

Editors

Zbigniew Huzar (Zbigniew.Huzar@pwr.wroc.pl)
Lech Madeyski (Lech.Madeyski@pwr.wroc.pl, http://madeyski.e-informatyka.pl/)

Institute of Informatics
Wrocław University of Technology, 50-370 Wrocław, Poland

e-Informatica Software Engineering Journal
www.e-informatyka.pl/wiki/e-Informatica/, DOI: 10.5277/e-informatica
Wojciech Thomas (Editorial Office Manager).
Typeset by Wojciech Myszka with the LATEX 2𝜀 Documentation Preparation System

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publishers.

Printed in the camera ready form

c○ Copyright by Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2012

OFICYNA WYDAWNICZA POLITECHNIKI WROCŁAWSKIEJ
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
http://www.oficyna.pwr.wroc.pl;
e-mail: oficwyd@pwr.wroc.pl; zamawianie.ksiazek@pwr.wroc.pl

ISSN 1897-7979

Drukarnia Oficyny Wydawniczej Politechniki Wrocławskiej.

http://madeyski.e-informatyka.pl/
http://www.e-informatyka.pl/wiki/e-Informatica/
http://dx.doi.org/10.5277/e-informatica
http://www.oficyna.pwr.wroc.pl
mailto:oficwyd@pwr.wroc.pl
mailto:zamawianie.ksiazek@pwr.wroc.pl

Editorial Board
Co-Editors-in-Chief
Zbigniew Huzar (Wrocław University of Technology, Poland)
Lech Madeyski (Wrocław University of Technology, Poland)

Editorial Board Members
Pekka Abrahamsson (VTT Technical Research Centre, Finland)
Sami Beydeda (ZIVIT, Germany)
Miklós Biró (Software Competence Center Hagenberg, Austria)
Mel Ó Cinnéide (UCD School of Computer Science & Informatics, Ireland)
Norman Fenton (Queen Mary University of London, UK)
Joaquim Filipe (Polytechnic Institute of Setúbal/INSTICC, Portugal)
Thomas Flohr (University of Hannover, Germany)
Félix García (University of Castilla-La Mancha, Spain)
Janusz Górski (Gdańsk University of Technology, Poland)
Andreas Jedlitschka (Fraunhofer IESE, Germany)
Ludwik Kuźniarz (Blekinge Institute of Technology, Sweden)
Pericles Loucopoulos (The University of Manchester, UK)
Kalle Lyytinen (Case Western Reserve University, USA)
Leszek A. Maciaszek (Wrocław University of Economics,
Poland and Macquarie University Sydney, Australia)
Jan Magott (Wrocław University of Technology, Poland)
Zygmunt Mazur (Wrocław University of Technology, Poland)
Bertrand Meyer (ETH Zurich, Switzerland)
Matthias Müller (IDOS Software AG, Germany)
Jürgen Münch (Fraunhofer IESE, Germany)
Jerzy Nawrocki (Poznań Technical University, Poland)
Janis Osis (Riga Technical University, Latvia)
Łukasz Radliński (University of Szczecin, Poland)
Guenther Ruhe (University of Calgary, Canada)
Krzysztof Sacha (Warsaw University of Technology, Poland)
Rini van Solingen (Drenthe University, The Netherlands)
Miroslaw Staron (IT University of Göteborg, Sweden)
Tomasz Szmuc (AGH University of Science and Technology Kraków, Poland)
Iwan Tabakow (Wrocław University of Technology, Poland)
Burak Turhan (University of Oulu, Finland)
Rainer Unland (University of Duisburg-Essen, Germany)
Sira Vegas (Polytechnic University of Madrit, Spain)
Corrado Aaron Visaggio (University of Sannio, Italy)
Bartosz Walter (Poznań Technical University, Poland)
Jaroslav Zendulka (Brno University of Technology, The Czech Republic)
Krzysztof Zieliński (AGH University of Science and Technology Kraków, Poland)

Contents

Time Coordination of Heterogeneous Distance Protections Using a Domain
Specific Language

Marcin Kowalski, Jan Magott . 7
Supporting Applications Development and Operation Using IT Security and Audit
Measures

Katalin Szenes . 27
Middleware Architecture for the Interconnection of Distributed and Parallel Systems

Ovidiu Gherman, Stefan Gheorghe Pentiuc . 39
A View on a Successful International Educational Project in Software Engineering

Zoran Budimac, Zoran Putnik, Mirjana Ivanović, Klaus Bothe 47
Towards Automation Design Time Testing of Web Service Compositions

Dessislava Petrova-Antonova, Sylvia Ilieva, Ilina Manova, Denitsa Manova 61
On Principles of Software Engineering – Role of the Inductive Inference

Ladislav Samuelis . 71

e-Informatica Software Engineering Journal, Volume 6, Issue 1, 2012, pages: 7–26, DOI 10.5277/e-Inf120101

Time Coordination of Heterogeneous Distance
Protections Using a Domain Specific Language

