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Abstract
Context: Predicting the priority of bug reports is an important activity in software maintenance.
Bug priority refers to the order in which a bug or defect should be resolved. A huge number of bug
reports are submitted every day. Manual filtering of bug reports and assigning priority to each
report is a heavy process, which requires time, resources, and expertise. In many cases mistakes
happen when priority is assigned manually, which prevents the developers from finishing their
tasks, fixing bugs, and improve the quality.
Objective: Bugs are widespread and there is a noticeable increase in the number of bug reports
that are submitted by the users and teams’ members with the presence of limited resources, which
raises the fact that there is a need for a model that focuses on detecting the priority of bug reports,
and allows developers to find the highest priority bug reports.
This paper presents a model that focuses on predicting and assigning a priority level (high or low)
for each bug report.
Method: This model considers a set of factors (indicators) such as component name, summary,
assignee, and reporter that possibly affect the priority level of a bug report. The factors are
extracted as features from a dataset built using bug reports that are taken from closed-source
projects stored in the JIRA bug tracking system, which are used then to train and test the
framework. Also, this work presents a tool that helps developers to assign a priority level for the
bug report automatically and based on the LSTM’s model prediction.
Results: Our experiments consisted of applying a 5-layer deep learning RNN-LSTM neural
network and comparing the results with Support Vector Machine (SVM) and K-nearest neighbors
(KNN) to predict the priority of bug reports.
The performance of the proposed RNN-LSTM model has been analyzed over the JIRA dataset with
more than 2000 bug reports. The proposed model has been found 90% accurate in comparison with
KNN (74%) and SVM (87%). On average, RNN-LSTM improves the F -measure by 3% compared
to SVM and 15.2% compared to KNN.
Conclusion: It concluded that LSTM predicts and assigns the priority of the bug more accurately
and effectively than the other ML algorithms (KNN and SVM). LSTM significantly improves the
average F -measure in comparison to the other classifiers. The study showed that LSTM reported
the best performance results based on all performance measures (Accuracy = 0.908, AUC = 0.95,
F -measure = 0.892).
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1. Introduction

Software projects (both open and closed source)
get an overwhelming number of bug reports, and
the presence of bugs usually affects reliability,
quality, and cost management of software. In
practice, it is impossible to have a bug-free soft-
ware unless the software is implemented carefully
and developers can quantify software behaviors
as being a bug or not [1].

Bugs are prevalent, and many software
projects are delivered with bugs. To address these
bugs and to improve the quality of the released
products, bug tracking systems such as JIRA and
Bugzilla allow users and team members to report
bugs [2].

Bug tracking systems help to predict the
progress of a milestone-based on bug reports
raised. They allow users to add stories (functional
requirements) and divide them into tasks, as well
as preparing bug reports and test suites [2].

Developers and testers can create new bug
reports, monitor the state of bug reports as well
as any update on existing bug reports. Bug re-
ports progress through a series of states, where
the bug reports begin when the bug is found and
ends when the bug reports are closed [1].

Bug reports may then be used to direct the
software corrective maintenance behavior and
contribute to creating more stable software sys-
tems. Prioritizing software bug reports can help
to handle the bug triaging process, and allows
developers to prioritize and fix important reports
first [2]. Developers are often receiving numer-
ous bugs reports and may fail to fix it due to
different constraints including time. The pro-
cess of prioritizing bug reports is manual and is
time-consuming. Thus, there is a need to develop
a bug’s priority prediction model that helps to
automate the priority’s prediction process.

The model helps to (1) improve accuracy and
effectiveness in predicting the priority of the bug
reports, (2) improve efficiency by reducing the
time spent during manual priority prediction,
and (3) reduce the cost of assigning incorrect
priority.

This article proposes a framework that used
a dataset extracted from five closed-source

projects containing more than 2000 bug reports
(provided by JIRA). Also, it uses different algo-
rithms, namely RNN-LSTM, SVM, and KKN, to
predict the priority and compare the accuracy
results.

The rest of this paper is organized as fol-
lows. The rest of Section 1 provides background
about the bug reports lifecycle and machine
learning (ML) and its relationship with soft-
ware bug problems. Section 2 presents the re-
lated works. Section 3 presents the detailed
description of the proposed approach. The re-
sults of the study are presented in Section 4.
Section 5 discusses the priority prediction tool.
The possible threats to the validity of our work
were listed in Section 6. Finally, Section 7
presents the conclusion of the research work
along with future work directions and enhance-
ment.

