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Abstract
Introduction: Software engineering continuously suffers from inadequate software testing. The
automated prediction of possibly faulty fragments of source code allows developers to focus
development efforts on fault-prone fragments first. Fault prediction has been a topic of many
studies concentrating on C/C++ and Java programs, with little focus on such programming
languages as Python.
Objectives: In this study the authors want to verify whether the type of approach used in
former fault prediction studies can be applied to Python. More precisely, the primary objective
is conducting preliminary research using simple methods that would support (or contradict) the
expectation that predicting faults in Python programs is also feasible. The secondary objective
is establishing grounds for more thorough future research and publications, provided promising
results are obtained during the preliminary research.
Methods: It has been demonstrated [1] that using machine learning techniques, it is possible to
predict faults for C/C++ and Java projects with recall 0.71 and false positive rate 0.25. A similar
approach was applied in order to find out if promising results can be obtained for Python projects.
The working hypothesis is that choosing Python as a programming language does not significantly
alter those results. A preliminary study is conducted and a basic machine learning technique is
applied to a few sample Python projects. If these efforts succeed, it will indicate that the selected
approach is worth pursuing as it is possible to obtain for Python results similar to the ones obtained
for C/C++ and Java. However, if these efforts fail, it will indicate that the selected approach was
not appropriate for the selected group of Python projects.
Results: The research demonstrates experimental evidence that fault-prediction methods similar
to those developed for C/C++ and Java programs can be successfully applied to Python programs,
achieving recall up to 0.64 with false positive rate 0.23 (mean recall 0.53 with false positive rate
0.24). This indicates that more thorough research in this area is worth conducting.
Conclusion: Having obtained promising results using this simple approach, the authors conclude
that the research on predicting faults in Python programs using machine learning techniques is
worth conducting, natural ways to enhance the future research being: using more sophisticated
machine learning techniques, using additional Python-specific features and extended data sets.

Keywords: classifier, fault prediction, machine learning, metric, Naïve Bayes, Python,
quality, software intelligence

1. Introduction

Software engineering is concerned with the de-
velopment and maintenance of software sys-
tems. Properly engineered systems are reliable
and they satisfy user requirements while at the

same time their development and maintenance
is affordable.

In the past half-century computer scientists
and software engineers have come up with nu-
merous ideas for how to improve the discipline of
software engineering. Structural programming [2]
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restricted the imperative control flow to hierar-
chical structures instead of ad-hoc jumps. Com-
puter programs written in this style were more
readable, easier to understand and reason about.
Another improvement was the introduction of
an object-oriented paradigm [3] as a formal pro-
gramming concept.

In the early days software engineers perceived
significant similarities between software and civil
engineering processes. The waterfall model [4],
which resembles engineering practices, was widely
adopted as such regardless of its original descrip-
tion actually suggesting a more agile approach.

It has soon turned out that building software
differs from building skyscrapers and bridges, and
the idea of extreme programming emerged [5], its
key points being: keeping the code simple, review-
ing it frequently and early and frequent testing.
Among numerous techniques, a test-driven devel-
opment was promoted which eventually resulted
in the increased quality of produced software
and the stability of the development process
[6]. Contemporary development teams started
to lean towards short iterations (sprints) rather
than fragile upfront designs, and short feedback
loops, thus allowing customers’ opinions to pro-
vide timely influence on software development.
This meant creating even more complex software
systems.

The growing complexity of software resulted
in the need to describe it at different lev-
els of abstraction, and, in addition to this,
the notion of software architecture has devel-
oped. The emergence of patterns and frame-
works had a similar influence on the architec-
ture as design patterns and idioms had on pro-
gramming. Software started to be developed
by assembling reusable software components
which interact using well-defined interfaces, while
component-oriented frameworks and models pro-
vided tools and languages making them suitable
for formal architecture design.

However, a discrepancy between the archi-
tecture level of abstraction and the program-
ming level of abstraction prevailed. While the
programming phase remained focused on gen-
erating a code within a preselected (typically
object-oriented) programming language, the ar-

chitecture phase took place in the disconnected
component world. The discrepancies typically
deepened as the software kept gaining features
without being properly refactored, development
teams kept changing over time working under
time pressure with incomplete documentation
and requirements that were subject to frequent
changes. Multiple development technologies, pro-
gramming languages and coding standards made
this situation even more severe. The unification
of modelling languages failed to become a silver
bullet.

The discrepancy accelerated research on soft-
ware architecture and the automation of software
engineering. This includes the vision for the auto-
mated engineering of software based on architec-
ture warehouse and software intelligence [7] ideas.
The architecture warehouse denotes a repository
of the whole software system and software pro-
cess artefacts. Such a repository uniformly cap-
tures and regards as architectural all information
which was previously stored separately in design
documents, version-control systems or simply in
the minds of software developers. Software intel-
ligence denotes a set of tools for the automated
analysis, optimization and visualization of the
warehouse content [8, 9].

An example of this approach is combining
information on source code artefacts, such as
functions, with the information on software pro-
cess artefacts, such as version control comments
indicating the developers’ intents behind changes
in given functions. Such an integration of source
code artefacts and software process artefacts al-
lows to aim for more sophisticated automated
learning and reasoning in the area of software
engineering, for example obtaining an ability to
automatically predict where faults are likely to
occur in the source code during the software
process.

