
e-Informatica Software Engineering Journal, Volume 3, Issue 1, 2009

Transformational Design of Business Processes
in BPEL Language

Andrzej Ratkowski∗, Andrzej Zalewski∗, Bartłomiej Piech∗∗
∗Institiute of Control and Computation Engineering, Warsaw University of Technology

∗∗Department of Electronics and Information Technology, Warsaw University of Technology
a.ratkowski@elka.pw.edu.pl, a.zalewski@ia.pw.edu.pl, b.piech@elka.pw.edu.pl

Abstract
A transformational approach to the design of executable processes in Business Process Execution
Language (BPEL) is presented. It has been built upon the transformations of business processes
accompanied by a formal approach based on process algebras used to verify the behavioral equiv-
alence of business processes. The initial business process can be denoted in BPEL, then a series
of transformations is executed upon it. The process resulting from the transformation is verified
whether it preserves behaviour denoted by the process being transformed. The transformations
improve non-functional properties of the process (performance, modifiability, granularity, main-
tainability) but do not change its original behaviour. The transformations are steered by Archi-
tecture Trade-off Analysis Method (ATAM) that shows the direction of changes and helps an
architect to decide which of them to apply. An example of the application of our approach in
real-life business process design has also been presented. The paper presents general idea of the
design process, theoretical basis of the method as well as experimental verification of the approach
and a tool implemented to support the method.

1. Introduction

The following paper presents the concept of de-
sign method that is a subject of PhD thesis writ-
ten by Andrzej Ratkowski under Prof. Krzysztof
Sacha’s supervision. The article is an extension
of a previous paper [26].

The ability to define and execute business
processes seems to be one of the most important
advances introduced by the research and com-
mercial developments on Service-Oriented Ar-
chitectures (SOA). The worlds of business mod-
elling and software systems development have
never been closer to each other – it is now pos-
sible to express software requirements in terms
of services and business processes composed of
them. BPEL have become a standard for defin-
ing executable business processes. This in turn
triggered an extensive research on the model-

ing and verification techniques suitable for those
processes.

The approaches presented above, as well as
the verification techniques, can indicate absence
or existence of certain flows in BPEL processes.
However, these are not methods of business pro-
cesses design – they do not provide any guid-
ance on how to improve the quality attributes
of designed systems like maintainability, per-
formance, reusability etc. This is what the ap-
proach is aimed at.

In this paper we advocate an idea of trans-
formational design of BPEL business processes
in which specified behaviour remains preserved,
while quality attributes get improved. There are
three basic roots of our approach:
1. software refactoring – the approach intro-

duced by Opdyke in [24], further devel-
oped in [20], in which the transformations

104 Andrzej Ratkowski, Andrzej Zalewski, Bartłomiej Piech

of source code are defined so as to improve
its quality attributes;

2. business process design – in the realm of
SOA informal or semiformal methods domi-
nate the research carried out so far – comp.
Service Responsibility and Interaction De-
sign Method (SRI-DM) [21];

3. business process equivalence – there have
already been developed several notions of
the equivalence between business processes
based on Petri Nets [19] and Process Alge-
bras [29].
The transformations of Business Processes

are in the core of our approach and repre-
sent similar concept as popular software refac-
torings. Our original notion of business pro-
cess equivalence has been introduced on a for-
mal Process Algebra model of business pro-
cesses (explained and discussed in section Be-
havioural Equivalence) and it has been proved
that the defined transformations create pro-
cesses equivalent to the one being trans-
formed. These transformed processes are com-
pliant in terms of their behaviour, however,
they have quality attributes changed. These
transformations may be steered by the qual-
ity scenarios and assessments performed us-
ing Architecture Trade-off Analysis Method
(ATAM) [18].

This provides a foundation for the trans-
formational design method in which a starting
BPEL process is subject to a series of trans-
formations yielding as a result behaviourally
compatible model with improved non-functional
properties like modifiability, maintainability,
performance, reusability etc.

2. State of the Art

Many business processes design and mainte-
nance methods are based on Business Process
Management (BPM) concepts [31]. According to
BPM, process life-cycle consist of five phases:
1. design – existing business processes are anal-

ysed and “to-be” processed are designed. The
results of this phase are: process flows, main
actors, resources and so on;

2. modeling – the purpose of this part is to
model and make conclusions on process exe-
cution before its practical application;

3. execution – in execution phase processes are
put into practice and run in physical envi-
ronment;

4. monitoring – running processes are moni-
tored, functional and non-functional proper-
ties are measured;

5. optimization – this phase is responsible for
improvement of processes.

The BPM concept is broadly applied in the pro-
cesses domain, however, we believe that there is
no specialised application in SOA context. Cur-
rent paper tries to fill this gap.

In the field of general process modeling there
are approaches based on Unified Modeling Lan-
guage (UML) like presented in [28]. The authors
present suitability of UML activity diagrams for
business process.