1.1. Bug reports lifecycle

Bug reports go through a cycle during their life-
time. This article divides the life cycle of the
bug reports into five states: Open, InProgress,
Resolved, Closed, and Reopened. These phases
are described hereunder (see Fig. 1).

When a tester posts a bug, a bug report is
opened and logged in to the tracking system,
the status is set to OPEN. After that, the leader
approves that the bug exists and assigns the bug
to the appropriate developer. Once the developer
starts analysis and works on fixing the bug, the
status set to INPROGRESS.

If a bug is posted twice, the status is set
to CLOSED with a resolution duplicate. If the
developer feels that the bug is not logical or
incompatible with the specific user experience,
the status is set to CLOSED with resolution
will not do. If the bug is not reproducible (all
attempts to reproduce this bug have failed, or in-
sufficient information was available to reproduce
the bug), then the status is set to CLOSED
with resolution cannot reproduce.

Once the developer fixes the issue and verifies
the changes, the status is set to RESOLVED.
After fixing the bug, testing is pending and the
tester either confirms the change or re-test the
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Figure 1: Lifecycle of bug reports

changes to make sure that the bug is no longer
exists in the software. Next, the status is set to
CLOSED with the decision done. If the bug
still exists and not resolved, the status is set to
REOPEN.

Finally, when the software delivery date
(deadline) reaches and low priority bugs are not
fixed, they must be moved to the next release
by the product owner, and the status remains
OPENED.

1.2. Bug reports contents

A bug report contains information on how the
bug could be reproduced and the information
that can help in its debugging and tracing. A bug
report includes a set of factors like summary,
descriptions, report id, project name, priority, en-
vironment, attachment, assignee, reporter, created
date, status, fix version, and component. Table 1
shows the defined factors.

Table 1: Summary of bug report fields

Field Description

Summary A brief one-line summary of the bug.
Descriptions Details including test step, actual result, and expected result to reproduce this bug
Report ID A unique identifier for this bug
Project Name The parent project to which the bug belongs.
Priority How quickly a bug should be fixed and deployed (e.g., Low, Medium, and High)
Environment The environment in which the issue occurred (e.g., production, pre-production, staging,

and development.)
Attachment Documents, screenshots, and other elements that can help in identifying and fixing bugs.
Assignee A person who created the bug (e.g., QA).
Reporter A person who is responsible for fixing the bug (e.g., QA, scrum master, and owner).
Created Date Date when a bug is submitted.
Status The stage the bug is currently in during the lifecycle (workflow).
Fix Version Project version(s) that contains the bug.
Component Component(s) to which the bug relates (e.g., Android, IOS, and Backend (DB)).
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2. Related works

This article focuses on related works and studies
that are mainly related to machine learning (ML)
and the techniques were applied to assigning bugs
priority and prediction. This section introduces
recent studies and literature that are related to
bugs’ priority.

2.1. Bug reports assignment

Anvik et al. [3] introduced a machine learning
method that classifies appropriate developer
names to resolve the report based on classify-
ing and reporting bug using accuracy and recall.
Applying their method on Firefox and Eclipse,
they achieved +50% accuracy.

Wang et al. [4] address three limitations of
the supervised bug fix approaches and propose an
unsupervised method for assigning bugs for de-
velopers based on their involvement (“activeness
score”) in the project. The result of experiments
showed that FixerCache gives better accuracy
when compared with the supervised approaches,
and it achieves prediction accuracy up to 96.32%
and diversity up to 91.67% in Eclipse and Mozilla
datasets.

Recently, Mani et al. [5] proposed an algo-
rithm using a deep-bidirectional recurrent neu-
ral network (DBRNN-A) model. The model is
for a specific software bug reports classifying
an adequate developer depending on the title
and characteristics of the bug reports using
naive Bayes, cosine distance, SVM, and soft-
max. Experiments on bug reports from software
projects (e.g., Google Chromium, Mozilla Core,
and Mozilla Firefox). It showed a precision of
47% for Google Chromium, 43% precision for
Mozilla Core, and 56% precision for Mozilla
Firefox.