The automated prediction of possibly faulty
fragments of the source code, which allows de-
velopers to focus development efforts on the bug
prone modules first, is the topic of this research.
This is an appealing idea since, according to
a U.S. National Institute of Standards and Tech-
nology’s study [10], inadequate software testing
infrastructure costs the U.S. economy an esti-
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mated $60 billion annually. One of the factors
that could yield savings is identifying faults at
earlier development stages.

For this reason, fault prediction was the sub-
ject of many previous studies. As yet, software
researchers have concluded that defect predictors
based on machine learning methods are practi-
cal [11] and useful [12]. Such studies were usu-
ally focused on C/C++ and Java projects [13]
omitting other programming languages, such as
Python.

This study demonstrates experimentally that
techniques used in the former fault prediction
studies can be successfully applied to the software
developed in Python. The paper is organized as
follows: in section 2 the related works are re-
called; in section 3 the theoretic foundations and
implementation details of the approach being
subject of this study are highlighted; the main
results are presented in section 4, with conclu-
sions to follow in section 5. The implementation
of the method used in this study for predictor
evaluation is outlined in the Appendix, it can be
used to reproduce the results of the experiments.
The last section contains bibliography.

2. Related work

Software engineering is a sub-field of applied
computer science that covers the principles and
practice of architecting, developing and maintain-
ing software. Fault prediction is a software en-
gineering problem. Artificial intelligence studies
software systems that are capable of intelligent
reasoning. Machine learning is a part of artifi-
cial intelligence dedicated to one of its central
problems - automated learning. In this research
machine learning methods are applied to a fault
prediction problem.

For a given Python software project, the ar-
chitectural information warehoused in the project
repository is used to build tools capable of auto-
mated reasoning about possible faults in a given
source code. More specifically: (1) a tool able
to predict which parts of the source code are
fault-prone is developed; and (2) its operation is
demonstrated on five open-source projects.

Prior works in this field [1] demonstrated that
it is possible to predict faults for C/C++ and
Java projects with a recall rate of 71% and a false
positive rate of 25%. The tool demonstrated in
this paper demonstrates that it is possible to
predict faults in Python achieving recall rates
up to 64% with a false positive rate of 23% for
some projects; for all tested projects the achieved
mean recall was 53% with a false positive rate
of 24%.

Fault prediction spans multiple aspects of
software engineering. On the one hand, it is
a software verification problem. In 1989 Boehm
[14] defined the goal of verification as an an-
swer to the question Are we building the product
right? Contrary to formal verification methods
(e.g. model checking), fault predictors cannot be
used to prove that a program is correct; they can,
however, indicate the parts of the software that
are suspected of containing defects.

On the other hand, fault prediction is re-
lated to software quality management. In 2003
Khoshgoftaar et al. [15] observed that it can be
particularly helpful in prioritizing quality assur-
ance efforts. They studied high-assurance and
mission-critical software systems heavily depen-
dent on the reliability of software applications.
They evaluated the predictive performance of
six commonly used fault prediction techniques.
Their case studies consisted of software metrics
collected over large telecommunication system re-
leases. During their tests it was observed that pre-
diction models based on software metrics could
actually predict the number of faults in software
modules; additionally, they compared the perfor-
mance of the assessed prediction models.

Static code attributes have been used for the
identification of potentially problematic parts of
a source code for a long time. In 1990 Porter et
al. [16] addressed the issue of the early identifica-
tion of high-risk components in the software life
cycle. They proposed an approach that derived
the models of problematic components based on
their measurable attributes and the attributes of
their development processes. The models allowed
to forecast which components were likely to share
the same high-risk properties, such as like being
error-prone or having a high development cost.
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Table 1. Prior results of fault predictors using
NASA data sets [17]

Data set Language Recall False positive rate

PC1 C 0.24 0.25
JM1 C 0.25 0.18
CM1 C 0.35 0.10
KC2 C++ 0.45 0.15
KC1 C++ 0.50 0.15

In total: 0.36 0.17

Table 2. Prior results of fault predictors using
NASA data sets [1] (logarithmic filter applied)

Data set Language Recall False positive rate

PC1 C 0.48 0.17
MW1 C 0.52 0.15
KC3 Java 0.69 0.28
CM1 C 0.71 0.27
PC2 C 0.72 0.14
KC4 Java 0.79 0.32
PC3 C 0.80 0.35
PC4 C 0.98 0.29

in total: 0.71 0.25

In 2002, the NASA Metrics Data Program
Data sets were published [18]. Each data set
contained complexity metrics defined by Hal-
stead and McCabe, the lines of code metrics
and defect rates for the modules of a different
subsystem of NASA projects. These data sets
included projects in C, C++ and Java. Multiple
studies that followed used these data sets and
significant progress in this area was made.

In 2003 Menzies et al. examined decision
trees and rule-based learners [19–21]. They re-
searched a situation when it is impractical to
rigorously assess all parts of complex systems
and test engineers must use some kind of defect
detectors to focus their limited resources. They
defined the properties of good defect detectors
and assessed different methods of their gener-
ation. They based their assessments on static
code measures and found that (1) such defect
detectors yield results that are stable across many
applications, and (2) the detectors are inexpen-
sive to use and can be tuned to the specifics
of current business situations. They considered
practical situations in which software costs are
assessed and additionally assumed that better
assessment allowed to earn exponentially more
money. They pointed out that given finite bud-
gets, assessment resources are typically skewed
towards areas that are believed to be mission
critical; hence, the portions of the system that
may actually contain defects may be missed.
They indicated that by using proper metrics and
machine learning algorithms, quality indicators
can be found early in the software development
process.

