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Abstract
Background: Software development productivity is widely investigated in the Software Engi-
neering literature. However, continuously updated evidence on productivity is constantly needed,
due to the rapid evolution of software development techniques and methods, and also the regular
improvement in the use of the existing ones.
Objectives: The main goal of this paper is to investigate which factors affect productivity. It
was also investigated whether economies or diseconomies of scale exist and whether they may be
influenced by productivity factors.
Method: An empirical investigation was carried out using a dataset available at the software
project repository ISBSG. The major focus was on factors that may affect productivity from
a functional point of view. The the conducted analysis was compared with the productivity data
provided by Capers Jones in 1996 and 2013 and with an investigation on open-source software by
Delorey et al.
Results: This empirical study led to the discovery of interesting models that show how the
different factors do (or do not) affect productivity. It was also found out that some factors appear
to allow for economies of scale, while others appear to cause diseconomies of scale.
Conclusions: This paper provides some more evidence about how four factors, i.e., programming
languages, business areas, architectural types, and the usage of CASE tools, influence productivity
and highlights some interesting divergences in comparison with the results reported by Capers
Jones and Delorey et al.

Keywords: effort, function point, empirical study, ISBSG dataset, factors, development,
productivity

1. Introduction

Productivity is one of the crucial aspects in soft-
ware development, as it is intrinsically related to
software costs. Improvements in software develop-
ment productivity may come from the industrial
use of novel techniques constantly introduced
in Software Engineering. Also, software devel-
opment productivity may improve because of
the ever increasing knowledge and experience
acquired on existing software engineering tech-
niques, which, in addition, are becoming more
and more consolidated over time. However, it
needs to be checked if this potential improve-

ment in productivity actually takes place and, if
so, to what extent and under what conditions,
so that conditions favoring productivity can be
created and maintained in the software industry.

Many factors are believed to significantly in-
fluence productivity [1], so identifying relation-
ships between factors and productivity is no sim-
ple matter. In addition, Software Engineering is
still a relatively recent discipline and its empirical
laws still need to be accurately described and
validated. Moreover, Software Engineering is very
human-intensive, thus productivity is certainly
affected by factors that may not be easy to quan-
tify and control. The human-intensive nature of
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software development may also imply that there
are intrinsic limits to potential improvements in
productivity.

This paper reports on an empirical study
which was carried out to investigate whether
and to what extent productivity is influenced
by a number of factors, namely, the primary
programming language used to develop each soft-
ware project, the business area addressed by the
project, the architectural type adopted by the
project, and the use of CASE (Computer-Aided
Software Engineering) tools. It was also inves-
tigated whether economies or diseconomies of
scale (i.e. the cost disadvantages that companies
accrue due to an increase in company size or
output resulting in the production of services at
increased per-unit costs) may exist and whether
they depend on the factors that influence pro-
ductivity.

The data used in this empirical study
came from projects in the ISBSG (Inter-
national Software Benchmarking Standards
Group)1 dataset [2], one of the most extensive
datasets containing data on software develop-
ment projects, and especially effort data, span-
ning 25 years. The ISBSG dataset contains data
from a few thousand projects. Even though this is
a fairly large amount of data, the ISBSG dataset
represents a limited sample of the software de-
velopment projects that have been and still are
being carried out worldwide. Moreover, its data
are provided on a voluntary basis by different
types of software developers. As a result, ISBSG
data may be only partially representative of all
current software development practices. At any
rate, ISBSG data are about projects with the
same or similar characteristics as a fairly large
part of current software development projects.

The main focus was on productivity from
a functional point of view, so the functional size
of product is measured (in Function Points [3,4]),
rather than the physical size (e.g. measured in
Lines of Code – LoC).

The set of factors investigated in this paper
extends the set of factors studied in the authors’
previous work [5], in which they were only inter-

ested in understanding the effect of the primary
programming language on software productivity.
In the work documented in this paper, more fac-
tors are investigated, as described in the following
research question.
RQ1: Which factors influence productivity?
Specifically: Does the primary programming lan-
guage factor affect productivity (i.e. does pro-
ductivity increase or decrease with the adopted
programming language)? Does the business area
factor affect productivity? Does the type of ar-
chitecture factor affect productivity? Does the
use of CASE tools affect productivity?

Also, the following additional research ques-
tion, related to whether a factor may determine
software development economies or diseconomies
of scale, are addressed here.
RQ2: Which factors influence economies and dis-
economies of scale? Specifically: Does the choice
of the primary programming language determine
a relation between size and development effort
characterized by economies (or diseconomies) of
scale? Similarly, do the business area, the type of
architecture or the use of CASE tools determine
a relation between size and development effort
characterized by economies (or diseconomies) of
scale?

Several different analyses were carried out.
Firs a “naïve” analysis was carried out, by look-
ing at the mean, median, and variance of the pro-
ductivity for the projects in the ISBSG dataset
and assessing differences across different sub-
sets of projects, grouped according to the pro-
gramming language and the other factors men-
tioned above. Then the productivity level of each
programming language was compared with the
data reported by Capers Jones [6, 7] and De-
lorey et al. [8], to investigate whether our pro-
ductivity data are aligned with these reference
data. To investigate the existence of economies
and diseconomies of scale, regression models
that correlate size and effort for each value of
a productivity-influencing factor were built to
highlight the dependence of productivity on size
[1, 9] (see Section 7). All of the analyses done
in the paper address both the complete ISBSG

1Most of the Repository Field Descriptions of the ISBSG dataset are available at: http://isbsg.org/2016/04/06/what-
you-can-find-in-the-2016-r1-isbsg-development-enhancement-repository/.
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data set and the “new development” and “en-
hancement” projects subsets separately.

The main contributions of our work with re-
spect to the existing literature mainly lie in the
fact that our study:
– is based on the analysis of a large, public

dataset, namely the ISBSG dataset;
– provides up-to-date indications by analyzing

recent software project data;
– addresses several factors that are believed to

affect productivity;
– uses a rigorous statistical approach.

The remainder of the paper is organized as
follows: Section 2 describes the analysis method
used. Sections 3–6 report the analysis of produc-
tivity versus the considered factors. Section 7
discusses how each factor may contribute to the
software development of economies of scale or
diseconomies in software development. Section 8
lists possible threats to the validity of this work.
Section 9 reviews related work. The conclusion
are presented in Section 10.

2. Analysis method

2.1. Software development productivity

The adopted definition of productivity was very
simple: the functional size of software developed
divided by the amount of effort employed in the
development process.

