
e-Informatica Software Engineering Journal, Volume 4, Issue 1, 2010

Hierarchical Model for
Evaluating Software Design Quality

Paweł Martenka∗, Bartosz Walter∗
∗Institute of Computing Science, Poznań University of Technology

pawel.martenka@cs.put.poznan.pl, bartosz.walter@cs.put.poznan.pl

Abstract
Quality of software design has a decisive impact on several quality attributes of the resulting
product. However, simple metrics, despite of their popularity, fail to deliver comprehensive infor-
mation about the reasons of the anomalies and relation between them and metric values. More
complex models that combine multiple metrics to detect a given anomaly are still only partially
useful without proper interpretation. In the paper we propose a hierarchical model that extend
the Factor-Strategy model defined by Marinescu in two ways: by embedding a new interpretation
delivery mechanism into the model and extending the spectrum of data providing input to the
model.

1. Introduction

Software design is considered one of the most
complex human creative activities [13]. As such,
the design process is prone to making errors,
which significantly affect the quality of a soft-
ware product resulting from the design. There-
fore, there is a continuous search for mod-
els and approaches that could help both im-
proving the design process and evaluating its
quality.

Since software design is a quantifiable pro-
cess, well-known code metrics are advocated as
the primary solution for that problem. They are
easy to compute, there is also plenty of exper-
imental data showing the correlation between
various metrics and desired quality attributes.
However, metrics are just numbers, which often
do not point to the design flaws, but rather pro-
vide rough and aggregate data. There are three
main drawbacks of using the isolated metrics as
direct providers of quality-related information:
1. There is no direct traceable connection be-

tween an actual cause and the value of a
metric; usually it is the designer who is re-

quired to examine the values and identify the
problem.

2. A vector of metric values has no meaning
for the designer without a proper interpreta-
tion. Aggregate metrics are not subject to a
straightforward interpretation.

3. Code metrics are unable to deliver complete
information about software design. They
need to be combined with diversed set of
data to provide a more complete view.

Then, there is a need for more holistic ap-
proaches. One of them is a two-stage Fac-
tor-Strategy proposed by Marinescu ([17]),
which is still based on metrics, but also ad-
dresses some of their weaknesses. It is a frame-
work for building rule-based descriptions of
design anomalies, which builds a navigable
path between metrics and actual violations of
high-level design principles. Unfortunately, this
approach has also drawbacks. Such principles
usually refer to abstract notions like cohesion
or coupling, which still are not directly pointing
to actual flaws. Moreover, actual code anomalies
often result from multiple violations of different
nature, for which the rules could be not properly

22 Paweł Martenka, Bartosz Walter

configured. For example, the Large Class bad
smell [12], which describes classes bearing too
much responsibility, typically denotes an overly
complex, low-cohesive class with lots of mem-
bers. Due to a large number of symptoms sug-
gesting the presence of the flaw, metrics point-
ings to them must be combined and evaluated in
non-linear and fuzzy manner to deliver an effec-
tive and useful measurement mechanism. Thus,
the Factor-Strategy model, which is based on
simple and strict rules, still does not provide a
flexible abstraction for such flaws.

In this paper we propose a hierarchical model
for evaluating design quality which is based on
the Factor-Strategy concept, but extends it in
several ways. It provides designers with hierar-
chical, custom-grained information, which helps
in tracing the causes of flaws, and also enriches
the spectrum of utilized sources of data.

The paper is structured as follows. Section 2
provides an overview of existing literature and
approaches used for similar problems. In Sec-
tion 3 we present Factor-Strategy model in a
more detailed way, and in Section 4 we propose
the hierarchical model. Section 5 contains a sim-
ple exemplary instance of the model, along with
early experimental evaluation results. Section 6
summarizes our findings and proposes further
extensions to the model.

2. Related Work

Historically, first attempts to quantitatively
evaluate the design quality of object-oriented
software were directly derived from code met-
rics. Metric suites proposed by Chidamber and
Kemerer [6], e Abreu [9] and others were de-
signed to capture the most important inter-
nal characteristics of object oriented software,
like cohesion and coupling, and the use of
mechanisms embedded in the object paradigm.
A strong evidence has been collected pointing to
correlation between these metrics and external
quality characteristics.

