
e-Informatica Software Engineering Journal, Volume 14, Issue 1, 2020, pages: 61–76, DOI 10.37190/e-Inf200102

Technical Debt Aware Estimations in Software
Engineering: A Systematic Mapping Study

Paweł Klimczyk∗, Lech Madeyski∗∗

∗GEMOTIAL
∗∗Faculty of Computer Science and Management, Wroclaw University of Science and Technology,

Wyb.Wyspianskiego 27, 50-370 Wroclaw, Poland
pawel@klimczyk.pl, lech.madeyski@pwr.edu.pl

Abstract
Context: The Technical Debt metaphor has grown in popularity. More software is being created
and has to be maintained. Agile methodologies, in particular Scrum, are widely used by development
teams around the world. Estimation is an often practised step in sprint planning. The subject
matter of this paper is the impact technical debt has on estimations.
Objective: The goal of this research is to identify estimation problems and their solutions due to
previously introduced technical debt in software projects.
Method: The Systematic mapping study (SMS) method was applied in the research. Papers
were selected from the popular digital databases (IEEE, ACM, Scopus, etc.) using defined search
criteria. Afterwards, a snowballing procedure was performed and the final publication set was
filtered using inclusion/exclusion criteria.
Results: 42 studies were selected and evaluated. Five categories of problems and seven proposed
solutions to the problems have been extracted from the papers. Problems include items related
to business perspective (delivery pressure or lack of technical debt understanding by business
decision-makers) and technical perspective (difficulties in forecasting architectural technical debt
impact or limits of source code analysis). Solutions were categorized in: more sophisticated
decision-making tools for business managers, better tools for estimation support and technical
debt management tools on an architectural-level, portfolio approach to technical debt, code audit
and technical debt reduction routine conducted every sprint.
Conclusion: The results of this mapping study can help taking the appropriate approach in
technical debt mitigation in organizations. However, the outcome of the conducted research shows
that the problem of measuring technical debt impact on estimations has not yet been solved.
We propose several directions for further investigation. In particular, we would focus on more
sophisticated decision-making tools.

Keywords: Software estimation, technical debt, project management, decision making,
change impact

1. Introduction

Today software is present in all industries world-
wide. The Industry 4.0 [1, 2]1 or Internet of
Things [3] concepts are based on software to op-
erate and provide solutions. Agile methods were
proposed to better handle inevitable changes [4].

A number of practices have become popular, e.g.,
Continuous Integration, TDD, Pair Program-
ming, to ensure sufficient production code and
tests quality (e.g., [5–7]) and software develop-
ment productivity (e.g., [8]).

Cunningham [10] introduced the technical
debt term to describe shortcuts taken by soft-

1Note that two reference lists are included at the end of this paper: the first one includes papers found during our
systematic mapping, the second one is the main reference list.

Submitted: 10 March 2019; Revised: 20 January 2020; Accepted: 22 January 2020; Available online: 13 February 2020

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_14/eInformatica2020Art02.pdf

62 Paweł Klimczyk, Lech Madeyski

Figure 1. Technical Debt Landscape (inspired by [9])

ware engineers in order to deliver value on time.
“A little debt speeds development so long as it
is paid back promptly with a rewrite.. . . The
danger occurs when the debt is not repaid. Ev-
ery minute spent on not-quite-right code counts
as interest on that debt.” [10]. The number of
software developers increases every year. That
implies creating more code and more technical
debt in the result. According to Google Trends2
technical debt metaphor has been growing in
popularity.

Software project features may be delivered
faster to users, but the effects of taking techni-
cal debt (e.g., storing application data in a file
instead of a database) will have to be addressed
in the future. As stated by Fowler [11], technical
debt can be taken intentionally or unintention-
ally. Along with technical debt there is a interests
concept. Interests can be considered as “the ex-
tra maintenance cost spent for not achieving the
ideal quality level.” [12]. It is a metaphor for un-
paid technical debt becoming more expensive to
repay over time. Technical debt grows during the
software development process as stated in [13].

Technical Debt Landscape (Figure 1) was
introduced by Kruchten et al. [9]. The land-
scape identifies mostly invisible area where poten-
tial problems affecting estimations exist. Mostly
invisible items are hidden to everybody apart
from software engineers. Other members of the
project team are aware of them, but might not
know the details. The authors state: Techni-
cal debt should not be treated in isolation from
adding new functionality or fixing defects and The
challenge is in expressing all software develop-

ment activities in terms of sequences of changes
associated with a cost and a value [9]. Soft-
ware development teams should communicate
the “technological gap” in effort estimation so
mostly invisible parts are known to the managers
and stakeholders.

Estimation is a process of rough calculation of
how much time is needed to deliver business value
related to the estimated task or feature. There
is a number of techniques helping developers to
provide more accurate estimation [14–16] (e.g.,
poker planning, smart use cases or bucket system).
Some of them use the developer’s experience in
a project to consider technical debt impact on
estimation accuracy.

Estimations are straightforward in well-spec-
ified projects. Development teams start from
scratch and will introduce technical debt. As new
features are implemented or as existing features
are extended, the project’s complexity increases.
The problem with estimations becomes visible
after the technical debt has been taken and has
to be addressed. It may be expected that forecast-
ing technical debt impact on a new or changed
feature is more difficult in later development
stages. Estimations are becoming inaccurate and
one of the reasons is improper technical debt
measurement. The problem has to be addressed.

The goal of this research was to conduct a sys-
tematic mapping study on technical debt in the
context of estimations. A number of publications
were collected, examined and categorized giving
several directions for further research.

The paper is organized as follows: Section 2
presents related work. Section 3 defines research

2https://trends.google.com/trends/explore?date=all&q=technicaldebt

https://trends.google.com/trends/explore?date=all&q=technical debt

Technical Debt Aware Estimations in Software Engineering: A Systematic Mapping Study 63

questions for this systematic mapping study
(SMS). Research methodology and crucial details
of the SMS protocol are described in Section 4.
Section 5 shows study results with a detailed
description. In Section 6 we interpret responses
to the posed study research questions. Section 7
presents threats to validity, while in Section 8 we
conclude the work and show directions of further
research. A list of primary sources found in our
SMS is presented before references.

2. Related work

The amount of produced software worldwide in-
creases every year which in turn affects technical
debt. A number of studies have been conducted
to address the problem of increasing technical
debt from various perspectives.

Fernández-Sánchez et al. [17] searched for ele-
ments required in the technical debt management.
They came up with a list of 12 items that will sup-
port decision making in managing technical debt.
Items are divided into three types:(T1) Basic
decision-making factors, (T2) Cost estimation
techniques and (T3) Practices and techniques
for decision-making. The result of this article is
a framework introduced to aid decision making
in technical debt management.

