
e-Informatica Software Engineering Journal, Volume 2, Issue 1, 2008

Computation Independent Representation of the

Problem Domain in MDA

Janis Osis∗, Erika Asnina∗, Andrejs Grave∗

∗Faculty of Computer Science and Information Technology, Institute of Applied Computer
Systems, Riga Technical University

janis.osis@cs.rtu.lv, erika.asnina@cs.rtu.lv, andrejs.grave@cs.rtu.lv

Abstract
The object-oriented analysis suggests semiformal use-case driven techniques for problem
domain modeling from a computation independent viewpoint. The proposed approach
called Topological Functioning Modeling for Model Driven Architecture (TFMfMDA)
increases the degree of formalization. It uses formal mathematical foundations of Topo-
logical Functioning Model (TFM). TFMfMDA introduces more formal analysis of the
problem domain, enables defining what the client needs, verifying textual functional re-
quirements, and checking missing requirements in conformity with the domain model. A
use case model of the application to be build is defined from the TFM using a goal-based
method. Graph transformation from the TFM to a conceptual model enables definition
of domain concepts and their interrelation. This paper also outlines requirements to the
tool to support TFMfMDA.

1 Introduction

The purpose of this work is to introduce more formalism into the problem domain modeling
within OMG Model Driven Architecture R© (MDA R©) [19] in object-oriented software devel-
opment. The main idea is to introduce a more formal definition of consistency between real
world phenomena and an application that will work within these phenomena without in-
troducing complex, hard to understand mathematics used while composing Computation
Independent Models (CIMs). For that purpose, formalism of a Topological Functioning
Model (TFM) is used [22]. A TFM provides a holistical representation of system’s com-
plete functionality from the computation-independent viewpoint.

This paper is organized as follows. Section 2 describes related work. Section 3 describes
key principles of MDA, and discusses suggested solutions of computation independent
modeling and their weaknesses in the object-oriented analysis within MDA. Section 4
discusses a developed approach, i.e. Topological Functioning Modeling for Model Driven
Architecture (TFMfMDA), that makes it possible to use a formal model, i.e. a TFM, as
a computation independent one without introducing complex mathematics. Besides that,
it allows verifying of functional requirements at the beginning of analysis. TFMfMDA is
illustrated by an application example in Section 5. Section 6 shows TFMfMDA conformity
to the MDA Foundation Model. Section 7 describes requirements to the tool that should
partially support automation of TFMfMDA. Conclusions state further directions of the
research.

30 Janis Osis, Erika Asnina, Andrejs Grave

2 Related Work

Our work completely supports Jackson’s work, which states that ”...the principal parts
of a software development problem are the machine, the problem world, and the require-
ments...” [15]. We also assume that the first step in the requirements gathering should be
analysis of the ”problem world” or ”business” [10]. Therefore within TFMfMDA, the TFM
describes functionality of the ”problem world”, while requirements describe functionality
of the solution.

Analysis of the ”business” context is also understood in goal-oriented requirements
gathering approaches. Unfortunately, most of them are solution-orientated. Successful
exceptions are KAOS methodology that analyzes the ”problem world” and deals with
conflicts by global representation of goals and agents [7], the i* modeling framework that
investigates agents that are assumed to be strategic and whose intentionality are only
partially revealed [24], and, in some degree, the Requirement Abstraction Model [13] that
links product requirements to organization’s strategies. However, all these approaches
operate rather with organization’s strategic goals than with organization’s functionality.

3 Construction of the CIM within MDA

Within MDA, the CIM usually includes several distinct models that describe system re-
quirements, business processes and objects, an environment the system will work within,
etc. Object-oriented analysis (OOA) is a semiformal specification technique that contains
three steps: a) use case modeling; b) class modeling, and c) dynamic modeling. Use case
usage is not systematic in comparison with systematic approaches that enable identifying
of system requirement majority. Creation of use case models and determination of concepts
and concept relations usually are rather informal than semiformal. Figure 1 shows sev-
eral of the existing approaches of creating the mentioned models. Some approaches apply
assisting questions [16, 18], category lists of concepts and concept relations (or noun-verb
analysis) [17], or goals [6, 18] in order to identify use cases and concepts from the de-
scription of the system (in the form of informal description, expert interviewing, etc.).
Other approaches draft a system requirements specification using classical requirements
gathering techniques. Then these requirements are used for identification of use cases
and creation of conceptual models. The most complete way is identification of use cases
and concepts having knowledge of the problem world as well as a system requirements
specification [2].

Use case modeling starts with some initial estimation (a tentative idea)
about where the system boundary lies. For example, in the Unified Process [2], use
cases are driven by requirements to the solution (but the business model is underestimated,
and, thus, system boundaries are being identified intuitively), any requirement gathering
technique can be applied, and requirements traceability to use cases is ad hoc defined.
The B.O.O.M. approach [23] uses business-scope and system-scope use cases to make the
solution more consistent with the problem world. The business-scope use cases are used as
a requirements gathering technique. Unfortunately, they are IT project driven not business

Computation Independent Representation of the Problem Domain in MDA 31

Knowledge about
the problem

domain

Client’s
requirements

System
Requirements
Specification

Use Case
Model

Conceptual
Model

Intuitive identification

Functional
characteristics
of the problem
domain

Characteristics
of the
application at
the high level
of abstraction

Assisting questions, goals,
categories of concepts and
concept relations

The CIM level

Figure 1: The current state of creation of the CIM in OOA

driven. This means that analysis of the existing and planned business logic is also solution-
oriented. Besides that, the traceability between system-scope use cases and business-scope
use cases is captured with use-case packages that have their bottlenecks (intuitive and ad
hoc creation; changes in business processes cannot be traceable in a natural way, etc.).
Alistair Cockburn’s approach [6] structures use cases with goals at different abstraction
levels: system scope, goal specification, and interaction details. Despite benefits of such
structuring, this approach also does not have proper problem domain analysis, and the
multilevel character of the technique is not easy for everyone.