Marcin Kowalski∗, Jan Magott∗
∗Institute of Computer Engineering, Automatics and Robotics, Wroclaw University of Technology

marcin.kowalski@pwr.wroc.pl, jan.magott@pwr.wroc.pl

Abstract
BACKGROUND: Distance protections are widely used in protection of energy transmission lines,
but their time coordination is still an important and difficult problem. Inappropriate configuration
leads to a hazard event: remote circuit breaker tripping provided the local circuit breaker can be
opened, which severely impairs power system operation.
OBJECTIVE: To describe a method and provide software tools to alleviate the hazard in power
systems.
METHODS: A domain specific language (DSL) for representation of a transmission line with its
distance protection schema, and a translation algorithm from the DSL to probabilistic fault trees
with time dependencies (PFTTDs) are employed.
RESULTS: The paper presents software tools that can support power protection experts in time
coordination of distance protections. The tools are based upon abstract and concrete syntax of the
DSL designed specifically for the purpose of the distance protection time coordination problem. In
order to render creation of power line and its protection schema models easier, a DSL-dedicated
editor supporting syntax and semantic aspects of the DSL has been developed. Additionally,
a translator from the DSL into PFTTD language has been implemented.
CONCLUSIONS: Power system experts are enabled to perform hazard probability assessment and
sensitivity analysis.
LIMITATIONS: Translation supports two types of distance protections, which are: single-system
relays with starting elements as well as multi-system relays without starting elements. For the
single-system relay, there is one timer per relay. For multi-system relays, there is one timer for each
of possibly many protection zones. Other types of protections, e.g. overcurrent are not considered.

1. Introduction

Distance protections are widely used in protec-
tion of energy transmission lines. The transmis-
sion line is divided into sections, whose bound-
aries are defined by power stations. Because of
important consequences of faults like short cir-
cuits in high voltage transmission lines, a schema
with primary (local) and backup (remote) dis-
tance protections is applied. Section where fault
occurs is called the local section. Backup protec-
tion should disconnect the transmission line in
only when the local protection with its circuit
breaker has not done it beforehand. However, if

the backup protection reacts, then greater part of
transmission network is isolated compared with
the part disconnected by the local protection.
The hazard is the event: remote circuit breaker
tripping provided the local circuit breaker can
be opened.

For each distance protection, a set of zones,
e.g. Zone 1, Zone 2, Zone 3 is defined to ap-
proximately point out fault occurring place. The
greater the zone number is, the greater part of
the line it covers.

Time coordination of primary and backup
protections is a significant and difficult problem.
If the local protection has not interrupted the

8 Marcin Kowalski, Jan Magott

line, then the remote protection has to do it as
soon as possible. However, the remote one has
to wait for symptoms of line disconnection made
by the local one. The remote protection wait-
ing time (also known as time delay or tripping
time) for symptoms of local protection activity is
usually selected according to generally accepted
rules that are not adapted to particular cases.
These rules are based on the worst case analysis
with safety margin. According to these rules for
distance protections [1], time delays for Zone 2
are selected about 350 ms, and about 800 ms for
Zone 3. Therefore, the selected settings are not
optimal as far as the prompt fault clearance is
concerned.

Time coordination of distance protections
(relays) is a part of extensive research in the
field of power systems. The approaches already
used are: Petri nets [2], linear programming [3,4],
evolutionary algorithms [5] and multi-agent sys-
tems [6]. In these papers, overcurrent protection
schemes are mainly analyzed. Distance protec-
tion cooperation with overcurrent protection is
considered in papers [4, 7, 8]. These papers do
not concern cooperation of distance protections.

Linear programming [3,4] and soft-computing
approaches [5, 7] are used in order to solve the
relay coordination problem provided tripping
times (coordination intervals) are known. The
main difference between the above papers and
our approach is as follows. In [3–5,7] time delays
are supposed to be input data selected accord-
ingly to generally accepted rules. Our goal is such
selection of time delays for zones which is based
on parameters of: transmission line, source, load,
protections, and time characteristics.

Papers [9] and [10] show that time coordi-
nation of distance protections can be achieved
for significantly smaller values than the recom-
mended ones by using respectively: fault trees
with time dependencies (FTTDs) and probabilis-
tic fault trees with time dependencies (PFTTDs).
In FTTD [9] time parameters are specified in
a non-deterministic way by their minimal and
maximal values. On the contrary, in PFTTD [10]
time parameters are characterized by random
variables. Models of the following time parame-
ters have to be found: entrance (exit) times of

impedance into (from) characteristics of differ-
ent zones of protections for different locations
of fault, circuit breaker opening time. In the
present paper the following distance protection
coordination process is proposed.
1. Define scopes of distance protections zones

of the power line in question.
2. Specify the power subsystem and its protec-

tions in a domain specific language (DSL).
3. Translate the DSL-based model into FTTD

(or PFTTD).
4. Determine time parameters from the real sys-

tem or simulation experiments involving e.g.
the EMTP utility [11].

