
e-Informatica Software Engineering Journal, Volume 5, Issue 1, 2011, pages: 65–76, DOI 10.2478/v10233-011-0031-3

Conversion of ST Control Programs to ANSI C
for Verification Purposes

Jan Sadolewski∗
∗Department of Computer and Control Engineering, Rzeszow University of Technology

js@prz-rzeszow.pl

Abstract
The paper presents a Behavioral Interface Specification Language for control programs written
in ST language of IEC 61131-3 standard. The specification annotations are stored as special
comments in ST code. The code and comments are then converted into ANSI C form for further
transformation with Caduceus and Why tools. Verification of compliance between specification
and code is performed in Coq.

1. Introduction

In some safety oriented applications control pro-
grams should be formally proved before deploy-
ment in the controllers. Control systems are usu-
ally programmed in languages of IEC 61131-3
standard, however ANSI C is typically used for
prototype systems. The IEC standard defines
five programming languages, i.e. LD, IL, FBD,
ST and SFC, allowing the user to choose the one
suitable for particular application. Instruction
list (IL) and Structured Text (ST) are text lan-
guages, whereas Ladder Diagram (LD), Function
Block Diagram (FBD) and Sequential Function
Chart (SFC) are graphical ones.

Recently developed compiler called MatPLC
[1] converts the code from ST, IL, FBD and LD
languages into ANSI C form. It seems that the
main purpose of MatPLC developers was to pro-
vide equivalent ANSI C code for small hardware
platforms and prototypes, where IEC languages
are not available.

This paper presents somewhat different ap-
proach to code conversion, focusing instead on
extension of ST language towards formal verifi-
cation of compliance between specification and
implementation. The conversion can also be used

for design by contract method [2] in which clauses
describe specification. The approach employs
open source software Caduceus [3], Why [4] and
Coq [5], whose connection can be used for formal
verification of ANSI C programs. The specifica-
tion is based on adaptation of JML language [6]
for ST. Special annotations stored as comments
express Dijkstra Weakest Preconditions [7] for
programs, functions and function blocks (Pro-
gram Organization Units in ST). The method
presented here starts from ST source code with
annotations and uses automated tools to obtain
lemmas whereas approach described in chapter
[8] starts from function blocks models written
in Why language by hand. The annotation ex-
tending ST language was proposed in [9] and
currently developed features are presented here.

The paper is organised as follows. Current
state of verification of C programs, and corre-
sponding concept of verification of ST programs
are presented in Section 2. Next section briefly
describes assertions and useful constructs of JML
language adapted to ST. Section 4 describes
translation of ST code with specification annota-
tions to ANSI C with corresponding annotations.
The translation is made automatically by pro-
gram STVCGen developed for the purpose of

0 The research has been supported by MNiSzW under the grant N N516 415638 (2010–2011).

c© Copyright by Wrocław University of Technology, Wrocław 2011

http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_5/eInformatica2011Art5.pdf

66 Jan Sadolewski

this paper. Code translation takes into account
three aspects: (1) translation of POU interfaces
into C language functions, (2) conversion of POU
ST code into equivalent C form, (3) translation
of specification annotations into C form for Ca-
duceus. Example of conversion of TON standard
function block (timer), supplemented with spec-
ification annotations is presented in Section 5.
Section 6 describes verification process of C code
of the TON block (it becomes a function). The
verification is processed half-automatically with
standard tactics from Coq prover. For one of the
lemmas the whole proof tree is presented, which
can be of some help for similar examples.

2. Verification Concept

Freely available software such as Caduceus, Why
and Coq can be used to verify correctness of pro-
grams written in ANSI C language. These tools
may prove compliance between specification and
implementation, or help to find mistakes and
side effects. Specifications of programs are stored
in annotations placed in special comments as
BISL code (Behavioral Interface Specification
Language). The Caduceus program converts the
annotated C code to Why language (Fig. 1, sec-
ond and third blocks). In the following step, Why
generator produces verification lemmas based on
Dijkstra Weakest Preconditions. Such lemmas
are stored in Coq format, for further proving
with tactics. If all the lemmas are proved, then
correctness of the code is confirmed.

