
e-Informatica Software Engineering Journal, Volume 14, Issue 1, 2020, pages: 117–148, DOI 10.37190/e-Inf200105

System performance requirements:
A standards-based model for early identification,

allocation to software functions
and size measurement

Khalid T. Al-Sarayreh∗, Kenza Meridji∗∗, Alain Abran∗∗∗, Sylvie Trudel∗∗∗∗

∗Department of Software Engineering, Hashemite University
∗∗Department of Software Engineering, University of Petra

∗∗∗Department of Software Engineering and Information Technology , École de technologie supérieure (ETS),
Université du Québec

∗∗∗∗Département d’informatique, University of Quebec at Montreal
Khalidt@hu.edu.jo, kmeridji@uop.edu.jo, alain.abran@etsmtl.ca, trudel.s@uqam.ca

To be or not? To be! – Wally Shakelance
Abstract

Background: In practice, the developers focus is on early identification of the functional require-
ments (FR) allocated to software, while the system non-functional requirements (NFRs) are left
to be specified and detailed much later in the development lifecycle.
Aim: A standards-based model of system performance NFRs for early identification and measure-
ment of FR-related performance of software functions.
Method: 1) Analysis of performance NFR in IEEE and ECSS standards and the modeling of
the identified system/software performance functions using Softgoal Interdependency Graphs.
2) Application of the COSMIC-FSM method (e.g., ISO 19761) to measure the functional size of the
performance requirements allocated to software functions. 3) Use of the COSMIC-SOA guideline
to tailor this framework to service-oriented architecture (SOA) for performance requirements
specification and measurement. 4) Illustration of the applicability of the proposed approach for
specification and measurement of system performance NFR allocated to the software for an
automated teller machine (ATM) in an SOA context.
Result: A standards-based framework for identifying, specifying and measuring NFR system
performance of software functions.
Conclusion: Such a standards-based system performance reference framework at the function
and service levels can be used early in the lifecycle by software developers to identify, specify and
measure performance NFR.

Keywords: Non-functional requirements, (NFR) performance requirements, international
standards, Softgoal Interdependency Graphs(SIGs), COSMIC-FSM, COSMIC-SOA

1. Introduction

Over the years, system non-functional require-
ments (NFRs) from a variety of stakeholders
have significantly increased the urgency and ef-
fort required to deliver software systems with

very high-quality levels. The large and diverse
body of literature on software quality and NFR
makes it challenging for practitioners to figure
out detailed reference works to use as a baseline
for early identification, specification and mea-
surement of any of the large number of NFRs.

Submitted: 31 December 2019; Revised: 15 June 2020; Accepted: 22 June 2020; Available online: 7 August 2020

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_14/eInformatica2020Art05.pdf


118 Khalid T. Al-Sarayreh et al.

Developers must take into consideration both
system functional user requirements (FURs) and
non-functional requirements (NFRs) early in
the system requirements analysis in order to
then allocate them at the software/hardware FR
level [1–6] (see Figure 1).

The success of a software project depends
heavily on its ability to be executed with the
required functionalities while under specific con-
straints. Software functionalities fall under the
concept of functional user requirements (FURs)
and refer to the set of functions or services re-
quired from the system and allocated to the
software, while constraints fall under the concept
of non-functional requirements (NFRs).

In practice, requirements are usually ad-
dressed at the system level [1–4] at the start
of the project either as high-level system func-
tional user requirements (system-FURs), or as
high-level system-NFRs. The latter must typically
be detailed, allocated, and implemented in either
hardware or software, or both – see Figure 1.

Software engineers focus on software-FURs
for the early development phases, while sys-
tem-NFRs are typically discussed at later de-
velopment phases, such as evaluation or test-
ing phases. To distinguish between these types
of requirements, the term system-FURs is used
to describe the required functions in a system,
while system-NFRs is used to describe how the
required functions must behave in a system.

In the software requirements engineering
phase, system-NFRs are analyzed and detailed,
and some may be specified as Software-FURs
to allow a software engineer to develop, test,
and configure the final software deliverables to
system users. It should be noted that a number
of such system constraints, while referred to as
system-NFRs by some authors, are referred to
as quality aspects by other authors.

A number of researchers have investigated
issues related to NFR, such as considering them
as measurable inputs to effort estimation mod-
els [1], which, although based on a different point
of view, can be used concurrently with FUR,
including their procedures and approaches.

This paper specifically addresses system per-
formance NFR and extends our previous re-
search on three other types of NFR: secu-
rity [2], portability [3] and maintainability [4].
A key strength of the approach in our pre-
vious work is that it is based on the con-
sensus documented in international standards,
such as the European Cooperation for Space
Standardization (ECSS), the Institute of Elec-
trical and Electronics Engineers (IEEE) and
ISO on a number of such NFR, and our pro-
posal for a standards-based reference model for
specific types of NFR.

The contribution of this work is a stan-
dards-based measurement framework of system
performance requirements to be used by de-

Figure 1. System performance-NFR allocated to software performance-FUR



System performance requirements: A standards-based model for early identification . . . 119

velopers in the early development stages as
a generic model for the identification, specifi-
cation and measurement of the system perfor-
mance requirements allocated to software func-
tions.

The proposed framework was developed in
four main steps:
1. Identifying, analyzing, and categorizing into

an integrated view the system performance
requirement functions and services described
from different perspectives into ECSS and
IEEE standards. Then, modeling the iden-
tified system/software performance require-
ments and clarifying the relations between
these requirements using SIGs.

2. Applying the COSMIC-FSM method to iden-
tify and measure the data movements derived
from the allocated software performance re-
quirements. This leads to handling the system
performance requirements allocated to the
measured software performance requirements
as quantitative requirements.

3. Developing the proposed framework in the
context of service-oriented architecture using
COSMIC-SOA guidelines to support a dis-
tinct business domain.

4. Illustrating the applicability of the proposed
approach for the specification and measure-
ment of system performance NFRs allocated
to the software for an automated teller ma-
chine (ATM) within an SOA context.
The rest of the paper is structured as fol-

lows. Section 2 presents related work. Section 3
discusses the system performance requirements
identification and related software performance
requirements in international standards. Sec-
tion 4 details the proposed standards-based sys-
tem performance reference framework at the
function and service levels in the context of
a service-oriented architecture (SOA). Section 5
presents an illustrative example using the pro-
posed standards-based framework for identifying
and specifying ATM banking system performance
requirements, allocating them to the software per-
formance functions in an SOA context and mea-
suring them with COSMIC, an ISO-recognized
measurement unit. Section 6 presents conclusions
and further work.

2. Related work

2.1. Non-functional requirements
in the literature
and international standards

A number of proposals for identifying and speci-
fying different types of NFR, including different
methods, approaches, views and terminologies
have been made [1–7].

To help software project teams make the best
tradeoff decisions for conflicting NFRs, Zhang
and Wang [8] proposed a tradeoff model for
conflicting software non-functional requirements
(CNFR) using a fuzzy ranking method to express
stakeholder assessments of each NFR.

To help developers prioritize such kinds of
requirements early in the project cycle, Shah et
al. [9] proposed an approach for specifying the
NFR conflicts from previous ontological repre-
sentations of the NFRs.

Daclin et al. [10] analyzed interoperability
as a single NFR as a part of a complex NFR
domain, linking interoperability and its impacts
on the system performance requirements into
a collaborative system in a crisis management
framework.

Cysneiros et al. [11] highlighted the challenges
facing developers of capturing NFR simultane-
ously with FR at the early phases of software
development. They suggested the integration of
NFR with FR into conceptual models based on
a goal oriented strategy aimed at reducing the
cost of software development as well as increasing
customer satisfaction.

Various studies have focused on NFR [12–15]
within the software product line process. Tawhid
and Petriu [16] for example, proposed a UML
model transformation framework to determine
and reuse the performance requirements for a spe-
cific product.

Siegmund et al.[17] proposed a holistic ap-
proach, named SPL Conqueror, for the optimiza-
tion of the specification and measurement of NFR
in the SPL domain. They also carried out an anal-
ysis of the quality attributes (i.e., NFR) in SPL
as well as a verification of product satisfaction
of the quality conditions and constraints.



120 Khalid T. Al-Sarayreh et al.

Danylenko and Lowe [18] studied a con-
text-aware recommender system with the objec-
tive to defer architectural decisions, thus permit-
ting concentration on the core system function-
ality design. In early development phases this
recommender system helps to ease the difficulties
of NFR efficiency.

Kyo and Gil-Haeng [19] proposed a system-
atic software development process to support
successful management and modeling for NFR.
This process allows NFR to be systematically
managed and efficiently modeled.

Industry, through its participation in inter-
national standards organizations, has also con-
tributed by describing and categorizing NFR. For
example: performance requirements are one of
sixteen NFR types in ECSS [20–25], which have
been categorized by IEEE [26] as one of thir-
teen NFR types, using different terms and views.
Although in academia and industry NFR per-
formance requirements are frequently discussed,
there is a lack of a performance model that
can be used in the early development stages. In
the research reported in this paper, we propose
a standards-based framework for early identifi-
cation and measurement of system performance
requirements by analyzing all the performance
NFR related terms and views dispersed through-
out the international standards, such as ECSS
and IEEE.

2.2. System performance requirements
in the literature

To develop new insights into performance, in this
research, we analyzed related works in standards
on performance in hardware domains where
there is considerable, accumulated expertise. We
looked for performance-related concepts and
sub-concepts that were also relevant to software.

