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Abstract
Performance of software projects can be improved by providing predictions of various project
characteristics. The predictions warn managers with information about potential problems and
provide them with the possibility to prevent or avoid problems. Large software projects are charac-
terized by a large number of factors that impact the project performance, which makes predicting
project characteristics difficult. This paper presents methods for constructing prediction models
of trends in defect inflow in large software projects based on a small number of variables. We refer
to these models as short-term prediction models and long-term prediction models. The short-term
prediction models are used to predict the number of defects discovered in the code up to three
weeks in advance, while the long-term prediction models provide the possibility of predicting the
defect inflow for the whole project. The initial evaluation of these methods in a large software
project at Ericsson shows that the models are sufficiently accurate and easy to deploy.

1. Introduction

Large software projects have very different dy-
namics than small projects; the number of fac-
tors that affects the project is much larger than
for small and medium software projects. There-
fore, while constructing predictions for large
software projects, there is a trade-off between
the prediction accuracy and the effort required
to collect the data necessary to predict (desig-
nated by the number and complexity of vari-
ables). The need to collect larger number of
data is particularly important as the data may
be distributed over time and across the globe.
Ericsson is no exception in that. The current
practices for constructing predictions in large
software projects at Ericsson rely heavily on ex-
pert estimations, which are rather time consum-
ing; in particular the experts use analogy based
classification techniques while constructing the

predictions for defect inflow – by identifying sim-
ilarities and differences between projects, the ex-
perts construct the predictions.

In this paper we present a case study con-
ducted at Ericsson which results in developing
new methods for short-term and long-term de-
fect inflow prediction. In our case (and at Er-
icsson), defect inflow is defined the number of
defects reported as a result of executing test
cases during the development project at a spe-
cific timeframe, often a week, a month or a year.
The term inflow is used in the company to de-
note that the defects which are discovered have
to be removed before the project concludes (i.e.,
the product is released) and therefore these de-
fects constitute additional work inflow in the de-
velopment project.

In this paper we present two methods for pre-
dicting defect inflow in large software projects in
industry:



90 Miroslaw Staron, Wilhelm Meding

– short-term defect inflow prediction used to
predict defect inflow for periods up to 3
weeks on a weekly basis, and

– long-term defect inflow prediction for the en-
tire project lifecycle on a monthly basis.

For each project, the long-term prediction model
provides means of planning projects and allocat-
ing resources by taking into consideration ex-
pected number of defect detected which have to
be removed before the release. The short-term
prediction model provides the means of immedi-
ate monitoring of the defect inflow status in the
project. The methods complement each other as
the predictions from the short-term model need
to be interpreted in the context of the predic-
tions from the long-term model.

In this paper we also present an evaluation
of these two methods in a large software project
at Ericsson. The results of the evaluation show
that both the short-term and long-term predic-
tion models developed using our methods in-
crease the prediction accuracy in comparison to
the existing practices.

The structure of the paper is as follows. Sec-
tion 2 presents the most relevant work for this
paper. Section 3 introduces the context of the
case study, in particular the organization of the
large projects for which the methods are con-
structed. Section 4 describes the short-term pre-
diction method, while Section 5 presents the
long-term prediction method. Section 6 presents
the process of evaluation of the prediction mod-
els and Section 7 presents the results from the
evaluation and Section 8 validity evaluation of
our study. Finally, Section 9 contains the con-
clusions.

2. Related Work

The most related work to our long-term pre-
diction method is the work of Amasaki [2] who
also aims at creating defect inflow profiles and
trends. Their work is focused on using trends
from development project to predict post-release
defect inflow, which is different from our work.
Our methods are intended to predict the defect
inflow trends in the development project (i.e.,

when the software product has not been released
yet) with the aim to support project manage-
ment rather than maintenance of the product.

Our long-term defect inflow prediction model
is similar to the the HyDEEP method [9] by
Klas et al. The HyDEEP method aims to sup-
port product quality assurance similarly to our
work. The HyDEEP method requires establish-
ing a baseline for effectiveness of defect removal
process which requires additional effort from the
quality managers (compared to our method).
The mean relative error of the predictions cre-
ated by HyDEEP can be up to 29.6% which
makes it a viable alternative to our long-term
defect inflow prediction. In our future work we
intend to compare the HyDEEP method to our
long-term prediction in our industrial context to
compare the complexity and ease-of-use of these
two methods.

When developing the long-term defect inflow
prediction model we used a similar approach to
Goel [7]. Goel’s process advocates for using one
of the predefined defect inflow prediction model
– e.g. Goel–Okumoto Nonhomogeneous Poission
Model, whereas we advocate for using linear
regression methods. The models considered by
Goel usually consider non-linear dependencies
between defect occurrences and between testing
and defect discovery. Based on our discussion
with experts at the company the dependencies
in our case are linear cause-effect relationships.

Our research on long-term defect inflow pre-
diction models is similar to the research on re-
liability theory in software engineering w.r.t the
fact that we are interested in the defect in-
flow profile and not defect density during de-
velopment. One of the most well-known mod-
els used in the reliability theory is the Rayleigh
model [10], which describes the defect arrival
rates for software projects after the release. It
was the first model we attempted to adjust and
apply before we created the method presented
in this paper without much success. We use this
model in the evaluation to show why this model
was not appropriate for our case. Our work is
substantially different from the models which
predict the defect inflow after release for the fol-
lowing reasons:
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– we can assume that when the development
project is concluded, the defects reported are
taken care of during the maintenance project
(which can use the reliability theory to pre-
dict the defect inflow),

– changes in the trends of the defect inflow are
caused by the project milestones and do not
depend on the time after the release.

