
e-Informatica Software Engineering Journal, Volume 5, Issue 1, 2011, pages: 39–49, DOI 10.2478/v10233-011-0029-x

ARINC Specification 653 Based Real-Time
Software Engineering

Sławomir Samolej∗
∗Faculty of Electrical and Computer Engineering, Rzeszow University of Technology

ssamolej@prz.edu.pl

Abstract
This paper reports successive steps of a real-time avionic pitch control application creation. The
application structure follows a new real-time systems development profile published in ARINC
specification 653. The paper mentions some main ARINC specification 653 features and shows
the subsequent application creation levels: control system units distribution, timing requirements
definition, application implementation and tests. It describes the author’s experience gained during
an avionic hard real-time system development and focuses on real-time software engineering details
of the application creation.

1. Introduction

Real-time applications gradually evolve form
simple one-task embedded programs to large
multi-task and distributed systems. Modern
large real-time applications are usually based on
real-time operating systems (such as VxWorks
[1], PikeOS [2], LynksOS [3], WindowsCE [4],
and Linux RTAI [5]), or are written in real-time
languages (Ada 2005 [6] or Spakr [7]). These
applications should be developed according to
well defined practical rules expressed e.g. in [8, 9].
Real-time tasks are given priorities according to
a predictable policy (such as Rate Monotonic
or Deadline Monotonic Policies). Inter-task com-
munication protocols prevent the system from
deadlocks and unpredictable delays during exe-
cution (by Priority Inheritance or, if possible, by
Priority Ceiling Resource Access Protocol appli-
cation). The data exchange between distributed
applications should be predictable. Naturally,
such rules can be applied in modern real-time op-
erating systems APIs or in Ada language, but less
advanced developers often encounter problems,
especially in case of complex software.

To make the real-time system development
less cumbersome, several groups of experts have
developed some practically applicable real-time
design patterns. Among the set of well de-
fined code-generation oriented design patterns
the POSIX standard [10], HOOD [11] and
HRT-HOOD [12] methods and Ada Raven-
scar Profile [13] can be indicated. They define
good real-time system programming techniques
and are partly supported by some automatic
real-time software code generators. Subsequently,
the real-time design patterns have been inte-
grated with dedicated software toolkits such as
Matlab-Simulink [14], SCADE SUITE [15] or
IBM Rational Rose RealTime [16]. These tools
allow to design graphically the real-time software,
giving as the output a real-time system structure
(IBM Rational Rose), both structure and selected
algorithms implementation (SCADE SUITE),
or complete real-time application code and en-
vironment generated for a specific hardware
(Matlab-Simulink). Moreover, SCADE SUITE
enables to develop a complete hard real-time sys-
tem source code that conforms to international
safety standards DO-178B (up to level A for

c© Copyright by Wrocław University of Technology, Wrocław 2011

http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_5/eInformatica2011Art3.pdf


40 Sławomir Samolej

Military and Aerospace Industries), IEC 61508
(at SIL 3 by TÜV for Heavy Equipment, and
Energy), EN 50128 (at SIL 3/4 by TÜV for Rail
Transportation), and IEC 60880 (for Nuclear
Energy).

It is also worth noting that international
standardization organizations have recently pub-
lished some new standards or specifications re-
garding modern real-time systems development.
The ARINC (AERONAUTICAL RADIO, INC)
specification 653 [17] or the SAE (Society of Au-
tomotive Engineers) Standard AS5506 [18] are
examples of such documents. To the author’s
opinion the new documents bring a new quality
in real-time systems development. They provide
a new abstraction layer in the real-time soft-
ware design process which makes possible to cre-
ate complete large distributed real-time systems.
This paper deals with the ARINC specification
653 (ARINC 653) based hard real-time systems
development.

The ARINC 653 was developed by aviation
experts to provide “the baseline environment
for application software used within Integrated
Modular Avionics (IMA) and traditional ARINC
700-series avionics”. It is closely connected with
the Integrated Modular Avionics (IMA) concept
[19, 20, 21]. Primary objective is to define a gen-
eral purpose APEX (APplication/EXecutive) in-
terface between Operating System (O/S) of the
avionics computer and application software.The
specification includes interface requirements be-
tween application software and O/S and list of
services which allow the application software to
control scheduling, communication, and status of
internal processing elements. Over a period of 6
years from the specification announcement:
– the ARINC 653 based software has been imple-

mented in A380, A400M and B787 airliners,
– at least three commercial real-time op-

erating systems (WxWorks 653, PikeOS,
LynksOS-178 RTOS) have been updated to
offer the APEX,

– four European-founded and focused on the
ARINC 653 – based software development
research projects (PAMELA, NEVADA, VIC-
TORIA and SCARLETT) have been created.