2.2. Bug priority prediction

Prioritizing bug reports is not an easy task. Only
a small percentage of bug reports are extremely
impactive reports (e.g., according to Ohira et
al. [6] less than 1% of Ambari bug reports are
absent in the dataset).

2.2.1. Traditional approaches to bug priority
prediction

Tian et al. [2, 7] suggested an automated clas-
sification method to predict the priority of bug
reports. They used a machine learning (ML) al-
gorithm to prioritize bug reports and achieved
an average F -measure of 209%. The dataset of
the bug reports is usually unbalanced according
to the low number of high impact bugs in the
project.

Umer et al. [8] proposed an emotion-based
automated priority prediction approach. Their
approach combines the NLP techniques and ML
algorithms. It allows team members to assign
appropriate priority level bug reports in an auto-
mated manner. The results suggest that the pro-
posed approach outperforms the state-of-the-are
and it improves F1-score by more than 6%.

Mihaylov [9] conducted a study that aims
to examine the behavior of NNs and predict
the priority of bug reports. Their focus was to
analyze the importance of adding numerical fea-
tures to textual features by combining different
kinds of NNs. The results suggest that adding
numerical features to textual features improves
the accuracy of priority classification. The results
show that the priority classification improves the
accuracy of about 85.5%.

Choudhary et al. [10] introduce an ANN tech-
nique used to develop prediction models for sev-
eral Eclipse versions that set priority levels based
on the textual, temporal, relevant report, author,
severity, and the product.

Yu et al. [11] proposed an enhanced ANN-
-based system to predict the priorities of five
different product bugs identified by an inter-
national health-care company. The threefold
cross-validation tests suggest that the alternative
approach is better in terms of precision, recall,
and F -measure.

Jaweria Kanwal [12] proposed an ML-based
recommender to automatically prioritize reported
bugs. They used SVM to train a classifica-
tion-based approach on Eclipse bug reports. The
evaluation of the proposed approach used preci-
sion, retrieval, and F -measure to set the priority
of the automatic defect.
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Lin et al. [19] applies both of SVM and C4.5
classifiers on different fields (e.g., bug type, sub-
mitter, phase-ID, module-ID, and priority). They
used a dataset with 2,576 bug reports. Their
models achieve the accuracy of up to 77.64%.

Sharma et al. [13] proposed a priority pre-
diction approach using SVM, NB, KNN, and
neural networks. The proposed approach allows
to predict the priority of the bug reports. The

results showed that the accuracy of the used
machine learning techniques in predicting the
priority of bugs’ reports within the project is
found above 70% except NB technique.

Alenezi and Banitaan [14] proposed an ap-
proach to predict bugs’ priority prediction. They
used different ML techniques NB, Decision Tree,
and Random Forests. The results show that the
proposed approach is feasible in predicting the

Table 2: Summary of machine learning based bug priority approaches available in literature

Paper(s) Performance Features Used Classifier(s)

Traditional Bug Priority Prediction

[7] improves the average of
F -measure by a relative im-
provement of 58.61%

temporal, textual, author,
related-report, severity,
product

Drone, SVM, NBM,

[8] improves F -score by more
than 6%

summary NLP + ML algorithm

[9] accuracy = 85.5% sentiment and textual anal-
ysis

MLP, CNN, LSTM

[10] both algorithms are efficient temporal, textual, severity,
product, component

MLP, NB

[11] suggested improvement in
terms of precision, recall,
and F -measure

milestone, category, module,
main workflow, function, in-
tegration, frequency, sever-
ity, and tester

Rnhanced ANN, Bayes

[12] SVM is better categorical, summary, long
description

SVM, NB

[13] above 70% except NB SVM, NB, KNN
[14] F -measure values (Random

Forest = 0.611, Decision
Trees = 0.603, NB = 0.593)

component, operating sys-
tem, severity

RF, DT, NB

[15] accuracy = 75% – Decision Trees (DT), Ran-
dom Forest(RF)

Deep Learning in Bug Priority Prediction

[5] improvement = 12–15%, ac-
curacy = 37–43%

title, description softmax, SVM, MNB, cosine
distance based machine

[16] accuracy = 56–88% title, component, priority,
product

NB, TF-IDF with SVM,
fastText, and DeepTriag

[17] F1-measure improved by
14% and AUC by 7%

– CNN, RNN-LSTM, and
DP-ARNN

[18] F1-measure improved by
7.9%

– CNN, LSTM), Multinomial
NB (MNB), RF

Our approach accuracy = 90.8% component, summary, as-
signee, and reporter of bug
reports.

