
e-Informatica Software Engineering Journal, Volume 3, Issue 1, 2009

Bi-dimensional Composition with
Domain Specific Languages

Anca Daniela Ionita∗, Jacky Estublier∗∗, Thomas Leveque∗∗, Tam Nguyen∗∗
∗University Politehnica of Bucharest, Automatic Control and Computers Faculty

∗∗LIG-IMAG, Grenoble, France
Anca.Ionita@mag.pub.ro, Jacky.Estublier@imag.fr, Thomas.Leveque@imag.fr,

Tam.Nguyen@imag.fr

Abstract
The paper presents how domain modeling may leverage the hierarchical composition, supporting
two orthogonal mechanisms (vertical and horizontal) for composing completely autonomous parts.
The vertical mechanism is in charge of coordinating heterogeneous components, tools or services
at a high level of abstraction, by hiding the technical details. The result of such a composition
is called “domain” and represents a high granularity unit of reuse, which may be easily devel-
oped in Mélusine framework. A domain is characterised by a Domain Specific Language (DSL)
and applications in that domain are defined by models executed by the DSL interpreter. Most
often, this is significantly simpler than writing a program using a general purpose language.
Unfortunately, DSLs have a narrow scope, while real world applications usually span over many
domains, raising the issue of domain (and DSL) composition. To overcome this problem, the
horizontal mechanism composes domains at the level of their DSLs, even if they have been in-
dependently designed and implemented. The paper presents a model and metamodel perspective
of the Mélusine bi-dimensional composition, assisted and automated with the Codèle tool, which
allows specification at a high level of abstraction, followed by Java and AspectJ code generation.

1. Introduction

In the widely adopted Component Based Soft-
ware Engineering (CBSE) approach, compo-
nents know each other, must have compatible
interfaces and must comply with the constraints
of the same component model, which reduces
the likelihood of reusing components, and there-
fore the capability to obtain a large variety of
assemblies. Therefore, alternative composition
mechanisms have to be explored, such as to pre-
serve the CBSE advantages (coming from hiding
the internal structure and reusing components
without any change) but to relax the rigidity of
the composition constraints:
– The components or, generally speaking, the

parts, should ignore each other, such that

they could have been designed and developed
independently, i.e. they do not call each other;

– Composed parts should be of any nature (ad
hoc, legacy, COTS, local or distant);

– Parts should be allowed to be heterogeneous
i.e. they do not need to follow a particular
model (component model, service etc.);

– Parts should be reused without having to per-
form any change in their code.
The bi-dimensional composition mechanism

presented here is intended to be a solution for
such situations. The idea is to obtain compos-
able elements that are not traditional compo-
nents, but much larger units, called domains,
which do not expose simple interfaces, but do-
main models, representing DSLs for specifying
the application models.



28 Anca Daniela Ionita, Jacky Estublier, Thomas Leveque, Tam Nguyen

One of the important problems to be solved
was related to the heterogeneity of components,
tools or services that have to be reused. A pos-
sible solution was to imagine that the part to
be composed is wrapped into a “composable el-
ement” [22]. There was also a need to define
a composition mechanism that is not based on
the traditional method call, for composing parts
that ignore each other, and therefore do not
call each other. The publish/subscribe mecha-
nism [2] was an interesting candidate, since the
component that sends events ignores who (if
any) is interested in that event, but the receiver
knows and must declare what it is interested in.
If other events, in other topics, are sent, the re-
ceiver code has to be changed. Moreover, the
approach works fine only if the sender is an ac-
tive component. A more appropriate solution for
our requirements could be given by Aspect Ori-
ented Software Development (AOSD) [18], [13],
which eliminates some of the constraints above,
since the sender (the main program) ignores and
does not call the receiver (the aspects). Unfor-
tunately, the aspect knows the internals of the
main program, which defeats the encapsulation
principle [8] and aspects are defined at a low
level of abstraction (the code) [12], [24].

In our approach, heterogeneity is dealt with
by coordinating components, tools or services
from a higher abstraction level; this is what
we call vertical composition and is attained by
defining a domain DSL, which can natively spec-
ify entities specific to the domain and natively
grasp the semantics (behaviour) of these entities
within its interpreter; therefore, defining an ap-
plication in the domain turns out to be the sim-
ple definition of a model in the DSL language. As
usual, each domain is well instrumented with ed-
itors, interpreters, debuggers, analyzers, whose
development is rather expensive, even with the
help of the recent environments. Maybe more
important, the practitioners acquire expertise in
using these languages and benefit from a large
set of existing models, which constitute a part
of the company assets. Therefore, a large scale
reuse of these domains is essential for the ap-
plicability of such an approach and is promoted
through rich DSL semantics. Unfortunately, the

richer the semantics embedded in the DSL, the
simpler the models, but the narrower the lan-
guage scope. In this context, the main draw-
back of DSLs comes out from the fact that most
real life applications usually crosscut several do-
mains, but they cannot be simply described by
selecting a set of independent domain specific
models, each one describing how the application
behaves inside each covered domain.

Consequently there is also a need to compose
domains; this is what we call horizontal compo-
sition and is not based on calling component
interfaces, but on composing domain DSLs and
models. In contrast to method call, model com-
position does not impose that models stick to
common interfaces, or know each other, because
one can either merge or relate independent con-
cepts. Moreover, model composition allows the
definition of variability points [17], which makes
the mechanism more flexible than component
composition.