This paper describes some details concerning
real-time programming rules included in AR-
INC 653. A Pitch Control Application created
within SCARLETT [22] project by Research
Group from Rzeszów University of Technology
(RGRUT) illustrates the ARINC 653 based de-
velopment process. The following sections are
organized as follows. At first, the ARINC 653
is introduced. Secondly, the Pitch Control Ap-
plication development is presented. The final
part describes the future RGRUT’s research and
implementation plans.

2. ARINC specification 653

Airborne real-time systems have been evolving
from the so-called “federated” structure to Inte-
grated Module Avionics (IMA) [19, 20, 21]. The
IMA concept has been introduced in European
funded research projects, PAMELA, NEVADA
and VICTORIA. The result of the projects was
the first generation of IMA (IMA1G), currently
on-board of A380, A400M and B787 aircraft.
Following the IMA concept, modern on-board
avionic subsystems (software applications) are
grouped in a limited set of standard micropro-
cessor units. The units and other electronic de-
vices communicate via standard network inter-
face – Avionics Full Duplex Switched Ether-
net (AFDX) [23, 24]. The group of federated
applications executed until now on separate
microprocessor units (and communicating by
means of ARINC standard 429 based devices
[25], for example) must become a set of real-time
processes executed on one hardware module.
This module will be managed by a dedicated
real-time operating system. Provided that the
operating system offers a standard API and ful-
fills safety requirements, such solution signifi-
cantly broadens portability of avionic applica-
tions and allows to develop and certify hard-
ware and software independently. Current im-
plementation of IMA covers limited range of
aircraft functions but shows some significant
benefits, i.e. aircraft weight reduction and lower
maintenance costs.



ARINC Specification 653 Based Real-Time Software Engineering 41

2.1. Partitions

The IMA assumes that a set of time-critical
and safety-critical real-time applications (avion-
ics units) may be executed on one microprocessor
module. To cope with this level of criticality, new
real-time operating system architecture has been
suggested. ARINC 653 [17] defines generic struc-
ture of the system. Figure 1 shows the logical
structure of RTOS suggested in it.

The key concept introduced in the specifica-
tion is the partition. It creates a kind of con-
tainer for an application and guarantees that
execution of the application is both spatially and
temporally isolated. The partitions are divided
into two categories, application partition and sys-
tem partition. The application partitions execute
avionics applications. They exchange data with
the environment by means of specific interface
– APEX (APplication/EXecutive). The system
partitions are optional and their main role is to
provide services not available in APEX, such as
device drivers or fault management.

2.2. Hardware-Software Module
Architecture

The ARINC 653 also includes some recommenda-
tions on microprocessor module architecture for
the dedicated real-time operating system. Gen-
eral diagram of the architecture is presented in
figure 2. Each module includes one or more mi-
croprocessors. The hardware structure may re-
quire some modification of core operating system
but not the APEX interface. All processes that
belong to one application partition (real-time
tasks) must be executed on one microproces-
sor. It is forbidden to allocate them to differ-
ent microprocessors within the module or split
them between modules. The application program
should be portable between processors within
the module and between modules without any
modifications of the interface to operating sys-
tem core. Processes that belong to one parti-
tion may be executed concurrently. A separate
partition-level scheduling algorithm is responsi-
ble for this. Inter-application (partition) commu-
nication is based on the concept of ports and

channels. The applications do not have the infor-
mation at which partition the receiver of data is
executed. They send and receive data via ports.
The ports are virtually connected by channels
defined at separate level of system development.

Temporal isolation of each partition has been
defined as follows. A major time frame, activated
periodically, is defined for each module. Each
partition receives one or more time partition
windows to be executed within this major time
frame. Generally, time partition windows consti-
tute a static cyclic executive [9]. Real-time tasks
executed within the partition can be scheduled
locally according to priority-based policy. The
order of the partition windows is defined in a
separate configuration record of the system.