Control programs are typically written in ST
language, so as to use such approach it is nec-
essary to convert ST to C at the beginning, as
shown in Fig. 1. A prototype tool called STVC-
Gen described in Section 4 converts ST language
code supplemented with specification annota-
tions into C code with corresponding annota-
tions. This is further converted by Caduceus into
Why program. After applying Why generator we
obtain a collection of lemmas to be proved by
Coq.

3. Behavioral Interface Specification
Language for ST

The main purpose for introducing the BISL lan-
guages was to define behaviour of components
of developed code. Such languages are used in
design by contract programming methods. Gen-
erally speaking the BISL languages are based
on assertions, examined at run-time. Some lan-
guages like Eiffel and Why use build-in clauses
for storing such assertions, but popular languages
like Java and C use special kind of comments
beginning with ’@’ character.

An assertion is a part of code composed of
conditional Boolean expression, which should be
satisfied when evaluated at specific place of the
executed program (i.e. it returns true). Typical
assertions from popular languages are shown in
Tab. 1. They are used solely for testing purposes,
and their code is not compiled into the final dis-
tribution. Assertion failure may be represented
by message box, with exception or interruption
of program execution. The message may involve
current call stack, place in source code, etc.

Design by contract uses two special asser-
tions, i.e. requires to denote preconditions, and
ensures for postconditions. They must be kept
near developed code, in the form of special com-
ments beginning with ’@’ mentioned above. The
assertions express conditions, which must be
satisfied when given subroutine is called, and
conditions guaranteed at its termination.

Java Modelling Language (JML) is an exam-
ple of a BISL language, which uses comments to
store annotations. This feature allows for code mi-
gration between compilers of different providers,
which do not support annotations. Program Or-
ganization Units (POUs) from IEC standard are
similar to lightweight Java objects, so JML can
be adapted as a base of BISL language for ST.
Naturally, only a subset of JML will suffice for
verification problem considered here.

Adaptation of JML for ST language is pre-
sented at Tab. 2. The clauses are grouped ac-
cording to their types. Each clause has its own
range. Range instruction means that correspond-
ing clause can be placed where instruction or ex-
pression is expected. Ranges local and global re-

Conversion of ST Control Programs to ANSI C for Verification Purposes 67

ANSI C code
with annotations Why program

Caduceus

conversion
Correct
program

Why

generator
Verification

lemmas
ST code with
annotations

STVCGen

conversion

Coq

prover

Figure 1. Method for verification of ST programs

Table 1. Assertions in popular languages

ANSI C, POSIX Delphi C#
#include <assert.h> procedure ModifyStorage { int index;
void additem(struct (AStorage: TStorage; ...
ITEM *itemptr) const s: string); begin System.Diagnostics

{ assert(itemptr Assert(AStorage <> nil, .Debug.Assert
!= NULL); ’’); AStorage.Data := s; (index > -1);

... } ... end; ... }

Table 2. Adaptation of JML in ST language

Type Standard JML ST adaptation Range

Assertions
assert assert instruction
ensures ensures: local
requires requires: local

Localise \at \at or at instruction
modifiers \old \old instruction

Quantifiers \exists \exists mixed
\forall \forall mixed

Invariant invariant invariant: instruction

Declarations

label label: instruction
logic logic: global
ghost ghost: local
predicate predicate: global
axiom axiom: global

Function return
\result

\result or localvalue function_name

Operations set set: instruction
assigns assigns: local

W-F iteration variant variant: instruction

fer to POU or whole project, respectively. Clause
whose use depends on the context has the range
mixed.

Verification clauses are located inside corre-
sponding program unit. For example, annotation
clause of function block is written after identifier
with the name of the block. The clause must
contain at least ensures section, but it often in-
volves requires and assigns, especially when
annotated POU is a program which modifies
global variables. There are two ways to access
return value of function, i.e. \result or function
name, which is specific for ST language. Verifica-
tion is based on memory states [10], which con-
tain variable values at specified moment of execu-

tion. Modifier \old represents variable value at
the beginning of execution, obtained in previous
cycle. Similarly, modifier \at denotes variable
value at specified location in the code, declared
with label.

Sometimes additional function that does not
appear in the original code may help in construc-
tion of specification. The function can be reached
by global logic clause. Additional local variables
can be used to express the specification. Such
variables are defined by ghost clause and oper-
ated on by set clause. The predicate declares
additional logic function, which returns Boolean
value. The axiom generates new axiom which
can be used by the prover. Quantifiers appear in

68 Jan Sadolewski

declarations of loop invariants. They may also
examine if the loops are well founded.

