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Abstract
Context: The Technical Debt metaphor has grown in popularity. More software is being created
and has to be maintained. Agile methodologies, in particular Scrum, are widely used by development
teams around the world. Estimation is an often practised step in sprint planning. The subject
matter of this paper is the impact technical debt has on estimations.
Objective: The goal of this research is to identify estimation problems and their solutions due to
previously introduced technical debt in software projects.
Method: The Systematic mapping study (SMS) method was applied in the research. Papers
were selected from the popular digital databases (IEEE, ACM, Scopus, etc.) using defined search
criteria. Afterwards, a snowballing procedure was performed and the final publication set was
filtered using inclusion/exclusion criteria.
Results: 42 studies were selected and evaluated. Five categories of problems and seven proposed
solutions to the problems have been extracted from the papers. Problems include items related
to business perspective (delivery pressure or lack of technical debt understanding by business
decision-makers) and technical perspective (difficulties in forecasting architectural technical debt
impact or limits of source code analysis). Solutions were categorized in: more sophisticated
decision-making tools for business managers, better tools for estimation support and technical
debt management tools on an architectural-level, portfolio approach to technical debt, code audit
and technical debt reduction routine conducted every sprint.
Conclusion: The results of this mapping study can help taking the appropriate approach in
technical debt mitigation in organizations. However, the outcome of the conducted research shows
that the problem of measuring technical debt impact on estimations has not yet been solved.
We propose several directions for further investigation. In particular, we would focus on more
sophisticated decision-making tools.

Keywords: Software estimation, technical debt, project management, decision making,
change impact

1. Introduction

Today software is present in all industries world-
wide. The Industry 4.0 [1, 2]1 or Internet of
Things [3] concepts are based on software to op-
erate and provide solutions. Agile methods were
proposed to better handle inevitable changes [4].

A number of practices have become popular, e.g.,
Continuous Integration, TDD, Pair Program-
ming, to ensure sufficient production code and
tests quality (e.g., [5–7]) and software develop-
ment productivity (e.g., [8]).

Cunningham [10] introduced the technical
debt term to describe shortcuts taken by soft-

1Note that two reference lists are included at the end of this paper: the first one includes papers found during our
systematic mapping, the second one is the main reference list.
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Figure 1. Technical Debt Landscape (inspired by [9])

ware engineers in order to deliver value on time.
“A little debt speeds development so long as it
is paid back promptly with a rewrite.. . . The
danger occurs when the debt is not repaid. Ev-
ery minute spent on not-quite-right code counts
as interest on that debt.” [10]. The number of
software developers increases every year. That
implies creating more code and more technical
debt in the result. According to Google Trends2
technical debt metaphor has been growing in
popularity.

Software project features may be delivered
faster to users, but the effects of taking techni-
cal debt (e.g., storing application data in a file
instead of a database) will have to be addressed
in the future. As stated by Fowler [11], technical
debt can be taken intentionally or unintention-
ally. Along with technical debt there is a interests
concept. Interests can be considered as “the ex-
tra maintenance cost spent for not achieving the
ideal quality level.” [12]. It is a metaphor for un-
paid technical debt becoming more expensive to
repay over time. Technical debt grows during the
software development process as stated in [13].

Technical Debt Landscape (Figure 1) was
introduced by Kruchten et al. [9]. The land-
scape identifies mostly invisible area where poten-
tial problems affecting estimations exist. Mostly
invisible items are hidden to everybody apart
from software engineers. Other members of the
project team are aware of them, but might not
know the details. The authors state: Techni-
cal debt should not be treated in isolation from
adding new functionality or fixing defects and The
challenge is in expressing all software develop-

ment activities in terms of sequences of changes
associated with a cost and a value [9]. Soft-
ware development teams should communicate
the “technological gap” in effort estimation so
mostly invisible parts are known to the managers
and stakeholders.

Estimation is a process of rough calculation of
how much time is needed to deliver business value
related to the estimated task or feature. There
is a number of techniques helping developers to
provide more accurate estimation [14–16] (e.g.,
poker planning, smart use cases or bucket system).
Some of them use the developer’s experience in
a project to consider technical debt impact on
estimation accuracy.