Health Monitor (HM) is an important ele-
ment of the module. HM is an operating system
component that monitors hardware, operating
system and application faults and failures. Its
main task is to isolate faults and prevent failure
propagation. For example, the HM can restart a
partition when detects application fault.

By assumption, the applications (or parti-
tions) may be developed by different providers.
Therefore an integrator of the IMA system de-
velopment process is necessary. This person col-
lects data regarding resources, timing constraints,
communication ports and exceptions defined in
each partition. The collected data are transferred
into configuration records. The configuration
record for each module is an XML document
interpreted during compilation and consolidation
of software.

2.3. APEX Interface

APEX (APplication/EXecutive) interface defini-
tion is the main part of ARINC 653. The APEX
specifies how to create platform-independent soft-
ware that fulfills ARINC 653 requirements. Main
components of the interface are:
– partition management,
– process management,
– time management,
– memory management,
– interpartition communication,
– intrapartition communication,



42 Sławomir Samolej

Figure 1. Logical real-time operating system structure created according to ARINC specification 653 ([17],
pp. 4).

– health monitoring.
The APEX interface provides separate set of

functions enabling the user to determine actual
partition mode and change it. The application
may start the partition after creation of all appli-
cation components. It is also able to obtain the
current partition execution status. Interpartition
health monitoring procedures can stop or restart
the partition.

The application may be constructed as a set
of (soft or hard) real-time processes, scheduled
according to priorities. APEX process manage-
ment services can:
– create process and collect process status or

ID,
– start, stop, suspend or resume process,
– prevent from process preemption,
– change the process priority.

The APEX manages both aperiodic and pe-
riodic processes. Periodic processes are activated
regularly. Additionally, a separate parameter
called “time capacity” is attached to each of
them. It defines time frame (deadline) within
which single instance of task must finish compu-
tations. When a process is started the deadline

is set to current time plus time capacity. The
operating system periodically checks whether the
process completes processing within the allotted
time. Each process has a priority. During any
rescheduling event the O/S always selects for the
execution the highest priority process in “ready”
state.

There are no memory management services
in APEX because partitions and associated mem-
ory spaces are defined during system configura-
tion. The ARINC 653 assumes, for safety reasons,
that the whole memory is statically allocated to
partitions and processes before the partition or
application starts. It is expected that memory
space is checked either at build time or before
running the first application.

Interpartition (inter-application) communi-
cation is based on queuing port and sampling
port communication units. The queuing port
provides interpartition message queue, whereas
the sampling port shares variables between the
ports. During system integration, the ports are
connected by means of channels defined in sys-
tem configuration tables. The ports communicate
with other partitions or device drivers within the



ARINC Specification 653 Based Real-Time Software Engineering 43

Figure 2. Hardware-software architecture of typical module according to ARINC 653 specification ([17], pp.
11).

module, or exchange data between modules (by
means of AFDX network interfaces).

The synchronization of processes belonging to
one partition may be achieved by appropriate ap-
plication of counting semaphores and events. The
inter-process communication within the partition
(intrapartition communication) is implemented
by means of APEX buffers (shared message
queues) and APEX blackboards (shared vari-
ables). It is possible to define a time-out within
which process waits for the data, if not available
immediately. The process may be blocked for the
specified time only.

The ARINC 653 Health Monitor is an ad-
vanced exception handing engine. Three error
levels are defined:
– Process Level which affects one or more pro-

cesses in the partition,
– Partition Level with only one partition af-

fected,
– Module Level which affects all partitions

within the module.
Both Partition Level and Module Level errors
are handled by a set of procedures installed by

the system integrator. The Process Level errors
can be handled by the programmer. Separate
sporadic task called “error handler” can be regis-
tered for each of the partitions. When the Health
Monitor detects an error at the process level it
calls the error handler. The handler recognizes
the error and, depending on the error, can:
– log it,
– stop or restart the failed process,
– stop or restart the entire partition,
– invoke the registered error handler process

for the specific error code.
To the author’s knowledge four real-time op-

erating systems meet ARINC 653 requirements,
i.e. Wind River VxWorks 653 [1], Sysgo PikeOS
[2], LynuxWorks LynxOS-178 RTOS, and Lynux-
Works LynxOS-SE RTOS [3].