In the context of Service Oriented Archi-
tecture there exist special methods devoted to
design business processes like mentioned pre-
viously Service Responsibility and Interaction
Design Method (SRI-DM) [21]. The SRI-DM
method is based on transformation from UML
use-cases towards services with proper divided
functionality and sequence diagrams that ex-
press desired process.

The approach similar to proposed in the cur-
rent paper is presented in [15]. The authors pro-
pose modeling business process as a Petri net
and such transformations of the net to reach op-
timal value of some goal function. The proposed
approach is based on optimization techniques.

The research of the current paper is con-
centrated on converting BPEL processes to one
of the formal models that can be subject to
model-checking techniques. A survey of such ap-
proaches can be found in [3]. It reveals that all
of the most important formal models of con-
current systems have been applied: Petri nets
(basic model, high-level, coloured) – comp. [14],
[32], Process Algebras – comp. [12], [11], Lotos –
comp. [9], [30], Promela and LTL – comp. [13],
[16], Abstract State Machines – comp. [8], [27],
Finite State Automata – comp. [11]. These con-
versions make it possible to detect deadlock and

Transformational Design of Business Processes in BPEL Language 105

Figure 1. Process transformation algorithm

livelock as well as reachability analysis with au-
tomated model checkers.

3. Process Transformation Design
Approach

The algorithm of process transformation design
is depicted in Figure 1.
1. As it was mentioned in the introduction, the

algorithm starts with the original process
that is delivered by business oriented staff
and the primal process bring up only func-
tional aspects of the process. Functional as-
pects of the process are: necessary activities,
order of activities, relation between them,
exchanged data, basic external services invo-
cation and so on. The process is called refer-
ence process. In following iterations the origi-
nal process is slightly changed by refactoring
transformations [25], [20] like:
– service split – split one complex services

into two or more smaller ones that cover
the primary one functionality,

– service aggregation – opposite to service
split – composing two or more services in
one larger service,

– parallelization – making serial activities
to run parallel,

– asynchronization – reconstruction of
communication protocol from syn-
chronous to asynchronous.

The above transformations are called
refactorings and they are only exam-
ples of possible refactorings. Obviously,
in a given process only some subset of

transformations is possible and a smaller
subset is rational.

2. A few independent refactorings on a cur-
rent process make a few alternative pro-
cesses which should be equivalent to the orig-
inal process or at least changes in behaviour
should be known.

3. Behaviour preservation is checked by means
of behavioural equivalence verification step.
In this step formal methods of Process Alge-
bra (PA) [6] are used. The result of verifica-
tion is either elimination of not-equivalent al-
ternative or accepting changes in behaviour
that the transformation makes. The way the
transformation changes behaviour is exactly
known owing to PA formalism.

4. After eliminating or accepting, all alterna-
tives that are left are evaluated against in-
teresting non-functional properties like:
– performance,
– safety,
– maintainability,
– availability,
– or any important property.
The measure of each property is calculated
by using specified metrics, models [7] or sim-
ulations.

5. In the following step one alternative is se-
lected amongst others. The selection is based
on Architecture Trade-off Analysis Method
(ATAM) [18]. In short, the method exam-
ines sensitivity of non-functional parameters
to design properties and marks out trade-off
points. Trade-off points are decision variables
that affect more than one quality attributes.
Changing the value of trade-off points in-

106 Andrzej Ratkowski, Andrzej Zalewski, Bartłomiej Piech

creases some quality attributes and decreases
others. In case of SOA, services granulation
is an example of such trade-off point. When
services are bigger and not numerous then we
have good performance and weak maintain-
ability and reusability. If we split the system
into more services, performance will decrease
but maintainability and reusability will in-
crease.

6. After selecting one alternative process, the
selected process becomes new reference pro-
cess and the algorithm returns to the begin-
ning.

The above steps lead from process that is correct
from functional point of view to process that has
best or acceptable good non-functional quality
attributes.

All steps of the algorithm are guided by a hu-
man designer and supported by automatic tools
that may:
– suggest possible transformations of a refer-

ence process,
– verify behavioural equivalence,
– compute quality metrics of alternatives,
– point out trade-off points.
The conclusion is that the transformational
approach does not try to make a to-
tally automatic process design, because, in
our opinion, it is impossible without hu-
man ability involvement. Instead, the trans-
formational method supports a human de-
signer’s creative work in tasks difficult for
a human.

4. Behavioural Equivalence

Behavioural equivalence verification is based on
Process Algebra transformation and manipula-
tion of BPEL processes [6].

4.1. Process Algebra for Behavioural
Equivalence

Process Algebra (PA) [6] is formal semantic that
express concurrent and distributed processing.
It is specially devoted for parallel, loosely cou-
pled and asynchronous communication so it is

tailored to BPEL analysis. During our research
we used LOTOS [2] realisation of PA.

Using the LOTOS notation, one can model
any process or chain of communicating pro-
cesses, simulate processes execution and, what
is the most important in the context of refactor-
ing, verify equivalence of two different processes.
The equivalence is verified by simulation, bisim-
ulation or preordering analysis [6].

