
e-Informatica Software Engineering Journal, Volume 4, Issue 1, 2010

Integration of Application Business Logic
and Business Rules with DSL and AOP

Bogumiła Hnatkowska∗, Krzysztof Kasprzyk∗
∗Faculty of Computer Science and Management, Institute of Informatics, Wrocław University of Technology

bogumila.hnatkowska@pwr.wroc.pl, krzysiek.kasprzyk@gmail.com

Abstract

Business processes and business rules are implemented in almost all enterprise systems. Ap-
proaches used today to their implementation are very sensitive to changes. In the paper authors
propose to separate business logic layer from business rule layer by introducing an integration layer.
The connections between both parts are expressed in a dedicated domain specific language (DSL).
The definitions in DSL are further translated into working source code. The proof-of-concept im-
plementation of the integration layer was done in the aspect oriented language (AOP) – AspectJ.
The AOP was selected because it fits well to encapsulate scattered and tangled source code
implementing the connections between business logic and business rules with the source code
implementing core business logic.

1. Introduction

Software systems of enterprise class usually sup-
port business processes and business rules exist-
ing in a given domain. Because both (business
processes and business rules) are often subject
of change, they should be defined within a soft-
ware system in such a way that is easy to main-
tain. Approaches used today to business rules
implementation are very sensitive to changes,
i.e. each modification of: (a) business rule set (b)
when (within a business process) to fire specific
business rule (c) which business rules to fire –
can result in the necessity of application source
code modification. Additionally, the source code
implementing the connections between business
logic and business rules is often scattered and
tangled with the source code implementing core
business logic. That allows to treat the problem
of integration between business logic layer and
business rules (considered as a separate layer)
as a cross-cutting concern. A mechanism usu-

ally used for separation of cross-cutting con-
cerns within software systems is Aspect Ori-
ented Programing (AOP) [8], and one of the
most popular AOP programming languages is
AspectJ [8].

According to [10], business rules should be
separated from business processes, however they
apply across processes and procedures. What
more, business rules should be expressed declar-
atively, and they should be executed directly,
for example in a rules engine. In the pa-
per authors describe an architecture of a soft-
ware system, satisfying all above mention de-
mands. The main element of the architecture is
an integration layer that lies between business
rules repository and business logic layer. The
layer is implemented in AspectJ. Unfortunately,
aspect-oriented languages are rather difficult, so
the source code of intermediate layer is complex
and hard to understand. Therefore there is a
need for more abstract language (rather declar-
ative one) which can be used for describing how

60 Bogumiła Hnatkowska, Krzysztof Kasprzyk

to integrate business logic with business rules.
In this paper authors present a domain specific
language (DSL) serving that purpose. Models
written in the DSL are automatically translated
to AspectJ source code. The DSL editor with
syntactic checks as well as transformations were
implemented in the oAW framework [9].

The structure of the paper is as follows. In
chapter 2. main features of integration layer are
presented. In chapter 3. the DSL syntax shortly
is described. Short but complete examples are
shown in chapter 4. Chapter 5. presents related
works while chapter 6. contains some concluding
remarks.

2. Features of Integration Layer

Business model defines basic notions from a
given domain, the relationships between the no-
tions and the way in which they are constrained.
Business rules constitutes an important part of
a business model. A business rule is a state-
ment that defines or constrains some aspect of
the business. It is intended to assert business
structure or to control or influence the behav-
ior of the business [5]. There are many types
of business rules, for example von Halle distin-
guishes [3]:
– terms – nouns which meaning is commonly

accepted,
– facts – statements defining relationships

among terms,
– rules – declarations of a policy or a condition

that must be satisfied.
Rules are defined upon terms, and facts, and
they are further divided into constraints, action
enablers, inferences, and computations. Terms
and facts usually are expressed directly in the
source code of application. If they are changed
also the source code is modified. Rules can
be implemented either directly in the applica-
tion source code or outside it. Using today ap-
proaches to rules realizations try to separate
them into some components (modules, etc.) to
minimize the influence of their changes on the
other parts of application. The advantages of
rules modularization are as follows:

– Rules are directly expressed;
– Rules can be shared between different busi-

ness processes;
– It is easier to define who and when can mod-

ify rules;
– Rules can be maintained (update, create,

delete) not only by programmers but also by
business experts.
A typical solution to rules modulariza-

tion employs business rule engines or business
rule management systems like JBoss Rules [7],
JRules [5], or Jess [4]. However, even in such a
case, source code responsible for communication
with the engine is scattered and tangled with
application source code responsible for business
logic. Additionally, every time you decide to use
(or not to use) a rule in a given place, you need
to modify the application business source code.
To eliminate above mentioned problem we have
decided to introduce separate layer in the appli-
cation architecture, between business logic layer
and rules representation – see Fig. 1. The main
aim of this layer is to isolate the business logic
layer from rules. So, this should prevent the busi-
ness logic layer from being influenced by rules
evolving or changing.

The desired features of integration layer are
presented below:
– Support for invocations of all rule kinds;
– Definition when to invoke what rules;
– Passing parameters and context dependent

information to rules.
The are two kinds of activation events that can
result in rules invocation:
– method invocation event,
– attribute change event.

Business rules should be validated depending
on the context that is changing dynamically. So,
integration layer should allow to specify a dy-
namic context in which an activation event will
result in business rule(s) firing. Authors have
identified different time relationships between
an activation event and rule(s) invocation – see
Fig. 2. An activation event can cause rules invo-
cation if it happened:
– during execution of specific business method,
– when specific business method is not exe-

cuted,

Integration of Application Business Logic and Business Rules with DSL and AOP 61

Figure 1. Integration layer in application architecture

S0 S1

S2S3

deactivationMethod1

deactivationMethod2

deactivationMethod3

S0 S1

S2S3

activationMethod1

activationMethod2

activationMethod3

S0 S1 S2

activationMethod deactivationMethod

A

B C

Figure 2. Possible scenarios of defining the moments of business rule invocation
(gray state – the rule can not be fired, white state – the rule can be fired)

– after execution of activation method but be-
fore invocation of deactivation method (case
A in Fig. 2; business rule can be fired in S1
state),

– after execution of a sequence of activation
methods (case B in Fig. 2, where the se-
quence consists of three methods; business
rule can be fired in S3 state),

– before execution of a sequence of deactiva-
tion methods (case C in Fig. 2, where the
sequence consists of three methods; business
rule can be fired in S0, S1 or S2 states).

The presented cases (A, B, C in Fig. 2) can be
put together to define more complicated context.

3. DSL definition

To hide the complexity of integration layer a
textual domain specific language was defined.
It allows to specify how to integrate business
logic with business rules in a declarative way.
The full meta-model of the DSL consists of 29
classes and 42 relationships (17 generalizations,
25 associations). The concrete syntax of the lan-
guage was defined in the form supported by the
oAW framework. Models written in DSL are val-
idated against a set of rules expressed in Check
language which is a part of the Xtext frame-
work. Transformation between models and As-

62 Bogumiła Hnatkowska, Krzysztof Kasprzyk

pectJ source code was implemented in Xpand
template language. The general structure of text
files written in DSL is presented below:
Package declaration
[Import section]
[Global object declaration]
Event definitions
Business logic to business rules link definitions
The presentation of the DSL is constrained to
mandatory elements.

3.1. Package Declaration

Package declaration has the same form as in java
program. It specifies where (to what package)
generate AspectJ code.

3.2. Event Definition

Business rules are fired in strictly defined mo-
ments during program execution. As it was men-
tion above there are two kinds of activation
events: method invocation event, and attribute
change event. Definition of an event activated by
method invocation has a form presented below:
event <event name> isExecutionOf method

<method name> in <type name>
[withParams (<parameter list>)]
[returns <type name>]

end
The definition contains the unique name for

the event and the signature of the method (op-
tionally types of parameters and type of re-
turned value).

As activation event is also responsible for
preparing the context to business rules evalua-
tion. By using asFact keyword some data asso-
ciated with method execution are passed to the
rules engine:
– The reference to an object realizing the

method (in <type name> asFact <object
name>);

– The value returned by the method (returns
<type name> asFact <object name>);

– The references to objects passed as pa-
rameters (withparams(<type name 1>,
..., <type name k>) asFact <object
name 1>,..., <object name k>).

The data will be used further in link defini-
tions (see chapter 3.3).