3. ARINC 653 based Pitch Control
System Development

This section describes an ARINC 653 based sam-
ple avionics subsystem development. The objec-



44 Sławomir Samolej

tive is to create a distributed hard real-time
application to control a pitch angle of typical
airliner (Pitch Control Application – PCA). Sub-
sequent development steps are: control system
definition, control procedures allocation to hard-
ware units, timing requirements assessment, ap-
plication structure design, system programming,
testing. Preliminary version of the PCA has been
proposed in [26]. Papers [27] and [28] report on
stages of PCA development and some extensions
to detect control system malfunctions.

3.1. Control System Definition

The system controls two actuators (brushless
motors) connected to a load (elevator). Each
actuator is controlled by separate cascade of con-
trollers shown in figure 3. The single actuator
control system includes internal current control
loop, velocity control loop (PID2, PID4), and po-
sition control loop (PID1, PID3). The Flight Con-
trol Algorithm (FCA) is a supervisory module
that generates position demand signal for both
actuator control subsystems. It collects signals
from the pilot, aircraft, and actuators. The refer-
ence signal is a force or shift of control side-stick
moved by the pilot. The FCA module corrects
the reference signal using the actual aircraft pitch
angle. The PCA includes also Error Estimator
that collects some control signals and estimates
quality of control system during runtime. It also
produces separate output for system operator.
The entire Pitch Control Application has been
modeled in Matlab-Simulink [14] software toolkit.
All control procedures and settings have been
designed following control engineering rules.

3.2. Distribution of Control Procedures

The Pitch Control Application has been devel-
oped according to a set of restrictions formulated
by the system integrator. One of the restrictions
requires selected control procedures to be allo-
cated on different hardware modules. Figure 4
illustrates the desired PCA control modules allo-
cation. Hardware Module 1 (HM1) includes the
FCA, Error Estimator and position controllers
(PID1 and PID3, compare fig. 3). Hardware Mod-

ules 2 and 3 (HM2 and HM3) include velocity
controllers (PID2 and PID4, compare fig. 3). The
next restriction is that the FCA, Error Estimator
and all the PID controllers should be software
modules whereas the current controllers must be
included into motor drives hardware. The hard-
ware modules are connected via AFDX network.
The network structure has also been imposed by
the system integrator.

According to the requirements the
hardware-software environment follows the IMA
philosophy. Therefore the FCA and Error Es-
timator control blocks belong to one ARINC
653 based application partition, as two separate
real-time tasks. All PID controllers are separate
real-time tasks each of which belongs to separate
application partition. The partition structure
physically and temporally isolates the main
control application subsystems. It also enables
reallocation of PID control procedures between
hardware modules, what is another application
requirement.

3.3. Timing Requirements

The Pitch Control Application has been devel-
oped to fulfil the ARINC 653 real-time param-
eters shown in figure 5 and table 1. The time
capacity (deadlines) and task periods have been
chosen taking into account both actuator dynam-
ics and computing power of hardware units. The
partition including the FCA and Error Estima-
tor periodic real-time task acquires 6 [ms] time
slot and 20 [ms] deadline. It is executed in two
3-millisecond time frames (fig. 5). The partitions
with PID1 and PID3 control procedures are ac-
tivated every 5 [ms] and executed within 1 [ms]
time frame. Similarly, PID2 and PID4 real-time
tasks are activated every 5 [ms], but their dead-
lines are extended to 2[ms] since Hardware Mod-
ules 2 and 3 provide lower computing power than
Hardware Module 1. The major time frames in
figure 5 include some “System” slots. These slots
may be used by other software modules loaded
on hardware. The HARD attribute attached to
each of the real-time tasks instructs the Health
Monitor (built into the operating system) that
if any task misses its deadline, the core operat-



ARINC Specification 653 Based Real-Time Software Engineering 45

Figure 3. Pitch control system architecture

Figure 4. Allocation of Pitch Control System procedures on the Hardware Units

ing system must be informed. In consequence,
this forces the operating system to take appro-
priate action. The Health Monitor procedures
may even reload the whole partition that misses
timing constraints. It has been assumed that the
maximum communication delay in the AFDX
network should not exceed 7 [ms].