Estimations are straightforward in well-spec-
ified projects. Development teams start from
scratch and will introduce technical debt. As new
features are implemented or as existing features
are extended, the project’s complexity increases.
The problem with estimations becomes visible
after the technical debt has been taken and has
to be addressed. It may be expected that forecast-
ing technical debt impact on a new or changed
feature is more difficult in later development
stages. Estimations are becoming inaccurate and
one of the reasons is improper technical debt
measurement. The problem has to be addressed.

The goal of this research was to conduct a sys-
tematic mapping study on technical debt in the
context of estimations. A number of publications
were collected, examined and categorized giving
several directions for further research.

The paper is organized as follows: Section 2
presents related work. Section 3 defines research

2https://trends.google.com/trends/explore?date=all&q=technicaldebt

https://trends.google.com/trends/explore?date=all&q=technical debt


Technical Debt Aware Estimations in Software Engineering: A Systematic Mapping Study 63

questions for this systematic mapping study
(SMS). Research methodology and crucial details
of the SMS protocol are described in Section 4.
Section 5 shows study results with a detailed
description. In Section 6 we interpret responses
to the posed study research questions. Section 7
presents threats to validity, while in Section 8 we
conclude the work and show directions of further
research. A list of primary sources found in our
SMS is presented before references.

2. Related work

The amount of produced software worldwide in-
creases every year which in turn affects technical
debt. A number of studies have been conducted
to address the problem of increasing technical
debt from various perspectives.

Fernández-Sánchez et al. [17] searched for ele-
ments required in the technical debt management.
They came up with a list of 12 items that will sup-
port decision making in managing technical debt.
Items are divided into three types:(T1) Basic
decision-making factors, (T2) Cost estimation
techniques and (T3) Practices and techniques
for decision-making. The result of this article is
a framework introduced to aid decision making
in technical debt management.

Another research by Fernández-Sánchez et
al. [18] covers available techniques and meth-
ods for technical debt management from a soft-
ware architecture perspective. In their systematic
mapping study authors discovered the impact of
various technical debt types, like code technical
debt, documentation technical debt etc. on archi-
tectural technical debt. The conclusion is that
further studies on architectural debt from a more
holistic approach are needed.

Ribeiro et al. [19] provides a list of 14 decision
criteria on which technical debt repayment can
be prioritized. Authors conclude that none of the
researched studies has performed an empirical
evaluation. In the authors’ opinion, this may in-
dicate a low level of maturity in decision-making
criteria itself.

Li et al. [20] in their mapping study on techni-
cal debt and its management identify a list of ten

technical debt types and 29 tools used as technical
debt management systems. They indicate, how-
ever, that only four tools are dedicated to technical
debt management. The rest is adapted in various
ways from other software development areas. They
conclude that there is a need for more sophisti-
cated and dedicated technical debt management
tools and further research on technical debt man-
agement. More high-level studies should be con-
ducted by the software engineering community.

In another related work, Behutiye et al. [21]
analyse the concept of technical debt in Agile
Software Development (ASD). A list of ten causes
and five consequences of incurring technical debt
in ASD was identified in the research. Authors
also classified a list of technical debt manage-
ment strategies in ASD. The research indicates
the need for more tools, models and guidelines
that support management of technical debt in
ASD [21] and the role of architecture in ASD.

The financial aspect is considered by Ampat-
zoglou et al. [22]. Authors introduced a glossary
of financial terminology and classification schema
of financial approaches used in technical debt
management. The publication also states that
it is easier for developers to communicate with
non-technical managers.

Systematic mapping study on identification
and management of technical debt was conducted
in [23]. Research enumerates strategies that have
been proposed to identify or manage technical
debt in software projects. The conclusion is that
most of the strategies are new but they lack
studies to evaluate their real applicability.

None of the mentioned publications addressed
the problem of technical debt impact on estima-
tions. The goal of our work differs from the other
secondary studies in terms of the research per-
spective and scope. Our study focuses on under-
standing how task delivery estimation is affected
by technical debt and what software development
teams do to develop software according to plan.

3. Research objectives

The objectives of this study were to identify prob-
lems in estimations due to existing technical debt
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in software projects and collect ideas on how de-
velopment teams try to overcome the problems.
Following research questions were stated:

RQ1: What are the problems for the
development team during task estimation
due to technical debt?

The purpose of this question is to confirm
problem existence. Potentially it could be possi-
ble to identify groups of similar problems.

RQ2: What kind of solutions are pro-
posed to mitigate the impact of technical
debt on task estimation?

The purpose of this question is to collect the
actions taken by development teams to reduce
technical debt factor in estimations.