LSTM, SVM, KNN



34 Hani Bani-Salameh et al.

priority of bug reports. Also, the study shows that
Random Forests and Decision Trees beat NB.

Others [15] They proposed an approach that
constructs multiple decision trees based on exist-
ing datasets and features, which selects the best de-
cision trees to measure the new bugs’ priority and
severity. They proposed the applicability of ran-
dom forest (RF) for bug reports analysis. Results
showed that RF yields 75% as an accuracy score.

2.2.2. Deep learning approaches
to bug priority prediction

Mani et al. [5] propose a a bug report represen-
tation algorithm using deep-bidirectional RNN
network model (DBRNN-A). They chose two fea-
tures as input for the classification (title, descrip-
tion of the issues). They used bug reports from
different projects such as Chromium, Mozilla
Core, and Mozilla Firefox. The result shows that
DBRNN-A achieves an improvement of 12–15%
and performance between 37–43% when com-
pared to other classifiers. Lyubinets et. al [16]
present a model to label bugs reports using RNNs.
The achieved accuracy were 56–88%.

Fan et al. [17] proposed a deep learning-based
method called DP-ARNN, to help predict
prospective code defects. They used the attention
mechanism to capture important features that
might help improve the defect prediction per-
formance. They made use of seven open-source
projects. Results indicated that DP-ARNN im-
proves the state-of-the-art traditional methods
of software defects prediction where F 1-measure
improved by 14% and AUC improved by 7%.

Ramay et al. [18] proposed a deep neural
network-based approach for bug reports severity.
They evaluated their model on the history-data
of bug reports. The results showed that there
is an improvement in the F -measure by 7.90%,
which indicates that the approach outperforms
the state-of-the-art approaches.

The above mentioned closely related works
on bug priority are summarized in Table 2.

These studies have focused on using on both
of deep learning and traditional classification al-
gorithms such as C4.5, Bayesian, MLP, and Sup-
port Vector Machine (SVM). Our work presents

an approach to predict and assign bugs’ priority
level using deep learning. The proposed approach
use of LSTM and outperforms the other classi-
fiers where accuracy improved by 90.8%.

3. Proposed approach

Given a dataset of bug reports from closed-source
software projects, this study uses RNN-LSTM
neural networks to detect and prioritizes bug re-
ports. The process of assigning the priority level
for bug reports consists of two phases (see Fig. 2).
This section briefly explains the process phases.

Figure 2: Proposed framework
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Phase 1: involves data collection, formatting
priority of the bug reports, and text preprocess-
ing (tokenization, stop words, and stemming).

Phase 2: involves feature selection, dataset
training, applying ML algorithms (LSTM, SVM,
and KNN), and finally evaluation process.

3.1. Data collection

As mentioned earlier, this study used a dataset
that was extracted from the JIRA bug track-
ing system using the INTIX DWC company
dashboard [25]. The datasets consist of data
from five closed-source projects and contain-
ing more than 2000 bug reports. Past studies
[3, 4, 12, 26–28] used common datasets extracted
from Bugzilla [29] system that are related to
Eclipse and Mozilla.

JIRA dataset consists of 17 columns. The
factors are summary, description, bug id, sta-
tus, project name, project lead, priority, resolu-
tion, assignee, reporter, created date, resolved
date, component, environment, sprint, attach-
ment files, and comments.

In this work, we used a specific number of
factors from the chosen dataset. The factors that
are considered as the most appropriate to pre-
dict the priority level (high, medium, and low):
component, summary, assignee, and reporter of
bug reports.

Table 3 shows the bug reports in the closed-
-source projects included in the used dataset,
which are Martix, Hashfood, Tazaj, Workspaces,
and Maharah. The project with the highest num-
ber of bug reports is Hashfood. The bug re-
ports are divided into three levels of priority
(high, medium, and low). The number of bug
reports with medium priority is higher in each
dataset compared to the number of low and high
priorities.

3.1.1. Labeling priority of reports

The priority of bug reports was labeled using
the to_categorical function from the TensorFlow
Keras library [30]. The used labels are 0 and 1,
where 0 refers to the high priority and 1 refers
to the low priority of bug reports.