More details on adaptation of JML for ST
are given in [9].

4. Conversion of ST to ANSI C

As indicated in Section 2, conversion of POUs
from ST language into ANSI C code is needed
to use open source tools for program verifica-
tion. The STVCGen tool based on ST compiler
from CPDev package [11] executes the conver-
sion. Components of the compiler are classes in
C# language, so they can be reused with typi-
cal mechanisms like inheritance and overriding.
Main goal while developing the STVCGen has
been to get a compiler quickly from existing
code of CPDev. The parser is built according
to top-down scheme with syntax-directed trans-
lation [12]. It recognises meaning of ST code
and produces corresponding ANSI C code. In
addition to translating ST, the parser collects
annotations and generates code for Caduceus or
Frama C tools1.

Code translation is performed in three as-
pects, i.e. concerning POUs, instructions, and
annotations, respectively. The first one is to trans-
late POUs into C language functions. If POU
is a function, then translation proceeds directly.
Return value must be declared only to conform
with the code. Translation of function block or
program is more complicated. Function block is
translated into C function in the following way:
– block inputs are converted into function pa-

rameters,
– block outputs become function parameters,

however declared as pointers,
– local variables are also declared as pointer

parameters,
– all pointer parameters produce extra

requires expression with different base ad-
dresses.

An ST program is translated into C as follows:
– global variables remain global in C,
– local variables become function parameters,

declared as pointers,

– local function block instances are ignored, but
their pointer parameters are also declared as
additional pointers.

The conversion cases are illustrated in Fig. 2. ST
variable types are converted into corresponding
C types, with equivalents presented in Table 3.

The second aspect is to convert instruction
code into valid C form. Generally speaking, code
shape in both languages is similar, so examples
presented at Fig. 3a where OP is arithmetic or
logic operator are natural. Most of ST operators
have equivalents in C, so C code construction
involves operator replacements and parentheses
in case of different priorities. The problem arises
when converted variable after conversion is de-
clared as a pointer. In such case each instance
must appear in C code with a star and parenthe-
ses. If an ST operator does not have C equiva-
lent (like power **), STVCGen replaces it with
function provided by header file bundled with
the tool, as in Fig. 3a (macros). Some ST op-
erators have more equivalents in C code. For
example AND operator may be logical operator
between Boolean expressions bexpr1 and bexpr2
(Fig. 3b), and can be also used for bitwise cal-
culations in digital expression involving dexpr1
and dexpr2. When such operator (AND, OR, NOT)
appears in source code, the compiler checks if
the expression evaluates to Boolean. If yes, the
logical operator is used, otherwise bitwise one.
Conversion of NOT operator may lead to one of
two macros. When the operand is Boolean then
the NOT operator is converted to ’!’ in C hidden
under _BOOL__NOT__ macro. If the operand is
bitwise, NOT is converted to ’~’ in _BIT__NOT__.

Some ST and C constructs are very similar,
as IF statement in Fig. 3c. Conditional Boolean
expression remains valid after conversion into C.
This does not happen however, in case of FOR loop
whose conversion depends on values in source
code. If the constant im3 in Fig. 3d is greater
than zero, then the equivalent C statement uses
less or equal comparison and increment operator.
If the constant is lower than zero, then the C
statement uses greater or equal comparison and
decrement operator.

1 Due to different annotations, Caduceus or Frama-C are chosen by compiler settings.

Conversion of ST Control Programs to ANSI C for Verification Purposes 69

FUNCTION name : REAL
VAR_INPUT
 X1 : INT;
 X2 : BYTE;
END_VAR
VAR p : INT; END_VAR
...
END_FUNCTION

float name(
short X1,
unsigned char X2)
{
 float return_name = 0.0;
 short p = 0;
 ...
}

ST declaration ANSI C code

Fu
nc

tio
n

FUNCTION_BLOCK fbnme
VAR_INPUT
 X1 : INT;
 X2 : BYTE; END_VAR
VAR_OUTPUT
 Y1 : REAL;
 Y2 : DWORD; END_VAR
VAR p : INT; END_VAR
...
END_FUNCTION_BLOCK

void fbnme(
short X1,
unsigned char X2,
float* Y1,
unsigned int* Y2,
short* p)
{
 ...
}