System performance requirements have been
discussed from various viewpoints in the liter-
ature. Shang et al. analyzed [27] the VxWorks
real time operating system used in the aerospace
and medical fields including five significant per-
formance indicators: task switching time, pre-
emption time, interrupt latency time, message

communication time and semaphore shuffling
time.

Alwadi et al. [28] proposed a framework for
the quality of service (QoS) attributes and in-
cluded performance as one of the prime system
NFR, allowing performance requirements to be
decomposed and allocated to a set of the system’s
functionalities.

Zhiwei et al. [29] proposed an approach for
improving the concurrent system performance
on the dynamic weighted k-out-of-n system
(DWKNS). Subsequent to the state possibility
and request of system components over time,
this approach was combined with the Markov
process with the universal generating function
(UGF) method and the state probability for the
performance of the system components.

Al-Sarayreh [30] considered system perfor-
mance requirements to be more comprehensive
than typical hardware-centric systems and pro-
posed that dynamic system performance re-
quirements be included with maintainability,
upgradability, interface interoperability, relia-
bility, safety and security (MUIRSS). MUIRSS
should be analyzed and visibly connected to en-
sure that they are included with development.

The system dynamic performance of Kai and
Huamin [31] for control systems indicates a rela-
tional variance of the controller design method.
Their proposed method is used for the first order
plus delay time system.

Krishna and Abraham [32] discussed the im-
portance of the analysis of performance and mem-
ory NFR in real time embedded systems. Based
on agile using incremental development, their
development approach helps system engineers
track the system performance requirements and
related parameters throughout the development
cycle. Their results are taken as a reference for
a systematic analysis approach for memory and
system performance NFR parameters using the
most suitable mathematical methods.

Vila et al. [33] presented an approach for
estimating the radio resource requirements for
RAN slice admission control in order to describe
the interference conditions of resource estima-
tion method influences on system performance



System performance requirements: A standards-based model for early identification . . . 121

requirements extracted from data analytics col-
lected from management plans.

Ruberg et al. [34] proposed a data process-
ing and cleaning method for a performance and
energy consumption estimation approach to man-
age system performance requirements. Their ap-
proach links software component feature mea-
surements (SCFMs) and software performance
quality indicators (SPQIs) to diagnose the soft-
ware and functional requirements.

2.3. COSMIC functional size
measurement method

There are currently five functional size measure-
ment (FSM) methods adopted by ISO: the COS-
MIC Function Points method is the only second
generation of such FSM methods, and its design
has corrected a number of the defects identified
in the other four FSM methods of the first gen-
eration.

Measuring software functional size is an im-
portant factor for managing and estimating the
project budget early in the software development
lifecycle. The COSMIC functional size measure-
ment (FSM) method conforms to the measure-
ment requirements proposed in ISO 14143-1 [35]
and has been adopted as ISO 19761 [36]. This
subsection presents the COSMIC generic model
for software requirements and how such a model
can be used to measure software functionalities
with an ISO-recognized measurement unit.

In the COSMIC-FSM method, the functional
user requirements are decomposed into one or
more functional processes, each of which may be
comprised of sub-processes and include a number
of data movements.

Figure 2 illustrates the COSMIC generic
model of software FR. The front-end direction of
the model shows that users access the software
through input/output devices (such as mouse
and microphone) or engineered devices (such
as sensors). The back-end direction shows that
the software is accessed by storage hardware
(such as RAM memory). Figure 2 also illustrates
the following four types of data movement: EN-
TRIES (E): exchanges data groups from users or
engineered devices to software (left-hand side in
Figure 2). EXITS (X): exchanges data groups
from software to users or engineered devices
(left-hand side in Figure 2). READS (R): ex-
changes data groups fromhardware storage to soft-
ware (right-hand side in Figure 2). WRITES (W):
exchanges data groups from software to hardware
storage (right-hand side in Figure 2).

The core principle of the COSMIC-FSM
method is to measure the size of software FR by
identifying the recognized data movements (E,
X, R and W). Once the data movements are iden-
tified, each type of data movement is assigned
the value of one COSMIC Function Point (e.g.,
1 CFP). The functional size of the software to
be measured is obtained by summing the sizes of
all the corresponding data movements. Since the

Figure 2. COSMIC generic model for software FR



122 Khalid T. Al-Sarayreh et al.

COSMIC-FSM method aims to measure the size
of the software, only the functional user require-
ments allocated to the software are considered
in the measurement procedure.

Moreover, the COSMIC-FSMmethod is appli-
cable to all the software development phases, from
the analysis to implementation phases. Note that
the COSMIC generic model in Figure 4 is not spe-
cific to any type of software nor to any particular
method for describing functional user require-
ments. In the framework proposed in this paper,
the COSMIC-FSM method is applied to measure
the size of the software performance functional
requirements with an ISO-recognized size unit.

2.4. Service-oriented architecture (SOA)
and its COSMIC view

The service-oriented architecture (SOA) ap-
proach provides significant benefits to organi-
zations, such as reducing software development
and maintenance costs and increasing software
quality by reusing services [37]. Various defi-
nitions have been introduced to define SOA,
but none have been universally adopted. For
instance, SOA has been defined as: 1) A pro-
cess that involves the definition of the archi-
tecture, components, modules, interfaces, and

data for a system to satisfy specified require-
ments [36, 37]; 2) A paradigm for organizing and
utilizing distributed capabilities that may be un-
der the control of different ownership domains. It
provides means to offer, discover, interact with,
and use capabilities to produce desired effects
consistent with measurable preconditions and ex-
pectations [36]; 3) Utilization of loosely coupled
software services to support business processes
requirements and user requirements [37].

The COSMIC-SOA guidelines document il-
lustrates how to measure the size of software
services in an SOA context [37]. The term ser-
vices in the COSMIC guideline refers to a suite of
related functions of software FR and also to the
separation of functions into distinct units, where
these services are connected with each other by
exchanging data, shared format or by coordinat-
ing activities between two or more services [37].

COSMIC-SOA guidelines offer three types
of data movements – exchange services, inter-
mediary services and data exchanges, which are
described in more detail in the following sections.

2.4.1. COSMIC-SOA exchange messages

COSMIC-SOA exchanges messages (Figure 3)
when an application needs information from a dif-

Figure 3. COSMIC-SOA guidelines for modeling data movements



System performance requirements: A standards-based model for early identification . . . 123

ferent application. For instance, if application
A needs to exchange data with application B,
the services of application A will be invoked
by the functional process of A to communicate
with the services of application B to obtain the
needed information. These calls between the func-
tional processes of A and its services or between
A services and B services are known as messages,
where each message may involve one or more
data movements [37].

2.4.2. COSMIC-SOA intermediary services

When services (Figure 3) of any application re-
quire data from another application in the overall
SOA framework, the intermediary service will
be used. For instance, if services of application
A need data from services of application B, the
services of application A will invoke the interme-
diary services to obtain the required data from
the services of application B.

2.4.3. COSMIC-SOA data exchanges

For components in the same layer (e.g., in the
application service layer) (Figure 3), two types
of data movements can be used: direct and indi-
rect message exchanges. For instance, in direct
exchange, if the service of application A requires
to exchange a message with a service of applica-
tion B, it will use an Exit and/or an Entry for
exchanging messages with the service of applica-
tion B. While the indirect exchange occurs using
storage, for instance, the service of application
A writes the data in storage which is read later
by service B [37].

2.5. Softgoal Interdependency Graphs

Softgoal Interdependency Graphs (SIGs) [38]
have been proposed for analyzing and demon-
strating NFR as softgoals. Each softgoal can
be represented as decomposed into one or more
specific goals using interdependency relations
between the analyzed goals until arriving at so-
lutions that satisfy the assigned NFR.

SIGs [39] illustrate three different types of
goals at the high level: 1) Softgoals that satisfy

the NFR with the software, 2) Claim softgoals
which enhance the rationale between related soft-
goals, and 3) Operationalization of system soft-
goals (including a set of processes, data represen-
tations and system behavior).

These SIGs [39] at the low level (i.e., subgoals)
provide both positive and negative contributions
to the assigned softgoals at the high level.

Softgoals and subgoals can interact with each
other using the following relations [39]: 1) AND
means that each softgoal is decomposed into
more than one related goal and is satisfied if
all the related goals are satisfied. 2) OR means
that each softgoal is decomposed into one or
more related goals and is satisfied if at least one
related goal is satisfied. 3) EQUAL means that
each softgoal is decomposed into one related goal
and is satisfied if the linked goal is satisfied.

The SIGs [38, 39] approach uses the terms
goals and subgoals to represent the condi-
tions or criteria that the system should meet
(e.g., non-functional requirements or quality at-
tributes) instead of more commonly used terms
in software engineering, such as functions and
software specifications. In addition, the SIGs ap-
proach does not distinguish between the system
view and the software view.

This research provides a mapping between
some of the SIGs terms to the standards-based
terms used in this paper, as presented in Figure 1.
Therefore, the expression function to be specified
is used instead of a functional goal while both
are encoded as is in the SIG approach.

3. Performance requirements
identification

This section introduces and discusses perfor-
mance terms and views for identifying system per-
formance NFR and related software performance
FR, which may then be used for specifying and
measuring the system performance requirements.
Numerous terms and views are found throughout
the ECSS and IEEE international standards as
well as previous works in academia. These have
addressed software performance FR derived from
system performance FR and NFR (see Figure 1).