These characteristics were further investi-
gated by Briand et al. [3, 2], who noted that they
are too ambiguous to be effectively captured by

generalized, aggregate metrics. As an effect, they
proposed several specific metrics, which anal-
ysed different flavours of cohesion and coupling.

Some researchers went in the opposite direc-
tion, building more holistic approaches to mod-
elling design anomalies. Beck, the author of eX-
treme Programming methodology, coined a term
of “code bad smell” for a general label for de-
scribing structures in the code that suggest for
the possibility of refactoring [11]. Since specific
smells describe anomalies that can result from
many initial causes, they should also be backed
by several symptoms [23], e.g. diversed sets of
metrics. Moonen et al. [22] proposed a method
for automating smell detection based on analysis
of source code abstract syntax trees. Kothari et
al. in [16] defined a framework for building tools
that perform partially automated code inspec-
tions and transformations.

Dhambri et al. in [8] proceeded a step fur-
ther and employed visualisation techniques for
detecting anomalies. The main idea was based
on presenting some software quality attributes
(e.g. measured by metrics) to a software design
expert, who made the final decision. Another
work, by Simon and Lewerentz [21], focused on
refactorings driven by distance based cohesion.
Distance between members of classes (fields and
methods) was visualised in a 3D space, so that
an expert could decide on appropriate assign-
ment of class members and possibly suggest
refactorings.

Based on critics of the simplistic
metric-based quality models, Marinescu pro-
posed Factor-Strategy model [17], composed of
two stages: detection strategies stage respon-
sible for identifying an anomaly, and composi-
tion stage that evaluates the impact of suspects
found in the previous step on the high-level
quality factors.

This model was further extended. Ratiu [20]
encapsulated the detection strategies with a new
model which incorporated code changes his-
tory into the classification mechanism. The new
model has two main advantages:
1. removes false positives from the detected sus-

pects set,
2. emphasizes the most harmful suspects.

Hierarchical Model for Evaluating Software Design Quality 23

Similar concept – use of historical data – was
also exploited by Graves et al. [14] and Khosh-
goftaar et al. [15]. Graves presented a few models
to predict fault incidence and Khoshgoftaar in-
troduced a regression model to predict software
reliability, both based on the code history.

3. The Factor-Strategy Model

As Marinescu noted, classical models of design
quality evaluation do not provide explicit map-
ping between metrics and quality criteria, so
the rules behind quality quantification are im-
plicit and informal. The metrics-based models
can provide information about existence of a
problem, but they do not reveal the actual cause
of a problem. Hence, there is a need for a more
comprehensive and holistic model.

The Factor-Strategy model has been pro-
posed as a response to the above-mentioned
weaknesses. It is composed of two main ele-
ments: the Detection Strategy and the composi-
tion step.

The Detection Strategy (DS) is defined as a
quantifiable expression of a rule by which design
fragments that are conforming to that rule can
be detected in the source code.

Rules are configured by a set of selected and
suitable metrics. In consequence, DS provides a
more abstract level of interpretation than indi-
vidual metrics do, so that the numeric values of
these metrics do not need to be interpreted in
isolation.

Metrics are combined into rules using two ba-
sic mechanisms: filtering and composition. Fil-
ters transform metrics values whereas the com-
position operators aggregate into a rule. Mari-
nescu gives a following example of a Detection
Strategy instance for the Feature Envy smell:

FeatureEnvy := ((AID, HigherThan(4))
and (AID, TopValues(10%))
and (ALD, LowerThan(3)) and (NIC,
LowerThan(3))

This examplary rule uses three metrics: Ac-
cess of Import-Data (AID), Access of Local
Data (ALD) and Number of Import Classes
(NIC) processed with HigherThan, TopValues

and LowerThan filters, and composed with and
composition operator.

Application of DS on a set of software enti-
ties (e.g. classes) results in:
1. a set of detected suspects,
2. a vector of metrics values for each suspect.
Using this data, a score for a DS is calcu-
lated and mapped to a normalised value (a
ranked score). The score can be interpreted as
a higher-level metric for the strategy. Marinescu
provides a few exemplary formulas for comput-
ing the score, for example the simplest is the
number of suspects for a given DS.

Quantification of high-level quality factors is
based on an aggregation of ranked strategies and
rules. Formulas for aggregation can vary from a
simple mean value, where DS and the rules have
equal weight, to more sophisticated, weighted
methods. Selection of a method for aggregation
depends on the measurement goals. The aggre-
gated value – which is a score for the quality fac-
tor, is also mapped to the ranked score to provide
qualitative information (labelled ranked scores).