Productivity = Size of developed software
Software development effort

In this paper, the preferred size measures are the
functional ones, mainly the Unadjusted Func-
tion Points (UFP) [4], although occasionally the
lines of code (LoC) were used to compare these
findings with those of other authors who used
LoC measures. The amount of effort spent on
developing software is given by the total number
of person-hours or person-months spent in the
development process.

2.2. The ISBSG dataset

The study reported here is based on the analysis
of data from the ISBSG dataset release R12 [2].

The ISBSG dataset supports the definition of pro-
ductivity given above. Specifically, many of the
projects in the ISBSG dataset were measured by
means of IFPUG (International Function Point
Users Group) Function Points [4] or other essen-
tially equivalent functional size measures, like
NESMA (Netherlands Software Metrics users
Association) Function Points [10]. The ISBSG
dataset also contains development effort data,
normalized to take into account possible differ-
ences in development processes.

The ISBSG dataset provides several product
and process measures and characteristics that
can be useful in a productivity study [11]. Among
these, the programming language, the business
area, the architecture and the usage of CASE
tools are considered and analysed as factors that
may affect productivity in this paper.

To study the effect of these factors on pro-
ductivity, the authors selected and grouped data
samples concerning projects with the same pro-
gramming language, business area, architecture,
or decision whether to use CASE tools.

2.2.1. New developments vs. enhancements

The ISBSG dataset contains data concerning
both new developments and enhancements of
software projects. To deal with enhancements, it
is necessary to take into account the following
issues.
– The size of an enhancement is defined dif-

ferently than the size of development from
scratch, as their measurement processes are
different [12].

– The size of an enhancement in Function
Points actually measures the size of the part
of application in which the change occurs, not
the size of the change [4, 12]. For instance,
the introduction ofa new transaction has the
same size as making a small change in an
existing transaction, provided that the two
transactions have the same complexity.

– A model stating that Effort = f(functional
size of the enhancement) is, therefore, a sim-
plification since enhancement effort depends
on both the size of the change and the over-
all size of the product being changed. For
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Table 1. New development projects from the ISBSG
dataset: descriptive statistics

Size Effort Productivity
[UFP] [PH] [UFP/PH]

Mean 616 6766 0.176
Median 322 3226 0.110
Stdev 776 10497 0.253
Min 51 320 0.006
Max 7400 134211 3.960

Table 2. Enhancement projects from the ISBSG
dataset: descriptive statistics

Size Effort Productivity
[UFP] [PH] [UFP/PH]

Mean 293.7 4073.5 0.1
Median 167.5 2188 0.079
Stdev 403.7 6479.6 0.1
Min 50 322 0.004
Max 7134 109271 1.5

instance, after an enhancement, a system test
must be carried out, and the effort required
for this type of testing is related to the entire
application size, rather than the size of the
enhancement alone. Unfortunately, building
a model of the Effort=f(functional size of the
application, functional size of the enhance-
ment) type is not possible, since the ISBSG
database does not provide the sizes of the
enhanced applications,only the size of the
enhancements.

Because of the differences in the development
from scratch and enhancement processes, the
effects of programming languages, business areas,
architectural types, and usage of CASE tools are
investigated on new developments and enhance-
ment projects separately.

2.2.2. Data selection

Not all ISBSG projects were suitable for this
analysis. Data samples were selected according
to the following criteria:
– Only projects measured in IFPUG or NESMA

FP and provided with both size and effort
data were selected.

– Only data concerning projects with a speci-
fied primary programming language, business
area, architecture, and usage of CASE tools
were selected.

– The projects in the ISBSG dataset are char-
acterized by different quality levels. The se-
lected projects had their data quality rated ‘A’
or ‘B’, i.e., those with good quality of data in
the ISBSG dataset. Similarly, the UFP rating
(i.e. quality of functional size measurement)
of the selected projects was ‘C’ or greater.

This is consistent with the previous studies
of the ISBSG dataset.

– New development projects concerning appli-
cations smaller than 50 UFP were not con-
sidered. For such small projects, it is likely
that specific effects – such as the usage of
simplified life cycles – can dramatically af-
fect productivity, thus making them hardly
comparable with larger projects.

– Similarly, projects greater than 10,000 UFP
or requiring more than 150,000 person-hours
were not considered. There were only
4 projects with such characteristics, so they
can very well be considered outliers.

2.3. Descriptive statistics

2.3.1. New development projects

Out of about 6000 ISBSG projects, 989 data
points concerning new developments satisfy the
selection requirements described in Section 2.2.2.
The descriptive statistics are given in Table 1
(where PH indicates person-hours).

Figure 1 shows the distribution of the pro-
ductivity data of the selected projects (the grey
diamond is the mean value). Projects with pro-
ductivity greater than 1 UFP/PH are not shown,
to preserve the readability of the figure.

2.3.2. Enhancement projects

Out of about 6,000 ISBSG projects, 1570 data
points concerning enhancements satisfy the se-
lection requirements described in the previous
section. The descriptive statistics are presented
in Table 2.
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Figure 1. Distribution of productivity of
new development projects

Figure 2. Distribution of productivity of
enhancement projects

Figure 2 shows the distribution of the produc-
tivity data of the selected projects (the grey dia-
mond is the mean value). Projects with produc-
tivity greater than one UFP/PH are not shown,
to preserve the readability of the figure.

As the first result of the analysis, one can note
that productivity varies widely (the maximum
observed value is 2.250% the mean and 66,000%
the minimum observed value) and that the pro-
ductivity of enhancement projects tends to be
lower than that of new development projects,
but with a smaller variance. This may appear
to be somewhat surprising, since the value of
UFP for an enhancement project is the size of
the part of the application where the enhance-
ment takes place, regardless of the size of the
change itself. Therefore, the result shows that, on
average, more effort is used in an enhancement
project than in a new development project with
the same functional size. This is probably due
to the fact that maintenance is more challenging
than development from scratch.

2.4. Data analysis techniques

We applied several statistical data analysis tech-
niques. The Shapiro–Wilks test was used to
check whether specific distributions are normal,
and the nonparametric Kruskal–Wallis [13] and
Mann–Whitney tests [9] to check if a nominal
independent variable affects productivity.

Power law models, i.e. models of the kind
Effort = eUFPb, were used to investigate
whether a statistical relationship exists between
UFP and Effort. Ordinary Least Square (OLS)
regression techniques were used after applying
logarithmic transformations to both UFP and
Effort, because the assumptions about the nor-
mality of distributions do not hold for UFP and
Effort. Power-law models are used to investigate
the existence of economies or diseconomies of
scale.