For building applications spanning different
domains, the challenge is to reuse the domain
tools, the existing models and the practitioner’s
expertise and know-how; this is far from trivial
and is not possible if one creates a new language
for the composite domain. As discussed above,
for obtaining a non-invasive method, a possibil-
ity is to adopt an implementation based on AOP
(Aspect Oriented Programming); the composed
domains and their models are totally unchanged
and the new code is isolated with the help of
aspects. However, since the AOP technique is
at code level, performing domain composition
has proved to be very difficult in practice; the
conceptual complexity is increased, due to the
necessity to deal with many technical details.
This problem has been treated in many research
works. The elevation of crosscutting modeling
concerns to first-class constructs has been done
in having [15], by generating weavers from do-
main specific descriptions, using ECL, an exten-
sion of OCL (Object Constraint Language). An-
other weaver constructed with domain model-
ing concepts is presented in [16], while [25] dis-
cusses mappings from a design-level language,
Theme/UML, to an implementation-level lan-
guage, AspectJ. Our solution is to clearly sep-



Bi-dimensional Composition with Domain Specific Languages 29

arate the specification of the composition from
its implementation, by designing at a high con-
ceptual level and then generating the code based
on aspects.

For managing the complexity in a user
friendly manner, the user defines the com-
position using wizards, for selecting among
pre-defined properties. Designers and program-
mers are assisted by the Mélusine engineering
environment for developing such autonomous
domains, for composing them and for creat-
ing applications based on them [22]. For fa-
cilitating an easier domain composition, by
generating Java and AspectJ code, Mélusine
was leveraged by Codèle, a tool that guides
the domain expert for performing the compo-
sition at the conceptual level, as opposed to
the programming level.

Chapter 2 describes the architecture and the
principles that stand behind the creation of do-
mains driven by their DSLs and the composition
at a high level of abstraction. Chapter 3 presents
the metamodels that allow code generation for
vertical and horizontal composition. Chapter 4
introduces some details related to the imple-
mentation choices, including some mappings for
code generation. Chapter 5 compares the ap-
proach with other related works and evaluates
its usefulness in respect with the domain com-
positions performed before the availability of the
code generation facility offered by Codèle.

2. Bi-dimensional Composition
Based on DSLs

The alternative composition idea presented
above is to create units of reuse that are au-
tonomous (eliminating dependencies on the con-
text of use) and composable at an abstract
level (eliminating dependencies on the imple-
mentation techniques and details). The solu-
tion presented here combines two techniques
(see Fig. 1): building autonomous domains using
vertical composition and abstract composition
of domains using horizontal composition, per-
formed between the abstract concepts of inde-
pendent domains, without modifying their code.

2.1. Developing Autonomous Domains:
Vertical Composition

Developing a domain can be performed follow-
ing a top-down or a bottom-up approach. From
a top down perspective, the required function-
alities of the domain can be specified through a
model, irrespective of its underlying technology.
Then, one identifies the software artifacts (avail-
able or not) that will be used to implement the
expected functionality and make them interop-
erate. From a bottom up perspective, the de-
signer already knows the software artifacts that
may be used for the implementation and will
have to interoperate; therefore, the designer has
to identify the abstract concepts shared by these
software artifacts and how they are supposed
to be consistently managed. Finally, one defines
how to coordinate the software artifacts, based
on the behavior of the shared concepts.

Figure 1. Bi-dimensional composition mechanism

In both cases, the composition is called verti-
cal, because the real software components, ser-
vices or tools are driven based on a high level
model of the application. The model elements
are instances of the shared concepts, which are
abstractions of the actual software artifacts. The
synchronization between these software artifacts
and the model means that the evolution of the
model is transformed into actions performed by
the software artifacts.

The set of shared concepts and their con-
sistency constraints constitute a domain model,
to which the application model must conform
to. In the Model Driven Engineering (MDE) vo-
cabulary, the domain model is the metamodel,



30 Anca Daniela Ionita, Jacky Estublier, Thomas Leveque, Tam Nguyen

or a DSL for all the application models for that
domain [12].

The application models are interpreted by a
virtual machine, built according to the domain
DSL, which orchestrates the lower level services
or tools. The domain interpreter is realized by
Java classes that reify the shared concepts of the
domain model and whose methods implement
the behavior of these concepts. In many cases,
these methods are empty, because most, if not
all the behavior is actually delegated to other
software artifacts, with the help of aspect tech-
nology. Thus, the domain interpreter, also called
the domain virtual machine, separates the ab-
stract and conceptual part from the implemen-
tation, creating 3 layers architecture [12]. The
domains may be autonomously executed, they
do not have dependencies and they may be eas-
ily used for developing applications.

2.1.1. Domain Specific Languages in Mélusine

The domain specific languages defined in Mélu-
sine are rather small, covering a narrow domain
and typically, they are object oriented. As usual,
each language description contains two parts:
syntax and semantics. The abstract syntax (AS)
of the language contains the concepts and rules
necessary to define a valid model, while its Se-
mantic Domain (SD) is needed to provide the
meaning of the abstract syntax concepts. By
convention, the abstract syntax is defined by
a class diagram, while the Semantic Domain is
defined based on the methods pertaining to the
AS classes, plus some additional classes. The con-
crete syntax (CS) is provided by a specific editor.

The Product domain, one of our intensely
reused domains, is presented in the case study of
this paper. It was developed as a basic version-
ing system for various products, characterised
by a map of attributes, according to their type;
the versions are stored in a tree, consisting of
branches and revisions. The Product domain
DSL is shown in Fig. 2 and contains both AS
elements (light colored) and SD elements (dark
colored).

From a Language Engineering point of view,
this DSL is the definition of a language in which

models are written; from a Domain Modeling
point of view, it is a model of the application
domain [12]. Thus, the DSL is the symbiosis
of both views, since it is a language in which
models are written, but, being Domain Specific,
it contains the domain specific concepts, their
allowed relationships and their behaviors. The
DSL captures both the abstract syntax and the
semantic aspects and it has different purposes:
on one hand, it is used to develop models; on the
other hand it is used to develop the interpreter
and the editor of the domain and to compose do-
mains for enlarging their scope. These activities
involve an awareness of the concepts related to
the semantic domain, which is necessary, for in-
stance, for developing the interpreters, but also
for composing them, in order to be able to com-
pose domains.