All of the algorithms applied in the PCA are
either controllers or simplified numerical proce-
dures which solve some differential equations.
During the development the worst case comput-

ing time for each of the algorithm has been eval-
uated. Experimental checks have proved that the
algorithms meet their timing constraints.

As mentioned before, the PCA timing restric-
tions have been provided by control engineers who
specified the system. P2 and P3 partitions acquire
1 [ms] time frames for computations and are ac-
tivated every 5 [ms]. This guarantees sufficient
frequency (200Hz) of PID algorithm repetition,
so sufficient quality of control. P1 partition is 4
times “slower” than others without adverse effect



46 Sławomir Samolej

Figure 5. PCA timing requirements

Table 1. PCA real-time tasks parameters

Control Procedure Stack Size Base Priority Period Time Capacity Deadline
FCA 4096 18 20 20 HARD

Error Estimator 4096 17 20 20 HARD
PID1 4096 20 5 1 HARD
PID3 4096 20 5 1 HARD
PID2 4096 20 5 2 HARD
PID4 4096 20 5 2 HARD

on quality of control. This preserves some com-
putational time for other applications installed
on the same hardware module.

3.4. Application Structure

The Pith Control Application structure is shown
in figure 6. Apart from control procedures allo-
cation strategy of figure 4, figure 6 shows the
partitions and the intra- and interpartition com-
munication structure. The first (P1) partition
loaded into the Hardware Module 1 includes two
real-time tasks, the Flight Control Algorithm
(FCA) and Error Estimator. The FCA task col-
lects signals from Pilot, Aircraft and actuator

modules and produces the desired pitch angle
signals for position controllers (PID1, PID3).
The Error Estimator monitors both communi-
cation channels and quality of control during
runtime. The algorithms applied in the Error
Estimator have been presented in [27, 28]. The
second (P2) partition includes the first posi-
tion controller algorithm (PID1), running as
separate real-time task. Identically, the third
(P3) partition includes the second position con-
trol algorithm (PID3). The fourth (System Par-
tition) collects all signals exchanged between
hardware modules and transfers them to the
AFDX network. The Hardware modules 2 and
3 have the same hardware-software structure.



ARINC Specification 653 Based Real-Time Software Engineering 47

They include one system partition and one ap-
plication partition. The application partitions
(P4 and P5) involve single real-time tasks with
speed control PID algorithm. The system parti-
tions provide inter-hardware module communi-
cation.

For the intrapartition communication, AR-
INC 653 blackboards have been applied, whereas
the interpartition communication is based on
ARINC 653 sampling ports and channels. Black-
boards and sampling ports seem most suitable
communication units for the system, since they
are in fact shared and protected data regions.
They always provide the latest acquired data.
It is possible to set their properties in such a
manner that they do not block the real-time
tasks, even if they are empty. It is assumed that
some of data packages produced by “fast” control
blocks may be lost due to the “slow” ones. From
real-time software engineering point of view all
communication mechanisms applied in the PCA
are shared variables and monitors [9]. This solves
the mutual exclusion problem. The shared vari-
ables are accessed (at the operating system level)
according to Priority Inheritance Protocol [8, 9].
One can check that the PCA communication
structure does not include deadlocks.

Due to “external” partition scheduling and
simple application structure, the priorities of lo-
cal task are used mostly for the precedence con-
straints definition. The tasks priorities (defined
within the partitions – compare tab. 1) reflect
the order of the computations, the tasks should
follow. This approach is essential especially in P1
partition. It is expected that the FCA real-time
task is terminated before the Error Estimator
task begins.

4. System Programming and Testing

The PCA has been finally implemented in C lan-
guage for VxWorks 653 [29, 30, 31] and PikeOS
[32, 33, 34] operating systems, with APEX inter-
face applied for PCA structure generation. From
the programmer’s point of view, each partition
defined during the application development is
a separate program. The program consists of a

set of real-time tasks. The tasks exchange data
by means of APEX blackboards or send and re-
ceive data via sampling ports. Timing constraints
are attached to the tasks. Each task involves
main function which collects data from the input
communication objects (blackboards or sampling
ports), calls appropriate control block algorithm,
sends computed data to output objects, and fi-
nally suspends execution. The function is peri-
odically activated by core operating system.