This means that the priority of problem domain modeling is very low. Thus, system
functioning and its structure are based on intuitive understanding of the environment the
system will work within. Until now use cases relate to the narrow area, where the real world
interacts directly with the system (the solution), and, hence, focuses requirement analyst’s
attention on events that happen within the solution boundaries, but the properties of the
surrounding real world can remain underestimated, e.g., software system requirements can
conflict with rules that exist in the organization. Besides that, fragmentary nature of use
cases does not give any answer on questions about: a) identifying all of the use cases for the
system; b) conflicts among use cases; c) gaps that can be left in system requirements; d)
how changes can affect behavior that other use cases describe [10, 11]. Use case checklists
cannot completely help here, because reviews of lists of use cases are made only based on
knowledge of the solution domain without formal connection to system’s functionality in
the problem world.

We consider that understanding and modeling the problem domain should be the pri-
mary stage in the software development, especially in case of embedded and complex
business systems, which failure can lead to huge losses. This means that use cases must
be applied as a part of a technique, whose first activity is construction of a well-defined
problem domain model. Such an approach - Topological Functioning Modeling for Model
Driven Architecture (TFMfMDA) is suggested in this paper. This research can be consid-
ered as a step towards MDA completeness and, therefore, towards MDA maturity.

32 Janis Osis, Erika Asnina, Andrejs Grave

4 Topological Functioning Modeling for MDA

This section discusses the proposed TFMfMDA approach. TFMfMDA main steps illus-
trated by bold lines in Figure 2 are discussed further in the paper. The approach is
based on the formalism of a Topological Functioning Model and uses some capabilities of
universal category logic [4, 3, 22].

Knowledge
about the
system

Topological
Functioning

Model

Client’s
Requirements

Functional
Requirements
Specification

Use Case
Model

Conceptual
Model

Functional
characteristics
of the problem

domain

trace to

in

co
nf

or
m

ity

w
ith

goal-based
identification

graph
transformation

The CIM level

Characteristics of
the application at
the high level of
abstraction

Figure 2: Creation of the CIM using TFMfMDA

As previously discussed, there are two interrelated branches at the beginning of system
analysis: The first one is analysis of the problem world (the business or enterprise level),
and the second one is analysis of the possible solution (the application level). Having
knowledge about the complex system that operates in the real world, a topological func-
tioning model of this system could be composed (Figure 2). This composed TFM is used
to verify functional requirements and may be partially changed by them. TFM functional
features are associated with business goals of the system; this provides identification of
business-scope use cases as well as system-scope use cases in conformity with problem
world’s actualities. As a result, functional requirements are not only in conformity with
the business-scope system’s functionality but also can be traceable to the system-scope use
case model. Problem domain concepts are selected and described in UML Class Diagram.

The TFM has a rigor mathematical base. It is represented in the form of topological
space (X,Θ), where X is a finite set of functional features of the system under consideration,
and Θ is the topology that satisfies axioms of topological structures and is represented in
the form of a directed graph. ”In combinatorial topology, the goal is to represent a topo-
logical space as an union of simple pieces. The word ’combinatorial’ is used to suggest that
the properties of the topological space rely on how the simple pieces are arranged. A graph
is a simple combinatorial topological space.” [5]. The necessary condition for construction
of the topological space is a meaningful exhaustive verbal, graphical, or mathematical
description of the system. The adequacy of the model describing functioning of a system
can be achieved by analyzing mathematical properties of such an abstract object [22].

A TFM has as topological properties, namely, connectedness, closure, neighborhood,
and continuous mapping, as functional properties, namely, cause-effect relations, cycle
structure, inputs and outputs. These properties set model capabilities such as formal
separation of subsystems, formal abstraction and refinement of the TFM, and analysis of
similarities and differences of functioning systems. The last point relates to the structure

Computation Independent Representation of the Problem Domain in MDA 33

of cycles in the TFM. It is proved that every business and technical system is a subsystem
of its environment. The common characteristic of functionality of all systems (technical,
business, or biological) is a main feedback circuit, whose visualization is an oriented
cycle. Therefore, topological modeling states that at least one directed closed loop must
be in every topological model of system functioning. This cycle visualizes the ”main”
functionality that has vital importance to the system’s life. Usually feedback is expressed
as an expanded hierarchy of cycles. Therefore, proper analysis of cycles is mandatory
in composing the TFM, because it supports careful analysis of system’s operation and
interaction with its environment [21]. Composition of the TFM is discussed in Section
4.1.

4.1 Construction of the Topological Functioning Model

This section discusses construction of the TFM that represents the problem world in
business context (Figure 3). Its steps illustrated in Figure 4 are the following: a) Definition
of physical or business functional characteristics, b) Introduction of the topology, and c)
Separation of the TFM.