In 2004 Menzies et al. [17] assessed other pre-
dictors of software defects and demonstrated that
these predictors are outperformed by Naïve Bayes
classifiers, reporting a mean recall of 0.36 with
a false positive rate of 0.17 (see Table 1). More
precisely they demonstrated that when learning
defect detectors from static code measures, Naïve
Bayes learners are better than entropy-based
decision-tree learners, and that accuracy is not
a useful way to assess these detectors. They also
argued that such learners need no more than
200–300 examples to learn adequate detectors,
especially when the data has been heavily strati-
fied; i.e. divided into sub-sub-sub systems.

In 2007 Menzies et al. [1] proposed applying
a logarithmic filter to features. The value of using
static code attributes to learn defect predictors
was widely debated. Prior work explored issues
such as the merits of McCabes versus Halstead
versus the lines of code counts for generating de-
fect predictors. They showed that such debates
are irrelevant since how the attributes are used
to build predictors is much more important than
which particular attributes are actually used.
They demonstrated that adding a logarithmic
filter resulted in improving recall to 0.71, keeping
a false positive rate reasonably low at 0.25 (see
Table 2).

In 2012 Hall et al. [13] identified and anal-
ysed 208 defect prediction studies published from
January 2000 to December 2010. By a system-
atic review, they drew the following conclusions:
(1) there are multiple types of features that can
be used for defect prediction, including static
code metrics, change metrics and previous fault
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metrics; (2) there are no clear best bug-proneness
indicators; (3) models reporting a categorical
predicted variable (e.g. fault prone or not fault
prone) are more prevalent than models report-
ing a continuous predicted variable; (4) various
statistical and machine learning methods can be
employed to build fault predictors; (5) industrial
data can be reliably used, especially data publicly
available in the NASA Metrics Data Program
data sets; (6) fault predictors are usually devel-
oped for C/C++ and Java projects.

In 2016 Lanza et al. [22] criticized the evalu-
ation methods of defect prediction approaches;
they claimed that in order to achieve substantial
progress in the field of defect prediction (also
other types of predictions), researchers should
put predictors out into the real world and have
them assessed by developers who work on a live
code base, as defect prediction only makes sense
if it is used in vivo.

The main purpose of this research is to extend
the range of analysed programming languages
to include Python. In the remaining part of the
paper it is experimentally demonstrated that it
is possible to predict defects for Python projects
using static code features with an approach sim-
ilar to (though not directly replicating) the one
taken by Menzies et al. [1] for C/C++ and Java.

3. Problem definition

For the remaining part of this paper let fault de-
note any flaw in the source code that can cause
the software to fail to perform its required func-
tion. Let repository denote the storage location
from which the source code may be retrieved
with version control capabilities that allow to
analyse revisions denoting the precisely specified
incarnations of the source code at a given point
in time. For a given revision K let K∼1 denote
its parent revision, K∼2 denote its grandpar-
ent revision, etc. Let software metric denote the
measure of a degree to which a unit of software
possesses some property. Static metrics can be
collected for software without executing it, in
contrast to the dynamic ones. Let supervised
learning denote a type of machine learning task

where an algorithm learns from a set of training
examples with assigned expected outputs [23].

The authors follow with the definition central
to the problem researched in this paper.
Definition 3.1. Let a classification problem de-
note an instance of a machine learning problem,
where the expected output is categorical, that is
where: a classifier is the algorithm that imple-
ments the classification; a training set is a set
of instances supplied for the classifier to learn
from; a testing set is a set of instances used for
assessing classifier performance; an instance is
a single object from which the classifier will learn
or on which it will be used, usually represented
by a feature vector with features being individual
measurable properties of the phenomenon being
observed, and a class being the predicted vari-
able, that is the output of the classifier for the
given instance.

In short: in classification problems classifiers
assign classes to instances based on their features.

Fault prediction is a process of predicting
where faults are likely to occur in the source
code. In this case machine learning algorithms
operate on instances being units of code (e.g. func-
tions, classes, packages). Instances are represented
by their features being the properties of the so-
urce code that indicate the source code unit’s
fault-proneness (e.g. number of lines of code, num-
ber of previous bugs, number of comments). The
features are sometimes additionally preprocessed;
an example of a feature preprocessor, called a log-
arithmic filter, substitutes the values of features
with their logarithms. For the instances in the
training set the predicted variable must be pro-
vided; e.g. the instances can be reviewed by ex-
perts and marked as fault-prone or not fault-prone.
After the fault predictor learns from the training
set of code units, it can be used to predict the
fault-proneness of the new units of the code. The
process is conceptually depicted in Figure 1.

A confusion matrix is a matrix containing the
counts of instances grouped by the actual and
predicted class. For the classification problem
it is a 2 × 2 matrix (as depicted in Table 3).
The confusion matrix and derived metrics can
be used to evaluate classifier performance, where
the typical indicators are as follows:
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to have predicted variable provided, for example they can be reviewed by experts and marked
as ‘fault-prone’ or ‘not fault-prone’. A fault predictor learns from the training set and, after
that, it can be used to predict defect-proneness of new code units.

