e-Informatica Software Engineering Journal, Volume 13, Issue 1, 2019, pages: 203—226, DOI 10.5277/e-Inf190106

Measuring (Goal-Oriented Requirements Language

Actor Stability

Jameleddine Hassine*, Mohammad Alshayeb*
*Information and Computer Science Department, King Fahd University of Petroleum and Minerals

jhassine@kfupm.edu.sa, Alshayeb@kfupm.edu.sa

Abstract

Background: Goal models describe interests, preferences, intentions, desired goals and strategies
of intervening stakeholders during the early requirements engineering stage. When capturing the
requirements of real-world systems such as socio-technical systems, the produced goal models evolve
quickly to become large and complex. Hence, gaining a sufficient level of understanding of such
goal models, to perform maintenance tasks, becomes more challenging. Metric-based approaches
have shown good potential in improving software designs and making them more understandable
and easier to maintain.

Aim: In this paper, we propose a novel metric to measure GRL (Goal-oriented Requirements
Language) “actor stability” that provides a quantitative indicator of the actor maintainability.
Method: We first, validate the proposed metric theoretically then empirically using a case study
of a GRL model describing the fostering of the relationship between the university and its alumni.
Results: The proposed actor stability metric is found to have significant negative correlation with
the maintenance effort of GRL models.

Conclusions: Our results show that the proposed metric is a good indicator of GRL actors’ stability.

Keywords: Goal models, Goal-oriented Requirements Language (GRL), stability, metrics,

maintenance

1. Introduction

Software systems must evolve to meet customer
needs, business environment, technologies and
regulations. Several studies have shown that re-
quirements evolution can significantly affect over-
all project costs and schedule [1,2]. Require-
ments evolution management has emerged as
one important topic in requirements engineer-
ing research [3]. ISO/IEC 25010 [4] specified
eight characteristics for software product exter-
nal quality, one of which is maintainability which
contains modifiability is a sub-characteristic.
Modifiability is a combination of changeabil-
ity and stability. Stability is the ability of the
software to remain stable when modified. Main-
tainable software tends to have a better estima-
tion of the change cost and better prediction of
the resulting quality [1].

Submitted: 11 Nov 2018; Revised: 26 Sep 2019;

Accepted: 26 Sep 2019;

Goal models are used in order to make
sure that stakeholders’ interests and priorities
are met in the early requirements engineer-
ing stages. Goal modeling is an effective ap-
proach to represent and reason about stake-
holders’ goals using models. Over the past two
decades, numerous goal-oriented modeling lan-
guages and approaches have been introduced
(e.g., i* [5], NFR Framework [6], Keep All Ob-
jects Satisfied (KAOS) [7], TROPOS [8] and the
Goal-oriented Requirements Language (GRL) [9]
part of the ITU-T standard User Requirements
Notation (URN)). In addition, there were few
attempts to propose domain-specific languages,
such as DSML/GoalML [10], DSL/KAOS [11]
and ARMOR/KAOS [12].

As goal models grow in size and complex-
ity (e.g., large socio-technical systems having
many interdependent stakeholders), they be-

Available online: 30 Oct 2019


http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_13/eInformatica2019Art06.pdf

204

Jameleddine Hassine, Mohammad Alshayeb

come difficult to maintain. To address this chal-
lenge, numerous goal-oriented metrics-based tech-
niques [13-18] have been proposed. These tech-
niques vary in their targeted notation, their aim,
their selected analysis (e.g., quantitative, qual-
itative, hybrid) and their targeted scope (e.g.,
global (targeting the entire goal model), local
(focusing on one specific actor or path)).

Goals are known to be much more stable than
requirements [19,20]. More specifically, the higher
level the goal is, the more stable it is [19]. However,
in a fast-changing world, goal models are deemed
to evolve to meet constant changes of business
needs and stakeholders’ intentions. A goal model
requires maintenance when there is a shift in
stakeholder’s motivations, e.g., adoption of new
goals or ceasing to support existing goals. Goals
may become undesirable or infeasible to realize,
e.g., goals might become too costly to realize or
non-compliant with new regulations [21]. Hence,
an outdated representation of stakeholders’ inten-
tions can easily lead to systems that do not fulfill
their purpose. According to a recent survey by
Horkoff et al. [22], interest in adaptation/variabili-
ty /evolution of goal models has increased recently
compared to other goal-oriented requirements en-
gineering (GORE) topics. Although, there is a vari-
ety of empirical evaluations in the area of modeling
languages in general (assessing different qualities,
e.g., syntactic, semantic, pragmatic, complete-
ness, comprehensibility, complexity, etc.), the
majority of the studies in GORE [23] focus on
providing empirical evidence of the applicability
of goal-oriented notations for specific domains [24],
such as collaborative systems [25], socio-technical
systems [26] and knowledge transfer [27].

Most of the existing work that addresses
the evolution of goal models, focuses mainly on
handling inconsistencies (such as tolerating, di-
agnosing and tracking inconsistencies) [28-31]
and modeling and analysis of evolution over
time [32, 33]. However, both approaches intro-
duced in [32] and [33] consider only the evolu-
tion of goals’ satisfactions values (qualitative and
quantitative) and do not discuss the evolution of
the goal model structure.

Measuring stability provides better estima-
tion of the cost and effort and better prediction of

the software quality [34]. Instable software tends
to increase maintenance cost; in some cases, the
maintenance cost may reach up to 75% of the
software total cost [1,2]. Stable software, on the
other hand, reduces maintenance cost. We believe
that the design of a GRL actor stability metric
would provide information about GRL actors and
their evolution; which will provide control over
actor-specific change amplification. Furthermore,
measuring GRL actor stability gives an indicator
of the GRL actor and model maintainability since

stability is directly related to maintainability [4].
The main motivation of this paper is to pro-

pose a metric to support the maintainability of
goal models during the requirements modeling
and analysis phase. In particular, we focus on
measuring quantitatively the stability of actors
across many versions of the goal model. This
paper provides the following contributions:

— Propose a novel metric to measure GRL actor
stability. To the best of our knowledge, no
goal-based stability metrics were introduced
in the literature.

— Validate theoretically and empirically the pro-
posed GRIL-based actor stability metric.

— Provide a foundation for systematic assess-
ment of GRL actor stability with respect to
the many changes undergone by GRL models
during the development life cycle, e.g., model
refinement, validation, and maintenance.
The remainder of this paper is organized as

follows. In Section 2, we review the current state

of the art. Section 3 introduces briefly the GRL
language. Our proposed actor stability metric is
presented in Section 4. In Section 5, we provide
theoretical and empirical validation of the pro-
posed metric and we discuss the possible threats
to validity. Section 6 discusses the interpretation
and benefits of the proposed metrics. Finally,
conclusions and future work are presented in
Section 7.

2. Related Work

In this section, we review software stability met-
rics, goal models and requirements stability mea-
surements.



Measuring Goal-Oriented Requirements Language Actor Stability

205

2.1. Software stability

Researchers proposed stability metrics at sys-
tem [35-39], model [40], architecture [41-44] and
class levels [38,45-47]. Classes in object-oriented
(OO) systems form the basic building blocks and
thus they are the most related stability metrics to
the metric proposed in this paper as we propose
a stability metric at actor level, which is also the
basic building block for GRL models, hence, we
discuss these metrics in details.

Li et al. [38] proposed the “Class Implementa-
tion Instability”(CII) metric to measure the evo-
lutionary change in the implementation of a class.
The authors in [38] measure class instability by
measuring the lines of code added, deleted, or
modified between two versions. CII metric is not
normalized; therefore, its value has no upper or
lower limit. Grosser et al. [45] proposed a met-
ric to measure the class stability based on the
method interface; the class is considered stable
if the method interfaces are unchanged between
versions. Hence, the metric measures the number
of methods whose interface (signature) has not
been changed between two versions regardless
of the changes occurred to the method bodies.
According to Grosser et al. [45], the class is fully
stable when all method signatures available in
one version are available in the other version.
On the other hand, the class is considered fully
instable, when none of the method signatures re-
main unchanged between the two versions. This
metric is normalized and yields a value between
0 and 1. Ratiu et al. [46] proposed a class sta-
bility metric that uses the number of methods
in a class between two versions. According to
Ratiu et al. [46] the class can be either stable
or instable i.e., the value of the metric can be
either 0 for instable or 1 for stable classes. A class
is stable when the number of methods between
two versions remain is unchanged; the class is
instable when there is a change in the number
of methods between two versions. Alshayeb et
al. [47] proposed a Class Stability Metric (CSM)
to measure Object-Oriented (OO) class stability.
The authors [47] analyzed the OO class proper-
ties and identified eight class properties that af-
fect class stability. These properties are: method

access-level, method code, method signature,
class variable access-level, class variable, class
access-level, class interface name and inherited
class name. For each property, the authors [47]
measure the extent of change between two ver-
sions by measuring the unchanged properties.
The class stability is measured by aggregating
the individual stability values for all the proper-
ties. CSM is normalized and hence the value of
the metric can be between 0 (fully instable) and
1 (fully stable).

There are three approaches to defining soft-
ware systems’ stability for model or code levels.
The first approach is that the software system
is stable if no changes are made to the software
artifact being measured. Thus, the software is
fully stable when the original and the subse-
quent version are identical [48]. The second ap-
proach considers the software system as stable
if it avoids addition of new artifacts or modifica-
tion of existing ones, thus deletion is considered
as modification [34]. The third approach allows
additions to the existing software system. Thus,
the software is considered fully stable when there
are no changes to the existing artifacts regard-
less of the additions that might be made to the
system [49]. In this paper, we adopt the third
stability definition when defining the proposed
metric.