124 Khalid T. Al-Sarayreh et al.

Figure 1 also illustrates system performance re-
quirements expressed as either system perfor-
mance NFR or system performance FR.

3.1. ECSS concepts
for performance requirements

ECSS standards [20–25] mention the importance
of establishing performance requirements in de-
tail at both system and software levels during the
development phase so as to evaluate the consis-
tency and cohesion of the control system within
the required standards. This includes: 1) The
objective(s) for each designed control system,
which are normally created by the requirements
engineering process; 2) The formal mathematical
requirements, which are created by the require-
ments analysis.

Enhancing and regularly improving software
applications requires system monitoring and eval-
uation of system performance. The performance
monitor [23] provides information related to the
use of processor instruction execution and stor-
age control. For example, to provide information
related to the period of time passed between
events in a processing system.

The performance monitor can be used to de-
bug the software application and analyze system
faults and errors by defining a machine’s state at
a specific point in time. The information from the
performance monitor helps system engineers to
evaluate and improve the performance of a given
system, or by developing enhancements of per-
formance requirements in new system design.

ECSS standards [20–25] define the following
concepts and views for system performance re-
quirements allocated to software: 1) Frequency
domain requirements such as throughput time,
which includes: Workload and Bandwidth; 2) Re-
sponse to reference signals for command profiles,
which includes: Response time, Settling time, and
Tracking errors; 3) Accuracy and stability errors
in the presence of disturbances: Performance er-
rors (absolute and stability errors) for evaluating
the accuracy and Knowledge errors (absolute and
relative errors) for evaluating accuracy; 4) Pro-
cessing speed includes: System scalability, and
System concurrency; 5) Resource consumptions

include: Processor instruction execution, Main
memory time, and Storage device time.

3.2. IEEE concepts
for performance requirements

IEEE standard 830-1998 [26] describes the fol-
lowing terms and concepts for system perfor-
mance requirements allocated to software as dy-
namic and static numerical requirements: 1) Dy-
namic numerical requirements, such as workload;
2) Static numerical requirements, such as capac-
ity and concurrency. These two types of system
performance requirements should be quantified
with a measurable procedural method.

3.3. Describing system performance
and related software functions

This section presents a brief description of system
performance requirements and their allocated
software performance requirements.

3.3.1. Performance dynamic requirements

Performance dynamic numerical requirements
may involve the data amount, transaction num-
ber and tasks to be processed within a specific pe-
riod of time for both normal and peak workload
conditions [26]. The unified standards-based view
includes two types of system requirements for
dynamic requirements: the response to reference
signals and throughput time.

Response to reference signals (RRS):
Response to reference signals refers to the spe-
cific values that change to a new value in a rel-
atively short period of time, including response
time or settling time values. Enhancing the re-
sponse to reference signals is reflected positively
on the system performance level. The unified
standards-based view includes three types of
functions for response to reference signals [25]:
response time function, settling time function
and tracking error function.
– Response time function (RTF) The response

time is widely defined as the period of time
that the system takes to respond to the user
after receiving the user task. This relation



System performance requirements: A standards-based model for early identification . . . 125

between response time and performance is an
inverse relation, since a decrease in response
time leads to an increase in performance level.

– Settling time function (STF) The settling time
refers to the time required for the system to
recover from an overload and to reach steady
state. STF has also been called recovery time
or reaction time [40]. It is important to reach
steady state in as little time as possible.

– Tracking error function (TEF) Tracking er-
rors includes tracking performance error. The
knowledge error (KE) or errors resulting from
the central processing unit (CPU) and the
main memory are also important to minimize
system errors. System performance, therefore,
can be enhanced by increasing system accu-
racy and speed.
Throughput time (TT): Throughput time

is the number of event responses carried out
by the system in a specific period of time [41].
Thus, maximizing the throughput time leads to
increasing performance of the system. The uni-
fied standards-based view includes two types of
functions for throughput time:
– Bandwidth function (BF) The bandwidth

function refers to the maximum amount of
data that can be carried over a network or
data-transmission medium in a unit of time.
The throughput time is limited by the band-
width function. Large bandwidth leads to
more event responses over time [42].

– Workload function (WF) The workload func-
tion measures the number of transactions per-
formed by the system within certain periods
of time. The performance level is good when
the system workload is significantly lower
than its capacity [43]. Otherwise system per-
formance will be slow.

3.3.2. Performance static requirements

Performance static numerical requirements are
sometimes specified under a separate section.as
capacity. They may also involve information
types, the amount of time handled, the num-
ber of simultaneous users and terminals sup-
ported [26]. Based on IEEE standards, the uni-
fied standards-based view includes three types

of system requirements for static numerical re-
quirements: resource consumption, evaluation of
processing speed and evaluation of accuracy.

Resource consumption (RC): The effi-
ciency of system resources (such as CPU, main
memory and system storage) significantly affects
the system performance. Heavy resource con-
sumption can lead to the system’s inability to
effectively deal with its processes [44, 45], there-
fore, slowing down or crashing causing poor sys-
tem performance. Proper utilization of resources
leads to high system performance.

The unified standards-based view includes
three types of functions for resource consump-
tion: main memory time function, storage device
time function and processor instruction execution
function.
– Main memory time function (MMTF) The

main memory is also known as the system in-
ternal memory or primary memory; it is used
to store the data that is in use. When the
CPU requires access to specific data from the
storage device, the main memory will access
the storage device and retrieve the required
data to be processed by the CPU [46]. The
time spent to access data in the main memory
needs to be as small as possible in order to
optimize system performance.

– Storage device time function (SDTF) Storage
devices have a huge capacity to hold data in
a permanent way. Fast storage devices are
preferred to slower devices. Storage speed is
impacted by two factors: Access time: the
average time to locate data on the storage
medium, and Data transfer rate: the amount
of data transferred to or from the device per
second [47].

– Processor instruction execution function
(PIEF) Computer instructions are a set of
commands executed by the processor to per-
form specific functions. Increasing the speed
of executing such instructions can signifi-
cantly contribute to improving the system
performance level.
Evaluation of accuracy (EA): The devel-

oped system should achieve a high level of accuracy
(i.e., precision). The definition of accuracy varies
from one system to another. For instance: In satel-



126 Khalid T. Al-Sarayreh et al.

lite systems, accuracy refers to the positioning
accuracy provided by the system [48]. In radio
systems, accuracy refers to how closely the actual
output frequency matches the set frequency [48].

System accuracy may be determined through
measuring system error. Based on ECSS stan-
dards, the unified standards-based view includes
two error types: performance error and knowl-
edge error.
– Performance error (PE) is defined as the func-

tions that quantify the difference between the
system’s desired state and the system’s actual
state [27, 28]. In the unified standards-based
view, two common PE indices are used for
measuring performance error:
1. Absolute performance error function

(APEF) The absolute performance error is
defined as the instantaneous value of the
performance error at any given time [25].
Applying a specific mathematical oper-
ator on the performance error function
determines the APE. In addition, each
system has a maximum APE value, which
the calculated APE should not exceed.

2. Performance stability error function
(PSEF) The system stability is defined
as the ability of the system to maintain
a particular situation for a given time. The
stability error is the peak-to-peak varia-
tion of the system attitude during the
time period [25]. The PSEF is known as
the change of error over a given time [25].
In addition, applying a specific mathe-
matical operator to the performance er-
ror function and to the APE determines
such a function. Just like the APE, each
system has a maximum PSE value and
the calculated PSE should not exceed the
maximum APE.

It is possible to use other performance error
indices if the system so requires.

– Knowledge error (KE) is defined as the func-
tions that quantify the difference between
the system’s estimated (or known) state and
its actual state [27, 28]. In the unified stan-
dards-based view, two common knowledge
error indices are used for measuring knowl-
edge error:

1. Absolute knowledge error function
(AKEF) The absolute knowledge error
(AKEF) is defined as the instantaneous
value of the knowledge error at any given
time [29]. Applying a specific operator
to the KE function determines the AKE.
Just like the performance error indices,
each system has a maximum AKE value
and the calculated AKE should not exceed
the maximum APE.

2. Relative knowledge error function (RKEF)
The relative knowledge error (RKEF)
refers to the difference between the instan-
taneous knowledge error at a specific time
and its mean value over a time interval
containing that time [29]. It is possible to
use two other KE indices types should the
system require it.

Evaluation of processing speed (EPS):
The processing speed refers to how quickly the
processor handles instructions. The processing
speed for a CPU is measured by the CPU clock
rate. A CPU with a high clock rate leads to
high speed instruction processing. The unified
standards-based view includes two types of func-
tions for EPS: system scalability function and
concurrency function.
1. System scalability function (SSF) System

scalability function (SSF) is the system’s
ability to process increased workload while
maintaining the required system performance
level [48]. To make the system scalable, ad-
ditional hardware is added, such as CPU or
memory, without making any changes to the
system architecture.

2. Concurrency function (CF) The concurrency
function refers to executing several instruc-
tions simultaneously, which improves the use
of system resources while also reducing the
system response time [49, 50].

4. Measurement framework
for performance requirements

Figure 4 shows the four main phases used to
determine the proposed measurement framework
for system performance requirements:



System performance requirements: A standards-based model for early identification . . . 127

Phase 1 (Logical view): Identify and analyze
the functions to be specified for system perfor-
mance requirements. In this phase, the logical
views are defined based on the functional user
requirements view.