In the paper, the statistical significance
threshold is set to 0.05, as customary in
Empirical Software Engineering studies. All
of the statistical results reported in the pa-
per are statistically significant, i.e. they have
p-value < 0.05.

3. Effects of primary programming
language on productivity

The impact of the programming language pri-
marily used to develop the project was analysed.
Different programming languages call for differ-
ent development processes, skills, data structures,
methods, testing activities, and so on. It is thus
reasonable to expect that the productivity of
software development may depend on the pro-
gramming language.
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Figure 3. Distributions of new development
productivity per programming language

Figure 4. Distributions of enhancement project
productivity per programming language

3.1. New development projects

Table 3 gives a few descriptive statistics of new
development projects grouped by the program-
ming language. The median productivity greatly
changes from a minimum of 0.044 UFP/PH for
C# projects to a maximum of 0.425 UFP/PH
for access projects. This reinforces the idea that
productivity may depend on the programming
language.

The distributions of the productivity of
projects grouped by language are shown in Fig-
ure 3. As the figure shows, the distributions are
far from symmetrical, so the “distribution-free”
nonparametric Kruskal–Wallis rank sum test [13]
was used to assess whether the difference between
groups is significant. The results (χ2 = 291.66,
df = 70, p-value < 10−15) confirm that the pri-
mary programming language has a significant
effect on productivity.

The authors proceeded to study the effect
of the programming languages on productivity
for pairs of different programming languages, us-
ing the Mann–Whitney test, to check if there
was a statistically significant order relationship
between the subsets of projects with different
pairs of languages. The results are reported
in Table 4. The symbol ‘>’ denotes that the
projects with the programming language re-

ported in the row of a cell have higher produc-
tivity (in a statistically significant sense) than
those with the programming reported in the
column. Likewise, the symbol ‘<’ denotes the
opposite relationship. The symbol ‘=’ denotes
that no statistically significant difference was
found.

The projects based on the language used in
Access appear to be the most productive ones,
followed by those based on Lotus Notes. Surpris-
ingly, the productivity of C# projects appears to
be the worst one, followed by ABAP, and C++.
There is no empirical evidence on the reasons
why Access appears very productive while the
productivity of C# development appears very
low. It can be argued that high-level languages,
such as Access, are more productive since they
are used in simpler projects and business pro-
cesses than more complex languages (such as
C#) that are generally used in more complex
projects of several kinds of application areas.

3.2. Enhancement projects

Table 5 gives a few descriptive statistics for en-
hancement projects, grouped by their program-
ming language. Note that the languages that
appear in Table 5 are not the same as those
appearing in Table 3, because in Table 5 the
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Table 3. Summary data of new development projects
grouped by programming language

Language N
Median Median Median

Size [UFP] Effort [PH] [UFP/PH]

COBOL 174 286 4333.5 0.063
Java 114 281.5 3394.5 0.103
Visual Basic 145 327 2760 0.145
C 48 479 4712 0.098
C++ 37 312 5100 0.083
SQL 48 615.5 5662.5 0.144
Lotus Notes 16 275.5 1117 0.223
C# 22 285.5 6859.5 0.044
ASP 14 282.5 1957 0.150
Access 24 359.5 845 0.425
ABAP 17 279 6051 0.060

Table 4. Relations between new development
productivity of programming languages

Language C
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COBOL < < < = < < > < < =
Java > < = = < < > < < >
Visual Basic > > > > = < > = < >
C > = < = = < > < < >
C++ = = < = < < > < < =
SQL > > = = > < > = < >
Lotus Notes > > > > > > > = < >
C# < < < < < < < < < =
ASP > > = > > = = > < >
Access > > > > > > > > > >
ABAP = < < < = < < = < <

languages with too few data to support any sta-
tistically significant analysis were omitted. The
median productivity varies much less than for
new development projects, from a minimum of
0.051 UFP/PH for C++ projects to a maxi-
mum of 0.116 UFP/PH for NATURAL projects,
with the next ones equal to 0.083 UFP/PH for
SQL, C#, and ABAP projects. Thus, produc-
tivity may depend less on the programming lan-
guage for enhancement than for new develop-
ments.

The distributions of the productivity of
projects grouped by programming language are
shown in Figure 4.

The comparison of Figures 3 and 4 seems
to confirm that the productivity of enhance-
ment projects appears much less dependent on
programming languages than the productivity
of new development projects. Moreover, it ap-
pears that for several languages the produc-
tivity in enhancements is substantially lower
than the productivity of new developments.
The projects based on the NATURAL lan-
guage [14] are associated with higher produc-
tivity than the projects based on other lan-
guages. However, in Table 6 the sign ‘=’ oc-
curs more frequently than in Table 4, indicating
that the productivities of several language are
statistically not discriminated in enhancement
projects.

3.3. Comparison with Capers Jones
productivity evaluations

Capers Jones [6] studied the relation between
the language “level” and its productivity [6].
The language level is defined according to the
LoC/FP ratio: the larger the number of lines
of code needed to code a Function Point, the
lower the level of the language. For example,
COBOL requires about 105 statements per FP
and is classified as a level 3 language [6]. Table 7
lists the average LoC per FP, the language level,
and the average productivity in FP/PM (where
PM denotes person-months) according to Jones.
In this paper, PM = PH/160, where 160 is ob-
tained by multiplying 20 working days per month
and 8 working hours per day); the reported data
are the result of an analysis concerning software
developed up till 1996. To be able to compare our
results with those by Capers Jones, the produc-
tivity of projects carried out up till 1996 was anal-
ysed separately (in columns “Pre” in the tables of
this paper) and after 1996 (in columns “Post”).

Descriptive statistics are given in Table 8 and
Table 9.

These results seem to indicate that there has
been a decrease in the productivity for both new
developments and enhancements. In the opin-
ion of the authors, the most likely cause is that
software complexity has considerably grown, so
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Table 5. Summary data of enhancement projects grouped
by programming language

Language N
Median Median Median Prod.