Another research by Fernández-Sánchez et
al. [18] covers available techniques and meth-
ods for technical debt management from a soft-
ware architecture perspective. In their systematic
mapping study authors discovered the impact of
various technical debt types, like code technical
debt, documentation technical debt etc. on archi-
tectural technical debt. The conclusion is that
further studies on architectural debt from a more
holistic approach are needed.

Ribeiro et al. [19] provides a list of 14 decision
criteria on which technical debt repayment can
be prioritized. Authors conclude that none of the
researched studies has performed an empirical
evaluation. In the authors’ opinion, this may in-
dicate a low level of maturity in decision-making
criteria itself.

Li et al. [20] in their mapping study on techni-
cal debt and its management identify a list of ten

technical debt types and 29 tools used as technical
debt management systems. They indicate, how-
ever, that only four tools are dedicated to technical
debt management. The rest is adapted in various
ways from other software development areas. They
conclude that there is a need for more sophisti-
cated and dedicated technical debt management
tools and further research on technical debt man-
agement. More high-level studies should be con-
ducted by the software engineering community.

In another related work, Behutiye et al. [21]
analyse the concept of technical debt in Agile
Software Development (ASD). A list of ten causes
and five consequences of incurring technical debt
in ASD was identified in the research. Authors
also classified a list of technical debt manage-
ment strategies in ASD. The research indicates
the need for more tools, models and guidelines
that support management of technical debt in
ASD [21] and the role of architecture in ASD.

The financial aspect is considered by Ampat-
zoglou et al. [22]. Authors introduced a glossary
of financial terminology and classification schema
of financial approaches used in technical debt
management. The publication also states that
it is easier for developers to communicate with
non-technical managers.

Systematic mapping study on identification
and management of technical debt was conducted
in [23]. Research enumerates strategies that have
been proposed to identify or manage technical
debt in software projects. The conclusion is that
most of the strategies are new but they lack
studies to evaluate their real applicability.

None of the mentioned publications addressed
the problem of technical debt impact on estima-
tions. The goal of our work differs from the other
secondary studies in terms of the research per-
spective and scope. Our study focuses on under-
standing how task delivery estimation is affected
by technical debt and what software development
teams do to develop software according to plan.

3. Research objectives

The objectives of this study were to identify prob-
lems in estimations due to existing technical debt

64 Paweł Klimczyk, Lech Madeyski

in software projects and collect ideas on how de-
velopment teams try to overcome the problems.
Following research questions were stated:

RQ1: What are the problems for the
development team during task estimation
due to technical debt?

The purpose of this question is to confirm
problem existence. Potentially it could be possi-
ble to identify groups of similar problems.

RQ2: What kind of solutions are pro-
posed to mitigate the impact of technical
debt on task estimation?

The purpose of this question is to collect the
actions taken by development teams to reduce
technical debt factor in estimations.

4. Research methodology

In software engineering, guidelines developed
by Kitchenham et al. [24] and Petersen et al. [25]
provide comprehensive instructions on how to
conduct systematic literature reviews (SLR) and
systematic mapping studies. They share some
commonalities (e.g., related to searching and
study selection). However, the difference between
both approaches is that systematic literature re-
views focus on synthesising the evidence and
gaining a new knowledge, while systematic map-
ping studies [25] are focused on structuring the
research area and creating an overview. System-
atic mapping study was chosen as a framework
for this research to answer the questions posed
in Section 3.

4.1. Systematic Mapping Study (SMS)
protocol

Our protocol defines the procedures we intended
to use for SMS including the following steps:
1. Define study objectives and research ques-

tions
2. Define search query and digital source data-

bases
3. Define publication selection criteria
4. Define inclusion and exclusion criteria
5. Conduct data extraction and assessment
6. Conduct data synthesis

After trialling the specified processes, the fi-
nal version of the protocol was agreed by both
authors. The following sections are based on the
processes defined in the protocol. However, it is
worth mentioning that we have added an addi-
tional exclusion criteria (short summary reports)
that was not mentioned in the protocol.

4.2. Search query

We performed a series of trial queries against elec-
tronic databases. In result the following search
query was formulated:
("software") AND ("technical debt" OR
"change impact") AND ("estimation" OR
"decision making" OR "management")

Such a search query will find publications
with a technical debt aspect in various contexts.

4.3. Digital source databases

Publication sources include all popular academic
databases. The year 1992 was chosen as the time-
frame limit since Cunningham published his pa-
per at that time [10]. Studies from following
digital source databases were included:
– IEEE Xplore [26]
– ACM Digital Library [27]
– Springer Link [28]
– Science Direct [29]
– Scopus [30]

4.4. Inclusion/exclusion criteria

Search query defined in Section 4.2 returned a to-
tal number of 2003 candidate documents for pri-
mary studies set. The distribution of documents
per source database is presented in Table 1.

Primary studies set contained many irrelevant
publications, due to query search generic nature.
Thus, following inclusion/exclusion criteria were
applied to select only relevant studies.

Inclusion criteria:
– Publications that describe the problem of

technical debt in software development and
technical debt management.

– Case studies and surveys based on industrial
examples of technical debt management.

Technical Debt Aware Estimations in Software Engineering: A Systematic Mapping Study 65

Table 1. Distribution of publications per source

Source
No. of publications
returned by search query

No. of publications
included in our paper

IEEE Xplore 275 14

ACM Digital Library 652 10

Springer Link 341 5

Science Direct 369 5
Scopus 366 7

Snowballing n/a 1

– Technical debt management technique pro-
posals.

– Papers written since 1992 when Cunningham
[10] introduced the technical debt term3.

– Papers written in English – English is a com-
mon language used by researchers.
Exclusion criteria:

– Publications that only mention technical debt
as an issue, but do not focus on deeper elab-
oration/description of the problem.

– Short summary reports about what workshop
participants discussed instead of real research
contributions – short summaries do not pro-
vide enough information.

– Duplicate publications.
– Publications with only abstract available – we

were interested in the details of a particular
research.

– Papers not written in English.

4.4.1. Snowballing

The importance of the snowballing step in
SMS is described in [31]. Backward snowballing
was performed for this study. Papers found in
snowballing were checked using the same inclu-
sion/exclusion criteria list as primary papers.
The snowballing technique found one additional
publication.

4.5. Data extraction and assessment

Data extraction and assessment process focused
on collecting evidence that can formulate an an-

swer to RQs. All filtered publications were read
in full. Microsoft Excel was used to record and
organize the following data: title, source, citation
eligible for RQ1 or RQ2 and publication type.
The assessment was based on whether a study
provides evidence to answer one of the RQs.

4.6. Initial research set

Initial research set consisted of 45 articles. Af-
ter applying inclusion/exclusion criteria papers
[S1], [S2] and [S3] was excluded. Decisions were
discussed by both authors.