2.2. Goal models measurement

There is a growing body of literature on
goal-oriented metrics [5,7,13-16,18,50-52]. Kaiya
et al. [17] proposed quality metrics (introduced
as part of the AGORA (Attributed Goal-oriented
Requirements Analysis) approach) to measure
correctness, unambiguity, consistency, verifiabil-
ity, modifiability, traceability, and completeness
of AND-OR goal graphs according to a stake-
holder preference matrix. The proposed metrics
are global and do not consider dependencies be-
tween intervening actors (used to describe stake-
holders and systems in goal models). Franch and
Maiden [13] introduced metrics to quantify i*
Strategic Dependencies (SD) [5] models, that can
be used to help choosing the most appropriate
Commercial Off-The-Shelf (COTS) components.



206

Jameleddine Hassine, Mohammad Alshayeb

These quantitative metrics are based on a catego-
rization of the different types of strategic depen-
dencies into duplicated and non-duplicated, hid-
den and non-hidden, resource and non-resource,
etc. The resulting metrics are then applied to
measure six system properties, namely, Diversity,
Vulnerability, Packaging, Self-Containment, Uni-
formity, and Connectivity. In Franch et al. [14],
i* SD actors and dependencies are categorized
into sorts, e.g., human/computer, goal/ task,
etc. The proposed framework [14] implements
three structural metrics, aiming to assess sys-
tem properties, such as privacy, accuracy and
efficiency. The proposed framework supports
both global and local metrics and takes into ac-
count actor and dependency weights (i.e., im-
portance values). Later, the approaches intro-
duced in [13] and [14], have been applied by
Grau et al. [16, 18] to assess the effectiveness
of alternative architectures. In order to evalu-
ate an architectural property, the authors pro-
posed a coupling metric over i* SD models. Cou-
pling is measured by the number of incoming and
outgoing dependencies (multiplied by a weight
factor relative to each actor) an actor is asso-
ciated with. To measure model predictability,
Franch [15] has proposed a framework that con-
siders both i* SD and SR (Strategic Rationale)
models. The predictability metric, expressed in
Object Constraint Language (OCL), can be lo-
cal or global and may require expert judgment.
More recently, Franch [51] has proposed a method
based on system domain analysis for defining
metrics in i* using the iMDF framework. Es-
pada et al. [52] proposed quantitative metrics
for evaluating the complexity and the complete-
ness of KAOS [7] goal models. The authors used
the Goal-Question-Metric (GQM) approach [50].
However, their approach does not consider de-
pendencies between KAOS agents. Gralha et
al. [563] proposed a set of metrics to measure
and analyze complexity and completeness of
goal models. In the GRL [9] context, Hassine
and Alshayeb [54], proposed a structural metric
to measure actor external dependencies (AED).
Furthermore, jUCMNav [55] tool (GRL mod-
eling and analysis framework) captures many
simple structural GRL metrics (e.g., number of

actors, goals, tasks, intentional elements, inten-
tional links, etc.) and allows for the definition
of additional metrics using OCL.

In this paper, we extend the set of existing
GRL metrics [54,55] by introducing a novel met-
ric to measure GRL actor stability. Our proposed
metric is (1) structural in the sense that it de-
pends only on the connectivity of a given GRL
model and not on its semantic, (2) local since
it is applied at the actor level rather than the
entire GRL model, and (3) quantitative since
it measures the degree of actor stability with
respect to changes a GRL model can undergo,
e.g., model refinement and maintenance.

2.3. Requirements stability measurement

Many metrics have been proposed to understand
the sources, frequencies and types of require-
ments evolution. Lam and Shankararaman [56]
proposed a change volatility metric to measure
the number or proportion of changes, within
a specified period. Change volatility [56] helps
assess the stability of a system. A high-risk re-
quirement may be characterized by a high-level
change volatility. Anderson and Felici [57] pro-
posed the Requirements Maturity Index (RMI),
a metric used to quantify the readiness of require-
ments. The RMI is computed as follows:

RT — RC

RMI =
RT

where RT is the total number of software re-
quirements in the current release and RC' is
the number of requirements changes, i.e., added,
deleted or modified requirements, allocated to
the current release. It is worth noting that RMI
metric is sensitive to requirements change in suc-
cessive releases, but it does not take into account
historical information about change. To address
this issue Anderson and Felici [58] refined RMI
by introducing the Requirements Stability In-
dex (RSI) (a metric used to measure the extent
of requirements stability and the frequency of
changes to requirements) and the Historical Re-
quirements Maturity Index (HRMI). RSI takes
into account CRC (the cumulative number of



Measuring Goal-Oriented Requirements Language Actor Stability

207

requirements changes) and is defined as follows:

RT — CRC
| = ————
RS RT
HRMI takes into consideration ARC (the av-
erage number of requirement changes) and is
defined as follows:

RT — ARC

HRMI = Ry
The authors [57] claimed that HRMI are less
sensitive than RMI to changes over consecutive
releases. Stark et al. [58] characterized require-
ments volatility as additions to the delivery con-
tent, deletions from the delivery content and
changes in scope to an agreed-upon requirement.
More recently, AbuHassan and Alshayeb [40]
proposed a suite of stability metrics for UML
use case models, UML sequence diagrams and
UML class diagrams. However, in the context
of goal-oriented languages and to the best of
our knowledge, no stability metrics have been
proposed. In this paper, we aim to fill this gap by
proposing a novel metric to measure GRL “actor
stability” that provides a quantitative indicator
of the actor maintainability, allowing for a better

estimation of GRL models change.

3. GRL in a nutshell

The Goal-oriented Requirements Language
(GRL) [9] is an ITU-T standard visual goal mod-
eling language used to model stakeholders’ in-
tentions, business goals and non-functional re-
quirements. GRL is based on i* [5] and the NFR
framework [6]. In what follows, we briefly intro-
duce the different GRL constructs.

3.1. GRL actors

Actor

An actor (illustrated as .¥), where the name of
the actor reference is shown as a label next to
a stickman icon on the top-left side of the dashed
ellipse) represents an entity that has intentions
and carries out actions to achieve its goals by

exercising its know-how. Actors are often used
to represent stakeholders as well as systems.

3.2. GRL intentional elements and
indicators

There are five different types of intentional ele-

ments:

1. Goal (illustrated as CO): A (hard) Goal (ei-
ther a business goal or a system goal) is a con-
dition or state of affairs in the world that the
stakeholders would like to achieve.

2. Softgoal (illustrated as COD): is a condition
or state of affairs in the world that the ac-
tor would like to achieve, but there are no
clear-cut criteria for whether the condition
can be entirely achieved. However, it can be
sufficiently achieved. Softgoals are often used
to describe non-functional aspects such as
availability, security, etc.

3. Task (illustrated as <O): states a particular
way of performing something. Tasks can be
considered as the operations, processes, data
representations, structuring and constraints
used to meet the needs stated in the goals
and softgoals of the target system.

4. Resource (illustrated as CJ): is a physical or
informational entity.

5. Belief (illustrated as C): used to represent
design rationale. Intentional elements may be
included in actor definitions and they can be
linked to each other in different ways. In ad-
dition to intentional elements, GRL defines

a qualitative or quantitative real-world mea-
surement.

3.3. GRL links

There are five types of GRL links [9]:

1. Contributions (illustrated as —s): describe
how a source intentional element or source
indicator contributes to the satisfaction of
a destination intentional element. A contri-
bution has a qualitative level and an optional
quantitative value.

2. Correlations (illustrated as - >): express
knowledge about interactions between inten-



208

Jameleddine Hassine, Mohammad Alshayeb

tional elements. A correlation link is similar

to a contribution link except that the correla-

tion is not an explicit desire but is a side-effect
and that correlations are only used with in-
tentional elements and not with indicators.

3. Dependencies (illustrated as —»—): enable
reasoning about how actor definitions depend
on each other to achieve their desired goals.
It describes how a source actor (the depen-
der) depends on a destination actor (the de-
pendee).

4. Decompositions (illustrated as —): provide
the ability to define what source intentional
elements need to be satisfied in order for a tar-
get intentional element to be satisfied. There
is no ordering between the decomposing ele-
ments. A decomposition link can be one of
the following;:

— AND decomposition: The satisfaction of
each of the sub-intentional elements is
necessary to achieve the target.

—  XOR decomposition: The satisfaction of
one and only one of the sub-intentional el-
ements is necessary to achieve the target.

—  OR decomposition: The satisfaction of
one of the sub-intentional elements is suf-
ficient to achieve the target, but many
sub-intentional elements can be satisfied.

5. Belief links (illustrated as ----): used to con-
nect beliefs to GRL intentional elements.

3.4. Qualitative contributions

The qualitative contribution of a source inten-
tional element or indicator to a destination inten-
tional element can be one of the following values
based on the degree (positive or negative) and
sufficiency of the contribution to the satisfaction
of the destination intentional element:

1. Make (illustrated as +): the contribution is
positive and sufficient.

2. Help (illustrated as ¥): the contribution is
positive but not sufficient.

3. SomePositive (illustrated as +): the contribu-
tion is positive, but the extent of the contri-
bution is unknown.

4. Unknown (no symbol on the link): there is
some contribution, but the extent and the de-

gree (positive or negative) of the contribution

is unknown.