These underlying differences from the reliability
theory underpin our research and make us have
a different approach than the reliability theory.

Li et al. [11] evaluated empirically the ways
of predicting field defect rates using Theil fore-
casting statistics. The results of their work in-
fluenced the design of our study on long-term
defect inflow prediction, although we see their
assumption of defects being reported after the
release to be the main difference in contexts from
our research. The Software Reliability Growth
Model [13], which is used in their paper, seems
not to be applicable to the development projects
done in iterative way, since it assumes that no
new functionality is developed when the defects
are reported; this is not the case of the develop-
ment projects.

In our future work we consider extending our
prediction methods by using the same princi-
ples of Constructive Quality Modeling for De-
fect Density Prediction (COQUALMO) [4] and
its recent extension – Dynamic COQUALMO
[8]. In particular we intend to consider defect
introduction and removal as two separate pro-
cesses and use the efficiency of defect removal
(from [9]) as one of the variables in our predic-
tion models in the short-term predictions.

In our short-term models we consider the de-
fect inflow to be the function of characteristics
of work packages (e.g. the accumulated number
of components reaching a particular milestone)
and not directly the characteristics of the af-
fected components (e.g. size or complexity). Us-
ing the characteristics of components as the sole
predictors would provide us with a possibility
to predict the defect density of the component
and present this data on a monthly/weekly ba-
sis (based on when the component will be put
under testing). Such an approach would be an
extension of the current work on defect den-

sity, e.g., [3, 16, 12, 1]. In our case, neverthe-
less, this approach seems not feasible, because
the information about how the components are
to be affected by the project is not available at
the time of developing predictions; in particular
the change of size and complexity is not avail-
able. For short-term predictions, the data on size
and complexity of components was not avail-
able on a weekly basis simply because measur-
ing the size and complexity change is not mean-
ingful for particular weeks; the measurements of
component characteristics are done according to
project plans – e.g. builds – and not on a weekly
basis (i.e., not according to calendar time). In
our further work we intend to evaluate if it is
feasible to re-configure this data and use it as
an auxiliary prediction method.

Our research on short-term defect inflow can
be extended by using the research of Ostrand
et al. [17] on predicting the location of defects
in software components in large software sys-
tems. Predicting the location of defects can be
applied as the next step after the long-term de-
fect inflow predictions are in place, to guide the
project managers into channelling testing efforts
into components (or work packages which affect
these components) which are historically respon-
sible for the largest amount of defects in the sys-
tem.

When developing the short-term defect in-
flow prediction models we considered using
capture-recapture techniques [18] for estimating
the number of defects in the product to assess
the viability of our predictions. However, we de-
cided to prioritize the simplicity of data collec-
tion since using capture-recapture data would
require additional effort from the testers when
reporting discovered defects and a more thor-
ough statistics of the data from the defects
database.

3. Context

The context of the case study is Ericsson and one
of its large projects, which is developing one of
the releases of a network product. In the course
of development of the methods we used the pre-
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vious releases of the product and we applied the
methods on the new release of the product. The
product has already had several releases and it
can be considered as a mature one. Choosing
late project releases decreases the risk of using
data biased with immaturity in the organiza-
tion, as it has already been shown by [21, 22] in
a similar context at the same company.

As a new practice at Ericsson, the large soft-
ware projects are structured into a set of work
packages which are defined during the project
planning phase. In the projects which we stud-
ied, the temporal aspects of defect discovery
were more important than the total number
of defects for the products. This was dictated
by the fact that stakeholders for this particular
work were project managers and at the project
management level, the defect inflow is a measure
of extra effort in the project (as the discovered
defects have to be removed from the product
before the release). The number of defects dis-
covered at a particular point in time seems to
be a function of the number of work packages
reaching the testing phase. Complexity and size
characteristics of the product do not have a di-
rect impact on the number of defects discovered
in a particular time frame, but the total number
of defects discovered in the product.

In the existing prediction work on de-
fect density [3, 16, 12, 14] it is usually the
case that a component is developed by a sin-
gle work package (or even the project, de-
pending on the size of the component and
project). In the case of Ericsson, work pack-
ages are related to the new features being devel-
oped and seldom result in creating completely
new subsystems or single system components.
The division of project into work packages is
based on customer requirements, while the di-
vision of system into sub-systems and compo-
nents is based on such elements as architec-
tural design and the architecture of the un-
derlying hardware (hardware/environment con-
straints). Each work package develops (or make
changes to) components for each new large
project, which makes it hard to develop a
unified defect inflow prediction model using
measurements at the component level. Dur-

ing the whole product life cycle (which spans
over more than one large project – also re-
ferred to as release from the perspective of
the product) the division of projects into
work packages changes to a large extent (as
the requirements are different for every re-
lease). Therefore using work package charac-
teristics (which are based on distributing func-
tionality) makes the method for long-term
predictions generalizable to other projects
at Ericsson.

Furthermore, from the perspective of project
management, the defect inflow is also a function
over the status of the project, i.e., where in the
lifecycle the project is. This information is con-
veyed by the work package completion status.
This is the assumption that we use in construct-
ing the defect inflow predictions – that the defect
inflow rate is dependent on where in the lifecycle
the project is. During the project lifecycle there
are 3 major milestones which are important for
the long-term prediction method:
– Md – design ready milestone, which defines

the point when all work-packages have fin-
ished designing. The Md milestone is used as
a reference point when comparing the base-
line and predicted projects,

– Mt – test ready milestone, which defines the
point when all work-packages have finished
their tests,

– Mf – product finished, which defines the
point when the development project con-
cludes and the product is released (the main-
tenance organization takes over the responsi-
bility for the released version of the product
– for that period of time the reliability theory
can be used to predict the defect inflow).