Size [UFP] Effort [PH] [UFP/PH]

COBOL 306 179 2583 0.070
Java 271 142 2026 0.077
Visual Basic 132 217.5 3154 0.075
C 113 181 2705 0.072
C++ 79 141 3810 0.051
SQL 59 142 1837 0.083
NATURAL 55 214 1694 0.116
C# 30 258.5 2728.5 0.083
ABAP 45 249 3069 0.083

Table 6. Relations between enhancement
project productivity of programming

languages
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COBOL = = = > = < = =
Java = = = > = < = =
Visual Basic = = = > = < = =
C = = = = = < = =
C++ < < < = < < < <
SQL = = = = > < = =
NATURAL > > > > > > > >
C# = = = = > = < >
ABAP = = = = > = < <

Table 7. Programming language productivity
according to Jones (before 1996)

Language LoC/FP Level Avg Productivity
[FP/PM]

ABAP 16 20.0 15 to 30
Access 38 8.5 16 to 23
C 128 2.5 5 to 10
C++ 53 6.0 10 to 20
COBOL 107 3.0 5 to 10
DELPHI 29 11.0 16 to 23
Java 53 6.0 10 to 20
SQL 13 25.0 30 to 50
Visual Basic 40 8.0 10 to 20

Table 8. New development projects from the ISBSG
dataset: descriptive statistics (Pre: up to 1996,

Post: after 1996)

Size [UFP] Effort [PH] Productivity
[UFP/PH]

Pre Post Pre Post Pre Post

Mean 734 583 7319 6607 0.209 0.166
Median 415 303 3703 3074 0.121 0.108
Stdev 822 759 10162 10592 0.342 0.221
Min 53 51 326 320 0.01 0.006
Max 4943 7400 66600 134211 3.96 2.581

Table 9. Enhancement projects from the ISBSG
dataset: descriptive statistics (Pre: up till 1996,

Post: after 1996)

Size [UFP] Effort [PH] Productivity
[UFP/PH]

Mean 348 290 3750 4098 0.166 0.117
Median 248 161 2104 2193 0.114 0.078
Stdev 376 406 6980 6441 0.155 0.128
Min 52 50 339 322 0.021 0.004
Max 2983 7134 61891 109271 0.939 1.51

Table 10. Comparison with Jones (before 1996)

C. Jones [6] Our analysis
Language Mean Prod. Mean Prod. Stdev/

[FP/PM] [FP/PM] Mean

C 5 to 10 27 226%
COBOL 5 to 10 23 130%
SQL 30 to 50 33 106%
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Table 11. Comparison with Jones
(project data up to 2013)

C. Jones [7] Our analysis
Language Mean Prod. Mean Prod. Stdev/

[FP/PM] [FP/PM] Mean

C 5.62 16.9 99%
COBOL 6.38 15.2 100%
ABAP 7.69 12.4 50%
C++ 9.68 13.8 97%
Java 9.68 14.7 66%
C# 9.88 11.7 78%
Visual Basic 13.04 21.8 76%
ASP 13.40 24.1 53%
SQL 15.92 17.3 62%

many technological and methodological advances
were “absorbed” by additional difficulty. In fact,
the notion of productivity is based on functional
size: it is quite possible that modern software
has to satisfy more non-functional requirements
than old-time software (for instance of security
requirements). These additional non-functional
requirements certainly require some development
effort, which is not explained by the sheer imple-
mentation of the required functionality.

In the ISBSG dataset, only three languages
were found with enough data points to support
a reasonably reliable comparison of productivity
before 1996 and after 1996. The comparison –
illustrated in Table 10 – is thus limited to these
three languages. The columns on the right lists
the so-called coefficient of variation, which is
the ratio of the standard deviation to the mean,
respectively.

Table 10 shows that data from the ISBSG
dataset confirm Jones’s findings concerning SQL,
but indicate that the mean development pro-
ductivity achieved when using C or COBOL is
definitely higher than that found by Jones. It can
also be observed that C programming involves
a great variability of the productivity level that
can be achieved. This is actually not surpris-
ing, given that C was used for a wide range of
applications and in very different domains.

Table 11 reports an updated set of Jones’s
productivity data concerning project carried out
until 2013 [7].

Table 11 shows that the found mean produc-
tivities are greater than those found by Jones.

Unfortunately, the authors have no means of
explaining this difference. However, there are
some similarities between our results and those
obtained by Jones: Visual Basic, ASP and SQL
appear more productive then the other languages.
The main difference is that C appears quite
productive according to ISBSG data, while it
was ranked as the least productive language
by Jones.

It is also possible to observe that the pro-
ductivity of C programming was less variable
after 1996 than earlier. This is probably due
to the fact that after 1996 programmers could
choose from among so many languages that a rel-
atively low-level language, such as C, is used
only in well characterized domains (system-level
programming, real-time, etc.).

3.4. Comparison with open-source
software development productivity

Delorey et al. analysed 9,999 open-source
projects hosted on SourceForge.net to study the
productivity of 10 of the most popular program-
ming languages in use in the open-source com-
munity [8]. Table 12 reports the data about the
languages analysed both in [8] and in this study.
The central column in Table 12 provides the data
derived from [8] (expressed in Function Points
per PersonHour).

With respect to the study by Delorey et
al., the data from the ISBSG dataset indicate
much higher productivity for all languages. Al-
though this indication is fairly consistent for
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Table 12. Comparison with [8]

Language
Delorey et al. [8] Our analysis

Mean Prod. Mean Prod. Stdev/Mean[FP/PH] [FP/PH]

C 0.013 0.120 99%
C# 0.035 0.083 78%
C++ 0.032 0.098 97%
Java 0.030 0.105 66%

Table 13. Summary data by business area for new development projects

Business area N
Median Size Median Effort Median Prod.

[UFP] [PH] [UFP/PH]

Engineering 18 549.5 1464.5 0.257
Accounting 19 418 4111 0.135
Financial (excl. Banking) 29 327 3123 0.125
Telecommunications 52 262.5 2574.5 0.118
Inventory 12 574 7434.5 0.114
Manufacturing 25 315 3565 0.097
Insurance 38 261 2806.5 0.087
Banking 69 214 2761 0.064

all languages, there is a noticeable difference
concerning the C language: while it appears
as the least productive language in [8], C ap-
pears to be the most productive according to the
ISBSG data (in the set of languages considered
in Table 12).

4. Effects of business areas on
productivity

The previous work [1] reports that the business
area can influence development productivity. Ac-
cordingly, the dependence of productivity on busi-
ness areas were analysed here. Projects were thus
grouped per business area and only groups of
twenty or more projects were kept for statistical
analysis.

