
e-Informatica Software Engineering Journal, Volume 5, Issue 1, 2011, pages: 77–85, DOI 10.2478/v10233-011-0032-2

Multiple tasks in FPGA-based programmable
controller

Zbigniew Hajduk∗, Jan Sadolewski∗, Bartosz Trybus∗

∗Faculty of Electrical and Computer Engineering, Department of Computer and Control Engineering,
Rzeszow University of Technology

zhajduk@kia.prz.edu.pl, js@kia.prz.edu.pl, btrybus@kia.prz.edu.pl

Abstract
An FPGA-based execution platform for PLC controllers with capability to run multiple control
tasks is presented. The platform, called multi-CPCore, uses hardware virtual machines to execute
control tasks defined in CPDev engineering environment. The tasks consist of one or more programs
written in IEC 61131-3 languages, such as ST, IL or FBD. They may run with different cycles
and communicate via global variables. Parallel programming mechanisms like process image and
semaphores are provided to handle potential conflicts when accessing shared resources.

1. Introduction

CPCore (Control Program Core) is an exe-
cution platform for programmable logic con-
trollers (PLCs) designed in FPGA technol-
ogy. Hardware-implemented IEC 61131-3 vir-
tual machine [1, 2] is its main feature. CP-
Core is programmed in CPDev engineering
environment (Control Program Developer) [3],
which integrates tools for programming, sim-
ulation, hardware configuration, on-line test-
ing and running control applications on dif-
ferent platforms. Programs can be written in
ST and IL textual languages (Structured Text,
Instruction List) and in FBD graphical lan-
guage (Function Block Diagram). CPDev com-
piler produces universal executable code called
VMASM (Virtual Machine Assembler), inter-
preted at the target controller by the CPDev
virtual machine (runtime). Software virtual ma-
chine written in C is available for multiple target
platforms with general-purpose CPUs (ARM,
AVR or x86). However, interpretation takes
time, so portability of the VMASM code is

achieved at the price of slower program execu-
tion.

On the contrary, CPCore platform involves
FPGA-based hardware virtual machine which
directly executes VMASM code. This results in
much shorter execution time, from several to a
few hundred times, when compared with typi-
cal microcontrollers [1]. Similar solutions have
been presented in [4, 5]. The CPCore hardware
machine is actually a 32-bit microcontroller that
executes VMASM code generated in CPDev envi-
ronment. The microcontroller is built according
to Harvard architecture with separate data and
program buses. A prototype PLC controller im-
plemented in CPCore technology is shown in
Fig. 1. The main board (upper left) includes Xil-
inx FPGA chip, real-time clock, SRAM, NVRAM
and Flash memories. Analog and binary inputs
and outputs are handled by slave boards (right
side of Fig. 1). The operating panel (lower left)
involves LCD display, LEDs and push buttons.

Ability to run multiple IEC control tasks
at the same time has been introduced to the
CPCore platform recently and is described here.

1 The research has been supported with MNiSzW grant N N514 412736 (2009-2011).

c© Copyright by Wrocław University of Technology, Wrocław 2011

http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_5/eInformatica2011Art6.pdf

78 Zbigniew Hajduk, Jan Sadolewski, Bartosz Trybus

Each task is executed by a single hardware ma-
chine core. The cores are independent and run in
parallel, creating a multiprocessor architecture
(multi-CPCore).

The paper is organized as follows. At first,
program execution is characterized. Then the
multiple task capabilities are described from
the programmer’s viewpoint, with the process
of creating tasks and setting their parameters.
Main aspects of resource sharing are covered, i.e.
accessing common hardware blocks and using
semaphores for mutual exclusion. Finally, hard-
ware structure of the multi-CPCore platform is
presented.

2. Program execution

Source programs for the CPCore controller are
processed by the CPDev compiler which gener-
ates VMASM universal executable code [3]. The
VMASM code can be executed by the controller
hardware machine (executor). Functional side of
the machine corresponds to IEC 61131-3 stan-
dard [2] and provides the following capabilities:
– Handling IEC data types: Boolean BOOL,

integer BYTE, SINT, INT, WORD, DINT,
LINT, DWORD, LWORD, real REAL,
LREAL, time and date TIME, DATE,
TIME_OF_DAY, DATE_AND_TIME.

– Execution of functions: arithmetic ADD,
SUB, MUL, DIV, MOD, numerical SQRT,
LOG, SIN, ASIN, EXP, Boolean NOT, AND,
OR, XOR, bit shift SHL, ROL, comparison
GT, GE, LT, EQ and others.