Predicting the defect inflow in the large soft-
ware projects at Ericsson is an important task
for project planning (long-term predictions),
project monitoring, and early warning mecha-
nism (short-term predictions). Ericsson’s qual-
ity managers created the predictions manually
using expert opinions and analogy based tech-
niques. The process of creating the predictions
was time consuming and resulted usually in cre-
ating predictions for 2 months and interpolat-
ing the remaining months using straight lines.
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The short term predictions were not widely used
in the company due to the fact that they were
effort intensive. The new organization of soft-
ware projects provides a unique opportunity to
create more accurate and less time-consuming
prediction models using statistical regression
techniques.

4. Short-Term Defect Inflow
Prediction

In this section we present the process of develop-
ing the short-term prediction model, introduce
methods used for developing the model, present
the development of the model, and finally provide
a short example based on a case from Ericsson.

4.1. Process

The process of creating predictions in our case
started by using a baseline project data to de-
velop the prediction models, which resulted in
a set of candidate models. The applicability of
these candidate models for predictions was as-
sessed by examining the R2 model-fit coefficient
[23]. The candidate model which had the high-
est R2 was chosen for further development. This
model was used on a new set of data from one
of the current projects to check if it was ap-
plicable for predictions. The check was done by
calculating Mean Magnitude of Relative Error
or MMRE [5]. If the MMRE was sufficiently low
(below 30%, which was arbitrarily chosen by Er-
icsson), then the model was used for predictions.
If the MMRE was higher than 30% then the
“second-best” candidate model was used with
the new set of data and a new MMRE was cal-
culated.

4.2. Methods

When developing the models we used a num-
ber of statistical methods. We decided that the
prediction model would be in form of a linear
equation – an outcome of multivariate linear re-
gression method [23]. The choice of linear re-
gression was dictated by the dependencies be-

tween measures (predictor variables) at Erics-
son. Based on discussions with experts in the
company we could not identify polynomial or
exponential dependencies in short-term predic-
tions which dictated the use of linear model. To
construct the model we used the previous release
of the product, which we found to be similar in
size, complexity, and maturity of project teams
to the new projects in the company.

In order to avoid problems with co-linearity
within our data set we used Pricipal Component
Analysis or PCA [6]. Principal component anal-
ysis was performed prior to multivariate linear
regression and was used to identify variables in
the data set which can explain most variability
in the data set. We did not use the principal
component since our goal was to use as little
data as possible and still be able to have accu-
rate predictions.

To create the multivariate linear regres-
sion equation we used the method of Least
Squares [23] for fitting coefficients in the equa-
tion and we used the model-fit coefficient R2 [23]
when evaluating whether the model can be used
for predictions. When we evaluated the model
on a new data set from the current project we
used MMRE [5] to check how well the predic-
tions fit the actual values of defect inflow. The
evaluation methods are described in more detail
in Section 7.

4.3. Model Development

4.3.1. Assumptions and Application

The short-term defect inflow prediction model
was based on the following assumption: we used
data from past weeks to describe the defect in-
flow for the current week. In other words, the
dependent variable in the model was the defect
inflow for the current week (which has already
been known), while the independent variables
were the defect inflow from previous weeks and
planned/actual milestone completion status for
the current week and the previous weeks.

This assumption meant that once we had
the regression model describing the defect inflow
for a particular week using data from the past
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weeks, we could use this model to predict the
defect inflow for the coming weeks by substitut-
ing data for past weeks with the data from the
current week. As the predictor variables we used
the defect inflow for the current project (for the
time up to till the current week), and milestone
completion status.

The short-term prediction model allowed
predicting the defect inflow for 1–5 weeks in ad-
vance, for example: if we found that our predic-
tor variables were number of defect inflow from
5 weeks before and the accumulated planned Md
completion, using the data for the current week,
we could predict what the defect inflow will be in
5 weeks. However, through simulations we found
that the predictions for future weeks 4 and 5 had
low prediction accuracy and therefore they are
not discussed in this paper.

4.3.2. Choice of Predictor Variables

The choice of predictor variables was dictated by
the availability of data and our goal – to make
predictions based on the data that already ex-
isted in the organization and was easy to obtain.
As discussed in Section 3, we could use milestone
completion and test progress to predict defect in-
flow (since these were relevant variables and they
influenced the defect inflow). The source of the
defect inflow: testing was performed before both
the design ready milestone (Md) and test ready
milestone (Mt). We discovered that we needed to
distinguish between Md and Mt phases as Md is
only used before the Md date for the project and
Mt completion status is used after the Md date.

In our case study we took into consideration
the following predictor variables:
– Number of planned Md completions (pre-

fixed with Mdp), and accumulated number
of planned Md completions (prefixed with
AMdp) – accumulated number of comple-
tions is the number of completions from the
beginning of the project until the current
week – for
– The predicted week (Mdp0, AMdp0),
– 1 week before (Mdp1, AMdp1), 2 weeks

before (Mdp2, AMdp2), . . . , 5 weeks be-
fore (Mdp5, AMdp5) the predicted week,

– Number of actual Md completions (Mda)
and accumulated number of actual Md com-
pletions (AMda) for
– 1 week before (Mda1, AMda1), 2 weeks

before (Mda2, AMda2), . . . , 5 weeks be-
fore (Mda5, AMda5) the predicted week;

– Number of planned Mt completions (Mtp)
and accumulated number of planned Mt
completions (AMtp) for
– The predicted week (Mtp0, AMtp0),
– 1 week before (Mtp1, AMtp1), 2 weeks

before (Mtp2, AMtp2), . . . , 5 weeks be-
fore (Mtp5, AMtp5) the predicted week;

– Number of actual Mt completions (Mta) and
accumulated number of actual Mt comple-
tions (AMta) for
– 1 weeks before (Mta1, AMta1), 2 weeks

before (Mta2, AMta2), . . . , 5 weeks be-
fore (Mta5, AMta5) the predicted week;

– Number of reported defects (defect inflow,
Di) for
– 1 week before (Di1), 2 weeks before

(Di2), . . . , 5 weeks before (Di5) the pre-
dicted week.

