
e-Informatica Software Engineering Journal, Volume 4, Issue 1, 2010

Automatic Test Cases Generation from
Software Specifications

Aysh Alhroob∗, Keshav Dahal∗, Alamgir Hossain∗
∗School of Computing , Informatics and Media, University of Bradford

amhalhro@ bradford.ac.uk, k.p.dahal@ bradford.ac.uk, m.a.hossain1@ bradford.ac.uk

Abstract
A new technique is proposed in this paper to extend the Integrated Classification Tree Method-
ology (ICTM) developed by Chen et al. [13] This software assists testers to construct test cases
from functional specifications. A Unified Modelling Language (UML) class diagram and Object
Constraint Language (OCL) are used in this paper to represent the software specifications. Each
classification and associated class in the software specification is represented by classes and at-
tributes in the class diagram. Software specification relationships are represented by associated
and hierarchical relationships in the class diagram. To ensure that relationships are consistent, an
automatic methodology is proposed to capture and control the class relationships in a systematic
way. This can help to reduce duplication and illegitimate test cases, which improves the testing
efficiency and minimises the time and cost of the testing. The methodology introduced in this
paper extracts only the legitimate test cases, by removing the duplicate test cases and those
incomputable with the software specifications. Large amounts of time would have been needed
to execute all of the test cases; therefore, a methodology was proposed which aimed to select a
best testing path. This path guarantees the highest coverage of system units and avoids using all
generated test cases. This path reduces the time and cost of the testing.

1. Introduction

Unified Modelling Language (UML) provides di-
agrams to help the software developer to repre-
sent different aspects of design. It has become a
standard modelling language for designing soft-
ware. UML represents the system specifications
that could be used in software testing. The com-
mon definition of software testing usually refers
to the testing of program code and not to the
testing of models used in earlier development
stages of the software development process, such
as requirements engineering, analysis or design.
Model testing could identify many faults earlier
and could, hence, decrease repair costs. A crit-
ical component of testing is the construction of
test cases. However, software testing is an expen-
sive and labour-intensive process; typically, test-
ing consumes at least 50% of the total costs in-

volved in developing software [7]. Software test-
ing has two important purposes. First, it is com-
monly used to expose the presence of faults in
software. Second, even if testing does not reveal
any fault, it still provides increased justification
and confidence in the correctness of the software
[18]. The Category Partition Method (CPM)
was developed by Ostrand and Balcer [19] to
generate test cases from functional specifications
using the concept of formal test specifications.
Several studies [2, 3] have been conducted which
focus on CPM. Recently, Chen et al. [14] en-
hanced the CPM, by means of their choice re-
lation framework. Based on CPM, Grochtmann
and Grimm [16] developed a similar but differ-
ent method – the Classification Tree Method
(CTM). Classification trees have been used to
construct test cases in the CTM. The absence
of a systematic tree construction algorithm is

110 Aysh Alhroob, Keshav Dahal, Alamgir Hossain

the major limitation of this method. As a re-
sult, users of this method are left with a loosely
defined task of constructing a Classification Tree
(Tu). For complex specifications, this construc-
tion task could be difficult, and hence, prone to
human error. If a Tu. is incorrectly constructed,
the quality of the resultant test cases generated
from it will be poorly affected. This problem is
solved by Chen et al. [13] who use Integrated
Classification Tree Methodology (ICTM). This
method helps with the identification of test cases
via the construction of classification trees. How-
ever, their tree constructed method is rather ad
hoc. This results in a variation of classification
trees constructed in CTM from one software
tester to the next, according to his/her personal
experience and expertise. A classification hier-
archy table (Hu) has been used in ICTM to al-
leviate this problem. The hierarchy table helps
to construct classification trees by capturing the
hierarchical relation for each pair of classifica-
tions.

In ICTM [13], however, a manual method has
been used in order to detect the classifications,
associated classes and relationships. The man-
ual process requires more human intermediation
which can lead to more errors. Manual extrac-
tion of information from the software specifica-
tions will also increase the cost of testing. In this
paper, we propose an approach for generating
test cases automatically from software specifica-
tions using a class diagram and representing the
software constraints by OCL. After decompos-
ing the specifications to functional units, func-
tional units will be represented as a class dia-
gram. An XML schema mapping technique will
then be used to read the specification from the
class diagram. Transferring data from the XML
to build a hierarchy table Hu. will reduce hu-
man error in building the table. The construc-
tion of the Hu. is the step before building the
classification tree. The paper also proposes a test
data refinement technique to discard duplicate
sub-trees. The approaches are based on heuris-
tic techniques for determining appropriate test
cases for testing software.