The PCA is a distributed real-time control ap-
plication, so implementation tests have involved
three main areas, i.e. communication, timing
constraints and control algorithms. Firstly, the
communication structure of the application has
been assessed and all channels and data struc-
tures checked. Secondly, Worst Case Execution
Time (WCET) for each of the real-time task
has been measured and the meeting of timing
constraints both at the process and the partition
level evaluated. The measured time has been
compared with partition time slots defined at
the beginning. Thirdly, the control procedures
applied in the application have been tested, both
as separate function blocks and as complete set
of cooperating software modules.

To the author’s experience, good practice
for the ARINC 653 programmer is to prepare
working document that explains:
– ports introduced in the application,
– channels’ description (how to connect the

ports with other ports),
– time budget (partition window) allocated to

the partition,
– time period within which the application (par-

tition) should run again,
– memory requirements.

Some extra records with internal structure
of the application will also help. Typically the
application developer should provide:
– parameters of real-time tasks (IDs, stacks,

priorities, deadlines, periods, criticalness
<HARD/SOFT>),

– internal communication structure (black-
boards and buffers, their IDs, capacities, tasks
attached),



48 Sławomir Samolej

Figure 6. PCA structure

– communication timeouts (attached to APEX
function calls to read data from blackboards
or buffers),

– internal error handler procedure actions.
According to IMA philosophy the prepared ap-
plications (partitions) in a form of binary files
equipped with such documents are sent to the
system integrator.

5. Conclusions and Future Research

The paper reports emerging trends and design
patterns in real-time systems development. It is
focused on ARINC 653, where a new standard for
real-time systems design is introduced. Successive
steps of a typical ARINC 653 based application
(Pitch Control Application PCA) development
are described. The application has been designed
as contribution of Rzeszów University of Technol-
ogy to European SCARLETT [22] project. In the
current state of the PCA development, the appli-
cation is being integrated with other hardware
and software modules delivered by SCARLETT

partners. It is expected that the final PCA ap-
plication test will reveal whether the current
hardware-software environment conforming with
ARINC 653 is able to execute some distributed
hard real-time applications successfully.

6. Acknowledgments

Research reported in the paper is funded
by SCARLETT 7th European Frame-
work Project, Grant Agreement No.
FP7-AAT-2007-RTD-1-211439. Some of hard-
ware components used in the research pub-
lished within this paper were financed by
the European Union Operational Program –
Development of Eastern Poland, Project No.
POPW.01.03.00-18-012/09.

References

[1] Wind River WWW Site. [Online]. Available:
http://www.windriver.com/

[2] SYSGO WWW Site. [Online]. Available:
http://www.sysgo.com/

http://www.windriver.com/
http://www.sysgo.com/


ARINC Specification 653 Based Real-Time Software Engineering 49

[3] Lynux Works WWW Site. [Online]. Available:
http://www.lynuxworks.com/

[4] WindowsCE WWW Site. [Online]. Available:
http://www.microsoft.com/

[5] Linux RTAI WWW Site. [Online]. Available:
https://www.rtai.org/

[6] J. Barnes, Programming in Ada 2005.
Addison-Wesley, 2006.

[7] ——, High Integrity Software, The SPARK Ap-
proach to Safety and Security. Addison-Wesley,
2003.

[8] G. C. Buttazzo, Hard Real-Time Computing Sys-
tems: Predictable Scheduling Algorithms and Ap-
plications. Kluwer Academic Publishers, 1997.

[9] A. Burns and A. Wellings, Real-Time Systems
and Programming Languages. Pearson Educa-
tion Limited, 2001.

[10] “IEEE Std 1003.1, 2004 Edition,” IEEE, Tech.
Rep., 2004.

[11] J.-P. Rosen, HOOD an Industial Approach for
Software Design. Elsevier, 1997.

[12] A. Burns and A. Wellings, HRT-HOOD: A struc-
tured design Method for hard Real-Time Ada
Systems. Elsevier, 1995.

[13] A. Burns, B. Dobbing, and T. Vardanega, “Guide
for the use of the ada ravenscar profile in high
integrity systems,” University of York, Technical
Report YCS-2003-348, Jan 2003.