Figure 1.1: Fault prediction problem (example).

1.4. Performance metrics

In this study, my goal was to develop a fault predictor capable of identifying a large part of
faults in a given project. For this reason, I measure recall, which is a fraction of fault-prone
instances that are labeled as such by the fault predictor. Labour intensive, manual code
inspections can find ≈ 60 percent of defects [38]. I aimed to reach similar level of recall.

Recall alone is not enough to properly assess performance of a fault predictor. A trivial
fault predictor that labels all functions as fault-prone achieves 100% recall. It is therefore a
good practice to report false positive rate among recall. For fault prediction problem, false
positive rate is a fraction of defect-free code units that are incorrectly labeled as fault-prone.
False positive rate of a fault predictor should be lower than its recall, as a predictor randomly
labeling p% of functions as fault-prone on average achieves a recall and false alarm rate of
p%.

13

Figure 1. Fault prediction problem (sample)

Table 3. Confusion matrix for classification problems

Actual/predicted Negative Positive

negative true negative (tn) false positive (fp)
positive false negative (fn) true postive (tp)

Definition 3.2. Let recall denote a fraction of
actual positive class instances that are correctly
assigned to positive class:

tp
tp + fn

Let precision denote a fraction of predicted
positive class instances that actually are in the
positive class:

tp
tp + fp

Let a false positive rate denote a fraction of
actual negative class instances that are incor-
rectly assigned to the positive class:

fp
fp + tn

Let accuracy denote a fraction of instances
assigned to correct classes:

tp + tn
tp + fp + tn + fn

The remaining part of this section contains
two subsections. In 3.1 the classification prob-
lem analysed in this study is stated in terms
typical to machine learning, that is instances:
what kinds of objects are classified; classes: into
what classes are they are divided; features: what
features are used to describe them; classifier:
which learning method is used. Section 3.2 fo-
cuses on the practical aspects of fault prediction
and describes the operational phases of the im-
plementation: identification of instances, feature
extraction, generation of a training set, training
and predicting.

3.1. Classification problem definition

3.1.1. Instances

The defect predictor described in this study op-
erates at the function level, which is a de facto
standard in this field [13]. As the first rule of
functions is that they should be small [24], it
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was assumed that it should be relatively easy for
developers to find and fix a bug in a function
reported as fault-prone by a function-level fault
predictor. Hence, in this research functions being
instances of problem definition were selected.

3.1.2. Classes

For simplicity of reasoning, in this research the
severity of bugs is not predicted. Hence, prob-
lem definition instances are labelled as either
fault-prone or not fault-prone.

3.1.3. Features

To establish defect predictors the code complex-
ity measures as defined by McCabe [25] and
Halstead [26] were used.

The following Halstead’s complexity mea-
sures were applied in this study as code metrics
for estimating programming effort. They esti-
mate complexity using operator and operand
counts and are widely used in fault prediction
studies [1].
Definition 3.3. Let n1 denote the count of dis-
tinct operators, n2 denote the count of distinct
operands, N1 denote the total count of oper-
ators, N2 denote the total count of operands.
Then Halstead metrics are defined as follows:
program vocabulary n = n1 +n2; program length
N = N1 + N2; calculated program length N̂ =
n1 log2 n1 + n2 log2 n2; volume V = N × log2 n;
difficulty D = n1/2×N2/n2; effort E = D × V ;
time required to program T = E/18 seconds;
number of delivered bugs B = V/3000.

In this research all the metrics defined above,
including the counters of operators and operands,
are used as features; in particular preliminary re-
search indicated that limiting the set of features
leads to results with lower recall.

In the study also The McCabe’s cyclomatic
complexity measure, being quantitative measure
of the number of linearly independent paths
through a program’s source code, was applied.
In terms of the software’s architecture graph,
cyclomatic complexity is defined as follows.
Definition 3.4. Let G be the flow graph be-
ing a subgraph of the software architecture

graph, where e denotes the number of edges
in G and n denotes the number of nodes in G.
Then cyclomatic complexity CC is defined as
CC(G) = e− n + 2.

It is worth noting that some researchers op-
pose using cyclomatic complexity for fault predic-
tion. Fenton and Pfleeger argue that it is highly
correlated with the lines of code, thus it carries
little information [27]. However, other researchers
used McCabe’s complexity to build successful
fault predictors [1]. Also industry keeps recog-
nizing cyclomatic complexity measure as useful
and uses it extensively, as it is straightforward
and can be communicated across the different
levels of development stakeholders [28]. In this
research the latter opinions are followed.

3.1.4. Classifier

In this study, the authors opted for using a Naïve
Bayes classifier. Naïve Bayes classifiers are a fam-
ily of supervised learning algorithms based on ap-
plying Bayes’ theorem with naïve independence
assumption between the features. In preliminary
experiments, this classifier achieved significantly
higher recall than other classifiers that were pre-
liminary considered. Also, as mentioned in sec-
tion 2, it achieved best results in previous fault
prediction studies [1].

It should be noted that for a class variable
y and features x1, . . . , xn, Bayes’ theorem states
the following relationship:

P (y|x1, . . . , xn) = P (y)P (x1, . . . , xn|y)
P (x1, . . . , xn) .