4. Research methodology

In software engineering, guidelines developed
by Kitchenham et al. [24] and Petersen et al. [25]
provide comprehensive instructions on how to
conduct systematic literature reviews (SLR) and
systematic mapping studies. They share some
commonalities (e.g., related to searching and
study selection). However, the difference between
both approaches is that systematic literature re-
views focus on synthesising the evidence and
gaining a new knowledge, while systematic map-
ping studies [25] are focused on structuring the
research area and creating an overview. System-
atic mapping study was chosen as a framework
for this research to answer the questions posed
in Section 3.

4.1. Systematic Mapping Study (SMS)
protocol

Our protocol defines the procedures we intended
to use for SMS including the following steps:
1. Define study objectives and research ques-

tions
2. Define search query and digital source data-

bases
3. Define publication selection criteria
4. Define inclusion and exclusion criteria
5. Conduct data extraction and assessment
6. Conduct data synthesis

After trialling the specified processes, the fi-
nal version of the protocol was agreed by both
authors. The following sections are based on the
processes defined in the protocol. However, it is
worth mentioning that we have added an addi-
tional exclusion criteria (short summary reports)
that was not mentioned in the protocol.

4.2. Search query

We performed a series of trial queries against elec-
tronic databases. In result the following search
query was formulated:
("software") AND ( "technical debt" OR
"change impact") AND ("estimation" OR
"decision making" OR "management")

Such a search query will find publications
with a technical debt aspect in various contexts.

4.3. Digital source databases

Publication sources include all popular academic
databases. The year 1992 was chosen as the time-
frame limit since Cunningham published his pa-
per at that time [10]. Studies from following
digital source databases were included:
– IEEE Xplore [26]
– ACM Digital Library [27]
– Springer Link [28]
– Science Direct [29]
– Scopus [30]

4.4. Inclusion/exclusion criteria

Search query defined in Section 4.2 returned a to-
tal number of 2003 candidate documents for pri-
mary studies set. The distribution of documents
per source database is presented in Table 1.

Primary studies set contained many irrelevant
publications, due to query search generic nature.
Thus, following inclusion/exclusion criteria were
applied to select only relevant studies.

Inclusion criteria:
– Publications that describe the problem of

technical debt in software development and
technical debt management.

– Case studies and surveys based on industrial
examples of technical debt management.
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Table 1. Distribution of publications per source

Source
No. of publications
returned by search query

No. of publications
included in our paper

IEEE Xplore 275 14

ACM Digital Library 652 10

Springer Link 341 5

Science Direct 369 5
Scopus 366 7

Snowballing n/a 1

– Technical debt management technique pro-
posals.

– Papers written since 1992 when Cunningham
[10] introduced the technical debt term3.

– Papers written in English – English is a com-
mon language used by researchers.
Exclusion criteria:

– Publications that only mention technical debt
as an issue, but do not focus on deeper elab-
oration/description of the problem.

– Short summary reports about what workshop
participants discussed instead of real research
contributions – short summaries do not pro-
vide enough information.

– Duplicate publications.
– Publications with only abstract available – we

were interested in the details of a particular
research.

– Papers not written in English.

4.4.1. Snowballing

The importance of the snowballing step in
SMS is described in [31]. Backward snowballing
was performed for this study. Papers found in
snowballing were checked using the same inclu-
sion/exclusion criteria list as primary papers.
The snowballing technique found one additional
publication.

4.5. Data extraction and assessment

Data extraction and assessment process focused
on collecting evidence that can formulate an an-

swer to RQs. All filtered publications were read
in full. Microsoft Excel was used to record and
organize the following data: title, source, citation
eligible for RQ1 or RQ2 and publication type.
The assessment was based on whether a study
provides evidence to answer one of the RQs.

4.6. Initial research set

Initial research set consisted of 45 articles. Af-
ter applying inclusion/exclusion criteria papers
[S1], [S2] and [S3] was excluded. Decisions were
discussed by both authors.

4.7. Rigor and relevance

We applied a checklist proposed by Ivarsson and
Gorschek [32] to access rigor and relevance of
the final dataset. The rating model consists of
two perspectives to measure: rigor and relevance.
Rigor refers to how an evaluation is performed
and how is it reported. Relevance measures the
industrial applicability in the usage context, used
research method, subjects/users and scalability.
Each item is scored by 0, 0.5 and 1 in rigor
perspective and 0 or 1 in relevance perspective.