4. Hierarchical Model

The Factor-Strategy model overcomes major
problems of the classical solutions but still has
a few drawbacks. The first doubt refers to the
completeness of strategies suite: they need to be
configured for every anomaly, so even the biggest
set of strategies does not cover all possible flaws.

The second weakness is concerned about
limiting the data sources to metrics only.
As noted in [23], anomalies typically require
multi-criteria detecting mechanisms, including
data from dynamic execution, configuration
management repository, analysis of Abstract
Syntax Tree patterns etc. Ratiu and others
[20, 14, 15] proved usefulness of historical data
for quality evaluation. Van Emden [22] and Bax-
ter [1] presented examples how Abstract Syn-
tax Trees (ASTs) could be exploited as a source
of quality-related data. The extended spectrum
of sensor types, embedded into Factor-Strategy
model, may improve its sensitivity, accuracy
and correctness.

24 Paweł Martenka, Bartosz Walter

The final remark refers to the fact that oper-
ators used for defining detection rules are strict,
ie. they define a borderline, which may classify
very similar entities to different categories. Pro-
vided that the borderline is set up arbitrary, it
can significantly affect the results of evaluation.

The goal of this research is to develop
a hierarchical model which tackles the men-
tioned problems and weaknesses. It extends the
Factor-Strategy model mainly in two areas:
1. diversed data sources are used instead of

metrics only,
2. a simple mechanism for dealing with fuzzy

problems is proposed.

4.1. Structure of the Model

The structure of the hierarchical model and
its relation to the Factor-Strategy approach is
shown on Fig. 1. At the top of the model
there are high-level quality criteria (or char-
acteristics), which are combined with detected
lower-level patterns and rules violations. Pat-
tern and rule detection methods are supported
by data coming from various data sources,
e.g. metrics, historical data, results of dynamic
behaviour and abstract syntax trees (AST),
which improves accuracy of the detection
mechanism.

The model schema shows a hierarchy of el-
ements, but also a hierarchy of information.
The evaluation criteria provide the most ab-
stract and the most aggregated information. A
designer can track down the hierarchy to get
more detailed information and find the cause of
a problem indicated by the criteria.

4.2. Analysis of Detection Rules and
Design Principles

Detection strategies, which are the core part
of the original Factor-Strategy model, are con-
figurable sets of rules aiming at capturing vi-
olations of the well-known principles of design,
based on quantified data. However, actual design
anomalies present in code do not always match
the predicted and configured set of strategies.
They can also violate multiple principles concur-

rently or – on the other hand – remain ignored
by existing strategies.

The analysis mechanism present in the hier-
archical model can be divided into three parts:
1. new data selection approach,
2. metrics quantisation,
3. entity-level aggregation.

4.2.1. Data Selection

Classical quality models employ a set of se-
lected metrics for evaluation of quality factor
(or factors). For example, a model presented
by Briand et al. in [4] is built upon metrics
which are supposed to measure coupling, inheri-
tance, polymorphism and size, and is oriented on
fault-proneness prediction. Also instances of De-
tection Strategies in [17] consist of diverse sets
of metrics.

The model presented in this section pro-
motes different approach. Typically, behind ev-
ery principle of software design an internal qual-
ity characteristic is present. Based on this obser-
vation, the selection of metrics should be strictly
oriented on such characteristic. On the other
hand, the selected metrics should be simple,
suitable and adequate in the context of mea-
sured characteristic. As a consequence, some
types of metrics should be avoided:
1. strongly aggregating measures, like COF

(Coupling Factor defined by Abreu et al.
in [9]), which are biased by compensation
problem – some parts of highly-coupled de-
sign can be masked by parts which are
loosely-coupled,

2. metrics which are ambiguously defined, or
those capturing ambiguous concepts; Khaled
El-Emam in [10] argues that the notion of
cohesion is too general to provide significant
results,

3. metrics which try to capture multiple char-
acteristics at a time or appear not related to
the expected characteristic, eg. Basili et al.
in [5] argue thatWMC metric actually mea-
sures software size instead of complexity.
Following the postulate of diversed data

sources, the model creation process should in-
corporate as many sources as is needed to

Hierarchical Model for Evaluating Software Design Quality 25

A S TM e t r i c s H i s t o r i c a l d a t a D y n a m i c b e h a v i o u r

D a t a g a t h e r i n g

P a t t e r n d e t e c t i o n R u l e s a n a l y s i s

H igh - l eve l qua l i t y c r i t e r i a

C o m b i n a t i o n

Figure 1. Hierarchical quality model

increase interpretability of the results. New
patterns and existing strategies may be built
with extended spectrum of data coming from
new sources.