Phase 2 (Process view): Design and integra-
tion of the identified system performance re-
quirements. In this phase, the process view is
developed which includes default, rationale and
component approaches. For more details, see Fig-
ure 4.

Phase 3 (Development view): Design a system
performance requirements model using SIGs at
the functional level. In this phase, the system
performance model is designed and built by inte-
grating the logical and process views [51].

Phase 4 (Deployment view): Design a mea-
surement context at functional and service levels
with COSMIC-SOA to measure the functional
size of the software performance requirements. In
this phase, the design measurement strategy is
used to develop the proposed generic model of the
system performance requirements allocated to
software based on functional user requirements

(FUR) views. Next, an architectural measure-
ment context for the service levels is designed by
applying the COSMIC-SOA guideline to develop
a framework in an SOA context.

“For preliminary design of the performance
requirements model, the SIGs tool is used. For
the performance measurement model, we used
another visualization tool called LibreOffice Draw
Tool. This tool extends the preliminary perfor-
mance model in SIGs by adding the generic
COSMIC measurement procedure and adopting
the detailed COSMIC-SOA to the proposed
performance model.”

4.1. Integration of system performance
functions to be allocated to software
(Phases 1 and 2)

The terms and views found in ECSS and IEEE
to describe the performance NFR in Section 3.3
are combined and integrated using both their log-
ical and process views. This leads to a dynamic
view (Figure 5) and a static view (Figure 6) of
the system performance functions and related

Figure 4. System performance requirements from four different views



128 Khalid T. Al-Sarayreh et al.

Figure 5. Integrated model of ECSS and IEEE system performance dynamic requirements
and related functions

Figure 6. Integrated model of ECSS and IEEE system performance static requirements and functions



System performance requirements: A standards-based model for early identification . . . 129

software functions, which can then be used to
specify and measure them.

4.2. Design of system performance
requirements at the functional level
(Phase 3)

The proposed framework for system performance
requirements is established at two main levels:
the functions level and the services level. This
section illustrates and describes in detail the
framework at the functional level. In this section,
the software interdependency goals (SIGs) and
ISO 19761 are used to design the framework of
the system performance NFR allocated to soft-
ware at the functional level, divided into four
sub-models, see Figure 7.

4.2.1. System performance dynamic
requirements (SPDR)

The functions for the system performance dy-
namic requirements must address:

The throughput time (TT): The through-
put time (TT), which involves two functions: the
bandwidth function and the workload function.
Figure 7 illustrates the interdependency relation-
ships between these functions:
1. The bandwidth (BF) and the workload (WF)

functions may exchange data in a direct way
with each other, and/or

2. may exchange data in an indirect way through
the persistent storage, and as well

3. may require data from any function in the
overall performance framework through inter-
mediary services.
Theresponsetoreferencesignals (RRS):

The response to reference signals (RRS) involves
three functions: the response time function (RTF),
the settling time function (STF) and the tracking
error function (TEF). Figure 7 shows the inter-
dependency relations between these functions:
1. The response time, settling time and tracking

error functions may exchange data in a direct
way with each other;

2. may exchange data in an indirect way through
the persistent storage;

3. may require data from any function in the
overall performance framework through inter-
mediary services.

4.2.2. System performance static requirements
(SPDR)

The system performance static requirements in-
clude four function types – see Figure 7.

Resource consumption (RC): Resource
consumption (RC) which involves three func-
tions: the main memory time function (MMTF),
the storage device time function (SDTF) and the
processor instruction execution function (PIEF).
Figure 7 illustrates the interdependency relation-
ships between these functions:
1. They may exchange data in a direct way with

each other, and/or
2. may exchange data in an indirect way through

the persistent storage, and
3. may require data from any function in the

overall performance framework through inter-
mediary services.
The evaluation of accuracy (EA): The

evaluation of accuracy (EA) which is composed
of performance error (PE) and knowledge error
(KE). Performance error involves two specified
functions: the absolute performance error func-
tion (APEF) and the performance stability er-
ror function (PSEF). The knowledge error also
involves two specified functions: the absolute
knowledge error function (AKEF) and the rela-
tive knowledge error function (RKEF). Figure 7
illustrates the interdependency relationships be-
tween these functions:
1. They may exchange data in a direct way with

each other;
2. may exchange data in an indirect way through

the persistent storage;
3. may require data from any function in the

overall performance framework through inter-
mediary services.
The evaluation of accuracy (EA): The

EPS which is composed of two functions: the sys-
temscalability function (SSF)andtheconcurrency
function (CF). Figure 7 illustrates the interdepen-
dency relationships between these functions:



130 Khalid T. Al-Sarayreh et al.

Figure 7. Full view of the system performance NFR at the functional level



System performance requirements: A standards-based model for early identification . . . 131

1. They may exchange data in a direct way with
each other;

2. may exchange data in an indirect way through
the persistent storage;

3. may require data from any function in the
overall performance framework through inter-
mediary services.

4.3. Design of the measurement
framework for system performance
NFR (Phase 4)

This section introduces the framework in an SOA
context using the COSMIC-SOA guidelines. For
clarity, the proposed framework is divided into
the seven sub-models illustrated in Figures 8
to 13. Figure 14 shows the full view in the SOA.

Figure 8 shows that all the derived functions
from resource consumption have their own ser-
vices. The interdependency relations between
these functions and their services are:
– The main memory time function, the storage

device time function and the processor in-
struction execution function may require data
from their services using EXIT and ENTRY
data movements.

– The main memory time service may exchange
data at a service layer either in a direct
way with the storage device time service us-
ing COSMIC EXIT and ENTRY data move-
ments. Or it may exchange data in an indi-
rect way through the persistent storage using
COSMIC READ and WRITE data move-
ments.

– The storage device time service may exchange
data at a service layer either in a direct way
with the main memory time service and the
processor instruction execution service us-
ing COSMIC EXIT and ENTRY data move-
ments. Or it may exchange data in an indi-
rect way through the persistent storage using
COSMIC READ and WRITE data move-
ments.

– The processor instruction execution service
may exchange data at a service layer either
in a direct way with the storage device time
service using COSMIC EXIT and ENTRY
data movements. Or it may exchange data in

an indirect way through the persistent stor-
age using COSMIC READ and WRITE data
movements.

– The main memory time service, the storage
device time service and the processor instruc-
tion execution service may require data from
any service in the overall performance frame-
work through the intermediary service us-
ing COSMIC EXIT and ENTRY data move-
ments.
Figure 9 shows that all the derived functions

from the evaluation of processing speed have their
own services. The interdependency relations be-
tween these functions and their services are:
– The system scalability function and the con-

currency function may require data from their
services using EXIT and ENTRY data move-
ments.

– The system scalability service may exchange
data at a service layer either in a direct way
with the concurrency service using COSMIC
EXIT and ENTRY data movements. Or it
may exchange data in an indirect way through
the persistent storage using COSMIC READ
and WRITE data movements.

– The concurrency service may exchange data
at a service layer either in a direct way with
the system scalability service using COSMIC
EXIT and ENTRY data movements. Or it
may exchange data in an indirect way through
the persistent storage using COSMIC READ
and WRITE data movements.

– The system scalability service and the con-
currency service may require data from any
service in the overall performance framework
through the intermediary service using COS-
MIC EXIT and ENTRY data movements.
As mentioned in Section 4.1, the evaluation

of accuracy (EA) is comprised of two error types:
performance error (PE) and knowledge error
(KE). Figure 10 shows that all the derived func-
tions from performance error have their own
services. The interdependency relations between
these functions and their services are:
– The absolute performance error function and

the performance stability error function may
require data from their services using EXIT
and ENTRY data movements.



132 Khalid T. Al-Sarayreh et al.

Figure 8. Resource consumption sub-model in an SOA context

– The absolute performance error service may
exchange data at a service layer either in
a direct way with the performance stability
error service using COSMIC EXIT and EN-
TRY data movements. Or it may exchange
data in an indirect way through the persistent
storage using COSMIC READ and WRITE
data movements.

– The performance stability error service may
exchange data at a service layer either in
a direct way with the absolute performance
error service using COSMIC EXIT and EN-
TRY data movements. Or it may exchange
data in an indirect way through the persistent
storage using COSMIC READ and WRITE
data movements.



System performance requirements: A standards-based model for early identification . . . 133

Figure 9. Evaluation of processing speed sub-model
in an SOA context

Figure 10. Performance error sub-model
in an SOA context

– The absolute performance error service and
the performance stability error service may
require data from any service in the overall
performance framework through the inter-

mediary service using COSMIC EXIT and
ENTRY data movements.
Figure 11 shows that all the derived functions

from the knowledge error (KE)have their own



134 Khalid T. Al-Sarayreh et al.

services. The interdependency relations between
these functions and their services are:
– The absolute knowledge error function and

the relative knowledge error function may
require data from their services using EXIT
and ENTRY data movements.

Figure 11. Knowledge error sub-model
in an SOA context

– The absolute knowledge error service may
exchange data at a service layer either in a di-
rect way with the relative knowledge error
service using COSMIC EXIT and ENTRY
data movements or it may exchange data in
an indirect way through the persistent stor-
age using COSMIC READ and WRITE data
movements.

– The relative knowledge error service may ex-
change data at a service layer either in a di-
rect way with the absolute knowledge error
service using COSMIC EXIT and ENTRY
data movements. Or it may exchange data in
an indirect way through the persistent stor-
age using COSMIC READ and WRITE data
movements.