This relationship can be simplified using the
naïve independence assumption:

P (y|x1, . . . , xn) = P (y)
∏n

i=1 P (xi|y)
P (x1, . . . , xn) .

Since P (x1, . . . , xn) does not depend on y, then
the following classification rule can be used:

ŷ = arg max
y

P (y)
n∏

i=1
P (xi|y),

where P (y) and P (xi|y) can be estimated using
the training set. There are multiple variants of
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the Naïve Bayes classifier; in this paper a Gaus-
sian Naïve Bayes classifier is used which assumes
that the likelihood of features is Gaussian.

3.2. Classification problem
implementation

3.2.1. Identification of instances

A fault predicting tool must be able to encode
a project as a set of examples. The identification
of instances is the first step of this process. This
tool implements it as follows: (1) it retrieves a list
of files in a project from a repository (Git); (2)
it limits results to a source code (Python) files;
(3) for each file it builds an Abstract Syntax
Tree (AST) and walks the tree to find the nodes
representing source code units (functions).

3.2.2. Feature extraction

A fault predictor expects instances to be rep-
resented by the vectors of features. This tool
extracts those features in the following way. Hal-
stead metrics are derived from the counts of
operators and operands. To calculate them for
a given instance, this tool performs the following
steps: (1) it extracts a line range for a function
from AST; (2) it uses a lexical scanner to tokenize
function’s source; (3) for each token it decides
whether the token is an operator or an operand,
or neither. First of all the token type is used to
decide if it is an operator or operand, see Table 4.

If the token type is not enough to distinguish
between an operator and an operand; then if
tokenize.NAME indicates tokens are Python key-
words, they are considered operators; otherwise
they are considered operands. McCabe’s complex-
ity for functions is calculated directly from AST.
Table 5 presents effects of Python statements on
cyclomatic complexity score.

3.2.3. Training set generation

Creating a fault predicting tool applicable to
many projects can be achieved either by train-
ing a universal model, or by training predictors
individually for each project [29]. This research

adopts the latter approach: for each project it
generates a training set using data extracted
from the given project repository. Instances in
the training set have to be assigned to classes; in
this case software functions have to be labelled as
either fault-prone or not fault-prone. In previous
studies, such labels were typically assigned by
human experts, which is a tedious and expen-
sive process. In order to avoid this step, this
tool relies on the following general definition of
fault-proneness:
Definition 3.5. For a given revision, function
is fault-prone if it was fixed in one of K next
commits, where the choice of K should depend
on the frequency of commits.

The definition of fault proneness can be ex-
tended due to the fact that relying on a project
architecture warehouse enables mining informa-
tion in commit logs. For identification of commits
as bug-fixing in this research a simple heuris-
tic, frequently used in previous studies, was fol-
lowed [30,31].
Definition 3.6. Commit is bug-fixing if its log
contains any of the following words: bug, fix, is-
sue.

Obviously such a method of generating train-
ing data is based on the assumption that bug
fixing commits are properly marked and contain
only fixes, which is consistent with the best prac-
tices for Git [32]. It is worth noting that since this
might not be the general case for all projects, the
tool in its current format is not recommended for
predicting faults in projects that do not follow
these practices.

3.2.4. Training and predicting

Training a classifier and making predictions for
new instances are the key parts of a fault pre-
dictor. For these phases, the tool relies on Gaus-
sianNB from the Scikit-learn (scikit-learn.org)
implementation of the Naïve Bayes classifier.

4. Main result

The tool’s performance was experimentally as-
sessed on five arbitrarily selected open-source

scikit-learn.org
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Table 4. Operator and operand types

OPERATOR_TYPES = [ tokenize.OP, tokenize.NEWLINE, tokenize.INDENT, tokenize.DEDENT]

OPERAND_TYPES = [ tokenize.STRING, tokenize.NUMBER ]

Table 5. Contribution of Python constructs to cyclomatic complexity

Construct Effect Reasoning

if +1 An if statement is a single decision
elif +1 The elif statement adds another decision
else 0 Does not cause a new decision - the decision is at the if
for +1 There is a decision at the start of the loop
while +1 There is a decision at the while statement
except +1 Each except branch adds a new conditional path of execution
finally 0 The finally block is unconditionally executed
with +1 The with statement roughly corresponds to a try/except block
assert +1 The assert statement internally roughly equals a conditional statement
comprehension +1 A list/set/dict comprehension of generator expression is equivalent to a for loop
lambda +1 A lambda function is a regular function
boolean +1 Every boolean operator (and, or) adds a decision point

Table 6. Projects used for evaluation

Project Location at github.com

Flask /mitsuhiko/flask
Odoo /odoo/odoo
GitPython /gitpython-developers/GitPython
Ansible /ansible/ansible
Grab /lorien/grab

Table 7. Summary of projects used for evaluation:
projects’ revisions (Rv) with corresponding number
of commits (Co), branches (Br), releases (Rl) and

contributors (Cn)

Project Rv Cm Br Rl Cn

Flask 7f38674 2319 16 16 277
Odoo 898cae5 94106 12 79 379
GitPython 7f8d9ca 1258 7 20 67
Ansible 718812d 15935 34 76 1154
Grab e6477fa 1569 2 0 32

projects of different characteristics: Flask – a web
development micro-framework; Odoo – a collec-
tion of business apps; GitPython – a library
to interact with Git repositories; Ansible – an
IT automation system; Grab – a web scraping
framework. Analyzed software varies in scope and
complexity: from a library with narrow scope,
through frameworks, to a powerful IT automa-
tion platform and a fully-featured ERP system.
All projects are publicly available on GitHub (see
Table 6) and are under active development.

