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Abstract

Background: Modern industry is heavily dependent on software. The complexity of designing
and developing software is a serious engineering issue. With the growing size of software systems
and increase in complexity, inconsistencies arise in software design and intelligent techniques are
required to detect and fix inconsistencies.

Aim: Current industrial practice of manually detecting inconsistencies is time consuming, error
prone and incomplete. Inconsistencies arising as a result of polymorphic object interactions are
hard to trace. We propose an approach to detect and fix inconsistencies in polymorphic method
invocations in sequence models.

Method: A novel intelligent approach based on self regulating particle swarm optimization to solve
the inconsistency during software system design is presented. Inconsistency handling is modelled
as an optimization problem that uses a maximizing fitness function. The proposed approach also
identifies the changes required in the design diagrams to fix the inconsistencies.

Result: The method is evaluated on different software design models involving static and dynamic
polymorphism and inconsistencies are detected and resolved.

Conclusion: Ensuring consistency of design is highly essential to develop quality software and
solves a major design issue for practitioners. In addition, our approach helps to reduce the time
and cost of developing software.

Keywords: UML models, software design inconsistency, polymorphism, particle swarm

optimization

1. Introduction

Today’s biggest industry is software industry in
terms of manpower, complex interactions and
changing tasks with evolving designs. The way
people coordinate activities and work has seen
a major transformation since the use of software
in industries. With the increasing relevance of
software in industries, software development has
become more complex. Software changes are fre-
quent due to evolution, agility and adaptability.
Customized software is used to increase produc-
tivity in industries and quality of the software
is a prime concern. Design and development of
quality software is a major challenge for software
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developers and many a times, the process is man-
ual. Artificial intelligence (AI) techniques can
replace many of these manual efforts to make the
development of software easier and cost effective.

Artificial intelligence replicates human deci-
sion making techniques to make machines more
intelligent. Software development involves sev-
eral complex human decision makings that deal
with the task of designing, implementing and
deploying complex systems. Software engineer-
ing problems can be represented as optimization
problems. Search based software systems use op-
timization techniques and computational search
techniques to solve problems in software engineer-
ing [1]. Although search based systems address
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many problems in software requirements and
design, design verification is not yet addressed
[2, 3]. Particle swarm optimization (PSO) is an
optimization technique based on population with
computational intelligence [4]. Self Regulating
Particle Swarm Optimization (SRPSO) is an im-
proved version of PSO that provides optimum
solutions by incorporating the best strategies
for human learning [5]. We present an intelli-
gent approach based on SRPSO to solve the
inconsistency in polymorphic methods during
the software system design.

The modelling language widely used for re-
quirements modelling and documentation of the
system is Unified Modeling Language (UML).
UML models handle the complexity of the sys-
tem by expressing different views with different
diagrams that consist of a number of interre-
lated model elements. The interrelated design
diagrams contain redundant information in the
overlapping model elements. Hence, the proba-
bility of occurrence of design inconsistencies is
more. The diagrams of a single system repre-
senting the static and dynamic aspects should
be consistent and not contradictory [6]. Explicit
mechanisms are required to verify the consistency
of redundant information present across the dia-
grams [7, 8]. Generally, models are constructed
for a specific application and the models are even-
tually implemented, usually in an object oriented
programming language. Validating the models
for consistency in the design phase guarantee
that the design inconsistencies are not carried
over to the code generation phase of software
development. Automated consistency checking
during the design phase ensures software quality,
reduced development and maintenance cost and
less time to market. Inconsistent design results
in incorrect code, design rework, failure to meet
timelines, and increase in cost of production.

Polymorphism is one of the key concepts that
determine the quality of object oriented software
systems [9]. Polymorphism enables different be-
havior to be associated with a method name. New
methods with different implementation can be
created with the same interface and the amount
of work required to handle and distinguish differ-
ent objects is reduced [9]. The result of execution

of a polymorphic method depends on the object
that executes the method and produces differ-
ent results when received by different objects.
The advantages of designing multiple methods
with the same name make polymorphism an effi-
cient approach during software design. We define
an inconsistency related to object interactions
in polymorphic and non-polymorphic methods:
method-invocation inconsistency. Inconsistency
exists if the method invocations are bound to
a wrong class in the sequence diagram, i.e., the
method is not invoked on an object of the class
in which the method is defined. Inconsistencies
in polymorphic method invocations cannot be
identified by validating the method names as
all polymorphic methods have the same name.
Hence, detection of method invocation incon-
sistency in polymorphic methods requires more
effort than non-polymorphic methods. As the
design complexity increases, manual verification
of inconsistencies in polymorphic methods is not
practical. Intelligent techniques that require ex-
pertise are required to detect and solve the in-
consistencies.

Method-invocation inconsistency occurs when
a polymorphic or non-polymorphic method is in-
voked on a wrong object in the sequence diagram.
The existing approaches of detecting inconsisten-
cies in method invocations specified in [10-15]
do not mention inconsistencies in polymorphic
methods. Although polymorphism has a number
of advantages, serious flaws may occur due to
inconsistencies. Programmers may find it a chal-
lenging task to understand all the interactions
between sender and receiver objects [16]. Under-
standing polymorphic codes is hard and there-
fore, fault-prone. Usually inconsistencies related
to polymorphic method invocations are difficult
to identify during testing phase. Separate tests are
required for each polymorphic method binding.
Identifying and testing all possible bindings of
certain polymorphic references is difficult thereby
increasing the chances of errors [17]. Inconsistent
polymorphic behaviours may cause huge financial
problems when detected.