Knowledge
about the
system

Topological
Functioning

Model

Client’s
Requirements

Functional
Requirements
Specification

Use Case
Model

Conceptual
Model

trace to

in

co
nf

or
m

ity

w
ith

goal-based
identification

graph
transformation

The CIM level

Functional
characteristics
of the problem

domain

Characteristics of
the application at
the high level of
abstraction

Figure 3: Construction of the TFM within TFMfMDA

Definition of physical or business functional characteristics consists of the fol-
lowing activities: 1) Definition of objects and their properties from the description of the
problem world is performed by noun analysis, i.e. by establishing as meaningful nouns
and their direct objects as handling synonyms and homonyms; 2) Identification of external
systems (objects that are not subordinated to the system rules) and partially-dependent
systems (objects that are partially subordinated to the system rules, e.g. workers’ roles);
and 3) Definition of functional features is performed by verb analysis, i.e. by founding
meaningful verbs in the description. Each functional feature is a unique tuple ¡A, R, O,
PrCond, E¿, where A is an object action, R is a result of this action, O is an object
(objects) that receives the result or that is used in this action (for example, a role, a
time period, a catalog, etc.), PrCond is a set PrCond = {c1 . . . ci}, where ci is a pre-
condition or an atomic business rule (optional), and E is an entity responsible for action
performing. Each precondition and atomic business rule must be either defined as a func-
tional feature or assigned to the already defined functional feature. Two forms of textual

34 Janis Osis, Erika Asnina, Andrejs Grave

descriptions are defined. The first is the more detailed form: ¡action¿-ing the ¡result¿
[to,into,in,by,of,from] a(n) ¡object¿, [PrCond,] E. An example is ”Check -ing out the avail-
ability of a copy, PrCond= {a valid reader account}, E= a librarian”. The latter is the
more abstract form: ¡action¿-ing a(n) ¡object¿, [PrCond,] E. An example is ”Check -ing
out a copy, PrCond={a copy is available}, E= a librarian”.

Definition of physical or
business functional

characteristics

Introduction of the
topology

Separation of the
topological functioning

model

Informal
System Description

Objects
Functional Features
External Systems

Cause-and-effect
Relations

Topological Functioning
Model

Information
about changes

Figure 4: The method of construction of the TFM

Introduction of the topology Θ is the establishing of cause-effect relations between
functional features. Cause-effect relations are represented as arcs of a digraph that are
oriented from a cause vertex to an effect vertex. A structure of such relations can form a
causal chain, wherein each relation is important.

Morevoer, cause-effect relations can form cycles. Therefore, cause-effect relations
should be carefully checked whether they form cycles or subcycles in order to com-
pletely identify existing functionality of the system. The main cycle (cycles) of system
functioning (i.e. functionality that is vitally necessary for system life) must be found and
analyzed before starting further analysis. In case of studying a complex system, a TFM
can be separated into a series of subsystems according to identified cycles.

Separation of the topological functioning model is performed by applying the
closure operation over a set of system’s inner functional features [22]. A topological space
is a system represented by Z = N

⋃
M . Where N is a set of system’s inner functional

features, and M is a set of functional features of other systems interacting with the system
or those of the system itself, which affect external systems. The TFM (X, Θ) is separated
from the topological space of the problem world by the closure operation over the set N

as it is shown by the equation X = [N] =
n⋃
η=1

Xη. Where Xη is an adherence point of the

set N and capacity of X is the number n of adherence points of N . An adherence point of
the set N is a point, whose each neighborhood includes at least one point from the set N .
The neighborhood of a vertex x in a digraph is the set of all vertices adjacent to x and the
vertex x itself. It is assumed here that all vertices adjacent to x lie at the distance d = 1
from x on ends of output arcs from x. Moreover, a TFM can be separated into a series of
subsystems by the closures of chosen subsets of N . The closure is illustrated in Section 5.

Computation Independent Representation of the Problem Domain in MDA 35

4.2 Functional Requirements Conformity to the TFM

The next step is verification of functional requirements (hereafter: requirements) whether
they are in conformity with the constructed TFM. TFM functional features specify func-
tionality that exists in the problem world, and functional requirements specify functionality
that must exist in the solution [14]. Thus, it is possible to map requirements onto TFM
functional features (Figure 5).

Mappings are specifyed using arrow predicates. An arrow predicate is a construct
borrowed from the universal categorical logic. Universal categorical (arrow diagram) logic
for computer science was explored in detail in Zinovy Diskin’s et al. work [8].

Knowledge
about the
system

Topological
Functioning

Model

Client’s
Requirements

Functional
Requirements
Specification

Use Case
Model

Conceptual
Model

trace to

in

co
nf

or
m

ity

w
ith

goal-based
identification

graph
transformation

The CIM level

Functional
characteristics
of the problem

domain

Characteristics of
the application at the
high level of
abstraction

Figure 5: Making functional requirements in conformity with the TFM

A B

 A1 ... Ai

 ...

AnB

[cov]
f1 fi

fn

 A1 ... Ai ...

AnB

[disj] A Bi

 A

 B1 ... Bn

f1 fn
[1-1]

a) b) c) d) e)

Figure 6: Functional requirements mapping onto TFM functional features

Within TFMfMDA, five types of mappings together with corresponding arrow pred-
icates are defined. One to One. Inclusion predicate (Figure 6a) is used if the re-
quirement A completely specifies what will be implemented in accordance with the func-
tional feature B. Many to One. Covering predicate (Figure 6b) is used if the require-
ments A1, A2, . . . , An overlap the specification of what will be implemented in accordance
with the functional feature B. In case of the covering requirements, their specification
should be precised. Disjoint (component) predicate (Figure 6c) is used if the requirements
A1, A2, . . . , An together completely specify the functional feature B and do not overlap
each other. One to Many. Projection (Figure 6d) is used if some part of the func-
tional requirement A incompletely specifies the functional feature Bi. Separating family of
functions (Figure 6e) is used if one requirement A completely specifies several functional
features B1, . . . , Bn. It can be because: a) the requirement joins several ones and can be
split up, or b) the functional features are more detailed than the requirement. One to

36 Janis Osis, Erika Asnina, Andrejs Grave

Zero. One requirement specifies new or undefined functionality. In this particular case
it is necessary to define possible changes of the problem domain’s functioning (see Figure
4 ”Information about changes”). Zero to One. The requirements specification does not
contain any requirement related to the defined functional feature. This means that it can
be a missed requirement and, hence, it could be not implemented in the application. Thus,
it is mandatory to take a decision about implementation of the discovered functionality
together with the client.