Figure 2. DSL of Product domain

2.1.2. Domain Specific Models

For defining an application, one creates a model
that is going to be interpreted at run-time. Sup-
pose we use our Product domain to version the
software artefacts produced when developing an
application based on the J2EE architecture. A
Servlet in this application model conforms to the
ProductType concept from the Product DSL.

In practice, the models can be expressed in
several formalisms, and represented in a variety
of ways; indeed, models may be defined in UML,
or in Ecore, through generated editors (like in



Bi-dimensional Composition with Domain Specific Languages 31

most metamodeling environments), and stored
in different formats, currently XML based. We
have developed a number of filters, allowing one
to define models and metamodels in these dif-
ferent formalisms, using different environments
and editors. An example of editor for Product
domain is given in Fig. 3. However, since our
DSLs are written in Java, models always consist
in a set of Java objects at execution. Models, ex-
pressed in various formalisms, will be transpar-
ently converted to Java objects at the beginning
of interpretation phase. In most cases, when do-
mains are narrow enough, the complete models
semantics lies in the DSL. In this case, mod-
els are purely structural, and simple editors like
those generated by EMF are sufficient. This is
very important, because it allows non program-
mers to define executable models themselves. If
models require specific semantics, it has to be
described in Java.

Figure 3. Model editor for Product domain

2.2. Abstract Domain Composition:
Horizontal Composition

It may happen that the development of a new
application requires the cooperation of two con-
cepts, pertaining to two different domains, and
realized through two or more software compo-
nents, services or tools. In this case, the interop-
eration is performed through a horizontal com-
position between these abstract concepts, and
also through the domain virtual machines, ig-
noring the low level components, services and
tools used for the implementation. The mech-
anism consists in establishing relationships be-
tween concepts of the two DSLs and implement-
ing them using aspect technology, such as to

keep the composed domains unchanged. A very
strict definition of the horizontal relationship
properties is necessary, such as to be able to
generate most of the AOP code for implement-
ing them. This code belongs to the Composition
Virtual Machine and is separated from the vir-
tual machines of the composed domains.

This composition is called horizontal, be-
cause it is performed between parts situated at
the same level of abstraction. It can be seen as
a grey box approach, taking into account that
the only visible part of a domain is its DSL. It
is a non-invasive composition technique, because
the components and adapters are hidden and are
reused as they are. The composition result is a
new domain model and therefore, a new domain,
with its virtual machine, so that the process may
be iterated. As the domains are executable and
the composition is performed imperatively, its
result is immediately executable, even if situated
at a high level of abstraction.

Model composition is actually performed
by creating links between model elements (in-
stances of the DSL classes) so by instantiat-
ing the horizontal relationships defined at meta-
model level. The choices of links ends may be
made either automatically or manually (interac-
tive) with the help of the application designer.
Interactive selection is often used, since concepts
of existing models may not match to each other
perfectly (they may have different names, but
the same meaning or have the same name, but
behaviors that partially overlap) and no rule
can be defined for it. However, it may be a
tedious process, especially for composing large
models. In contrast, automatic selection can re-
lieve model designer from this burden and is
particularly appreciated when models are very
large. The default criterion for automatic selec-
tion can be based on name matching.

2.2.1. Horizontal Composition at Metamodel,
Model and Execution Levels

A real example of domain composition, realized
in our industrial applications, is illustrated in
Fig. 4. On the left, the Activity domain supports
workflow execution, while on the right, the Prod-



32 Anca Daniela Ionita, Jacky Estublier, Thomas Leveque, Tam Nguyen

uct domain is meant to store typed products and
their attributes. Each domain has a DSL (see the
metamodel level). The upper part shows the vis-
ible concepts (the abstract syntax, in light grey)
used for defining the models with appropriate
editors; the lower part (in dark grey) shows the
hidden classes, introduced for implementing the
interpreters (the virtual machines) and for hold-
ing the state of the models during the execution
process.

Figure 4. Composition of Activity
and Product domains

For each domain, a model is made by instanti-
ating the concepts found in the light colored part
of the domain DSL. At model level, on the left,
Figure 4 shows an Activity model, conforming to
itsDSL above. Thismodel describes a very simple
software development process, which only con-
tains one activity – Programming; the box Pro-
gramming is an instance of theActivityDefinition
concept. Labels on the activity connectors, like
spec or source are instances of the DataVariable
concept. These data variables correspond to in-
stances of DataType: Specification and Program
(not shown in this figure). Similarly, on the right
side of Figure 4, at model level, there is a Product

model, containing two instances of ProductType:
JMLSpecification and JavaFile.

TheActivity model in this example is made of
a simple activity, in which a developer john re-
ceives a software specification spec, realizes the
activity Programming and produces the source
code source. However, the developer john may
need to work on various revisions of his specifi-
cation or of his source, so the Activity domain
needs to be composed with the Product domain,
for adding the versioning facility. These two do-
mains (Activity andProduct) are related together
by horizontal relationships at metamodel level,
for example, a horizontal relationship is defined
between DataType and ProductType and another
one between Data and Revision. At model level,
a link relates the type of spec – Specification
(found in the Activity model) – to JMLSpecifi-
cation, instantiated from ProductType (found in
the Product model). Another link relates Pro-
gram (the type of source) to the JavaFile prod-
uct type. These two links conform to the relation-
ships defined between theDataType andProduct-
Type concepts. At execution level, a data from
the Activity model, for example DATA_0097 is
related to a revision from Product model, for ex-
ampleVERSION-0050 (seeFig. 4). This link con-
forms to the relationship between Data and Re-
vision, situated at metamodel level.