Software design is prone to errors and design
imperfections have a significant effect on software
quality. Software failure can be attributed to var-
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ious factors starting from requirements gathering
to testing and poor quality management [18]. In-
consistencies in the design lead to the generation
of defective software. One of the major activi-
ties in ensuring quality involves detection and
removal of defects in the design. As the errors are
carried over from the software design phase to the
development phase, the cost incurred in fixing
the error also increases. Defect detection during
the design phase significantly prevents propaga-
tion of errors to further stages of software devel-
opment and reduces development cost [19, 20].
Hence, code generation is based on consistent
designs. This facilitates generation of software
with fewer faults and improves the quality of
the software generated. Development of software
with fewer faults reduces the maintenance cost
of the software. Cost increases with the delay in
detecting and correcting the error. The cost of de-
tecting defects after release is 30 times more than
the cost of detecting defects in the analysis and
design phase [19]. Therefore, inconsistency detec-
tion in the software design phase is inevitable for
the development of accurate and quality software.
We propose an intelligent approach to detect
and fix inconsistencies during the design phase
of software development. Inconsistencies are de-
tected and handled with a fitness function by
generating fitness values for each polymorphic
and non-polymorphic method in the class dia-
gram and sequence diagram. Inconsistencies are
handled by maximizing the fitness values of meth-
ods subject to the constraint that the methods
are invoked on the right classes. The proposed
automated intelligent approach for consistency
checking during the design phase facilitates gen-
eration of software with fewer faults, improves
software quality, and reduces development and
maintenance cost.

The organization of the paper is as follows. The
related works in the areas of consistency checking
and the various applications of PSO and its vari-
ants is presented in Section 2. Section 3 deals with
the inconsistencies in polymorphic methods. The
architecture of the consistency checking system is
described in Section 4 and the implementation of
the proposed approach is presented in Section 5.
Results and discussion are presented in Section 6,

threats to validity is presented in Section 7 and
Section 8 concludes the paper.

2. Related work

The section presents the consistency handling
techniques available in the literature and the
applications of PSO techniques to find optimal
solutions in software development and industries.

Inconsistencies in the design may result in
the failure of a software project. The problems
of establishing and maintaining consistency is
discussed in [21]. The authors state that it is
impossible to avoid inconsistency and more flexi-
bility can be obtained by using tools that manage
and tolerate inconsistency. A tool that detects
inconsistency and locates the choices for fixing
inconsistency is proposed in [10]. Model profiling
is used to determine the model elements affected
while evaluating a rule; a set of choices for fixing
the inconsistency is proposed and the designer de-
cides the choice for fixing the inconsistency. The
method proposed in [11] fixes inconsistencies in
class, sequence and statechart diagrams by gen-
erating a set of concrete changes automatically.
The work focuses on deciding a method to fix
inconsistencies. An approach that performs real
time detection and tracking of inconsistencies
in class, sequence and state chart diagrams is
presented in [12]. Consistency checks are initiated
during a model change.

The algorithm proposed in [13] performs con-
sistency check on class and sequence diagrams
based on the syntax specified and generates a se-
quence of Relational Calculus of Object Sys-
tems (rCOS) class declarations. Inconsistencies
in well-formed class and sequence diagrams are
detected with an algorithm based on breadth first
search technique. Transformation, refactoring,
merging or repair of models result in changes in
the model and during consistency checking it may
lead to performance problems. An automated
approach with tool support to re-validate parts
of the design rule affected by model transforma-
tion or repair is proposed in [22]. Although the
paper mentions inconsistency in sequence and
class diagrams, the focus is on improving the
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performance of incremental consistency check-
ing by identifying parts of the model affected
by model changes. A prototype tool developed
using a UML based approach to handle impact
analysis is proposed in [14]. Consistency check
is performed on the UML diagrams, difference
between the two versions is identified and the
model elements that are directly or indirectly
affected by the changes are determined. The fo-
cus of the paper is on changes and its impact,
i.e. which model elements are affected by the
change. Instant detection of consistency between
source code and design models is performed in
[23] and a live report of the consistency status
of the project is provided to the developers.

A classification of model repair techniques
based on features is presented in [24]. The fo-
cus is on proposing taxonomy for model repair
techniques and not on inconsistency detection
and causes of inconsistency. The paper [15] pro-
poses a method for automatic generation of exe-
cutable and concrete repairs for models based on
the inconsistency information, a set of generator
functions and abstract repairs. An automated
planning approach based on artificial intelligence
is proposed in [25] to resolve inconsistencies. A re-
gression planner is implemented in Prolog. The
approach is restricted to detection of structural
inconsistencies in class diagrams only.

A review of the consistency management ap-
proaches available in the literature is presented
in [26]. The works described does not address
inconsistencies related to polymorphic methods.
Object Constraint Language (OCL) rules are spec-
ified for consistency checking of UML model in
[27], the approach does not address polymorphic
methods. Consistency rules to detect inconsis-
tencies in method invocations between sequence
and class diagrams are presented in [28], but no
approaches are presented to detect and fix in-
consistency. A method to detect inconsistencies
between state diagrams and communication dia-
grams using the language Alloy is presented in [29)].

Soft computing techniques find its application
in providing solutions to problems in industries.
PSO is used to minimize the cost of heating sys-
tem [30], to assign applications to resources in the
cloud [31], in job-shop scheduling [32], in network-

ing [33], power systems [34, 35], signal processing
[36], control system [37] and many more. PSO is
also applied to find effective solutions to prob-
lems in software development. PSO is applied to
UML class diagram and an algorithm for class
responsibility assignment problem is presented
in [38]. The PSO method reassigns the attributes
and methods to the different classes indicated in
the class diagram. The application of SRPSO and
PSO in detecting and resolving inconsistencies in
class attribute definitions is presented in [39, 40].
The fitness value determines the consistency of
attributes and the PSO and SRPSO algorithm
iterates to fix inconsistency by optimizing the
fitness value of attributes. The papers deal with
fixing inconsistencies in attribute definitions only.
The performance of SRPSO algorithm is better
than PSO in term of statistical evaluation pa-
rameters and convergence. An SRPSO based
approach to fix state change inconsistencies in
state diagrams and sequence diagrams is pro-
posed in [41]. Inconsistencies are detected and
fixed with a fitness function.

An optimization based approach using PSO
and simulated annealing to find transformation
fragments that best cover the source model is
proposed in [42]. PSO is applied to achieve high
structural code coverage in evolutionary struc-
tural testing by generating test cases automat-
ically [43]. Parameter estimation using PSO to
predict reliability of software reliability growth
models (SRGM) is described in [44]. During
testing, faults are detected and a mathemati-
cal model SRGM, models the properties of the
process. A comparative study of metaheuristic
optimization framework is proposed in [45] and
the study states that a wider implementation of
software engineering practices is required.