– The absolute knowledge error service and the
relative knowledge error service may require
data from any service in the overall perfor-
mance framework through the intermediary
service using COSMIC EXIT and ENTRY
data movements.
Figure 12 shows that all the derived functions

from the response to reference signals have their
own services. The interdependency relations be-
tween these functions and their services are:
– The response time function, the settling time

function and the tracking error function may
require data from their services using EXIT
and ENTRY data movements.

– The response time service may exchange data
at a service layer either in a direct way with
the settling time service using COSMIC EXIT
and ENTRY data movements or it may ex-
change data in an indirect way through the
persistent storage using COSMIC READ and
WRITE data movements.

– The settling time service may exchange data
at a service layer either in a direct way with
the response time service and the tracking er-
ror service using COSMIC EXIT and ENTRY
data movements or it may exchange data in
an indirect way through the persistent stor-
age using COSMIC READ and WRITE data
movements.

– The tracking error service may exchange data
at a service layer either in a direct way with
the settling time service using COSMIC EXIT
and ENTRY data movements. Or it may ex-



System performance requirements: A standards-based model for early identification . . . 135

change data in an indirect way through the
persistent storage using COSMIC READ and
WRITE data movements.

– The response time service, the settling time
service and the tracking error service may
require data from any service in the overall
performance framework through the inter-
mediary service using COSMIC EXIT and
ENTRY data movements.

Figure 12. Response to reference signals sub-model
in an SOA context

Figure 13 shows that all the derived functions
from the throughput time (TT) have their own
services. The interdependency relations between
these functions and their services are:
– The bandwidth function and the workload

function may require data from their services
using EXIT and ENTRY data movements.

– The bandwidth service may exchange data at
a service layer either in a direct way with the
workload service using COSMIC EXIT and
ENTRY data movements. Or it may exchange

data in an indirect way through the persistent
storage using COSMIC READ and WRITE
data movements.

Figure 13. Throughput time sub-model
in an SOA context

– The workload service may exchange data at
a service layer either in a direct way with the
bandwidth service using COSMIC EXIT and
ENTRY data movements. Or it may exchange
data in an indirect way through the persistent
storage using COSMIC READ and WRITE
data movements.

– The bandwidth service and the workload ser-
vice may require data from any service in the
overall performance framework through the
intermediary service using COSMIC EXIT
and ENTRY data movements.



136 Khalid T. Al-Sarayreh et al.

Figure 14. Full view of the system performance NFR model in an SOA context

Figure 14 illustrates the full view for the
measurement framework of the system perfor-
mance requirements on the basis of the previous
sub-models in Figures 8–13 at functional level
and in an SOA context.

From Figure 14, the following points can be
observed for measurement purposes:
– In the direct data exchange situation, each

EXIT and ENTRY data movement will be
assigned a size of 1 CFP.

– In the indirect data exchange situation, each
READ and WRITE data movement will be
assigned 1 CFP.

– Data required through intermediary services
that requires using 4 EXITS and 4 ENTRIES
will be assigned 8 CFP.

5. Illustrative example:
ATM banking system

5.1. Overview

Banking systems provide a variety of financial
services to individuals, businesses and govern-
ments. An automated teller machine (ATM) is



System performance requirements: A standards-based model for early identification . . . 137

a computerized system found in a public location.
Customers are identified by inserting a smartcard
that contains a unique number and some infor-
mation about the customer and their account
status. The services typically provided by ATM
banking systems include: accepting deposits, cash
withdrawal, issuing balance statements, pre-paid
mobile charges and money transfers. To achieve
high customer satisfaction, such systems must
demonstrate high quality levels including: excel-
lent performance, security and reliability.

5.2. Purpose and process

The purpose of this example is to present a “proof-
-of-concept” on a small-scale of the concepts pro-
posed in this paper by illustrating the use of the
proposed measurement framework for system per-
formance requirements allocated to software (as in
Figure 14). More specifically, to derive the system
performance requirements allocated to an ATM
system, and to measure the functional size of
these allocated requirements using the COSMIC
method. This illustrative example was realized
by applying the following steps:
– Analyze and specify the main components

of the ATM internal structure in a physical
view.

– Design the workflow scenario-based applica-
tion for the customer view.

– Identify the ATM functional user require-
ments for the customer and system views.

– Specify the ATM system requirements allo-
cated to software.

– Specify the ATM system performance require-
ments allocated to software as an extended
view to step 4.

– Map the allocated system performance re-
quirements with the proposed framework.

– Measure the functional size of the allocated
system performance requirements to the spec-
ified banking system with the COSMIC
ISO-recognized measurement unit.

5.3. ATM internal structure system

Here we detail the internal structure of the bank
ATM and the relationships among its various

parts. AnATMtypically consists of several devices
such as: central processor unit (CPU), crypto
processor, memory, customer display, function
key buttons (typically situated near the display),
smart chip card reader, encrypting PIN pad,
customer receipt printer, vault, and modem.

The vault stores all devices and parts that
require limited access, such as:
– Cash dispensing mechanism (CDM),
– Deposit mechanism (DM),
– Security sensors (SS) (e.g., magnetic, thermal,

seismic, gas),
– Electronic journal system (EJS) to keep sys-

tem log,
– Cash dispenser (CD) which includes several

removable cash cartridges, deposit mecha-
nism and removable deposit cartridges.
The software specifications for the ATM sys-

tem are: read the ATM card, count currency
notes, connect to bank network, take input from
user, validate user, dispense cash to user and
receive deposit envelopes from the user through
deposit slot.

5.4. ATM block diagram

The set of ATM system scenarios includes au-
thentication of the PIN entered with the one en-
crypted on the card. Once the PIN is confirmed,
the customer can access their bank account to
make the chosen transaction. Or else the system
shows a suitable message to clarify rejection of
access. Figure 15 illustrates the first instantia-
tion scenario for customer authentication for the
ATM as follows:
– The client inserts his/her smartcard; the card

reader processes the smartcard’s data using
the card transaction handler, and informs the
system that the smartcard is valid.

– The card transaction handler displays a mes-
sage on the ATM screen asking for the cus-
tomer PIN number.

– The ATM screen asks the customer to enter
the PIN and the customer enters PIN code
which is passed on to the card transaction
handler.

– The card transaction handler verifies and
gives authorization if the PIN is correct; if not,



138 Khalid T. Al-Sarayreh et al.

Figure 15. ATM functional requirements at the system level

a message appears on the screen to inform
the customer that PIN number is invalid.

– The customer enters PIN again when the
message appears on the screen to enter the
PIN code number.

– If the customer has not provided the correct
PIN in three iterations, the card reader will
capture the customer smartcard and the ses-
sion is terminated.
The second instantiation scenario after cus-

tomer authentication for the ATM is as follows:
– The main menu that appears on the ATM sys-

tem screen contains three types of transactions:
”get account balance inquiry” (choice 1), “cash
withdrawal” (choice 2) and “money deposit”
(choice 3). A choice to allow the user to exit
the system (choice 4) appears as well.

– The user at that point chooses either to make
a transaction by entering one of the three
choices or exits the system.

– If the client enters “get account balance in-
quiry”, the ATM retrieves the balance from
the bank’s database and the screen displays
the client’s account balance.

– If the client enters “cash withdrawal”, the
ATM screen displays a menu holding typical
withdrawal amounts such as 50, 100, 200.

– The withdrawal menu also displays a choice to
permit the customer to cancel the transaction.

– If the withdrawal amount selected is larger
than the client’s account balance, the screen
displays a message telling the client to select
a smaller amount. The ATM then returns to
the beginning of this scenario.

– If the withdrawal amount selected is less
than or equal to the client’s account balance,
the ATM proceeds and issues the client’s re-
quested amount.

– Then the ATM subtracts the withdrawal
amount from the client’s account in the
bank’s database.

– The screen displays a message informing the
user to take money.

5.5. ATM functional requirements (FR)

The functional requirements (FR) represent the
system tasks from the stakeholder perspective
and are typically derived from the context of
use. The FR perspective can describe customer
scenarios, system goals and objectives within
the system environment and can connect these
perspectives with assigned hardware resources.

Customer requirements are a subset of stake-
holder requirements and can be collected in the
stakeholder requirements specification document
together with other perspective scenarios which
have been derived from the system block diagram



System performance requirements: A standards-based model for early identification . . . 139

Figure 16. Customers and system scenarios identified from the ATM functional requirements

of Figures 15 and 16, including the identification
of related hardware performance.

5.6. ATM system requirements
allocated to software

Each system FR should be allocated to some
specific software and/or physical component. Allo-
cation should be defined in the early phases of the
system development life cycle. At a high level in
the systemNFR this allocation impacts the design
of the system architecture. Figure 17 illustrates
the customer FR perspectives connected with
software goals and sub software goals to derive
the system requirements allocated to software.

5.7. System performance NFR
allocated to software functions

This section presents an instantiation of some
system performance requirements, and an ex-
ample of their allocation to software. For this
example, the following system performance NFR
have been selected for the ATM system:
– Requirement 1: The maximum data trans-

mission over the system network shall be
100 megabits per second.

– Requirement 2: Themaximum time to respond
to a customer transaction shall be one second.

– Requirement 3: The main memory access
time in the system shall be 50 nanoseconds.

– Requirement 4: The system shall be scalable
to handle the increased workload while main-
taining the system performance level.

– Requirement 5: The system shall support
the concurrent execution to execute the cus-
tomer’s transactions in a concurrent way.