4.7. Rigor and relevance

We applied a checklist proposed by Ivarsson and
Gorschek [32] to access rigor and relevance of
the final dataset. The rating model consists of
two perspectives to measure: rigor and relevance.
Rigor refers to how an evaluation is performed
and how is it reported. Relevance measures the
industrial applicability in the usage context, used
research method, subjects/users and scalability.
Each item is scored by 0, 0.5 and 1 in rigor
perspective and 0 or 1 in relevance perspective.

The first author rated the studies for quality
assurance. The rigor and relevance scores distri-
bution in our SMS is presented in Figure 2.

In order to review the selection agreement
among the authors, a Kappa analysis [33] was
performed. Seven randomly selected4 publica-
tions were examined by the second author. Based
on the selected sample Kappa value was calcu-

3The technical debt knowledge, along with programming languages, has evolved over last 30 years, and we do not
expect that problems and solutions discussed in papers written before 1992, and not cited after that year, would add
value to the paper.

4https://www.random.org/sequences/?min=1&max=42&col=1&format=html&rnd=new

https://www.random.org/sequences/?min=1&max=42&col=1&format=html&rnd=new

66 Paweł Klimczyk, Lech Madeyski

Figure 2. Mapping of selected papers with respect to rigor and relevance

lated – the strength of agreement was very good
(κ = 1.0).

4.8. Final set of papers

We selected 42 publications, see Table 2 and
the list of primary studies found in our sys-
tematic mapping, presented before references.
41 of the papers were filtered through digital
source databases using search query presented
in Section 4.2. An additional one was found dur-
ing the snowballing process. Table 1 presents
a distribution of publications per digital source
databases and snowballing procedure. It is worth
mentioning that case studies were the most
popular publication types among the accepted
primary studies.

At this point we assessed all evidence for eli-
gibility and divided into two groups: Identified
problem categories (G1 – addressing RQ1)
and Identified potential solution categories
(G2 – addressing RQ2). Groups would later
provide potential answers to RQs accordingly.
The next step was to synthesise the data.

4.9. Data synthesis

The purpose of data processing is to synthesize
extracted data in order to answer RQs from Sec-
tion 3. Data extracted in Section 4.5 was divided
into two groups. Each group contains a number
of categories that emerged from examined pub-
lications. Category names were deduced from
clustering items in each group.

Each category has its description and several
papers addressing a particular subject. Results
of data synthesis are available in Table 2.

5. Study results

We conducted a systematic mapping study ac-
cording to the procedure described in Section 4.
In total 42 publications were examined. During
data extraction and synthesis, five categories
of problems (corresponding to RQ1) and seven
categories of proposed solutions (corresponding
to RQ2) to the problems were identified for the
selected studies. RQs findings are discussed in
Sections 5.1 and 5.2.

Technical Debt Aware Estimations in Software Engineering: A Systematic Mapping Study 67

Table 2. Data synthesis results

Category Description No. of
studies

Sources

Id
en
tifi

ed
pr
ob

le
m

ca
te
go

rie
s
fo
r

de
ve
lo
pm

en
t
te
am

s
du

rin
g
es
tim

at
io
ns

(G
1) Business pressure

on delivery

Studies showing business pressure of any kind
on the project delivery (e.g., release project
ahead of competition, new regulations intro-
duced by public administration, raising com-
pany market value)

11

[S4], [S5], [S6],
[S7], [S8], [S9],
[S10], [S11], [S12],
[S13], [S14]

Lack of technical
debt awareness in
company

Studies showing that non-technical stakehold-
ers are now aware of technical debt impact on
estimations

5 [S11], [S15], [S16],
[S17], [S18]

No procedures for
technical debt
management

Studies stating a lack of any technical debt
management techniques incorporated in soft-
ware engineering process

3 [S16], [S19], [S20]

Architectural
technical debt
impact

Studies providing samples where architecture
technical debt had impact on software estima-
tion and delivery

9
[S8], [S9], [S15],
[S16], [S21], [S22],
[S23], [S24], [S25]

Source code
analysis is not
sufficient

Studies claiming that sole code analysis mea-
surements are not enough in task estimation
improvements

7
[S9], [S15], [S16],
[S21], [S26], [S27],
[S28]

Total distinct studies 25

Id
en
tifi

ed
pr
op

os
ed

so
lu
tio

n
ca
te
go

rie
s
to

m
iti
ga

te
te
ch
ni
ca
l

de
bt

in
es
tim

at
io
ns

pr
ob

le
m

(G
2)

Tools for decision
support

Studies indicating need of high level tools that
will help business people to take development
decision with technical debt consideration (e.g.,
which parts of the system will be affected by
implementing particular feature, how much
human resources needs to be involved)

14

[S7], [S8], [S9],
[S11], [S29], [S30],
[S31], [S32], [S23],
[S33], [S34], [S24],
[S18], [S35]

Tools for estimation
support

Studies stating the need of technical debt esti-
mation tool for development team. Such tool
would improve estimation accuracy

9
[S17], [S15], [S27],
[S36], [S37], [S38],
[S39], [S40], [S20]

Portfolio approach
(technical debt
Items)

Studies proposing various catalogues of techni-
cal debt items managed by development team
in structured manner. Newly introduced tech-
nical debt should be added to catalog

11

[S5], [S41], [S22],
[S28], [S29], [S32],
[S42], [S43], [S18],
[S35], [S44]

Architecture level
technical debt
visualization tool

Studies stating the need of managing technical
debt on architectural level. Overview tool of
a complex system that would show a map of
potentially affected areas by new changes

7
[S21], [S15], [S27],
[S9], [S16], [S22],
[S24]

Technical debt
reduction in every
sprint

Studies suggesting that a certain amount of
time should be devoted to reducing technical
debt by the development team

8
[S6], [S8], [S5],
[S19], [S32], [S45],
[S13], [S44]

Code audit activity Studies advising to conduct structured code
audit periodically 3 [S6], [S19], [S12]

Extra resources
Studies claiming that more resources such as
people, infrastructure or budget are needed 2 [S45], [S22]

Total distinct studies 37

68 Paweł Klimczyk, Lech Madeyski

5.1. Problems in estimation due to
technical debt (RQ1)

We gathered five categories of problems in
user-story estimation due to technical debt:
– Business pressure on delivery – 11 papers

(i.e., 44% of publications that identified prob-
lems) emphasised that business pressure was
the key factor in estimations and therefore
technical debt introduction. Hence, we think
that this problem is widespread. In one of the
studies, authors say: The participants com-
monly acknowledged that technical debt is es-
sentially a balance between software quality and
business reality [S6]. Authors list a number
of reasons behind that statement: (1) being
contractually obligated to deliver the system
under a tight deadline, (2)meeting deadlines to
integrate with a partner product before release,
(3) delivering in time for an upcoming trade
show that presented food marketing opportu-
nities, (4) developing a working prototype to
secure investors funding [S6].