Definition of an attribute change event has
the form presented below:
event <event name> isUpdateOf field

<attribute name> in <type name>
end
It defines the unique name for the event, the lo-
calization (class) and the name of the attribute.
Similarly to the method activation event there
is a possibility to exhibit some data:
– The new value of the attribute (newValue
<type name> asFact <object name>);

– The object which attribute is modified (in
<type name> asFact <object name>).

3.3. Business Logic to Business Rules
Link Definition

Business logic to business rules links are the
main elements of DSL. They are built upon
events and values exhibited by them. Defini-
tion of the link determines what business rule(s)
when to fire, and optionally the data necessary
for business rules evaluation, context of execu-
tion etc.:
link <link name>

[configuredBy <path to configuration file>]
fires <rule names> <when clause> <event name>
[requires <object name_1>,...,<object name_k>]
[active <context definition>]

end
The most important part of the definition is

fires clause. It is a regular expression defining
the names of business rules that should be fired
in a reaction to a specific event. The when clause
specifies exactly when to run business rules.
There are three possibilities to choose from:
1. before (rules are called before event activa-

tion);
2. after (rules are called after event activa-

tion);
3. insteadOf (rules are called instead of event

activation).
The requires clause is used for passing nec-

essary data identified by names to a rule en-
gine. The order of object names is important
because it determines the order of events that

Integration of Application Business Logic and Business Rules with DSL and AOP 63

are responsible for preparing the objects. The
active clause defines the context (additional
constraints) in which the activation event (de-
fined in fires clause) results in business rules
invocation. There are many possibilities for con-
text definition, below are presented two of them:
– while <event name> – activation event

must occur within flow of method defined by
an event,

– except <event name> – activation event
must occur outside flow of method defined
by an event.

4. Examples

4.1. Example 1

Let consider a simple business process (called
Order Processing) that aims at processing an
order of a given customer. The process consists
of four basic operations performed in a sequence:
1. order validation,
2. order’s total cost calculation,
3. order’s shipping cost calculation,
4. sending an order for further realization.

If an order is not validated (result of opera-
tion 1), status of the order is set to rejected and
the whole business process is stopped; otherwise
status of the order is set to accepted, and the
process is continued. The business process is con-
strained with the following set of business rules:
– Rule 1: “Gold” customer pays 40% less for

shipping.
– Rule 2: “Platinum” customer pays nothing for

shipping.
The data model and the business layer model

(limited to the considered example) of the ap-
plication supporting Order Processing business
process is presented in Fig. 3. An order contains
a collection of order items, each of which has
a price defined. An order is placed by a cus-
tomer. A customer belongs to one of customer
categories (regular, gold, platinum). The main
class realizing the business logic is OrderProcess-
ingService with processOrder operation. The op-
eration implements all four operations defined
for the business process – see Fig. 4.

The business rules were defined in DRL lan-
guage and stored in JBoss engine. Each business
rule was given a unique name:
– Rule 1 – Reduce shipping cost for gold cus-

tomers.
– Rule 2 – Reduce shipping cost for platinum

customers.
An example of rule definition in DRL lan-

guage is shown below:
rule "Reduce shipping cost for gold customers"
when

order: Order(shippingCost > 0)
customer: Customer(category == CustomerCategory.GOLD)

then
order.setShippingCost(order.getShippingCost() * 0.6f);

end
Business rules should be fired in strictly de-

fined moments of application execution. Rule 1
and Rule 2 should be fired after execution of
calculateShippingCost method, but only if the
method was invoked inside processOrder flow.
Both rules modify the value returned by the
calculateShippingCost method basing on spe-
cific customer information. Following examples
present how to define activation event, and a link
between application business logic and business
rules in proposed DSL:
event ShippingCostCalculation isExecutionOf method

calculateShippingCost
in OrderProcessingService withParams (Order)

end
link CustomizeShippingCost

fires "*shipping cost*" after ShippingCostCalculation
requires customer newOrder active while OrderProcessing

end
Business rules (Rule 1, Rule 2) are identified

based on part of their names (“*shipping cost*”
regular expression).