– Requirement 6: The maximum time to recover
the system from the instability state shall be
two minutes.

– Requirement 7: The storage device access
time in the system shall be 35 millisec-
onds and the data transfer rate shall be
156 megabytes per second.

– Requirement 8: The processor of the system
shall be able to execute 2000 instructions per
second.
For this example, these system performance

NFR were allocated to the following software
functions, see Figure 18:
– Requirement 1: to the bandwidth function

and its services.
– Requirement 2: to the response time function

services.
– Requirement 3: to the main memory time

function services.
– Requirement 4: to the system scalability func-

tion services.



140 Khalid T. Al-Sarayreh et al.

Figure 17. ATM customer and system scenarios allocated to software and ATM devices

– Requirement 5: to the concurrency function
services.

– Requirement 6: to the settling time function
services.

– Requirement 7: to the storage device time
function services.

– Requirement 8: to the processor instruction
execution function.

5.8. Mapping system performance NFR
to an SOA context

This section maps the specified system perfor-
mance requirements for the ATM system within
an SOA context – see Figure 19. It can then be
used to measure the instantiation case of the
specified system performance NFR allocated to
software for the banking ATM.

5.9. Measuring the specified system
banking performance NFR
(instantiation case)

This step identifies the detailed data movements
for the allocated software performance functions
in an SOA context. It is important to note that

the performance NFR may require additional re-
sources be added (i.e., hardware) to the system.

In this example, for illustrative purposes,
a single data group was selected for each spec-
ified performance function, while in an indus-
trial context these performance functions may
require more than one data group. Table 1 shows
the COSMIC measurement of the system per-
formance NFR allocated to the software require-
ments at functional and service levels.

This example shows the corresponding COS-
MIC size for the selected specified requirements
at the functional and services level (Figures 18
and 19). For measurement purposes they corre-
spond to COSMIC data movements as follows:

Requirement 1 (R1): is allocated to one
identified function (bandwidth function and its
services) for the following customer-FR (Insert
E-card, check if E-card is valid and Write E-card
PIN). It extracts the identification data from
the smartcard and invokes its own three services
between three customer-FR, and then uses the
persistence storage twice (once to check if the
card is valid and second to check if the PIN
number is correct. Here, we consider that the
PIN is entered correctly).



System performance requirements: A standards-based model for early identification . . . 141

Figure 18. ATM system performance NFR allocated to software functions

The measurement of the functional size using
ISO 19761 (COSMIC) for R1 is calculated based
on data movements between groups of processes
as follows:
– Three identification functions (3 ENTRY and

3 EXIT).
– Two identification services (4 ENTRY and

4 EXIT).
– Functional and services processes use per-

sistence storage twice to obtain information
about the card (2 READ and 2 WRITE).

The total functional size for R1 is 18 CFP.
Requirement 2 (R2): is allocated to one

identified function (response time function and
its services) for the following customer-FR
(Present transaction options, get account balance
and Write amount of money).
A. The main menu on the ATM system screen
displays three types of transactions options. The
measurement of the COSMIC functional size for
R2-A is as follows:
– One identification function (1 ENTRY and

1 EXIT).
– One identification service (2 ENTRY and

2 EXIT).

– Functional and services processes use per-
sistence storage once, which appears on the
main menu of the ATM application (1 READ
and 1 WRITE).

The total functional size for R2-A is 8 CFP.
B. In this instantiation the customer enters “get
account balance inquiry”. The ATM retrieves
the client’s account balance from the bank’s
database which is then displayed on the screen.
The measurement of the COSMIC functional size
for R2-B is as follows:
– One identification function (1 ENTRY and

1 EXIT).
– One identification service (2 ENTRY and

2 EXIT).
– Functional and service processes use persis-

tence storage once which appears on the main
menu for the ATM application (1 READ and
1 WRITE).

– One intermediary service is needed to retrieve
the customer account balance from the exter-
nal database (4 Entry and 4 Exit).

The total functional size for R2-B is 16 CFP.
C. When the customer enters “cash withdrawal”,
the ATM screen displays a menu showing typical



142 Khalid T. Al-Sarayreh et al.

Figure 19. ATM system performance requirements allocated to software functions within an SOA context

withdrawal amounts, such as 50, 100, 200. In this
instantiation, the customer can enter their own
desired amount. The measurement of the COS-
MIC functional size for R2-C calculated based
on data movements between groups of processes
is described as follows:
– One identification function (1 ENTRY and

1 EXIT).
– One identification service (2 ENTRY and

2 EXIT).

– One intermediary service is needed to sub-
tract the amount of money from the customer
account balance (i.e., the customer has 300,
takes 50, the remainder is 250) (4 ENTRY
and 4 EXIT).

– Functional and service processes use persis-
tence storage twice to obtain information
about the card (1 READ and 1 WRITE).

The total functional size for R2 (A, B, C) is (8 +
16 + 16) = 40 CFP.



System performance requirements: A standards-based model for early identification . . . 143

Requirement 3 (R3): is allocated to one
identified function (main memory time function
and its services) for the customer-FUR (Expel
money).

The measurement of the COSMIC functional
size for R3 is calculated based on data movements
between groups of processes and is described as
follows:
– One identification function (1 ENTRY and

1 EXIT).
– One identification service (2 ENTRY and

2 EXIT).
The total functional size for R3 is 6 CFP.

Requirement 4 (R4): is allocated to one
identified function (system scalability function
and its services), twice for the customer-FUR
(Register transaction to local DB and Register
capture to local DB).

The measurement of the COSMIC functional
size for R4 is calculated based on data movements
between groups of processes and is described as
follows:
– One identification function twice (2 ENTRY

and 2 EXIT).
– One identification service twice (4 ENTRY

and 4 EXIT).
– Twice the intermediary service while the

system uses the database (8 ENTRY and
8 EXIT).

The total functional size for R4 is 28 CFP.
Requirement 5 (R5): is allocated to one

identified function (settling time function and its
services) for the customer-FR (Process another
operation).

The measurement of the COSMIC functional
size for R5 is calculated based on data movements
between groups of processes and is described as
follows:
– One identification function (1 ENTRY and

1 EXIT).
– One identification service (2 ENTRY and

2 EXIT).
The total functional size for R5 is 6 CFP.

Requirement 6 (R6): is allocated to one
identified function (concurrency function and its
services) for the customer-FUR (Inform rejection,
Eject E-card, Take E-card and Capture E-card).

The measurement of the COSMIC functional
size for R6 is calculated based on data movements

between groups of processes and is described as
follows:
– One identification function four times

(4 ENTRY and 4 EXIT).
– One identification service four times

(8 ENTRY and 8 EXIT).
The total functional size for R6 is 24 CFP.

Requirement 7 (R7): is allocated to one
identified function (storage device time function
and its services) for the customer-FUR (Register
capture to local DB).

The measurement of the COSMIC functional
size for this process is calculated based on data
movements between groups of processes and is
described as follows:
– One identification function (1 ENTRY and

1 EXIT).
– One identification service (2 ENTRY and

2 EXIT).
– Two intermediary services, one to use the lo-

cal ATM database and the second to give
order to storage to capture the customer
smartcard (8 Entry and 8 Exit).

The total functional size for R7 is 22 CFP.
Requirement 8 (R8): Requirement 8 (R8):

is allocated to one identified function (processor
instruction execution function and its services)
for the customer-FUR (Register transaction and
Inform not enough money).

The measurement of the COSMIC functional
size for R8 is calculated based on data movements
between groups of processes and is described as
follows:
– One identification function twice (2 ENTRY

and 2 EXIT).
– One identification service twice (4 ENTRY

and 4 EXIT).
The total functional size for R8 is 12 CFP.

5.10. Summary of findings

Table 1 lists the 17 software subgoals to be mea-
sured from the customer-FUR perspective. These
software subgoals call eight specified functions
and eight specified services processes of system
performance allocated to software in R1, R2 to R8.
These are identified and presented in columns 1, 2
and 3. For each identified functional process, the
description of the measured resource represents



144 Khalid T. Al-Sarayreh et al.

a data performance group moved by one data
movement type, each one measured as 1 CFP
(COSMIC function point).

The total functional size for the performance
requirements R1, R2 to R8 applied to this soft-
ware in a functional level is 34 CFP and in SOA
context is equal to 122 CFP, independent of the
languages and technologies used to implement
them. In further applications, this functional size
number can be used for effort estimation models
and for software benchmarking.

5.11. Limitations of the illustrative
example

The ATM example illustrates how the proposed
approach is applicable in a relatively simple con-
text. Future research is needed to investigate its
scalability to much larger contexts, such as com-
plex systems that perform millions of operations
per second. Naturally, for such large complex
systems, organizations have more resources and
can dedicate much more resources to make use
of this approach. In such contexts, additional
research on efficiency studies would be welcome.

5.12. Practical Implications

We think that this framework can be easily used by
someone knowledgeable in performance standards,
COSMIC measurement and SOA architecture.
Someone familiar with other environments, such
as cloud computing environments, could also
use and adapt this framework to a context-spe-
cific environment. More specifically, requirement
specialists, software architects, performance engi-
neers and project managers can use the proposed
standards-based performance framework.