– Program flow control by means of jumps
JMP, JZ, JNZ, calls of function blocks CALB,
early exit RETURN, memory handling MCD,
MEMCP (Move from Code to Data, Memory
Copy).

– Hardware function blocks: invoking blocks
implemented in FPGA hardware (called also
native blocks).

– Parallel programming instructions: global
variable handling (Sec. 4.1), semaphore
operations LOCK, UNLOCK, TRYLOCK
(Sec. 4.3).

The IEC standard also defines multi-element
variable types, i.e. arrays and structures. The
machine handles these two types by means of a
few dedicated commands, e.g. AURD/AUWD
read/write data from/to indexed array.

Basic logical registers of the hardware ma-
chine are listed in Table 1. Since accumulator
does not exist in VMASM specification, results
of commands are stored in variables. Task cycle
can be configured and monitored by the machine
during program execution. Actual task cycle (last
value) is particularly useful for on-line testing
(commissioning). Status1 stores exception flags,
including cycle overflow, therefore appropriate
reaction can be programmed.

3. CPCore programming with
multiple tasks

In the multi-CPCore solution, each task con-
tains its own control algorithm compiled into
VMASM. The task is executed by separate in-
stance of the hardware machine. This means that
multi-CPCore can be viewed as a group of virtual
controllers.

According to IEC 61131-3 standard, engineer-
ing project of control system is created in hier-
archical manner, i.e. by defining controller con-
figuration, implementing algorithms in programs
and function blocks, and assigning them to tasks.

3.1. Creating POUs

In the CPDev environment, the user creates a
set of so-called Program Organizational Units
(POUs). The POUs can be written in ST lan-
guage or two other languages of IEC 61131-3
standard, i.e. IL and FBD. Main window of
CPDev in Fig. 2 shows sample configuration with
four POUs, whose names are seen in the project
tree on the left. The tree also contains global
variables used in the project. START, STOP
and ALARM represent digital inputs, while the
other, MOTOR, PUMP, OUT0. . . OUT3 are out-
puts (all are BOOLs). The global variables are
followed by two tasks (described later) and li-
braries with blocks used by POUs. The first

Multiple tasks in FPGA-based programmable controller 79

Figure 1. CPCore controller prototype

POU, START_STOP, has been created as an
FBD diagram (center part of Fig. 2). It turns
MOTOR on if START is pressed, provided that
STOP and ALARM are not set. MOTOR con-
tinues running after releasing START. PUMP is
turned on and off 5 seconds after the MOTOR.
Time delay (T#5s) is introduced by two func-
tion blocks, TON and TOF. The second POU,
MOVE_UNIT, subsequently turns on and off a
set of devices in a loop. The algorithm written
in ST (right side of Fig. 2) sequentially sets to
TRUE one of the global variables OUT0...OUT3
assigned to binary outputs. It is done every 2 sec-
onds (t#2s) by using system clock (CUR_TIME
function).

Besides START_STOP and MOVE_UNIT,
there are also two other POUs in the project tree,
namely LCD_CH and DISPB. The first one is
a hardware function block which puts a charac-
ter onto the CPCore LCD. DISPB is another
function block which uses LCD_CH internally

to display a string. The block can be invoked by
other POUs to print some messages. The two
blocks will be described in Sec. 4.2.

3.2. Defining tasks

The user creates a task by selecting appropriate
POUs and assigning them to the task. The POUs
assigned to the task are executed sequentially in
the order defined by the user. The task can group
a set of POUs written in different IEC languages.
In the sample project of Fig. 2 two task are
defined, TASK_SS and TASK_MU. Creation of
TASK_SS will be described in more detail.

Task definition is done in CPDev window
of Fig. 3. Task name must be entered first, so
TASK_SS here. Then task type is selected to
indicate execution mode. TASK_SS will be ex-
ecuted cyclically, with cycle time of 1 millisec-
ond. Cyclic task is most common choice, but one
can also select “As soon as possible” (endless

80 Zbigniew Hajduk, Jan Sadolewski, Bartosz Trybus

Table 1. Logical registers of hardware machine

Register Function
Program counter Indicates next VMASM command
Data offset Index to data area being used
Call stack pointer Pointers to call stack (POUs)
Data stack pointer and data stack
Task cycle Configured
Actual task cycle and measured task cycle
Cycle counter Counts cycles (from reset)

Status1 VM status word (array index faulty,
time cycle exceeded, cold start, etc.)