4.2.2. Metrics Quantization

As pointed out by Marinescu in [17], a sim-
ple vector of metrics values is not very useful,
because there is no clear connection between
measures and quality factors. In other words,
such values require of proper interpretation. The
method presented below provides a new inter-
pretation mechanism for metrics, so that vio-
lations of rules can be detected and presented
to the designer in intuitive way. In the context
of the violated rules, we require an answer to
the question: is the value of a metric unaccept-
able and, in consequence, measured character-
istic has negative impact on quality? The sim-
plest solution introduces a threshold: if a value

of a metric exceeds threshold, then the measured
attribute is considered to negatively impact the
quality. The domain of the metric is divided into
two intervals, which can be labelled as “negative
impact” and “no impact”. Thus, the labels pro-
vides interpretation for metrics values.

However, strict threshold values are inflex-
ible, because values close to the threshold can
be interpreted incorrectly in certain context. To
provide a simple fix for that, the strict threshold
value can be replaced with an additional interval
representing the uncertainty. Values which falls
into this interval should be analysed separately
or supported by other data sources for correct
classification.

Having considered these arguments, we can
define three classes (intervals) of the attribute
domain:
1. L – a value of a metric is unambiguously ac-

ceptable, and the measured attribute has no
or negligible negative impact on quality,

26 Paweł Martenka, Bartosz Walter

2. M – a value of a metric is near to threshold;
additional analysis is required or other data
sources should be explored,

3. H – a value of a metric is unambiguously un-
acceptable, and the measured attribute has
negative impact on quality.
We can formally define the labelling phase in

following way:
1. E – a set of analysed entities, for example a

class or a package,
2. M – a set of all metrics, suitable for the con-

structed model,
3. L – a set of all labels which identify classes

of impact,
4. P – a set of all principles considered in the

model,
5. m – a metric (e.g. CBO),
6. m(e), e ∈ E – a value of metricm for entity e.

mlie,m = αm(m(e)), e ∈ E,m ∈M,mlie,m ∈ L.
(1)

Function described by formula (1) maps a value
of a metric m, measured for entity e, to a label
mli1. As an effect, a numerical value delivered
by a metric is replaced by a higher-lever label,
which is already interpreted from the quality
point of view.

The entire effort in the construction of this
part of the model must be devoted to defin-
ing the α function. For the basic version of the
model (with three classes) at least one threshold
value with surrounding interval must be defined.
The crucial step deals with identification of a
threshold and a width of the interval.

The quantised metric – the labelled value –
is only the very first and preliminary interpreta-
tion step. This information is valuable in larger
context, thus labelled metrics should be utilised
in compound patterns and strategies.

4.2.3. Entity-level Aggregation

Some of the characteristics and mechanisms,
which constitute the basis for the rules of good
design, are so complicated that there is a need for
many supporting data sources, to capture all as-

pects and variations of those characteristics (e.g.
coupling can be divided into import and export).
Therefore, an aggregation function of a set of
quantised metrics and other data sources has to
be engaged, to answer the question: Does a com-
pound attribute, expressed by a set of input data,
have a negative impact on quality? Let be defined:
1. Mp – a set of metrics to express principle p,

in other words, a set of metrics suitable for
detection of violations of the principle,

2. Ae,p – a set of all additional pieces of in-
formation, extracted from the other data
sources (not metrics), for entity e and prin-
ciple p,

3. Me,p = {(m,mlie,m) : e ∈ E, p ∈ P,mlie,m ∈
L,∀(m ∈Mp)mlie,m = αm(m(e))} – a set of
pairs: metric with assigned label; the label
is assigned respectively to formula (1); the
set is evaluated for all metrics referring to
principle p and calculated for entity e.

plie,p = βp(Me,p, Ae,p), e ∈ E, p ∈ P, plie,p ∈ L.
(2)

Function defined by formula (2) aggregates a set
of labelled metrics and additional information to
label pli2, which denotes impact of underlying
characteristic on quality. Aggregation defined by
formula (2) may be also realized as a classifier3.
Assuming labels l ∈ L denotes classes, the clas-
sifier built for specific principle p will assign a
class l to an entity e. Meaning of the aggregated
label or class can be generalised as follows: label
l ∈ L denotes strength of negative impact of an
attribute upon quality.