Software testing is used to find as many
faults as possible so that a piece of software

will work to its maximum capabilities. Path test-
ing is a structural testing method that involves
using software units to find every possible exe-
cutable path. Time and cost are the main factors
when testing efficiency, therefore, avoidance of
lengthy times in testing was the target set after
the legitimate test cases were obtained [1]. This
paper extends the work presented in Alhroob,
Dahal and Hossain [1] to select the best testing
path. This technique offers the best path that
covers most of the system units.

The rest of the paper is organised as follows.
Section 2 presents the previous work in auto-
matic test data generation for UML. Section 3
presents a methodology to generate test data to
test class diagram relationships. Section 4 de-
scribes the classification tree concepts, whereas
the pruning method of duplicate sub-trees is
outlined in Section 5. Section 6 covers the best
testing path selection. Finally, conclusions and
future works are presented in Section 7.

2. Previous Work

Test data are usually generated from the re-
quirements or the code, while the design is
rarely concerned with generating test data.
Extensible Markup Language (XML) is used
to express the constraints on data and de-
tect the rules of software systems. Bertolino
et al. [6] used the XML schema to analyse
the system specifications and identify the func-
tional units. Categories are identified from func-
tional specifications. The authors [9] used XML
schema mapping and category partition to iden-
tify the related constraints and relevant val-
ues for each category. In general, the test data
generation can be extracted from those values
and constraints.

Extracting the information from UML dia-
grams allows the developer to test the system
before writing the code. Heuristic techniques
can be applied for creating quality test data.
Doungsa-ard et al. [15] proposed a GA-based
test data generation technique from specifi-
cations. Test cases were generated from se-
quences of triggers for Unified Modelling Lan-

Automatic Test Cases Generation from Software Specifications 111

Figure 1. ICTM process

guage (UML) state diagrams. Lia Bao-lin et al.
[4] constructed a scenario tree from a sequence
diagram. The scenario path was obtained from
the tree and the attributes were extracted from
the sequence diagram to generate test data au-
tomatically. Object Constraint Language (OCL)
was used to describe the pre and post condi-
tions for the system to use its system specifica-
tions. Sarma et al. [21] proposed a method to ex-
tract this information from used case templates,
class diagrams and data dictionaries. They also
presented an approach to transform the UML
sequence diagram to Sequence Diagram Graph
(SDG) and provide the SDG with different in-
formation necessary to compose test data.

Dehla [23] proposed a technique to gener-
ate test data from UML sequence and state di-
agrams. The main specifications are extracted
from the sequence diagram, while the remain-
ing information derives from the state diagram.
Sequence diagrams do not provide all informa-
tion necessary to generate test data automati-
cally. Chen et al. [13] presented ICTM to create
test cases from specifications, as shown in Fig-
ure 1, via the building of Hu and Tu. The man-
ual steps, which are indicated by oval shapes
in Figure 1, need a software engineering expert.
Experts are also needed to decompose the func-
tional unit, identify the classifications and ex-
tract the relationships between the classifica-
tions. All classifications and their relationships

in ICTM are manually entered. The manual pro-
cesses need more experience, more time and gen-
erate higher costs. For large systems there are
many classifications and relationships; this re-
quires more effort to input. To avoid the risk
and effort, we propose a methodology to enable
the manual processes to be done automatically
without expert intermediation. Class diagrams
will be used to represent the software specifica-
tions. The proposed methodology is designed to
capture the specifications automatically to build
the Hu and Tu. The building of Hu and Tu au-
tomatically, enables the generation of test cases
in an efficient way.

The proposed methodology in this work pro-
duced full system coverage test cases, but other
issues arose regarding the time needed to ex-
ecute the test cases, in addition to the cost.
Peres et al. [20] introduced a good idea to ap-
ply characteristics of software and of testing in
test path selection. They used characteristics
in path selection strategies, such as complex-
ity, testability and feasibility. They assigned a
weight for nodes according to the lower predi-
cate strategy. And the sum of nodes weight was
assigned to the branch or path. Emanuela et
al. [9] used the degree of similarity between test
cases as the main factor for test case selection.
This strategy reduced the number of redundant
tests and selected the best to execute. Basanieri
and co-author [5] proposed a technique to assign

112 Aysh Alhroob, Keshav Dahal, Alamgir Hossain

Figure 2. Proposed technique

a weight function to each diagram indicating the
functional importance.