Data sets for evaluation were generated from
projects using method described in section 3,
namely: features were calculated for revision
HEAD∼ 100, where HEAD is a revision specified
in Table 7; functions were labeled as fault-prone

if they were modified in bug-fixing commit be-
tween revisions HEAD ∼100 and HEAD; data
set was truncated to files modified in any com-
mit between revisions HEAD ∼100 and HEAD.
Table 8 presents total count and incidence of
fault-prone functions for each data set.

As defined in section 3, recall and false pos-
itive rates were used to assess the performance
of fault predictors. In terms of these metrics,
a good fault predictor should achieve: high recall
– a fault predictor should identify as many faults
in the project as possible; if two predictors obtain
the same false positive rate, the one with higher
recall is preferred, as it will yield more fault-prone
functions; low false positive rate – code units
identified as bug prone require developer action;
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Table 8. Data sets used for evaluation

Project Functions Fault-prone % fault-prone

Flask 786 30 3.8
Odoo 1192 50 4.2
GitPython 548 63 11.5
Ansible 752 69 9.2
Grab 417 31 7.4

Table 9. Results for the best predictor

Project Recall False positive rate
mean SD mean SD

Flask 0.617 0.022 0.336 0.005
Odoo 0.640 < 0.001 0.234 0.003
GitPython 0.467 0.019 0.226 0.003
Ansible 0.522 < 0.001 0.191 0.002
Grab 0.416 0.010 0.175 0.004

In total: 0.531 < 0.03 0.240 < 0.03

the predictor with fewer false alarms requires less
human effort, as it returns less functions that are
actually not fault-prone.

It is worth noting that Zhang and Zhang [33]
argue that a good prediction model should actu-
ally achieve both high recall and high precision.
However, Menzies et al. [34] advise against using
precision for assessing fault predictors, as it is
less stable across different data sets than the false
positive rate. This study follows this advice.

For this research a stratified 10-fold cross val-
idation was used as a base method for evaluating
predicting performance. K-fold cross validation
divides instances from the training set into K
equal sized buckets, and each bucket is then used
as a test set for a classifier trained on the remain-
ing K− 1 buckets. This method ensures that the
classifier is not evaluated on instances it used
for learning and that all instances are used for
validation.

As bug prone functions were rare in the train-
ing sets, folds were stratified, i.e. each fold con-
tained roughly the same proportions of samples
for each label.

This procedure was additionally repeated 10
times, each time randomizing the order of ex-
amples. This step was added to check whether
predicting performance depends on the order of
the training set. A similar process was used by
other researchers (e.g. [1, 35]).
Main result 1. The fault predictor presented
in this research achieved recall up to 0.64 with
false positive rate 0.23 (mean recall 0.53 with
false positive rate 0.24, see Table 9 for details).

It is worth noting that: the highest recall was
achieved for project Odoo: 0.640; the lowest recall
was achieved for project Grab: 0.416; the lowest
false positive rate was achieved for project Grab:

0.175; the highest false positive rate was achieved
for project Flask: 0.336. For all data sets recall
was significantly higher than the false positive
rate. The results were stable over consecutive
runs; the standard deviation did not exceed 0.03,
neither for recall nor for the false positive rate.
Main result 2. This research additionally sup-
ports the significance of applying the logarithmic
filter, since the fault predictor implemented for
this research without using this filter achieved
significantly lower mean recall 0.328 with false
positive rate 0.108 (see Table 10 for details).
Table 10. Results for the best predictor without the

logarithmic filter

Project Recall False positive rate
mean SD mean SD

Flask 0.290 0.037 0.119 0.004
Odoo 0.426 0.009 0.132 < 0.001
GitPython 0.273 0.016 0.129 0.006
Ansible 0.371 0.012 0.068 < 0.001
Grab 0.219 0.028 0.064 0.005

In total: 0.328 0.108

It should be emphasised that similar signifi-
cance was indicated in the case of the detectors
for C/C++ and Java projects in [1].

5. Conclusions

In this study, machine learning methods were ap-
plied to a software engineering problem of fault
prediction. Fault predictors can be useful for
directing quality assurance efforts. Prior studies
showed that static code features can be used for
building practical fault predictors for C/C++
and Java projects. This research demonstrates
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that these techniques also work for Python, a pop-
ular programming language that was omitted in
previous research. The tool resulting from this
research is a function-level fault prediction tool
for Python projects. Its performance was exper-
imentally assessed on five open-source projects.
On selected projects the tool achieved recall up
to 0.64 with false positive rate 0.23, mean recall
0.53 with false positive rate 0.24. Leading fault
predictors trained on NASA data sets achieved
higher mean recall 0.71 with similar false posi-
tive rate 0.25 [1]. Labour intensive, manual code
inspections can find about 60% of defects [36].
This research is close to reaching a similar level
of recall. The performance of this tool can be
perceived as satisfactory, certainly proving the
hypothesis that predicting faults for Python pro-
grams has a similar potential to that of C/C++
and Java programs, and that more thorough
future research in this area is worth conducting.

