School of Computer Science and
Mathematics, Keele University and Depart-
ment of Computer Science, University of
Durham, Tech. Rep. EBSE 2007-001, 2007.
[Online]. https://pdfs.semanticscholar.org/e62d/
bbbbe70cabcde3335765009e94ed2b9883d5.pdf

[4] D. Matter, A. Kuhn, and O. Nierstrasz, “As-
signing bug reports using a vocabulary-based
expertise model of developers,” in 6th IEEE
International Working Conference on Mining
Software Repositories. IEEE, 2009, pp. 131–140.

[5] A.S.K. Singh, “Bug triaging: Profile oriented de-
veloper recommendation,” International Journal
of Innovative Research in Advanced Engineering,
Vol. 2, 2014, pp. 36–42.

[6] H. Naguib, N. Narayan, B. Brügge, and D. Helal,
“Bug report assignee recommendation using ac-
tivity profiles,” in 10th IEEE Working Confer-
ence on Mining Software Repositories (MSR).
IEEE, 2013, pp. 22–30.

[7] I. Aljarah, S. Banitaan, S. Abufardeh, W. Jin,
and S. Salem, “Selecting discriminating terms
for bug assignment: a formal analysis,” in Pro-
ceedings of the 7th International Conference on
Predictive Models in Software Engineering. ACM,
2011.

[8] A. Sureka, H. Kumar Singh, M. Bagewadi, A. Mi-
tra, and R. Karanth, “A decision support plat-
form for guiding a bug triager for resolver rec-
ommendation using textual and non-textual fea-
tures,” in 3rd International Workshop on Quan-
titative Approaches to Software Quality, 2015,
p. 25.

[9] R. Shokripour, J. Anvik, Z.M. Kasirun, and
S. Zamani, “Why so complicated? simple term
filtering and weighting for location-based bug
report assignment recommendation,” in Proceed-
ings of the 10th Working Conference on Min-
ing Software Repositories. IEEE Press, 2013, pp.
2–11.

[10] F. Servant and J.A. Jones, “WhoseFault: au-
tomatic developer-to-fault assignment through
fault localization,” in Proceedings of the 34th In-
ternational Conference on Software Engineering.
IEEE Press, 2012, pp. 36–46.

[11] G. Murphy and D. Cubranic, “Automatic bug
triage using text categorization,” in Proceed-
ings of the Sixteenth International Conference on
Software Engineering & Knowledge Engineering,
2004.

[12] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo,
“Automatic bug triage using semi-supervised text
classification,” in 22nd International Conference
on Software Engineering and Knowledge Engi-
neering (SEKE), 2010, pp. 209–214.

[13] J. Anvik, “Automating bug report assignment,”
in Proceedings of the 28th International Confer-
ence on Software Engineering. ACM, 2006, pp.
937–940.

[14] J. Anvik, L. Hiew, and G.C. Murphy, “Coping
with an open bug repository,” in Proceedings of
the 2005 OOPSLA Workshop on Eclipse Tech-
nology Exchange. ACM, 2005, pp. 35–39.

[15] J. Anvik and G.C. Murphy, “Reducing the ef-
fort of bug report triage: Recommenders for
development-oriented decisions,” ACM Transac-
tions on Software Engineering and Methodology
(TOSEM), Vol. 20, No. 3, 2011, pp. 10:1–10:35.

[16] J.K. Anvik, “Assisting bug report triage through
recommendation,” Ph.D. dissertation, University
of British Columbia, 2007.

[17] G.A. Di Lucca, M. Di Penta, and S. Gradara,
“An approach to classify software maintenance re-
quests,” in International Conference on Software
Maintenance. IEEE, 2002, pp. 93–102.

[18] P. Bhattacharya, I. Neamtiu, and C.R. Shelton,
“Automated, highly-accurate, bug assignment us-
ing machine learning and tossing graphs,” Jour-
nal of Systems and Software, Vol. 85, No. 10,
2012, pp. 2275–2292.

[19] H. Hu, H. Zhang, J. Xuan, and W. Sun, “Effec-
tive bug triage based on historical bug-fix infor-
mation,” in IEEE 25th International Symposium
on Software Reliability Engineering (ISSRE).
IEEE, 2014, pp. 122–132.