Even if in the example above there was
a clear correspondence between Specification
from Activity model and JMLSpecification from
Product Model, in practice, there may be several
instances of a metamodel concept on both sides,
as exemplified in Table 1. For creating the link
at model level, one has to choose among these
instances, such as to select a single one-to-one
correspondence.

3. Metamodels for the Bi-dimensional
Composition

3.1. Metamodel for the Vertical
Composition

The methods defined in a domain concept are in-
troduced for providing some behavior (see Fig. 5



Bi-dimensional Composition with Domain Specific Languages 33

Table 1. Different mappings of metamodel concepts on their instances at model level
(for application development in Java and PHP respectively)

Domain Product Activity
Metamodel ProductType DataType

Model

(Java) (PHP)
Use Case Document Use Case Document Requirement
JML Specification UML Specification Specification
Java File PHP File Program
URL Bugzilla Vision Project BugReport

for the correspondent metamodel elements). In
most cases, only a part (if any) of the behavior is
implemented inside the method itself, because,
most often, its functionality involves the execu-
tion of some tools. The notion of Feature has
been defined to provide the code that contains
one or more method interceptions and calls the
services that actually implement the expected
behavior of that methods. Additionally, a fea-
ture can implement a concern attached to that
method, like security or persistency, which can
be an optional behavior, as in product line ap-
proaches.

Figure 5. Metamodel for the vertical composition

For the vertical composition, the non-ho-
mogeneous units of reuse correspond to the
generic notion of Service (see Fig. 5). At instan-
tiation, they may correspond to components,
tools, COTS etc. In our Product domain, the
persistency service may be supplied either by
SQL storage, or by a repository of another ver-
sioning system, like Subversion or CVS; the
choice can be done by the client. For the ex-
ample from Figure 4, the method getProducts
of the class ProductType is empty and it is its
associated feature that delegates the call to a
database where actual products are stored. How-
ever, a feature is not related directly to services,
but through abstract services – an abstraction

for a set of functionalities defined in a Java in-
terface, which are ultimately executed by com-
ponents/tools representing the services (i.e. im-
plementing its methods).

More than one feature can be attached to
the same method and each feature can address
a different concern. The word feature is used in
the product line approach to express a possible
variability that may be attached to a concept.
Our approach is a combination of the product
line intention with the AOP implementation.

Moreover, the purpose is to aid software en-
gineers as much as possible, in the design and
development of such kind of applications. By
using the Codèle tool, which “knows” the meta-
model from Figure 5, the software engineer sim-
ply creates instances of its concepts (Behav-
ior, Interception, Feature, Service etc.) and the
tool generates the corresponding code in the
Eclipse framework. As well as all Mélusine DSLs,
Codèle metamodels are implemented with Java,
whereas AspectJ, its aspect-oriented extension,
is used for delegating the implementation to dif-
ferent tools and/or components (instances of the
Service concept).

3.2. Metamodel for the Horizontal
Composition

In other similar approaches, as in model collabo-
ration [26], AOP was mentioned as a possible so-
lution for implementing collaboration templates
in service oriented architectures (SOA), orches-
tration languages or coordination languages. As
our approach is based on establishing relation-
ships, it can also be compared to [1], where the
properties of AOP concepts are identified (e.g.
behavioral and structural cross-cutting advices,
static and dynamic weaving). Our intention is to



34 Anca Daniela Ionita, Jacky Estublier, Thomas Leveque, Tam Nguyen

Figure 6. Metamodel for the horizontal composition

identify such properties at a more abstract level,
such as aspects only constitute an implementa-
tion technique. The method we use for defining
and generating horizontal compositions between
domains is similar to transforming UML associ-
ations into Java [14], but using AOP, because
we are not allowed to change the domain code.

To provide an effective support for domain
composition, Mélusine requires a specific formal
definition and semantics. The metamodel from
Fig. 6 shows that domain composition relies on
Horizontal Relationship, made of connections.
A relationship not only represents a set of com-
munication links between instances, but also ex-
presses the interaction between them. The execu-
tion of an operation from an instance pertaining
to one side of the relationship has consequences
on the instances from the other side. In Codèle,
such a piece of interaction is called connection
and is established between a source concept, per-
taining to the source domain, and a destina-
tion concept in the target domain. First, a con-
nection performs the interception of the behav-

ior (method) pertaining to the source concept,
and then some computation, depending on its
type: Synchronization, StaticInstantiation, Dy-
namicInstantiation. Since concepts are reified as
classes and operations are defined as their meth-
ods, a connection may be expressed based on the
AOP mechanism: the method from one side is
captured, allowing for the interaction with the
methods from the other side. As a concept may
have many methods, each one being able to par-
ticipate to one or many connection(s), a horizon-
tal relationship may manage many connections.

3.2.1. Composition Specific Semantics

From the experience gained while defining con-
nections, some composition templates have been
identified, such that some types of connections
may be generalized and generated automati-
cally. Connections are categorized according to
their purpose:
– Synchronization – the most popular kind of

connections, modifying the state of the in-



Bi-dimensional Composition with Domain Specific Languages 35

stance at the destination end, with respect
to the changes performed for the instance at
the source end;

– Instantiation – in charge of creating an in-
stance of the horizontal relationship (a link
between elements of the models to be com-
posed) and, eventually, also with the creation
of the instance at the destination end.
For establishing a link between two instances

participating in a horizontal relationship, two is-
sues must be considered: 1) the moment of cre-
ating the link, and 2) the alternatives for set-
ting the destination instance. These semantics
are taken into account when instantiating HRs
at model level (see Fig. 4).