5. SomeNegative (illustrated as =): the contri-
bution is negative, but the extent of the con-
tribution is unknown.

6. Hurt (illustrated as =): the contribution is
negative but not sufficient.

7. Break (illustrated as =): the contribution of
the contributing element is negative and suf-
ficient.

It is worth noting that GRL is permissive in
how intentional elements can be linked to each
other, contrary to i* [5] which imposes restrictive
usage of relationships (e.g., a contribution link
cannot have a task as a destination).

For a detailed description of the GRL lan-
guage, the reader is invited to consult the
URN (User Requirements Notation) ITU-T stan-
dard [9].

3.5. GRL example

Figure 1 illustrates a GRL model composed of one
GRL actor, called Commuter, who wants to mini-
mize the time lost during a commute (modeled as
a GRL goal “Minimize time lost by commute”).
Two goals “Work during commute” and “Mini-
mize travel time” contribute positively (through
two Help contributions) to the achievement of
the upper goal. While taking public transporta-
tion (represented as a goal called “take public
transportation”) contributes positively (through
a Help contribution) to the achievement of the goal
“Work during commute”, it contributes negatively
(through a Hurt contribution) to the achievement
of the goal “Minimize travel time”. Similarly, tak-
ing private transportation (represented as a goal
called “take private transportation”) contributes
positively (through a Help contribution) to the
achievement of the goal “Minimize travel time” ,
it contributes negatively (through a Hurt con-
tribution) to the achievement of the goal “Work
during commute”. When it comes to use public
transportation, the commuter has the choice (illus-
trated as an OR decomposition link) between tak-
ing the regular bus (i.e., illustrated as task “Take
regular bus”) or taking the express bus (i.e., illus-
trated as task “Take express bus”). Furthermore,



Measuring Goal-Oriented Requirements Language Actor Stability

209

Work during
commute

Take publi
transportatio
X

vy
e,
ay,
.,
o,

T

Minirnize travel
time

g,

-"-, Take Take
*, \ reqular bus express bus

Take own
car

%,
*
*
a

.
¥,
L
o,
tia,

Figure 1. GRL commuter example

two options (illustrated as an OR decomposition
link) are available to the commuter when it comes
to the use of the private transportation: take his
own car (represented as task “Take own car”) or
hitch a ride (represented as task “Hitch a ride”).

4. Measuring GRL actor stability

In this section, we propose a novel metric to
measure GRL actor stability and we provide an
example to illustrate its calculation.

4.1. GRL Change Unit (GCU)

Conducting a maintenance task on a GRL model
generates a new version (version i is the current
version and version i 4+ 1 is the modified ver-
sion). To quantitatively assess the magnitude of
a change, we should characterize the basic units
(GRL sub-models) that are subject to change.
We define the “GRL Change Unit (GCU)”, as
being:

1. An intentional element combined with its
outgoing link (with or without a quantitative
value). It is worth noting that a GCU may
have an outgoing link that crosses the bound-
ary of the containing actor to reach another
intentional element contained within another
actor.

Or
2. An intentional element that does not have

any outgoing links.

Links are not unique while intentional el-
ements are unique within an actor, therefore,
many similar links may exist in the actor model
and hence we will not be able to identify which
links remain unchanged. Therefore, we combine
the intentional element with its outgoing link
to form a GCU. Figure 2a illustrates a generic
GRL example composed of two actors A and B.
Actor A is composed of two GCUs: (1) GCU1
composed of task T1 and a help contribution
and (2) GCU2 composed of goal GO and the
dependency link. Actor B is composed of three
GCUs: (1) GCU1L composed of goal G1 and the
AND decomposition, (2) GCU2 composed of goal
G2 and the AND decomposition and (3) GCU3
composed of the softgoal SG1.

Compared with version ¢ of a GRL model,
version ¢ + 1 may have added, deleted, changed,
and unchanged GCUs. It is worth noting that
we consider both syntactic and semantic changes.
Examples of possible changes include: changing
the type of an intentional element (e.g., from
a goal to a task), changing the type of a decom-
position (e.g., from OR to AND), changing the
qualitative/quantitative values of a contribution
(e.g., from help to hurt), changing the text of
an intentional element with a different text not



210

Jameleddine Hassine, Mohammad Alshayeb

(¢) Modification2

iy X
i —

(d) Modification3

iy )
——-

(e) Modification4

Figure 2. GRL Change Unit (GCU)

having the same meaning (semantic change), re-
arranging the text within an intentional element
(although such a change seems to impact only
the syntactic aspect, it may also impact the se-
mantics if the text meaning changes). However,
fixing typos in the text of an intentional element
is not considered as a change. Furthermore, since
the GCU represents the smallest change unit, we
count for only one single change when either the
intentional element changes or the outgoing link
changes or both changes.

In what follows, we discuss and justify the
GCU definition through some examples of possi-
ble changes. Assume that we perform the follow-
ing changes to the GRL actor B of Figure 2a:
1. Modificationl: Replace goal G1 by another

goal G3 (see Figure 2b). Intuitively, it should

be accounted as a single change, which is
captured by the GCU definition as a change
in GCU1 only (GCU2 and GCU3 remain un-
changed). Indeed, since G1 is part of GCU1
only (within actor B), replacing G1 by G3
would only affect GCUL1.

2. Modification2: Replace goal G1 by goal G3
and replace goal G2 by goal G4 (see Figure 2c).

Intuitively, these two replacements should be

accounted as two changes, which is captured
by the GCU definition as two changes in
both GCU1 and GCU2, while GCU3 remains
unchanged. Considering the AND-decompo-
sition as a single unit (as opposed to our
current definition of GCU) would not reflect
the amount of applied change.

3. Modification3: Replace the softgoal SG1 by
softgoal SG2 (see Figure 2d). Intuitively, it
should be accounted as a single change, which
is captured by the GCU definition as a change
in GCU3 only (GCU1 and GCU2 remain un-
changed). The enclosure of the target element
into the GCU (as opposed to our current defi-
nition of enclosing source and link only), e.g.,
G1-AND-SG1 and G2-AND-SG1, would
lead to double counting the change that im-
pacts SGI1.

4. Modificationd: Replace the AND-decom-
position by an OR-decomposition (see Fig-
ure 2e). This change has an impact on how
goals G1 and G2 contribute to the achieve-
ment of SG1.

Hence, both links of the decomposition are
modified from AND to OR, which is captured by
the GCU definition as two changes in GCU1 and



Measuring Goal-Oriented Requirements Language Actor Stability

211

GCU2 (GCU3 remains unchanged). Considering
the AND decomposition as a single unit would
not reflect the fact that many children have to
contribute differently to their parent node.
GRL beliefs are connected to intentional ele-
ments through belief links, presenting no specific
direction. We assume that a belief link terminates
at a GRL belief. Since indicators are used only
in converting real-world values into satisfaction
levels, they are out of the scope of this research.

4.2. GRL actor stability metric

The objective of this paper is to propose a metric
to measure GRL actor stability. We will follow
a similar approach to the one by Alshayeb et
al. [47]. We will reason about GCU as being the
basic unit of change. We define possible changes
between versions ¢ and ¢ + 1 as follows:

1. Added GCU means that the GCU was not
present in GRL model version 4 and it has
been added in version ¢ + 1.

2. Deleted GCU means that the GCU was
present in GRL model version i and has been
deleted in version i + 1.

3. Changed GCU means that the GCU was
present in GRL model version ¢ and has been
changed in version ¢ + 1.

4. Unchanged GCU means that the GCU was
present in GRL model version ¢ and has nei-
ther been deleted nor changed in version 7+ 1.
All actors within a GRL model are tagged

with a version number. When a change occurs

number of unchanged Goals between model version i and version i + 1

in any actor, the new GRL model is tagged
with a different version number, even though the
model may contain unchanged actor(s). Since we
are measuring the stability of the GRL actor,
we will measure the number of GCUs that have
been unchanged.

We measure the stability between two con-
secutive versions, i.e. we measure the stability of
version ¢+ 1 with respect to its previous version 4.
Version ¢ + 1 is considered fully stable when all
GCUs in version ¢ have not been changed or
removed and is considered fully instable if all
of its GCUs have been changed or removed as
compared to version 1.

To measure the GRL actor stability, we mea-
sure the stability of each GRL intentional element
type for the actor and then sum the stabilities of
all GRL Intentional element type for that actor.
To calculate the stability of each GRL Intentional
element type, we use the steps shown in Algo-
rithm 1. Equations (1-5) show the metrics used
to calculate each GRL actor intentional element
stability.

If the intentional element has more than one
outgoing link, each link is treated independently.
The actor stability value ranges from 0 to 1, with
0 denoting completely instable and 1 denoting
completely stable actor.

To calculate the GRL actor stability of
version ¢ + 1 with respect to version i, we
then average the stabilities of all GRL ac-
tor intentional element stability as shown
in equation 6.