The first author rated the studies for quality
assurance. The rigor and relevance scores distri-
bution in our SMS is presented in Figure 2.

In order to review the selection agreement
among the authors, a Kappa analysis [33] was
performed. Seven randomly selected4 publica-
tions were examined by the second author. Based
on the selected sample Kappa value was calcu-

3The technical debt knowledge, along with programming languages, has evolved over last 30 years, and we do not
expect that problems and solutions discussed in papers written before 1992, and not cited after that year, would add
value to the paper.

4https://www.random.org/sequences/?min=1&max=42&col=1&format=html&rnd=new

https://www.random.org/sequences/?min=1&max=42&col=1&format=html&rnd=new
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Figure 2. Mapping of selected papers with respect to rigor and relevance

lated – the strength of agreement was very good
(κ = 1.0).

4.8. Final set of papers

We selected 42 publications, see Table 2 and
the list of primary studies found in our sys-
tematic mapping, presented before references.
41 of the papers were filtered through digital
source databases using search query presented
in Section 4.2. An additional one was found dur-
ing the snowballing process. Table 1 presents
a distribution of publications per digital source
databases and snowballing procedure. It is worth
mentioning that case studies were the most
popular publication types among the accepted
primary studies.

At this point we assessed all evidence for eli-
gibility and divided into two groups: Identified
problem categories (G1 – addressing RQ1)
and Identified potential solution categories
(G2 – addressing RQ2). Groups would later
provide potential answers to RQs accordingly.
The next step was to synthesise the data.

4.9. Data synthesis

The purpose of data processing is to synthesize
extracted data in order to answer RQs from Sec-
tion 3. Data extracted in Section 4.5 was divided
into two groups. Each group contains a number
of categories that emerged from examined pub-
lications. Category names were deduced from
clustering items in each group.

Each category has its description and several
papers addressing a particular subject. Results
of data synthesis are available in Table 2.

5. Study results

We conducted a systematic mapping study ac-
cording to the procedure described in Section 4.
In total 42 publications were examined. During
data extraction and synthesis, five categories
of problems (corresponding to RQ1) and seven
categories of proposed solutions (corresponding
to RQ2) to the problems were identified for the
selected studies. RQs findings are discussed in
Sections 5.1 and 5.2.
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Table 2. Data synthesis results

Category Description No. of
studies

Sources
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1) Business pressure

on delivery

Studies showing business pressure of any kind
on the project delivery (e.g., release project
ahead of competition, new regulations intro-
duced by public administration, raising com-
pany market value)

11

[S4], [S5], [S6],
[S7], [S8], [S9],
[S10], [S11], [S12],
[S13], [S14]

Lack of technical
debt awareness in
company

Studies showing that non-technical stakehold-
ers are now aware of technical debt impact on
estimations

5 [S11], [S15], [S16],
[S17], [S18]

No procedures for
technical debt
management

Studies stating a lack of any technical debt
management techniques incorporated in soft-
ware engineering process

3 [S16], [S19], [S20]

Architectural
technical debt
impact

Studies providing samples where architecture
technical debt had impact on software estima-
tion and delivery

9
[S8], [S9], [S15],
[S16], [S21], [S22],
[S23], [S24], [S25]

Source code
analysis is not
sufficient

Studies claiming that sole code analysis mea-
surements are not enough in task estimation
improvements

7
[S9], [S15], [S16],
[S21], [S26], [S27],
[S28]

Total distinct studies 25
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2)

Tools for decision
support

Studies indicating need of high level tools that
will help business people to take development
decision with technical debt consideration (e.g.,
which parts of the system will be affected by
implementing particular feature, how much
human resources needs to be involved)

14

[S7], [S8], [S9],
[S11], [S29], [S30],
[S31], [S32], [S23],
[S33], [S34], [S24],
[S18], [S35]

Tools for estimation
support

Studies stating the need of technical debt esti-
mation tool for development team. Such tool
would improve estimation accuracy

9
[S17], [S15], [S27],
[S36], [S37], [S38],
[S39], [S40], [S20]

Portfolio approach
(technical debt
Items)

Studies proposing various catalogues of techni-
cal debt items managed by development team
in structured manner. Newly introduced tech-
nical debt should be added to catalog

11

[S5], [S41], [S22],
[S28], [S29], [S32],
[S42], [S43], [S18],
[S35], [S44]