Fu
nc

tio
n

bl
oc

k

PROGRAM pname
VAR_GLOBAL
 G1 : DWORD;
 G2 : REAL; END_VAR
VAR u : INT;
 d : fbnme;
END_VAR
...
END_PROGRAM

unsigned int G1;
float G2;
void pname(
short* u,
float* d_Y1,
unsigned int* d_Y2,
short* d_p)
{
 ...
}

Pr
og

ra
m

Figure 2. Conversion of three types of POUs into C

Calls of instances of function blocks require
more effort, because values of local and output
variables from previous execution must be pre-
served. As shown before in Fig. 2, the program
pname uses a hypothetical function block fbname
with the instance called d, so additional func-
tion inputs (beginning with d_) have also been
declared. Call of the instance d in ST and the
translation to ANSI C are presented in Fig. 4.
The single variable d does not exist here, but
is replaced by corresponding arguments of the
converted program. Such approach produces less
complicated verification lemmas, which can be
proved half automatically.

The third aspect of conversion is to change
annotations describing a POU in ST language

into equivalent form in C with necessary modifi-
cations and supplements.

Converted annotations do not differ much
from original ones, except operator syntax and
removal of some characters not needed by Ca-
duceus (ST assertional extension involves char-
acters that specify range and objective of some
clauses). However, the conversion generates ad-
ditional components in specification, mostly de-
scribing pointer properties and arithmetic, in-
cluding different base addresses for pointer vari-
ables and their non-NULL values. Since pointers
do not exist in ST, therefore each variable, so
also a pointer, is allocated at different address.
Values different than NULL are preserved by task
allocator, which can execute programs only with

70 Jan Sadolewski

Table 3. Type conversion

ST type C type ST type C type
BOOL char BYTE unsigned char
SINT char INT short
WORD unsigned short DINT int
DWORD unsigned int LINT long long
REAL float LREAL double
LWORD unsigned long long TIME int
DATE_AND_TIME unsigned long long TIME_OF_DAY unsigned int

IF bexpr
1
 THEN

 instr
1ELSE

 instr
2END_IF

if(bexpr
1
) {

 instr
1

} else {
 instr

2

}

ST construction ANSI C code

bexpr
1
 AND bexpr

2

bexpr
1
 OR bexpr

2

dexpr
1
 AND dexpr

2

dexpr
1
 OR dexpr

2

NOT bexpr
1

NOT dexpr
1

bexpr
1
 && bexpr

2

bexpr
1
 || bexpr

2

dexpr
1
 & dexpr

2

dexpr
1
 | dexpr

2

!(bexpr
1
) _BOOL__NOT__

~(dexpr
1
) _BIT__NOT__ macros

expr
1
 OP expr

2

expr
1
 ** expr

2

expr
1
 OP expr

2

power(expr
1
, expr

2
)

a)

b)

c)

FOR cv:=im
1
 TO

 im
2
 BY im

3DO
 instr

1END_FOR

for(cv:=im
1
; cv<=im

2
;

 cv+=im
3
) { instr

1
}

for(cv:=im
1
; cv>=im

2
;

 cv-=im
3
) { instr

1
}

im
3
>0

im
3
<0

d)

Figure 3. ST code conversion to C form

d(X1:=u, X2:=
 DWORD_TO_BYTE(G1));

fbnme((*u), DWORD_TO_BYTE(G1),
 d_Y1, d_Y2, d_p);

Figure 4. Conversion of function block call

Conversion of ST Control Programs to ANSI C for Verification Purposes 71

complete set of parameters. The example in Fig. 5
presents an instance of assertional ST extension
and converted form in ANSI C for Caduceus. The
clause requires is directly converted into desti-
nation form and supplemented with expression
(denoted by circled 1) which by the clause \valid
indicates non-NULL values of pointer variables,
and by the clause \base_addr assures different
addresses pointed by the pointers. The use of
pointer variables at C side also requires assigns
clause (circled 2), which defines variables changed
by the function.

Application of the three translation aspects
in STVCGen produces coherent ANSI C code,
which can be handled by verification tools like
Caduceus, Why and Coq.