– Lack of technical debt awareness in com-
pany – Five studies notice that non-technical
stakeholders were unaware of technical debt
impact on the project. In one study authors
write: From developer’s perspective, manage-
ment remains largely unaware of technical debt
and the value of managing it [S15].

– No procedures for technical debt man-
agement – Authors of three publications
inform about lack of any methodology in
projects they have investigated. In one study
we can find a statement: Neither of the prod-
uct lines had any specific approach for dealing
with technical debt management and reduc-
tion [S19].

– Architectural technical debt impact –
Nine studies conclude that complex code ar-
chitecture structure and its technical debt
has an impact on estimations. Authors of
one of the studies stated: Architectural issues
are the greatest source of technical debt. . .
Architectural issues are difficult to deal with,
since they were often caused many years pre-
viously [S15].

– Source code analysis is not sufficient
– This problem is brought by seven stud-
ies. Software engineers see that source code
analysis does not show the whole picture of
the system. This has an impact on estima-
tions. One of the studies stated: . . . technical
debt is not only about code and code qual-
ity. Code analysis tools will identify a small
number of black elements. Therefore, code
analysis tools aren’t sufficient for identi-
fying technical debt. . . [S26]5. In another
study, authors write: Tools do not cap-
ture the key areas of accumulating problems
in technical debt [S15].

5.2. Proposed solutions to mitigate the
impact of technical debt on task
estimation (RQ2)

Conducted research provides seven techniques
for mitigating the impact of technical debt on
estimations:
– Tools for decision support – This finding

uncovers a communication gap between or-
ganisation units in an organisation. What was
not expected was how widespread is the opin-
ion that non-technical management should
have a tool for better decision support in the
project. As much as 14 of 37 papers (i.e., 38%
of papers that identified solutions) empha-
sised such need.

– Tools for estimation support – Nine pa-
pers propose introducing estimation support
tools for development teams. Authors of one
study say . . . by the later stages of the project
the algorithm is more reliable than manual
Planning Poker estimates and thus suitable
as a tool for augmenting human effort esti-
mation [S36].

– Portfolio approach (technical debt
Items) – As much as 11 of 37 papers that
identified solutions propose managing tech-
nical debt in a structured way. Develop-
ers should fill “technical debt Item” cards
so the team is aware of how much tech-
nical debt there is in the system. In one
of the papers, authors write: . . .managers

5The black element refers to technical debt which was visually presented in Figure 2 on page 20 [S26]

Technical Debt Aware Estimations in Software Engineering: A Systematic Mapping Study 69

expressed that the backlog would be used
in the future. . . to reduce technical debt in
small iterations [S22].

– Architectural-level technical debt visu-
alisation tool – Seven publications indicate
the need for a high-level technical debt moni-
toring tool. A tool that will have the knowl-
edge about technical debt not only in separate
system components but also between them
and the system as a whole. Authors of one
study stated: Making the architectural debt
visible provides the necessary information for
making informed decisions for managing the
potential impact of rework over time [S21].
This issue is also mentioned by others: The
lack of tool support for accurately managing
and tracking architectural sources of debt is
a key issue. . . [S15].

– Technical debt reduction in every
sprint – Eight publications propose contin-
uous technical debt reduction during every
sprint. A related excerpt in one of the papers
is as follows: one participant described a policy
of allocating 5 to 10 per cent of each release
cycle to addressing technical debt [S6].

– Code audit activity – Three papers ([S6],
[S19], [S12]) propose periodical and system-
atic code audit actions conducted by the de-
velopment team. Authors of one of the studies
conclude: . . . conduct audits with the entire
development team to make technical debt visi-
ble and explicit; track it using a Wiki, backlog,
or task board [S6]

– Extra resources – Two papers propose
adding extra resources such as people [S22],
infrastructure or budget [S45] to the project.
Such solutions may indicate a tight project
schedule or an attempt to reaching the project
deadline.

6. Discussion

The overall goal of this research was to identify
problems, as well as proposed solutions occur-
ring in estimations due to previously introduced
technical debt. In this section we will present
our interpretation of systematic mapping study

results and their implications for academia and
industry.

6.1. Problems in estimation due to
technical debt

Business pressure on delivery and lack of
technical debt awareness in management
are related to the business perspective in a par-
ticular software project. The main purpose of
building software is to support other processes.
Managers and business officers are focused on
growing the organization. Software support can
give them a competitive advantage and that is
why they force pressure on short software release
cycles.

No procedures for technical debt man-
agement mentioned in three research papers
indicate immature development process. This
may be due to various reasons. Company owners
may not be aware of the technical debt problem
or may consider a particular project as a pro-
totype where technical debt is not considered
as a problem. On the other side, the project
can be so big that introducing new development
procedures is too cumbersome or too expensive.
Finally, the development team may not know
how to introduce such procedures.

Results such as architectural technical
debt impact and source code analysis is
not sufficient, can be interpreted differently.
Those problems are more related to technical as-
pects. The architectural technical debt im-
pact item is strongly bound to project evolution.
For instance, the mainstream in web development
is moving to cloud-based solutions and applica-
tion containers providing better scalability and
flexibility. Adjusting old software can be difficult
and can be considered as a sample of architec-
tural technical debt. Source code analysis is
also not sufficient because engineers would ad-
just their code in such a way that it will pass the
code analysis, but remind a poor quality.

Depending from which perspective we con-
sider the situation different problems are present.
In the worst-case scenario, all of them can oc-
cur in the organization and will slow down the
development process even further.

70 Paweł Klimczyk, Lech Madeyski

6.2. Solutions to mitigate technical debt
in estimations

Only one proposed solution focuses on non-techni-
cal stakeholders (tools for decision support).
However, 38% of examined studies (14 of 37) state
that this is the desired solution. This indicates the
complicated nature of modern software solutions.
Managers and decision-makers have difficulties
understanding the technical implications of their
business decisions. Especially in competitive
markets, where the software should be adjusted
quickly, managers should see the results fast and
be able to respond to them.Worthmentioninghere
are automatic code generators where solutions
can be created without software engineers.

Another interesting interpretation arises from
portfolio approach (technical debt items),
technical debt reduction in every sprint and
code audit activity. All of those solutions can
be concluded as a need for deeper software devel-
opment processes standardization and/or regula-
tions. In other industries like medicine, maritime,
aviation or automotive rules and regulations ac-
cording to which certain procedures have to be
conducted do exist. In IT there is ISO 25010 stan-
dard, but it is not mandatory to implement it.