Aggregation step requires careful interpreta-
tion of collected results, especially in the case
of compound characteristics. To sum up above
considerations:
1. well-known principles of software design are

always based upon internal quality charac-
teristic,

2. such characteristics can be decomposed into
elements which can be later evaluated by
data coming from diverse data sources. The
collected results are useful for detection of
violations of principles,

1 Metric-level impact.
2 Principle-level impact.
3 For example using decision rules or trees.

Hierarchical Model for Evaluating Software Design Quality 27

3. aggregated results say nothing about the
quality characteristic they are based on, but
provide information about the negative im-
pact of a measured attribute on quality.

Label evaluated by formula (2) denotes impact,
but do not identify a violation of a principle. To
define a violation, let be assumed:
1. V Lp – a set of labels, which are treated as a

violation of principle p,
2. Vp – a symbol of a violation of rule p.

plie,p ∈ V Lp ⇒ Vp, e ∈ E, p ∈ P. (3)

Definition If aggregated label pli for a charac-
teristic supporting principle p, for analysed en-
tity e, belongs to the set VL, then the entity is
flawed by a violation of rule p.
This definition is captured by formula (3).

The detected violations can be scored and
ranked just like Detection Strategies. As a
consequence, presented method can be homo-
geneously in-lined with methods presented in
Factor-Strategy model.

5. Example of Application

This section brings through a process of instan-
tiation of a fragment of the hierarchical model.
Scope of the example is narrowed to the ele-
ments which constitutes novelty of the model:
rules analysis method with metrics quantization
and aggregation. Instantiated model will be ap-
plied to exemplary entities.

5.1. Model Creation

5.1.1. Goals

The very first step of a model creation is the
selection of quality characteristic to be eval-
uated. Following activities, like principles and
metrics selection, are made in the context of the
high-level quality goal. For the purpose of this
example, readability (but analysability and un-
derstandability are closely related) of code and
design is selected as a goal and high-level quality
factor.

5.1.2. Principles

Coupling concept is considered to be a good pre-
dictor of quality. El-Emam in [10] provides evi-
dence that high coupling makes programs hard
to understand. Rule of low coupling, identified
by Coad and Yourdon in [7] is selected as the
design principle used as quality criterion in this
example. Hence, let us define a set of principles
P = {LowCoupling}.

5.1.3. Data Sources

For the purpose of coupling measurement, met-
rics Ca and Ce, defined by Robert Martin in
[18], are used. The metrics count incoming (Ce)
and outgoing (Ca) couplings separately, and will
be applied at class level. Additional information,
based on abstract syntax tree, is defined as a flag
indicating whether an entity (a class in this case)
is abstract. Let us assume:
1. M = MLowCoupling = {Ca,Ce} – a set of all

metrics is actually the set of metrics for the
design principle LowCoupling, because only
one design principle is considered,

2. A = {IsAbstract} – additional information
from a non-metrics source.

5.1.4. Definition of Quantization and
Aggregation

As described in [10] by [19], a human can cope
with 7±2 pieces of information at a time. We use
this observation as a threshold for the above-se-
lected coupling measures. For a quantization
purpose, let us define:
1. L = {L,M,H} – the basic set of labels,
2. αCe(Ce(e)):

mlie,Ce =

L,Ce(e) < 5
M,Ce(e) ∈ [5, 9]
H,Ce(e) > 9

(4)

3. αCa(Ca(e)):

mlie,Ca =

L,Ca(e) < 5
M,Ca(e) ∈ [5, 9]
H,Ca(e) > 9

(5)

28 Paweł Martenka, Bartosz Walter

The model is oriented toward detection of
violations, so the simple max function will
be used for aggregation, assuming that la-
bels are ordered from the lowest value of
L to highest H. Martin in [18] argues that
classes should depend upon the most stable
of them (eg. on abstract classes), so if a
class is abstract then export coupling (Ca) is
not taken into consideration. Aggregation func-
tion βLowCoupling(Me,LowCoupling, Ae,LowCoupling)
is defined as follows:

plie,LowCoupling =

mlie,Ce, IsAbstract(e)
max{mlie,Ce,mlie,Ca},

otherwise

(6)
Finally, let us define the violation:

1. V LLowCoupling = {M,H} – a set of labels
indicating violations of LowCoupling rule; la-
bel M is also included to capture entities
which probably violate the rule,

2. VLowCoupling – a symbol which denotes vio-
lation of LowCoupling rule,

3. (plie,LowCoupling ∈ V LLowCoupling) ⇒
VLowCoupling – definition of LowCoupling rule
violation.

5.2. Application

The model will be applied on sample data,
taken from a student project, depicted in ta-
ble 1. All classes are large (from 384 lines to 477
lines in a file) and probably flawed in many as-
pects. Results generated by the model are com-
pared to results gathered in a survey, conducted
among graduate software engineering students
(students were asked to identify classes that are
too large).

The quantized metrics and additional data
for all entities:
1. MDisplayManager,LowCoupling = {(Ce,H),

(Ca,M)}

2. MAmeChat,LowCoupling = {(Ce,H), (Ca,H)}
3. MDrawableGroup,LowCoupling = {(Ce,L),

(Ca,H)}
4. ADisplayManager,LowCoupling = {IsAbstract =

False}
5. AAmeChat,LowCoupling = {IsAbstract =

True}
6. ADrawableGroup,LowCoupling = {IsAbstract =

False}
Results of aggregation of quantized metrics:
1. pliDisplayManager,LowCoupling = max{H,M}

= H
2. pliAmeChat,LowCoupling = mliAmeChat,Ce = H
3. pliDrawableGroup,LowCoupling = max{L,H}

= H
Regarding the previous definitions of violations,
all entities violate the principle of low coupling
and negatively affect the high-level quality cri-
terion.

5.2.1. Interpretation

The high-level quality goal – readability – is
not evaluated because there are too few entities
to get a relevant output. Let be assumed, the
high-level factor indicates a problem in software.
The very first step is to look for strategies and
principles which support the factor, and choose
only those with current negative consequences.
The second step is to look for entities (suspects)
which negatively impacts the factor in the con-
text of chosen principle (or strategy). In this par-
ticular example there are only three classes and
all of them are suspects due to violations of the
principle.

Violation in DisplayManager results from
the metric Ce, labelled with H, and Ca la-
belled with M. Considering Ce definition, Dis-
playManager suffers mainly from import cou-
pling, and moderately from export coupling. Re-
spondents classified DisplayManager as Middle

Table 1. Sample data

Class Ce Ca mlie,Ce mlie,Ca IsAbstract
DisplayManager 13 8 H M False
AmeChat 14 35 H H True
DrawableGroup 4 14 L H False

Hierarchical Model for Evaluating Software Design Quality 29

Man and Large Class, and model results can in-
dicate causes of these smells.
AmeChat is an abstract class, so it is ob-

vious that it is used by many other classes. In
consequence, only import coupling is considered,
so the impact results from Ce, despite of high
value of Ca. The vast majority of the respon-
dents identified Large Class smell, which can be
connected with high import coupling.
DrawableGroup uses desirable amount of

classes, Ce=L, but is used in many other places.
The majority of the respondents identified Re-
fused Bequest in the class. This smell deals
with inheritance, which is not considered in
this model. Obtained results indicates other,
coupling-related problems which probably can-
not be named as a defined smell.

6. Summary

The proposed hierarchical model extends the
Factor-Strategy model in three ways. It delivers
more comprehensive and traceable information
concerning detected potential anomalies to the
designer, including the interpretation of metrics
values, and also broadens the spectrum of anal-
ysed data sources to the non-metric ones. As
the simple example suggests, these elements help
in discovering new types of anomalies and also
support the designer in evaluating the impact,
scope and importance of the violation. It also
delivers hierarchically structured data justifying
the suspected flaws, and includes a uncertainty
interval. Therefore, the model more resembles
the human way of cognition.

Further directions of research include an ex-
perimental validation of the model, defining de-
tection strategies utilizing data from heteroge-
neous data sources, and also embedding internal
design characteristics into the model.