3.1.2. Text preprocessing

Text preprocessing is applied using the Natural
Language Toolkit library [31]. This is performed
by practicing Python programming using Py-
Charm [32].

This section gives a brief definition of each
activity.
– Tokenization: the process of splitting text

into sentences, words, and clauses. It replaces
all the punctuations with blank spaces, re-

Table 3: High, medium, low, and unselect priority levels in each project dataset

Projects name High Medium Low Unselect

Martix [20] 207 489 135 38
Hashfood [21] 453 659 95 0
Tazaj [22] 80 169 18 0
Workspaces [23] 143 186 9 0
Maharah [24] 55 61 9 0

Figure 3: Text preprocessing activities
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Table 4: Example illustrates the effect of preprocessing activities

Original Description Crashed when clicking on order details “Consumer application”
Tokenization Crash when I click on order details consumer application
Stop Words Crashed click order details consumer application
Stemming Crash click order detail consumer application

Table 5: The top-30 keywords based on their frequency (sorted using NLTK)

Rank Keyword Rank Keyword Rank Keyword

1 IOS 11 search 21 back
2 Android 12 seller 22 login
3 Screen 13 click 23 logo
4 app 14 App 24 account
5 incorrect 15 Api 25 network
6 message 16 backend 26 payment
7 product 17 chat 27 google
8 user 18 button 28 service
9 order 19 mobile 29 server
10 error 20 design 30 web

Table 6: Keywords classified based on the priority level

Keywords Count of frequency Priority level Keywords Count of frequency Priority level

crash 186 high color 29 low
error 159 high inconsistent 22 low
icon 110 low layout 21 low
photo 108 low avatar 20 low
tab 65 low placeholder 20 low
image 101 low doesn’t Work 16 high
menu 53 low ux 16 low
design 52 low toolbar 15 low
logo 47 low textview 9 low
label 45 low hot fix 9 high
title 34 low failure 8 high

moves all the nonprintable escape characters,
and converts all the words to lowercase [7].

– Stop word removal: prepositions, articles,
conjunctions, verbs, pronouns, nouns, adjec-
tives, and adverbs, which has no meaning in
NL processing [7].

– Stemming: is the process for reducing words
to their stem or root. All words with a com-
mon stem are replaced. For example, words
like “take”, “takes”, “took”, and “taking” can
be replaced with a single word as “take” [7].
Table 4 illustrates the preprocessing activities

using Natural Language Toolkit (NLTK) [31].

3.1.3. Feature selection

Text preprocessing generates a large set of fea-
tures that are still costly to be processed using
the proposed machine learning algorithms. Thus,
it is important to decide what features of the
input are relevant.

Various techniques have been proposed to
derive relevant features (terms/keywords) from
the bug reports. This research used the NLTK
library [7] as a features’ selection technique to
reduce the number of input features and help
improve the performance.
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Features are derived from the bug reports to
provide the most important words that impact
the priority level, then the words are ranked
highest to lowest based on the frequency of the
word (see Table 5).

Also, manual analysis was applied and iden-
tified the strongest set of keywords that refer
to the low and high priority levels of the bug
reports (see Table 6).

3.2. Evaluation metrics

The performance and effectiveness of the
classification algorithms were evaluated using
well-known metrics such as precision, accuracy,
recall, F -measure, and improvement [18].

Also, these metrics were used to evaluate the
performance of the proposed approach to the
priority bug reports. The metrics present the
precision, accuracy, recall, and F -measure of the
proposed approach in assigning priority of the
bug reports. Following is a description of the
used metrics.

Accuracy is the percentage of correctly pre-
dicted observation to the total, which is consid-
ered as an important performance measure when
using asymmetric datasets that present when
false positive and false negatives are the same
value [33]. Accuracy can be measured using the
following formula:

Accuracy = TP + TN
TP + FP + FN + TN (1)

Precision is the ratio of correctly predicted
positive to the total predicted positive. The per-
centage of priority bug reports was predicted, and
then considered precision for the high and low
level of priority [33]. Precision can be measured
using the following formula:

Precision = TP
FP + TP (2)

Recall (Sensitivity) is the ratio of correctly
predicted positive to the total observation in the
same class. The percentage of all high-priority
and low-priority bug reports that are correctly
predicted [33]. Recall can be measured using the

following formula:

Recall = TP
TP + FN (3)