[20] J. Xuan, H. Jiang, Y. Hu, Z. Ren, W. Zou,
Z. Luo, and X. Wu, “Towards effective bug triage
with software data reduction techniques,” IEEE
Transactions on Knowledge and Data Engineer-
ing, Vol. 27, No. 1, 2015, pp. 264–280.

[21] X. Xia, D. Lo, X. Wang, and B. Zhou, “Accurate
developer recommendation for bug resolution,”
in 20th Working Conference on Reverse Engi-
neering (WCRE). IEEE, 2013, pp. 72–81.

https://pdfs.semanticscholar.org/e62d/bbbbe70cabcde3335765009e94ed2b9883d5.pdf
https://pdfs.semanticscholar.org/e62d/bbbbe70cabcde3335765009e94ed2b9883d5.pdf


Machine Learning or Information Retrieval Techniques for Bug Triaging: Which is Better? 139

[22] M.R. Karim, G. Ruhe, M. Rahman, V. Garousi,
T. Zimmermann et al., “An empirical investiga-
tion of single-objective and multiobjective evo-
lutionary algorithms for developer’s assignment
to bugs,” Journal of Software: Evolution and
Process, Vol. 28, No. 12, 2016, pp. 1025–1060.

[23] A. Moin and G. Neumann, “Assisting bug triage
in large open source projects using approximate
string matching,” in Seventh International Con-
ference on Software Engineering Advances (IC-
SEA), Lisbon, Portugal, 2012.

[24] T. Zhang and B. Lee, “A hybrid bug triage al-
gorithm for developer recommendation,” in Pro-
ceedings of the 28th Annual ACM Symposium on
Applied Computing. ACM, 2013, pp. 1088–1094.

[25] S.N. Ahsan, J. Ferzund, and F. Wotawa, “Auto-
matic software bug triage system (BTS) based
on latent semantic indexing and support vector
machine,” in Fourth International Conference
on Software Engineering Advances. IEEE, 2009,
pp. 216–221.

[26] G. Canfora and L. Cerulo, “How software reposi-
tories can help in resolving a new change request,”
in IEEE International Workshop on Software
Technology and Engineering Practice (STEP),
2005, pp. 99–103.

[27] H. Kagdi, M. Gethers, D. Poshyvanyk, and
M. Hammad, “Assigning change requests to soft-
ware developers,” Journal of Software: Evolution
and Process, Vol. 24, No. 1, 2012, pp. 3–33.

[28] N.K. Nagwani and S. Verma, “Predicting expert
developers for newly reported bugs using fre-
quent terms similarities of bug attributes,” in 9th
International Conference on ICT and Knowledge
Engineering (ICT & Knowledge Engineering).
IEEE, 2012, pp. 113–117.

[29] O. Baysal, M.W. Godfrey, and R. Cohen, “A bug
you like: A framework for automated assignment
of bugs,” in IEEE 17th International Conference
on Program Comprehension. IEEE, 2009, pp.
297–298.

[30] K. Kevic, S.C. Müller, T. Fritz, and H.C. Gall,
“Collaborative bug triaging using textual similari-
ties and change set analysis,” in 6th International
Workshop on Cooperative and Human Aspects of
Software Engineering (CHASE). IEEE, 2013, pp.
17–24.

[31] X. Xie, W. Zhang, Y. Yang, and Q. Wang,
“Dretom: Developer recommendation based on
topic models for bug resolution,” in Proceedings
of the 8th International Conference on Predictive
Models in Software Engineering. ACM, 2012, pp.
19–28.

[32] M. Alenezi, K. Magel, and S. Banitaan, “Efficient
bug triaging using text mining,” JSW, Vol. 8,
No. 9, 2013, pp. 2185–2190.

[33] G. Canfora and L. Cerulo, “Supporting change
request assignment in open source development,”
in Proceedings of the 2006 ACM Symposium on
Applied Computing. ACM, 2006, pp. 1767–1772.