The result of this activity are both verified requirements and the TFM, which describes
needed (and possible) functionality of the system and its environment.

4.3 Construction of the Use Case Model

The next step is transition from the model of the problem world constrained by the
requirements to the use case model, supporting the possibility of more formal tracing of
requirements to use cases (Figure 7).

Knowledge
about the
system

Topological
Functioning

Model

Client’s
Requirements

Functional
Requirements
Specification

Use Case
Model

Conceptual
Model

trace to

in
 c

on
fo

rm
ity

w

ith

goal-based
identification

graph
transformation

The CIM level

Functional
characteristics
of the problem

domain

Characteristics of
the application at the
high level of
abstraction

Figure 7: Construction of the use case model within TFMfMDA

This activity includes the following steps: a) Identification of system’s users and their
goals, b) Identification and refinement of system use cases, and c) Prioritization of use
cases (and requirements).

Identification of system’s users and their goals. At this stage, the TFM repre-
sents functionality of the problem world constrained by the requirements. System’s users
can be those, who interacts within the business system (workers) and with the business
system (actors). Actors are external companies, clients, etc. Workers are system’s inner
entities (humans, roles, etc.) Identification of system users’ direct goals is related to the
identification of the corresponding set of functional features that are necessary for satis-
faction of these goals. A goal as a means for identification of use case has been chosen
because it can be achieved performing some process that can be long running. The time
gap cannot do this. For each goal, an input functional feature (input transaction), an
output functional feature (output transaction), and a functional feature chain between
them can be defined. Both actors and workers can be users of the application. Identifica-
tion of system-scope goals helps in verifying additional requirements, e.g., for discovering
”missing” requirements.

Computation Independent Representation of the Problem Domain in MDA 37

Identification and refinement of system use cases. Functional features mapped
by functional requirements that are grouped together by a goal describe functionality
necessary for achievement of this goal, and, hence, describe a system-scope use
case. System’s users that establish the goal are (UML) actors that communicates with
such use cases. This principle enables formal identification of a use case model from the
TFM. However, this principle provides also additional possibilities for refinement of the
system use cases. An inclusion use case is some common sequence for several use cases. In
the TFM, it is an intersection of sets of functional features that belongs to more than one
system goals. Each common functional feature must be analyzed. The common functional
feature in the main flow of a use case is a candidate to an inclusion use case. An extension
use case shows an alternative way of the scenarios execution. In the TFM, it is functional
features in a sub-cycle or a branch, existing within the system goal. The point of branch
beginning is an extending point. Identified use cases can be represented in UML Activity
Diagram by transforming functional features into diagram’s activities, and cause-effect
relations into diagram’s control flows.

Prioritization of use cases. Prioritization of use cases and, thus, functional re-
quirements can be done in accordance with client’s desires or using requirements attribute
systems, e.g. MoSCoW or GRASP [2]. Within TFMfMDA, priorities of implementation
of use cases are defined in conformity with the TFM main cycle as follows (in accordance
with the Rational Unified Process): a) critical (must be implemented otherwise the appli-
cation will not be acceptable) - if a use case implements any functional feature that belongs
to the main functional cycle; b) important (it would significantly affect the usability of the
application) - if a use case implements any functional feature that is a cause or an effect
of a functional feature that belongs to the main cycle; and c) useful (it has a low impact
on the acceptability of the application) - if a use case does not implement any functional
feature of the main cycle or functional feature that affects or is affected by a functional
feature that belongs to the main cycle.

4.4 Construction of the Conceptual Model

The last step of TFMfMDA is identification of the conceptual model. After requirements
mapping, the TFM represents functionality that must be implemented in the application,
and includes all concepts that are necessary for proper system’s functioning (Figure 8a).

In order to obtain a conceptual model, it is necessary to detail each TFM functional
feature to the level when it describes only objects of one type. This more precise model
must be transformed one-to-one into a graph of domain objects. Then vertices with objects
of the same type must be merged keeping all cause-effect relationships to graph vertices,
which contain objects of other types (this is illustrated by the example in Section 5). The
result is a graph of domain objects with indirect associations (Figure 8b). In order to
make these relations more precise, the graph can be transformed into a sketch [8], then
refined, and represented as a refined conceptual model. This transformation also indicates
possible inheritance relations among types, and common operations, which can further be
transformed into use case interfaces.

38 Janis Osis, Erika Asnina, Andrejs Grave

Re
fin
e

A
bs
tra
ct

1-1

Topological
functioning model

Refined topological
functioning model

Graph of
domain objects

Conceptual
Model

b)

Knowledge
about the

system

Topological
Functioning

Model

Client’s
Requirements

Functional
Requirements
Specification

Use Case
Model

Conceptual
Model

trace to

goal-based
identification

graph transformation
The CIM level

a)

Functional
characteristics
of the problem

domain

Characteristics
of the application at
the high level
of abstraction

in

co
nf

or
m

ity

w
ith

Figure 8: The step (a) and the process (b) of construction of the conceptual model

5 An Example of Application

This section gives an example of apllying TFMfMDA. Let us consider the small fragment
of an informal description of the system from the project, within which the application for
a library was developed. In this fragment, nouns are denoted by italic, verbs are denoted
by bold, and action pre- (or post-) conditions are underlined.

”When an unregistered person arrives, the librarian creates a new reader account
and a reader card. The librarian gives out the card to the reader. When the reader completes
the request for a book , hi gives it to the librarian. The librarian checks out the re-
quested book from a book fund to a reader, if the book copy is available in a book fund.
When the reader returns the book copy , the librarian takes it back and returns the
book to the book fund. He imposes the fine if the term of the loan is exceeded, the book is lost,
or is damaged. When the reader pays the fine, the librarian closes the fine. If the book
copy is hardly damaged, the librarian completes the statement of utilization, and sends
the book copy to the Utilizer.”