To avoid problems with multi-collinearity we
used the variables that were not correlated and
we chose the data from the project plan which
can always be obtained early in the project.
A representative scatter plot for relationship
between two of these variables is presented in
Figure 1.

While constructing the defect inflow predic-
tion models we deliberately did not include the
data for product size/complexity as this data
was not related to project planning for the fol-
lowing reasons:
– the software components were not assigned

on a one-to-one basis to work packages and
the milestones characterize work packages,
not the components,

– the data on source code size was collected
for milestones in the project (as it does not
make sense to collect them on a weekly ba-
sis) – which means that for the whole project
we could use few data points for size,

– the organization was concerned with project
planning and monitoring, and not source
code characteristics (e.g., size is only an in-
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Figure 1. Relationship between accumulated planned test cases to be executed
and Accumulated Md closures, Spearman’s correlation coefficient: 0.96

put to the planning, but is not monitored in
the projects).

Neither did we decide to use data about Md/Mt
completion status as the accumulated num-
bers of test cases planned and executed were
highly correlated with the Md/Mt completion
status (Spearman’s correlation coefficients [23]
between 0.96 and 0.99 significant at the 0.01 sig-
nificance level).

In our search for the predictor variables we
used a large number of approaches and experi-
mented with more variables than the above ones.
However adding more variables did not increase
the accuracy of the model significantly. For in-
stance using all relevant variables (ca. 30) in one
of the equations increased the accuracy by only
1%, but the additional effort for data collection
increased significantly.

4.3.3. Reducing Number of Predictor Variables

Before constructing the regression model over
the candidate variables, Principal Component
Analysis was used to reduce the number of vari-
ables and thus identifying the strongest pre-
dictors. We experimented with the initial set
of variables (the input to PCA) in order to
achieve the best possible percentage of explain-

ing the variability at the minimal set of mea-
surements. PCA analysis identified 4–7 princi-
pal components (depending on the prediction
period: 1, 2, 3, 4, or 5 weeks in advance). The
scatter plot for the main principal components
and the defect inflow is presented in Figure 2.
Due to the confidentiality agreements with our
industrial partner, the values on the Y -axis are
not provided.

We used PCA to identify the key compo-
nents and we used variables which constituted
these components for the prediction models. We
re-calculated the loadings in the components so
that we could present the equations using the
original variables and not the components (as
this was one of our requirements while deploying
the model in the company – to use the original
names of measurements, not the names of the
components).

4.4. Result: Short-Term Defect Inflow
Prediction Model

The principal components before Md seemed to
be linearly correlated to the defect inflow, which
made the linear regression a viable technique for
building the prediction model in this case. For
the principal components after Md, the compo-
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Figure 2. Scatter plot for the main principal components and defect inflow for the models before Md
and after Md. The X-axes show the values of the components

nents did not show a strong correlation with the
defect inflow, which affects the fitness of the re-
gression models and the prediction accuracy. We
checked whether the principal components ex-
pose logarithmic and polynomial relationship to
the defect inflow, but the results showed almost
a complete lack of relationship for the logarith-
mic curve and large scatter for the polynomial
curve. This supported the claims from Ericsson
experts that the relationships are linear and not
polynomial or exponential. The variability of the
data set explained by the principal components
is presented in the last column in Table 1.

The equations used to predict the short-term
defect inflow are presented together with the R2

coefficient for the regression model and the vari-
ability explained by the component which con-
tained the variables used in the equation. The
variables used in the equations are subsets of
variables presented earlier in this section.

4.5. Example

As an example, let us predict the defect inflow
for a particular week in an example project. Let
us assume that we are in week 10 of the project,
and it is before the design ready milestone (Md).
The data for that particular week is presented

in Table 2. We predict week 11, so the values for
1 week before the predicted week are the values
for week 10 (the current week), the values for 2
weeks before the predicted week are the values
for week 9, etc. We substitute the appropriate
numbers for the equations presented in Table 1
thus obtaining the predictions for week 11. By
using the data from week 10 as the data for 2
weeks before, data from week 9 as the data for 3
weeks before, we can create predictions for week
12 – for example AMdp2 in equation is AMdp1
from Table 2 (because the data shows the values
relative to week 10, not week 12. The value of
the defect inflow for week 13 is obtained in the
same way.

The results for the short-term predictions are
presented in Figure 3.

The figure shows that given the current cir-
cumstances of the project (i.e., the number of
defects reported in the current week and the sta-
tus of the planned and accumulated numbers of
work packages reaching the Md milestone) week
13 seems to be the week when the project man-
ager should pay more attention to as the number
of defects discovered is going to be rather high.
The potential action of the project manager is
to prepare more development resources for that
week to repair the defects discovered.