To be able to use PA in stated problem it
is necessary to use some kind of mapping from
BPEL activities to PA terms. There are a few
existing BPEL to PA mappings [10, 4], but none
of them exactly fit to the needs of transforma-
tional process design. Firstly, because they de-
mand full semantic checking in equivalence ver-
ification, that is too precise for refactoring. In
case of the refactoring equivalence verification, if
one process is transformed, its semantic changes
but its behaviour does not. Another aspect is
that an important property of mapping BPEL
to PA for refactoring is that it has to make sim-
ple models with possibly the smallest statespace
– during the design procedure there are a few
changing scenarios and each of them has to be
verified – the time spent for one verification is
limited. This is the motivation for us to develop
new mapping. Mappings of BPEL activities to
PA formulas are presented in Table 1.

The mappings do not take into account data
values or condition probability. This is moti-
vated by simplification (and better verification
performance) of the model. From another point
of view, making some assumptions, there is no
actual need to examine values of variables in
equivalence verification.

There is an artificial mapping of activity
which is not explicit part of BPEL but is nec-
essary for equivalence verification. This is ac-
tivity dependency mapping. Let us assume that
there are two activities in BPEL process that
are not directly attached to each other (by e.g.
<sequence> or <switch>) but by shared vari-
able, like in the following example:
<receive variable="PurchaseOrder"

name="ReceivePurchase" />
...
<assign name="assignOrder">

<copy>

Transformational Design of Business Processes in BPEL Language 107

Table 1. Sample mappings BPEL activities to PA formulas. Part 1

BPEL LOTOS Process Algebra
empty

<empty
name="emptyName" [...]

</empty>

process empty_emptyName[dummy] :=
exit

endproc

external service invocation

<invoke inputVariable="ivName"
outputVariable="ovName"
name="invName" [...]>

[...]
</invoke>

process invoke_invName[ivName,ovName] :=
ivName;ovName;exit

endproc

receive message

<receive variable="vName"
name="receiveName" [...]>

[...]
</receive>

process receive_receiveName
[vName] :=

vName;exit
endproc

reply

<reply variable="vName"
name="replyName" [...] >

[...]
</reply>

process reply_replyName[vName] :=
vName;exit

endproc

assign variable value

<assign name="asgName"
<copy>

<from variable="fromVar">
<from to="toVar">

</copy>
</assign>

process assign_asgName[fromVar, toVar] :=
fromVar;toVar;exit

endproc

parallel execution

<flow name="flowName">
< ... name="activityA"/>
< ... name="activityB"/> [...]

</flow>

process flow_flowName[dummy] :=
activityA || activityB ...

endproc

sequential execution

<sequence name="seqName">
< ... name="activityA"/>
< ... name="activityB"/>
[...]

</sequence>

process sequence_seqName[linkSyn] :=
activityA >> linkSyn;activityB >> ...

endproc

Note: linkSyn should be placed according to po-
tential link synchronization usage.

108 Andrzej Ratkowski, Andrzej Zalewski, Bartłomiej Piech

Table 2. Sample mappings BPEL activities to PA formulas. Part 2

BPEL LOTOS Process Algebra
conditional execution

<switch name="switchName">
<case ...>

< ... name="activityA"/>
</case>
<case ...>

< ... name="activityB"/>
</case>

</switch>

process switch_switchName[dummy] :=
hide ended in (

activityA [] activityB ...
)

endproc

pick

<pick name="pickName">
<onMessage partnerLink="ncname"

portType="qname"
operation="opA" variable="ncname">

activityA
</onMessage>
<onMessage partnerLink="ncname"

portType="qname"
operation="opB" variable="ncname">

activityB
</onMessage>

</pick>

process pick_pickName[dummy] :=
activityA[]activityB

endproc

link

<flow name="flowName">
<links>

<link name="XtoY"/>
</links>
<sequence name="X">

<source linkName="XtoY"/>
<invoke name="A" .../>
<invoke name="B" .../>

</sequence>
<sequence name"Y">

<target linkName="XtoY"/>
<invoke name="E" .../>

</sequence>
</flow

process flow_flowName[dummy] :=
hide XtoY in
(sequence_X[XtoY]

|[XtoY]|
sequence_Y[XtoY])

endproc

Transformational Design of Business Processes in BPEL Language 109

<from variable="PurchaseOrder"/>
<to variable="ShippingRequest"/>

</copy>
</assign>

Then activity dependency mapping will be:
process act_dependency[dummy]

receive_ReceivePurchase[PurchaseOrder]
|[PurchaseOrder]|

assign_assignOrder[PurchaseOrder,
ShippingRequest]

endproc

The activity dependency expresses indirect
dependency of two activities of which, one needs
output data from another, no matter what struc-
tural dependency (sequence or parallel) in the
process are.

4.2. BPEL Behavioural Equivalence

There are a few approaches to determine be-
havioural equivalence (or in other words be-
haviour preservation) of refactored processes. In
[24] the author proposes such definition, that
two systems are equivalent when the response
for each request is the same from both systems.
According to [22] communication-oriented sys-
tems are equivalent if they send messages in the
same order.