Test generation with a verification technol-
ogy tool [17] extracts the test cases from the
UML model. The test cases are selected from
a specific objective that a tester would like to
test, and can be seen as a specification of a test
case. The number of test cases is still large and
can be reduced. Our methodology to select the
best testing path focused on the maximum cov-
erage percentage and minimum number of test
cases. These two factors were treated in previous
work [5, 9, 17, 20] separately. In this study, both
objectives are considered to achieve the highest
results.

3. Methodologies

Class diagram and OCL together represent the
functional units. Class diagram mapping to
XML code makes the diagram specifications eas-
ier to deal with. Due to the variation in de-
sign experts, each one will present the functional
units using class diagrams in different ways, that
is, different class diagrams and different XML
codes. To allow the proposed technique to deal
with one style of XML, we propose a technique
to force different XML to be stored in the same
database style.

The specifications will be transferred from
the database to construct the Hu. The Hu will
be more reliable due to new consistency checking
constraints and automatic information entering.
A consistent Hu means perfect Tu, but control
of the number of test cases produced from Tu
requires more restricted rules to reduce the num-
ber of illegitimate test cases. Pruning of the du-
plication sub-trees will reduce the number of ille-
gitimate test cases. This paper introduces auto-
matic test case generation from software specifi-
cations (see Figure 2) and proposes a technique
to improve the pruning of sub-trees. There are a
large number of legitimate test cases and a tech-
nique is needed to select the minimum number
to save time and cost. The proposed technique
used in this work selects the best path which
covers most of the system details.

3.1. UML Class Diagrams

UML class diagrams will be used to represent
the component of software specification. The
class diagram will represent the functional unit
hierarchy relationship. For example, a credit
card has two possible types: gold credit card or
classic credit card, and each type has its own
credit limit, as follows:
– The gold card has two children (credit limit

of $5000] and credit limit of $6000].

Automatic Test Cases Generation from Software Specifications 113

– The classic card also has two children (credit
limit $2000] and credit limit $3000].

Figure 3 represents the above functional units
using three hierarchy classes. OCL is used to
represent the constraints and determine the re-
lationship between the attributes in the main
class with sub-classes.

Figure 3. Example of functional unit representation
by class diagram

XML mapping is used to extract the software
specifications and capture the elements of soft-
ware from the UML diagram. UML is a standard
design modelling language and XML is widely
being accepted as an information representation
and sharing language across the Internet; efforts
have been initiated to map UML diagrams to
XML documents [22].

3.2. Automatic Detection for System
Specifications

The first three phases of ICTM in Figure 1
are manual phases and the construction of
Hu is dependent on the relationship setting.
A class diagram as a software system model is
used to decompose the specification and iden-
tify the relationships automatically. Classes,
attributes and relationships for the class dia-
gram can be extracted through mapping the
diagram to XML. In the proposed approach
the XML structure depends on the class dia-
gram design. The diagram design depends on
the designer’s view, so there is a probability of
extracting different XML schema for the same
system specifications. Standard XML schema
is not our concern, but the specifications in

that schema must be captured in a standard
way. The extracted classes and attributes will
be stored in proper database style, like Ta-
ble 1. The relationships between classes can
be stored in a different table. Now, an auto-
matic transfer technique will be used to transfer

Table 1. Classes and attributes for class diagram
in Figure 4

Class Att1 Att2 Att3
A a1 a2
B b1 b2
C c1 c2
D d1 d2
E e1 e2
F f1 f2
G g1 g2
H h1 h2 h3
I i1 i2

data from database tables to Hu, instead of man-
ually inserting. To make the proposed approach
clearer, the following case will be used to repre-
sent the main steps of the methodology. Suppose
a software tester is given the following of a pro-
gram arith-sum:
1. arith-sum has nine input variables A, B, C,

D, E, F , H, and I.
2. H has three possible values (denoted by h1,

h2, and h3), whereas each of the remaining
variables has two possible values (denoted,
for example, by a1 and a2 for A).