4.1. New development projects

Table 13 gives the descriptive statistics of
new development projects grouped by busi-
ness areas. The median productivity greatly
changes from a minimum of 0.064 UFP/PH
for banking projects to a maximum of 0.257
UFP/PH for engineering projects – i.e. the

projects supporting various types of activities
(design, simulation, etc.) in various engineer-
ing areas (civil engineering, electrical engineer-
ing, etc.) – approximately four times the min-
imum. Thus, it can be hypothesized that pro-
ductivity may depend on the business area.
Quite interestingly, the low productivity of in-
surance projects was already detected in [1] and
in [12].

The distributions of the productivity of
projects grouped by business area are shown
in Figure 5 (where projects with productivity
greater than 1 FP/PH are not shown, to preserve
the readability of the figure). Since distributions
are not symmetrical, the “distribution-free” non-
parametric Kruskal–Wallis rank sum test [13]
was used to assess whether the difference be-
tween groups is significant. The results (χ2 =
116.93, df = 76, p-value = 0.0018) confirm
that the business area has a significant effect on
productivity.

Since the Kruskal–Wallis test only indicates
that in at least one case the business area
affects the productivity, in this research the
Mann–Whitney test was used to study the effect
of the business area on productivity for all pairs
of different business areas.
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Figure 5. Distributions of new development project productivity per business area

The results of the Mann–Whitney tests are
reported in Table 14, with the same conventions
as the ones used in Table 6.

The projects belonging to the engineering
business area appear to be the most productive
ones (as for new developments), followed by those
belonging to accounting and financial business
areas.

4.2. Enhancement projects

Table 15 gives the descriptive statistics of en-
hancement projects, grouped by business area.
Note that the programming languages that ap-
pear in Table 15 are not the same as those ap-
pearing in Table 13, because different numbers
of data points were available for new develop-
ments and enhancement projects and, hence, the
areas with too few data to support any statis-
tically significant analysis were excluded from
the analysis. The business area with the highest
median productivity (Legal) has a productiv-
ity that is a bit less than five times the lowest
median productivity, obtained for Quality. This
suggests that productivity may depend on the
business area.

The nonparametric Kruskal–Wallis method
[13] was used to assess whether the difference
between groups was significant. For enhance-
ment projects, the result (χ2 = 119.974, df = 44,
p-value < 10−8) confirms that the business
area has a statistically significant effect on
productivity.

Since the Kruskal–Wallis test only indicates
that in at least one case the business area af-
fects the productivity, in these investigations the
Mann–Whitney test was used to study the effect
of the business area on productivity for all pairs
of different business areas. The results of the
Mann–Whitney tests are reported in Table 16
for enhancement projects.

On the one hand, the legal and insurance
projects have the highest enhancement produc-
tivity. The insurance projects have high enhance-
ment productivity, while they have quite low
development productivity. No data were avail-
able to support this kind of analysis, but it can
be argued that new insurance projects are less
productive since a lot of rules and laws regu-
late the insurance domain. This requires a lot
of effort during the initial phases of the develop-
ment process, while this effort decreases over time



38 Luigi Lavazza, Sandro Morasca, Davide Tosi

Table 14. Relations between productivities per
business area (new developments)
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Accounting > = = > = = =
Banking < < < = = = <
Engineering = > = > > > >
Financial (excl. Banking) = > = > = = =
Insurance < = < < = = =
Inventory = = < = = = =
Manufacturing = = < = = = =
Telecommunications = > < = = = =

Table 15. Summary data by business area for enhancement projects

Business area N
Median Size Median Effort Median Prod.

[UFP] [PH] [UFP/PH]
Legal 12 419.5 1485 0.248
Insurance 38 315.5 1679 0.181
Financial (excl. Banking) 44 237.5 1881 0.112
Inbound Logistics 47 106 907 0.093
Outbound Logistics 46 120 1639 0.077
After Sales & Services 26 107 1362.5 0.076
Banking 33 198 2070 0.072
Manufacturing 47 192 3048 0.058
Quality 21 233 3487 0.051
Sales 34 190.5 2609 0.070
Telecommunications 181 142 2151 0.077

whenever legal aspects are well managed. On the
other hand, the banking projects confirm their
low productivity (for both new developments and
enhancements).

5. Effects of architecture on
productivity

Different types of architecture call for different de-
velopment processes, skills and methods. It is thus
reasonable to expect that development productiv-
ity depends on system architecture. Accordingly,
the projects were grouped per architecture and
the distributions of productivity were analysed.

5.1. New development projects

The descriptive statistics of the new development
project groups characterized by the same archi-
tecture are reported in Table 19. Systems with
Multi-tier/client-server architecture are charac-
terized by the highest productivity, a bit more
than twice the productivity of systems with
client-server architecture, the ones with the low-
est productivity.

The distributions of the productivity of
projects grouped by architecture are shown in
Figure 7. The differences in the boxplots do
not appear to be large. Since distributions are
not symmetrical, the “distribution-free” non-
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Figure 6. Distributions of enhancement project productivity per business area

Table 16. Relations between business areas (enhancements)
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After Sales Services = < = < < > = = = =
Banking = < = < < = = = = =
Financial (excl. Banking) > > = < < > > > > >
Inbound Logistics = = = < < > = > > =
Insurance > > > > = > > > > >
Legal > > > > = > > > > >
Manufacturing < = < < < < < = = =
Outbound Logistics = = < = < < > = = =
Quality = = < < < < = = = =
Sales = = < < < < = = = =
Telecommunications = = < = < < = = = =
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parametric Kruskal–Wallis rank sum test [13]
was used to assess whether the difference be-
tween groups is significant. The results (χ2 =
60.45, df = 6, p-value < 10−10) confirm that
the architecture has a significant effect on pro-
ductivity.

Here again, the ISBSG dataset does not pro-
vide any support for explaining, even tentatively,
these results.

Since the Kruskal–Wallis test only indicates
that in at least one case the business area affects
the productivity, the Mann–Whitney test was
used to study the effect of the architecture on
productivity for all pairs of different architec-
tures.

The results of the Mann–Whitney tests are
reported in Table 18, with the same conventions
as the ones used in Table 6.

5.2. Enhancement projects

Table 19 gives a few descriptive statistics of
enhancement projects, grouped by architecture.
The ratio between the highest and the lowest me-
dian productivity is slightly smaller than three.
The distributions of the productivity of projects
grouped by architecture are shown in Figure 8.
The differences in the boxplots do not appear to
be large.

The nonparametric Kruskal–Wallis method
[13] was used to assess whether the difference
between groups was significant. For enhance-
ment projects, the results (χ2 = 45.06, df = 6,
p-value < 10−7) confirm that the architecture
has a significant effect on productivity also
for this type of projects. The effect of the ar-
chitecture on productivity for pairs of differ-
ent architectures was also studied using the
Mann–Whitney test. The results are reported
in Table 20.