RTC clock Absolute time

Figure 2. CPDev environment window with two POUs

loop) or single execution (not implemented yet
in multi-CPCore prototype). POU assignment
is done by moving available programs from the
right list to the left (Fig. 3). Two POUs are avail-
able here, START_STOP and MOVE_UNIT.
The other POUs of the project, LCD_CH and
DISPB, do not appear in the window because
they are function blocks, not programs. In
case of TASK_SS, only START_STOP is se-
lected for execution. The other task, TASK_MU

(Fig. 2), involves the MOVE_UNIT program
and is also executed cyclically with period of
10 ms.

4. Task communication and resource
sharing

As mentioned before, the tasks in multi-CPCore
are run independently by their own executors.

Multiple tasks in FPGA-based programmable controller 81

Figure 3. Defining a task for multi-CPCore controller in CPDev

However, as parts of control project, they must
communicate and exchange variables. Basic prob-
lem in parallel programming is to get access to
shared resources. Multi-CPCore can be viewed
logically a set of virtual PLCs, which share the
same peripherals (inputs and outputs, display,
real-time clock, etc.).

4.1. Global variables

Data exchange between CPCore tasks is per-
formed by means of global variables. Such way of
task communication is also recommended in IEC
standard [2]. Global variables can be accessed
by programs and tasks. In the sample project
of Fig. 2, START and STOP are used in both
tasks (TASK_SS and TASK_MU) to activate
corresponding devices (not shown, however, in
the part of MOVE_UNIT code).

Upon start of the configuration,
multi-CPCore executes special initialization
code generated by CPDev compiler, which
sets initial values of the global variables (e.g.
STOP:=FALSE). This is done before any task
is invoked.

To avoid conflicts related to sharing global
variables between tasks, CPCore executors oper-
ate on so-called process images. At the start of
the cycle, the task is provided with current copy

of the global variables (local shadows). When
the task is executed, only the shadows are used,
so change of global values caused by other tasks
does not affect calculations. When the cycle is
about to end, the calculated shadows are stored
in the global variables. Synchronization is done
only for the variables that have been modified
within the cycle.

4.2. Accessing hardware blocks

Two types of function blocks are available in the
CPCore platform, i.e. program blocks and hard-
ware blocks. The first ones are created in CPDev
environment in one of IEC languages. The plat-
form also supports a set of dedicated hardware
blocks used to access low-level functions or to
speed up calculations.

As an example, access to the hardware block
LCD_CH mentioned above is described now.
LCD_CH displays a character on the controller
LCD. First, the user creates a new function block
(new POU) and chooses ST as implementation
language. However, instead of writing an imple-
mentation, only the following declaration of the
block is entered:
FUNCTION_BLOCK LCD_CH
(*$HARDWARE_BODY_CALL ID:0004; Align:4;

Extra:0;*)

82 Zbigniew Hajduk, Jan Sadolewski, Bartosz Trybus

(*$PLACE_UID_VAR*)
VAR_INPUT

C:BYTE;
END_VAR
VAR_OUTPUT
END_VAR
END_FUNCTION_BLOCK

As seen, single block input is declared (a
BYTE value) and no outputs. There is also
no body code, however the directive HARD-
WARE_BODY_CALL instructs the compiler
to assign the declaration to particular hardware.
In CPCore, the LCD_CH block has a unique
identifier 4 (ID:0004). After the declaration is en-
tered, an instance of the block can be created and
invoked from a program as any other function
block.

However, since hardware blocks usually con-
trol peripherals, their usage in parallel environ-
ment is somewhat limited due to potential con-
flicts. Typically, such block cannot be concur-
rently executed by two or more tasks. This is
called mutual exclusion and can be achieved in
two ways.

Some hardware block calls from multiple
tasks are queued internally by the CPCore and
then executed sequentially. Task execution may
be delayed due to queue processing, but the col-
lision does not occur. This mechanism applies
mostly to simple blocks executed in one-shot
manner. LCD_CH and some flip-flops are exam-
ples of queued hardware blocks.

Assignment of hardware block to particular
executor (virtual machine) during configuration
of CPCore is another way of avoiding conflicts
during the calls. In such arrangement, only that
executor will be able to call the block. Other
tasks cannot call the block directly, however a
software solution can be implemented to provide
access to the block functionality via a dedicated
task. In CPCore this applies to UART and 1-wire
interface handling blocks.

Fig. 4 shows CPDev hardware configurer win-
dow which allows to set up hardware blocks
for CPCore controller. The upper area activates
blocks related to standard peripheral services
(UART, LCD, 1-wire interface) and a type con-
version block. The lower part contains a list of

IEC standard blocks implemented in hardware.
Contrary to software-implemented blocks they
are executed extra fast, so the overall perfor-
mance of the algorithm is increased. In case of
CPCore, one can use RS and SR flip-flops, coun-
ters, triggers and timers. Here, two instances of
TON and TOF blocks are defined, for instance to
be used in START_STOP diagram (Fig. 2). Ac-
cording to the settings, the hardware configurer
generates appropriate libraries for the CPCore
FPGA chip.