The application of PSO in diverse areas of en-
gineering has yielded better results over existing
methods, but works that describe the applica-
tion of PSO in the design phase for software
design consistency checking is rare. Although
consistency checking of UML models is a widely
discussed problem and different techniques to
detect and fix inconsistencies are available in the
literature, techniques that perform consistency
checking of polymorphic methods are rarely re-
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ported. We present an intelligent approach that
detects inconsistencies with a fitness function.
Inconsistencies are fixed by remodelling the se-
quence diagram method invocations during iter-
ations of the SRPSO algorithm. Our approach
efficiently detects and fixes the inconsistencies.

3. Inconsistencies
in polymorphic methods

Polymorphism is an important feature of object
oriented programming that provides simplicity
and flexibility to the design and code. It en-
ables different behaviour to be associated with
a method name. Polymorphism keeps the design
simple, flexible and extensible [46]. New meth-
ods with different implementation can be created
with the same interface and the amount of work
required to handle and distinguish different ob-
jects is reduced. Each polymorphic method has
a class specific way to respond to a message. Poly-
morphic methods execute different subroutines
depending on the type of object they are applied
to. Inconsistency occurs if the method is invoked
on a wrong class. Two methods of implement-
ing polymorphism are (a) static binding: meth-
ods have the same name, different signature and
different implementation (b) dynamic dispatch:
methods have the same name, same signature
and different implementation [47]. Static binding
occurs with method overloading at compile time
and the method to be invoked is determined from
the signature of the method call. Dynamic dis-
patch is related to inheritance hierarchy. Method
overriding provides a superclass/subclass inher-
itance hierarchy allowing different subclass im-
plementation of inherited methods [48, 49]. The
overriding methods represent different function-
alities and require different algorithms [50]. The
exact method to which the method call is bound
is known only at run time. Method overriding is
implemented with dynamic dispatch [49].
Inconsistency in UML models occurs when
two or more diagrams describe different aspects
of the system and they are not jointly satisfiable.
Any method invoked on an object in the sequence
diagram should be defined in the class instan-

tiated by the receiving object. The rule is part
of the UML well-formedness principle. There is
scope for many subtle errors with polymorphism
since a method name occurs in more than one
class. The exact operation to be performed is de-
termined from the data types of the arguments
in static polymorphism. The same signature is
used by more than one class in dynamic poly-
morphism and determining whether the correct
method is invoked in the sequence diagram is
an issue. Understanding polymorphic codes is
hard and therefore fault-prone [16]. Hence, in-
consistency detection during the design phase
has become inevitable for the development of
accurate software [16]. We propose an intelligent
approach using SRPSO algorithm to detect and
fix method-invocation inconsistency in polymor-
phic methods. Method invocation inconsistency
is identified from the signatures of the class di-
agram and sequence diagram methods in static
polymorphism. The method signatures are the
same for all polymorphic methods in dynamic
polymorphism and hence more difficult. Incon-
sistency is detected from the guard condition for
message invocation in the sequence diagram and
precondition for the method in the class diagram.

The inconsistencies are illustrated with the
UML models 3DObject and ThreeDObject rep-
resented in Figures 1 and 2, respectively. The
class diagram and sequence diagram for the UML
model 3DObject is represented in Figure 1 . The
model provides an example of static polymor-
phism. The class diagram consists of 4 classes.
A generalized class ThreeDShape is defined with
an attribute Area of type float. The classes
Sphere, Cuboid and Cylinder are specializations
of the class ThreeDShape. The methods com-
puteArea() and perimeter() defined in the classes
Sphere, Cuboid and Cylinder are polymorphic
since methods with the same name and differ-
ent signature are defined. The method vertices()
defined in the class Cuboid is non-polymorphic.
The sequence diagram represents the method in-
vocations to compute the area of the objects. The
class Cuboid has a method computeArea(l, b, h)
with signature computeArea(int, int, int). Sim-
ilarly, the signatures of the method com-
puteArea() defined in the classes Sphere
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Figure 2. Class Diagram and Sequence Diagram for UML Model for 3DObject

and Cylinder are computeArea(int) and com-
puteArea(float, fint), respectively. The signatures
of the method computeArea() invoked on the
objects of classes Cuboid, Sphere and Cylinder
in the sequence diagram are computeArea(int,
int, int), computeArea(float, int) and com-
puteArea(int). The invocations of the polymor-
phic method computeArea(l, b, h) and the
non-polymorphic method vertices() are consis-
tent whereas the invocations of the polymorphic
methods, computeArea(s) and computeArea(r, h)
are inconsistent. The inconsistencies, if unnoticed

will result in a wrong value for area. Inconsisten-
cies are detected by computing the fitness values
of methods. The fitness value computation to
detect inconsistency is represented in Table 1.
A UML model ThreeDObject representing
dynamic polymorphism is depicted in Figure 2.
A method computeArea() and two attributes
Area and face are defined in the class Three-
DObject. The method is overridden in the child
classes since the method of computing area de-
pends on the shape of the object. The attribute
face represents the number of faces possessed by

Table 1. Fitness values of methods in UML Models 3DObject and ThreeDObject

Method name CD Class SD Class Fitness value ~ UML Model
computeArea(r, h) Cylinder Sphere 0.9375 3DObject
computeArea(l, b, h)  Cuboid Cuboid 1 3DObject
vertice() Cuboid Cuboid 1 3DObject
computeArea(s) Sphere Cylinder 1.11 3DObject
computeArea() Cylinder  Cylinder 1 ThreeDObject
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an object. Sphere has no face, Cylinder has two
faces, Cuboid and Cube have 6 faces and Triangu-
larPrism has 5 faces. Constraints are defined for
the methods and expressed as preconditions in
object constraint language. The preconditions for
the method computeArea() in the classes Cuboid,
Cube, Sphere, TriangularPrism and Cylinder
state that the value of the attribute face should
be equal to 6, 6, 0, 5 and 2, respectively. As
the signatures of all the methods involved in
dynamic polymorphism are the same, it is impos-
sible to detect inconsistency by comparing the
method signatures. The guard conditions and the
preconditions are compared and method invoca-
tion inconsistency is detected with the method
computeArea() invoked on the objects of classes
Cuboid, Sphere and Cylinder. The method com-
puteArea() invoked on the object of class Sphere
should satisfy the guard condition face = 6 which
is not true resulting in run time errors. The in-
vocation of the method computeArea() on the
object of class TriangularPrism is consistent as
the value of the attribute face in the guard con-
dition and precondition is equal to 5.