[14] Matlab-Simulink WWW Site. [Online]. Available:
http://www.mathworks.com/

[15] Scade Suite WWW Site. [Online].
Available: http://www.esterel-technologies.com/
products/scade-suite/

[16] IBM Rational Rose RealTime WWW Site.
[Online]. Available: http://www-01.ibm.com/
software/awdtools/developer/technical/

[17] Avionics Application Software Standard Inter-
face Part 1-2, ARINC Specification 653P1-2,
2005.

[18] SAE AS5506 Standard: Architecture Analysis
and Design Language (AADL), 2006.

[19] P. Bieber, E. Noulard, C. Pagetti, T. Planche,
and F. Vialard, “Preliminary design of future
reconfigurable ima platforms,” in ACM SIGBED
Review - Special Issue on the 2nd International
Workshop on Adaptive and Reconfigurable Em-
bedded Systems. ACM, Oct 2009.

[20] P. Parkinson and L. Kinnan, “Safety-critical

software development for integrated modular
avionics,” Wind River, Wind River White Paper,
2007.

[21] J. W. Ramsey, “Integrated Modular Avionics:
Less is More Approaches to IMA will save
weight, improve reliability of A380 and B787
avionics,” Avionics Magazine, 2007. [Online].
Available: http://www.aviationtoday.com/av/
categories/commercial/8420.html

[22] SCARLETT Project WWW Site. [Online].
Available: http://www.scarlettproject.eu

[23] “AFDX: The Next Generation Interconnect for
Avionics Subsystems,” Avionics Magazine Tech.
Report, Tech. Rep., 2008.

[24] Aircraft Data Network Part 7 - Avionics Full
Duplex Switched Ethernet (AFDX) Network, AR-
INC Specification 664 P7, 2005.

[25] ARINC 429: Mark 33 Digital Information Trans-
fer Systems (DITS), 1996.

[26] S. Samolej, A. Tomczyk, J. Pieniążek,
G. Kopecki, T.Rogalski, and T. Rolka,
“VxWorks 653 based Pitch Control System
Prototype,” in Development Methods and
Applications of Real-Time Systems, L. Trybus
and S. Samolej, Eds. WKL, 2010, ch. Chapter
36, pp. 411–420, (in Polish).

[27] T. Rogalski, S. Samolej, and A. Tomczyk, “AR-
INC 653 Based Time-Critical Application for
European SCARLETT Project,” Aug 2011, ac-
cepted for presentation at the AIAA Guidance,
Navigation, and Control Conference, 8-11 Aug
2011 Portland, Oregon, USA.

[28] S. Samolej, A. Tomczyk, and T. Rogalski, “Fault
Detection in a ARINC 653 and ARINC 644 Pitch
Control Prototype System,” Sep 2011, accepted
for publication in: Development, Analysis and
Implementation of Real-Time Systems, L. Try-
bus and S. Samolej eds., WKL, 2011, (in Polish).

[29] VxWorks 653 Configuration and Build Guide 2.2,
Wind River, 2007.

[30] VxWorks 653 Configuration and Build Reference,
2.2, Wind River, 2007.

[31] VxWorks 653 Progmer’s Guide 2.2, Wind River,
2007.

[32] PikeOS Fundamentals, Sysgo AG, 2009.
[33] PikeOS Tutorials, Sysgo AG, 2009.
[34] PikeOS Personality Manual: APEX, Sysgo AG,

2009.

http://www.lynuxworks.com/
http://www.microsoft.com/
https://www.rtai.org/
http://www.mathworks.com/
http://www.esterel-technologies.com/products/scade-suite/
http://www.esterel-technologies.com/products/scade-suite/
http://www-01.ibm.com/software/awdtools/developer/technical/
http://www-01.ibm.com/software/awdtools/developer/technical/
http://www.aviationtoday.com/av/categories/commercial/8420.html
http://www.aviationtoday.com/av/categories/commercial/8420.html
http://www.scarlettproject.eu

	Introduction
	ARINC specification 653
	Partitions
	Hardware-Software Module Architecture
	APEX Interface

	ARINC 653 based Pitch Control System Development
	Control System Definition
	Distribution of Control Procedures
	Timing Requirements
	Application Structure

	System Programming and Testing
	Conclusions and Future Research
	Acknowledgments
	References