5.1. Threats to validity

Internal There are no significant threats to in-
ternal validity. The goal was to take an approach
inspired by the experiments conducted by Men-
zies et al. [1] The experimental results for Python
demonstrated to be consistent with the ones re-
ported for C/C++ and Java, claiming that: static
code features are useful for the identification of
faults, fault predictors using the Naïve Bayes
classifier perform well, however, using a logarith-
mic filter is encouraged, as it improves predicting
performance. Using other methods of extracting
features used for machine learning (i.e. Python
features which are absent in C/C++ or Java),
could potentially lead to a better performance
of the tool.
External There are threats to external validity.
The results obtained in this research are not valid
for generalization from the context in which this
experiment was conducted to a wider context.
More precisely, the range of five arbitrarily se-
lected software projects provides experimental
evidence that this direction of research is worth
pursuing; however, by itself it does not provide
enough evidence for general conclusions and more

thorough future research is required. Also the tool
performance was assessed only in terms of recall
and false positive rates, it has not been actually
verified in practice. It is thus possible that the
tool current predicting ability might prove not
good enough for practical purposes and its fur-
ther development will be required. Therefore, the
conclusion of the universal practical applicability
of such an approach cannot be drawn yet.
Construct There are no significant threats to
construct validity. In this approach the authors
were not interested in deciding whether it is a well
selected machine learning technique, project at-
tributes used for learning or the completeness
of fault proneness definition for the training-set
that were mainly contributing to the tool perfor-
mance. The important conclusion was that the
results obtained do not exclude but support the
hypothesis, that automated fault prediction in
Python allows to obtain accuracy comparable to
the results obtained for other languages and to
human-performed fault prediction, hence they
encourage more research in this area. Thus, the
results provided in this paper serve as an example
and the rough estimation of predicting perfor-
mance expected nowadays from fault predictors
using static code features. There are few addi-
tional construct conditions worth mentioning.
As discussed in section 3, the tool training set
generation method relies on project change logs
being part of the project architecture warehouse.
If bug-fixing commits are not properly labelled,
or contain not only fixes, then the generated data
sets might be skewed. Clearly, the performance of
the tool can be further improved, as it is not yet
as good as the performance of fault predictors for
C/C++ and Java; the current result is a good
start for this improvement. Comparing the per-
formance of classifiers using different data sets is
not recommended, as predictors performing well
on one set of data might fail on another.
Conclusion There are no significant threats to
conclusion validity. Fault recall (detection rate)
alone is not enough to properly assess the per-
formance of a fault predictor (i.e. a trivial fault
predictor that labels all functions as fault-prone
achieves total recall), hence the focus on both re-
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call (detection) and false positives (false alarms).
Obviously the false positive rate of a fault predic-
tor should be lower than its recall, as a predictor
randomly labelling p of functions as fault-prone
on average achieves a recall and false positive
rate of p. This has been achieved in this study,
similarly to [1]. From the practical perspective, in
this research the goal recognizing automatically
as many relevant (erroneous) functions as possi-
ble, which later should be revised manually by
programmers; that is the authors were interested
in achieving high recall and trading precision
for recall if needed. From the perspective of this
research goals, evaluating classifiers by measures
other than those used in [1] (i.e. using other
elements in the confusion matrix) was not di-
rectly relevant for the conclusions presented in
this paper.

5.2. Future research

Additional features As mentioned in sec-
tion 3, static code metrics are only a subset of
features that can be used for training fault pre-
dictors. In particular, methods utilizing previous
defect data, such as, [37] can also be useful for
focusing code inspection efforts [38, 39]. Change
data, such as code churn or fine-grained code
changes were also reported to be significant bug
indicators [40–42]. Adding support for these fea-
tures might augment their fault predicting capa-
bilities. Moreover, further static code features,
such as object oriented metrics defined by Chi-
damber and Kemerer [43] can be used for bug
prediction [32,44]. With more attributes, adding
a feature selection step to the tool might also
be beneficial. Feature selection can also improve
training times, simplify the model and reduce
overfitting.
Additional algorithms The tool uses a Naïve
Bayes classifier for predicting software defects.
In preliminary experiments different learning al-
gorithms were assessed, but they performed sig-
nificantly worse. It is possible that with more fea-
tures supplied and fine-tuned parameters these al-
gorithms could eventually outperform the Naïve
Bayes classifier. Prediction efficiency could also
be improved by including some strategies for

eliminating class imbalance [45] in the data sets.
Researchers also keep proposing more sophisti-
cated methods for identifying bug-fixing commits
than the simple heuristic used in this research, in
particular high-recall automatic algorithms for
recovering links between bugs and commits have
been developed. Integrating algorithms, such
as [46] into a training set generation process could
improve the quality of the data and, presumably,
tool predicting performance.
Additional projects In preliminary experi-
ments, a very limited number of Python projects
were used for training and testing. Extending the
set of Python projects contributing to the train-
ing and testing sets is needed to generalize the
conclusions. The selection of additional projects
should be conducted in a systematic manner.
A live code could be used for predictor evalu-
ation [22], which means introducing predictors
into the development toolsets used by software
developers in live software projects. The next
research steps should involve a more in-depth
discussion about the findings on the Python pro-
jects, in particular identification why in some
projects the proposed techniques have a better
performance than in other projects.
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Appendix

The implementation of the method used in this study for predictor evaluation is outlined below, it
can be used to reproduce results of the experiments.