Goal Stability(GS), ;,, =

number of Goals in model version

(1)

number of unchanged Softgoals between model version i and version ¢ + 1

Softgoal Stability(SS), ;,, =

number of unchanged Tasks between model version ¢ and version ¢ + 1

number of Softgoals in model version ¢

(2)

Task Stability(TS), ;,, =

number of Tasks in model version

3)

number of unchanged Resources between model version ¢ and version 4 + 1

Resource Stability(RS)i,i_|r1 =

number of Resources in model version

Belief Stability(BS), ;, =

(4)
number of unchanged Beliefs between model version ¢ and version ¢ + 1
—— —— ()
number of Beliefs in model version
GS+ 5SS+ TS+ RS+ BS (6)

Actor Stability; ;.4 =

number of distinct types of intentional elements in model version ¢



212

Jameleddine Hassine, Mohammad Alshayeb

Algorithm 1: Measuring GRL actor stability

Input :Actor A
Output : Stability of Actor A

Let T denote the set of distinct intentional element types {GS, SS, TS, RS, BS} within Actor A

foreach t € T do
Compute unchangedCount;

Compute mazimumPossibleChangeCount;

extentOfChangelt]; i11) =

> Count the number of unchanged GCUs (the number of unchanged occurrences of
that Intentional element type between versions i and i+l

> Count the maximum possible change of that GCU (the number of occurrences of
that Intentional element that exists in version i)

UnchangedCount; ; |1

end
> Compute Actor’s A stability

mazimumPossibleChangeCount in model version 7’

>, extentOfChangelt] ;. i41)

ActorStability(i’iH) =

return ActorStability;

number of distinct intentional element types in model versioni’

Where 1 (at least one type) < number of
distinct types of intentional elements < 5 (goals,
softgoals, tasks, resources and beliefs).

The proposed metric neither measures the per-
centage of change nor the number of changes, it
rather measures the extent of change between two
versions. The extent of change is measured by ag-
gregating the individual stability values for all the
intentional elements types. A GRL actor stability
value of % does not mean % of the actor ele-
ments have unchanged, rather, it means that z%
of the actor model structure remains unchanged.

To reduce the impact of having one change
in simple actor that has few possible changes as
compared to a single change for a complex actor,
we do not just calculate the number of possible
changes for all GCUs in the actor together; rather,
we consider the actor to have 5 main intentional el-
ement types and we calculate the extent of change
for each intentional element type separately. Thus,
the change will be with respect to the GCUs for
that particular intentional element type.

4.3. Measuring GRL actor stability
example

In this section, we apply the proposed actor sta-
bility metric to a generic GRL example. Figure 3a

illustrates an AND decomposition within actor A.
In Figure 3b, the AND decomposition is con-
verted to an OR decomposition, the goal Goall
is changed to Softgoall and Task3 is deleted.

To calculate the extent of change, we first
calculate the mazimumPossible ChangeCount as
proposed in [59]. The mazimumPossibleChange-
Count counts the maximum possible change that
can happen to each property with respect to
version 4, thus it measures the number of GCUs
for each property that exists in the model, as
shown in Table 1. For example, in Figure 3a,
we have two GCUs with goals as intentional ele-
ments: (1) Goall with the help link and (2) Goal2.
In addition, we have three GCUs with tasks as
intentional elements: (1) Task! with the AND
decomposition link, (2) Task2 with the AND
decomposition link and (3) Task3 with the AND
decomposition link. The remaining types of inten-
tional elements (i.e., Softgoal, Resource, Belief)
are not present in the model. Hence, their maxi-
mum possible change is zero.

Then, calculate the number of GCUs that
have not been changed between the two ver-
sions as given in Table 2. In Figure 3b,
the GCU composed of Goal2 has not been
changed, while the GCU composed of Goall and
the help contribution link has been changed,



Measuring Goal-Oriented Requirements Language Actor Stability

213

Actor A

%

(a) Initial decomposition

» o
L

Actor A

+ ‘

Softgoall

X X

(b) Changed decomposition

Figure 3. GRL example

Table 1. Calculate maximum-possible-change for each GCU’ intentional element

GCU intentional element

Maximum possible change

Goals
Softgoals
Tasks
Resources
Beliefs

2

o O wo

resulting into Softgoall and a help contribu-
tion link. Hence, the number of unchanged
GCUs with a goal as intentional element is
1. Since, the AND decomposition is changed
to an OR decomposition, the three GCUs
involving tasks as intentional elements are
considered as changed. Consequently, their
number of unchanged GCUs is 0.

Finally, calculate stability value for each prop-
erty and the whole GRL actor stability as shown
in Table 3. This is done by dividing number of
unchanged GCU by maximum possible change
for each property. The GRL actor stability is
computed as the total stability divided by the
number of distinct intentional element types in-
volved in the model, since not all intentional
element types might be present in the model. In
this example, it is 2 (Goals and Tasks).

5. GRL actor stability
metric validation

Theoretical and empirical validation of software
metrics are usually performed before they can
be used with confidence. In this section, we vali-

date the proposed GRL actors stability metric
theoretically and we evaluate it empirically.

5.1. Theoretical validation

Theoretical validation refers to the process of
certifying that the metric confirms to the prin-
ciples of measurement theory. Different frame-
works have been proposed to validate software
metrics [60-63]. However, no framework has
been found to specifically validate stability met-
rics. Therefore, we use Kitchenham et al. frame-
work [64] which is a generic metric validation
framework, to theoretically validate the pro-
posed GRL actor stability metric. They proposed
a framework for validating software measurement;
the framework contains four properties the met-
ric should satisfy to be theoretically valid. These
properties are: (1) different entities must be dis-
tinguished from each other, (2) the valid mea-
sure must satisfy the representation condition,
(3) units that contribute to the valid measure
must be equivalent and (4) different entities can
have the same attribute value. In addition to
Kitchenham'’s et al. framework [64], we show the
validation through an example. Figure 4 shows an



214

Jameleddine Hassine, Mohammad Alshayeb

Table 2. Calculation of the number of Unchanged GCU’ intentional wlements

GCU intentional element

Number of unchanged GCUs

Goals
Softgoals
Tasks
Resources
Beliefs

1

(e en e an)

Table 3. Stability calculation for each property and the overall actor stability

GCU intentional element Maximum possible Number of nnchanged Stability
change GCUs

Goals 2 1 0.5

Softgoals - - —

Tasks 3 0 0

Resources

Beliefs - - -

Total stability = 0.5 4+ 0 = 0.5

GRL actor stability = 0.5/2 = 0.25

Note: “~” means the intentional element is not present in the actor.

example of four versions of a GRL actor enclosed
elements, the base version (version 0) and three
other versions (versions 1 to 3). The examples are
used to demonstrate the validity of the proposed
metric against Kitchenham’s et al. theoretical
validation properties. For simplicity, we only use
goals in these examples; however, what applies
to goals applies to the other intentional elements.
Property 1: “For an attribute to be mea-
surable, it must allow different entities to be
distinguished from one another” [64]. That is, dif-
ferent entities should have different measurement
values, thus, the stability value for two actors
will be different if they have different number of
unchanged entities between the two versions.
To validate this property, consider the GRL
models in Figure 4a, Figure 4b and Figure 4c.
As compared to the base version of Figure 4a,
in Figure 4b three goals remained unchanged
(Goall, Goal2, and Goal4) while in Figure 4c four
goals remained unchanged. Since the number of
unchanged goals in Figure 4b and Figure 4c with
respect to the base version Figure 4a are differ-
ent, stability values should also be different. This
will always be true as the denominator will be
the same when calculating the stability for both
versions (number of goals in the base version)

while the numerator value (unchanged goals) will
be different; therefore, the overall stability value
will also be different. By calculating the stability
value for these versions, we notice that the stabil-
ity value for the GRL model shown in Figure 4b
is 0.6 while the stability value for the GRL model
shown in Figure 4c is 0.8. Thus, this property is
shown to be true.

Property 2: “A valid measure must obey the
Representation Condition” [64]. That is, if more
entities have been unchanged between the two
versions in two GRL actors, then the stability
value of the GRL actor that has less unchanged
entities should be higher.

To validate this property through the exam-
ple, consider the same scenario used to prove
property 1. The GRL model shown in Figure 4b
has less unchanged properties as compared to the
GRL model shown in Figure 4c; this is reflected
in their stability values being 0.6 and 0.8 respec-
tively. This property will always be true as the
value in the denominator will be the same when
calculating the stability for both versions while
the numerator value will be different and when
more unchanged properties exists, the numerator
value will be higher and thus the overall stability
is higher.



Measuring Goal-Oriented Requirements Language Actor Stability

215

CHOCD

(a) Version 0 — base version

(c) Version 2

COCD

(d) Version 3

Figure 4. Different versions of GRL models

Property 3: “Each unit of an attribute con-
tributing to a valid measure is equivalent” [64].
Consider Figure 4b and Figure 4c, in the same
line as property 1 and property 2, the denom-
inator will be the same when calculating the
stability for both versions (five in the example
shown in Figure 4). Each change in the goal will
have the same weight since it has impact of 0.2
(which is 1/5); thus, each change contributes by
the same weight. In Figure 4b, three goals are un-
changed, which makes its stability 0.6; there are
four unchanged goals in Figure 4c, which makes
its stability 0.8. Since the three goals still exist
in Figure 4c and one more goal has unchanged,
the stability of the model in Figure 4c should be
equal to the value of actor stability in Figure 4b
(0.6) plus the stability of the individual goal that
has unchanged (0.2), which is shown to be true
as the total stability of the model in Figure 4c
is 0.8.

Property 4: “Different entities can have the
same attribute value” [64]. That is, two GRL
actors can have the same stability value if the
same number of GCUs have unchanged when
they have the same number of GCUs in each
distinct intentional element.