3. The input domain of arith-sum may con-
tain any combination of possible values from
some of these variables, except the following:
– (A is a2) and (B is b1 or b2)
– (A is a2) and (C is c1 or c2)
– (A is a2) and (D is d1 or d2)
– (A is a1) and (E is e1 or e2)
– (B is b2) and (C is c1 or c2)
– (B is b2) and (D is d1 or d2)
– (B is b1 or b2) and (E is e1 or e2)
– (C is c2) and (D is d1 or d2)
– (C is c1 or c2) and (E is e1 or e2)
– (C is c1 or c2) and (F is f2)
– (C is c1 or c2) and (H is h1, h2, or h3)
– (D is d1 or d2) and (E is e1 or e2)
– (D is d1 or d2) and (F is f2)

114 Aysh Alhroob, Keshav Dahal, Alamgir Hossain

– (D is d1 or d2) and (H is h1, h2, or h3)
– (E is e1 or e2) and (G is g1 or g2)
– (F is f2) and (G is g1 or g2)
– (F is f1) and (H is h1, h2, or h3)
– (G is g1 or g2) and (H is h1, h2, or h3)

4. arith-sum calculates the arithmetic sum of
those variables entered.

Suppose we simply define the classes as the in-
put variables and the attributes as the possible
values. For example, A is taken as a class with
a1 and a2 as its attributes. Then Figure 4 shows
the class diagram for arith-sum.

3.3. Classes Hierarchy Table

Automatic construction of a classification hier-
archy table, Hu with class relationships for each
pair of classes is the main target in this section.
There are four possible types of hierarchical re-
lationships, as follows [10, 13]:
1. Class [X] is a loose ancestor of class [Y] (de-

noted by [X]⇔ [Y].
2. Class [X] is a strict ancestor of [Y] (denoted

by [X] ⇒ [Y]). A black arrow means direct
relation, but red indicates an indirect rela-
tion.

3. Class [X] is incompatible with Class [Y] (de-
noted by [X] ∼ [Y]).

4. Class [X] has other relations with Class [Y]
(denoted by [X]

⊗
[Y]).

The conditions associated with each of the
above hierarchical relations are commonly ex-
clusive and exhaustive. These hierarchical re-
lations are used to determine the relative po-
sition of [X] and [Y] in Tu. For example, [X]
⇒ [Y] corresponds to the situation where [X]
will appear as either a parent or an ancestor
of [Y] in Tu; in current work the loose an-
cestor relationship was discarded. Figure 5 de-
picts the completed Hu Every element in it con-
tains a hierarchical operator and corresponds
to the hierarchical relations between a pair
of classifications.

3.4. Consistency Checking

Cain et al. [8] introduced the consistency prob-
lem and proposed a technique to detect incon-

sistency relations. Let tij denote the element at
the ith row and the jth column of Figure 5. Con-
sider t12 and t21 in Figure 5. They correspond
the [A] ⇒ [B] and [B]

⊗
[A], respectively. Sup-

pose,
– t21 constraints are entered before that for t12,
– t21 constraints are entered correctly, causing

“
⊗

” to t21 to assign the hierarchical opera-
tor,

– a mistake has been made during the entry
of the constraints for t12, causing incorrect
assignment of the hierarchical operator “∼”
to t12.
As we note that the error is unwanted, to re-

cover this problem, a methodology is proposed
in this paper to ensure that all of the relation-
ships are entered in a systematic way and no
conflict occurs between them. We need the fol-
lowing five conditions to do that:
1. For eij (where eij is corresponding for all

classes) we have to detect the relationships
automatically for each pair of classes (A, B)
in Hu.

2. Xi → Yi, where X and Y are two associated
classes in the database.

3. If A = X and B = Y , then A is a child of
B, and all of the attributes of A are related
with at least one of the B attributes.

4. A = X and B 6= Y , then A is incompatible
with Y .

5. If A = Y and B = X, then A is a parent of
B, and at least one of the A attributes are
related with all B’s attributes.

4. Classification Tree (Tu)

Based on a predefined tree construction algo-
rithm [13], the corresponding Tu can be au-
tomatically constructed from the Hu in Fig-
ure 5. The tree represents the relationships be-
tween the classes and determines the parents
and children of classes. The classification tree is
used to generate the test cases; if the test cases
cover 100% of the tree branches that means all
parents, children and attributes will be tested.
Complete or legitimate test case extraction is
our target. Human error in the specification ex-

Automatic Test Cases Generation from Software Specifications 115

Figure 4. Class diagram for arith-sum

Figure 5. Classification-Hierarchy table (Hu)

traction phase is avoided by using the proposed
automatic methodology.