The DSL definition is automatically trans-
formed to AspectJ code. The following code
presents result of such transformation:
package pl.wroc.pwr.casestudy.aspects;
import pl.wroc.pwr.casestudy.domain.Customer;
...
import org.drools.StatelessSession;
...
public aspect CustomizeShippingCostAspect

percflow(execution(

64 Bogumiła Hnatkowska, Krzysztof Kasprzyk

-email : String

Customer

+addItem(wartość item : OrderItem)

-shippingCost : float

-totalCost : float

Order

+REJECTED

+ACCEPTED

+EXECUTED

«enumeration»

OrderStatus

+REGULAR

+GOLD

+PLATINUM

«enumeration»

CustomerCategory
-price : float

OrderItem

1 *

*

1
1

1..*
*
1

+processOrder(wartość i wynik customer : Customer, wartość i wynik order : Order)

#calculateTotalCost(wartość order : Order)

#calculateShippingCost(wartość order : Order)

OrderProcessingService

+validateOrder(wartość item : OrderItem)

OrderValidator

+storeOrder(wartość item : OrderItem)

OrderRepository

1
1

1
1

Figure 3. Data model and business logic layer for considered example

void OrderProcessingService.processOrder(
Customer, Order))) {

private Customer customer;
private Order newOrder;
private int capturedFacts = 0;
private static int getCapturedFacts() {
if (CustomizeShippingCostAspect.hasAspect()) {

return
CustomizeShippingCostAspect.aspectOf().capturedFacts;

} else {
return -1;

}}
before(Customer customer, Order newOrder):

execution(void OrderProcessingService.processOrder
(Customer, Order)) && args (customer, newOrder)

&& if (getCapturedFacts() == 0) {
this.customer = customer;
this.newOrder = newOrder;
this.capturedFacts++;

}
pointcut shippingCostCalculationPointcut() :

execution(
void OrderProcessingService.calculateShippingCost(Order))
&& cflow(execution(
void OrderProcessingService.processOrder
(Customer, Order))) && if (getCapturedFacts() == 1);
after() : shippingCostCalculationPointcut () {
RuleAgent agent

= RuleAgent.newRuleAgent("config.properties");
RuleBase ruleBase = agent.getRuleBase();
StatelessSession session = ruleBase.newStatelessSession();
session.setAgendaFilter(

new RuleNameMatchesAgendaFilter("*shipping cost*"));
try {

session.execute(new Object[]{customer, newOrder});
} catch (ConsequenceException exc) {

Throwable originalException = exc.getCause();
if (originalException instanceof RuntimeException){

Integration of Application Business Logic and Business Rules with DSL and AOP 65

Figure 4. Order processing realization

throw (RuntimeException) originalException;
} else {

throw exc;
}}}}

4.2. Example 2

The second example considers business rules for
cross and circle game. For the game following
rules were identified:
– Rule 1: Board size is set to 3 x 3; at the

beginning all fields are free.
– Rule 2: The game is for two players: one uses

circle and the other – cross symbol.
– Rule 3: Players set moves in turns.
– Rule 4: Player should place his/her symbol

on a free field.
– Rule 5: Game is over if someone places 3 the

same symbols in vertical, horizontal or diag-
onal line – this player is the winner.

– Rule 6: Game is over where there is no free
place – nobody wins.
Based on business rules the class diagram

presenting business terms and facts was elab-
orated – see Fig. 5.

In the Table 1 we consider possible ways of
implementation above mentioned business rules;
the first alternative is to implement business
rules directly in object-oriented program; the
second – to implement them in JBoss rule engine
and invoke using intermediate layer. The last
column in the table presents some comments,
and the proposed solution.

The sequence diagram presented in Fig. 6.
shows a possible implementation of message
passing (main flow of events) after object-ini-
tialization before applying proposed architec-
ture. The places when to invoke particu-
lar business rules are marked there by UML
notes.