The findings indicate that “Time To Market”
has the biggest impact on schedule and the de-
cision to repay or not the technical debt. The
software solutions are too complicated and can-
not be adapted fast enough in a rapidly changing
world. An interesting fact the study uncovers is
that source code analysis tools are not sufficient
to cope with technical debt in estimations.

Based on the information from the performed
SMS, we recommend focus future research on
various decision-support levels. The complexity
of software solutions grows and it is more diffi-
cult to get an overview from both business and
technical perspectives. We propose that such
decision-support research should take in consid-
eration software maintenance and evolution.

7. Threats to validity

A systematic mapping study is conducted by
people and thus an inevitable risk is related to

the bias that may come from the choice of search
engines/digital libraries and of search terms that
may favour finding some studies and perhaps
missing others. Hence, an important threat to
the validity of this SMS is related to the search
strategy employed and the possibility that we
have not identified all relevant papers. The com-
pleteness of the search depends on the search
string used, the scope of the search in terms
of selected search engines, as well as their lim-
itations Brereton et al. [34]. For example, it is
possible to extend the search query even further
by adding additional words like “managing”. We
do not think this is a significant threat. Neverthe-
less, it is still possible that after such extension
the result set of papers would be a different, but
(in our opinion) to a minor extent. To reduce this
threat we selected a range of digital libraries and
thus widened its scope. We also used a known
set of references to validate the search terms
before undertaking the mapping study and the
search terms were amended where necessary (e.g.,
we included “change impact” that we initially
missed).

The time window chosen by us (since 1992 till
now) can be seen as a threat. That said, we think
that the knowledge about technical debt, software
development and programming languages has
evolved to such extent thatwe probably do not lose
anything crucial excluding papers before 1992.

We also conducted snowballing to limit the
possibility of missing relevant papers. Only one
additional paper was identified by searching the
references of included studies.

A closely related threat is that “grey liter-
ature” may not be found due to the nature of
digital libraries used. Snowballing can be seen
as a partial solution to limit this threat as refer-
ences of the papers found in digital libraries may
include “grey literature” as well.

It is also worth mentioning that categories
synthesised from publications data extraction
emerged from our best understanding of the
topic. We proposed category names presented
in Table 2 based on our experience in software
engineering.

We limited the scope of our search to articles
written in English. Thus the presented results
can be biased by omitting publications written

Technical Debt Aware Estimations in Software Engineering: A Systematic Mapping Study 71

Table 3. Evaluation of our mapping process (see [25])

Rubric Score Description

Need for review 1 Partial evaluation – motivations and questions are provided.
Choosing the search strategy 1 Minimal evaluation – two search strategies (automated database

search and snowballing) have been used.
Evaluation of the search 2 Partial evaluation – at least one action has been taken to improve

the reliability of the search and the inclusion/exclusion.
Extraction and classification 2 Partial evaluation – at least one action has been taken to increase

the reliability of the extraction process, and research type and
method have been classified.

Study validity 1 Full evaluation – threats and limitations are described.

in other languages (e.g., Chinese). However, we
based our research on the most popular language
among software engineering researchers and prac-
titioners.

A search-related limitation of this mapping
study is that the search only covers publications
that were included in the chosen digital libraries
before January 2019. This date is related to the
moment when the mapping study was performed.
It is therefore probable (due to the fact that tech-
nical debt is perceived as an interesting topic)
that a number of other relevant papers will have
been published since this date that we have not
included in this mapping study. However, this
limitation is difficult to avoid and the common
solution is to conduct a new search and/or snow-
balling to update the results of the mapping
study.

Additionally, Table 3 presents an evaluation
of our mapping process on a basis of the qual-
ity checklist rubric criteria (defined by Petersen
et al. [25]) including: identifying the need for
SMS, study identification, data extraction and
classification, as well as validity discussion.

8. Conclusions

In this systematic mapping study, 42 out of
2003 relevant publications were selected. 41 from
query search in five digital databases and one
additional from the snowballing procedure. The
contribution of this study is a categorisation of
technical debt related issues in task estimations
and proposed solutions to the issues presented

in Section 5. Five problems and seven solutions
identified in literature have been categorised. Fur-
thermore, the majority of identified categories of
problems and solutions include real-life examples
describing industry cases.

The technical debt impact on task estima-
tion is an important issue to address. Our SMS
shows seven approaches to extend the current
state of technical debt management. We con-
clude that the task estimation accuracy can
be further improved in one of the following
directions:
– business direction – research on how the man-

agers can gain more insight into the software
system that is supporting their business. Un-
derstand the system’s current limitations and
the impact of new business decisions on it.
That implies research on how software engi-
neers can improve communication with “the
business.”

– operational direction – research on software
systems maintainability and development rou-
tines. That includes new ways of formalizing
and structuring software components, data
flows, integrations and others so that it would
be easy to analyse new requirements impact
on the software project.
The problem of business pressure on features

delivery has appeared in our findings on sev-
eral occasions. Our further research will focus
on decision-making tools. In our opinion, there
is a room for improvement that will potentially
help development teams to measure the impact of
technical debt on estimations with more accurate
precision.

72 Paweł Klimczyk, Lech Madeyski

References found during our
systematic mapping study

[S1] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim,
P. Kruchten, E. Lim, A. MacCormack, R. Nord,
I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan,
and N. Zazworka, “Managing technical debt
in software-reliant systems,” in Proceedings of
the FSE/SDP Workshop on Future of Software
Engineering Research, FoSER ’10. ACM, 2010,
pp. 47–52.

[S2] C. Izurieta, I. Ozkaya, C. Seaman, P. Kruchten,
R.L. Nord, W. Snipes, and P. Avgeriou,
“Perspectives on managing technical debt:
A transition point and roadmap from dagstuhl,”
in Joint Proceedings of the 4th Interna-
tional Workshop on Quantitative Approaches
to Software Quality (QuASoQ 2016) and
1st International Workshop on Technical Debt
Analytics (TDA 2016), 2016, pp. 84–87. [Online].
http://ceur-ws.org/Vol-1771/paper15.pdf

[S3] P. Kruchten, R.L. Nord, I. Ozkaya, and D. Fa-
lessi, “Technical debt: Towards a crisper defini-
tion report on the 4th international workshop
on managing technical debt,” ACM SIGSOFT
Software Engineering Notes, Vol. 38, No. 5, 2013,
pp. 51–54.

[S4] Y. Guo, C. Seaman, R. Gomes, A. Cavalcanti,
G. Tonin, F.Q.B. Da Silva, A.L.M. Santos, and
C. Siebra, “Tracking technical debt – An ex-
ploratory case study,” in Proceedings of the
27th IEEE International Conference on Soft-
ware Maintenance, ICSM ’11. IEEE Computer
Society, 2011, pp. 528–531.