4.3. Mutual exclusion with semaphores

Sometimes hardware solutions described above
are not sufficient to provide collision-free native
block calls. The problem arises especially when
a hardware block is called in the code of another
function block. For example, DISPB is a conven-
tional function block written in ST, used to print
a string on LCD display. DISPB executes actual
printing by calling LCD_CH hardware block for
every character. Although DISPB can be used
by any task, if printing loop is in progress in
one task, the other tasks cannot get access to
the display. Otherwise consistency of the display
would be violated.

Multi-CPCore programmer can use
semaphores for task synchronization and mu-
tual exclusion. A semaphore is a global in-
teger variable accessed from tasks by LOCK
and UNLOCK functions. Unlocking increments
semaphore value, while locking decrements it.
When the semaphore value is zero, the locking
task is suspended until one of other tasks unlocks
the semaphore. Semaphores prohibit tasks from
running critical part of code, when that part is
currently executed.

To provide mutual exclusion upon DISPB
call, a semaphore should be created, i.e. VSEM
below, with initial value 1. Then the following
code protects the printing loop from re-entry.
LOCK(VSEM);
FOR i:=1 TO 16 DO (* 16 chars are kept *)
LCD_PUTCHAR(c:=str[i]) (* in str array *)

END_FOR
UNLOCK(VSEM);

Multiple tasks in FPGA-based programmable controller 83

Figure 4. Configuring hardware blocks for the CPCore controller

When a task enters the code, it locks the
semaphore by decrementing it. So the printing
begins. When another task tries to enter the code
while printing, the semaphore value is zero, so
that task will be suspended and queued. After
the first task unlocks the semaphore, one of the
queued tasks is resumed and can execute another
printing.

5. Hardware structure

Simplified block diagram of the multi-CPCore
controller implemented in FPGA is shown in
Fig. 5. The design is based on symmetric mul-
tiprocessor architecture [6]. Multiple hardware
machine cores in the center of Fig. 5 are hardware
machines (executors) which run concurrently. Im-
plementation of the hardware machine core has
been described in [1]. In the actual CPCore they
are additionally equipped with a floating point
unit [7] (useful for continuous control). Each
core, being in fact a specialized microprocessor
with dedicated program and data memories, is
responsible for execution of a single task.

Apart from the machine cores, there is also
another unit, called initiator core. It is a simple
processor responsible for initialization of selected

locations in global variable memory. The initia-
tor core is triggered on power up or after a new
configuration is loaded into the controller. Only
after completing the initialization, other cores
begin to work.

As described in Sec. 4.1, communication be-
tween machine cores is implemented through
common global memory. Collision free access to
that memory is provided by the global memory
and I/O access arbiter block (Fig. 5). Handshak-
ing protocol is applied for data transfer between
the cores and the arbiter. This is a part of the
process image mechanism described in Sec. 4.1.

A core, which needs to access the global mem-
ory, sets a request signal. The arbiter successively
analyses request occurring at its ports and grants
access to the global memory. Granting the access
to particular core is confirmed by acknowledg-
ment signal. At the end of data transfer, the
core releases the request. In response, the arbiter
releases the acknowledgment and begins scanning
other ports for request signals.

The global memory address space is divided
into two ranges. The lower range, starting from
address 0 up to a configured value, is reserved for
addressing input/output devices (peripherals),
such as digital input and output modules. The
upper range maps physical synchronous RAM

84 Zbigniew Hajduk, Jan Sadolewski, Bartosz Trybus

Figure 5. Simplified block diagram of multi-CPCore FPGA implementation

memory, used to hold global variables. Hardware
machine cores access the input/output devices
in the same way as accessing the global memory
(i.e. via the arbiter). Additional expansion circuit
is needed to connect peripherals to input/output
interface of the arbiter block.

The CPCore FPGA-based controller has been
equipped with facility to integrate hardware func-
tion blocks. Special mechanism for data transfer
between such blocks and executing machines has
been designed and implemented. As described
in Sec. 4.2, there are two options for connecting
hardware blocks. The first one assumes that each
core has its own set of hardware blocks. The sec-
ond one shown in Fig. 5 implements the idea of
sharing hardware blocks among executing cores.
In this case, each core can invoke any of available
blocks. This capability requires the use of arbiter
block, which ensures collision-free access to the
blocks. The hardware function block access ar-
biter (Fig. 5) operates similarly to the global

memory access arbiter. However, the hardware
function block splitter, which consists mainly of
a set of multiplexers, is additionally required to
connect the arbiter to hardware blocks.