The generic approach proposed in our re-
search program on standards-based identification,
specification and measurement of system NFRs
allocated to software had already influenced the
COSMIC Group when it published its initial
strategy on how to handle NFRs and Project Re-
quirements from a project management perspec-
tive [52]. To facilitate industry adoption of this
approach, including the performance framework
presented here, we recently edited, for the COS-

MIC Group, a practitioner’s guide on Non-Func-
tional Requirements and their Sizing with COS-
MIC [53]: it includes a set of templates based on
the performance framework documented in more
detail in this study. Organizations with a very
large NFR knowledge base as well as experts
in performance issues can also compare their
own practices with this framework and identify
gaps within their practices; such gaps can be
addressed, fully or partially, by using this frame-
work. If their own practices are not structured
and explicit, they can use the structure of this
framework to structure and document their own
related practices.

5.13. Threats to validity

The quality of an experimental case study is
important as it can substantiate the limits of
the study and identify threats to its validity,
which could impact the results. The key types of
validity threats as proposed by Wohlin [54] are:

Internal validity is concerned with the relia-
bility of the results and refers to the treatment
that caused the outcome [54]. There can be other
uncontrollable or not measured factors that in-
fluenced the results. The internal validity threat
in this example includes the change of the design
process for this example. Here, we believe that if
different researchers use the same method on the
same example, they will get the same results. In
contrast, in the absence of a full description of
some parts considered in this example, variability
in the results would be expected.

External validity [54] here refers to the gen-
eralization of the results outside the scope of the
example and whether or not the cause and effect
established hold in other situations. An external
validity threat is expressed at the outcomes level.
The proposed measurements framework of sys-
tem performance NFR was illustrated using only
the performance requirements specifications of
an ATM system. There is no claim in this study
on generalizability and scalability to much larger
contexts, such as complex systems that perform
millions of operations per second. Scalability
is outside the scope of the research presented
here. To alleviate the risk of this validity threat



System performance requirements: A standards-based model for early identification . . . 145

Table 1. ATM measurement of the system performance NFR allocated to software functions

additional examples and case studies could be
conducted using requirement specifications of dif-
ferent types of software products (e.g., business
application software, Telecom software, medical
embedded software, etc.).

Construct validity [54] refers to the relation
between the theory behind the experiment and
the observation(s). The treatment and the results
may not correspond to the cause and the effect
controlled and measured. A limited number of
standards and methods have been selected for
this example. Nevertheless, there exist other stan-
dards and methods, and future research could
investigate the use and relevance of such other
standards and methods.

6. Conclusion and further work

This paper proposed a measurement framework
of system performance NRF allocated to soft-
ware functions. This work on system performance
NFR extends our previous work on three types of
NFR (security, portability and maintainability)
to facilitate the early identification, specification
and measurement of such kinds of NFR.

The suggested framework includes some of
the consensual performance terms and concepts
used by two sets of international standards
(ECSS and IEEE) and some related works. They
were analyzed and integrated using different de-
sign views beginning with the logical view, fol-
lowed by process view, development view and
ending with physical views. Next, the set of
ISO 19761 (COSMIC) concepts and views were
adopted for describing the framework function-
ality at a lower level to illustrate that the pro-
posed framework is designed for measurement
purposes as well as for capture of the performance
concept. The proposed framework was designed
using SIGs.

This research considered system performance
requirements as both static and dynamic perfor-
mance types, each with its own set of candidate
sub-concepts.

Additionally, for a more complete software
view of a complex environment (i.e., func-
tional services in a service-oriented architecture),
COSMIC-SOA was applied to the suggested
framework.

Finally, an ATM example was presented to
guide developers and software engineers to use



146 Khalid T. Al-Sarayreh et al.

the measurement of system performance NFR al-
located as performance FUR at the software level.

The main contribution of this work is its
ability to assist developers, system and software
engineers to specify system performance require-
ments early in the life cycle in order to address
the specified performance functions to be allo-
cated to software as functional requirements.

The proposed framework can also be used for
identification, specification and measurement of
system performance NFR using ISO 19761 inde-
pendently of any programming languages, and in
addition can address software performance FUR
early in their implementation.

In this paper, the proposed measurement as-
pects addressed the system requirements allo-
cated to software. It will be interesting in further
work to extend this measurement aspect to con-
sider other types of requirements at the system
level containing hardware requirements.

Some related issues were not addressed
and additional work is required such as using
these functional size measurement results of
system performance requirements allocated to
software-FURs as new input for estimating mod-
els in software engineering projects. Additional
empirical work is required to verify that such ex-
panded size can improve the estimation models,
including for testing and maintenance effort.

The ATM illustrative example showed that
the proposed measurement framework can help
to specify and measure the functional size of
system performance-NFR allocated to software
functions. Consequently, this may improve plan-
ning, managing and development of software at
different phases of the software development life
cycle. Furthermore, the measurement results of
the proposed framework may be used in bench-
marking studies.

This example was not built to learn but to
demonstrate that the framework was usable, and
the purpose in building this example was not
to evaluate the framework. This again, would
require much more empirical work with practi-
tioners to evaluate it in a number of contexts,
and with a set of criteria for evaluation.

This proposed measurement framework is
limited to measuring the system performance

requirements allocated to software at the func-
tional and service levels. It will be interesting
in further work to focus on its applicability to
different types of software products in order to
generalize the results reported in this illustra-
tive example. In addition, further work could
focus on automating the measurement of soft-
ware performance requirements through building
an automated measurement tool (or enhancing
an existing one).

Future work on the scalability of the frame-
work proposed in this study would be valuable
for industrial research where researchers look at
such practical scalability issues, with financial re-
sources much larger than the resources available
to university researchers.

References

[1] K.T. Al-Sarayreh, “Model of early specifications
of performance requirements at functional levels,”
Recent Advances on Electroscience and Comput-
ers, 2015, p. 236.

[2] K. Meridji, K.T. Al-Sarayreh, A. Abran, and
S. Trudel, “System security requirements: A
framework for early identification, specification
and measurement of related software require-
ments,” Computer Standards and Interfaces,
Vol. 66, 2019, p. 103346.

[3] A. Abran, K.T. Al-Sarayreh, and J.J. Cuadrado-
-Gallego, “A standards-based reference frame-
work for system portability requirements,”
Comput. Stand. Interfaces, Vol. 35, No. 4,
Jun. 2013, p. 380–395. [Online]. https:
//doi.org/10.1016/j.csi.2012.11.003

[4] K.T. Al-Sarayreh, A. Abran, and J.J. Cuadrado-
-Gallego, “A standards-based model of system
maintainability requirements,” journal of soft-
ware: evolution and process, Vol. 25, No. 5, 2013,
pp. 459–505.

[5] K.T. Al-Sarayreh, A. Abran, and J.J. Cuadrado-
-Gallego, “Measurement model of software re-
quirements derived from system portability re-
quirements,” in 9th International Conference
on Software Engineering Research and Practice
(SERP 2010), 2010, pp. 553–559.

[6] K.T. Al-Sarayreh, I. Al-Oqily, and K. Meridji,
“A standard based reference framework for sys-
tem adaptation and installation requirements,”
in 2012 Sixth International Conference on Next
Generation Mobile Applications, Services and
Technologies, 2012, pp. 7–12.

https://doi.org/10.1016/j.csi.2012.11.003
https://doi.org/10.1016/j.csi.2012.11.003


System performance requirements: A standards-based model for early identification . . . 147

[7] M. Kassab, O. Ormandjieva, and M. Daneva,
“An ontology based approach to non-functional
requirements conceptualization,” in 2009 Fourth
International Conference on Software Engineer-
ing Advances. IEEE, 2009, pp. 299–308.

[8] X. Zhang and X. Wang, “Tradeoff anal-
ysis for conflicting software non-functional
requirements,” IEEE Access, Vol. 7, 2019,
pp. 156 463–156 475.

[9] M. Dewi and Z. Didar, “An ontological frame-
work to manage the relative conflicts between
security and usability requirements,” in 2010
Third International Workshop on Managing Re-
quirements Knowledge. IEEE, 2010, pp. 1–6.

[10] N. Daclin, B. Moradi, and V. Chapurlat, “Ana-
lyzing interoperability in a non-functional re-
quirements ecosystem to support crisis man-
agement response,” Enterprise Interoperability:
Smart Services and Business Impact of Enter-
prise Interoperability, 2018, pp. 429–434.

[11] L.M. Cysneiros, K.K. Breitman, C. Lopez, and
H. Astudillo, “Querying software interdepen-
dence graphs,” in 2008 32nd Annual IEEE
Software Engineering Workshop. IEEE, 2008,
pp. 108–112.

[12] K.T. Al-Sarayreh, “Dependability model for de-
composition and allocation of system safety in-
tegrity levels of software quality,” International
Review on Computers and Software, Vol. 10,
No. 11, 2015.

[13] S. Al-Qudah, K. Meridji, and K.T. Al-Sarayreh,
“A comprehensive survey of software development
cost estimation studies,” in Proceedings of the in-
ternational conference on intelligent information
processing, security and advanced communica-
tion, 2015, pp. 1–5.

[14] R.E. Al-Qutaish and K.T. Al-Sarayreh, “Soft-
ware process and product ISO standards: a com-
prehensive survey,” European Journal of Scien-
tific Research, Vol. 19, No. 2, 2008, pp. 289–303.

[15] A. Abran and K.T. Al-Sarayreh, “Stan-
dards-based model for the specification of sys-
tem design and implementation constraints,” in
Industrial Proceedings, 17th European Systems
and Software Process Improvement and Innova-
tion, EuroSPI 2010 Conference. Publisher: Delta,
Denmark Grenoble (France), 2010, pp. 4–7.