Construction of the TFM. The identified objects (or concepts) are the following:
a) inner objects are a librarian (L), a book copy (a synonym is a book), a reader account,
a reader card, a request for a book, a fine, a loan term, a statement of utilization, book
fund, and b) external objects are a person (P), a reader (R), and an utilizer (U).

The identified functional features are represented as ¡number: a description of the
functional feature, a precondition, a repsonsible entity and subordination¿, where ”In”
denotes ”inner”, and ”Ex” denotes ”external” subordination. They are the following: 1:
Arriving a person, {}, P, Ex; 2: Creating a reader account, {unergistered person}, L, In;
3: Creating a reader card, {}, L, In; 4: Giving out the reader card to a reader, {}, L, In;
5: Getting a reader status, {}, R, Ex; 6: Completing a request for a book, {}, R, In; 7:
Sending a request for a book, {}, L, In; 8: Checking out the book copy from a book fund,
{}, L, In; 9: Checking out the book copy to a reader, {completed request AND book copy
is available}, L, In; 10: Giving out a book copy, {}, L, In; 11: Getting a book copy, {},
R, Ex; 12: Returning a book copy, {}, R, Ex; 13: Tacking back a book copy, {}, L, In;
14: Checking the term of loan of a book copy, {}, L, In; 15: Evaluating the condition of
a book copy, {}, L, In; 16: Imposing a fine, {the loan term is exceeded OR the lost book

Computation Independent Representation of the Problem Domain in MDA 39

OR the damaged book}, L, In; 17: Returning the book copy to a book fund, {}, L, In; 18:
Paying a fine, {imposed fine}, R, In; 19: Closing a fine, {paid fine}, L, In; 20: Completing
a statement of utilization, {hardly damaged book copy}, L, In; 21: Sending the book copy
to Utilizer, {}, L, In; 22: Utilizing a book copy, {}, U, Ex.

In order to define system’s functionality - the set X, we perform the closuring operation
over the set of system’s inner functional features N = {2, 3, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 19, 20}. The set of external functional features and system’s functional
features that affect the external systems M = {1, 4, 5, 18, 21, 22}. The neighborhood
of each element of the set N is as follows: X2 = {2, 3}, X3 = {3, 4}, X6 = {6, 7},
X7 = {7, 17}, X8 = {8, 9}, X9 = {9, 10}, X10 = {10, 11}, X11 = {11, 5}, X12 = {12, 13},
X13 = {13, 14}, X14 = {14, 15, 16}, X15 = {15, 16, 17, 20}, X16 = {16, 19}, X17 = {17, 8},
X19 = {19}, X20 = {20, 21}. The obtained set is X ={2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 19, 20, 21}.

The identified cause-effect relations between the functional features are illustrated in
Figure 9a. The main functional cycle is defined by an expert and includes the following
functional features ”17-8-9-10-11-5-12-13-14-15-17”. It is denoted by bold lines in Figure
9a. These functional features describe checking out and taking back a book. They are
assumed to be main, because have a major impact on business system’s operation. The
example of the first order subcycle is ”5-6-7-17-8-9-10-11-5”.

Functional requirements conformity to the TFM. Let us assume that the drafted
functional requirements (FR) are as follows. FR1: The system shall perform registration
of a new reader; FR2: The system shall perform check out of a book copy; FR3: The
system shall perform check in of a book copy; FR4: The system shall perform imposing of
a fine to a reader; and FR5: The system shall perform handling of an unsatisfied request
(the description: the unsatisfied request should be added to the wait list; when a book
copy is returned to the book fund, the system checks what request can be satisfied and,
in success, informs the readers by SMS).

FR1 maps onto the functional features 2, 3, and 4, i.e. FR1={2, 3, 4}; FR2={7, 8,
9}, FR3={13, 14, 15, 17}, FR4={16}. The functional requirement FR5 describes new
functionality that must be implemented in the application and introduced in the business
activities of the system. System’s functionality described in the TFM by the functional
features 18, 19, 20, and 21 is not specified by requirements. This means that more careful
analysis of the requirements and problem world is needed, because they can be missed. The
better way in this situation is to specify these features in the requirements specification
(and as use cases). The final decision must be taken together with the client that is
warned beforehand about possible negative aftereffects. In this context, the interesting
one is the functional feature 19, which describes closing of an imposed fine. It should
be implemented. Therefore, FR4 is modified as ”The system shall perform imposing and
closing of a fine to a reader”. Hence, FR4={16, 19}.

The new functionality introduced by FR5 can be described by new identified objects
(the system, a wait list and SMS), and the following functional features - 23: Adding
the request for a book in a wait list, {unavailable book}, L, In; 24: Checking the re-
quest for a book in a wait list, {a book copy is returned to the book fund}, system, In;

40 Janis Osis, Erika Asnina, Andrejs Grave

2425 23

11

22

20

21 16

19

15

18
13

14
12

9
7

8

6

1 2 3 4 5

10

1711

22

2021

16

19

15

18 13

14

12

9

7

8

6

1 2 3 4 5

10

17

a) b)

26

FR1

2

FR2 FR3 FR4 FR5

3 4 7 98 1514 17 16 19 23 24 25

[1-1] [1-1][1-1] [1-1] [1-1]

13 26

c)

Figure 9: The topological space (a) and the modified topological space (b) of the library
functioning; the correspondence between requirements and TFM functional features (c)

25: Informing the reader by SMS, {a request in the wait list can be satisfied}, system, In;
26: Avoiding a request for a book, {book copy is not available}, system, In.