Architecture level
technical debt
visualization tool

Studies stating the need of managing technical
debt on architectural level. Overview tool of
a complex system that would show a map of
potentially affected areas by new changes

7
[S21], [S15], [S27],
[S9], [S16], [S22],
[S24]

Technical debt
reduction in every
sprint

Studies suggesting that a certain amount of
time should be devoted to reducing technical
debt by the development team

8
[S6], [S8], [S5],
[S19], [S32], [S45],
[S13], [S44]

Code audit activity Studies advising to conduct structured code
audit periodically 3 [S6], [S19], [S12]

Extra resources
Studies claiming that more resources such as
people, infrastructure or budget are needed 2 [S45], [S22]

Total distinct studies 37
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5.1. Problems in estimation due to
technical debt (RQ1)

We gathered five categories of problems in
user-story estimation due to technical debt:
– Business pressure on delivery – 11 papers

(i.e., 44% of publications that identified prob-
lems) emphasised that business pressure was
the key factor in estimations and therefore
technical debt introduction. Hence, we think
that this problem is widespread. In one of the
studies, authors say: The participants com-
monly acknowledged that technical debt is es-
sentially a balance between software quality and
business reality [S6]. Authors list a number
of reasons behind that statement: (1) being
contractually obligated to deliver the system
under a tight deadline, (2)meeting deadlines to
integrate with a partner product before release,
(3) delivering in time for an upcoming trade
show that presented food marketing opportu-
nities, (4) developing a working prototype to
secure investors funding [S6].

– Lack of technical debt awareness in com-
pany – Five studies notice that non-technical
stakeholders were unaware of technical debt
impact on the project. In one study authors
write: From developer’s perspective, manage-
ment remains largely unaware of technical debt
and the value of managing it [S15].

– No procedures for technical debt man-
agement – Authors of three publications
inform about lack of any methodology in
projects they have investigated. In one study
we can find a statement: Neither of the prod-
uct lines had any specific approach for dealing
with technical debt management and reduc-
tion [S19].

– Architectural technical debt impact –
Nine studies conclude that complex code ar-
chitecture structure and its technical debt
has an impact on estimations. Authors of
one of the studies stated: Architectural issues
are the greatest source of technical debt. . .
Architectural issues are difficult to deal with,
since they were often caused many years pre-
viously [S15].

– Source code analysis is not sufficient
– This problem is brought by seven stud-
ies. Software engineers see that source code
analysis does not show the whole picture of
the system. This has an impact on estima-
tions. One of the studies stated: . . . technical
debt is not only about code and code qual-
ity. Code analysis tools will identify a small
number of black elements. Therefore, code
analysis tools aren’t sufficient for identi-
fying technical debt. . . [S26]5. In another
study, authors write: Tools do not cap-
ture the key areas of accumulating problems
in technical debt [S15].

5.2. Proposed solutions to mitigate the
impact of technical debt on task
estimation (RQ2)

Conducted research provides seven techniques
for mitigating the impact of technical debt on
estimations:
– Tools for decision support – This finding

uncovers a communication gap between or-
ganisation units in an organisation. What was
not expected was how widespread is the opin-
ion that non-technical management should
have a tool for better decision support in the
project. As much as 14 of 37 papers (i.e., 38%
of papers that identified solutions) empha-
sised such need.

– Tools for estimation support – Nine pa-
pers propose introducing estimation support
tools for development teams. Authors of one
study say . . . by the later stages of the project
the algorithm is more reliable than manual
Planning Poker estimates and thus suitable
as a tool for augmenting human effort esti-
mation [S36].

– Portfolio approach (technical debt
Items) – As much as 11 of 37 papers that
identified solutions propose managing tech-
nical debt in a structured way. Develop-
ers should fill “technical debt Item” cards
so the team is aware of how much tech-
nical debt there is in the system. In one
of the papers, authors write: . . .managers

5The black element refers to technical debt which was visually presented in Figure 2 on page 20 [S26]



Technical Debt Aware Estimations in Software Engineering: A Systematic Mapping Study 69

expressed that the backlog would be used
in the future. . . to reduce technical debt in
small iterations [S22].