1 # imports available on github.com
2 import git
3 import numpy as np
4 from sklearn import cross_validation
5 from sklearn import metrics
6 from sklearn import naive_bayes
7 from sklearn import utils
8 from scary import dataset
9 from scary import evaluation

10

11 def run():
12 projects = [
13 "path/to/flask",
14 "path/to/odoo",
15 "path/to/GitPython",
16 "path/to/ansible",
17 "path/to/grab",
18 ]
19 classifier = naive_bayes.GaussianNB()
20 EvaluationRunner(projects, classifier).evaluate()
21

22 class EvaluationRunner:
23 def __init__(self, projects, classifier, from_revision="HEAD~100", to_revision="HEAD",
24 shuffle_times=10, folds=10):
25 self.projects = projects
26 self.classifier = classifier
27 self.from_revision = from_revision
28 self.to_revision = to_revision
29 self.shuffle_times = shuffle_times
30 self.folds = folds
31

32 def evaluate(self):
33 total_score_manager = self.total_score_manager()
34 for project in self.projects:
35 project_score_manager = self.project_score_manager()
36 training_set = self.build_training_set(project)
37 for data, target in self.shuffled_training_sets(training_set):
38 predictions = self.cross_predict(data, target)
39 confusion_matrix = self.confusion_matrix(predictions, target)
40 total_score_manager.update(confusion_matrix)
41 project_score_manager.update(confusion_matrix)
42 self.report_score(project, project_score_manager)
43 self.report_score("TOTAL", total_score_manager)
44

45 def project_score_manager(self):
46 return ScoreManager.project_score_manager()
47

48 def total_score_manager(self):
49 return ScoreManager.total_score_manager()
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50

51 def build_training_set(self, project):
52 repository = git.Repo(project)
53 return dataset.TrainingSetBuilder.build_training_set(repository,
54 self.from_revision, self.to_revision)
55

56 def shuffled_training_sets(self, training_set):
57 for _ in range (self.shuffle_times):
58 yield utils.shuffle(training_set.features, training_set.classes)
59

60 def cross_predict(self, data, target):
61 return cross_validation.cross_val_predict(self.classifier, data, target,
62 cv=self.folds)
63

64 def confusion_matrix(self, predictions, target):
65 confusion_matrix = metrics.confusion_matrix(target, predictions)
66 return evaluation.ConfusionMatrix(confusion_matrix)
67

68 def report_score(self, description, score_manager):
69 print(description)
70 score_manager.report()
71

72 class ScoreManager:
73 def __init__(self, counters):
74 self.counters = counters
75

76 def update (self, confusion_matrix):
77 for counter in self.counters:
78 counter.update(confusion_matrix)
79

80 def report(self):
81 for counter in self.counters:
82 print(counter.description, counter.score)
83

84 @classmethod
85 def project_score_manager(cls):
86 counters = [MeanScoreCounter(RecallCounter),
87 MeanScoreCounter(FalsePositiveRateCounter),]
88 return cls(counters)
89

90 @classmethod
91 def total_score_manager(cls):
92 counters = [RecallCounter(),
93 FalsePositiveRateCounter(),]
94 return cls(counters)
95

96 class BaseScoreCounter:
97 def update (self, confusion_matrix):
98 raise NotImplementedError
99

100 @property
101 def score (self):
102 raise NotImplementedError
103
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104 @property
105 def decription(self):
106 raise NotImplementedError
107

108 class MeanScoreCounter(BaseScoreCounter):
109 def __init__(self, partial_counter_class):
110 self.partial_counter_class= partial_counter_class
111 self.partial_scores = []
112

113 def update(self, confusion_matrix):
114 partial_score = self.partial_score(confusion_matrix)
115 self.partial_scores.append(partial_score)
116

117 def partial_score(self, confusion_matrix):
118 partial_counter = self.partial_counter_class()
119 partial_counter.update(confusion_matrix)
120 return partial_counter.score
121

122 @property
123 def score (self):
124 return np.mean(self.partial_scores), np.std(self.partial_scores)
125

126 @property
127 def description(self):
128 return "mean␣{}".format(self.partial_counter_class().description)
129

130 class RecallCounter(BaseScoreCounter):
131 def __init__(self):
132 self.true_positives = 0
133 self.false_negatives = 0
134

135 def update(self, confusion_matrix):
136 self.true_positives += confusion_matrix.true_positives
137 self.false_negatives += confusion_matrix.false_negatives
138

139 @property
140 def score(self):
141 return self.true_positives/(self.true_positives+self.false_negatives)
142

143 @property
144 def description(self):
145 return "recall"
146

147 class FalsePositiveRateCounter(BaseScoreCounter):
148 def __init__(self):
149 self.false_positives = 0
150 self.true_negatives = 0
151

152 def update (self, confusion_matrix):
153 self.false_positives += confusion_matrix.false_positives
154 self.true_negatives += confusion_matrix.true_negatives
155

156 @property
157 def score (self):
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158 return self.false_positives/(self.false_positives+self.true_negatives)
159

160 @property
161 def description(self):
162 return "false␣positive␣rate"
163

164 if __name__ == "__main__":
165 run ()
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