Multi-tier projects are the least productive
for both new development and enhancement
projects, while multi-tier with web public inter-
face projects appear to be the most productive
just for enhancement projects. Multi-tier/Client
server projects are the most productive for
new developments, and they maintain high

productivity also in the case of enhancement
projects.

6. Effects of case tool usage on
productivity

The use of CASE tools has long been advocated
to improve the productivity of software develop-
ment processes. While traditionally CASE tools
were essentially diagramming/modelling tools,
which adopted some sort of a semi-formal de-
sign language, such as E/R or Data Flow Di-
agrams, today the concept embraces all sorts
of computer-based tools that are meant to sup-
port software development activities. Quite no-
ticeably, some tools are meant to support ag-
ile development. For instance, there are tools
for writing and managing user stories and
tools for writing wire frames and GUI mock-
ups, etc. So, in the ISBSG dataset, “CASE”
equates to any computer-based tool supporting
software development. However, it can be ex-
pected that, in most cases represented in the
ISBSG dataset, the used CASE tools are tradi-
tional.

Although the usage of CASE (Computer-Aided
Software Engineering) tools in software devel-
opment is conceptually a Boolean variable, in
the ISBSG dataset there are four possible values:
Yes, No, Don’t know and Null (i.e. no value was
provided). In the analysis of the effects ofCASE
tool usage on productivity, the projects for which
there is no clear indication of whether CASE
tools were used or not were neglected. That is,
only the projects having “CASE tool usage” field
equal to Yes (497 projects) or No (851 projects)
were retained.

As in the previous cases, the nonparametric
Kruskal–Wallis [13] was used to assess whether
the difference between groups was significant.
The results do not support the hypothesis that
the usage of CASE tools has a significant effect
on productivity for either new development or
enhancement projects.

This result is confirmed by the Mann-Whit-
ney tests on pairs.
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Table 17. Summary data of new development projects grouped by architecture

Business area N
Median Size Median Effort Median Prod.

[UFP] [PH] [UFP/PH]

Multi-tier/Client server 113 410 2519 0.184
Multi-tier with web public interface 46 169 1470 0.140
Stand alone 234 308.5 3047.5 0.114
Multi-tier 24 479 6496 0.094
Client server 223 350 4628 0.079

Figure 7. Distributions of productivity per
architecture type (new developments)

Figure 8. Distributions of enhancement project
productivity per architecture type

7. Productivity and economies of
scale

The question whether software development ex-
hibits economies (or diseconomies) of scale has
been much debated (see Section 9). In general,
economies of scale are apparent when it is pos-
sible to relate effort and size via models of type
Effort = aSizeb, with b < 1.

In fact, Effort = aSizeb implies that
Productivity = Sizek

a , where k = 1 − b; if b < 1,
then k > 0, and the larger the size, the higher
the productivity, as by definition of the economy
of scale. On the contrary, if b > 1, then k < 0,
and the larger the size, the smaller the produc-
tivity, as in diseconomies of scale. Some studies
showed that software development exhibits disec-
onomies of scale: for instance, this is the case in the
well-known COCOMOmodel [9]. On the contrary,
other studies (like [1]) found economies of scale.

To further explore this issue, the existence of
Effort = aSizeb models based on ISBSG data was
investigated. This type of models is derived by ap-
plying the OLS regression after the log-log trans-
formation of data samples. The log-log transfor-
mation was used in this research because the
data did not comply with the preconditions of
OLS about normal distributions.

No statistically significant model could be
derived for all new developments, nor for all
enhancement projects. Therefore, the economies
of scale were studied on data subsets obtained
by grouping projects by programming language,
business areas, architecture and usage of CASE
tools. Grouping project data by these criteria
resulted in sufficiently homogeneous datasets,
which allowed for the derivation of statistically
significant models of effort vs. size.

In the derivation of models, outliers, identi-
fied based on Cook’s distance, following a consol-
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Table 18. Relations between productivities per
architecture (new developments)
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Multi-tier/Client server > > > >
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Stand alone > = < =

Table 19. Summary data by architecture type
for enhancement projects

Architecture N
Medians

Size Effort Prod.
[UFP] [PH] [UFP/PH]

Client server 443 168 2109 0.078
Multi-tier 45 139 4259 0.049
Multi-tier/Client server 78 339 2860 0.091
Multi-tier with web public interface 51 124 940 0.141
Stand alone 451 175 2096 0.083

idated practice [15] were excluded. The results
found are described in the “Outl.” column of the
tables in the following subsections.

A few statistically significant models featur-
ing quite small adjusted R2 were found these
models are not very interesting, because a small
value of R2 indicates that effort depends mainly
on factors other than size and the considered
specific characteristics (language, business area,
etc.). Accordingly, in the following sections only
models featuring adjusted R2 not less than 0.5
are reported.

7.1. Effect of programming language
on economies of scale

By applying the OLS regression after log-log
transformation to data samples obtained by
grouping new development projects by primary
programming language, the models summarized
in Table 21 were obtained.

For new development projects that use Java
and Visual Basic, the exponent is less than one
with 95% confidence: these languages seem to
allow for economies of scale. For other languages,
it is not possible to decide with 95% confidence
if the exponent is less or greater than one, that
is, these languages do not cause either economies
or diseconomies of scale. It was impossible to
obtain statistically significant models only for
enhancement projects using PL/1 and ABAP,
these are described in Table 22.

PL/I enhancement projects exhibit a disec-
onomy of scale. Instead, for ABAP enhancement
projects no conclusion with 95% confidence could
be drawn.

7.2. Effect of business area on economies
of scale

By applying OLS regression after log-log trans-
formation to data samples obtained by grouping
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Table 20. Relations between productivities per
architecture (enhancement projects)
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Table 21. Effort models for new development projects grouped by
programming languages

Language Model Exponent confidence Adj. R2 Outl.

C 7.7 UFP1.032 0.837–1.226 0.762 3/40
C++ 15.6 UFP0.962 0.657–1.268 0.622 5/31
Java 37.9 UFP0.769 0.656–0.882 0.682 21/107
Oracle 2.8 UFP1.091 0.912–1.271 0.852 8/36
SQL 12.0 UFP0.931 0.677–1.184 0.549 0/45
Visual Basic 12.8 UFP0.877 0.775–0.979 0.714 15/131

Table 22. Effort models for enhancement projects grouped by
programming languages

Language Model Exponent confidence Adj. R2 Outl.