[34] T. Zhang, G. Yang, B. Lee, and E.K. Lua, “A
novel developer ranking algorithm for automatic
bug triage using topic model and developer rela-
tions,” in 21st Asia-Pacific Software Engineering
Conference (APSEC), Vol. 1. IEEE, 2014, pp.
223–230.

[35] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes,
and P. Baldi, “Mining eclipse developer contribu-
tions via author-topic models,” in Fourth Inter-
national Workshop on Mining Software Reposi-
tories. IEEE, 2007, pp. 30–30.

[36] G. Yang, T. Zhang, and B. Lee, “Towards
semi-automatic bug triage and severity predic-
tion based on topic model and multi-feature of
bug reports,” in IEEE 38th Annual Computer
Software and Applications Conference (COMP-
SAC). IEEE, 2014, pp. 97–106.

[37] X. Xia, D. Lo, Y. Ding, J.M. Al-Kofahi, T.N.
Nguyen, and X. Wang, “Improving automated
bug triaging with specialized topic model,” IEEE
Transactions on Software Engineering, Vol. 43,
No. 3, 2017, pp. 272–297.

[38] K. Somasundaram and G.C. Murphy, “Auto-
matic categorization of bug reports using latent
dirichlet allocation,” in Proceedings of the 5th
India Software Engineering Conference. ACM,
2012, pp. 125–130.

[39] R. Shokripour, Z.M. Kasirun, S. Zamani, and
J. Anvik, “Automatic bug assignment using in-
formation extraction methods,” in International
Conference on Advanced Computer Science Ap-
plications and Technologies (ACSAT). IEEE,
2012, pp. 144–149.

[40] R. Shokripour, J. Anvik, Z.M. Kasirun, and
S. Zamani, “A time-based approach to automatic
bug report assignment,” Journal of Systems and
Software, Vol. 102, 2015, pp. 109–122.

[41] D. Mohan, N. Sardana et al., “Visheshagya:
Time based expertise model for bug report as-
signment,” in Ninth International Conference on
Contemporary Computing (IC3). IEEE, 2016, pp.
1–6.

[42] S. Zamani, S.P. Lee, R. Shokripour, and J. An-
vik, “A noun-based approach to feature location
using time-aware term-weighting,”Information



140 Anjali Goyal, Neetu Sardana

and Software Technology, Vol. 56, No. 8, 2014,
pp. 991–1011.

[43] T.T. Nguyen, A.T. Nguyen, and T.N. Nguyen,
“Topic-based, time-aware bug assignment,” ACM
SIGSOFT Software Engineering Notes, Vol. 39,
No. 1, 2014, pp. 1–4.

[44] H. Hosseini, R. Nguyen, and M.W. Godfrey, “A
market-based bug allocation mechanism using
predictive bug lifetimes,” in 16th European Con-
ference on Software Maintenance and Reengi-
neering (CSMR). IEEE, 2012, pp. 149–158.

[45] W. Wu, W. Zhang, Y. Yang, and Q. Wang,
“Drex: Developer recommendation with
k-Nearest-Neighbor search and expertise
ranking,” in 18th Asia Pacific Software
Engineering Conference (APSEC). IEEE, 2011,
pp. 389–396.

[46] T. Zhang and B. Lee, “An automated bug
triage approach: A concept profile and social
network based developer recommendation,” in
International Conference on Intelligent Comput-
ing. Springer, 2012, pp. 505–512.

[47] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Devel-
oper prioritization in bug repositories,” in 34th
International Conference on Software Engineer-
ing (ICSE). IEEE, 2012, pp. 25–35.

[48] G. Yang, T. Zhang, and B. Lee, “Utilizing a
multi-developer network-based developer recom-
mendation algorithm to fix bugs effectively,” in
Proceedings of the 29th Annual ACM Sympo-
sium on Applied Computing. ACM, 2014, pp.
1134–1139.

[49] W. Zhang, S. Wang, Y. Yang, and Q. Wang,
“Heterogeneous network analysis of developer
contribution in bug repositories,” in Interna-
tional Conference on Cloud and Service Com-
puting (CSC). IEEE, 2013, pp. 98–105.