Defect Inflow Prediction in Large Software Projects 97

Table 1. Defect inflow prediction models (short-term)

Before/after Md
(design ready
milestone)

Period Equation R2 Variability
explained
by compo-
nent

Before Md 1 week D = 1.499+0.584∗AMdp0 +0.650∗Di1−1.285∗
AMdp1 + 1.102 ∗AMda1

0.86 93.84%

Before Md 2 weeks D = 2.639 + 1.173 ∗ AMdp0 − 2.029 ∗ AMdp2 +
1.724 ∗AMda2 + 0.461 ∗Di2 − 0.366 ∗Di3

0.82 91.43%

Before Md 3 weeks D = 4.187−0.357∗Di3 +1.928∗AMdp5−1.192∗
AMdp0

0.62 90.92%

After Md 1 week D = 39.155+0.470∗Di1 +1.290∗AMtp0−1.185∗
AMtp1−1.214∗AMta1 +0.039∗AMtp2−0.044∗
AMta2 +1.297∗AMtp3−0.517∗AMta3 +0.003∗
AMtp4 + 0.107 ∗ AMta4 + 0.148 ∗ Di2 − 0.237 ∗
Di3 − 0.194 ∗Di4 + 0.180 ∗Di5

0.67 65.74%

After Md 2 weeks D = 53.669 + 1.419 ∗ AMtp0 − 0.682 ∗ AMtp1 +
0.099∗AMtp2−1.844∗AMta2 +0.429∗AMtp3−
0.768∗AMta3 +0.646∗AMtp4 +0.446∗AMta4 +
0.306 ∗Di2 − 0.265 ∗Di3

0.55 78.69%

After Md 3 weeks D = 24.82+0.47∗Di3−0.351∗AMtp2+0.308∗Di5 0.62 59.09%

Table 2. Data for week 10 of the project

Variable AMdp0−
week11

AMdp0−
week12

AMdp0−
week13

AMdp1 AMdp2 AMdp5 AMda1 AMda2 Di1 Di2 Di3

Value 5 5 5 13 14 20 12 12 4 5 5
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Figure 3. Short-term defect inflow prediction for week 10
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5. Long-Term Defect Inflow
Prediction

While the rationale behind the short-term pre-
diction was to predict the status of the project,
the rationale for the long-term prediction was to
create a monthly trend of defect inflows in the
project for the whole duration of the project.
The process for creating the model was the same
as for the short-term prediction, but the meth-
ods and results were different.

In the case of short-term models it was the
equations which were the resulting model. In the
case of long-term prediction it was the method
which was the result. This method consists of
the following steps:
1. Identify a baseline project,
2. Partition the defect inflow curve of the base-

line project,
3. Create regression models for each part of the

curve,
4. Calculate scaling factor for the new project,
5. Plot the defect inflow curve for the new

project.
On the contrary to the short-term defect in-

flow prediction, the long-term prediction used
a single predictor variable – project progress –
unlike several variables in the short-term predic-
tion models.

5.1. Long-Term Defect Inflow Prediction
Method Development

5.1.1. Methods

For creating the regression models we used the
polynomial regression method and we used only
one variable – the project progress – as the
predictor variable. The regression use the Least
Squared Estimators similar to the multivariate
linear regression used for short-term predictions.

For creating the scaling factors we used an
average ratio between the number of defects
reported in the new project compared to the
baseline project. The calculation of this fac-
tor Sc was done using the following formula

Sc =
1
n

n∑
i=1

pi − ai

pi
,

where: n – the number of months for which we
have the actual data, pi – the value obtained by
from the equation before scaling, ai – the value
of the actual data of defect inflow for this month.
The rationale behind this formula was that it
was an average relative difference between the
predicted defect inflow and the actual data from
the predicted project.

The scaling factor Sc was calculated for the
curve for which there was some initial defect in-
flow data available. If the data were not available
the scaling factor can be expert estimations (e.g.
before the project start).

The method for calculating the scaling
constant Sc1 for the curves which did not
start at the beginning of the project was

Sc1 =
predActualProject

predBaselineProject
,

where: predActualproject – the predicted defect in-
flow for the current project for the last month for
which the 1st equation (curve) can be used, and
predBaselineproject – the predicted defect inflow
for the equation describing the second curve.

5.1.2. Assumptions and Application

The assumption for the long-term defect in-
flow prediction in the software project was that
there existed a number of projects which could
be used as a baseline. With that respect the
long-term defect inflow prediction was similar
to the analogy-based estimations.

The long-term prediction method should be
used at the beginning of new projects in order
to estimate how many defects can be discovered
and when during the project. This information is
particularly important for project planning and
monitoring and the stakeholders for these pre-
dictions are project managers in large software
projects. The long-term defect inflow prediction
is usually not applicable for small projects since
these usually different significantly from each



Defect Inflow Prediction in Large Software Projects 99

other, even if they are executed by the same
organization and on the same product.

Our long-term defect inflow prediction model
was designed to work best for projects already
in progress as it used the actual reported de-
fect inflow from the projects to adjust the pre-
diction models and thus increase their accuracy.
Using expert estimations at the beginning of the
project should be replaced as soon as real data
is available in the new project.

5.2. Result: Method for Constructing
Long-Term Defect Inflow Prediction
Models

It should be noted that the resulting long-term
prediction model should be adjusted by the
owner of the prediction in order to increase its
accuracy. In particular, the defect inflow curve
needs to be maintained once a month so that the
predicted defect inflow is as accurate as possible.

5.2.1. Identify Similar Projects

The identification of the most similar project
needs to be done by experts, e.g., the experts
involved in creating the predictions. The factors
that should be taken into account while identi-
fying the most common projects are:
1. Estimated size of the project, measured as

number of person-hours in the project.
2. Number of “heavy” features in the project –

i.e., features which are of high complexity.
3. Complexity of the complete project – i.e., in-

cluding integration complexity.
4. Time span of the project.