In case of transformational design we assume
that every service fulfills stateless postulate. It
means that when BPEL process invokes exter-
nal service then in every invocation response for
some request is always the same, it is indepen-
dent of history. This assumption leads to a con-
clusion that state of external services (and all
environment) is encapsulated inside the invok-
ing service.

To make this assumption usable and to prove
how it can be used we needed some PA theory.

B
x−→ B′ (1)

The above formula means that process B
reaches state B′ after receiving an event (mes-
sage) x.

Now PA semantics is defined using inference
rules that has form:

premises

conclusions
(sidecondition) (2)

For example parallel execution (without syn-
chronization) || has 2 symmetric rules:

B1 x−→ B1′
B1||B2 x−→ B1′||B2 and

B2 x−→ B2′
B1||B2 x−→ B1||B2′

(3)

an preceding (sequential composition) >> has 2
rules:

B1 x−→ B1′
B1 >> B2 x−→ B1′ >> B2 and

B2 σ−→ B2′
B1 >> B2 i−→ B2

(4)

where σ is successful termination and i is unob-
servable (hidden) event.

If external service S is stateless then:

∀y ∈ Y S y−→ S (5)

where Y is a set of all events. This means that
every event, generated externally or from the
subjected service, does not change the state and
answer from the service.

To analyse a BPEL process using PA terms,
the BPEL process has to be translated into PA
using mapping mentioned in previous section.
The product of translation is a set of PA pro-
cesses that are sequentially ordered by BPEL
steering instructions – sequences, flows, switches
and so on. Additionally, a part of mapping is ac-
tivity dependency processes. This artifact sym-
bolizes data dependency between elements.

Let us symbolize it with dependency operator:

A]x]B (6)

which means that state B can be started after A
is successfully terminated and event x is emitted
(or received).

Below we can see some example, that shows
what is our behavioural equivalence based on.

The given process has a set of operations con-
nected with dependency sequence:

(A]x]C]z]D) (7)

C waits for A result and D for C result.

110 Andrzej Ratkowski, Andrzej Zalewski, Bartłomiej Piech

Beside the above dependency, the pro-
cess has also structural sequence defined by
<sequence> instruction A → B → C → D,
where B is instruction which is not connected by
activity dependency. We can relax the structural
sequence and consider the process as:

(A]x]C]z]D)||B (8)

That means that we can treat (A]x]C]z]D) and
B as two parallel independent activities.

The proof that (8) is true for stateless
services.
1. If there is no external service (8) is true by

the definition because there is no interaction
between (A]x]C]z]D) and B,

2. If there is stateless external service S, then:

∀y(A]x]C]z]D)||S y−→ ((A]x]C]z]D))′||S (9)
and

∀yS||B y−→ S||B′ (10)
which leads to:

(A]x]C]z]D) y−→ (A]x]C]z]D)′

⇒ (A]x]C]z]D)||B y−→ (A]x]C]z]D)′||B (11)

and
B
y−→ B′

⇒ (A]x]C]z]D)||B y−→ (A]x]C]z]D)||B′
(12)

The equation (12) is parallel execution
inference rules (3) which is proof of (8)

If S was stateful, then
∃y(A]x]C]z]D)||S y−→ (A]x]C]z]D)′||S′ (13)

then
(A]x]C]z]D)||B y−→ (A]x]C]z]D)′||B′ (14)

this would mean that there are some interactions
between (A]x]C]z]D) and B, and that they can
not be treated independently.

The above theory makes it possible to di-
vide the whole BPEL process into parts, that
are only dependant by activity dependency and
also makes possible to check if every refac-
tored process is contained in these dependen-
cies. This technique is related to program slic-
ing [1] used broadly in source code refactor-
ing. The BPEL service with defined activ-
ity dependencies and without structured con-

straints (sequences, flows, conditional and so
on) is called minimal dependency process and
is used to check the behavioural equivalence.
After refactoring, the new (refactored) process
has to be translated to PA and its PA image
must fulfill preorder relationship with the mini-
mal dependency process. Refactored process has
to be subgraph of minimal dependency process
states graph.

5. Transformation Steering

The process of transformations is steered by
a method based on the Architecture Trade-off
Analysis Methods (ATAM) [18]. The ATAM
helps to identify trade-off points, that are pa-
rameters that have impact on a few quality as-
pects of the analyzed system. The impact of
trade-off points is positive on one aspect and
negative on another. So to designate proper
value of such parameter there a trade-off has to
be reach on this parameter.

ATAM helps to decide which alternative
should be selected during the process design. In
that way ATAM steers transformation in a de-
sign algorithm.

6. Process Design Example

In order to illustrate how transformational de-
sign works in practice, a simple example is
presented below. The example is inspired by
BPEL specification [17]. The quality of pro-
cess is measured in two aspects: performance
and reusability. The performance metric is re-
sponse time under a given load, and reusability
is measured by number of interfaces that whole
service provides.