5. Example of TON function block

As stated in Sec. 2, the sequential verification pro-
cess consists of source code transformations from
ST language with annotations through ANSI
C and Why into verification lemmas (Fig. 1).
The example considered now involves function
block TON (on-delay timer) of Fig. 6a, whose
input-output time plots are shown in Fig. 6b.
The plots can be split into three parts (states)
denoted by the circled digits. The ST source
code with specification annotations at the be-
ginning is presented in Fig. 7. Each part of
the plot is associated with a single line in
ENSURES specification clause. In design by con-
tract approach the clause expression and block
interface (inputs and outputs declaration) are
written by designer. Construct var<>FALSE im-
plies that Boolean variable var equals TRUE. It
is necessary, because strict Boolean type does
not exist in C language. Here it is simulated
by integer value zero (FALSE) and non-zero
(TRUE).

The implementation code beginning from
IF defines instructions to be performed. The
REQUIRES clause defines constraints. If they are
not satisfied, execution of the block may return
invalid results. The constraints are also used in
verification. The ST code from Fig. 7 is trans-

lated by STVCGen to ANSI C form presented
in Fig. 8 (in printable version2).

According to Sec. 4, function block TON be-
comes function in C, and requires clause is
strengthened with \valid and \base_addr con-
structs. Block outputs and local variables become
pointers in C, so additional clause assigns is
necessary to deal with pointer arithmetic while
proving. Transformation of function block body
applies statement conversion and pointer substi-
tution of some variables.

6. ANSI C Verification

The ANSI C code of Fig. 8 is further converted
with Caduceus which produces equivalent pro-
gram in Why code (Fig. 2). In the next step the
Why tool generates verification lemmas, which
must be proved to confirm program correctness.
Details of Caduceus and Why conversion are
skipped due to limited space. Here we focus on
the lemmas produced by Why generator. In case
of TON function (Fig. 8), Why produces 12 lem-
mas which must be proved with Coq Proof Assis-
tant. First four lemmas refer to correct allocation
of variables declared as pointers. One of them
is presented in Fig. 9, remaining lemmas have
different variable in the goal part (last not in-
dented line). They are easily proved with default
tactic intuition. Fifth lemma listed in Fig. 10
deals with first possible execution of the program
and is more complex. Using intuition tactic to
prove it leads to undetermined value. This means
that intuition must be replaced by elementary
tactics.

At first intros tactic is applied, which in-
troduces local hypothesis into the context. The
following repeat split splits the goal into five
subgoals (denoted as circled numbers in Fig. 11).
The first subgoal can be proved by sequential
reduction of subsequent memory states (subst
intM_global with appropriate number), and
caduceus tactic, when reduction reaches the ini-
tial state. The second subgoal invloves contra-
diction in hypotheses, so one of the opposite
hypotheses is passed as argument to the absurd

2 Actually STVCGen produces output with a lot of brackets, so it is not easily readable.

72 Jan Sadolewski

FUNCTION_BLOCK fbnme
(*@REQUIRES: X1>0;
ENSURES:
 Y2=\old(P)+X1 AND
 Y1=\old(Y1)+1; *)
VAR_INPUT
 X1 : INT;
 X2 : BYTE; END_VAR
VAR_OUTPUT
 Y1 : REAL;
 Y2 : DWORD; END_VAR
VAR P : INT; END_VAR
...

/*@requires (X1>0) &&
\valid(Y1) && \valid(Y2) &&
\valid(P)&& \base_addr(Y1)!=
\base_addr(Y2) && \base_addr
(Y1)!=\base_addr(P) &&
\base_addr(Y2)!=\base_addr(P)
assigns *Y1, *Y2, *P
ensures (Y2==\old(*P)+X1) &&
 (Y1==\old(*Y1)+1) */
void fbnme(short X1,
unsigned char X2, float* Y1,
unsigned int* Y2, short* P)
{...