Introducing this functionality into the TFM, we must recheck all the existing cause-
effect relations between the previously identified functional features taking into account
possible changes in causes and effects. The set N = {2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 19, 20, 23, 24}. The set M = {1, 4, 5, 18, 21, 22, 25, 26}. After the closuring,
the set X = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23, 24, 25,
26}. The result is the model represented in Figure 9b. The final correspondence between
the functional features and requirements is illustrated in Figure 9c. All the identified
mappings of the requirements onto the functional features have the type ”one-to-many”.

Construction of the use case model. In order to define use cases, system’s users
and their goals together with necessary functional features are identified. System’s users
(Librarian, and System) are transformed into UML actors, goal names into use case names,
and functional features into steps of the corresponding use cases. The resulting use case
model, functional features to be implemented, and implementation priorities of use cases
defined accordingly to TFM functioning cycles are illustrated in Figure 10a. Figure 10b
shows how two of the use cases can be described in UML Activity Diagram using in-
formation from the TFM, where functional features are transformed into activities, but
cause-effect relations into control flows.

Construction of the conceptual model. The step of the TFM refinement is
skipped, because each functional feature takes a deal with objects of the only one type.
Figure 11 shows transformation of the TFM to the graph of domain objects. Additionally,
Figure 12a reflects this graph after the gluing all graph vertices that represent functional
features with objects of the same types. This reflects the idea proposed in [20, 21, 22]
that the holistic representation of the domain by means of the TFM enables identifying

Computation Independent Representation of the Problem Domain in MDA 41

of all necessary domain concepts, and, even, enables defining their necessity for successful
implementation of the system.

Important

Register a reader

Close a fine

Check out a book

Librarian

Impose a fine

System

Return a book

<<extend>>

Inform of available book

<<extend>>

Critical

Important

ImportantImportant

Critical

a)

{7, 8, 9, 23, 26}

{13, 14, 15, 17}

{24, 25}

{16}{19}

{2, 3, 4}

Take back a
book copy

Check the term of loan of
a book copy

Evaluate the condition
of a book copy

Impose a
fine

Return the book
copy to a book fund

[the loan term is exceeded]

[lost book OR damaged book]

16
15

13

14

17

b)

The fragment
of the TFM

Figure 10: The use case model (a), and the fragment of the TFM described in UML Activity
Diagram that specifies functionality of use cases ”Return a book” and ”Impose a fine” (b)

:request
for a book

:wait list

:SMS

:wait list

:statement
of

utilization

:utilizer :fine

:fine

:book
copy

:book
copy

:book
copy

:book
copy

:request
for a book

:book
fund

:request
for a book

:reader
account

:reader
card :reader

:book
copy

:book
fund

:reader

:book
copy

:book
copy

Figure 11: The graph of types of domain objects

6 MOF-based Metamodel of TFMfMDA

In compliance with [1], the Foundation Model of MDA requires that a metamodel of each
modeling language used within MDA must be defined in Meta Object Facility (MOF)
terms for conformance purposes. Therefore, a metamodel of TFMfMDA concepts was
defined as well as an UML profile for TFMfMDA [4].

The MOF is a core standard of MDA. Its architecture has four metalevels. They are
named M3, M2, M1 and M0 [12]. Conceptually the level M3 is the MOF itself, i.e. a set
of constructs used to define metamodels. M2 describes instances of constructs from M3.

42 Janis Osis, Erika Asnina, Andrejs Grave

MOF Model
(meta-metamodel)

TFMfMDA metamodel(metamodels)

Topological functioning model(models)

Functioning description(data)
(real world information)

M3

M2

M1

M0
a)

Reader Account

SMS

Wait List

1
0..n

1
0..n

Fine

Reader
Card

1
1 11

Request
For Book

Utilizer

Book Fund1
0..1

1
0..1

0..n1 0..n1

10..n 10..n

Reader
11 11

0..n1 0..n1

Statement Of
Utilization

0..n0..n 0..n0..n

0..n

1

0..n

1

Book Copy

0..n

1

0..n

1

0..n
0..n

0..n
0..n

0..1

0..1

0..1

0..1

a) b)

Figure 12: The initial conceptual model (a), TFMfMDA at the MOF metalevels (b)

M1 includes instances of metamodel constructs from M2. Finally, the level M0 describes
objects and data that are instances of elements from M1. TFMfMDA constructs are
made in conformity with these metalevels as illustrated in Figure 12b. The metamodel for
TFMfMDA is described at the level M2 [22]. These metamodel illustrated in Figure 13
specifies how TFMfMDA concepts related to each other.

TFMBusinessActor TFMBusinessWorker

Subordination
inner
external

<<enumeration>>Benefi t
critical
important
useful

<<enumerat ion>>

TFMUserSystemGoal
<<stereotype>>

TFMUserBusi
nessGoal

0..n

1

+theRealization
0..n

+theContext
1

TFMFunctionalRequirement
code : String
content : String
benefit : Benefit

TFMUserRole
name : String
isWorker : Boolean

TFMCorrespondence
isComplete : Boolean
isOverlapping : Boolean

0..n 0..n

+theSource

0..n

+theFunctionalRequirement

0..n

TFMUserGoal
label : String
name : String
input : TFMFunctionalFeature
output : TFMFunctional Feature
benefit : Benefit

1..n
+theUserGoal

1..n

+establisher

TFMCycle
order : UnlimitedNatural
isMain : Boolean = false

0..1
+theBenefit
0..1

TFMFunctionalFeature
label : String
name : String
subordination : Subordination
/ isImplemented : Boolean
precond : String

0..n 0..n
+/theEffect

0..n

{must have at least one cause}

+/theCause0..n {must have at least one effect}
0..n

0..n

+theFunctionalFeature
0..n

+theTarget
0..n

2..*

+owner

+theNode
2..*

1..n+owner

+theAction

1..n

TFMFunctionalFeatureSet
<<stereotype>>

0..1+owned element0..1

+owner

n

n

+/superset
n

{union, subset owner}

+/subset
n

{union, subset owned element}

TFMTopologicalFunctioningModel

drawDigraph()
checkCycleStructure()
checkConnectedness()