Finally, to show the validity of property 4,
consider the GRL models shown in Figure 4c

and Figure 4d. Figure 4c has four goals that are
unchanged (goal 1, 2, 4 and 5), while Figure 4d
has four unchanged goals (goal 1, 2, 3 and 4). We
notice that in Figure 4c goal 3 has been deleted,
while in Figure 4d goal 5 has been deleted as
compared to the base version shown in Figure 4a.
Therefore, the two GRL models are different,
yet, they both have the same stability value (0.8)
when compared to the base version (shown in
Figure 4a). This is true because the denominator
(number of goals in the base version) is the same
in both cases and the numerator (number of
unchanged goals) is also the same as the count of
unchanged goals is equal regardless of which goals
have changed. Therefore, the four properties pro-
posed by Kitchenham et al. [64] are satisfied,
thus, the proposed metric is theoretically valid.

5.2. Empirical validation

The empirical validation of a metric helps in
assessing its usefulness and relevance. This sec-
tion describes the experiments carried out to
provide empirical evidence with respect to the
usefulness and relevance of the proposed actor
stability metric. This is achieved by following
the templates and recommendations presented
in Wohlin et al. [65].



216

Jameleddine Hassine, Mohammad Alshayeb

5.2.1. Experiment goals

The main goal of our empirical study is to investi-
gate the relationship between maintainability and
the proposed stability metric. If such relationship
isrevealed by the experiment, then it can be shown
that the proposed stability metric can be used as
an indicator of the maintenance effort for the GRL
actor model. Previous studies used time and effort
to measure maintainability. Time is measured
by the number of hours spent on maintenance
activities [66,67] and effort is measured by the
number of lines added, deleted, or changed [68,69].
The proposed metric is at the model level; thus,
we measure maintainability effort using the time
spent on performing the maintenance task. Since
the proposed stability metric is measured between
two consecutive versions (Stability(i,i + 1)), we
measure the effort (Effort(i,s + 1)) to produce
version 7 4+ 1 using version ¢ as base version.

5.2.2. Experimental design

Empirical studies are conducted to test a theory
to provide further evidence to support or reject
it [70]. Since software stability is directly related
to maintainability [4], we expect that a decrease
in software stability will translate to more time
spent on maintainability. To empirically validate
the proposed metric, we designed and conducted
a controlled experiment to test this assumption.
In the experiment, we correlate the proposed
metric values with the time spent on performing
four maintenance tasks. We expect that the more
stable an actor is, the less the time required for
its maintenance will be. If such relation is ob-
served, we can conclude that the proposed metric
is empirically valid. Figure 5 illustrates the main
steps of our experimental plan.

1. Subjects. Our subjects are 28 undergradu-
ate software engineering students (randomly
assigned to 7 groups of 4 members each) and
9 individual software engineering undergrad-
uate students, enrolled in requirements en-
gineering course. This would allow for more
variability to gain more confidence in the
experiment results. All participants received

around 9 hours of training on GRL including
hands-on using the jJUCMNav tool [55].
Material. The material given to the subjects
consists of printouts of a GRL model that de-
scribes how to foster the relationship between
a university and its alumni. Figure 5 shows
the initial version of the designed GRL model
that has been adapted from [71].

The four maintenance tasks to be executed on
the GRL model are detailed in Section 5. To
address the variability in the experiment, we
considered four different actors with different
sizes, performed the maintenance tasks on
different actors and model constructs and
applied all types of changes (modification,
addition, and deletion).

Variables: We measure maintainability by
means of the following dependent variables:
(1) the time spent by the subjects in perform-
ing the four maintenance tasks (in seconds)
and (2) the stability values of the four actors
computed by the authors after each mainte-
nance task. The independent variable is the
performed maintenance tasks.

Hypothesis: The experiment was planned
with the purpose of testing the following hy-
pothesis:

Null hypothesis (HO): there is no correla-
tion between actor stability and maintainabil-
ity measured by time spend on performing
the maintenance task.

Alternative hypothesis (H1): there is
a correlation between actor stability and
maintainability measured by time spend on
performing the maintenance task.
Experimental tasks: The subjects were
asked to conduct 4 corrective maintenance
tasks. We have considered the following as-
pects when designing the maintenance tasks:
(1) Tasks are small enough so they can be
performed by students within a short period
of time, (2) Maintenance tasks are not trivial
and require careful analysis (to mimic real
maintenance tasks), (3) Tasks are not too
restrictive. Hence, more than one solution
may be retained.

The four maintenance tasks are as follows:



Measuring Goal-Oriented Requirements Language Actor Stability 217

Subjects and Training

Subjects Training (~ 9hours)
37 undergraduate software engineering students - Introduction to GRL
(28 divided into 7 groups + 9 individual) - Hands-on on jUCMNav
v
Material
Case Study

A printout of a GRL Model (Figure 6)
A set of 4 maintenance tasks

I

For each maintenance task:

Experimental Tasks

Implementation of the required task.
Record the start and finish times for each task.

v

Measurement and Analysis
Dependent variables for measuring Maintainability
- Effort in terms of the time taken to complete a maintenance task
- Actor Stability: computed using Algorithm 1

Figure 5. Experimental design

Maintenance Task 1: The “Alumni De-
partment” investigated ways to assess
precisely how the department can serve
alumni. It turned out that the goal “Serv-
ing alumni through University commit-
ment” has no clear-cut satisfaction crite-
ria. In addition, the alumnus found that
the “Alumni Department” is breaching
their privacy by sending too many SMSs.
Please fix the GRL model to resolve these
two issues.

Maintenance Task 2: Please use
the GRL model that you have al-
ready modified in maintenance Task 1.
The wuniversity allocated funds to
the alumni department have been re-
duced. The alumni department has to
cope with this constraint by reducing
their expenses without affecting the
offered activities. Please modify the
GRL model to implement these con-
straints.

Maintenance Task 3: Please use the
GRL model that you have already modi-
fied in maintenance Task 2. Each semester,
the “Alumni Department” has been ask-
ing their alumnus to mentor an increas-
ing number of undergraduate students,

in their respective fields. However, based
on our undergraduate students’ feedback,
this experience has many shortcomings
and was not that positive. According
to the alumni, mentoring a large num-
ber of students is not sustainable. Please
modify the GRL model to reflect this
fact.

— Maintenance Task 4: Please use the
GRL model that you have already mod-
ified in maintenance Task 3. Alumni are
willing to contribute to the university ac-
tivities, but they are reluctant to donate
money. Please modify the GRL model to
reflect this fact.

It is worth noting that for tasks 2, 3, and

4, subjects were asked to not count the time

taken to copy changes made in the previous

task.

5.2.3. Experiment execution and data collection

In this section, we present samples of the execu-
tions of the maintenance tasks along with their
corresponding actor stability computation. It is
worth noting that some data was excluded as
some subjects did not complete some/all tasks,
did not produce correct responses for the required



Jameleddine Hassine, Mohammad Alshayeb

218

drysuorjeal Tuwne — A}SIOATUN o1} JO SULIOISOJ 91} SUIGLIOSIP [oPOW THE) [RTHIU] :9 9INSI ]

LT
y,

uoljeloge)od
\yoJeasal Dugeyoey

Sa[ynoey [eualod
YIM UOEBULLIOU
junje aseys

syafoid euisnpu
03 Bugnquauo)

SULIRLU Ukl
ybnosp juswaded
Juapnas yum Buidiay

sa@y uogensibal
SBSIN0D JOYS U0
SJunodsp apinotd

sangoe) Buies|
AsiaAUn aLp 03
S5E008 33 SpAdId

sieLILIBS 0F

SUOISSILLpE
=EM

apinold

Guginsuay

525102 Uo

peqpasy
Bupioig

suapms

Aysianun s JUELND Bulojus

03 bunguog

ot
Bunaannaanarnstt

SUOTENUNLILIOD
2 105 SSWS 25

EUERE)
Dunposmgau
anuebig

paubisap |qeyis
S35IN03 LoryY

(Heatdhlels T
Aysienun
-Ansnpuf paoueyul

JUBLLUALICY JuUBLIILILIGD
uune yonosy Aysianun yonoaya 4
Aysianun Bunias

juine Buiaias

!
e
YT Lo ﬂ

wawpedag wwnpy
SIUBWBANDAI LOGBYPSIIIE
UM JUBIALIOD IBIAS

purny pajedo|e 3
UL -A3SIBAILN 3

palaises 8 dysuoqeal
UL y-ATSIBALR

ST TR PRI



Measuring Goal-Oriented Requirements Language Actor Stability

219

tasks, did not record the start and end time,
and/or did provide an unrealistic time. Solutions
containing minor syntactic errors or typos are
retained as long as they make sense semantically.
Furthermore, since actor stability is computed
between two GRL consecutive versions, the out-
put of the current task, is considered as the base
to the next task. We discard the output of a task
that results in an invalid GRL model. However, if
a task output is syntactically valid but represents
an incorrect solution then we consider it as a base
model for the subsequent task since the tasks are
independent.

Figure 7 illustrates an example of the result-
ing “Alumni Department” actor performed by
one of the groups as part of maintenance Task
1 and Table 4 shows its corresponding stability
computation. In order to address the first issue,
the goal “Serving alumni through University com-
mitment” is converted to a softgoal. To address
the second issue, the contribution type between
task “Use SMSs for all communications” and
softgoal “Serving alumni through University com-
mitment” is changed from “help” to “hurt”.