Figure 5. Converting assertional extension with supplements

TON
IN
PT

Q
ET ET

Q
IN

PT
① ② ③ ① ② ①

a) b)

Figure 6. TON function block: a) symbol, b) time plots

FUNCTION_BLOCK TON
(*@REQUIRES: (PT > TIME#0ms) AND (ET >= TIME#0ms) AND (ET <= PT);
ENSURES: ((IN = FALSE) ==> ((ET=TIME#0ms) AND (Q=FALSE))) AND
(((ET < PT) AND (\old(Q)=FALSE) AND (IN<>FALSE)) ==> (Q=FALSE)) AND
(((ET = PT) AND (\old(Q)=FALSE) AND (IN<>FALSE)) ==> (Q<>FALSE)); *)
VAR_INPUT IN : BOOL; PT : TIME; END_VAR
VAR_OUTPUT Q : BOOL; ET : TIME; END_VAR
VAR L_STIME : TIME; LC : TIME; END_VAR

IF IN THEN
IF NOT Q THEN

LC := CUR_TIME() - L_STIME;
IF LC >= PT THEN Q := TRUE; ET := PT;
ELSE ET := LC;
END_IF

END_IF
ELSE

Q := FALSE; ET := TIME#0ms; L_STIME := CUR_TIME();
END_IF
END_FUNCTION_BLOCK

Figure 7. Source code of TON function block

Conversion of ST Control Programs to ANSI C for Verification Purposes 73

/*@requires (((PT>0x00000000) && (*ET>=0x00000000)) && (*ET<=PT)) &&
\valid(Q) && \valid(ET) && \valid(L_STIME) && \valid(LC) &&
\base_addr(Q)!=\base_addr(ET) && \base_addr(Q)!=\base_addr(L_STIME) &&
\base_addr(Q)!=\base_addr(LC) && \base_addr(ET)!=\base_addr(L_STIME) &&
\base_addr(ET)!=\base_addr(LC) && \base_addr(L_STIME)!=\base_addr(LC)

assigns *Q, *ET, *L_STIME, *LC
ensures ((IN==0) => ((*ET==0x00000000) && (*Q==0))) &&
(((((*ET<PT) && (\old(*Q)==0)) && (IN!=0)) => (*Q==0)) &&
((((*ET==PT) && (\old(*Q)==0)) && (IN!=0)) => (*Q!=0))) */

void TON (char IN, int PT, char* Q, int* ET, int* L_STIME, int* LC)
{

if(IN) {
if(_BOOL__NOT__(*Q)) {

*LC = CUR_TIME() - *L_STIME;
if(*LC >= PT) { *Q = 1; *ET = PT; }
else { *ET = *LC; }

}
} else {
*Q = 0; *ET = 0x00000000; *L_STIME = CUR_TIME();
}

}

Figure 8. Result of ST conversion to ANSI C

Lemma TON_impl_po_1 :
forall (IN: Z), forall (PT: Z), forall (Q: (pointer global)),
forall (ET: (pointer global)), forall (L_STIME: (pointer global)),
forall (LC: (pointer global)), forall (alloc: alloc_table),
forall (intM_global: (memory Z global)),
forall (HW_1: ((((((((((((PT > 0 /\ (acc intM_global ET) >= 0) /\
(acc intM_global ET) <= PT) /\ (valid alloc Q)) /\ (valid alloc ET)) /\
(valid alloc L_STIME)) /\ (valid alloc LC)) /\
~((base_addr Q) = (base_addr ET))) /\
~((base_addr Q) = (base_addr L_STIME))) /\
~((base_addr Q) = (base_addr LC))) /\
~((base_addr ET) = (base_addr L_STIME))) /\
~((base_addr ET) = (base_addr LC))) /\
~((base_addr L_STIME) = (base_addr LC)))), forall (HW_2: IN <> 0),

(valid alloc Q).

Figure 9. First lemma generated by the Why

tactic. Two generated subgoals are proved with
assumption. The third subgoal is proved in the
same way as the first one. The fourth subgoal,
after introduction of additional hypothesis and
decomposition of the conjunction in hypothesis
HW_1, can also be proved like the first subgoal.

The fifth subgoal requires more effort, be-
cause it begins with not_assigns clause for
pointer arithmetic. However, standard scheme

described in [3] can be applied to prove corre-
sponding lemmas, extended here to handle four
pointer variables (instead of one). At first the
intros A B C3 tactic is applied. Then we must
duplicate the last lemma C so many times, as
to match the number of variables declared as
pointers, except the first one (so three here).
It is done with generalize C and intro D, or
E, or F tactics (see Fig. 11). Next the apply

3 A sequence of Latin letters is used for brevity. If one of them is already used in the lemma, it can be replaced
with another unique name.