1..n +owner

+theCycle
1..n

2..n

+owner

+theNode
2..n

nn

Figure 13: The MOF-based metamodel of TFMfMDA

A topological functioning model is an instance of the type TFMTopologicalFunction-
ingModel that includes at least two functional features of the type TFMFunctionalFeature.
They can be united in functional feature sets (TFMFunctionalFeatureSet). This means
that a functional feature represented in the TFM can visualize a functional feature set.
One functional feature can contain only one set and one functional feature can belong
only to the one set. A functional feature can be subordinated to a business system it-
self or to an external system (Subordination). Functional features can form functioning

Computation Independent Representation of the Problem Domain in MDA 43

cycles (TFMCycle) of different order. Functional features are connected by cause-effect
relations. A causal functional feature must have at least one effect. An effect functional
feature must have at list one cause. Functional features are mapped by functional require-
ments (TFMFunctionalRequirement) via the correspondence (TFMCorrespondance). The
correspondence is many to many in general. It can be complete or incomplete, overlapping
or disjoint. Functional features can be associated with several goals (TFMUserGoal) that
are established by direct users (TFMUserRole) of the business system. The users can
be external entities that interact with the business system (TFMBusinessActor) or work-
ers that interact within the business system (TFMBusinessWorker). A user goal can be
specialized to a business goal (TFMUserBusinessGoal) and to a system goal (TFMUser-
SystemGoal). The latter includes functional features to be implemented. This means that
it includes functionality that is specified in the functional requirements specification. A
user goal and, thus, corresponding functional requirements, are associated with functioning
cycles, whose order affect a benefit value (Benefit) of implementing requirements.

7 Requirements to the Tool to Support TFMfMDA

As previously mentioned, TFMfMDA introduces certain formalism into the problem do-
main modeling from the computation independent viewpoint. Unfortunately, a use of
complex graph-based constructs requires additional efforts. Therefore, the main purpose
of the TFMfMDA tool is model management, which relates to model verification, traceabil-
ity handling, automation of TFMfMDA steps, etc. This section discusses the requirements
to the tool for TFMfMDA support.

System
description

IV V VI

Tool for TFM transformations
(Eclipse plugin)

Topological
model,

Functional
requirements

Topological
Model, Goals

Topological
Model

Use case
Model

Topological
Model

Conceptual
class model

Verification of
functional

requirements,
enhancing of
Topological

model
Use case model

verification

Verification of
conceptual
class model

Export XMI
DocumentsUse case

model
UML class
diagram

Verification of

Verification of

Figure 14: The general scheme of the tool supporting TFMfMDA

44 Janis Osis, Erika Asnina, Andrejs Grave

The tool should support the client-server architecture. In case of the client-server
architecture, the server should keep information of models; the client part should enable
the connection with the server and use of the kept information. The tool should be realized
as an Eclipse plug-in [9]. Eclipse is an open development platform that consists of different
components, which helps in developing Integrated Development Environments (IDEs). For
implementation of the tool the following Eclipse components can be used: Workbench UI,
Help system, and Plug-in Development Environment (PDE). The Workbench UI is a
component that is responsible for plug-in integration with Eclipse User Interface (UI). It
defines extension points, using which a plug-in can communicate with the Eclipse UI. Help
System is a component that provides complete integration of help information into the
Eclipse help system. PDE is the environment that enables automation of activities related
to the plug-in development.

The tool should enable work with textual information (an informal description of the
system, a description of functional requirements) and graph-based constructs (a TFM, a
conceptual model, and a use case model). All changes must be propagated automatically
to all the related models. A general scheme of tool’s activities is illustrated in Figure
14. The scheme describes TFMfMDA steps considered above in this paper. The first
three steps reflects construction of the TFM. The fourth step reflects check of functional
requirements and activities of enhancing the TFM. The fifth step illustrates creation of
the use case model. Additionally, the sixth step shows composing of the conceptual model.

System
description

Natural language processing server

Knowledge base

Part-of-
speech
tagger

Noun
chunker

Functional
features

recognizer
Text

Nouns,
Noun

phrases,
Functional
features

System objects,
functional
features

System description
Text with highlighted
nouns, noun phrases,

functional features

Tool for contructing TFM
(Eclipse plugin)

Figure 15: Handling the informal description of the system

The challenge is realization of work with informal descriptions (Figure 15). The infor-
mal text should be handled on the server side because of several causes, namely, using of
the knowledge base, the multi-user environment, and ”learning” possibilities of the tool.
The server side should support detection of nouns, noun phrases, and verbs. The detected
information should be sent to the client side in XML file form. On the client side, it can
be highlighted to the user in different ways (different colors, fonts, etc.). The tool must
provide convenient interface for handling this information and creating TFM functional
features.

Introduction of the topology between TFM functional features should be realized as a
mix of graphical and textual representations of the functional features. The tool should
offer a user to union or split up functional features, and to define cause-effect relations
among them using tabular representations, but the result should be also represented in
the graph form.

Computation Independent Representation of the Problem Domain in MDA 45

The TFMfMDA tool must provide a separate editor for each step. Each editor should
have related views that help to represent information actual in this step for a user. All
automated steps that require human participation should be realized as wizards.

8 Conclusions

The paper discusses about TFMfMDA and its application to certain formalism introducing
in the process of creation of the CIM. TFMfMDA specifies complex systems using graph
constructs and their transformations. Note that formal transformations of graphs are
not limited with the number of vertices in graphs. The number of graph vertices can be
decreased using formal abstraction of the graph. The primary goal of TFMfMDA is to
specify functionality of the system in the problem domain. Certainly, the careful modeling
of the problem domain requires additional expenses, but further it will be worthwhile,
because it gives the formal CIM, decreases further expenses as decrease the number of
development iterations, and facilitates change implementation.