[S5] K. Power, “Understanding the impact of techni-
cal debt on the capacity and velocity of teams
and organizations: Viewing team and organiza-
tion capacity as a portfolio of real options,” in
Proceedings of the 4th International Workshop
on Managing Technical Debt, 2013, pp. 28–31.

[S6] E. Lim, N. Taksande, and C. Seaman, “A bal-
ancing act: What software practitioners have
to say about technical debt,” IEEE Software,
Vol. 29, No. 6, 2012, pp. 22–27.

[S7] T. Klinger, P. Tarr, P. Wagstrom, and
C. Williams, “An enterprise perspective on tech-
nical debt,” in Proceedings of the 2nd Workshop
on Managing Technical Debt, MTD ’11. ACM,
2011, pp. 35–38.

[S8] Z. Codabux and B. Williams, “Managing tech-
nical debt: An industrial case study,” in Pro-
ceedings of the 4th International Workshop on
Managing Technical Debt, MTD ’13. IEEE Press,
2013, pp. 8–15.

[S9] A. Martini, J. Bosch, and M. Chaudron, “In-
vestigating architectural technical debt accumu-
lation and refactoring over time,” Information
and Software Technology, Vol. 67, No. C, 2015,
pp. 237–253.

[S10] N. Ramasubbu, C.F. Kemerer, and
C.J. Woodard, “Managing technical debt:
Insights from recent empirical evidence,” IEEE
Software, Vol. 32, No. 2, 2015, pp. 22–25.

[S11] J. Bohnet and J. Döllner, “Monitoring code
quality and development activity by software
maps,” in Proceedings of the 2nd Workshop on
Managing Technical Debt, MTD ’11. ACM, 2011,
pp. 9–16.

[S12] J.C. Rocha, V. Zapalowski, and I. Nunes, “Un-
derstanding technical debt at the code level
from the perspective of software developers,” in
Proceedings of the 31st Brazilian Symposium on
Software Engineering, SBES, 2017, pp. 64–73.

[S13] R.K. Gupta, P. Manikreddy, and K.C. Arya,
“Pragmatic scrum transformation: Challenges,
practices and impacts during the journey A case
study in a multi-location legacy software prod-
uct development team,” in Proceedings of the
10th Innovations in Software Engineering Con-
ference, ISEC, 2017, pp. 147–156.

[S14] N. Rios, R.O. Spínola, M.G. de Mendonça Neto,
and C.B. Seaman, “A study of factors that lead
development teams to incur technical debt in
software projects,” in Proceedings of the 44th
Euromicro Conference on Software Engineer-
ing and Advanced Applications, SEAA, 2018,
pp. 429–436.

[S15] N.A. Ernst, S. Bellomo, I. Ozkaya, R.L. Nord,
and I. Gorton, “Measure it? Manage it? Ignore
it? Software practitioners and technical debt,” in
Proceedings of the 10th Joint Meeting on Foun-
dations of Software Engineering, ESEC/FSE
2015. ACM, 2015, pp. 50–60.

[S16] J. Yli-Huumo, A. Maglyas, and K. Smolander,
“How do software development teams manage
technical debt? – An empirical study,” Jour-
nal of Systems and Software, Vol. 120, 2016,
pp. 195–218.

[S17] C.Y. Chen, C.W. She, and J.D. Tang, “An
object-based, attribute-oriented approach for
software change impact analysis,” in Proceedings
of the IEEE International Conference on Indus-
trial Engineering and Engineering Management,
2007, pp. 577–581.

[S18] R.R. de Almeida, U. Kulesza, C. Treude,
D.C. Feitosa, and A.H.G. Lima, “Aligning tech-
nical debt prioritization with business objec-
tives: A multiple-case study,” in Proceedings
of the IEEE International Conference on Soft-

http://ceur-ws.org/Vol-1771/paper15.pdf

Technical Debt Aware Estimations in Software Engineering: A Systematic Mapping Study 73

ware Maintenance and Evolution, ICSME, 2018,
pp. 655–664.

[S19] J. Yli-Huumo, A. Maglyas, and K. Smolander,
“The sources and approaches to management of
technical debt: A case study of two product lines
in a middle-size finnish software company,” in
Proceedings of the 15th International Conference
Product-Focused Software Process Improvement,
2014, pp. 93–107.

[S20] T. Besker, A. Martini, J. Bosch, and M. Tichy,
“An investigation of technical debt in auto-
matic production systems,” in Proceedings of the
XP2017 Scientific Workshops, 2017, pp. 6:1–6:7.

[S21] R.L. Nord, I. Ozkaya, P. Kruchten, and
M. Gonzalez-Rojas, “In search of a metric
for managing architectural technical debt,” in
Proceedings of the Joint Working IEEE/IFIP
Conference on Software Architecture and Eu-
ropean Conference on Software Architecture,
WICSA-ECSA ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 91–100.

[S22] J. Yli-Huumo, A. Maglyas, K. Smolander,
J. Haller, and H. Törnroos, “Developing pro-
cesses to increase technical debt visibility and
manageability – An action research study in
industry,” in Proceedings of the International
Conference on Product-Focused Software Pro-
cess Improvement, Lecture Notes in Computer
Science, Vol. 10027. Springer International Pub-
lishing, 2016, pp. 368–378.

[S23] C. de Souza and D. Redmiles, “An empirical
study of software developers’ management of
dependencies and changes,” in Proceedings of
the 30th International Conference on Software
Engineering, 2008, pp. 241–250.

[S24] A. Martini, E. Sikander, and N. Madlani, “A
semi-automated framework for the identification
and estimation of architectural technical debt:
A comparative case-study on the modulariza-
tion of a software component,” Information and
Software Technology, Vol. 93, 2018, pp. 264–279.

[S25] T. Besker, A. Martini, and J. Bosch, “The
pricey bill of technical debt: When and by whom
will it be paid?” in Proceedings of the IEEE
International Conference on Software Mainte-
nance and Evolution, ICSME, 2017, pp. 13–23.

[S26] P. Kruchten, R.L. Nord, and I. Ozkaya, “Techni-
cal debt: From metaphor to theory and practice,”
IEEE Software, Vol. 29, No. 6, 2012, pp. 18–21.

[S27] Z. Li, P. Liang, and P. Avgeriou, “Architectural
technical debt identification based on architec-
ture decisions and change scenarios,” in Proceed-
ings of the 12th Working IEEE/IFIP Conference
on Software Architecture, 2015, pp. 65–74.

[S28] N. Zazworka, R.O. Spínola, A. Vetro, F. Shull,
and C. Seaman, “A case study on effectively
identifying technical debt,” in Proceedings of
the 17th International Conference on Evalua-
tion and Assessment in Software Engineering,
EASE ’13. ACM, 2013, pp. 42–47.