The inconsistent method invocations in Fig-
ures 1 and 2 result in wrong value for Area. If the
models are used in the cost estimation of buildings,
the estimated cost will be computed with wrong
values of area. The cost estimation will produce
a wrong value affecting the feasibility of the
project. Since the design errors are propagated to
the code generation phase, the software generated
will have errors. Identifying the source of errors
in the code and fixing the errors is more difficult,
time consuming and costly than detecting the

errors in the software design. Errors detected in
the testing phase may delay the software project.
The errors identified during the testing phase or
after delivery of the software product increases
the time to market as well as development and
maintenance cost of the software.

4. Architecture of the consistency
handling system

PSO is an intelligent algorithm that can be used
in scientific and engineering area [51]. Consis-
tency checking is formulated as an optimization
problem with a maximizing fitness function that
operates on the diagram specification. An opti-
mization problem maximizes or minimizes a fit-
ness function subject to the condition that the
constraints are satisfied. In our approach the
fitness function represents the consistency and
completeness of method invocations. The aim
of the SRPSO algorithm is to optimize the con-
sistency of polymorphic method invocations in
sequence diagram subject to the constraint that
the methods are invoked on the right classes. The
SRPSO algorithm is preferred because it does
not require transformation of models and can
be directly applied on UML model specification.
The inconsistent particles are guided by the best
particles to achieve consistency and hence search
speed is high [52].

The architecture of the system to perform
consistency checking using SRPSO is described
in Figure 3. The algorithms are implemented in
Java running on a windows platform. The con-

Diagram
Specification

+ Consistency
Checker

« ML Tool l

. «P
Class Diagram ot

Inconsistency
Detection

Sequence Diagram

| Inconsistency
| Fixing

Figure 3. Architecture of Consistency Checking System
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sistency checking system comprises of UML tool
to model the requirements, parser to generate
diagram specification and consistency checker to
detect method-invocation inconsistency and fix
the inconsistency using SRPSO algorithm.

4.1. UML tool

The requirements of the system to be designed
are gathered and modelled into graphical rep-
resentations using a UML tool. Several UML
modelling tools like Magic Draw, Rational Soft-
ware Architect, Agro UML, Papyrus etc. are
available for modelling software. Our method
can be integrated with any tool that give XMI
format. The models are saved in XMI format.
The static and dynamic aspects are represented
using class diagram and sequence diagram. Class
diagrams represent the information regarding
the classes required to implement a system and
the type of relationship that exists between the
classes. The attributes and operations describe
the properties and behaviour of the objects of
a class. Preconditions associated with method
invocations are also represented. The precondi-
tions of the overridden methods in the super class
and subclass are different [50]. Sequence diagram
represents the dynamic aspects by portraying the
interactions in the form of messages/ methods
between objects and the ordering of the interac-
tions to produce a desired outcome. Polymorphic
behaviour can be represented using a sequence
diagram by controlling the polymorphic invoca-
tions with guard conditions.

4.2. Parser

The parser parses the UML model and produces
specifications of the diagrams. We have used the
Document Object model (DOM) parser to parse
the diagrams saved in XMI format. A class dia-
gram specification comprises of the classes, the
type of association between the classes, attributes
and methods of each class and the preconditions
for method invocations. The sequence diagram
specification consists of the objects in the se-
quence diagram, messages, sender and receiver
of each message, the guard conditions on the

message invocations and the order of method
invocations.

4.3. Consistency checker

The design inconsistencies in polymorphic method
invocations are detected by consistency checker
module. Although the focus is on detection of
inconsistencies in polymorphic methods, the algo-
rithm detects inconsistencies in polymorphic and
non-polymorphic methods. The specifications of
class and sequence diagrams are input to the con-
sistency checker. Inconsistencies are detected by
a fitness function. The inconsistency is resolved
by reassigning methods with the SRPSO algo-
rithm. Consistency checking is a two-step process:
a) inconsistency detection and b) inconsistency
fixing.

4.3.1. Inconsistency detection

The fitness function, fs; computes the fitness
value of the methods to detect inconsistency.
The fitness value is computed as a function of
the class name, method signature and properties
of the method. The sequence diagram method is
defined in terms of its properties like name, id,
parameters, sender, receiver, guard and a number
that represents the message order. Each method
has a specific value for a property (denoted as
weight) and each position in the vector corre-
sponds to one property of the method. The values
for the properties are set as 5, 3, 5, 5, 5, 4 and 3,
respectively. The fitness function fs computes the
fitness value of each sequence diagram method.
A method invocation is classified as inconsistent
if the fitness value is not equal to one. The fitness
function is defined with equation 1 as

m n
(Zti *wl) * (wn + Wes + Zwk *pk)
PR k=1
—

q
W ij * Dj
j=1

(1)
where t; represents the property ¢ of method
specification, w; represents the weight of the
property t;,w, represents the weight value as-
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sociated with the method name n,p; and w;
represents the position and weight of parame-
ter j of the method n in the class diagram, py
and wy denotes the position and weight of the
parameter k of the method n in the sequence
diagram, w,. represents the class name of the
method in the class diagram, w5 represents the
class name of the object on which the method
is invoked in sequence diagram and W repre-
sents the weight assigned to a complete method
specification. The value of W is set as 30. A com-
plete method specification has values for all its
properties. Unique values are assigned as the
weights for method names, class names and data
type of parameters. Distinct method names, data
types and classes have distinct weight. All poly-
morphic methods have the same weight value
for name and any numerical value can be se-
lected to correspond to w,. The UML model in
Figure 1 has a polymorphic method with name
computeArea. The value of w, is set as 5. The
value of w,, for the method names vertices() and
perimeter() are set as 3 and 4, respectively. The
classes are assigned weights in the range [1...n)]
where n is the number of classes. Each class has
a unique weight. A class name present in both
the class diagram (w..) and sequence diagram
(wes) has the same weight. The UML model in
Figure 1 has four classes Cuboid, Sphere, Cylin-
der and ThreeDShape and the weight values for
the classes Cuboid, Sphere, Cylinder and Three-
DShape are 1, 2, 3 and 4, respectively. The weight
value of parameter is defined as the number of
bytes required for the storing the data type of
the parameter and the weights of char, int and
float are defined as 1, 2 and 4, respectively. The
weights assign unique numerical values to the
method name, class name and data types of the
parameters. The fitness value computation for
the methods in the sequence diagram of Figure 1
and 2 is illustrated in Table 1.