– Architectural-level technical debt visu-
alisation tool – Seven publications indicate
the need for a high-level technical debt moni-
toring tool. A tool that will have the knowl-
edge about technical debt not only in separate
system components but also between them
and the system as a whole. Authors of one
study stated: Making the architectural debt
visible provides the necessary information for
making informed decisions for managing the
potential impact of rework over time [S21].
This issue is also mentioned by others: The
lack of tool support for accurately managing
and tracking architectural sources of debt is
a key issue. . . [S15].

– Technical debt reduction in every
sprint – Eight publications propose contin-
uous technical debt reduction during every
sprint. A related excerpt in one of the papers
is as follows: one participant described a policy
of allocating 5 to 10 per cent of each release
cycle to addressing technical debt [S6].

– Code audit activity – Three papers ( [S6],
[S19], [S12]) propose periodical and system-
atic code audit actions conducted by the de-
velopment team. Authors of one of the studies
conclude: . . . conduct audits with the entire
development team to make technical debt visi-
ble and explicit; track it using a Wiki, backlog,
or task board [S6]

– Extra resources – Two papers propose
adding extra resources such as people [S22],
infrastructure or budget [S45] to the project.
Such solutions may indicate a tight project
schedule or an attempt to reaching the project
deadline.

6. Discussion

The overall goal of this research was to identify
problems, as well as proposed solutions occur-
ring in estimations due to previously introduced
technical debt. In this section we will present
our interpretation of systematic mapping study

results and their implications for academia and
industry.

6.1. Problems in estimation due to
technical debt

Business pressure on delivery and lack of
technical debt awareness in management
are related to the business perspective in a par-
ticular software project. The main purpose of
building software is to support other processes.
Managers and business officers are focused on
growing the organization. Software support can
give them a competitive advantage and that is
why they force pressure on short software release
cycles.

No procedures for technical debt man-
agement mentioned in three research papers
indicate immature development process. This
may be due to various reasons. Company owners
may not be aware of the technical debt problem
or may consider a particular project as a pro-
totype where technical debt is not considered
as a problem. On the other side, the project
can be so big that introducing new development
procedures is too cumbersome or too expensive.
Finally, the development team may not know
how to introduce such procedures.

Results such as architectural technical
debt impact and source code analysis is
not sufficient, can be interpreted differently.
Those problems are more related to technical as-
pects. The architectural technical debt im-
pact item is strongly bound to project evolution.
For instance, the mainstream in web development
is moving to cloud-based solutions and applica-
tion containers providing better scalability and
flexibility. Adjusting old software can be difficult
and can be considered as a sample of architec-
tural technical debt. Source code analysis is
also not sufficient because engineers would ad-
just their code in such a way that it will pass the
code analysis, but remind a poor quality.

Depending from which perspective we con-
sider the situation different problems are present.
In the worst-case scenario, all of them can oc-
cur in the organization and will slow down the
development process even further.
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6.2. Solutions to mitigate technical debt
in estimations

Only one proposed solution focuses on non-techni-
cal stakeholders (tools for decision support).
However, 38% of examined studies (14 of 37) state
that this is the desired solution. This indicates the
complicated nature of modern software solutions.
Managers and decision-makers have difficulties
understanding the technical implications of their
business decisions. Especially in competitive
markets, where the software should be adjusted
quickly, managers should see the results fast and
be able to respond to them.Worthmentioninghere
are automatic code generators where solutions
can be created without software engineers.

Another interesting interpretation arises from
portfolio approach (technical debt items),
technical debt reduction in every sprint and
code audit activity. All of those solutions can
be concluded as a need for deeper software devel-
opment processes standardization and/or regula-
tions. In other industries like medicine, maritime,
aviation or automotive rules and regulations ac-
cording to which certain procedures have to be
conducted do exist. In IT there is ISO 25010 stan-
dard, but it is not mandatory to implement it.

The findings indicate that “Time To Market”
has the biggest impact on schedule and the de-
cision to repay or not the technical debt. The
software solutions are too complicated and can-
not be adapted fast enough in a rapidly changing
world. An interesting fact the study uncovers is
that source code analysis tools are not sufficient
to cope with technical debt in estimations.

Based on the information from the performed
SMS, we recommend focus future research on
various decision-support levels. The complexity
of software solutions grows and it is more diffi-
cult to get an overview from both business and
technical perspectives. We propose that such
decision-support research should take in consid-
eration software maintenance and evolution.