Eventually, only the business rules 4–6 were
implemented within proposed architecture. Be-
low there is an example definition of Rule 4 writ-
ten a in DLR language that is accepted by JBoss
engine. The rule causes an exception when the
condition is evaluated to true.
rule "Rule4"
when

$move: Move()
$board: Board()

66 Bogumiła Hnatkowska, Krzysztof Kasprzyk

+IN_PROGRESS

+NO_WINNER

+WIN_CROSS

+WIN_CIRCLE

«enumeration»

GameState

+CROSS

+CIRCLE

+FREE

«enumeration»

FieldState

+setMove()

-size

Board

-x

-y

Move

+setMove()

+getState()

+calculateNewState()

Game

+setState()

Field

1

*

11

1

1

1 1

Figure 5. Terms and facts for cross and circle game

eval($board.getFieldState($move) == FieldState.CROSS ||
$board.getFieldState($move) == FieldState.CIRCLE)

then
throw new IllegalStateException("Place must be free");

end
The activation event definition in DSL lan-

guage as well as link definition for Rule 4 has
the following form:
event setMoveEv isExecutionOf

method setMove in Board asFact boardSetMoveEv
withParams (Move asFact moveSetMoveEv FieldState

asFact fieldStateSetMoveEv)
end
link setMoveEv_Rule4

fires "Rule4" before setMoveEv
requires moveSetMoveEv boardSetMoveEv

end
The activation event for Rule 4 is an invoca-

tion of setMove method. The parameters of the
method are further passed to business rule en-
gine. Rule 4 should be evaluated before setMove
method is called – what is expressed in link def-
inition, and the rule itself needs two parameters
to work on.

Based on DSL specification AspectJ code
was generated. In the code activatation events
are represented by pointcuts while links by ad-
vices:
public aspect setMoveEv_Rule4Aspect {

pointcut setMoveEvPointcut(Move moveSetMoveEv,
Board boardSetMoveEv):

execution (void Board.setMove(Move, FieldState))
&& args (moveSetMoveEv, FieldState)
&& target (boardSetMoveEv);
before(Move moveSetMoveEv, Board boardSetMoveEv):

setMoveEvPointcut (setMoveEv, boardSetMoveEv) {
StatelessSession session

= AspectHelper.ruleBase.newStatelessSession();
session.setAgendaFilter(

new RuleNameMatchesAgendaFilter("Rule4"));
try {

session.execute(new Object[]{moveSetMoveEv,
boardSetMoveEv});

} catch (ConsequenceException exc) {
Throwable originalException = exc.getCause();
if (originalException instanceof RuntimeException) {

throw (RuntimeException) originalException;
} else {

throw exc;
}}}}

The rules can be checked by JUnit tests. Be-
low unit test for Rule 4 is presented:
@Test(expected=IllegalStateException.class)
public void testRule4() {

System.out.println("==Rule 4 - free place==");
Game service = new Game();
Move move = new Move();
move.setX(1);

Integration of Application Business Logic and Business Rules with DSL and AOP 67

Table 1. Possible ways of business rules implementaiton for cross and circle game

Rule Classical OO Proposed architecture Comments
No. implementation
Rule 1 Appropriate constructors Method invocation event Initializing objects within

(for constructors) JBoss is possible, however
looks strange; classical OO
implementation is used

Rule 2 Implemented at GUI level. Assured by terms Classical OO
Assured by terms definition definition implementation is used

Rule 3 Implemented at GUI level At least last move must To simplify the class
be remebered; structure classical OO
Method invocation event implementation is used
(setMove method)

Rule 4 Either setMove method Method invocation event Proposed architecture
returns bool value (true for setMove method; is used
when place is free) or an exception is thrown
setMethod throws an when place is occupied
exception when place
is occupied

Rule 5 After setMove method Method invocation event Proposed architecture is
Rule 6 the state of a game is either for setMove method used. The new state of a

recalculated; the interface or for calculateNewState game might be calculated
asks a game for its new method; the interface asks after setMove method,
state a game for its new state what is not easly to observe.

To increase readibility the
empty calculateNewState
method is provided for
Game class – its invocation
fires business rule 5
validation

move.setY(1);
service.setMove(move, FieldState.CROSS);
service.setMove(move, FieldState.CIRCLE);