Method invocation inconsistency is detected
with the methods computeArea(r, h) and com-
puteArea(s) since the fitness values of the meth-
ods are not equal to one. The methods com-
puteArea(l, b, h) and vertices() are consistent
since the fitness values are equal to one. Although
inconsistency is detected from the fitness value in

static polymorphism, fitness value alone does not
reveal inconsistency in dynamic polymorphism.
Irrespective of the object on which the method
is invoked, the fitness value of the method com-
puteArea() in the UML model ThreeDObject is
one since the method is overridden in the child
classes. Hence, validation of the guard condi-
tion and method precondition is necessary. The
guard condition and precondition are represented
as tuples consisting of attribute, operator-value
pairs. Depending on the precondition, there can
be more than one operator-value pair. The tu-
ples are compared to identify inconsistency. The
tuple corresponding to the guard condition for
the method computeArea() in Figure 2 in the
sequence diagram invoked on the object of class
Cylinder is (face, (=, 0)). The tuple represen-
tation for the precondition of the method com-
puteArea() in the class Cylinder is (face, (=, 2)).
There is a mismatch in the value of the attribute
face and method invocation inconsistency is de-
tected.

4.3.2. Inconsistency fixing with SRPSO

The inconsistency is resolved by identifying the
right classes and remodelling the sequence dia-
gram by replacing the inconsistent method in-
vocations with consistent method invocations
using SRPSO. To identify the right class, we
compute the cohesion of the attributes of the
inconsistent method to all the classes in the
class diagram. The inconsistent method is re-
assigned to the class with the highest cohesion
value. The cohesion value between the method at-
tributes and the class attributes is computed for
each method-class pair. The method attributes
MA(m) of method m are derived from the pa-
rameters of the method. The class attributes
of class C, CA(C) are obtained from the class
specification. The cohesion value of a method m
to class C' is computed using equation 2 as

n(CA(C) " MA(m)) @)
n(MA(m))
where CA(C') represents the attributes defined

in class C', MA(m) represents the attributes of
method m and n represents the number of at-

cohesion(m, C) =
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tributes. The SRPSO algorithm iterates until all
the method definitions are complete and consis-
tent. The sequence diagram is remodelled during
iterations of the SRPSO algorithm. With static
binding, the cohesion value determines the class
to which an inconsistent method is to be reas-
signed whereas in dynamic binding, the cohesion
value and guard condition together determine
the class to which the method belongs.

5. Consistency handling
with SRPSO algorithm

SRPSO is a bio-inspired metaheuristic technique
that can provide better results than exact tech-
niques even with increased size of search space.
Metaheuristic techniques are more effective in
finding software errors utilizing less number of
resources when compared with exact techniques
[53]. SRPSO is an intelligent, optimization proce-
dure in which the solution space contains a swarm
of particles and the optimum value is attained
by an iterative process of updating generations.
The particles occupy a position in the solution
space. They have a velocity, a fitness value and
the particles update their velocity and position
based on the direction of a) the previous velocity,
b) the personal best position and c) position of
the global best [54]. The fitness function deter-
mines how close a particle is to the optimum
solution by computing the fitness value. The
velocity directs the movement of particles and
during each iteration of the SRPSO algorithm
the particles compute their new velocity. The
position is updated using the new velocity and
with each position update the particle moves to
a better position. The process is iterated until
an optimum solution is reached.

5.1. Fitness function

The fitness function is an integral part of the
SRPSO algorithm and it determines how close
a particle is to the optimum solution. We have
defined a maximizing fitness function, fs to de-
tect and fix method invocation inconsistency.
The fitness function is defined with equation 1.

The consistency and completeness of a sequence
diagram method is computed using the fitness
function. The invocations of inconsistent meth-
ods are removed from the sequence diagram and
the inconsistent methods are added to the set of
inconsistent methods (IM).

5.2. Particle creation

The search space of the SRPSO algorithm is ini-
tialized with particles. The proposed approach
focuses on inconsistency in polymorphic and
non-polymorphic method invocations and hence,
the methods invoked in the sequence diagram are
treated as particles. A sequence diagram method
is specified using a set of properties and is rep-
resented as a vector. The representation of the
sequence diagram method (SeqM) is SeqM =
[name id param sender receiver guard number]

The representation of SeqM consists of
a method name, a unique xmi id, the parameters,
sender class of the method, receiver class of the
method, guard condition for method invocation
and number representing the message order in
the sequence diagram. Each method has a spe-
cific value for a property and each position in
the vector corresponds to one property of the
method. The values for the properties are fixed as
5,3,5,5,5, 4 and 3, respectively. Any numerical
value can be used to represent a property. The
restriction is that the value of W should be equal
to the sum of the numerical values assigned to
the properties. The inconsistent methods in the
set IM are represented as particles.

5.3. Velocity and position update

The particles in the search space are characterized
by a position and velocity. A particle is defined in
terms of its properties and in our approach; the
position of a particle represents the number of
properties defined for the particle. The specifica-
tion of the inconsistent particle initially has only
one property, name and hence, the value of posi-
tion is one. As the iteration progresses, depending
on the value of velocity the particle specification
will be updated with its properties like id, sender,
receiver etc. The number of properties of the par-
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ticle to be updated in one iteration is determined
by the value of velocity. If the value of velocity
is one, one property will be added to the particle
specification and position will be incremented by
one. Velocity of the best particle is computed with
equation 3, velocity of the rest of the particles
with equation 4, position is updated using the
equation 5 and inertia weight with equation 6.