74 Jan Sadolewski

Lemma TON_impl_po_5 :
forall (IN: Z), forall (PT: Z), forall (Q: (pointer global)),
forall (ET: (pointer global)), forall (L_STIME: (pointer global)),
forall (LC: (pointer global)), forall (alloc: alloc_table),
forall (intM_global: (memory Z global)),
forall (HW_1: ((((((((((((PT > 0 /\ (acc intM_global ET) >= 0) /\
(acc intM_global ET) <= PT) /\ (valid alloc Q)) /\ (valid alloc ET)) /\
(valid alloc L_STIME)) /\ (valid alloc LC)) /\
~((base_addr Q) = (base_addr ET))) /\
~((base_addr Q) = (base_addr L_STIME))) /\
~((base_addr Q) = (base_addr LC))) /\
~((base_addr ET) = (base_addr L_STIME))) /\
~((base_addr ET) = (base_addr LC))) /\
~((base_addr L_STIME) = (base_addr LC)))),

forall (HW_2: IN <> 0),
forall (HW_3: (valid alloc Q)), forall (result: Z),
forall (HW_4: result = (acc intM_global Q)),
forall (HW_5: result = 0),
forall (result0: Z), forall (HW_7: (valid alloc L_STIME)),
forall (result1: Z),
forall (HW_8: result1 = (acc intM_global L_STIME)),
forall (HW_9: (valid alloc LC)),
forall (intM_global0: (memory Z global)),
forall (HW_10: intM_global0 = (upd intM_global LC (result0 - result1))),
forall (HW_11: (valid alloc LC)),
forall (result2: Z),
forall (HW_12: result2 = (acc intM_global0 LC)),
forall (HW_13: result2 >= PT),
forall (HW_14: (valid alloc Q)), forall (intM_global1: (memory Z global)),
forall (HW_15: intM_global1 = (upd intM_global0 Q 1)),
forall (HW_16: (valid alloc ET)),
forall (intM_global2: (memory Z global)),
forall (HW_17: intM_global2 = (upd intM_global1 ET PT)),

((((IN = 0 -> (acc intM_global2 ET) = 0 /\ (acc intM_global2 Q) = 0)) /\
((((acc intM_global2 ET) < PT /\ (acc intM_global Q) = 0) /\ IN <> 0 ->
(acc intM_global2 Q) = 0))) /\ ((((acc intM_global2 ET) = PT /\
(acc intM_global Q) = 0) /\ IN <> 0 -> (acc intM_global2 Q) <> 0))) /\
(not_assigns alloc intM_global intM_global2 (pset_union (pset_singleton
LC) (pset_union (pset_singleton L_STIME) (pset_union (pset_singleton ET)
(pset_singleton Q)))))).

Figure 10. Fifth lemma generated by Why

pset_union_elim1 in C is applied for hypoth-
esis C to eliminate first set in the union of sets
with pointer variables (pset). For the second
hypothesis D the tactic elim2 is applied first,
followed by elim1 as before. The remaining E
and F hypotheses require increase of elim2 ap-
plications by one, followed by single elim1 in D,
and not in the last F. After these steps the tactic
apply pset_singleton_elim in _ applied for
all four hypotheses provides pure distinction be-

tween addresses of pointer variables. Last steps
involve the approach used already to prove the
first and third subgoal, i.e. subst intM_global
tactic to reduce memory states, terminated by
final caduceus tactic.

The remaining lemmas 6, 8, 9, 10 and 11
are proved automatically with intuition tactic.
Lemmas 7 and 12 can be proved similarly as
lemma 5.

Conversion of ST Control Programs to ANSI C for Verification Purposes 75

intros

repeat split

subst intM_global2
subst intM_global1
subst intM_global0
caduceus

absurd (IN=0)

assumption assumption

subst intM_global2
subst intM_global1
subst intM_global0
caduceus

intro
decompose [and] HW_1
subst intM_global2
subst intM_global1
subst intM_global0
caduceus

intros A B C
generalize C
intro D
generalize C
intro E
generalize C
intro F
apply pset_union_elim1 in C

apply pset_union_elim2 in D
apply pset_union_elim1 in D
apply pset_union_elim2 in E
apply pset_union_elim2 in E
apply pset_union_elim1 in E
apply pset_union_elim2 in F
apply pset_union_elim2 in F
apply pset_union_elim2 in F

apply pset_singleton_elim in C
apply pset_singleton_elim in D
apply pset_singleton_elim in E
apply pset_singleton_elim in F
subst intM_global2
subst intM_global1
subst intM_global0
caduceus

Figure 11. Tactics of proof tree for TON function block lemma

The method presented here can be used for
verification of simple functions, function blocks
and programs which do not call other function
blocks. The limitation is caused by annotation
injection arising when a subroutine is called, so
some kind of decomposition must be used to deal
with it. More information on decomposition can
be found in [8].