1) The moment of creating the link. Most of-
ten, a link is established when creating the in-
stance that must be the origin of the link. These
instances (representing elements of the models
to be composed) are created either before ex-
ecution (if they conform to AS concepts and
are part of a domain specific model defined for
a domain to be composed) or during the exe-
cution (if they conform to concepts introduced
for interpreting these models). Therefore, it is
possible to establish links either before or dur-
ing the execution; the two situations actually
correspond to the two types of horizontal rela-
tionships: static and dynamic respectively. For
doing so, the method for creating the source
instance (e.g. the constructor) is captured by
the AOP machine and extended with the cre-
ation or the reification of the link; for the links
defined before execution (between elements of
domain specific models of the domains to be
composed) the link is reified when the model
elements are reified, just before starting the ex-
ecution. In our example from Fig. 4, the links
created between models (i.e. before the execu-
tion) are called static, while the links created to
relate these models at execution are called dy-
namic. For example, the link between Specifica-
tion and JML Specification is static, whereas the
link between DATA_0097 and VERSION-0050
is dynamic.

2) The alternatives for setting the destina-
tion instance. For deciding the link destination
end, there are two kinds of mapping functions:

– Creation (returning a new instance) and
– Selection (returning an existing instance).

Either to create or to select a destination
instance, one should define some criteria, often
based on the properties of the source instance.
For example, the mapping function may create a
destination instance, providing the source name
as parameter (creation mapping) or it may look
for the destination instance with the same name
as the source instance (selection mapping). Be-
sides the two alternatives above, the mapping
function may adopt two kinds of processes:
– Automatic: the destination element is found

automatically, if the searching criterion is
provided;

– Interactive: the destination element is found
with human intervention, if the searching cri-
terion is not provided.
For the Automatic case, by default, Codèle

supports a searching criterion based on a key
attribute, like name or identifier. The default
criterion is used if no user-defined searching cri-
terion is provided.

The combination of the mapping kinds and
processes presented above gives diverse ways to
set the destination instance and the dynamic
interaction may follow several valid possibili-
ties, as also presented in the metamodel from
Fig. 6:
– Automatic.New: the mapping function auto-

matically creates and returns a new instance;
– Automatic.Selection: the mapping function

automatically returns an existing instance;
– Automatic.Selection.New: the mapping func-

tion automatically searches for an existing
instance and, if not found, creates a new one;

– Interactive.Selection: the destination in-
stance is selected by a human, and

– Interactive.Selection.New: first, a human
tries to select an existent destination in-
stance; if he or she does not find anything
appropriate, it is possible to ask for the cre-
ation of a new one.
The above options may be valid or not.

If a link is created at execution time, all the
above options may be used for setting the link
destination. However, if a link is created be-
fore execution, the only valid option is Auto-



36 Anca Daniela Ionita, Jacky Estublier, Thomas Leveque, Tam Nguyen

matic.Selection, because the link already exists
and it must be simply reified.

4. Implementation Issues

4.1. Implementation Choices

Our approach follows the language/interpreter
technology. However, to be later composable
with other domain interpreters, the DSL inter-
preter must follow conventions in the way the
concepts defined in the metamodel are mapped
to the target programming language.

First, the target implementation language
must be able to express the DSL opera-
tional semantics. Since the metamodels are
object-oriented, it is convenient to use an
object-oriented programming language, like
Java or C++, or an executable metamodel-
ing language, like Kermeta [25] or XMF (eXe-
cutable Metamodelling Facility) [6]. Executable
metamodeling languages allow not only the
description of the model structure (the ab-
stract syntax), but also of the behavior. Sec-
ond, each concept in the metamodel must
be mapped to one class in the target im-
plementation language. Third, the target im-
plementation language must provide support
for aspect programming, to allow inserting the
code responsible for the composition seman-
tics into the original metamodel implementa-
tion (the set of corresponding classes, respon-
sible for model interpretation) without chang-
ing the interpreter. In this context, one de-
cided to use Java for implementing our inter-
preters, together with its aspect-oriented exten-
sion, AspectJ.

Models, defined using the DSL abstract syn-
tax concepts, are technically reified as Java
classes and then interpreted. This implies that
the model is created before execution, while the
instances of semantic domain concepts are only
created during the execution. More precisely, at
design time, the modeler only needs the abstract
syntax concepts for creating a model – referred
to as domain specific model; he or she does not
need to be aware of the concepts related to the

interpretation. Models are represented, at exe-
cution, as instances of the AS classes, and are
interpreted using the semantic domain. At run
time, the model is simply reified as instances
of the interpreter classes and then interpreted.
However, during execution, the interpreter mod-
ifies/creates/deletes instances of the abstract
syntax concepts, and also creates instances of
the DSL concepts corresponding to the semantic
domain.

4.2. Code Generation

The Eclipse mappings currently used in Mélu-
sine environment for the vertical composition
are presented in Table 2. Actually, users never
see, and even ignore, that AspectJ code is gener-
ated; for instance, they do not create an AspectJ
project, but simply define and generate a fea-
ture associated with a concept. A similar idea is
presented in [30], where Xtend and Xpand lan-
guages are used for specifying mappings from
problem to solution spaces and the code gener-
ation is considered to be less error-prone than
the manual coding.

To implement horizontal relationships in As-
pectJ, each horizontal relationship is also trans-
formed into an AspectJ code. The mappings to-
wards Eclipse artifacts used for Mélusine hori-
zontal composition are indicated in Table 3.

4.3. Codèle Tool

This section introduces Codèle, as an implemen-
tation for the composition methodology previ-
ously presented. For supporting domain compo-
sition, we have developed the Codèle toolbox, in
which dedicated editors allow one to: (i) Define
horizontal relationships, (ii) Use horizontal re-
lationships to define static model composition,
(iii) Use horizontal relationships to define dy-
namic model composition.