Occasionally, a classification tree may not be
able to reflect all the constraints between classi-
fications. Therefore, all potential test cases con-
structed from the classification tree should be
verified with the specification. In this way, we
can classify and remove the potential test cases
that deny the specification. Such potential test
cases are known as illegitimate test cases. Chen
and Poon [11] proposed that the final purpose
of the classification tree method is to construct
legitimate test cases, and the classification tree
is just a means for this construction. Given a
classification treeTu, let N i and N t be the num-

ber of potential test cases and legitimate test
cases, respectively. Chen et al. [12] defined an
effectiveness metric, Ep for Tu as the follows:

EP =
N t

N i
(1)

For more illustration, for equation (1), let N i

= 40 and N t = 5, then Ep = 0.125. N t

can only be known after removing all illegit-
imate test cases from the set of possible test
cases. Obviously, a small value of Ep is unde-
sirable, as effort will be wasted on illegitimate
test cases. The existence of duplicate sub-trees
under different top-level classifications in a clas-
sification tree is a main cause of a poor Ep.

116 Aysh Alhroob, Keshav Dahal, Alamgir Hossain

From this remark, Chen and Poon developed
a tree restructuring algorithm to remove dupli-
cates, to obtain a better value of Ep for clas-
sification trees with duplicate sub-trees under
different top-level classifications [12]. Deleting
the duplicate sub-tree will cause the illegiti-
mate test cases to be discarded and will in-
crease the effectiveness metric of the classifi-
cation tree. Determining the duplication avail-
ability and choosing a suitable sub-tree to
delete are main factors for duplication sub-tree
pruning.

5. Pruning the Duplication Subtrees

Chen et al. [12] proposed an algorithm to
avoid duplicate sub-trees and improve the value
of EP . They observed that the algorithm
for removing duplicates has many limitations,
such as dealing with duplicate sub-trees un-
der different top-level classifications and the
fact that only one set of duplicate sub-trees
can be removed from the classification tree
at any one time. To overcome these limita-
tions, we propose a restructuring algorithm
for pruning the duplicate sub-tree, hence, im-
proving the value of Ep. The proposed algo-
rithm will deal with duplicate sub-trees and
choose the best ones to keep with Tu and
remove the others. The algorithm will com-
pare every sub-tree (ST) in Tu with oth-
ers to detect duplications in same and differ-
ent top-level classifications (Pi). The duplicate
sub-tree suitable for deleting is one that pro-
duces a large number of test cases by inte-
grating with others under the same or different
top level. The following methodology illustrates
the detection and deletion of suitable duplicate
sub-trees.
1. P1, P2 and P3 are top level class, for example,

they correspond to A, F and I respectively
as shown in Figure 6, where Pi ≥ 1.

2. The Tu has been divided into levels L1,
L2,. . . , Li, where Li ≥ 1. Every Li has a
value depending on the level number, for ex-
ample L1 has a value 1, L2 has a value 2,
etc.

3. Every classification (X) in Tu has its own
principle value sequentially, for example
(A = 1, B = 2,. . . , Xn = V). Each chil-
dren (x) for X will take the same value of
X. xv = Li ∗ Xn, where xv is the value of
each child.

4. We propose (2), (3) and (4) equations to
calculate some of parameters values to de-
termine which trees in the system must be
deleted.

XV =
n∑

n=1

xv (2)

QP =
n∑

n=1

Xv (3)

QST =
n∑

n=1

XDv (4)

RQST (Ratio of duplication ST in Pi) =
QST

QP

(5)

Where Xv, QP , QST and XDV are the
values of X, Pi, duplicate ST and duplicate
classes, respectively. We observe that if the ra-
tio of QST on QP in equation (5) is smaller,
then the number of branches in Pi be big,
which means more test cases will be gener-
ated from this Pi, If we delete the duplica-
tion ST from Pi which has more branches, we
avoid generating more illegitimate test cases.
For example, if RQST in P1 < RQST in P2

the duplication ST in P1 must be deleted.
The algorithm repeats the above process un-
til there are no duplicated ST s across any
pairs of distinct top-level sub-trees. This al-
gorithm deals with all duplicated ST s in Tu
whether in the same top level or different
and treats duplications for two sub-trees or
more. By referring to Figure 4, the classi-
fication tree in Figure 6 contains duplica-
tions for C ST . The C sub-tree arises in
two places, the first one occurs under the
B class and the second one under the F
class; the algorithm will detect the duplica-

Automatic Test Cases Generation from Software Specifications 117

Figure 6. arith-sum Classification Tree

tion by comparing classifications with oth-
ers in Tu even in different top level classes.
If the duplication is detected, the algorithm
starts to capture the suitable ST to delete.
For example, as noted in the class diagram
the C class is associated with B and F ;
that means that the C sub-tree should ap-
pear under two parents of classes. Duplica-
tion will occur even under B or F . One of
the sub-trees must be chosen for deletion de-
pending on the proposed sub-tree pruning algo-
rithm.