6.1. Reference process

The business process is a typical purchase of
goods service. The service is composed of three
activities: invoicing, order shipping and produc-
tion scheduling. The activities of the process are
organized as follows:

Transformational Design of Business Processes in BPEL Language 111

1. the process receives purchase order, receives
product type, quantity and desired shipping
method,

2. shipping service is requested and the price of
shipping is received,

3. an invoice is requested from an invoicing ser-
vice, the invoice contains product price and
shipping price,

4. the production of goods is scheduled by re-
quest to a scheduling service.

Each activity is executed in sequence. Next ac-
tivity starts after the previous is finished. The
reference process and surrounding services are
depicted in Fig. 2.

Figure 2. Purchase order reference process

6.2. Process Alternatives

For the current reference process, the designer
proposes three alternatives that seem to be
equivalent. Alternative (1) is a process that first
makes request for shipping service and after-
wards, parallelly requests shipping service and
invoice service.

Alternative (2) starts all three requests paral-
lelly – invoicing, shipping and scheduling service.

Alternative (3) is a bit more sophisticated –
the reference service is split into three services.
One of them invokes shipping service, the second
one parallelly invokes invoicing and scheduling

services, the third service composes two subser-
vices. The alternatives are presented in Fig. 3.

6.3. Equivalence verification

In the current stage of algorithm, alternatives
are verified to be behavioural equivalents to ref-
erence process. The technique of verification is
described in section 5. The result of the verifi-
cation is as follows:
– alternative 1 is behaviourally equivalent un-

conditionally,
– alternative 2 is not equivalent, because a re-

quest to invoicing service and shipping ser-
vice depends on data received from shipping
service. When all three requests startsat the
same time, we can not guarantee, that the
data from shipping service is received before
a request to scheduling and invoicing services
is made.

– alternative 3 is behaviourally equivalent.
Upon the above information, the designer de-
cides to remove alternative 2 from the alterna-
tives set.

6.4. Alternatives Evaluation –
Performance

As it was mentioned at the beginning of the sec-
tion, alternatives are evaluated in performance
and reusability aspects. Performance is defined
as a mean response time estimation. The web
service and connections between services can be
modeled, with queueing theory, as M/M/1//inf
system. It means that requests arrive to the sys-
tem independently with exponential interval dis-
tribution and response time is also exponentially
distributed. Thanks to the above assumptions,
average response time of whole system can be es-
timated as a sum of average responses from its
components: services and links between them.
To make evaluation simpler, we assume that ev-
ery network connection has the same average la-
tency RN . So average response time of the ref-
erence process is:

RRP = RBPELRP +Rshipping +Rinvoicing

+Rscheduling + 7RN
(15)

112 Andrzej Ratkowski, Andrzej Zalewski, Bartłomiej Piech

Figure 3. Possible alternatives for reference process

Transformational Design of Business Processes in BPEL Language 113

An important fact in the above equation, is
that average response times of invoicing, ship-
ping and scheduling are simply added, because
requests to services are made consequently, one
by one. Let us assume additionally values of each
parameter:
– RBPELRP = 2 ms (average time of processing

of main BPEL process),
– Rshipping = 3 ms (avg. resp. time from ship-

ping service),
– Rinvoicing = 5 ms (avg. resp. time from in-

voicing service),
– Rscheduling = 4 ms (avg. resp. time from ser-

vice),
– RN = 1 ms (avg. network latency).
That gives RRP = 21 ms.

For alternative 1 average response time is:
RA1 = RBPELA1 +Rshipping

+max(Rinvoicing, Rscheduling) + 7RN
(16)

the difference between alternative 1 and refer-
ence process is that invoice and scheduling ser-
vices are requested parallelly, so response time
from the parallel part is a maximum of response
times from invoicing and scheduling. When we
assume that RBPELA1 = RBPELRP then: RA1 =
17 ms.

Finally alternative 3 average response time is:

RA3 = RBPELA31 +RBPELA32

+RBPELA33 +Rshipping

+max(Rinvoicing, Rscheduling) + 11RN
(17)

that gives: RA3 = 25 ms.

6.5. Alternatives Evaluation –
Reusability

As a reusability metrics is taken the total num-
ber of interfaces that a service delivers. Refer-

ence process and alternative 1 delivers four inter-
faces: one to main composed process and three
to elementary services: invoicing, shipping and
scheduling. Alternative 3 delivers 6 interfaces:
three to basic services, one to composite ser-
vice and two new interfaces to two sub services
– shipping request and invoicing scheduling re-
quest.

All the above data are gathered in Table 3.

6.6. Best Alternative Selection

By means of ATAM method it is possible to
identify the trade-off point, which is in following
example services quantity. If composite service
consist of more basic services, then it is more
reusable, however, performance suffers.

In the current stage the new reference pro-
cess has to be designated. Apparently alterna-
tive 1 is the best choice. Alternative 1 is bet-
ter than the current reference process in per-
formance measure and not worse in reusability.
Alternative 3 is better in reusability than alter-
native 1 but much worse in performance, even
worse than reference process.