}

5. Related works

Other researchers have also noticed relationship
between crosscutting nature of business rules
and aspect-oriented paradigm. In [2] authors
analyze if domain knowledge can be treated as
one of the system’s aspects that should be de-
veloped and maintained independently of other
concerns. In [8] author investigates how to move
implementation of business rules from core busi-
ness classes to aspects. Two business rules for
a system that supports transferring funds be-
tween bank accounts were defined and imple-
mented in AspectJ language. Conducted analy-

sis is neither thorough nor systematic but shows
that aspect-oriented programming language can
support implementation of business rules in
object-oriented systems. In [1] an approach for
expressing business rules at a high level of ab-
straction is presented. A high-level business rule
language and high-level business rule connec-
tion language were defined. Proposed solution is
similar to ours because it uses aspect-oriented
paradigm to encapsulate source code that con-
nects business rules with the core application.
Each high-level rule is automatically mapped to
a java class, but only inferences and computa-
tions are supported. JAsCo [6] aspect-oriented
language is used for low-level implementation
of connections between rules and application.
For each rule connection specification an aspect
bean and a connector are generated. Our ap-
proach differs from that one presented in [1]
mainly because of different technologies (JBoss

68 Bogumiła Hnatkowska, Krzysztof Kasprzyk

Figure 6. Sequence diagram for game scenario

instead of pure Java) and languages (AspectJ
instead of JAsCo) used in a proof-of-concept im-
plementation of the integration layer. Moreover,
our DSL for integration layer is more flexible
and expressive than the high-level business rule
connection language proposed in [1]. It supports
all kinds of business rules, allows to more precise
activation event’s context definition and offers
better support for capturing business objects
within business processes realizations.

6. Conclusions

Authors have proposed to use a specific DSL
for describing dependencies between application
business layer and business rules. At that moment
only two types of events that result in a business
rule invocation are identified (method call and
attribute change). Introduction of a new event
kind must be followed with extension of both,
DSL syntax and DSL-to-code transformations.

Applying proposed DSL for the integration
layer has many advantages. It allows to de-
fine connections between rules and business pro-
cess at higher abstraction level in a declarative
way. The syntax is easy and very flexible. The
proof-of-concept implementation proved that
the reduction above 70% in source code line
numbers is possible. The solution is platform
independent, so – if something changes at im-
plementation level it will only have influence
on model-to-code transformations. The transfor-
mations are complete in the sense that obtained
aspect definitions need not to be changed by pro-
grammers.

The main disadvantage of DSL is that to ap-
ply it successfully you need to know the business
classes, relationships among them, the semantics
of their methods and the interactions among in-
stances. Therefore, the obvious direction of fur-
ther research is a formalization of business rules
and business processes, that allow to abstract
from their concrete implementations.

Integration of Application Business Logic and Business Rules with DSL and AOP 69

References

[1] M. A. Cibrán and M. D’Hondt. A slice of
MDE with AOP: Transforming high-level busi-
ness rules to aspects. In J. Smith, editor,
MoDELS, pages 170–184, 2006.

[2] M. D’Hondt and T. D’Hondt. Is domain knowl-
edge an aspect? In Proceedings of the Workshop
on Object-Oriented Technology, pages 293–294,
London, UK, Springer-Verlag, 1999.

[3] B. V. Halle. Business Rules Applied – Building
Better Systems Using the Business Rules Ap-
proach. Wiley, 2002.

[4] E. F. Hill. Jess in Action: Java Rule-Based Sys-
tems (In Action Series). Manning Publications,
2003.

[5] ILOG JRules. http://www.ilog.com/products/
jrules/.

[6] JAsCo language documentation. http://ssel.
vub.ac.be/jasco/.

[7] JBoss rules. http://www.jboss.com/products/
rules.

[8] R. Laddad. AspectJ in Action. Practical As-
pect-Oriented Programming. Manning Publica-
tions, 2003.

[9] OpenArchitectureWare user guide. http://
www.openarchitectureware.com/staticpages/
index.php/documentation.

[10] R. Ross. The business rules manifesto. http://
www.businessrulesgroup.org/brmanifesto.htm,
2003.

http://www.ilog.com/products/jrules/
http://www.ilog.com/products/jrules/
http://ssel.vub.ac.be/jasco/
http://ssel.vub.ac.be/jasco/
http://www.jboss.com/products/rules
http://www.jboss.com/products/rules
http://
www.openarchitectureware.com/staticpages/
index.php/documentation
http://www.businessrulesgroup.org/brmanifesto.htm
http://www.businessrulesgroup.org/brmanifesto.htm

	Introduction
	Features of Integration Layer
	DSL definition
	Package Declaration
	Event Definition
	Business Logic to Business Rules Link Definition

	Examples
	Example 1
	Example 2

	Related works
	Conclusions
	References