The most important factor is the estimated
complexity. A rule of thumb used by experts is
that for a project which is twice as big as a ref-
erence project, the number of defect inflow in
each month would be around 75% more than in
the reference project.

The time span is important only in the case
when the projects are significantly longer, other-
wise the method compensates for that by using
the time relative to the Md milestone. Hence,

similar to the short-term defect inflow predic-
tion the Md milestone datse is an important
reference point. In case the time span of the
project is significantly longer, the scaling factor
(described later in this section) needs to be ob-
tained through expert estimates and not using
the method described in this paper.

5.2.2. Partition the Defect Inflow Curve of the
Baseline Project

In order to identify curves, identify the points
where the curves change shape. These changes
are important to identify otherwise we assume
that the fitted equations will under-/over- pre-
dict the values of the peaks in the defect inflow.
The peaks, however, are the most crucial ele-
ments to predict since project management is
interested in the information how many defect
might come in the peak time.

It should be noted that projects are usu-
ally independent from the calendar time –
which means that the prediction model should
be done according to the project milestones –
e.g. Md. However, changes in the time scale
should be done after the equations are built
and when the models are to be applied for the
current project.

5.2.3. Create Regression Models for Each Part
of the Curve

The next step is to create equations describing
the shape of the curves in this chart using regres-
sion methods. The equations for the curves can
be identified using curve estimations methods in
statistical packages. These curve estimations use
the standard regression techniques – e.g. least
square estimators.

In order to create the equations describing
each curve (identified in the previous section)
we need to:
– Use separate equation for each curve,
– Start with a straight line, and
– Change the curve type to polynomial with

order set to 2, 3 or 4. The order depends on
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the R2 – as a rule of thumb, it should be as
small as possible. The higher the degree of
the polynomial, the higher the risk of errors
in predictions when the time-scale of the pre-
dicted project is different than the time-plan
of the baseline project.
These equations “re-create” the defect in-

flow for the baseline project using mathematical
equations, which allows us to adapt the defect
inflow trends for different time scales.

5.2.4. Calculate Scaling Factor for
the New Project

Up to this point, the method constructs a set
of equations which describe the trend of defect
inflow in the baseline project. In order to pre-
dict the defect inflow in the future projects, the
equations need to be scaled (moved up or down
the y-axis) to reflect the actual values so far
of the predicted project. The goal of this step
is to have a prediction model which is in form
of a set of equations which are scaled accord-
ing to certain criteria. For the different parts
of the curves identified so far we use different
scaling factors. For the first curve, in our case
there is a single criterion: the predicted defect
inflow should fit the actual defect inflow from
the predicted project. The outcome of the scal-
ing is the scaling factor Sc, which is used in the
following way

Dm(month) = Sc ∗ y(month),

where: Dm(month) – defect inflow for a specific
month, y(month) – the predicted defect inflow
for the month calculated from the equations de-
scribing the baseline project.

As mentioned in the methods section there
are two different ways of creating the scaling fac-
tor, which are used (i) at the beginning of the
project (when no defects have been reported),
and (ii) during the project when some defects
have been reported. In the first case (i), the scal-
ing needs to be done using expert opinion – i.e.,
the expert has to provide the ratio of complex-
ity between the predicted and this ratio becomes
the scaling factor Sc.

In the latter case (ii), the scaling can be
done by “fitting” the predictions to the existing
trend in defect inflow for the predicted project.
Using the actual data means that we do not
rely on subjective estimates but we actually try
to answer the question: “How will the defect
inflow look like in the predicted project if we
continue with the current trend of defect in-
flow?” Furthermore, the predictions of defect in-
flow become more important once the project
progresses – i.e., since the defect inflow is not
expected to be large at the beginning of the
project. This fitting can be done in the follow-
ing ways: (i) Calculating the average relative dif-
ference, or (ii) Using non-linear regression. The
first one (i) works well for the projects which has
similar life span (i.e., differences in life spans
should not be more than 2 months). The sec-
ond (ii) is more robust and does not have this
limitation.

5.3. Example: Long-Term Defect Inflow
Prediction Model

In this section we present how we constructed a
prediction model for one of the projects at Er-
icsson. In our study in one of the product the
trends in the defect inflow for some of the re-
leases are presented in Figure 4. The trends are
similar, but not the same, which requires more
advanced methods for predicting the defect in-
flow than only the analogy based estimations.
Due to the confidentiality agreement with our
industrial partner, we present the data scaled
to the largest defect inflow in each project and
we present only the subset of months for the
project.

The figure shows that the trends in the de-
fect inflow are rather stable over releases (al-
though they differ in the values, which cannot be
shown in the figure due to confidentiality agree-
ments). They are presented in a relative time
scale with the common point of Md milestone;
the milestone when all work packages have fin-
ished designing.

An important observation is that all three
projects have a similar percentage of defects in-
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Figure 4. Defect inflow trends for previous projects scaled towards design ready milestone. The dots
represent removing a number of months since we cannot show the complete time frame for project

flow at the Md milestone month. Since this is
the case, we use the Md milestone month as
a reference point in constructing the long-term
predictions.

In order to identify the baseline project we
asked experts who work with these baseline
projects. They identified previous release of the
same product as the best baseline (“Release:
baseline” in Fig. 4).

In the case of this baseline project we iden-
tified the following curves:
1. months 1–5,
2. months 5–9,
3. months 9–11.
The developed trend line for months 1–5 is pre-
sented in Figure 5. The values of the defect
inflow are normalized, due to the confidential-
ity agreement with our industrial partner. The
curve equation is displayed in the chart, where x
denotes the month. The scaling factor was cal-
culated to be 1.23 in month number 3, which
meant that the new project produced ca. 23%
more defects thanAcknowledgments the previ-
ous project. We validated that with the quality
managers for that project who confirmed that
this number reflected their expert opinion.