[S29] C. Seaman, Y. Guo, C. Izurieta, Y. Cai, N. Za-
zworka, F. Shull, and A. Vetrò, “Using technical
debt data in decision making: Potential decision
approaches,” in Proceedings of the Third Inter-
national Workshop on Managing Technical Debt,
MTD ’12. IEEE Press, 2012, pp. 45–48.

[S30] C. Fernàndez-Sànchez, J. Garbajosa, and
A. Yagüe, “A framework to aid in decision mak-
ing for technical debt management,” in Proceed-
ings of the 7th IEEE International Workshop on
Managing Technical Debt, MTD@ICSME, 2015,
pp. 69–76.

[S31] H. Jason and R. Günther, “When-to-release
decisions in consideration of technical debt,” in
Proceedings of the Sixth International Workshop
on Managing Technical Debt, MTD@ICSME,
2014, pp. 31–34.

[S32] R.K. Gupta, P. Manikreddy, S. Naik, and
K. Arya, “Pragmatic approach for managing
technical debt in legacy software project,” in
Proceedings of the 9th India Software Engi-
neering Conference, ISEC ’16. ACM, 2016,
pp. 170–176.

[S33] A. Pacheco, G. Marín-Raventós, and G. López,
“Designing a technical debt visualization tool
to improve stakeholder communication in the
decision-making process: A case study,” in Pro-
ceedings of the 12th IFIP WG 8.9 Working Con-
ference on Research and Practical Issues of En-
terprise Information Systems, 2018, pp. 15–26.

[S34] T. Amanatidis, A. Chatzigeorgiou, and A. Am-
patzoglou, “The relation between technical debt
and corrective maintenance in PHP web appli-
cations,” Information and Software Technology,
Vol. 90, 2017, pp. 70–74.

[S35] M. M. Bomfim and V. A. Santos, “Strategies
for reducing technical debt in agile teams,” in
Proceedings of the Brazilian Workshop on Ag-
ile Methods. Springer International Publishing,
2017, pp. 60—71.

[S36] K. Moharreri, A.V. Sapre, J. Ramanathan, and
R. Ramnath, “Cost-effective supervised learn-
ing models for software effort estimation in agile
environments,” in Proceedings of the Computer
Software and Applications Conference (COMP-
SAC), 2016, pp. 135–140.

[S37] A. Nugroho, J. Visser, and T. Kuipers, “An em-
pirical model of technical debt and interest,” in

74 Paweł Klimczyk, Lech Madeyski

Proceedings of the 2nd Workshop on Managing
Technical Debt, MTD ’11. ACM, 2011, pp. 1–8.

[S38] B. Tanveer, “Guidelines for utilizing change
impact analysis when estimating effort in agile
software development,” in Proceedings of the
21st International Conference on Evaluation
and Assessment in Software Engineering, EASE,
2017, pp. 252–257.

[S39] S.J. Kabeer, M. Nayebi, G. Ruhe, C. Carlson,
and F. Chew, “Predicting the vector impact of
change – an industrial case study at brightsquid,”
in Proceedings of the ACM/IEEE International
Symposium on Empirical Software Engineering
and Measurement, ESEM, 2017, pp. 131–140.

[S40] B. Tanveer, L. Guzmán, and U.M. Engel, “Ef-
fort estimation in agile software development:
Case study and improvement framework,” Jour-
nal of Software: Evolution and Process, Vol. 29,
No. 11, 2017.

[S41] K. Schmid, “A formal approach to technical
debt decision making,” in Proceedings of the 9th
International ACM Sigsoft Conference on Qual-
ity of Software Architectures, QoSA ’13. ACM,
2013, pp. 153–162.

[S42] Y. Guo and C. Seaman, “A portfolio approach
to technical debt management,” in Proceedings
of the 2nd Workshop on Managing Technical
Debt, MTD ’11. ACM, 2011, pp. 31–34.

[S43] Y. Guo, R.O. Spínola, and C. Seaman, “Ex-
ploring the costs of technical debt management
– A case study,” Empirical Software Engineering,
Vol. 21, No. 1, 2016, pp. 159–182.

[S44] P. Mohagheghi and M.E. Aparicio, “An in-
dustry experience report on managing product
quality requirements in a large organization,”
Information and Software Technology, Vol. 88,
2017, pp. 96–109.

[S45] Z.S. Hossein Abad, R. Karimpour, J. Ho,
S.M. Didar-Al-Alam, G. Ruhe, E. Tse,
K. Barabash, and I. Hargreaves, “Understanding
the impact of technical debt in coding and test-
ing: An exploratory case study,” in Proceedings
of the 3rd International Workshop on Software
Engineering Research and Industrial Practice,
SER& IP ’16. ACM, 2016, pp. 25–31.

References

[1] E. Mueller, X.L. Chen, and R. Riedel, “Chal-
lenges and requirements for the application
of Industry 4.0: A special insight with the
usage of cyber-physical system,” Chinese
Journal of Mechanical Engineering, Vol. 30,
No. 5, 2017, pp. 1050–1057.

[2] M. Hermann, T. Pentek, and B. Otto, “De-
sign principles for Industrie 4.0 scenarios,”
in Proceedings of the 49th Hawaii Inter-
national Conference on System Sciences
(HICSS), 2016, pp. 3928–3937.

[3] J. Gubbi, R. Buyya, S. Marusic, and
M. Palaniswami, “Internet of things (IoT):
A vision, architectural elements, and future
directions,” Future Generation Computer
Systems, Vol. 29, No. 7, 2013, pp. 1645–1660.

[4] J. Highsmith and A. Cockburn, “Agile soft-
ware development: The business of inno-
vation,” Computer, Vol. 34, No. 9, 2001,
pp. 120–122.

[5] L. Madeyski, “On the effects of pair pro-
gramming on thoroughness and fault-finding
effectiveness of unit tests,” in Product-Fo-
cused Software Process Improvement, Lec-

ture Notes in Computer Science, J. Münch
and P. Abrahamsson, Eds. Springer Berlin
Heidelberg, 2007, Vol. 4589, pp. 207–221.

[6] L. Madeyski, “The impact of test-first pro-
gramming on branch coverage and muta-
tion score indicator of unit tests: An experi-
ment,” Information and Software Technol-
ogy, Vol. 52, No. 2, 2010, pp. 169–184.

[7] L. Madeyski, Test-Driven Development: An
Empirical Evaluation of Agile Practice. (Hei-
delberg, London, New York): Springer, 2010.

[8] L. Madeyski and Ł. Szała, “The impact of
test-driven development on software devel-
opment productivity – An empirical study,”
in Software Process Improvement, Lecture
Notes in Computer Science, P. Abrahams-
son, N. Baddoo, T. Margaria, and R. Mess-
narz, Eds. Springer Berlin Heidelberg, 2007,
Vol. 4764, pp. 200–211.