[50] P. Bhattacharya and I. Neamtiu, “Fine-grained
incremental learning and multi-feature tossing
graphs to improve bug triaging,” in IEEE Inter-
national Conference on Software Maintenance
(ICSM). IEEE, 2010, pp. 1–10.

[51] G. Jeong, S. Kim, and T. Zimmermann, “Im-
proving bug triage with bug tossing graphs,” in
Proceedings of the the 7th Joint Meeting of the
European Software Engineering Conference and
the ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering. ACM, 2009, pp.
111–120.

[52] L. Chen, X. Wang, and C. Liu, “An approach
to improving bug assignment with bug tossing
graphs and bug similarities,” JSW, Vol. 6, No. 3,
2011, pp. 421–427.

[53] A. Tamrawi, T.T. Nguyen, J. Al-Kofahi, and T.N.
Nguyen, “Fuzzy set-based automatic bug triag-
ing: NIER track,” in 33rd International Con-
ference on Software Engineering (ICSE). IEEE,
2011, pp. 884–887.

[54] A. Tamrawi, T.T. Nguyen, J.M. Al-Kofahi, and
T.N. Nguyen, “Fuzzy set and cache-based ap-
proach for bug triaging,” in Proceedings of the
19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software
Engineering. ACM, 2011, pp. 365–375.

[55] A. Niknafs, J. Denzinger, and G. Ruhe, “A sys-
tematic literature review of the personnel assign-
ment problem,” in Proceedings of the Interna-
tional Multiconference of Engineers and Com-
puter Scientists, 2013.

[56] M.M. Rahman, S. Sohan, F. Maurer, and
G. Ruhe, “Evaluation of optimized staffing for
feature development and bug fixing,” in Pro-
ceedings of the 2010 ACM-IEEE International
Symposium on Empirical Software Engineering
and Measurement. ACM, 2010, p. 42.

[57] D. Panagiotou, F. Paraskevopoulos, and
L. Stojanovic, Specifications of developer
profile, (2010). [Online]. http://www.alert-
project.eu/sites/portal2-alert.atosorigin.es/
files/content-files/download/Specification%
20of%20Developer%20Profile.pdf

[58] N.K. Nagwani and S. Verma, “Rank-me: A Java
tool for ranking team members in software bug
repositories,” Journal of Software Engineering
and Applications, Vol. 5, 2012, pp. 255–261.

[59] D. Kim, Y. Tao, S. Kim, and A. Zeller, “Where
should we fix this bug? a two-phase recommenda-
tion model,” IEEE Transactions on Software En-
gineering, Vol. 39, No. 11, 2013, pp. 1597–1610.

[60] M. Linares-Vásquez, K. Hossen, H. Dang,
H. Kagdi, M. Gethers, and D. Poshyvanyk,
“Triaging incoming change requests: Bug or com-
mit history, or code authorship?” in 28th IEEE
International Conference on Software Mainte-
nance (ICSM). IEEE, 2012, pp. 451–460.

[61] B. Ashok, J. Joy, H. Liang, S.K. Rajamani,
G. Srinivasa, and V. Vangala, “DebugAdvisor: a
recommender system for debugging,” in Proceed-
ings of the the 7th Joint Meeting of the European
Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of
Software Engineering. ACM, 2009, pp. 373–382.

[62] H. Kagdi and D. Poshyvanyk, “Who can help me
with this change request?” in 17th International
Conference on Program Comprehension. IEEE,
2009, pp. 273–277.

http://www.alert-project.eu/sites/portal2-alert.atosorigin.es/files/content-files/download/Specification%20of%20Developer%20Profile.pdf
http://www.alert-project.eu/sites/portal2-alert.atosorigin.es/files/content-files/download/Specification%20of%20Developer%20Profile.pdf
http://www.alert-project.eu/sites/portal2-alert.atosorigin.es/files/content-files/download/Specification%20of%20Developer%20Profile.pdf
http://www.alert-project.eu/sites/portal2-alert.atosorigin.es/files/content-files/download/Specification%20of%20Developer%20Profile.pdf


Machine Learning or Information Retrieval Techniques for Bug Triaging: Which is Better? 141

[63] J. Anvik and G.C. Murphy, “Determining imple-
mentation expertise from bug reports,” in Pro-
ceedings of the Fourth International Workshop on
Mining Software Repositories. IEEE Computer
Society, 2007, p. 2.