TFMfMDA application has the following advantages. First, careful cycle analysis can
help in identifying all (possible at that moment) functional and causal relations between
objects in complex business systems. Implementation priorities of requirements can be set
not only in accordance with client’s whishes, but also in accordance with functioning cycles
of the TFM. The latter makes it possible to take a decision about change acceptability in
functionality of the problem domain before implementation of the changes in the appli-
cation, and helps to check completeness of functional requirements. Second, TFMfMDA
solves some use case limitations using formal mathematical means, e.g., it provides use
case completeness, avoids conflicts among use cases, and shows their affect on each other.
Besides that it does not limit a use of any requirements gathering techniques.

The tool built accordingly to the requirements would partially automate TFMfMDA
steps described above. However, TFMfMDA requires human participation, thus, the fur-
ther research is related to enhancing TFMfMDA with capabilities of natural language
handling in order to make it possible to automate more steps of TFMfMDA and to de-
crease effect of human participation in decision making.

References

[1] A proposal for an MDA foundation model. ORMSC White Paper ormsc/05-04-01, OMG,
www.omg.org/docs/ormsc/05-04-01.pdf, Apr 2005. V00-02.

[2] J. Arlow and I. Neustadt. UML2 and the Unified Process: Practical Object-Oriented Analysis
and Design. Addison-Wesley, Pearson Education, second edition, 2005.

[3] E. Asnina. Formalization aspects of problem domain modeling within model driven architec-
ture. In O. Vasilecas, editor, Databases and Information Systems. 7th International Baltic
Conference on Databases and Information Systems. Communications, Materials of Doctoral
Consortium, pages 93–104, Vilnius, Lithuania, 2006. Vilnius Gediminas Technical University,
Technika.

[4] E. Asnina. Formalization of Problem Domain Modeling within Model Driven Architecture.
PhD thesis, Riga Technical University, RTU Publishing House, Riga, Latvia, 2006.

46 Janis Osis, Erika Asnina, Andrejs Grave

[5] W. F. Basener. Topology and Its Applications. John Wiley and Sons, Inc., New Jersey, USA,
2006. p. 339.

[6] A. Cockburn. Structuring use cases with goals. http://alistair.cockburn.us/crystal/articles/sucwg/.

[7] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements acquisition. The
Science of Computer Programming, 20(November):3–50, 1993.

[8] Z. Diskin, B. Kadish, F. Piessens, and M. Johnson. Universal arrow foundations for visual
modeling. In Proc. Diagramms’2000: 1st Int. Conference on the theory and application of
diagrams, pages 345–360. Springer LNAI, 2000. No. 1889.

[9] Eclipse. Eclipse - an open development platform. http://www.eclipse.org.

[10] S. Ferg. What’s wrong with use cases? http://www.ferg.org/papers/, Feb 2003.

[11] D. Firesmith. Use cases: the pros and cons. http://www.ksc.com/article7.htm.

[12] D. Frankel. Model Driven Architecture : Applying MDA to Enterprise Computing. Wiley
Publishing, Inc., Indiana, 2003.

[13] T. Gorschek and C. Wohlin. Requirements abstraction model. Requirements Engineering,
11:79–101, 2006.

[14] M. Jackson. The real world. http://www.ferg.org/papers/, Jul 2003.

[15] M. Jackson. Problem frames and software engineering. Information and Software Technology,
47(November):903–912, 2005.

[16] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard. Object-Oriented Software Engi-
neering: A Use Case Driven Approach. Addison-Wesley, 1992.

[17] C. Larman. Applying UML and Patterns: An Introduction to Object-Oriented Analysis and
Design and Iterative Development. Prentice Hall PTR, 3rd edition, 2005.

[18] D. Leffingwell and D. Widrig. Managing Software Requirements: a use case approach.
Addison-Wesley, 2nd edition, 2003.

[19] OMG, http://www.omg.org/. MDA Guide Version 1.0.1, Jun 2003.

[20] J. Osis. Extension of software development process for mechatronic and embedded systems.
In Proceeding of the 32nd International Conference on Computer and Industrial Engineering,
pages 305–310. University of Limerick, Limerick, Ireland, Aug 2003.

[21] J. Osis. Software development with topological model in the framework of MDA . In Pro-
ceedings of the 9th CaiSE/IFIP8.1/EUNO International Workshop on Evaluation of Mod-
eling Methods in Systems Analysis and Design (EMMSAD’2004) in connection with the
CaiSE’2004, Vol. 1, pages 211–220, Riga, Latvia, 2004. Riga Technical University, RTU.

[22] J. Osis. Formal computation independent model within the MDA life cycle. In International
Transactions on Systems Science and Applications, pages 159–166. Xiaglow Institute Ltd,
Glasgow, UK, 2006. ISSN 1751-1461, V. 1, Nr. 2.

[23] H. Podeswa. UML for the IT Business Analyst: A practical Guide to Object-Oriented Re-
quirements Gathering. Thomson Course Technology PTR, Boston, 2005.

[24] E. S. Yu. Towards modelling and reasoning support for early-phase requirements engineer-
ing. In International Symposium on Requirements Engineering, pages 226–235, Annapolis,
Maryland, 1997.

	Introduction
	Related Work
	Construction of the CIM within MDA
	Topological Functioning Modeling for MDA
	Construction of the Topological Functioning Model
	Functional Requirements Conformity to the TFM
	Construction of the Use Case Model
	Construction of the Conceptual Model

	An Example of Application
	MOF-based Metamodel of TFMfMDA
	Requirements to the Tool to Support TFMfMDA
	Conclusions