6. Evaluation of Defect Inflow Models
in the Context of Ericsson

6.1. Design of Evaluation

When developing the prediction models we used
the model fit coefficient (R2) to observe whether
models are accurate w.r.t. the past projects
used to build the models. In this section we de-
scribe how we used the data from new (current)
projects to check whether the models accurately
predict defect inflows in new projects. We eval-
uated two aspects: the ability to predict the cor-
rect value and whether predictions over a period
of time (e.g., predictions 3, 2, and 1 weeks in
advance) predict the same value (stability). Un-
stable models change rapidly over time which
makes them less trustworthy – how can we trust
a prediction model that will change a lot in the
coming weeks/months?

We used the Magnitude of Relative Error
(MRE) metric to measure how accurate the pre-
dictions are. MRE was defined in [5] as

MRE =
|ai − pi|

ai
,
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y = 0.75714x2 + 1.4571x + 8.43
R2 = 0.9598

1 2 3 4 5

Baseline project
Trendline

Figure 5. Equation for the curve for months 1–11

where ai means the actual value for the defect
inflow for i-th week (short-term predictions) or
month (long-term predictions); pi denotes the
predicted value of defect inflow for the i-th week
or month. In the evaluation we used both the
distribution of MRE and mean MRE (MMRE).
The best models were expected to have the low-
est value of MMRE – i.e., the mis-predictions of
models are small.

For evaluating the stability we used our own
measure mean in-stability (MiST) as a metric
for comparison, which we defined as

MiST =
1
n

n∑
i=1

|m0i −mji|
m0i

,

where: n – the number of months used in the
prediction, m0i – the predicted defect inflow for
the i-th month created before the project (0th
month), mji – the predicted defect inflow for the
i-th month created in the j-th month.

In evaluation of the prediction accuracy we
compared models developed in our research
(presented in Table 1) and “average” models,
i.e., predicting using a simple average amount
of defect inflow in a baseline project (or the av-
erage number of defects in the current project
– up to the week for which the prediction was
made), and the moving averages. The rationale
behind the average models was that if we did not
know how to predict the number of defect inflow
in a particular week, we could take the average
number of defects for all weeks as an estimator;

alternatively we could also use the median (i.e.,
the most common value of the defect inflow).
Thus, in the evaluation (Figure 6), we used the
following models:
– Average number of defect inflow from the

baseline project,
– Average number of defect inflow from the ac-

tual project until the week of prediction,
– Moving average (2 weeks) of the number of

defect inflow from the current project (i.e.,
the predicted value of the defect inflow is the
average of the defect inflow from previous 2
weeks),

– Moving average (3 weeks) of the number of
defect inflow from the current project (i.e.,
the predicted value of the defect inflow is the
average of the defect inflow from previous 3
weeks),

– Value of the mode of the defect inflow from
the baseline project (to some extend this is
the use of analogy based estimation),

– Value of the mode of the defect inflow from
the current project,

– Expert estimations for 1, 2, and 3 weeks.
In order to evaluate the long-term prediction

models developed using this method, we com-
pared the prediction model developed using our
method to the following prediction models:
– Linear, quadratic, cubic, 4th degree, 5th de-

gree, and exponential curve depicting the
trend in defect inflow,

– Rayleigh model,
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– Expert estimations, which are based on the
predictions done for previous projects, prior
to our research.
The above models were chosen since they

require a similar amount of effort to create
compared to our models. We have deliber-
ately excluded methods like Bayesian Belief Net-
works [15] as their construction requires signifi-
cantly more effort than the construction of the
simple prediction models using our method.

6.2. Results of Evaluation

6.2.1. Short-Term Predictions

In this section we show how the models worked
in a new project at the company. The new
project which we chosen for the evaluation is
the next release of the same product, while the
baseline project was the previous release of the
same product.

The values for the MMRE for the reference
prediction models and the short-term prediction
models are presented in Figure 6. Figure 6 in-
dicates that the best model is the moving av-
erage for 2 weeks, which is one of the simplest
models to construct. Our prediction models have
larger mis-predictions, which are caused by the
fact that the predictions after Md are based on
the data which was weakly correlated with the
defect inflow. Despite a low value of MMRE for
predictions using moving averages, there is a dis-
advantage of these two models. Using moving
averages shows trends in the defect inflow for
more than one week, which are rather stable (the
moving average are partially used by experts in
estimating the defect inflow). However, the mov-
ing averages do not allow predicting peaks (as
the peak shown in Figure 3 for week 13).

The worst prediction models are the models
using modes from current and baseline projects;
these two models mis-predict the defect inflow
in most cases by more than 100%Ṫhe predic-
tions made by the expert had the most com-
mon mis-predictions of 75%-90%. The predic-
tions created using moving averages can result
in less accurate models (since they have a larger

percentage of mis-predictions above 90% than
’our’ models). From the experiments with the
historical data we found that the prediction
models developed in this paper had a tendency
of over-predicting (i.e., predicting values that
were larger than the actual values), in partic-
ular indicating the potential “red-alerts” for the
projects – i.e., showing that there will be a high
raise in the defect inflow in the project. Al-
though this might be a problem from the statis-
tical perspective (low accuracy), this provides a
means for project managers to get early warn-
ings of potential problems so that they can have
a time for reacting to some extent. This, how-
ever, cannot be verified on the historical data
and we are currently in the process of evaluating
the models in other large projects at Ericsson.
The interview with the expert provided the pre-
dicted values for 10 different weeks. The expert
was asked to make the predictions for 10 differ-
ent weeks in the same way as he does the pre-
dictions when they are needed (using the infor-
mation only up to the predicted week), although
making short-term predictions is not done very
often; the experts are focused on long-term pre-
dictions for the whole project. The results show
that the methods presented in this paper are not
worse than the predictions made by the expert
and hence can be used as a surrogate for expert
predictions. A disadvantage of the expert pre-
dictions is that they require a very deep, insight
knowledge into the project. The expert making
the estimations is very experienced. The time
required to create the predictions was negligibly
longer than the time required when using the
prediction models.