From this information, Codèle automatically
generates AspectJ captures and the code that
implements the composition strategy. Imple-
menting horizontal relationships in AspectJ is
simple. Each connection is transformed into an
AspectJ code that calls a method in a class gen-



Bi-dimensional Composition with Domain Specific Languages 37

Table 2. Mapping on Eclipse artifacts for the vertical composition metamodel

Metamodel element Eclipse artifact Elements generated inside the artifacts
Domain Project Interfaces for the domain management
Concept Class Skelton for the methods
Behavior Method Empty body by default
Feature AspectJ Project The AspectJ aspect and a class for the behavior
Abstract service Project Java interface defining the service interface
Service Project An interface and an implementation skeleton
Interception AspectJ Capture The corresponding AspectJ code

Table 3. Mapping between horizontal composition concepts and Eclipse artifacts

Metamodel element Eclipse artifact Elements generated inside the artifacts
Domain Project Predefined interfaces and classes
Concept Class None
Behavior Method None

HorizontalRelationship AJ Class and Java classes

– an AspectJ file containing the code for all the
interceptions

– a Java file for each instantiation connections
– a Java file for each synchronization connections

Interception AspectJ Capture Lines in the AspectJ file for the interception, and
a Java file for the connection code

erated by Codèle; users never “see” it. In prac-
tice, the code for horizontal relationships seman-
tics represents about 15% of the total code.

Under a unified graphical interface, Codèle
implements different subsystems:
– Relationships Editor, which is responsible to

create horizontal relationships, according to
the properties presented above; see an exam-
ple in Fig. 7, for defining a relationship be-
tween DataType from Activity domain, and
ProductType from Product domain;

– Captures Generator, which generates As-
pectJ code, and creates a Java class in which
the user can define the connection semantics;

– Dynamic Model Composition Editor, for dy-
namic link creation and life cycle;

– Static Model Composition Editor for the
composition of two models, in their abstract
form; see an example in Fig. 8.
In our example, the DataType – Product-

Type horizontal relationship has been selected,
for which one displays the corresponding in-
stances, like Specification in the Activity do-
main, and JMLSpecification or JavaFile in the
Product domain. As this horizontal relationship
has been declared Static, the developer is asked
to provide the pairs of model entities that must
be linked together, according to that horizontal

Figure 7. Defining horizontal relationships
at metamodel level

relationship. Otherwise, they would have been
selected automatically, at run time. The bottom
panel lists the pairs that have been defined. For
example, the data type called Program in the



38 Anca Daniela Ionita, Jacky Estublier, Thomas Leveque, Tam Nguyen

Activity domain is now related to JavaFile in
the Product domain. The system finds this in-
formation by introspecting the models and is in
charge of creating these relationships at model
level.

Figure 8. Defining static links at model level

Mélusine system, including the domain com-
position technology, was developed in 2000 and
was used in a number of applications, both aca-
demic and industrial. A little less than one mil-
lion lines were developed for this system, and
dozens of domain compositions were performed.
The work reported in this paper started with
an analysis of these domain compositions, with
the goal to find recurring concepts and patterns,
and ended in the development of the Codèle tool.
Since then, Codèle is integrated in different envi-
ronments. In some environments, like FOCA [27]
where domains are manually composed, Codèle
is used only for model composition. In other sys-
tems, like Mélusine, Codèle is fully used, on a
daily basis.

5. Evaluation of the Composition
Approach

5.1. Related Works

The works on model/metamodel composition
can be classified according to several criteria:
the composition mechanism and the theme of
research. According to the composition mecha-
nism, these works could be split in two major
categories: the heavyweight composition mech-
anism, which consists in model and metamodel
merging [29], [23], [20]; and the lightweight
mechanism, which involves establishing syn-

chronization relationships [11] or weaving two
models/metamodels, without changing their
structures. The second mechanism is interesting
because it is possible to compose models and
metamodels and still use their existent tools.

According to the theme of research,
model/metamodel composition is approached in
three major areas: Model Management, Aspect
Oriented Modeling and Metamodeling.

Model Management is a topic born in the
MDE (Model Driven Engineering) context. This
community is interested in platforms manipulat-
ing and managing models, focusing on generic
operators to be applied on models, which can be
divided in three groups:
• match [3, 4], relate [21], compare [20] – for dis-

covering correspondences between models;
• merge [21], [20], [7], compose [3], weaving [7]

– for integrating models and
• sewing [7] – for relatingmodelswithout chang-

ing their structure.
Several platforms have been developed, like

AMMA [28], Rondo [10], EOL [23] and MO-
MENT [19]. One can qualify these Model Man-
agement approaches as heavyweight.

Aspect Oriented Modeling (AOM) applies the
separation of concern principle of AOP in the
modeling phase. Weaving consists in compos-
ing aspect models to a base model. The rela-
tionship between aspect model and base model
is relative. A model can be both an aspect and
the base; thus, two kinds of weaving have been
identified: aspect/base weaving (called asymmet-
ric), and base/base weaving (called symmetric).
The first one is borrowed from AOP and usu-
ally uses a lightweight composition mechanism,
while the second one is inspired from SOP (Sub-
ject Oriented Programming) and uses a heavy-
weight mechanism. Theme/UML [7] is an ap-
proach merging both kinds of weaving; the com-
position between the base models (called sub-
ject) is done with two kinds of composition re-
lationships: merge or override. Merge integrates
a subject with another one, while override re-
places an existing subject with a new one. In
all cases, these strategies change the composed
model structure. The aspects in Theme/UMLare
designed in terms of aspect templates.