7. Tool Support

As it was mentioned previously, an important
goal of the research is to deliver a tool that will
support usage of transformational process de-
sign. The tool is currently under development.
In the current section a current status of tool
development is described. The tool is based on
open-source NetBeans IDE [23]. It is planned
that whole design process will be held in Net-
Beans. BPEL editor, which is already imple-
mented in the IDE, is used. Beside BPEL editor,
a graphical editor is necessary as it will guide

Table 3. Quality metrics for reference process and alternatives

Reference
process

Alternative 1 Alternative 3

Average response
time

21 ms 17 ms 25 ms

Reusability 4 4 6
Services quantity 1 1 3

114 Andrzej Ratkowski, Andrzej Zalewski, Bartłomiej Piech

the process design iteration – its layout will be
similar to Figure 1. The editor will be the main
window of the tool. A designing user will be able
to click on every alternative and look inside us-
ing native BPEL editor. In the main window
there will also be all the important data about
quality of alternatives.

7.1. BPEL Refactoring

To automate refactoring process in BPEL lan-
guage it was necessary to create the tool which
provides these features. It was proposed to au-
tomate such types of transformation: renam-
ing (variable, partnerLink, and correlationSet),
aggregation, asynchronization, parallelization,
split. After selecting a part of the code in BPEL
file one of the mentioned transformations can
be realized (if it is possible). Such tool has not
been already implemented – this is why I de-
cided to implement an idea of creating the ap-
plication as a plug-in to Netbeans IDE which
automates refactoring process. There are nu-
merous engineering challenges connected with
the detailed design of tool support for BPEL
transformations. These have been presented
in detail below.

7.1.1. Renaming

It is the simplest type of refactoring – changes the
name one of the three elements in BPEL (vari-
able, partnerLink, and correlationSet) and all
the occurrences of this element in other language
constructions. It seems to be an easy transfor-
mation but it is relevant. It would be difficult to
do it manually because BPEL contains a lot of
constructions with reference to other elements.
For instance reference to variable may occur in
such elements: receive, reply, invoke, onMessage,
throw, copy from, copy to and in XPath expres-
sions:wait, onAlarm, if, else if,while, repeatUntil,
forEach. As we can see it is much easier to use
an automatic tool which finds all the occurrences
of the chosen element in BPEL code. The of-
fered application provides these features. We can
change the name one of the mentioned elements
and do not have to worry about occurrences in

other BPEL constructions – program will do it
for us automatically.

7.1.2. Aggregation

Composing one or more services into larger one
seems to be easy. It is because somebody may
think that it is enough to move logic from one
service to another and that is all. It is a wrong
approach because there are a lot of other ele-
ments which we have to focus on.

First of all, we must find the BPEL file that
contains the logic of the invoked process which
is automatically done by the proposed tool.

Secondly, it is needed to move elements
such as variable, partnerLink, correlationSet
and namespaces to the process that is invoking,
because all the elements are used in logic which
we want to encapsulate.

Lastbutnot least, itmayhappen that theused
variables, partnerLinks or namespaces in invoked
process have the same name as in process which is
invoking the first one. This situation is considered
in the proposed tool – when the situation occurs,
application changes the name of the specified el-
ement in all constructions where reference to this
element occur in order to prevent name collision.
A similar situation may happen in namespaces
because the onewewant to add is already defined.
In this case it is also needed to change the name
of the added namespace in every place where it
occurs. Also a very important thing is to ensure
that variable used as input in invoked process
(attribute variable in receive element) after the
transformationwill be the same as input in invoke
element before transformation. A similar situa-
tion occurs whenwe have synchronous invocation
with output variable it has to be checked whether
variable used in reply element will be the same
as an output variable in invoke element before
refactoring. This situation is also supported by
the application.

7.1.3. Asynchronization

In this type of refactoring the offered tool also
provides a few conveniences that automate pro-
cess of transformation. First of them is finding

Transformational Design of Business Processes in BPEL Language 115

as many operations as it is possible which are
invoked after selected element and they are in-
dependent. After that we can change the invoca-
tion method from synchronous to asynchronous.
If there are no independent operations transfor-
mation will be terminated.

To change the invocation from synchronous
to asynchronous some changes in WSDL and
BPEL file in invoked process are needed. We
have to delete (in WSDL file) an output element
in operation construction (to make invocation
asynchronous) and add a new input element for
a reply to the primary process (we can not use
the same input element for the reply because the
types of used variables may be different). More-
over in BPEL file we must change synchronous
element reply to element invoke to make con-
nection asynchronous – we need to define ad-
ditional partnerLink element to make the con-
nection possible. The application supports all of
these transformations.

To finish the transformations it is necessary
to provide some modifications in the primary
process. This is because of the type of invoca-
tion (asynchronous) which we introduce earlier
by changing a partner WSDL file. After all in-
dependent operations we need to place element
receive to collect a response from partner pro-
cess and delete an attribute outputVariable in
the invoke element.