6.2.2. Long-Term Predictions

The values of Mean Magnitude of Relative Er-
rors (MMRE) are presented in Figure 7. The
MMRE is calculated using 7 months after the
project start (not for the whole project, since it
is not yet concluded).

This shows that the best model is using a
single, exponential equation. However, by exam-
ining only the first 7 months can be misleading,
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Figure 7. MMRE for the new project

as the predictions for the whole project using
exponential equations do not produce trustwor-
thy results by the end of the project. Figure 8
presents the predictions for the whole project.

The results from the stability evaluation
are presented in Figure 9. A good model is
not changing very much from month to month
meaning that the initial predictions are actually
trustworthy.

The stability need to be assessed together
with the actual defect inflow trend in the
project, which is presented in Figure 8. The
trend in defect inflow is different that was ex-
pected, and it is different than in the baseline
project. These differences caused the instability
of the model. However, as the project progresses,
the peak in month (a+3) was leveraged and the
trend in month (b) came back to normal. How-
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Figure 8. Long-term predictions for the new project
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ever, given the history and the way in which the
scaling factor is calculated, the current predic-
tions are that the defect inflow in the project
will be smaller than initially expected.

By observing the MiST chart in Figure 9 we
could conclude that the predictions are stable
only when there are no peaks in the defect in-
flow. The peaks are exceptional situations in the
projects and they render the predictions unus-
able, thus call for adjusting the predictions. The
presence of such a peak means that the predic-
tion model should be constructed differently –
e.g. by choosing a different baseline project, or
splitting the baseline project into more curves
(c.f. Section 5) – basically the instability is
caused by the fact that we use inappropriate
curves, which was caused by the fact that this
peak was not present in the baseline project.

7. Validity Evaluation

In this section we evaluate the validity of our
studies for constructing and evaluation of the
methods. We use the framework of Wohlin
et al. [24].

The main threat to the external validity of
our results is the fact that we developed and
used prediction methods in a single organization
within Ericsson. Even though the organization
is a large one (c.f. [20]) and we tested that at
more than one product, it could still be seen as a
threat. In order to minimize the threat we used
the predictions in more than one project and
product. The results were sufficiently accurate
for both products and they also led to taking
immediate actions by project managers in order
to prevent potential predicted problems.
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The main threat to the construct validity
is the use of data from manual reporting to
construct the prediction models. Although this
might be seen as a problem issue, from our
discussions with experts it was clear that the
simplicity to create the predictions was one of
the top priorities and hence our decision. Using
test-progress data for predicting defect inflow in
the same organization can be found in [19]. In or-
der to minimize the threat that we use “random”
variables without empirical causal relationships
we preformed a short workshop with Ericsson
experts. The outcome of that workshop was that
there is empirical causality between the predic-
tors and predicted variables.

Another threat to the construct validity is
the use of regression method in our research. Us-
ing regression algorithms can be burdened with
the problem of overfitting, i.e., fitting the re-
gression equation in short term predictions (or
curve for long-term predictions) too closely to
the baseline project. Overfitting can cause the
models to be inapplicable for other projects. We
minimize this threat by evaluating our results in
new projects and check the applicability of the
models.

The main threat to the internal validity of
the study is the completeness of the data and
mortality of data points. It is rather a com-
mon situation in industry that data might be
missing due to external factors (e.g. vacations,
sick-leaves). In our case the missing data was
handled by removing data points which were in-
complete and removing the data points which
could potentially be affected by low-quality data
(mainly during vacation periods). The number
of data points removed was small compared to
the data sets (less than 5% of data points).

Finally, we have not discovered any threats
to the conclusion validity as we used established
statistical methods to develop the models and
confirmed our findings with expert knowledge
in the company.

8. Conclusions

This paper presented two complementary meth-
ods for predicting defect inflow in large software
projects: short-term and long-term defect inflow
prediction. The methods are used for the pur-
pose of project planning and monitoring at Er-
icsson. The goal of introducing new methods in
this paper is to provide the experts with sup-
port for creating the prediction models using
statistical methods based on the data which is
already collected in the organization (or which
can be collected at reasonable costs). Using lin-
ear regression methods resulted in simple and
high-cost efficient methods, which could be seen
as a trade-off between prediction accuracy and
costs of predicting. In this paper we tried to ad-
dress this trade-off by minimizing the number
of measurements to be collected and focus on
measurements established and existing in the or-
ganization at the same time minimizing the cost
for data reconfiguration. However, in the course
of our research new ways of data collection were
introduced, which improved the practice and al-
lowed for more accurate predictions.

Based on our experience and evaluation of
these methods at Ericsson we can recommend
using these methods and adjusting them to local
needs for particular organizations. The meth-
ods are intended to support projects which
are structured around work packages and not
sub-projects. Our further work is focused on
monitoring the performance of these methods in
a larger number of projects and further evaluat-
ing their robustness. We also intend to deploy
these methods to other departments and orga-
nizations to check their external validity.
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