ABAP 7.8 UFP1.069 0.909–1.229 0.827 6/45
PL/I 5.7 UFP1.190 1.028–1.351 0.658 12/123

Table 23. Effort models for new development projects grouped by business area

Business Area Model Exponent confidence Adj. R2 Outl.

Financial (no Banking) 8.6 UFP0.955 0.672–1.239 0.635 0/28
Telecommunications 12.3 UFP0.915 0.675–1.156 0.563 1/47
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new development projects per business area, the
models summarized in Table 23 were obtained.

The only two statistically significant mod-
els found indicate that both economies or disec-
onomies of scale may occur. The characteristics of
effort models for enhancement projects grouped
by business area are given in Table 24.

New developments concerning the financial
area (excluding banking) appear to allow for
economies of scale.

7.3. Effect of architecture on economies
of scale

By grouping new development projects per archi-
tecture type it was possible to obtain the models
summarized in Table 25.

For new development projects, there is no ev-
idence that architectural types lead to economies
or diseconomies of scale. By grouping enhance-
ment projects per architecture type, it was possi-
ble to obtain the models summarized in Table 26.

Client server and Stand-alone enhancement
projects exhibit economies of scale. Although it is
not possible to make statements about multi-tier
projects with 95% confidence, stil one can ob-
serve that the exponent range is mainly less than
one in the 95% confidence range, thus it is likely
that economies of scale also exist for multi-tier
projects.

7.4. Effect of CASE tools on economies
of scale

After grouping projects by the usage of CASE
tools, the authors were able to find just one
model, concerning enhancement projects with
the use of CASE tools. The model is described
in Table 27.

No economy or diseconomy of scale is apparent.

8. Threats to validity

Construct validity. The definition of produc-
tivity is always a sensitive issue and no universally
accepted notion of productivity exists. A fairly
widely used notion of productivity was chosen for

the research, based on the amount of delivered
functionality, quantified via UFP, the most widely
used functional size measure. Functional size mea-
sures, however, may have some weaknesses [16,17],
including: (1) the apparent arbitrariness in the
selection of the “complexity” weights used to ob-
tain the value of UFP starting from the Base
Functional Components (Internal Logical Files,
External Interface Files, External Input, External
Outputs, and External Queries); (2) the subjec-
tivity inherent to the counting process; (3) the
redundancies of the counted elements. As for (1),
the weights are based on an initial study by Al-
brecht [3]. Although they may need to be updated,
they are now a part of the standard definition
used by ISO for FP [10, 12]. With reference to
(2), the International Function Point Users Group
periodically issues new guidelines to reduce the
amount of uncertainty in the counting process
[4]. Finally, the redundancies may affect the ef-
ficiency and cost-effectiveness of measuring and
using UFP, but are not a real construct threat.
However, UFP somehow (and imperfectly) cap-
tures the amount of functionality delivered, unlike
such measures as LoC which quantify the amount
of code delivered and are not available early in
the life cycle, but only after coding, when it is
too late to make any useful predictions. Also,
just because a measure is objectively quantifi-
able does not mean that it adequately captures
a specific software attribute or is useful in prac-
tice.

The main threat with this type of studies is
the fact that while there are standard definitions
of functional size measures, there is hardly any
standard definition of how development (or en-
hancement) effort should be measured. Therefore,
different authors may use differently measured
effort data. This may lead to different values for
productivity.

Therefore, when considering the comparisons
reported in Section 4 the reader should take into
account the possible differences in effort mea-
sures. For instance, the fact that in Table 12 the
found productivity values are all greater than
those found by Delorey et al. [8] might be due
to different effort measurement criteria. In fact,
Delorey et al. [8] collected productivity data by
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Table 24. Effort models for enhancement projects grouped by business area

Business Area Model Exponent confidence Adj. R2 Outl.

After Sales & Services 31.3 UFP0.795 0.474 –1.116 0.512 1/26
Financial (no Banking) 110.7 UFP0.540 0.35–0.729 0.524 13/44
Inbound Logistics 14.5 UFP0.910 0.665–1.155 0.574 5/47

Table 25. Effort models for new development projects grouped by architecture

Architecture Model Exponent confidence Adj. R2 Outl.
Multi-tier 26.1 UFP0.82 0.489–1.155 0.548 2/24
Multi-tier Client server 3.5 UFP1.06 0.927–1.188 0.746 24/113
Multi-tier with web public interf. 3.2 UFP1.20 0.880–1.523 0.626 11/46

Table 26. Effort models for enhancement projects grouped by
architecture

Architecture Model Exponent confidence R2 Outl.

Client server 30.4 UFP0.82 0.752–0.898 0.576 77/443
Multi-tier 49.4 UFP0.84 0.618–1.062 0.597 5/45
Stand alone 19.3 UFP0.90 0.819–0.987 0.539 65/451

analysing the effort devoted by single program-
mers to single code changes, while the ISBSG
collected data concerning whole projects. At any
rate, the relative ranking among the various pro-
ductivities depending on the programming lan-
guage according to the study of Delorey et al. and
according to this study may still be considered
valid.

Finally, an intrinsic limit of the analysis is
due to the usage of functional size measures to
size software. In fact, these measures do not rep-
resent the non-functional parts of requirements.
So, developing a project with a relatively small
functional requirement but huge non-functional
requirements (entailing security, reliability, ro-
bustness, portability, etc.) may appear unduly
characterized by low productivity.
External validity. The obtained results are
based on one of the largest datasets publicly
available, with projects coming from many differ-
ent organizations and countries, so they should
be fairly representative of the population of new
and enhancements projects.

Even though the ISBSG dataset contains
a large number of projects, some skew is possible.
For instance, some self-selection phenomenon,
e.g. only well-organized projects may report their
data to the ISBSG dataset, may not be excluded.

However, this is a threat that is hard to eliminate
for all datasets that collect data on a voluntary
basis.

It is true, however, that a large part of the
projects in the ISBSG dataset are representative
of consolidated practices and languages, instead
of innovative ones. The ISBSG dataset does con-
tain data on projects that are recent and inno-
vative, but not enough to allow for a sensible
statistical analysis. However, there is a suspi-
cion that innovative applications will always be
in the minority in these datasets, given their
recentness. It shouldalso be pointed out that
a large number of projects are still carried out
with consolidated techniques and languages. For
instance, in https://www.tiobe.com/tiobe-index/
the top 50 most popular programming languages
are listed, and Java, C and C++ are the top 3.
Internal validity. A possible threat to internal
validity may come from the fact that these results
are based on projects in which data are collected
and later reported to ISBSG. This may not be
the case for all projects, but this is a threat for
all studies of this kind. To mitigate the possible
threat due to the way data are collected and
reported to ISBSG, only data of the best two
categories were used in the research. Moreover,
standard data analysis techniques were used. The
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Table 27. Effort models for enhancement projects grouped by
the usage of CASE tools

CASE tools used Model Exponent confidence Adj. R2 Outl.