The last thing to remember is to define cor-
relation element to ensure that response will be
transferred to the right instance of the primary
process. This is why proposed tool makes some
modifications in WSDL file of partner process.
To be more accurate application defines prop-
erty element and two propertyAlias elements.
Thanks to that it is possible to define corre-
lationSet and correlation elements in primary
process file which guarantee that message will
be delivered to right process instance. After all
mentioned operations, which proposed tool sup-
ports, refactoring is finished.

7.1.4. Split

Splitting the service without using the auto-
matic tool may also be difficult. To extract a

part of the service and then create another ser-
vice to be invoked inside the primary service we
have to create two new files – a BPEL file and
a WSDL file. Moreover, we must fill them with
all the necessary information which is indispens-
able to make a network connection with the new
process. As well it is requisite to change the pri-
mary process so that the connection with the
new process will be possible. All the mentioned
operations are supported by our tool.

First of all, the application chooses two vari-
ables – one as input variable and second as out-
put variable for synchronous invocation of the
new process. Choosing variables is not compli-
cated operation because as input variable is cho-
sen first which occurs in selected code to extract
and it is used for one of the operations. In case
of the occurrence more than one variable, all of
which are not initiated in a chosen logic, the
transformation will be terminated. Selection of
the output variable is very similar to the selec-
tion of the input variable – if exists exactly one
variable, which is initiated in the selected logic
and used later after the selected code, it will be
chosen as output variable.

Next, BPEL and WSDL files are created.
In a WSDL file all the necessary constructions
are created, such as: message, portType, oper-
ation, partnerLinkType and namespaces which
defines complex types of the variables. Then
using definition created in a WSDL file it is
possible to make a new BPEL file and cre-
ate constructions: variable, partnerLink, names-
paces, etc. and place selected logic in new
file. All of the operations are supported by
the application.

At the end it is necessary to modify the pri-
mary process. To make a connection with the
new process the application adds invoke activ-
ity (with all attributes) instead of the extracted
logic and element partnerLink (also with all at-
tributes). After all these transformations split-
ting the process into parts is possible.

7.2. Tools for Equivalence Verification

The algorithm of equivalence verification consist
of three steps:

116 Andrzej Ratkowski, Andrzej Zalewski, Bartłomiej Piech

Figure 4. Structure of verification process

1. translating BPEL process to minimal depen-
dency process (MDP) – this step is made
only once at the beginning of the refactoring
process,

2. translating BPEL process to its PA image,
3. checking preorder relationship of PA image

with minimal dependency process.
As a part of the developed tool, translation

BPEL to PA was made by means of an XSLT
processor, as the PA processor was used Concur-
rence Workbench for New Century (CWB-NC)
[5]. The structure of verification system is in the
Figure 4.

The transformation from BPEL to its PA
image is a quite trivial action as it was used
XSLT preprocessor. The XSLT processor auto-
matically maps BPEL instructions into their PA
equivalences as it is listed in Tables 1 and 2.

The second type of mapping – from BPEL
to its MDP image is more sophisticated. As it is
needed to resolve indirect dependencies between
BPEL activities there graph manipulation tech-
niques are applied.

8. Summary and Further Work

A method for transformational design of SOA
business processes in BPEL has been presented.
It has been founded on the formal framework
of process algebras as well as the concept of
process equivalence originally developed by the
authors. The transformations are aimed at im-
proving certain properties like e.g. modifiability
and performance while preserving the behaviour
specified by the starting business process model.

The whole framework has been accompanied
by a prototype tool which has been integrated
with NetBeans environment in the form of a
plug-in. The challenges resolved during tool de-
velopment have by no means turned out to be
trivial. Therefore, they have also been discussed
in the paper which should become a valuable
resource of the real implementation experiences
in the field of transforming BPEL as well as for
the continuation of the work presented here.

The approach has been validated on an ex-
emplary design case. The result of such a case
study are promising though some more compli-
cated cases would provide a chance for a more
in-depth validation of the whole approach.

References

[1] D. Binkley and K. B. Gallagher. Program slic-
ing. Advances in Computers, 43:1–50, 1996.

[2] T. Bolognesi and E. Brinksma. Introduction to
the ISO specification language LOTOS. Com-
put. Netw. ISDN Syst., 14(1):25–59, 1987.

[3] F. Breugel and M. Koshkina. Models and veri-
fication of BPEL. 2006.

[4] J. Cámara, C. Canal, J. Cubo, and A. Vallecillo.
Formalizing WSBPEL business processes using
process algebra. Electr. Notes Theor. Comput.
Sci., 154(1):159–173, 2006.

[5] R. Cleaveland. Concurrency workbench of the
new century, 2000. http://www.cs.sunysb.edu/
~cwb/.

[6] R. Cleaveland and S. Smolka. Process algebra.
1999.

[7] A. D’Ambrogio and P. Bocciarelli. A
model-driven approach to describe and pre-
dict the performance of composite services. In
WOSP ’07: Proceedings of the 6th international

Transformational Design of Business Processes in BPEL Language 117

workshop on Software and performance, pages
78–89, New York, NY, USA, 2007. ACM.

[8] D. Fahland and W. Reisig. ASM-based seman-
tics for BPEL: The negative control flow. In
Abstract State Machines, pages 131–152, 2005.