7. Threats to validity

A systematic mapping study is conducted by
people and thus an inevitable risk is related to

the bias that may come from the choice of search
engines/digital libraries and of search terms that
may favour finding some studies and perhaps
missing others. Hence, an important threat to
the validity of this SMS is related to the search
strategy employed and the possibility that we
have not identified all relevant papers. The com-
pleteness of the search depends on the search
string used, the scope of the search in terms
of selected search engines, as well as their lim-
itations Brereton et al. [34]. For example, it is
possible to extend the search query even further
by adding additional words like “managing”. We
do not think this is a significant threat. Neverthe-
less, it is still possible that after such extension
the result set of papers would be a different, but
(in our opinion) to a minor extent. To reduce this
threat we selected a range of digital libraries and
thus widened its scope. We also used a known
set of references to validate the search terms
before undertaking the mapping study and the
search terms were amended where necessary (e.g.,
we included “change impact” that we initially
missed).

The time window chosen by us (since 1992 till
now) can be seen as a threat. That said, we think
that the knowledge about technical debt, software
development and programming languages has
evolved to such extent thatwe probably do not lose
anything crucial excluding papers before 1992.

We also conducted snowballing to limit the
possibility of missing relevant papers. Only one
additional paper was identified by searching the
references of included studies.

A closely related threat is that “grey liter-
ature” may not be found due to the nature of
digital libraries used. Snowballing can be seen
as a partial solution to limit this threat as refer-
ences of the papers found in digital libraries may
include “grey literature” as well.

It is also worth mentioning that categories
synthesised from publications data extraction
emerged from our best understanding of the
topic. We proposed category names presented
in Table 2 based on our experience in software
engineering.

We limited the scope of our search to articles
written in English. Thus the presented results
can be biased by omitting publications written
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Table 3. Evaluation of our mapping process (see [25])

Rubric Score Description

Need for review 1 Partial evaluation – motivations and questions are provided.
Choosing the search strategy 1 Minimal evaluation – two search strategies (automated database

search and snowballing) have been used.
Evaluation of the search 2 Partial evaluation – at least one action has been taken to improve

the reliability of the search and the inclusion/exclusion.
Extraction and classification 2 Partial evaluation – at least one action has been taken to increase

the reliability of the extraction process, and research type and
method have been classified.

Study validity 1 Full evaluation – threats and limitations are described.

in other languages (e.g., Chinese). However, we
based our research on the most popular language
among software engineering researchers and prac-
titioners.

A search-related limitation of this mapping
study is that the search only covers publications
that were included in the chosen digital libraries
before January 2019. This date is related to the
moment when the mapping study was performed.
It is therefore probable (due to the fact that tech-
nical debt is perceived as an interesting topic)
that a number of other relevant papers will have
been published since this date that we have not
included in this mapping study. However, this
limitation is difficult to avoid and the common
solution is to conduct a new search and/or snow-
balling to update the results of the mapping
study.

Additionally, Table 3 presents an evaluation
of our mapping process on a basis of the qual-
ity checklist rubric criteria (defined by Petersen
et al. [25]) including: identifying the need for
SMS, study identification, data extraction and
classification, as well as validity discussion.

8. Conclusions

In this systematic mapping study, 42 out of
2003 relevant publications were selected. 41 from
query search in five digital databases and one
additional from the snowballing procedure. The
contribution of this study is a categorisation of
technical debt related issues in task estimations
and proposed solutions to the issues presented

in Section 5. Five problems and seven solutions
identified in literature have been categorised. Fur-
thermore, the majority of identified categories of
problems and solutions include real-life examples
describing industry cases.

The technical debt impact on task estima-
tion is an important issue to address. Our SMS
shows seven approaches to extend the current
state of technical debt management. We con-
clude that the task estimation accuracy can
be further improved in one of the following
directions:
– business direction – research on how the man-

agers can gain more insight into the software
system that is supporting their business. Un-
derstand the system’s current limitations and
the impact of new business decisions on it.
That implies research on how software engi-
neers can improve communication with “the
business.”

– operational direction – research on software
systems maintainability and development rou-
tines. That includes new ways of formalizing
and structuring software components, data
flows, integrations and others so that it would
be easy to analyse new requirements impact
on the software project.
The problem of business pressure on features

delivery has appeared in our findings on sev-
eral occasions. Our further research will focus
on decision-making tools. In our opinion, there
is a room for improvement that will potentially
help development teams to measure the impact of
technical debt on estimations with more accurate
precision.
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