Yes 17.0 UFP0.94 0.843–1.037 0.605 45/285

use of log-log transformations may be a possible
threat, because the Least Square Regression is
carried out with a different figure of merit than
the one it would have without the log-log transfor-
mation. However, this transformation was useful
because the original data did not comply with the
assumptions of the Least Square Regression. Also,
log-log transformations are quite common in the
Empirical Software Engineering, and specifically
in the study of Effort models.

9. Related work

A substantial amount of work was carried out
to study the main factors affecting software pro-
ductivity by proposing and analysing processes,
methods, tools, and best practices [18–21]. To the
best of the knowledge of the authors, there are
three literature reviews on productivity factors
in software engineering available in the litera-
ture [18,21,22]. These works focus on the main
dimensions of the product, personnel, project,
and process. Each of these dimensions is then
characterized by sub-factors: product is related
to a specific characterization of software, such as
domain, requirements, architecture, code, doc-
umentation, interface, size, etc. Personnel fac-
tors involve team member capabilities, experi-
ence, and motivation. Project factors encompass
management aspects, resource constraints, sched-
ule, team communication, staff turnover, etc.
Process factors include software methods, tools,
customer participation, software lifecycle, and
reuse. In this paper, the authors do not focus
on a specific dimension, but span their empir-
ical study on the main factors reported in the
ISBSG dataset (i.e. primary programming lan-
guage used to develop each software project, the
business area addressed by the project, the archi-
tectural type adopted by the project and the use
of CASE tools).

Directly referring to the factors analysed in
this paper, several studies addresses the relation
betweenprogramming languages andproductivity.
For example, in [6,8,23–25] different programming
languages are studied to investigate their relation
with different code aspects such as program
length, programming effort, run-time efficiency,
memory consumption, and reliability. In [26],
the authors explain productivity in the banking,
insurance, manufacturing, wholesale/retail, and
public administration sectors, limiting their sta-
tistical analysis to 206 business software projects
from 26 Finnish companies. In [27], software
productivity is studied with a dataset on Chinese
software companies. Two research question in this
study specifically focus on how the business areas
and the primary programming language impact
productivity, respectively. As for business areas,
low productivity is associated to Telecom and Fi-
nance areas, while high productivity is associated
to Public Administration, Manufacturing and
Energy. In this study, financial projects have high
productivity, while manufacturing ones have low
productivity. In any case, these results cannot be
compared with their outputs since in this study
two different datasets were analysed (both for
the releases and for geographical locations of the
projects). As for the programming language, in
[27] it is reported that high level programming
languages are found to be more productive (the
most productive are ASP, C# and Visual Basic,
with a median productivity of 34.68, 18.68, and
9.94 size/effort, respectively).

There has also been a considerable debate
regarding economies and diseconomies of scale
in software development [9,28–34]. These stud-
ies highlighted that it is quite difficult to deter-
mine which factors contribute to producing an
overall economy or diseconomy of scale; in fact,
different dataset provided different indications.
Comstock et al. analysed the ISBSG dataset to
derive a model that includes both economies and
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diseconomies of scale, and can help managers
maximize productivity by determining the opti-
mal project size within a particular environment
[35]. They considered the same factors as the
ones considered in this paper, but with a few
important differences: programming languages
were considered only in terms of “3rd genera-
tion”, “4th generation” and “application gener-
ators”; moreover, the team size was included
in the independent variables of the effort esti-
mation models. This makes the interpretation
of the results provided in [35] somewhat prob-
lematic as far as (dis)economies of scales are
concerned, Productivity is seen there as depen-
dent on size but also on team size, which in it
turn is likely to be determined by the size of
the program to be developed. As the authors of
that work state, “the very presence of Team Size
represents a diseconomy of scale: AFP (the size
in Function points) relates to the achievement;
Team Size relates to the resources consumed”
[35]. In fact, the authors conclude that “devel-
opment exhibits a strong economy of scale with
respect to project size, and a similar diseconomy
of scale with respect to team size” [35]. This
type of finding is consistent with the goals of
Comstock et al., but it is of little help for the
goals of this study. So, based on the assumption
that the team size is chosen to maximize pro-
ductivity, or to satisfy possible local needs and
constraints, the team size is excluded from the in-
dependent variables of effort models. In this way,
the model of type Effort = aSizeb is obtained
for every factor, thus highlighting the role of the
considered factor in determining (dis)economies
of scale.

10. Conclusion and future work

Software development productivity is an impor-
tant subject that has often proven to be quite
complex to understand and analyse. This paper
highlights a few statistically significant results.
These results can be considered reliable, since they
are based on the analysis of a large public data
repository, which is generally considered to be
representative of software development practices.

Specifically, it was found out that the primary
programming language had a significant effect
on productivity of new development projects. On
the contrary, the productivity of enhancement
projects appears much less dependent on pro-
gramming languages. The business area and the
architecture have a significant effect on produc-
tivity of both new development and enhancement
projects. No evidence of the impact of the use of
CASE tools on productivity was found, for either
new developments or enhancement projects.

In addition, it was found that the produc-
tivity of new development projects tends to be
higher than that of enhancement projects. Also,
the results of our analyses show productivity
values obtained that are higher, for each pro-
gramming language, than those of the reference
works on the subject, carried out by Jones, and
for open-source software, as reported by De-
lorey et al.

It was also analysed what factors seem to
have an impact on the presence of economies and
diseconomies of scale. For instance, economies of
scale for new development projects using Java or
Visual Basic were found and also diseconomies of
scale for enhancement projects concerning appli-
cations written in PL/1, while neither economies
or diseconomies of scale could be found for other
projects. Economies of scale were also found for
enhancement projects in the financial area (ex-
cluding banking), and for enhancement projects
concerning application featuring stand alone or
client server architectures.

Future work will focus on:
– investigating whether other factors may in-

fluence productivity and the existence of
economies or diseconomies of scale;

– carrying out analysis on additional datasets;
– using different measures of productivity, for

instance, based on different functional size
measures.
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