7. Summary

The application of Behavioral Interface Specifi-
cation Language for ST language of IEC 61131-3
standard concerning control programs has been
presented. The annotations to ST code express
specification of function, function block or pro-
gram, which after conversion to C can be used for
formal verification of compliance between speci-
fication and implementation. Such approach is
typical for design by contract method applied
while developing advanced applications. Step-
wise conversion by STVCGen, Caduceus and
Why tools produce verification lemmas which
can be proved by Coq with a set of appropriate
tactics. Till now several function blocks and pro-
grams have been verified. The examples involve
combinatorial logic (binary multiplexer, two-bit
sum, heater control), sequential logic (flip-flops,

water level control, wood sorting machine), and
sequential logic with time constraints (cargo lift).

Specification in the form of annotations is
transparent for compilers which do not support
such assertions. Therefore for practical reasons,
one general purpose IEC 61131-3 compiler may
be used for verification, and another one, dedi-
cated to particular hardware, applied for imple-
mentation. The presented compiler may be also
extended to perform dynamic run-time verifica-
tion, as provided by JML with some supporting
tools.

Future work will concentrate on direct con-
version from ST language into Why code, with-
out limitation of available types. The types con-
strained by Caduceus conversion will be trans-
formed to suit types provided by Coq or by ex-
ternal libraries. Naturally, direct conversion will
require some additional algorithms to construct
proofs of the lemmas.

References

[1] E. Tisserant, L. Bessard, and M. de Sousa, “An
open source IEC 61131-3 integrated development
environment,” in 5th Int. Conf. Industrial Infor-
matics. Piscataway, NJ, USA, 2007.

[2] B. Meyer, “Applying “design by contract”,”
Computer, vol. 25, no. 10, p. 40–51, 1992.

[3] J.-C. Filliâtre, T. Hubert, and C. Marché, “The

76 Jan Sadolewski

Caduceus verification tool for C programs,” [on-
line] http://caduceus.lri.fr, 2008.

[4] J.-C. Filliâtre, “The Why verification tool.
tutorial and reference manual,” [online]
http://www.lri.fr, 2010.

[5] Y. Bertot and P. Castéran, Interactive The-
orem Proving and Program Development.
Springer-Verlag, Berlin Heidelberg, 2004.

[6] G. T. Leavens, A. L. Baker, and C. Ruby, JML:
a Notation for Detailed Design, ser. Behavioral
Specifications of Businesses and Systems, 1999.

[7] E. W. Dijkstra, A Discipline of Programming.
Prentice-Hall, Inc., 1976.

[8] J. Sadolewski, Verification of complex programs
for control systems, ser. Methods of producing
and applying real time systems. Wydawnictwa
Komunikacji i Łączności, 2010, (in Polish).

[9] ——, “Assertional extension in ST language of
IEC 61131-3 standard for control systems dy-
namic verification,” Pomiary Automatyka Robo-
tyka, no. 2, pp. 305–314, 2011, (in Polish).

[10] R. Bornat, “Proving pointer programs in Hoare
logic,” in Mathematics of Program Construction.
Springer-Verlag. London, 2000, pp. 102–126.

[11] D. Rzońca, J. Sadolewski, A. Stec, Z. Świder,
B. Trybus, and L. Trybus, “Open environment
for programming small controllers according
to IEC 61131-3 standard,” Scalable Comput-
ing Practice and Experience, vol. 10, no. 3, pp.
325–336, 2009.

[12] K. D. Cooper and L. Torczon, Engineering a
Compiler. Morgan Kaufmann, San Francisco,
2003.

	Introduction
	Verification Concept
	Behavioral Interface Specification Language for ST
	Conversion of ST to ANSI C
	Example of TON function block
	ANSI C Verification
	Summary
	References