In this case, and by referring to equa-
tion (4), the duplicate sub-tree that comes un-
der F is selected for deletion. From Tu of
arith-sum in Figure 6, a total of 60 potential
test cases can be constructed; some of the test
cases are shown in Figure 7. The total num-
ber of test cases, before deleting the duplicate
sub-trees, was 108, so the classification tree
pruning technique deleted 48 illegitimate test
cases by checking the 60 legitimate potential
test cases against the specification of arith-sum.
32 potential test cases were found to be illegit-
imate and therefore removed. For example, the

potential test cases 5–10 were illegitimate be-
cause class (F) = f2 cannot coexist with class
(C) = c1 and c2.

6. Best Testing Path Selection

Testing is the process of executing a system
with the intention of finding errors. Assume that
there are 5 possible paths with loop<10, its
equal 107 different execution flows. If we exe-
cuted one test per millisecond, it would take
1.585 years to test this system. The proposed
methodology in this work aims to select a best
testing path. This path guarantees the highest
coverage of system units. Each test case gen-
erated for the class diagram in Figure 3 repre-
sents a test path. Before continuing to explain
the technique, we have to differentiate between
the test path and the case. The test case is the
combination of the node attributes, in contrast,
the test path is the nodes that are shared in a
test case, i.e. Test case 2 in Figure 7 is A = a1,
B = b1, C = c1, D = d1, F = f1, G = g1,
I = i2 and the test path 2 is A, B,C, D, F, G, I.

118 Aysh Alhroob, Keshav Dahal, Alamgir Hossain

Figure 7. Some of potential test cases generated from Tu arith-sum (10 out of 60)

The best testing path technique, which covers
maximum units, concerns two main aspects.

Firstly, the weight of each class (node) is
dependent on the number of attributes and its
level. The level of node will be affected by the
number of participant nodes and branches, i.e.
H node in Figure 6 has a weight of 12. The
weight of H has been calculated by equation (2)
and xv = Li ∗Xn, where xv is the value of each
child. Secondly, the weight of each path is the
weight of all nodes that share one path, i.e. test
case 1 in Figure 7 goes through A, B,C, D, F, G
and I nodes. The weight of each node is as fol-
lows: A = 1, B = 4, C = 6, D = 8, F = 4, G = 8
and I = 6. The weight of the path is calculated
as follows:

Pw =
n∑

n=1

Xv (6)

where is the Pw is the weight of path and Xv is
the weight of each node. One of the case stud-
ies used in this work is the ATM machine. This
system contains 18 nodes and each node has its
own attributes. Table 2 represents each node
weight that has been calculated automatically.
As noted, the nodes are called by their numbers
and not by names, because the testing path se-
lection methodology deals with nodes by their
numbers, i.e. CardReader = 1, Inquiry = 2,
Deposit = 3, . . . etc.

Figure 8 represents the ATM system nodes;
the Node Tree (NT) shows the hierarchy rela-
tionships between the nodes. The tree represents
the relationships between the classes and deter-
mines the test paths. If the test paths cover

100% of the tree nodes that means all system
units will be tested.

Table 2. ATM Nodes Weight

Ni Weight Ni Weight
1 2 10 60
2 12 11 66
3 18 12 96
4 32 13 130
5 20 14 112
6 48 15 225
7 14 16 160
8 32 17 68
9 54 18 36

In this phase, the proposed methodology ex-
tracted the test paths automatically based on
the proposed test path construction algorithm.
15 test paths were generated from NT (see Ta-
ble 3), one is the best one. It is not necessary
that the testing path covers all units of the sys-
tem; any test path that covers the highest per-
centage of systems is the best one. The highest
percentage does not mean the largest number of
nodes. Each node has its own weight, as illus-
trated in Table 2. The best path, that has the
highest weight out of the total weight, is P9, as
shown in Table 3. P9 covers 10 nodes out of 18
with 51% system details coverage.