In the original model, the Alumni depart-
ment has 8 GCUs (i.e., 6 GCUs with tasks and
contributions, one GCU composed of a goal and
a dependency and one GCU composed of one goal
and one AND decomposition link). By convert-
ing the goal to a softgoal both GCUs involving
the goal are considered as changed (i.e., num-
ber of unchanged goal GCUs is zero). Among
the 6 GCUs involving tasks, only “use SMS for

Alumni Department  ..............

%

Serving alumni
through University

commitment
_' Organize L]
H networking
H events

Provide free access
to the university
learning facilities

Provide
free
admissions
to seminars

Provide discounts
on short courses
registration fees

Share alumni
information with
potential faculties

Figure 7. Example of maintenance Task 1 solution

all communications” task and the help contri-
bution (converted to a hurt) has changed, i.e.,
the number of unchanged task GCUs is 5. The
number of distinct types of intentional elements
is equal to 2 for the Alumni Department (goals
and tasks). Hence, the stability of the “Alumni
Department” actor is 0.416.

Figure 8 illustrates an example of the resulting
“ Alumnus” actor performed by one of the groups as
part of maintenance Task 3 and Table 5 shows its
corresponding stability computation. To address
the issue of mentoring a large number of students,
the task “mentoring current students” is changed
to “Mentoring a maximum of 2 students per year”.
Another possible change would be to keep the task
as is and change the contribution type from help
to hurt (not shown in Figure 8).

In the original model, the Alumnus actor has
11 GCUs (i.e., 8 GCUs with tasks and contribu-
tions, 2 GCUs composed of a task and a depen-
dency and one GCU composed of one softgoal
and one AND decomposition link). Only one
GCU, having a task as intentional element, is
changed leaving the 9 task GCUs unchanged. The
number of distinct types of intentional elements
is equal to 2 for the Alumnus actor (softgoals
and tasks). Hence, the stability of the Alumnus
actor is 0.95.

The University and Professor actors are fully
stable (i.e., stability equal to 1) since they have
not been changed as part of the four maintenance
tasks, while Alumnus and Alumni Department
actors are partially stable.

Serving university
through alumni
commitment

“={ Volunteering _ +
= Providing /
: Mentoring a Donating to feedback g
maximum of two the university on courses [ £
students per year and syliabi

Helping with student §

placement through
=, internshin offerinas + S

Facilitating research
collaboration

Figure 8. Example of maintenance Task 3 solution



220

Jameleddine Hassine, Mohammad Alshayeb

Table 4. Maintenance Task 1 stability computation

Actor: Alumni department

GCU intentional element Maximum possible change Number of unchanged
GCUs

Goals 2 0

Softgoals — —

Tasks 6 5

Resources — —

Beliefs — _

ExtentOfChange: (0/2) 4+ (5/6) = (5/6)

Distinct types of intentional elements: 2

GRL actor stability: (5/6) / 2 = 0.416

Note: “—” means the intentional element is not present in the Actor.

Table 5. Maintenance Task 3 stability computation

Actor: Alumnus

GCU intentional element Maximum possible change Number of unchanged
GCUs

Goals — 0

Softgoals 1 1

Tasks 10 9

Resources — —

Beliefs — —

ExtentOfChange: (1/1) + (9/10) = (19/10)

Distinct types of intentional elements: 2

GRL actor stability: (19/10) / 2 = 0.95

Note: “—” means the intentional element is not present in the Actor.

5.2.4. Experimental analysis

To test the hypothesis, we performed Spearman
correlation between the actor stability value and
maintainability effort measured by the time spent
on each task (in seconds). We considered each
task as a different experiment and thus the data
was combined to perform the analysis. Results
of performing a maintenance task can vary be-
tween subjects as their solutions might be dif-
ferent. Therefore, the time recorded to perform
the maintenance task can also vary by different
subjects. However, the stability measurement of
the solution can be equal. The results of the
experiment, shown in Figure 9, show that the
maintainability effort has a significant strong
negative correlation as the correlation value is
-0.713 and the P-value is <0.05 [72]. Thus, we
reject the null hypothesis and accept the alter-

native hypothesis, that there is a correlation be-
tween actor stability and maintainability mea-
sured by time spend on performing the mainte-
nance task.

The results confirm that there is a negative
relationship between GRL actor stability and
maintenance effort, hence, the less stable the
actor, the more maintenance effort it requires.
Therefore, actor stability value can be used as
an indicator of maintenance effort. Requirements
engineers need to give the GRL model special
attention when the stability value is low as this
will yield to high maintenance cost.

5.2.5. Threats to validity
The proposed metric and its empirical validation

are subject to some limitations and threats to
validity that we categorize as follows:



Measuring Goal-Oriented Requirements Language Actor Stability

221

Correlation between maintenance time and actor stability

600.00

500.007

400.00

300.00

Maintinance Time

200.004

100.004

00 T
40

T
.60

Actor Stability

Figure 9. Correlation between maintenance time and actor stability

Conclusion validity: a possible threat is the
small sample size used in the validation. More
samples would have provided more confidence in
the evaluation. Another possible conclusion threat
is that we used a simple case study; this should not
affect the validity of the results, as the metric will
be measured in the same way regardless the sys-
tems’ size. However, in our future work, our plans
include conducting an experiment using bigger
real-world case studies to further support our find-
ings. A third possible conclusion threat is the re-
liability of the time measurement recorded by the
subject. Although how to measure the time span
was clarified to the subjects, variation in time mea-
surement may have occurred. The last possible
conclusion validity threat is that we correlated the
actor stability values with maintainability effort
measured by the time it takes to perform a task.
However, we assumed that this relation exists
based on the relationship identified by ISO 25010.

Internal validity: a possible internal threat
is that some subjects did not perform the task
correctly and thus produced a wrong GRL model
that does not satisfy the task requirement. The
data of such tasks was excluded from the em-
pirical validation as they produced invalid GRL
model. However, to mitigate this threat, we pro-
vided all subjects with similar training in GRL
language including hands-on using the jUCMNav
tool. Another possible internal threat is related to

the variables used in the empirical validation; we
used the time spent by the subjects in performing
the four maintenance tasks and the stability val-
ues of the actors as dependent variables. However,
the selection of these variables is done based on
the existing relationship reported in ISO 25010.
ISO 25010 indicates that maintainability is re-
lated to modifiability which in turns is related
to stability. Thus, we expect maintainability to
be correlated with stability. Furthermore, there
is a threat that the time for solving latter tasks
might be affected by the learning time spent
on earlier tasks. However, this practice effect is
experienced by all participants as we followed the
same sequence of tasks in all experiment tasks
with all subjects.

Construct validity: a possible construct va-
lidity threat is that we consider all intentional
elements to have the same weight regardless of
the number of instances each element has; how-
ever, this is done intentionally to make sure that
we treat all intentional elements equally as some
intentional elements might be used more than
others in GRL models. In fact, this is the rea-
son why we did not consider a simpler metric
that measures the number of unchanged GCUs
divided by the total number of GCUs.

External validity: the subjects who per-
formed the experiments are undergraduate soft-
ware engineering students. The subjects executed



222

Jameleddine Hassine, Mohammad Alshayeb

the experiment tasks and recorded the time taken
to perform each task. This presents an external
threat as the experiments were not performed by
professionals, however, a recent study by Falessi
et al. [73] shows that using students as subjects
is acceptable and provides simplification of the
actual context. Another possible external threat
is related to the tasks used in the empirical evalu-
ation as they are not industry tasks. To mitigate
this threat, we planned and designed the mainte-
nance tasks carefully so that they are not trivial
and require careful analysis to mimic real main-
tenance tasks in addition to involving changes
on different intentional elements.

6. Discussion

In the following subsections, we discuss the ben-
efits of our proposed approach and how to inter-
pret the metric.

6.1. Metric benefits

In early requirements engineering process, goal
models are used to capture interests, intentions
and strategies of different stakeholders. They go
through many modifications that are necessary to
accommodate changing user requirements, evolv-
ing business goals and objectives or even induced
by changes in implementation technologies. The
proposed GRL actor stability metric brings the
following benefits:

1. It offers a systematic way to measure the
extent of modifications across many versions
of a goal model.

2. The computation of the metric is based on
easily countable parameters, such as the num-
ber of unchanged GCUs, that does not require
individual attention or time-consuming pro-
cessing.

3. It allows for reasoning about which actor is
less/more stable. In case, an actor represents
a human stakeholder, an instable actor may
be an indication that your stakeholders do
not understand the problem they are trying
to address, as they have changed their minds
drastically. Some sort of visioning session with

them may be necessary. In addition, it allows
for an early assessment of the risk of a ma-
jor project reset as a result of several new
stakeholder input.

4. The proposed metric takes into consideration
all GRL constructs. We believe that the com-
putation of the stability metric can be fully
automated in this context.

5. It can be generalized to cover other goal-ori-
ented languages, such as i* [5], KAOS [7] and
TROPOS [8]. Indeed, our approach is based
on the notion of GCU, which is present in
i* Strategic Rationale (SR) diagrams. The
KAOS approach covers goals of many types
but is less concerned with the intentional-
ity of actors. However, our stability metric
may be applied at the goal model level to
assess the extent of changes between differ-
ent versions of the model. Similarly, we may
tweak the metric to cover TROPOS and i*
Strategic Dependency (SD) models. Indeed,
the relationships between actors and other
constructs in i* SD models and in TROPOS
can be considered as a GCU, which is the
basic concept in our proposed metric.