Vk(t + 1) = wg + Vk(t) (3)

Vie(t +1) = wi + Vi(t) + a1 * 71 * (pBest;,
— Xk (t)) 4 ag x ro x pso * (gBest — Xy (1)) (4)
Xp(t+1) = Xp(t) + Vi(t+ 1) (5)

(6)

wi +nAw for best particle
wi(t) =

wr — Aw  otherwise

where Vi (t) represents the velocity of particle k at
time ¢, a1 and as are the acceleration coefficients,
r1 and 79 are the random numbers, Xy (t) repre-
sents the position of particle k at time ¢, pBest;,
represents the personal best of particle k and gBest
the global best of all the particles in the swarm,
Pso 1S the perception for the social cognition, wy
is the inertia weight of the k'™ particle, Aw =
(Awr — Awp)/Itr, Awr = 1.05 and Awp = 0.5,
Itr is the number of iterations, and n = 1 is the
constant to control the rate of acceleration.

5.4. Stopping criteria

The SRPSO algorithm resolves method invoca-
tion inconsistency. The algorithm iterates until
method invocation inconsistency is resolved or
the number of iterations reaches a maximum
limit. We have defined a variable method con-
sistency count (MCC) that keeps track of the
number of methods with consistent and complete
invocations. MCC is incremented if fitness value
of a method is equal to one. If MCC is equal to
the number of inconsistent methods in the set
IM, method invocation inconsistency is resolved.

5.5. Algorithm

The consistency checking algorithm for polymor-
phic methods is outlined in algorithm 1.

Algorithm 1: Consistency Checking
Begin
Initialize SRPSO parameters, IM = ¢
for each method, m in sequence diagram do
identify sender class, SC(m) and receiver class,
RC(m)
compute fs(m) with equation 1
Case I: f;(m)==1
if guard conditions do not match
IM =IM U {m}
endif
Case II: fs(m) # 1
IM =IM U {m}
endfor
identify the receiving class
for each method, m in set IM do
identify method attributes, MA (m)
for each class, C; in class diagram do
determine class attributes CA(C;)
endfor
compute cohesion(m, C;)
RCnew = C; where C; = max(cohesion(m, C;),
i = 1 to number of classes
delete sequence diagram invocation for the
method m
endfor
Initialize the search space with particles in the set
M
repeat
for each particle k in IM do
compute fitness of particle k
if (£.(X,) > f,(pBest,))
pBest;, = Xy (¢)
endif
if (£,(X4) > f(gBest))
gBest = X (t)
endif
Compute inertia weight using equation 6
Update velocity of gBest particle using equa-
tion 3
for each particle except gBest particle do
Generaterandomnumber, r between Oand 1

if (r > 0.5)
Pso = 1 else ps, =0
endif

Compute velocity using equation 4
endfor
if(Ve(t+1)>1
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Vi(t+1)=1else Vi(t+1) =0
endif
Update position using equation 5
if (fo(Xp(t+1)==1)
Increment MCC
endif

endfor

Increment iteration count, Itr
until Itr = maxCount or MCC = number of incon-
sistent methods
End

The algorithm initializes the search space
with particles and SRPSO parameters. The ac-
celeration coefficients are set as 1.49445 [5], Itr is
initialized as zero, W is set as 30 and maxCount
is set as 35. The set IM is initialized to null. The
algorithm computes the fitness values of methods.
The guard conditions and preconditions of meth-
ods are also validated. The inconsistent method
names are added to the set IM and the inconsis-
tent method invocations are removed from the
sequence diagram.

To fix the inconsistency, the inconsistent
methods in the set IM are treated as new par-
ticles and the position of the particles are ini-
tialized. The cohesion of each method in the set
IM to the different classes of the class diagram
is computed to identify the new receiving class,
RCnew. The class with the maximum cohesion
value is identified as RCnew. The receiving class
is identified from the precondition and cohesion
value in dynamic polymorphism.

The newly created particles are inconsistent
since its properties are not completely specified.
Initially, all the inconsistent particles have only
one property, its name. The fitness values of the
particles in their current position are computed
using the fitness function, fs. If the current po-
sition is better than the personal best (pBest)
position of the particle, the personal best position
of the particle is updated. If the current position
is better than the global best (gBest) position
of all the particles in the swarm, the global best
position is updated. New velocity and position
of the particles are computed. Depending on
the velocity value, properties such as id, sender,
receiver etc. are added to the particle specification.
The velocity component determines the number

of properties to be updated in one iteration. If the
fitness value is equal to one, the method consis-
tency count is incremented. The velocity, position,
fitness value, pBest and gBest values of all the
particles in the set IM are updated during an
iteration of the algorithm. The iteration count is
also incremented. The SRPSO algorithm iterates
until the method consistency count is equal to
number of particles in the set IM or maximum
number of iterations is reached. The updation of
the properties of the inconsistent particles ensures
that inconsistencies are resolved and the method
specification is complete. The SRPSO algorithm
efficiently detects and resolves inconsistency.

6. Results and discussions

The consistency checking algorithm is applied
to the UML models to detect method invoca-
tion inconsistency. The UML model in Figure 1
contains the polymorphic method computeArea.
The method-invocation inconsistency detection
module detects two inconsistent methods: com-
puteArea(r, h) and computeArea(s) by comput-
ing the fitness values of the methods. The incon-
sistent methods are added to the set IM and the
sequence diagram invocations of the inconsistent
methods are removed. The attributes required
for the implementation of the method are derived
from the parameters of the method. The cohesion
of the method attributes to the different classes
in the class diagram is computed. The cohesion
values of the inconsistent methods to different
classes are represented in Table 2.