Bi-dimensional Composition with Domain Specific Languages 39

Metamodelling also treats model compo-
sitions, supported by metamodeling environ-
ments, like XMF (eXecutable Metamodelling
Facility) [6] or GME (Generic Modeling Envi-
ronment) [9]. XMF has a purpose that is simi-
lar to ours – lightweight model composition con-
sisting of composing and executing models con-
forming to different metamodels. This is pos-
sible through synchronized mappings, written
in XSync – a specific language of XMF, based
on actions. Unfortunately, the metamodels also
have to be written in a specific language –
XCore, which is an extension of MOF. There-
fore, we would not be able to reuse our meta-
models (implemented in Java) nor our models,
nor use AOP technique – which is a central re-
quirement for model and metamodel reuse.

GME environment also supports the compo-
sition of models conforming to the same meta-
model (using so-called references) and to differ-
ent metamodels (using union and inheritance).
However, it allows the creation of a composite
metamodel, which may be used for defining new
models; there is no possibility to reuse the exist-
ing models “as-is” and to keep the metamodels
unchanged – an important requirement for our
domain composition approach.

The canonical scheme for model composi-
tion proposed in [5] uses a weaving model, con-
sisting in correspondences between model ele-
ments. Then, several transformations based on
ATL (ATLAS Transformation Language) are
used for obtaining the composite model. The
composition semantics resides in these transfor-
mations. The weaving model may also be ex-
tended for creating a specific composition, using
AMW (Atlas Model Weaver). This facility could
be used for defining our horizontal relationships;
however, our purpose was to obtain a composi-
tion tool based on wizards, which is easier to
learn and only contains the concepts specific for
our composition approach.

5.2. Specificities for Mélusine
Composition

In order to make the domain composition task
as simple as possible, the metamodels presented

above took into account the specificities of Mélu-
sine domains. Consequently, the composition we
realized is specific for this situation, as opposed
to other approaches, which try to provide mech-
anisms for composing heterogeneous models in
general contexts, generally without specifying
how to implement them precisely.

The technique used at each composition level
is different. At code level one uses AOP tech-
nique; at model and metamodel levels one es-
tablishes relationships. The main reason for this
choice was to compose domains without chang-
ing their models or the associated tools and en-
vironments.

The elaboration of metamodels that support
code generation in Codèle tool was possible af-
ter years of performing Mélusine domain com-
positions. This experience also led to the defini-
tion of a methodology for developing horizon-
tal relationships, described in [11]. Moreover,
through trials and errors, one found recurring
patterns of code for defining vertical and hori-
zontal relationships and it was possible to iden-
tify some of their functional and non functional
characteristics. Codèle embodies and formalizes
this knowledge through simple panels, such that
users “only” need to write code for the non stan-
dard functionalities. Practice showed that, in av-
erage, more than half of the code is generated,
in an error prone manner, managing the low
level technical code – including AOP captures,
aspect generation and so on. The user’s added
code fully ignores the generated one and the ex-
istence of AOP; it describes the added function-
ality at the logical level. Experience with Codèle
has shown a dramatic simplification for writing
relationships, and the elimination of the most
difficult bugs; there are also some cases where
the generated code was sufficient, allowing appli-
cation composition without any programming.

However, many other non-functional charac-
teristics could be identified and generated in the
same way, and Codèle can (should) be extended
to support them. We have also discovered that
some, if not most, non-functional characteris-
tics cannot be defined as a domain (security,
performance, transaction etc.), and therefore
these non-functional properties cannot be added



40 Anca Daniela Ionita, Jacky Estublier, Thomas Leveque, Tam Nguyen

through horizontal relationships. For these prop-
erties, we have developed another technique,
called model annotation, described in [27].

6. Conclusion

The division of applications in parts can be per-
formed by reusing large functional areas, called
domains, which are primary elements for divid-
ing the problem in parts, and atoms on which
our composition technique is applied.

A domain is usually implemented by reusing
existing parts, found on the market or inside
the company, which are components or tools of
various size and nature. We call vertical com-
position the technique which consists in relat-
ing the abstract elements found in the domain
model, with the existing components found in
the company. Reuse imposes that vertical re-
lationships are implemented, without changing
the domain concepts, or the existing compo-
nents. In our approach, one develops indepen-
dent and autonomous domains, which become
the primary units for reuse, whose interfaces are
their domain models (DSLs).

Domain composition is performed by com-
posing their DSLs, without any change in
their abstract syntax or semantics. This is
called horizontal composition, defining relation-
ships between modeling elements pertaining
to the composed domains. In this way, the
tools/environments in charge of editing, analyz-
ing and executing the models, as well as the
knowledge of practitioners, are kept unchanged.
Tools, environments and models can be reused
“as-is” and thus they can continue to be used
by the existing applications that rely on them,
which is a critical property in real operational
contexts.

An important goal of our approach was to
raise the level of abstraction and the granularity
level at which large applications are designed,
decomposed and recomposed. Moreover, these
large elements are highly reusable, because the
composition only needs to “see” their abstract
models, not their implementation. Finally, by
relating domain concepts using wizards, most

compositions can be performed by domain ex-
perts, not necessarily by highly trained technical
experts, as it would be the case if directly using
AOP techniques.

References

[1] E. Barra Zavaleta, G. Génova Fuster, and
J. Llorens Morillo. An approach to aspect mod-
elling with uml 2.0. In Proceedings of the UML
2004 Workshop on Aspect-Oriented modeling,
Lisbon, Portugal, 2004.

[2] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. Addison-Wesley, 2003.

[3] P. Bernstein. Applying model management to
classical meta data problems. In Proceedings
of the Conference on Innovative Database Re-
search (CIDR), Asilomar, CA, USA, 2003.

[4] G. Brunet, M. Chechik, S. Easterbrook, S. Ne-
jati, N. Niu, and M. Sabetzadeh. A mani-
festo for model merging. In Proceedings of
the 2006 international workshop on Global inte-
grated model management, pages 5–12, Shang-
hai, China, 2006. ACM.