Communication module is an important com-
ponent of the CPCore platfrom [8]. It provides
data transfers with CPDev environment, espe-
cially for on-line monitoring and commissioning
purposes. The communication module ensures
full read and write access to the global variable
area, as well as to program and data memories
of each hardware machine core. It also performs
special functions like in-circuit debugging.

A prototype controller with multi-CPCore
technology shown earlier in Fig. 1 consists of
eight executing machine cores what allows for
execution of up to eight concurrent control
tasks. Four hardware function blocks (UART,
alphanumeric LCD, 1-wire bus, hardware type
conversion) are available. The prototype has
been implemented in Xilinx Spartan-6 FPGA

Multiple tasks in FPGA-based programmable controller 85

XC6SLX100-3FGG676, with the main circuit
board described in [9]. The chip employs 31099
6-input LUTs (49% of all available in FPGA)
and 13513 slice registers (10%).

6. Summary

Multi-CPCore FPGA-based PLC execution plat-
form has been described. The platform integrates
several hardware machines, each handling one
control task. FPGA implementation results in
short execution times, if compared to standard
microcontroller-based solutions. The CPCore
tasks run concurrently and independently, as
a set of virtual PLCs. Each task can be set up
with its own cycle time. As a result, CPCore
controller can handle different applications at
the same time. For example, it can execute fast
logic control concurrently with continuous con-
trol, and also handle HMI operating panel. Such
functionalities are available in industrial comput-
ers, but CPCore technology can be applied for
much smaller devices.

Multi-CPCore is programmed and configured
in CPDev engineering environment, compatible
with IEC 61131-3 standard. The tasks are com-
posed of programs written in ST, FBD or IL
languages. In addition to standard libraries, a
library of hardware blocks is available to access
peripherals and speed up operations. Task syn-
chronization mechanisms have been developed
to eliminate conflicts while accessing hardware
resources in parallel environment.

References

[1] Z. Hajduk, B. Trybus, and J. Sadolewski, “Hard-
ware implementation of virtual machine for pro-
grammable controllers,” in Metody wytwarza-
nia i zastosowania systemów czasu rzeczywistego,
L. Trybus and S. Samolej, Eds. Warszawa:
Wydawnictwa Komunikacji i Łączności, 2010, ch.
Chapter 5, pp. 333–342, (in Polish).

[2] IEC 61131-3 standard: Programmable Controllers
– Part 3. Programming Languages, IEC Std., 2003.

[3] D. Rzońca, J. Sadolewski, A. Stec, Z. Świder,
B. Trybus, and L. Trybus, “Open environment for
programming small controllers according to IEC
61131-3 standard,” Scalable Computing: Prac-
tice and Experience, vol. Volume 10, no. 3, pp.
325–336, 2009.

[4] D. Gawali and V. Sharma, “FPGA Based
Micro-PLC Design Approach,” Advances in Com-
puting, Control, and Telecommunication Tech-
nologies, International Conference on, vol. 0, pp.
660–663, 2009.

[5] M. Adamski and J. L. Monteiro, “From inter-
preted Petri net specification to reprogrammable
logic controller design,” in Proc. IEEE Int. Symp.
Industrial Electronics (ISIE 2000), vol. 1, 2000,
pp. 13–19.

[6] P. Huerta, J. Castillo, C. Pedraza, J. Cano, and
J. I. Martinez, “Symmetric multiprocessor sys-
tems on FPGA,” in IEEE Int. Conf. on Reconfig-
urable Computing and FPGAs. ReConFig ’09,
2009, pp. 279–283.

[7] Z. Hajduk, “Floating-point arithmetic unit for a
hardware virtual machine,” Pomiary Automatyka
Kontrola, vol. 57, no. 1, pp. 82–85, 2011, (in Pol-
ish).

[8] ——, “Communication module for a hardware
implemented virtual machine,” Elektronika – kon-
strukcje, technologie, zastosowania, no. 5, 2011,
(in Polish).

[9] ——, “PLC controller prototype with a hardware
virtual machine,” Elektronika – konstrukcje, tech-
nologie, zastosowania, no. 4, pp. 114–118, 2011,
(in Polish).

	Introduction
	Program execution
	CPCore programming with multiple tasks
	Creating POUs
	Defining tasks

	Task communication and resource sharing
	Global variables
	Accessing hardware blocks
	Mutual exclusion with semaphores

	Hardware structure
	Summary
	References