[9] A. Ferrara. Web services: a process algebra
approach. In ICSOC ’04: Proceedings of the
2nd international conference on Service ori-
ented computing, pages 242–251, New York, NY,
USA, 2004. ACM Press.

[10] A. Ferrara. Web services: a process algebra
approach. In ICSOC ’04: Proceedings of the
2nd international conference on Service ori-
ented computing, pages 242–251, New York, NY,
USA, 2004. ACM Press.

[11] H. Foster, J. Kramer, J. Magee, and S. Uchi-
tel. Model-based verification of web service
compositions. In 18th IEEE International
Conference on Automated Software Engineering
(ASE), 2003.

[12] H. Foster, S. Uchitel, J. Magee, J. Kramer, and
M. Hu. Using a rigorous approach for engineer-
ing web service compositions: A case study. In
SCC ’05: Proceedings of the 2005 IEEE Interna-
tional Conference on Services Computing, pages
217–224, Washington, DC, USA, 2005. IEEE
Computer Society.

[13] X. Fu, T. Bultan, and J. Su. Analysis of in-
teracting BPEL web services. In WWW ’04:
Proceedings of the 13th international conference
on World Wide Web, pages 621–630, New York,
NY, USA, 2004. ACM.

[14] S. Hinz, K. Schmidt, and C. Stahl. Transform-
ing BPEL to Petri Nets. In Proceedings of the
BPM 2005, pages 220–235, Nancy, France, Sept.
2005. Springer-Verlag.

[15] I. Hofacker and R. Vetschera. Algorithmical ap-
proaches to business process design. Computers
& OR, 28(13):1253–1275, 2001.

[16] G. J. Holzmann. The SPIN Model Checker:
Primer and Reference Manual. Addison-Wesley
Professional, September 2003.

[17] IBM, BEA, and Microsoft. Business process
execution language for web services. http://
citeseer.ist.psu.edu/669609.html, 2003.

[18] R. Kazman, M. H. Klein, M. Barbacci, T. A.
Longstaff, H. F. Lipson, and S. J. Carrière. The
architecture tradeoff analysis method. In Pro-
ceedings of ICECCS, pages 68–78, 1998.

[19] A. Martens. Simulation and equivalence be-
tween BPEL process models. In Proc. of Intl.
Conference DASD’05, 2005.

[20] F. Martin. Refactoring: improving the design of
existing code. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 1999.

[21] D. E. Millard, H. C. Davis, Y. Howard,
L. Gilbert, R. J. Walters, N. Abbas, and G. B.
Wills. The service responsibility and interaction
design method: Using an agile approach for web
service design. pages 235–244, 2007.

[22] I. Moore. Automatic inheritance hierarchy
restructuring and method refactoring. In
OOPSLA ’96: Proceedings of the 11th ACM
SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applica-
tions, pages 235–250, New York, NY, USA,
1996. ACM.

[23] NetBeans IDE. http://www.netbeans.org/.
[24] W. F. Opdyke. Refactoring Object-Oriented

Frameworks. PhD thesis, Urbana-Champaign,
IL, USA, 1992.

[25] A. Ratkowski and A. Zalewski. Performance
refactoring for service oriented architecture.
ISAT ’2007: Information Systems Architecture
And Technology, 2007.

[26] A. Ratkowski and A. Zalewski. Transforma-
tional design of business processes in SOA. In
Proceedings of CEE-SET, 2008.

[27] W. Reisig. Modeling and Analysis Techniques
for Web Services and Business Processes. In
FMOODS 2005, Athens, Greece, June 15–17,
2005. Proceedings, volume 3535, pages 243–258.
Springer Verlag, May 2005.

[28] N. Russell, W. van der Aalst, Arthur, and
P. Wohed. On the suitability of UML 2.0
activity diagrams for business process mod-
elling. In APCCM ’06: Proceedings of the 3rd
Asia-Pacific conference on Conceptual mod-
elling, pages 95–104, Darlinghurst, Australia,
Australia, 2006. Australian Computer Soci-
ety, Inc.

[29] G. Salaün, L. Bordeaux, and M. Schaerf. De-
scribing and reasoning on web services using
process algebra. In ICWS ’04: Proceedings of
the IEEE International Conference on Web Ser-
vices, page 43, Washington, DC, USA, 2004.
IEEE Computer Society.

[30] G. Salaün, A. Ferrara, and A. Chirichiello. Ne-
gotiation among web services using LOTOS/-
CADP. In ECOWS, pages 198–212, 2004.

[31] W. van der Aalst, A. ter Hofstede, and
M.Weske. Business process management: A sur-
vey. In Business Process Management, Lec-
ture Notes in Computer Science, pages 1–12.
Springer, Berlin, Heidelberg, 2003.

[32] Y. Yang, T. Tan, J. Yu, and F. Liu. Transforma-
tion BPEL to CP-Nets for verifying web services
composition. In Proceedings of NWESP ’05,
page 137, Washington, DC, USA, 2005. IEEE
Computer Society.