[64] S. Minto and G.C. Murphy, “Recommending
emergent teams,” in Fourth International Work-
shop on Mining Software Repositories. IEEE,
2007, pp. 5–12.

[65] G. Gousios, E. Kalliamvakou, and D. Spinellis,
“Measuring developer contribution from software
repository data,” in Proceedings of the 2008 In-
ternational Working Conference on Mining Soft-
ware Repositories. ACM, 2008, pp. 129–132.

[66] T. Zhang, G. Yang, B. Lee, and A.T. Chan,
“Guiding bug triage through developer analysis
in bug reports,” International Journal of Soft-
ware Engineering and Knowledge Engineering,
Vol. 26, No. 03, 2016, pp. 405–431.

[67] T. Zhang, G. Yang, B. Lee, and I. Shin, “Role
analysis-based automatic bug triage algorithm,”
IPSJ SIG Technical Report, Tech. Rep., 2012.

[68] X. Xia, D. Lo, X. Wang, and B. Zhou, “Dual
analysis for recommending developers to resolve
bugs,” Journal of Software: Evolution and Pro-
cess, Vol. 27, No. 3, 2015, pp. 195–220.

[69] J. Helming, H. Arndt, Z. Hodaie, M. Koegel,
and N. Narayan, “Automatic assignment of work
items,” in International Conference on Evalua-
tion of Novel Approaches to Software Engineer-
ing. Springer, 2010, pp. 236–250.

[70] W. Zou, Y. Hu, J. Xuan, and H. Jiang, “Towards
training set reduction for bug triage,” in IEEE
35th Annual Computer Software and Applica-
tions Conference (COMPSAC). IEEE, 2011, pp.
576–581.

[71] Z. Lin, F. Shu, Y. Yang, C. Hu, and Q. Wang,
“An empirical study on bugassignment automa-

tion using Chinese bug data,” in 3rd Interna-
tional Symposium on Empirical Software En-
gineering and Measurement. IEEE, 2009, pp.
451–455.

[72] S. Banitaan and M. Alenezi, “Tram: An approach
for assigning bug reports using their metadata,”
in Third International Conference on Communi-
cations and Information Technology. IEEE, 2013,
pp. 215–219.

[73] J. Anvik, L. Hiew, and G.C. Murphy, “Who
should fix this bug?” in Proceedings of the 28th
International Conference on Software Engineer-
ing. ACM, 2006, pp. 361–370.

[74] M. Sharma, M. Kumari, and V. Singh, “Bug as-
signee prediction using association rule mining,”
in International Conference on Computational
Science and Its Applications. Springer, 2015, pp.
444–457.

[75] J. Park, M. Lee, J. Kim, S. Hwang, and S. Kim,
“Costriage: A cost-aware triage algorithm for
bug reporting systems,” in Proceedings of the
National Conference on Artificial Intelligence,
2011, p. 139.

[76] M.M. Rahman, G. Ruhe, and T. Zimmermann,
“Optimized assignment of developers for fixing
bugs an initial evaluation for eclipse projects,” in
Proceedings of the 2009 3rd International Sym-
posium on Empirical Software Engineering and
Measurement. IEEE Computer Society, 2009, pp.
439–442.

[77] R.K. Saha, S. Khurshid, and D.E. Perry, “An em-
pirical study of long lived bugs,” in Software Evo-
lution Week–IEEE Conference on Software Main-
tenance, Reengineering and Reverse Engineering
(CSMR-WCRE). IEEE, 2014, pp. 144–153.


	Introduction
	Anatomy of a bug report
	Systematic review process
	Survey process
	Inclusion and exclusion criteria
	Related surveys
	Research contribution

	Bug report assignment
	Classification based on popular techniques
	Key observations
	Comparative study of machine learning and information retrieval techniques

	Conclusion and future work
	References