References

[1] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna,
and L. Bier. Clone detection using abstract syn-
tax trees. In ICSM ’98: Proceedings of the Inter-
national Conference on Software Maintenance,

page 368, Washington, DC, USA, 1998. IEEE
Computer Society.

[2] L. C. Briand, J. W. Daly, and J. K. Wüst.
A unified framework for cohesion measurement
in object-oriented systems. Empirical Software
Engineering, 3(1):65–117, 1998.

[3] L. C. Briand, J. W. Daly, and J. K. Wüst. A
unified framework for coupling measurement in
object-oriented systems. IEEE Transactions on
Software Engineering, 25:1, 1999.

[4] L. C. Briand, W. L. Melo, and J. Wüst. Assess-
ing the applicability of fault-proneness models
across object-oriented software projects. Tech-
nical report, ISERN, 2000.

[5] L. C. Briand, S. Morasca, and V. R. Basili.
Property-based software engineering measure-
ment. IEEE Transactions on Software Engi-
neering, 22:68–86, 1994.

[6] S. R. Chidamber and C. F. Kemerer. A metrics
suite for object oriented design. IEEE Transac-
tions on Software Engineering, 20(6):476–493,
1994.

[7] P. Coad and E. Yourdon. Object Oriented De-
sign. Prentice Hall, 1991.

[8] K. Dhambri, H. A. Sahraoui, and P. Poulin.
Visual detection of design anomalies. In 12th
European Conference on Software Maintenance
and Reengineering 2008, pages 279–283, April
2008.

[9] F. B. e Abreu and R. Carapuça. Object-oriented
software engineering: Measuring and controlling
the development process. In Proceedings of the
4th International Conference on Software Qual-
ity, 1994.

[10] K. E. Emam. Advances in Software Engineer-
ing, chapter Object-Oriented Metrics: A Review
of Theory and Practice, pages 23–50. 2002.

[11] M. Fowler. Refactoring. Improving the Design
of Existing Code. Addison-Wesley, 1999.

[12] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the Design
of Existing Code. Addison-Wesley, 1999.

[13] R. Glass. On design. Journal of Systems and
Software, 52(1):1–2, May 2000.

[14] T. L. Graves, A. F. Karr, J. Marron, and H. Siy.
Predicting fault incidence using software change
history. IEEE Transactions on Software Engi-
neering, 26:653–661, 2000.

[15] T. M. Khoshgoftaar, E. B. Allen, R. Halstead,
G. P. Trio, and R. M. Flass. Using process
history to predict software quality. Computer,
31:66–72, 1998.

[16] S. C. Kothari, L. Bishop, J. Sauceda, and
G. Daugherty. A pattern-based framework for

30 Paweł Martenka, Bartosz Walter

software anomaly detection. Software Quality
Control, 12(2):99–120, 2004.

[17] R. Marinescu. Measurement and Quality in
Object-Oriented Design. PhD thesis, “Politeh-
nica” University of Timişoara, 2002.

[18] R. Martin. OO design quality metrics. An anal-
ysis of dependencies. Report on Object Analysis
and Design, 2(3), 1995.

[19] G. Miller. The magical number seven, plus or
minus two: Some limits on our capacity for pro-
cessing information. The Psychological Review,
(63):81–97, 1956.

[20] D. Ratiu, S. Ducasse, T. Grba, and R. Mari-
nescu. Using history information to improve
design flaws detection, 2004.

[21] F. Simon, F. Steinbrückner, and C. Lewerentz.
Metrics based refactoring. In Proceedings of the
5th European Conference on Software Mainte-
nance and Reengineering, pages 30–38, 2001.

[22] E. van Emden and L. Moonen. Java quality
assurance by detecting code smells. In Proceed-
ings of the 9th Working Conference on Reverse
Engineering, 2002.

[23] B. Walter and B. Pietrzak. Multi-criteria detec-
tion of bad smells in code with UTA method.
In Proceedings of XP 2005 conference, pages
154–161, 2005.

	Introduction
	Related Work
	The Factor-Strategy Model
	Hierarchical Model
	Structure of the Model
	Analysis of Detection Rules and Design Principles
	Data Selection
	Metrics Quantization
	Entity-level Aggregation

	Example of Application
	Model Creation
	Goals
	Principles
	Data Sources
	Definition of Quantization and Aggregation

	Application
	Interpretation

	Summary
	References