Table 2. Cohesion Value for UML Model 3DObject

Method Class Name

Cube Cuboid Cylinder
computeArea(r, h) 0.0 0.5 1.0
computeArea(s) 1.0 0.0 0.0

The class Cylinder has the highest cohesion
value for the method computeArea(float, int)
and the class Cube has the highest cohesion
value for the method computeArea(int). The re-
ceiving class of the inconsistent method com-
puteArea(r, h) is identified as class Cylinder
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and the new receiving class of the method com-
puteArea(s) is identified as class Cube. The se-
quence diagram methods are specified with a set
of properties. On detecting inconsistency, the
properties related to the method invocation of
the inconsistent methods are also deleted. The
inconsistency is fixed during iterations of the
SRPSO algorithm. During each iteration of the
SRPSO algorithm, the specification of the se-
quence diagram method in the set IM is updated
by adding the properties of the methods. The ap-
proach ensures that method invocation inconsis-
tency is resolved and the method specification is
complete. The algorithm terminates when MCC
becomes equal to the number of inconsistent
methods or when Itr reaches the maxCount.

A graph representing the fitness value of the
inconsistent methods computeArea(r, h) and
computeArea(s) during different iterations of the
SRPSO algorithm with acceleration coefficient
values equal to 1.49445 is represented in Figure 4.
The method computeArea(s) has a fitness value
0.0925 during the first iteration of the algorithm.
As the iteration count increases, the fitness value
of the particle increases. In iteration 8, the fitness
values of the two inconsistent particles become
one and the UML model 3DObject is consistent
in terms of polymorphic method invocation and
specification. The fitness value of the inconsis-
tent method in the UML model ThreeDObject is
represented in Figure 5. The algorithm is imple-
mented with acceleration coeflicient values equal
to 1.49445 and converges in 8 iterations.

The result of implementation of the algorithm
is represented in Figure 6. The XMI parser identi-
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Figure 4. Fitness Values of Inconsistent Methods
for UML model 3DObject

fies the methods present in each class of the class
diagram. The method computeArea() is overrid-
den in all child classes. The signatures of the class
diagram method and sequence diagram methods
are compared and no inconsistency is detected.
A further validation of guard conditions and pre-
conditions identifies three inconsistent methods
due to wrong guard conditions. The SRPSO algo-
rithm resolves the inconsistencies in 8 iterations
and the sequence diagram specification has con-
sistent method invocations with guard conditions
matching the preconditions. The execution time
of the algorithm is 875 ms.

The UML model Deposit and Payroll Sys-
tem used for evaluating the algorithm are rep-
resented in Figures 7 and 8, respectively. The
UML model exhibits dynamic polymorphism,
whereas the UML model Payroll system exhibits
static polymorphism. The UML model Deposit
has three inconsistent method invocations. The
method invocations are prefixed with the guard
condition. The UML model Payroll System has
9 method invocations out of which 5 invocations
are inconsistent. The UML model Deposit in
Figure 7 forms a part of the banking system
to compute the interest of term deposits. The
method Interest() is overridden in the derived
classes. The interest rate depends on the period
of the term deposit. The three method invoca-
tions are inconsistent. Inconsistent design results
in wrong values for the interest calculated and
maturity value. This creates a set of unsatisfied
customers and affects the credibility of the bank-
ing system. Inconsistent design results in the
creation of software with faults. This affects the
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Figure 5. Fitness Values of Inconsistent Methods
for UML model ThreeDObject
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Figure 7. UML Model Deposit

software quality. The errors may be identified
either during the testing phase or after delivery
of the product, which increases the software de-
vlopment cost, maintenance cost, and time to
market the software.

The algorithm is evaluated based on two
criteria: convergence and execution time. The
convergence of the algorithm is evaluated based
on the number of iterations required to resolve
inconsistency. Inconsistency is resolved when the
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Table 3. Execution Time and Convergence

Number of
UML Model Polymorphism Methods Inconsistent Iteration Avg. Running
Type Invocations ~ Count Time(ms)
Deposit Dynamic 3 3 8 764
3DObject Static 4 2 8 954
ThreeDObject Dynamic 4 3 8 984
Course Registration System Dynamic 12 6 7 850
Payroll System Static 9 5 7 998
Demonstrative Sample Static 12 7 8 1052

fitness values of all particles in the swarm are
equal to one. We have modelled different case
studies and the algorithm is experimented on
different inconsistent models exhibiting static
and dynamic polymorphism. Table 3 represents
the execution time and convergence of the al-
gorithm on different UML models. The table
represents the UML models, the type and num-
ber of inconsistencies present in the models, the
number of iterations required to converge, and
the average running time of the algorithm. The
execution time of the algorithm is computed on
an Intel Core i7 CPU running at 2.80 GHz with
4 GB primary memory. The UML model Deposit
requires an average running time of 764 ms to
achieve consistency; the average running time of
UML model 3DObject and ThreeDObject are
954 ms and 984 ms, respectively. The UML model
3DObject exhibits static polymorphism and has 4
method invocations out of which two invocations
are inconsistent. Models Deposit and ThreeDOb-
ject exhibit dynamic polymorphism. The UML
model Demonstrative Sample has polymorphic
and non-polymorphic methods. Inconsistencies
in non-polymorphic methods are detected from
the fitness value computation. The results show
that the average time taken by the algorithm
to detect and fix inconsistencies in polymorphic
methods is of the order of milliseconds and the
algorithm converges in all cases.

Table 4 represents the statistical evaluation
results of the algorithm. The values of mean,
standard deviation and variance are computed
for different values of acceleration coefficients.
The algorithm is statistically evaluated on the
UML model and better results are obtained with
acceleration coefficient values equal to 1.49445.

The evaluation results have shown that the algo-
rithm detects and fixes all inconsistent method
invocations. As a result, no false positives or false
negatives are detected. Hence the precision and
recall values are high and equal to the one in our
approach.