In fact, one test path cannot cover all units,
as there may be many paths/loops. To improve
the coverage of the system, we propose select-
ing the second best testing path as well to sup-
port the first best testing path. The selection
method for the second best testing path depends
on the non-similarity of nodes contained in the

Automatic Test Cases Generation from Software Specifications 119

Table 3. Testing Paths Weight(TPW)

Pi N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 TPW
P1 1 2 3 4 7 8 9 18 – – 200
P2 1 2 3 5 7 8 9 18 – – 188
P3 1 2 3 6 7 8 9 18 – – 216
P4 1 2 3 4 7 10 11 12 13 18 466
P5 1 2 3 5 7 10 11 12 13 18 454
P6 1 2 3 6 7 10 11 12 13 18 482
P7 1 2 3 4 7 10 11 14 15 18 577
P8 1 2 3 5 7 10 11 14 15 18 565
P9 1 2 3 6 7 10 11 14 15 18 593
P10 1 2 3 4 7 10 11 14 16 18 512
P11 1 2 3 5 7 10 11 14 16 18 500
P12 1 2 3 6 7 10 11 14 16 18 528
P13 1 2 3 4 7 10 17 18 – – 242
P14 1 2 3 5 7 10 17 18 – – 230
P15 1 2 3 6 7 10 17 18 – – 258

Figure 8. ATM Nodes Tree

best testing path. In other words, we want to se-
lect a second best testing path, which contains
as many different nodes as possible compared
to the first best testing path. Emanuela et al.
[12] used the similarity function to reduce the
test cases. To select the second best path, we
used node non-similarity criterion. Based on the
non-similarity degree between the best path and
others, the testing paths eliminated were those
with the biggest similarity degree. There is a
probability for getting more than one test path
with the same degree of non-similarity criterion;

the highest weight of non-similar nodes is the
factor used to choose one of them.

In ATM testing path there are four paths
(P1, P2, P4 and P5) met the highest non-similar
criterion, non-similar path with the highest

Table 4. Non-similar paths weight

Pi Non-similar Nodes Weight
P1 4, 8 and 9 118
P2 5, 8 and 9 106
P3 6, 8 and 9 134
P4 4, 12 and 13 285

120 Aysh Alhroob, Keshav Dahal, Alamgir Hossain

nodes weight is selected. Table 4 represents
those paths with non-similar node weights. P3

has two conditions necessary (non-similarity and
highest weight) for being chosen as the second
best testing path. Both testing paths (best and
second best testing path) cover more than 74%
of system details.

7. Conclusion

In this paper the ICTM has been improved to
detect specifications automatically. These speci-
fications are used to generate test cases. To con-
trol the consistency of relationships in Hu, we
proposed an algorithm to enter the class hier-
archy relationships in a systematic way. Consis-
tency relationship entering techniques support
the reliability of ICTM.

In this paper, a restructured algorithm was
proposed to remove duplication sub-trees, either
at the same top level or at different top levels.
This technique can offer more pruning and pro-
duce legitimate and non-duplicated test cases.
Testing path selection was one of the concerns
in this work in order to reduce the number of
expectation flows. Test paths have been deter-
mined and one has been selected automatically
to be the best among them. The best testing
path covers most of the system units and avoids
the undesirable time needed to execute all test
paths. To improve the percentages of coverage,
we propose the selection of additional test paths
based on dissimilarity to the best test path.

In future work we will conceder to use class
diagrams, OCL and sequence diagrams to rep-
resent software specifications to provide other
additional information. Therefore, by combining
these two UML specifications in future work we
will be able to capture most of the system spec-
ifications.

References

[1] A. Alhroob, K. Dahal, and A. Hossain. Auto-
matic test cases generation from software spec-
ifications modules. In Proceedings of the 4th
IFIP TC2 Central and East European Confer-

ence on Software Engineering Techniques, pages
130–142. Springer, 2009.

[2] N. Amla and P. Ammann. Using Z specifi-
cations in category partition testing. In Sys-
tems Integrity, Software Safety and Process Se-
curity: Building the System Right, pages 3–10,
Gaithersburg, MD, USA, IEEE Press, 1992.

[3] P. Ammann and J. Offutt. Using formal meth-
ods to derive test frames in category-partition
testing. In Computer Assurance, 1994. COM-
PASS ’94 Safety, Reliability, Fault Tolerance,
Concurrency and Real Time, Security. Proceed-
ings of the Ninth Annual Conference on, pages
69–79, Gaithersburg, MD, USA, IEEE, 1994.

[4] L. Bao-Lin, L. Zhi-shu, L. Qing, and C. Y.
Hong. Test case automate generation from
UML sequence diagram and OCL expression.
In Proceedings of the 2007 International Con-
ference on Computational Intelligence and Se-
curity: CIS, pages 1048–1052, 2007.