F -measure means the average accuracy and
recall taking into account false positives and false
negatives. F -measure is more effective than accu-
racy, especially if the data distribution is unbal-
anced. If false positives and false negatives have
the same results, this means that the accuracy is
more effective [33]. F -measure can be measured
using the following formula:

F -measure = 2 ∗ Precision ∗ Recall
Precision + Recall (4)

Improvement considers calculating the im-
provement between selected classification algo-
rithms [34]. Improvement can be measured using
the following formula:

Improvement =

(F -measureLSTM)− (F -measureKNN)
F−measureKNN

(5)

Also, to measure the quality of the classifiers,
we calculated Mathews Coefficient Correlation
(MCC).

MCC =

(T P ∗T N)−(F P ∗F N)√
(T P +F P )(T P +F N)(T N+F P )(T N+F N)

(6)

3.3. Machine learning algorithms

The proposed approach is compared with some
existing ML algorithms. We used three differ-
ent machine learning algorithms to predict the
bug reports’ priority. Theses algorithms are
Long Short-Term Memory (LSTM), Support Vec-
tor Machine (SVM), and K-nearest neighbors
(KNN).

3.3.1. Long short-term memory (LSTM)

RNN-LSTM is an example of supervised learn-
ing used in deep learning, which uses history
measurements to generate bandwidth prediction
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Table 7: Factors considered from the bug reports

Field name Field description Field value

Component Bug component(s) to which this bug relates. Android, IOS, Backend (DB).
Summary A brief one-line summary of the bug. String(crash, failure, design, UX, or UI).
Assignee A person who created a bug Senior, Junior, and a fresh graduate.
Reporter A person who is responsible to fix the bug. QA, developer, scrum master, product owner.

Table 8: Output variable

Field name Field description Field value

Priority How quickly the bug should be fixed and
deployed?

Low/High

and remembers the information for long peri-
ods. It can learn to transform input data into
a preferred response and is widely used for pre-
diction problems [35]. RNN-LSTM can remem-
ber past events that are seen and forget unim-
portant data. This happens through different
activation function layers called gates. The In-
ternal Cell State presents the relevant informa-
tion that was selected to be saved. RNN-LSTM
is a type of a Recurrent Neural Network
(RNN) that uses past events to inform future
ones [35–38].

In this research, we implemented a Python
code for the LSTM neural network with five hid-
den layers feed-forward to predict the priority of
the bug reports. The number of hidden layers has
been selected to achieve the best performance.
It includes a cell that saves relevant information
which has an impact on the priority level. The
model helps to assign an appropriate priority
level of bug reports [38].

3.3.2. Support vector machine (SVM)

SVM is a supervised machine learning model that
applies classification on two-group classification
problems. It can be used for classifications, re-
gression, and outliers’ detection. The objective of
applying SVMs is to classify the dataset space by
finding the best line or hyperplane [39–41]. SVM
is implemented using a Python code, mainly us-
ing Sklearn.svm library [42, 43].

3.3.3. K -nearest neighbors (KNN)

KNN is a supervised machine learning algorithm
that can be used to solve both classification and
regression problems. Using KNN, the input vari-
ables consist of the k closest training examples
in the dataset. Predicting the output depends on
whether k-NN is used for classification or regres-
sion problems [44, 45]. KNN is implemented using
a Python code, mainly using Sklearn.neighbours
library [42].

3.4. Building the LSTM neural network

As mentioned earlier, Python was used to imple-
ment the LSTM neural network with five hidden
layers feed-forward to predict the priority of bug
reports.

3.4.1. Input variables

The input variables were selected to predict the
priority level by considering a set of factors (in-
dicators). The factors are component name, sum-
mary, assignee, and reporter of the bug reports
(see Table 7).

3.4.2. Output variables

In this study, Priority is the output variable
used in the ML algorithms to be predicted (see
Table 8).
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3.5. Supervised training of LSTM

To train the LSTM neural network, we are using
a python library called TensorFlow [46] that
divides the datasets into training and test sets
in the ratio 8:2. The datasets were converted
from the .xlsx format into .cvs format using the
panda’s library [47] to make the module faster.

The priority data is converted into [0, 1] using
the to_categorical function from the TensorFlow
Keras library [46]. The assigned values to the
priority of bug reports are (0 = high priority, 1 =
low priority).