[5] J. Bézivin, S. Bouzitouna, M. D. D. Fabro, M.-P.
Gervais, F. Jouault, D. Kolovos, I. Kurtev, and
R. F. Paige. A canonical scheme for model com-
position. In Proceedings of the European Confer-
ence in Model Driven Architecture (EC-MDA),
Bilbao, Spain, 2006.

[6] T. Clark and al. Applied metamodelling –
a foundation for language driven development
version 0.1. Xactium, Editor, 2004.

[7] S. Clarke. Extending standard UML with model
composition semantics. Science of Computer
Programming, 44(1):71–100, 2002.

[8] T. Dave. Reflective software engineering – from
MOPS to AOSD. Journal of Object Technology,
1(4), 2002.

[9] J. Davis. GME: the generic modeling environ-
ment. In Proceedings of the Conference on Ob-
ject Oriented Programming Systems Languages
and Applications (OOPSLA ’03), Anaheim, CA,
USA, 2003.

[10] M. Didonet Del Fabro and F. Jouault. Model
transformation and weaving in the amma plat-
form. In Proceedings of the Workshop on Gener-
ative and Transformational Techniques in Soft-
ware Engineering (GTTSE), Braga, Portugal,
2005.

[11] J. Estublier, A. D. Ionita, and G. Vega. Re-
lationships for domain reuse and composition.



Bi-dimensional Composition with Domain Specific Languages 41

Journal of Research and Practice in Informa-
tion Technology, 38(4):135–162, 2006.

[12] J. Estublier, G. Vega, and A. Ionita. Composing
domain-specific languages for wide-scope soft-
ware engineering applications. In Proceedings
of the MoDELS/UML Conference, pages 69–83,
Jamaica, 2005. Lecture Notes in Computer Sci-
ence.

[13] R. Filman, T. Elrad, S. Clarke, and M. Ak-
sit. Aspect-Oriented Software Development.
Addison-Wesley, ISBN10: 0321219767, 2004.

[14] G. Génova, C. Ruiz del Castillo, and J. Lloréns.
Mapping UML associations into Java code.
Journal of Object Technology, 2(5):135–162,
2003.

[15] J. Gray, T. Bapty, S. Neema, D. Schmidt,
A. Gokhale, and N. B. An approach for support-
ing aspect-oriented domain modeling. In Pro-
ceedings of GPCE. LNCS 2830, Springer Verlag,
2003.

[16] W. Ho, J.-M. Jezequel, F. Pennaneac’h,
and N. Plouzeau. A toolkit for weaving
aspect-oriented UML designs. In Proceed-
ings of the First International Conference on
Aspect-Oriented Software Development, pages
99–105, Enschede, The Netherlands, 2002.

[17] A. D. Ionita, J. Estublier, and G. Vega. Vari-
ations in model-based composition of domains.
In Proceedings of the Software and Service Vari-
ability Management Workshop, Helsinki, Fin-
land, April 2007.

[18] G. Kiczales, J. Lamping, A. Mendhekar,
C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In
Proceedings of the European Conference on
Object-Oriented Programming, pages 220–242,
1997.

[19] D. Kolovos, R. Paige, and F. Polack. Eclipse
development tools for epsilon. In Proceedings
of the Eclipse Summit Europe, Eclipse Modeling
Symposium, Esslingen, Germany, 2006.

[20] D. Kolovos, R. Paige, and F. Polack. Merging
models with the epsilon merging language (eml).
In Proceedings of MoDELS’06, pages 215–229.
LNCS 4199, 2006.

[21] I. Kurtev and M. Didonet Del Fabro. A DSL
for definition of model composition operators.
In Proceedings of the Models and Aspects Work-
shop at ECOOP, Nantes, France, 2006.

[22] T. Le-Anh, J. Estublier, and J. Villalobos.
Multi-level composition for software federa-
tions. In Proceedings of the SC’2003 Conference,
Warsaw, Poland, April (2003). IEEE Computer
Society Press.

[23] S. Melnik, E. Rahm, and P. A. Bernstein.
Rondo: A programming platform for generic
model management. In Proceedings of the Inter-
national Conference on Special Interest Group
on Management of Data (SIGMOD), San Diego,
California, June, 2003.

[24] M. Monga. Aspect-oriented programming as
model driven evolution. In Proceedings of the
linking aspect technology and evolution (LATE)
workshop, Chicago, 2005.

[25] P.-A. Muller, F. Fleurey, and J.-M. Jézéquel.
Weaving executability into object-oriented
meta-languages. In Proceedings of the MoD-
ELS/UML Conference, Jamaica, 2005. Lecture
Notes in Computer Science.

[26] A. Occello, O. Casile, A. Dery-Pinna, and
M. Riveill. Making domain-specific models col-
laborate. In Proceedings of the 7th OOPSLA
Workshop on Domain-Specific Modeling, Mon-
tréal, Canada, 2007.

[27] G. Pedraza and J. Estublier. An extensible ser-
vice orchestration framework through concern
composition. intl workshop on non-functionnal
properties in domain specific languages. In Pro-
ceedings of the NFPDML conference, Toulouse
France, 2008.

[28] T. Reiter and al. Model integration through
mega operations. In Proceedings of the
Workshop on Model-driven Web Engineering
(MDWE), Sydney, 2005.

[29] M. Sabetzadeh and S. Easterbrook. Easter-
brook: An algebraic framework for merging in-
complete and inconsistent views. In Proceedings
of the 13th IEEE International Requirements
Engineering Conference, pages 306–318, 2005.

[30] M. Voelter and I. Groher. Product line
implementation using aspect-oriented and
model-driven software development. In
Proceedings of the 11th International Software
Prouct Line Conference (SPLC), Kyoto, Japan,
2007.