Inconsistency handling has a prime role in the
development of quality software. Polymorphism
makes the design extensible. It simplifies the
design and enables the addition of new functions
without creating additional overheads. Inconsis-
tencies arising due to method invocation inconsis-
tency of polymorphic methods are hard to detect.
We have presented an Al based approach that de-
tects and fixes inconsistency in polymorphic and
non-polymorphic methods. Our approach pro-
vides significant role in ensuring software design
consistency. The proposed approach of incon-
sistency detection has a number of advantages.
The method operates on a specification of the
diagram and uses a direct approach of detecting
and fixing inconsistencies without transforming
the model to an intermediate representation. The
approach detects and fixes method invocation in-
consistency in polymorphic and non-polymorphic
methods. The fitness function uses simple calcula-
tions. Addition of new rules requires only a redef-
inition of the fitness function. Inconsistencies are
fixed by identifying the receiver class from the co-
hesion values and guard conditions and redefining
the method invocations in the sequence diagram.
The algorithm is fast and computationally inex-
pensive. As the inconsistencies are detected and
fixed in the design phase, the errors are not prop-
agated to the code generation phase. Hence, the
development and maintenance costs are reduced
and quality of the code can be improved.
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Table 4. Statistical Evaluation of the Algorithm

al = a2 = 1.49445 al=a2=1
UML Model Parameter 4 Runs 7 Runs 4 Runs 9 Runs
Mean 0.4685 0.95 0.2768 1
3DObject SD 0 -5.551E-17 0 0
Variance 0.017292 0.0025 0.003624 0
Mean 0.544444 0.9333333 0.488889 1
ThreeDObject SD -3.70E-17 -1.110E-16 0 0
Variance 0.00617 0.0022222 0.000202 0
Mean 0.65556 0.95556 0.4888809 1
Deposit SD 0 3.701E-17 -1.850E-17 0
Variance 0.006173 0.003951 0.00617284 0
Mean 0.711111 1 0.416667 0.911111
Course Registration System SD 0 0 9.2519E-18 -3.701E-17
Variance 0.006173 0 0.001389 0.003951
Mean 0.7 1 0.413333 1
Payroll System SD 0 0 -1.110E-17 0
Variance 0.006667 0 0.0016 0

7. Threats to validity

The section deals with threats to validity.
External Validity concerns with how the
result of the experiments can be generalized to
other environments. As part of the evaluation, we
have evaluated the algorithms on UML models
involving polymorphic method invocations. The
proposed approach detects and fixes inconsisten-
cies involving static and dynamic polymorphic
method invocations. The algorithm can be general-
ized to detect inconsistencies in non-polymorphic
method invocations and handle other inconsis-
tencies involving sequence diagrams. The gen-
eralization can be performed by modifying the
fitness function. This argument is substantiated
by describing how another inconsistency related
to the class and sequence diagram is handled. The
consistency rule states that two objects in the se-
quence diagram interact only if there is an associ-
ation in the class diagram between the interacting
objects. The fitness function can be modified to
include another term comprising of the sender
and receiver classes in the class and sequence
diagram. The proposed approach models inconsis-
tency handling as an optimization problem and
detecting inconsistencies with fitness function.
The algorithm can be expanded to detect and

fix intra-model inconsistencies among different
diagrams. We have defined the fitness function in
terms of the properties of the inconsistent model
elements. Inconsistency detection among different
diagrams requires definition of the fitness function
in terms of the properties of the inconsistent model
element and a particle representation has to be
formulated for the inconsistent model element in
terms of its properties.

Construct Validity refers to the extent to
which the experiment setting reflects the theory.
We are able to successfully implement the algo-
rithm on a set of UML models involving static
and dynamic polymorphic method invocations.
The fitness functions are defined with the aim of
detecting method invocation inconsistencies and
inconsistencies are identified and resolved accu-
rately. The UML models are a representative of
the models on which a consistency check can be
performed. The number of inconsistencies in the
UML models varies from 3 to 7 and the number
of method invocations varies from 3 to 12.

Internal Validity represents the extent to
which the casual relationship established can-
not be explained by other factors. The casual
relationships between class diagram method sig-
nature and sequence diagram method signature
are analyzed to detect inconsistency. Method
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invocation inconsistency arises due to the invoca-
tion of a method on an object of a class in which
the method is not defined. Fitness function is
defined in terms of the method signature and
class names. Hence, the method signature is the
major component in inconsistency detection and
the casual relationship between method signa-
tures is exploited to detect inconsistencies. In the
case of dynamic polymorphism, since the method
signatures of the polymorphic methods are the
same, a further comparison of guard conditions
and constraints is performed.

Conclusion Validity: We have performed
a statistical evaluation of the algorithm and the
results are summarized in Table 4. The models
used for evaluation are a representative of the
UML models used in the design of software sys-
tems. The statistical evaluation results show that
the algorithm converges in less number of itera-
tions with acceleration coefficient values equal to
1.49445. The convergence of the algorithm and
execution time are also computed. The average
execution time is of the order of milliseconds and
the number of iterations required for the algo-
rithm to converge is independent of the number
of method invocations or the number of inconsis-
tencies.

8. Conclusion

With the increasing relevance of software in in-
dustries and manufacturing, the complexity and
size of the software and the complexity of the
design has increased. Developing quality software
is one of the major challenges faced by software
developers. One of the definitions of quality soft-
ware is fitness for purpose and quality software
should be able to function as per the user’s re-
quirements. One of the key aspects to ensuring
software quality is good design. Inconsistent de-
sign leads to the generation of software with
faults. A periodic review of the software design
is one the factors that can enhance the software
quality and reduce software failures thereby im-
proving manufacturing and productivity. The re-
view helps to detect inconsistencies and fix the in-
consistencies. Polymorphism is an important fea-

ture that makes the software design compact and
extensible. It is hard to trace the polymorphism
as it is often detected at run time. We introduce
an intelligent automated approach that uses the
SRPSO algorithm to detect and fix inconsistency
in polymorphic methods. The algorithm is evalu-
ated on different case study involving static and
dynamic polymorphism. The method detects and
fixes inconsistencies in all cases. Analysis of the
results shows that the inconsistency detection
and fixing in our approach is quick, easy, and
effective. The proposed approach has a number
of advantages. The algorithm can be invoked
after the application is modelled or during and
after refinements to the models. The method
operates directly on the diagram specification
and does not require transformation to another
representation. Addition of new rules requires
only a redefinition of the fitness function. The
fitness function uses simple calculations. The
time required to detect and fix inconsistencies
is of the order of milliseconds. The inconsisten-
cies developed in the design are detected and
corrected in the same phase. Maintenance cost
of software is a huge burden for manufacturing
industries. Automatic detection of inconsisten-
cies in polymorphic methods during the design
phase ensures quality of the code produced and
reduces development and maintenance cost of
the software.
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