The architecture of LSTM units was trained
using Adam algorithms and the Mean Square
Error loss function. Adam algorithm has been
used in our research instead of the traditional
algorithms to update network weights based on
training data [48]. The main benefits of Adam
algorithms are computationally efficient and suit-
able for handling problems with large data.

The learning rate variable is set to 0.001 and
it decays every 5 epochs and drops-out in each
layer in 0.2 to remove any loss value in validation
split. In this article, the model has been trained
with 100 sequences per batch and the count of
the batches is 64 with patience from 3 samples.

4. Experimental results and discussion

The performance of the proposed LSTM model
was evaluated by the experiment on a dataset
extracted from five different projects, which are
Matrix, Hashfood, Tazaj, Workspaces, and Ma-
harah, which have a different number of priority
bug reports, as shown earlier in Table 4.

The proposed approach is compared with the
existing ML algorithm. Three ML algorithms
were utilized on the selected dataset. The evalua-
tion was performed with LSTM, KNN, and SVM
after defining that the test size is equal to 0.20 of
our dataset, then the bug reports were selected
randomly. This is done using the train_test_split
Python library to split datasets into a random
train and test subsets [49]. The model was trained
and tested with more than 2000 bug reports.

This rest of this section presents the results of
the experiment that was conducted to validate
the proposed model and answers the research
question.

4.1. Research question

This work investigates the following research
question to evaluate the proposed framework:

“Does the proposed approach outperform the
other machine learning algorithms in predicting
and assigning bug priority? Does the proposed ap-
proach improve the accuracy of assigning priority
levels of bug reports?”

The research question compares the selected
deep neural network (LSTM) against other alter-
natives as shown in sections 4.1–4.3. Also, it inves-
tigates the performance improvement of the pro-
posed approach as shown in Sections 4.4 and 4.5.

4.2. LSTM neural network

The experiments performed on LSTM Neural
Network after training epoch. The LSTM re-
current neural network model was developed
in Python using the Keras deep learning li-
brary [30].

Accuracy and loss in Keras model for valida-
tion data could be changed with different cases.
When every epoch increases, the loss becomes
lower and the accuracy becomes higher. With
Keras validation loss and accuracy, the following
cases may occur [50]:
– The model is not learning (cramming

values): when validation loss starts increas-
ing, validation accuracy starts decreasing.

– Overfitting: both of validation loss and val-
idation accuracy start increasing.

– The model is learning probably: vali-
dation loss starts decreasing, and validation
accuracy starts increasing.
As shown in Figures 4(a) and 4(b), this re-

search defined the loss and accuracy functions
which are considered as a return to the difference
between the training and testing data (predicted
and actual outcome). Then we calculated the
accuracy, precision, recall, and F -measure.
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(a) Model loss (b) Model accuracy

Figure 4: Comparison between training and validation(loss and accuracy)

Figures 4(a) and 4(b) illustrate that the
model has higher training accuracy and lower
validation accuracy, thus it is learning probably.
The training loss is decreasing, which means that
the model is learning to recognize the training
set. Also, the model is a good fit because training
loss is slightly higher than validation loss.

4.3. Support vector machine (SVM)

This section presents the results when SVM was
applied to datasets extracted from closed-source
projects. Table 9 shows the performance results
of the SVM model based on the level of priority.
Based on the High priority, the metrics values are
(F -measure = 0.87, Recall = 0.88, and Precision
= 0.85). Based on the Low priority, the metrics
values are (F -measure = 0.86, Recall = 0.85, and
Precision = 0.88).

Table 9: Performance metrics results from apply-
ing SVM

Priority level Precision Recall F -measure

High 0.85 0.88 0.87
Low 0.88 0.85 0.86

4.4. K-nearest neighbors (KNN)

Based on the performance results of KNN, the
metrics values are Accuracy = 0.741, F -measure
= 0.740, Recall = 0.742, and Precision = 0.740.

Table 10 shows the evaluation results of the
three algorithms. It shows the performance of
LSTM, SVM, and KNN.
Table 10: A comparison between performance
results from applying LSTM, SVM, and KNN

LSTM SVM KNN

Accuracy 0.898 0.865 0.741
F -measure 0.892 0.865 0.742
Recall 0.897 0.865 0.741
Precision 0.876 0.866 0.743
MCC 0.796 0.732 0.485

Figure 5 illustrates the performance differ-
ences between the three ML algorithms.