[9] P. Kruchten, R.L. Nord, and I. Ozkaya,
“Technical debt: From metaphor to theory
and practice,” IEEE Software, Vol. 29, No. 6,
2012, pp. 18–21.

[10] W. Cunningham, “The WyCash portfolio
management system,” in Addendum to the
Proceedings on Object-oriented Program-

Technical Debt Aware Estimations in Software Engineering: A Systematic Mapping Study 75

ming Systems, Languages, and Applications,
OOPSLA ’92. New York, NY, USA: ACM,
1992, pp. 29–30.

[11] M. Fowler, “Technical debt quadrant,” 2009.
[Online]. https://martinfowler.com/bliki/
TechnicalDebtQuadrant.html

[12] A. Nugroho, J. Visser, and T. Kuipers, “An
empirical model of technical debt and inter-
est,” in Proceedings of the 2nd Workshop on
Managing Technical Debt, MTD ’11. ACM,
2011, pp. 1–8.

[13] E. Tom, A. Aurum, and R. Vidgen, “An
exploration of technical debt,” Journal of
Systems and Software, Vol. 86, No. 6, 2013,
pp. 1498–1516.

[14] M. Cohn, Agile Estimating and Planning.
Pearson Education, 2005.

[15] S. Hoogendoorn, This is Agile: Beyond the
Basics. Beyond the Hype. Beyond Scrum.
Dymaxicon, 2014.

[16] “The bucket system,” 2017. [On-
line]. http://www.agileadvice.com/wp-
content/uploads/2013/07/H10-Estimation-
The-Bucket-System.pdf

[17] C. Fernàndez-Sànchez, J. Garbajosa, and
A. Yagüe, “A framework to aid in deci-
sion making for technical debt manage-
ment,” 2015 IEEE 7th International Work-
shop on Managing Technical Debt (MTD),
2015, pp. 69–76.

[18] C. Fernández-Sánchez, J. Garbajosa, C. Vi-
dal, and A. Yagüe, “An analysis of tech-
niques and methods for technical debt man-
agement: A reflection from the architecture
perspective,” in Proceedings of the Second
International Workshop on Software Archi-
tecture and Metrics, SAM ’15. Piscataway,
NJ, USA: IEEE Press, 2015, pp. 22–28.

[19] L.F. Ribeiro, M.A.d.F. Farias, M. Men-
donça, and R.O. Spínola, “Decision crite-
ria for the payment of technical debt in
software projects: A systematic mapping
study,” in Proceedings of the 18th Interna-
tional Conference on Enterprise Informa-
tion Systems, ICEIS 2016. SCITEPRESS -
Science and Technology Publications, Lda,
2016, pp. 572–579.

[20] Z. Li, P. Avgeriou, and P. Liang, “A system-
atic mapping study on technical debt and

its management,” Journal of Systems and
Software, Vol. 101, 2015, pp. 193–220.

[21] W.N. Behutiye, P. Rodríguez, M. Oivo, and
A. Tosun, “Analyzing the concept of techni-
cal debt in the context of agile software
development: A systematic literature re-
view,” Information and Software Technol-
ogy, Vol. 82, 2017, pp. 139–158.

[22] A. Ampatzoglou, A. Ampatzoglou,
A. Chatzigeorgiou, and P. Avgeriou, “The
financial aspect of managing technical
debt: A systematic literature review,”
Information and Software Technology,
Vol. 64, 2015, pp. 52—73.

[23] N.S. Alves, T.S. Mendes, M.G. de Men-
donça, R.O. Spínola, F. Shull, and C. Sea-
man, “Identification and management of
technical debt,” Information and Soft-
ware Technology, Vol. 70, No. C, 2016,
pp. 100–121.

[24] B.A. Kitchenham, D. Budgen, and P. Br-
ereton, Evidence-Based Software Engineer-
ing and Systematic Reviews. Chapman and
Hall/CRC, 2016.

[25] K. Petersen, S. Vakkalanka, and L. Kuz-
niarz, “Guidelines for conducting systematic
mapping studies in software engineering: An
update,” Information and Software Technol-
ogy, Vol. 64, 2015, pp. 1 – 18.

[26] “IEEE Xplore Digital Library,” 2017.
[Online]. http://ieeexplore.ieee.org

[27] “ACM digital library,” 2017. [Online].
http://dl.acm.org

[28] “Springer Link,” 2017. [Online]. https:
//link.springer.com

[29] “Science Direct,” 2017. [Online]. http:
//www.sciencedirect.com

[30] “Scopus Preview,” 2017. [Online]. https:
//www.scopus.com

[31] C. Wohlin, “Guidelines for snowballing in
systematic literature studies and a repli-
cation in software engineering,” in Pro-
ceedings of the 18th International Confer-
ence on Evaluation and Assessment in Soft-
ware Engineering, EASE ’14. ACM, 2014,
pp. 38:1–38:10.

[32] M. Ivarsson and T. Gorschek, “A method
for evaluating rigor and industrial relevance
of technology evaluations,” Empirical Soft-

https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
https://martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://www.agileadvice.com/wp-content/uploads/2013/07/H10-Estimation-The-Bucket-System.pdf
http://www.agileadvice.com/wp-content/uploads/2013/07/H10-Estimation-The-Bucket-System.pdf
http://www.agileadvice.com/wp-content/uploads/2013/07/H10-Estimation-The-Bucket-System.pdf
http://ieeexplore.ieee.org
http://dl.acm.org
https://link.springer.com
https://link.springer.com
http://www.sciencedirect.com
http://www.sciencedirect.com
https://www.scopus.com
https://www.scopus.com

76 Paweł Klimczyk, Lech Madeyski

ware Engineering, Vol. 16, No. 3, 2011,
pp. 365–395.

[33] J. Cohen, “A coefficient of agreement for
nominal scales,” Educational and Psycho-
logical Measurement, Vol. 20, No. 1, 1960,
pp. 37–46.

[34] P. Brereton, B.A. Kitchenham, D. Budgen,
M. Turner, and M. Khalil, “Lessons from
applying the systematic literature review
process within the software engineering do-
main,” Journal of Systems and Software,
Vol. 80, No. 4, 2007, pp. 571–583.

	Introduction
	Related work
	Research objectives
	Research methodology
	Systematic Mapping Study (SMS) protocol
	Search query
	Digital source databases
	Inclusion/exclusion criteria
	Snowballing

	Data extraction and assessment
	Initial research set
	Rigor and relevance
	Final set of papers
	Data synthesis

	Study results
	Problems in estimation due to technical debt (RQ1)
	Proposed solutions to mitigate the impact of technical debt on task estimation (RQ2)

	Discussion
	Problems in estimation due to technical debt
	Solutions to mitigate technical debt in estimations

	Threats to validity
	Conclusions
	References found during our systematic mapping study
	References