6.2. Metric practical implication

The proposed GRL actor stability metric can be
used as a proxy of maintenance effort. Our empir-
ical validation of the proposed metric has shown
a direct negative relationship between actor stabil-
ity and maintenance effort. Hence, requirements
engineers may have an indicator of the mainte-
nance effort required to maintain the GRL model.
A low stability value indicates that the model
will require more maintenance effort, therefore,
the requirements engineers can make appropriate
actions to refactor the current GRL model in
order to reduce the expected maintenance effort.

7. Conclusion and future work

Requirements evolution is a main driver for
systems evolution. Many metrics have been pro-
posed to understand the sources, frequencies and
types of requirements evolution. More specifically,



Measuring Goal-Oriented Requirements Language Actor Stability

223

many metrics have been introduced to measure
requirements stability at different abstraction and
granularity levels. Goal models are used to capture
interests, intentions and strategies of different
stakeholders in early requirements engineering.
In this paper, we presented a novel metric to mea-
sure GRL actor stability. The proposed metric
provides a quantitative indicator of GRL actor
maintainability to have a better estimation of the
change cost. We have validated theoretically and
empirically our proposed stability metric using
a case study.

As a future work, we plan to automate and
apply the proposed metric to real-world large-size
case studies to assess whether our metric is a good
indicator of the stability of GRL actors. We also
plan to investigate which type of maintenance
effort has the highest impact on stability. In
addition, we plan to build prediction models
to predict GRL actor stability. Furthermore,
we plan to conduct an empirical experiment to
study if stability measures converge over time
and have a consistent trend. Moreover, we are
currently working on proposing a metric suite for
goal-oriented languages, which includes model
stability. In this paper, we used time to measure
maintainability, in future studies, we plan to use
other measures such as effort.

Acknowledgment

The authors would like to acknowledge the
support provided by King Fahd University of
Petroleum & Minerals (KFUPM) for funding
this work.

References

[1] J.C. Chen and S.J. Huang, “An empirical analy-
sis of the impact of software development prob-
lem factors on software maintainability,” Journal
of Systems and Software, Vol. 82, No. 6, 2009,
pp- 981-992.

[2] D. Galorath, “Software total ownership costs:
development is only job one,” Software Tech
News, Vol. 11, No. 3, 2008.

[3] J. Li, H. Zhang, L. Zhu, R. Jeffery, Q. Wang,
and M. Li, “Preliminary results of a systematic

[10]

review on requirements evolution,” IET Confer-
ence Proceedings, 2012, pp. 12-21.

ISO/IEC, “25010:2011: Systems and software
engineering — systems and software quality re-
quirements and evaluation,” 2011.

E.S. Yu, “Towards modelling and reasoning sup-
port for early-phase requirements engineering,”
in International Symposium on Requirements
Engineering. IEEE, 1997, pp. 226-235.

L. Chung and J. Leite, On Non-Func-
tional Requirements in Software Engineering.
Springer-Verlag, 2009, pp. 363-379.

A. van Lamsweerde, “Requirements engineering:
from craft to discipline,” in Proceedings of the
16th ACM SIGSOFT International Symposium
on Foundations of software engineering. ACM,
2008, pp. 238-249.

P. Giorgini, J. Mylopoulos, and R. Sebastiani,
“Goal-oriented requirements analysis and reason-
ing in the tropos methodology,” Engineering Ap-
plications of Artificial Intelligence, Vol. 18, No. 2,
2005, pp. 159-171.

ITU-T, “Recommendation Z.151 (10/18), User
Requirements Notation (URN) language defini-
tion, Geneva, Switzerland,” Geneva, Switzerland,
2018. [Online]. http://www.itu.int/rec/T-REC-
7.151 /en

S. Overbeek, U. Frank, and C. Kohling,
“A language for multi-perspective goal mod-
elling: Challenges, requirements and solutions,”
Computer Standards € Interfaces, Vol. 38, 2015,
pp. 1-16. [Online|. http://www.sciencedirect.
com/science/article/pii/S0920548914000798

A. Dias, V. Amaral, and J. Araujo, “Towards
a domain specific language for a goal-oriented ap-
proach based on KAOS,” in Third International
Conference on Research Challenges in Informa-
tion Science. IEEE, 2009, pp. 409-420.

D. Quartel, W. Engelsman, H. Jonkers, and
M. van Sinderen, “A goal-oriented requirements
modelling language for enterprise architecture,’
in International Enterprise Distributed Object
Computing Conference. IEEE, 2009, pp. 3-13.
X. Franch and N. Maiden, “Modelling compo-
nent dependencies to inform their selection,”
COTS-Based Software Systems, Vol. 2580 of
LNCS, 2003, pp. 81-91.

X. Franch, G. Grau, and C. Quer, “A framework
for the definition of metrics for actor-dependency
models,” in 12th International Requirements En-
gineering Conference. IEEE, 2004, pp. 348-349.
X. Franch, “On the quantitative analysis of
agent-oriented models,” Advanced Information

)


http://www.itu.int/rec/T-REC-Z.151/en
http://www.itu.int/rec/T-REC-Z.151/en
http://www.sciencedirect.com/science/article/pii/S0920548914000798
http://www.sciencedirect.com/science/article/pii/S0920548914000798

224

Jameleddine Hassine, Mohammad Alshayeb

[16]

[17]

[18]

[23]

[24]

[25]

[26]

Systems Engineering, Vol. 4001 of LNCS, 2006,
pp- 495-509.

G. Grau, X. Franch, and N. Maiden, “Prim: An
i*-based process reengineering method for infor-
mation systems specification,” Information and
Software Technology, Vol. 50, No. 1-2, 2008, pp.
76-100.

H. Kaiya, H. Horai, and M. Saeki, “Agora:
attributed goal-oriented requirements analysis
method,” Joint International Conference on Re-
quirements Engineering, 2002, pp. 13-22.

G. Grau and X. Franch, “A goal-oriented ap-
proach for the generation and evaluation of al-
ternative architectures,” in Furopean Confer-
ence on Software Architecture. Springer, 2007,
pp. 139-155.

A. van Lamsweerde, “Goal-oriented require-
ments engineering: A guided tour,” in Proceed-
ings fifth International Symposium on Require-
ments Engineering. IEEE, 2001, pp. 249-262.
A.I. Antén, W.M. McCracken, and C. Potts,
“Goal decomposition and scenario analysis in
business process reengineering,” in International
Conference on Advanced Information Systems
Engineering. Springer, 1994, pp. 94-104.

C.M. Nguyen, R. Sebastiani, P. Giorgini, and
J. Mylopoulos, “Multi-objective reasoning with
constrained goal models,” Requirements Engi-
neering, 2016, pp. 1-37.

J. Horkoff, F.B. Aydemir, E. Cardoso, T. Li,
A. Maté, E. Paja, M. Salnitri, J. Mylopoulos,
and P. Giorgini, “Goal-oriented requirements en-
gineering: A systematic literature map,” in 24th
International Requirements Engineering Confer-
ence (RE). IEEE, 2016, pp. 106-115.

T. Ambreen, N. Ikram, M. Usman, and M. Niazi,
“Empirical research in requirements engineering:
trends and opportunities,” Requirements Engi-
neering, 2016, pp. 1-33.

L. Lopez, F.B. Aydemir, F. Dalpiaz, and
J. Horkoff, “An empirical evaluation roadmap
for iStar 2.0,” in Proceedings of the Ninth Inter-
national i* Workshop (istar’16), Vol. 1674, 2016,
pp- 55-60.

M.A. Teruel, E. Navarro, V. Lépez-Jaquero,
F. Montero, and P. Gonzélez, “Comparing
goal-oriented approaches to model requirements
for CSCW,” in International Conference on Eval-
uation of Novel Approaches to Software Engi-
neering. Springer, 2011, pp. 169-184.

J.P. Carvallo and X. Franch, “On the use of i*
for architecting hybrid systems: A method and
an evaluation report,” in IFIP Working Con-

[27]

[28]

[29]

[36]

[37]

ference on The Practice of Enterprise Modeling.
Springer, 2009, pp. 38-53.

G. Elahi, E. Yu, and M.C. Annosi, “Modeling
knowledge transfer in a software maintenance
organization — an experience report and critical
analysis,” in IFIP Working Conference on The
Practice of Enterprise Modeling. Springer, 2008,
pp- 15-29.

K. Hoesch-Klohe, A Framework to support
the Maintenance of Formal Goal Models, PhD.
Dissertation, University of Wollongong, 2013.
[Online]. http://ro.uow.edu.au/theses/4214
N.A. Ernst, J. Mylopoulos, and Y. Wang, Re-
quirements Evolution and What (Research) to
Do about It. Berlin, Heidelberg: Springer, 2009,
pp. 186-214.

A K. Ghose, “Formal tools for managing incon-
sistency and change in RE,” in Proceedings of the
10th International Workshop on Software Spec-
ification and Design. IEEE Computer Society,
2000, p. 171.

N.A. Ernst, A. Borgida, J. Mylopoulos, and
I.J. Jureta, Agile Requirements FEvolution via
Paraconsistent Reasoning. Berlin, Heidelberg:
Springer, 2012, pp. 382-397.