[16] R. Tawhid and D. Petriu, “Automatic derivation
of a product performance model from a software
product line model,” in 2011 15th International
Software Product Line Conference. IEEE, 2011,
pp. 80–89.

[17] M. Noorian, E. Bagheri, and W. Du, “Non-func-
tional properties in software product lines: A ax-

onomy for classification.” in SEKE, Vol. 12, 2012,
pp. 663–667.

[18] A. Danylenko and W. Löwe, “Context-aware
recommender systems for non-functional require-
ments,” in 2012 Third International Workshop
on Recommendation Systems for Software Engi-
neering (RSSE). IEEE, 2012, pp. 80–84.

[19] H.T. Jung and G.H. Lee, “A systematic soft-
ware development process for non-functional re-
quirements,” in 2010 International conference
on information and communication technology
convergence (ICTC). IEEE, 2010, pp. 431–436.

[20] Gyro terminology and performance specification,
European Cooperation for Space Standardiza-
tion Std. ECSS-E-ST-60-21C, 2017.

[21] System engineering general requirements, Euro-
pean Cooperation for Space Standardization Std.
ECSS-E-ST-10C Rev. 1, 2017.

[22] Software product assurance, European Cooper-
ation for Space Standardization Std. ECSS-Q-
-ST-80C Rev.1, 2017.

[23] Space Engineering: Control Performance, Euro-
pean Cooperation for Space Standardization Std.
ECSS-E-ST-60-10C, 2008.

[24] Space engineering, Stars sensors terminology
and performance specification, European Coop-
eration for Space Standardization Std. ECSS-E-
-ST-60-20C Rev.2 DIR1, 2017.

[25] Satellite attitude and orbit control system
(AOCS) requirements, European Cooperation for
Space Standardization Std. ECSS-E-ST-60-30C:,
2013.

[26] Recommended Practice for Software Require-
ments Specifications, Institute of Electrical and
Electronics Engineers Std. 830-1998, 1998.

[27] L. Mo, S. Zhigang, H. Quan, Y. Guizhi, L. Ya,
and S. Fengli, “Analysis and testing of key perfor-
mance indexes of vxworks in real-time system,”
in 2018 19th IEEE/ACIS International Con-
ference on Software Engineering, Artificial In-
telligence, Networking and Parallel/Distributed
Computing (SNPD). IEEE, 2018, pp. 369–374.

[28] A. Ahmad, N. Abdulrahman, B. Sascha,
J. Naoum, and T. Klaus, “Toward a performance
requirements model for the early design phase of
IT systems,” in 2018 Sixth International Confer-
ence on Enterprise Systems (ES). IEEE, 2018,
pp. 9–16.

[29] Z. Chen, T. Zhao, J. Jiao, and H. Wu, “Availabil-
ity analysis of multi-state weighted k-out-of-n
systems with component performance require-
ments,” in 2018 Annual Reliability and Maintain-
ability Symposium (RAMS). IEEE, 2018, pp. 1–5.



148 Khalid T. Al-Sarayreh et al.

[30] K.T. Al-Sarayreh, I. Ibrahim Al-Oqily, and
K. Meridji, “A standard-based reference frame-
work for system operations requirements,” In-
ternational Journal of Computer Applications in
Technology, Vol. 47, No. 4, 2013, pp. 351–363.

[31] J. Kai, X. Ling, and Z. Huamin, “A parame-
ter tuning method of proportional integral con-
troller for the first-order plus delay time system
based on the desired dynamical performance,”
in Proceeding of the 11th World Congress on
Intelligent Control and Automation. IEEE, 2014,
pp. 6110–6115.

[32] K. Arun and A. Sunil, “Statistical analysis of
memory and performance non functional require-
ments in real time embedded system develop-
ment for agile methodology,” in 2015 Interna-
tional Conference on Industrial Instrumentation
and Control (ICIC). IEEE, 2015, pp. 300–305.

[33] I. Vila, J. Perez-Romero, O. Sallent, A. Um-
bert, and R. Ferrus, “Performance measure-
ments-based estimation of radio resource require-
ments for slice admission control,” in 90th Ve-
hicular Technology Conference (VTC2019-Fall).
IEEE, 2019, pp. 1–6.

[34] M. Anish, R. Anand, R. Srivaths, and J. Niraj,
“Automated energy/performance macromodeling
of embedded software,” IEEE Transactions on
Computer Aided Design of Integrated Circuits
and Systems, Vol. 26, No. 3, 2007, pp. 542–552.

[35] Software measurement – Functional size mea-
surement Part 1: Definition of concepts,
ISO/IEC Std. 14 143-1, 1998.

[36] COSMIC v 3.0 – A Functional Size Measurement
Method, I, ISO/IEC Std. 19 761, 2003.

[37] P. Fagg, A. Lesterhuis, G. Rule, G. Ungerer,
K. Galegaonkar, S.and Natarajan, L. San-
tillo, F. Vogelezang, P. Jain, M. O’Neill, and
C. Symons, “Guideline for sizing SOA software,”
The Common Software Measurement Interna-
tional Consortium (COSMIC), Tech. Rep., 2010.

[38] L. Santillo, “Seizing and sizing SOA applications
with COSMIC function points,” Proceedings of
SMEF, 2007.

[39] E. Marks, Service-oriented architecture gover-
nance for the services driven enterprise. John
Wiley and Sons, 2008.

[40] L. Chung, B. Nixon, and E. Yu, “Dealing with
change: An approach using non-functional re-
quirements,” Requirements Engineering, Vol. 1,
No. 4, 1996, pp. 238–260.

[41] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos,
Non-functional requirements in software engi-
neering. Springer Science and Business Media,
2012, Vol. 5.

[42] K. Hemenway, M. Iff, and T. Calishain, Spidering
Hacks: 100 Industrial-Strength Tips and Tools. "
O’Reilly Media, Inc.", 2004.

[43] I. Lee, J. Leung, and S. Son, Handbook of
real-time and embedded systems. CRC Press,
2007.

[44] K.T. Al-Sarayreh, L.A. Hasan, and K. Almakad-
meh, “A trade-off model of software requirements
for balancing between security and usability is-
sues,” International Review on Computers and
Software, Vol. 10, No. 12, 2016, pp. 1157–1168.

[45] C.M. Kozierok, The TCP/IP guide: a compre-
hensive, illustrated Internet protocols reference.
No Starch Press, 2005.

[46] A. Abran and K. Meridji, “Analysis of software
engineering from an engineering perspective,”
European Journal for the Informatics Profes-
sional, Vol. 7, No. 1, 2006, pp. 46–52.

[47] K. Meridji, K.T. Al-Sarayreh, and
A. Al-Khasawneh, “A generic model for the
specification of software reliability requirements
and measurement of their functional size,”
International Journal of Information Quality,
Vol. 3, No. 2, 2013, pp. 139–163.

[48] J. Carr, The technician’s radio receiver hand-
book: wireless and telecommunication technology.
Elsevier, 2001.

[49] J.J. Parsons and D. Oja, New Perspectives on
Computer Concepts 2014: Comprehensive. Cen-
gage Learning, 2013.

[50] B. Parkinson and J. Spilker, “Progress in as-
tronautics and aeronautics: Global positioning
system: Theory and applications. american in-
stitute of aeronautics/astronautics,” 1996.

[51] H. El-Rewini and M. Abd-El-Barr, Advanced
computer architecture and parallel processing.
John Wiley and Sons, 2005, Vol. 42.

[52] K.T. Al-Sarayreh and A. Abran, “Specification
and measurement of system configuration non
functional requirements,” in 20th International
Workshop on Software Measurement and Inter-
national Conference on Software Measurement,
IWSM/Metrikon/Mensura, Stuttgart, Germany,
2010, pp. 141–156.

[53] A. Abran and K.T. Al-Sarayreh, “Non-func-
tional requirements and their sizing with cosmic:
Practitioner’s guide,” in COSMIC Gruop, 2020,
pp. 1–14.

[54] W. Claes, P. Runeson, M. Höst, M. Ohlsson,
B. Regnell, and A. Wessln, Experimentation in
software engineering. Springer Science and Busi-
ness Media, 2012.


	Introduction
	Related work
	Non-functional requirements in the literature and international standards
	System performance requirements in the literature
	COSMIC functional size measurement method
	Service-oriented architecture (SOA) and its COSMIC view
	COSMIC-SOA exchange messages
	COSMIC-SOA intermediary services
	COSMIC-SOA data exchanges

	Softgoal Interdependency Graphs

	Performance requirements identification
	ECSS concepts for performance requirements
	IEEE concepts for performance requirements
	Describing system performance and related software functions
	Performance dynamic requirements
	Performance static requirements


	Measurement framework for performance requirements
	Integration of system performance functions to be allocated to software (Phases 1 and 2)
	Design of system performance requirements at the functional level (Phase 3)
	System performance dynamic requirements (SPDR)
	System performance static requirements (SPDR)

	Design of the measurement framework for system performance NFR (Phase 4)

	Illustrative example: ATM banking system
	Overview
	Purpose and process
	ATM internal structure system
	ATM block diagram
	ATM functional requirements (FR)
	ATM system requirements allocated to software
	System performance NFR allocated to software functions
	Mapping system performance NFR to an SOA context
	Measuring the specified system banking performance NFR (instantiation case)
	Summary of findings
	Limitations of the illustrative example
	Practical Implications
	Threats to validity

	Conclusion and further work
	References