[5] F. Basanieri, A. Bertolino, and E. Marchetti.
The Cow Suite approach to planning and de-
riving test suites in UML projects. In J.-M.
Jézéquel, H. Hussmann, and S. Cook, edi-
tors, UML 2002–the Unified Modeling Lan-
guage, pages 383–397. Springer, 2002.

[6] A. Bertolino, J. Gao, E. Marchetti, and
A. Polini. Automatic test data generation for
XML schema-based partition testing. In Pro-
ceedings of the Second International Workshop
on Automation of Software Test, page 4. IEEE
Computer Society, 2007.

[7] B. Boris. Software testing techniques. Van Nos-
trand Reinhold Co, second edition, 1990.

[8] A. Cain, T. Y. Chen, D. Grant, P. L. Poon,
S. F. Tang, and T. H. Tse. An automatic
test data generation system based on the inte-
grated classification-tree methodology. Software
Engineering Research and Applications, pages
225–238, 2004.

[9] E. G. Cartaxo, F. G. O. Neto, and P. D. L.
Machado. Automated test case selection based
on a similarity function. In Workshop Modell-
basiertes Testen (MOTES07), Bremen, 2007.

[10] T. Y. Chen and P. L. Poon. Classification-hi-
erarchy table: a methodology for constructing
the classification tree. In Proceedings of the
1996 Australian Software Engineering Confer-
ence, page 93, Washington, DC, USA, IEEE
Computer Society, 1996.

[11] T. Y. Chen and P. L. Poon. Improving the qual-
ity of classification trees via restructuring. In
Proceedings of the Third Asia-Pacific Software
Engineering Conference, page 83, 1996.

Automatic Test Cases Generation from Software Specifications 121

[12] T. Y. Chen, P. L. Poon, and T. H. Tse. A new re-
structuring algorithm for the classification-tree
method. In Proceedings of the Software Technol-
ogy and Engineering Practice, pages 105–114,
1999.

[13] T. Y. Chen, P. L. Poon, and T. H. Tse. An in-
tegrated classification-tree methodology for test
case generation. International Journal of Soft-
ware Engineering and Knowledge Engineering,
10(6):647–679, 2000.

[14] T. Y. Chen, P. L. Poon, and T. H. Tse. A choice
relation framework for supporting category-par-
tition test case generation. IEEE transactions
on software engineering, 29(7):577–593, 2003.

[15] C. Doungsa-ard, K. Dahal, A. Hossain, and
T. Suwannasart. Advanced Design and Man-
ufacture to Gain a Competitive Edge, chapter
GA-based for Automatic Test Data Generation
for UML State Diagrams with Parallel Paths,
pages 147–156. Springer, London, 2008.

[16] M. Grochtmann and K. Grimm. Classification
trees for partition testing. Software Testing,
Verification and Reliability, 3(2):63–82, 1993.

[17] C. Jard and T. Jéron. TGV: theory, principles
and algorithms. International Journal on Soft-
ware Tools for Technology Transfer (STTT),
7(4):297–315, 2005.

[18] K. W. Miller, L. J. Morell, R. E. Noonan, S. K.
Park, D. M. Nicol, B. W. Murrill, and J. M.
Voas. Estimating the probability of failure when
testing reveals no failures. IEEE transactions on
Software Engineering, 18(1):33–43, 1992.

[19] T. J. Ostrand and M. J. Balcer. The cate-
gory-partition method for specifying and gen-
erating functional tests. Communications of the
ACM, 31(6):676–686, 1988.

[20] L. M. Peres, S. R. Vergilio, M. Jino, and J. C.
Maldonado. Path selection in the structural
testing: Proposition, implementation and appli-
cation of strategies. In Proceedings. XXI In-
ternatinal Conference of the Chilean Computer
Science Society, pages 240–246. SCCC, 2001.

[21] M. Sarma, D. Kundu, and R. Mall. Auto-
matic test case generation from UML sequence
diagram. In Proceedings of the 15th Inter-
national Conference on Advanced Computing
and Communications, pages 60–67, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[22] J. Singh. Mapping UML diagrams to XML.
Master’s thesis, Jawaharlal Nehru University
New Delhi, India, 2003.

[23] D. Sokenou. Generating test sequences from
UML sequence diagrams and state diagrams.
Informatik für Menschen, 2(94):236–240, 2006.

	Introduction
	Previous Work
	Methodologies
	UML Class Diagrams
	Automatic Detection for System Specifications
	Classes Hierarchy Table
	Consistency Checking

	Classification Tree (Tu)
	Pruning the Duplication Subtrees
	Best Testing Path Selection
	Conclusion
	References