A.M. Grubb and M. Chechik, “Looking into the
crystal ball: requirements evolution over time,”
in 24th International Requirements Engineering
Conference (RE). IEEE, 2016, pp. 86-95.
Aprajita and G. Mussbacher, “TimedGRL: Spec-
ifying goal models over time,” in 24th Inter-
national Requirements Engineering Conference
Workshops (REW), 2016, pp. 125-134.

M.O. Elish and D. Rine, “Investigation of metrics
for object-oriented design logical stability,” in
Seventh FEuropean Conference onSoftware Main-
tenance and Reengineering. TEEE, 2003, pp.
193-200.

N.L. Soong, “A program stability measure,’
in Proceedings of the 1977 Annual Conference.
ACM, 1977, pp. 163-173.

M. Fayad, “Accomplishing software stability,’
Communications of the ACM, Vol. 45, No. 1,
2002, pp. 111-115.

S.S. Yau and J.S. Collofello, “Some stability mea-
sures for software maintenance,” IEEE Transac-
tions on Software Engineering, Vol. SE-6, No. 6,
1980, pp. 545-552.

W. Li, L. Etzkorn, C. Davis, and J. Talburt, “An
empirical study of object-oriented system evo-
lution,” Information and Software Technology,
Vol. 42, No. 6, 2000, pp. 373-381.

)

)


http://ro.uow.edu.au/theses/4214

Measuring Goal-Oriented Requirements Language Actor Stability

225

[39]

M. Alshayeb and W. Li, “An empirical study
of system design instability metric and design
evolution in an agile software process,” Journal
of Systems and Software, Vol. 74, No. 3, 2005,
pp. 269-274.

A. AbuHassan and M. Alshayeb, “A metrics
suite for UML model stability,” Software Sys-
tems Modeling, Vol. 18, No. 1, 2019, pp. 557-583.
Y. Hassan, Measuring software architectural sta-
bility using retrospective analysis, Ph.D. disser-
tation, King Fahd University of Petroleum &
Minerals, 2007.

J. Bansiya, “Evaluating framework architecture
structural stability,” ACM Computing Surveys,
Vol. 32, No. 1, 2000.

M. Mattsson and J. Bosch, “Characterizing sta-
bility in evolving frameworks,” in Technology of
Object-Oriented Languages and Systems, 1999,
pp. 118-130.

S.A. Tonu, A. Ashkan, and L. Tahvildari, “Evalu-
ating architectural stability using a metric-based
approach,” in Conference on Software Main-
tenance and Reengineering (CSMR’06). IEEE,
2006, pp. 261-270.

D. Grosser, H.A. Sahraoui, and P. Valtchev, “An
analogy-based approach for predicting design
stability of Java classes,” in 5th International
Workshop on Enterprise Networking and Com-
puting in Healthcare Industry. IEEE, 2004, pp.
252-262.

D. Rapu, S. Ducasse, T. Girba, and R. Mari-
nescu, “Using history information to improve
design flaws detection,” in Eighth European Con-
ference on Software Maintenance and Reengi-
neering. IEEE, 2004, pp. 223-232.

M. Alshayeb, M. Naji, M. Elish, and
J.  Al-Ghamdi, “Towards measuring ob-
ject-oriented class stability,” Software, IET,
Vol. 5, No. 4, 2011, pp. 415-424.

R.C. Martin, “Large scale stability,” C++ Re-
port, Vol. 9, No. 2, 1997, pp. 54-60.

D. Grosser, H.A. Sahraoui, and P. Valtchev,
“Predicting software stability using case-based
reasoning,” in Proceedings 17th International
Conference on Automated Software Engineering,.
IEEE, 2002, pp. 295-298.

V. Basili, G. Caldiera, and H.D. Rombach, “The
goal question metric approach,” Encyclopedia of
Software Engineering, 1994.

X. Franch, A method for the definition of metrics
over i* models. Berlin Heidelberg: Springer, 2009,
Vol. 5565, pp. 201-215.

P. Espada, M. Goulao, and J. Aratjo, “A frame-
work to evaluate complexity and completeness of

[53]

[54]

[59]

[60]

[61]

KAOS goal models,” in International Conference
on Advanced Information Systems Engineering.
Springer, 2013, pp. 562-577.

C. Gralha, J. Aratjo, and M. Goulao, “Met-
rics for measuring complexity and completeness
for social goal models,” Information Systems,
Vol. 53, 2015, pp. 346-362.

J. Hassine and M. Alshayeb, “Measure-
ment of actor external dependencies in GRL
models,” in Proceedings of the Seventh In-
ternational i* Workshop co-located with the
26th International Conference on Advanced
Information Systems Engineering, 2014. [Online].
http://ceur-ws.org/Vol-1157/paper22.pdf
jUCMNav — Eclipse plugin for Use Case
Maps, University of Ottawa, Canada, 2016.
[Online]. http://softwareengineering.ca/jucmnav
Last Accessed Jan 2019.

W. Lam and V. Shankararaman, “Requirements
change: A dissection of management issues,”
in 25th EUROMICRO Conference. Informatics:
Theory and Practice for the New Millennium,
Vol. 2. IEEE, 1999, pp. 244-251.

S. Anderson and M. Felici, “Quantitative aspects
of requirements evolution,” in Proceedings 26th
Annual International Computer Software and
Applications. IEEE, 2002, pp. 27-32.

G. Stark, A. Skillicorn, and R. Smeele, “A mi-
cro and macro based examination of the effects
of requirements changes on aerospace software
maintenance,” in Aerospace Conference, Vol. 4.
IEEE, 1998, pp. 165-172.

M. Mattsson and J. Bosch, “Stability assess-
ment of evolving industrial object-oriented frame-
works,” Journal of Software Maintenance: Re-
search and Practice, Vol. 12, No. 2, 2000, pp.
79-101.

L.C. Briand, J.W. Daly, and J. Wiist, “A uni-
fied framework for cohesion measurement in ob-
ject-oriented systems,” Empirical Software En-
gineering, Vol. 3, No. 1, 1998, pp. 65-117.

L. Briand, S. Morasca, and V. Basili, “Prop-
erty-based software engineering measurement,”
IEEE Transactions on Software Engineering,
Vol. 22, No. 1, 1996, pp. 68-86.

E.J. Weyuker, “Evaluating software complexity
measures,” IEEE Transactions on Software En-
gineering, Vol. 14, No. 9, 1988, pp. 1357-1365.
G. Poels and G. Dedene, “Distance-based soft-
ware measurement: necessary and sufficient prop-
erties for software measures,” Information &
Software Technology, Vol. 42, No. 1, 2000, pp.
35-46.


http://ceur-ws.org/Vol-1157/paper22.pdf
http://softwareengineering.ca/jucmnav

226

Jameleddine Hassine, Mohammad Alshayeb

[64]

[65]

[66]

B. Kitchenham, S.L. Pfleeger, and N. Fenton,
“Towards a framework for software measurement
validation,” IEEFE Transactions on Software En-
gineering, Vol. 21, No. 12, 1995, pp. 929-944.
C. Wohlin, P. Runeson, M. Host, M. Ohlsson,
B. Regnell, and A. Wesslen, Ezperimentation in
Software Engineering: An Introduction. Kluwer
Academic Publishers, 2000.

A.B. Binkley and S.R. Schach, “Validation of
the coupling dependency metric as a predictor
of run-time failures and maintenance measures,”
in Proceedings of the 20th International Confer-
ence on Software ERngineering. IEEE, 1998, pp.
452-455.

D. Darcy, C. Kemerer, S. Slaughter, and
J. Tomayko, “The structural complexity of soft-
ware: An experimental test,” IEEE Transactions
on Software Engineering, Vol. 31, No. 11, 2005,
pp. 982-995.

W. Li and S. Henry, “Object-oriented metrics
that predict maintainability,” Journal of Systems
and Software, Vol. 23, 1993, pp. 111-122.

[69]

[70]

[71]

M. Alshayeb and W. Li, “An empirical valida-
tion of object-oriented metrics in two iterative
processes,” IEEE Transactions on Software En-
gineering, Vol. 29, No. 11, 2003, pp. 1043-1049.
N. Fenton and J. Bieman, Software Metrics:
A Rigorous and Practical Approach. London:
CRC Press, 2014.

J. Hassine and D. Amyot, “A question-
naire-based survey methodology for systemat-
ically validating goal-oriented models,” Require-
ments Engineering, Vol. 21, No. 2, 2016, pp.
285-308.

J. Evans, Straightforward Statistics for the Be-
havioral Sciences. Brooks/Cole Publishing, 1996.
D. Falessi, N. Juristo, C. Wohlin, B. Turhan,
J. Miinch, A. Jedlitschka, and M. Oivo, “Em-
pirical software engineering experts on the use
of students and professionals in experiments,”
Empirical Software Engineering, Vol. 23, No. 1,
2018, pp. 452-489.



	Introduction
	Related Work
	Software stability
	Goal models measurement
	Requirements stability measurement

	GRL in a nutshell
	GRL actors
	GRL intentional elements and indicators
	GRL links
	Qualitative contributions
	GRL example

	Measuring GRL actor stability
	GRL Change Unit (GCU)
	GRL actor stability metric
	Measuring GRL actor stability example

	GRL actor stability metric validation
	Theoretical validation
	Empirical validation
	Experiment goals
	Experimental design
	Experiment execution and data collection
	Experimental analysis
	Threats to validity


	Discussion
	Metric benefits
	Metric practical implication

	Conclusion and future work
	Acknowledgment
	References