4.5. Comparison between LSTM, SVM
and KNN results

The results of our experiments indicate that the
proposed framework based on LSTM Neural
Network correctly predicts the priority of the bug
reports and the performance can be significantly
increased compared with both SVM and KNN as
shown in Figure 5.

Based on Table 11 and Figure 5, we make the
following observations:
– The proposed approach obtains a slight im-

provement in performance. The LSTM im-
provement was calculated and compared with
the other selected algorithms SVM and KNN.

– F -measure results show a 3% improvement
for LSTM compared with SVM. Also, it shows
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Figure 5: Comparison between LSTM, SVM, and KNN

Table 11: LSTM Improvement compared to SVM and KNN

SVM LSTM Improvement KNN LSTM Improvement

F -measure 0.865 0.892 3% F -measure 0.742 0.892 15.2%
MCC 0.732 0.796 6.4% MCC 0.485 0.796 31.1%

a 15% improvement for LSTM compared with
KNN.

– MCC values improved by 6.4% compared to
SVM and by 31.1% compared to KNN, which
show that LSTM outperforms the other al-
gorithms in detecting and assigning the bugs
priority.

4.6. LSTM, SVM, KNN
– Output quality comparison

To compare the selected algorithms, this study
summarizes and compares the performance of
each classifier by calculating the area under the
ROC curve (AUC).

Figure 6: ROC curve for SVM Figure 7: ROC curve for KNN
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Figure 8: ROC curve for LSTM

Results show that LSTM is with better AUC,
which is an effective measure of sensitivity and
specificity (a measure of predictive accuracy).
The AUC values for LSTM, SVM, and KNN
are 0.95, 0.87, and 0.74, respectively (see Fig-
ures 6–8).

5. Bugs’ priority prediction tool

Assigning priority to bugs’ reports may play an
important role in improving the bug triaging pro-
cess which is an important process in software
maintenance.

Figure 9: Predicting priority level for a bug report

This article introduces a tool that helps de-
velopers and team to predict and assign prior-
ity for bugs’ reports. This tool was built using
pyqt5.qt widgets [51]. It allows them to enter the
input (RNN-LSTM input features) as a single

comma separated statement (component name,
summary, assignee, and author). Then, the neu-
ral network predicts the priority of the report.
Figure 9 shows an example of the labeling panel
in the proposed tool.

6. Threats to validity

Like any research, some factors may affect the
performance of the proposed approach. The
threats to the validity of our study are as follows.

The internal validity relates to the adoption
of LSTM and not the other algorithms. We chose
LSTM since others proved it effective for text
classification [52, 53]. Also, the results are verified
to avoid any errors.

External validity makes it difficult to gener-
alize the results. As mentioned earlier the used
dataset extracted from bug reports related to
five closed-source projects. Using datasets from
other projects, it is not sure to achieve the same
performance results.

7. Conclusion

This research provides a framework for automat-
ically assigning the appropriate priority level for
bug reports to avoid time-consuming and limited
resources during the software testing process.

The proposed framework involves the use of
text pre-processing methods (tokenization, stop
words, and stemming) and then extracting im-
portant keywords from the description of the
bug reports. A dataset was extracted from JIRA
using the INTIX DWC company dashboard [4],
which consists of five closed-source projects and
containing more than 2000 bug reports. The
dataset was divided into training and test cases
and applied dataset variations (20% test and
80% training).

The proposed model has been validated on
a dataset extracted from five real projects. The
performance of the model is compared with two
well-known ML algorithms, SVM and KNN. The
results show that LSTM predicts and assigns the
priority of the bug more accurately and effec-
tively. LSTM significantly improves the average
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F -measure in comparison to the other classi-
fiers. The study showed that LSTM reported
the best performance results based on all perfor-
mance measures (Accuracy = 0.908, AUC = 0.95,
F -measure = 0.892). This answers our research
question, which suggests that LSTM outperforms
the alternatives and improves performance.

In the future, we will validate other deep
learning approaches on open-source projects like
Eclipse and Mozilla. This includes experiments
to evaluate the performance of different classifiers
such as Naive Bayes, RBF Networks, and Func-
tional Trees. Also, a future work direction might
involve integrating the proposed framework with
JIRA software.
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