5. Find the time delay for each zone of each pro-
tection using analytic bounds for FTTD [9]
or by simulation for PFTTD [10].

Structures of both trees obtained in point 3. are
the same. Time parameters are different only.

When time parameters are calculated using
simulation program, then the following power
system features have to be taken into account
in the evaluation: resistance and reactance of
transmission line, source impedance, types of
simulated faults, fault resistance, loads, fault lo-
cations over the line, impedance characteristics
for protection zones. In the present paper two
distance protection types are considered, namely:
– single-system relays with starting elements,
– multi-system relays without starting ele-

ments.
For the single-system relay there is one timer.

For multi-system relays the format of distance
relays is the full distance scheme without start-
ing elements, i.e., delays are timed individually
for each zone. Relatively long operation time
in Zone 1, the fundamental one, is a severe dis-
advantage of single-system relays. Therefore, in
high voltage networks, and extra high voltage
networks in particular, multi-system protections
are applied instead.

Time coordination of multi-system distance
protections using PFTTD has been considered
in [10], whereas using FTTD in [9]. Time coordi-
nation of single-system protections with starting
elements using FTTD has been studied in [12].

For different protection types, PFTTD of
different structure is constructed. The output

Time Coordination of Heterogeneous Distance Protections Using a Domain Specific Language 9

Z12

Z23
Z22

Z33
Z32

Z31
Z13

P3 P2

a

T22
T31 T21

Z21

20%80%50%

T32

80%

CB3 b c

P1

Z11

S3 50% 80%

a1 a2 b c

S2 S1

T33

T11

T12

T23

CB2

CB1

delay time

Figure 1. A three-section transmission line with protections, their zones and timing [10]

model differences arise from the aforementioned
variety of distance protections supported, each of
which finally could possibly disconnect the power
line fragment. Since power lines with mixed dis-
tance protection types are common, the DSL to
PFTTD translation should seamlessly integrate
different model fragments to correctly capture
the hazard. In the present paper, PFTTD mod-
els are considered. Although they have the same
structure as FTTD models, they are probabilistic
by nature, whereas the latter ones express time
parameters in the non-deterministic way.

Although building a new domain language
requires substantial development effort, the cost
is quickly returned by providing work efficiency
unapproachable to generic solutions. In fact, none
of general purpose modeling languages may reach
level of intuitiveness provided by a domain one,
which has been designed specifically to support
some particular domain, which in this case is
time coordination of power system protections.
So, by means of the DSL power system experts
may build and optimize models using their own
technical vocabulary without familiarizing them-
selves with computer engineering concepts.

Contrary to a general language, which in-
herently is a trade-off between requirements of
various domains, taking precise semantics offered
by a DSL for granted allows to build software
engineering tools more effectively accomplishing
their tasks, like the PFTTD generation. Had the
goal been achieved with some generic solution,
it would have involved not only a more verbose
transformation, but also implicit restrictions of

the generic language used. This is for reasons
of intuitiveness and precision that domain lan-
guages win acceptance of engineers.

Structure of the paper is as follows. In Sec-
tion 2, distance protection schema of a power
transmission line composed of three sequential
sections is outlined. In the next two sections,
abstract and concrete syntax models of the DSL
are presented. In Section 5, abstract syntax of
PFTTD language is given. Next, PFTTD mod-
els for power lines with mixed protection types
are presented. In Section 7, the transformation
from DSL to PFTTD with few PFTTD models
is described. The last section recapitulates the
research.

2. Distance Protection

The ultimate goal of distance protection schema
depicted in Fig. 1 is selectivity, i.e. only those Cir-
cuit Breakers (CBs) that are required to isolate
a fault (short circuit) are opened.

A notation used in Fig. 1 is as follows: Si,
where i ∈ {1, 2, 3}, is section,
Pi, where i ∈ {1, 2, 3}, is the protection placed
on the left-hand side of section Si,
Zij, where i ∈ {1, 2, 3} and j ∈ {1, 2, 3}, is j-th
zone of protection Pi.

In the paper faults located by protections in
section S1 are considered. According to the zones
shown in Fig. 1, the a1, a2, b and c subsections
can be distinguished for the S1 section, whereas
a, b and c for S2.

10 Marcin Kowalski, Jan Magott

Let us suppose that the fault is located by
the P1 protection in the Z11 zone, i.e. a part
of S1 composed of subsections a1, a2, and b. In
this case, the P1 protection that is close to the
left-hand side of S1 should trip its CB1. The P1
is a primary protection and triggering its breaker
turns S1 off. It is possible, however, that a faulty
operation of either P1 or CB1 may occur. If the
fault occurs, then the remote backup protections
P2 and sometimes P3 should trip CB2 and CB3
respectively. In this case, however, the remote
section S2 or even S3 are turned off.

The P2 protection operates in three zones.
Zone Z21 covers 80% of S2. Zone Z22 contains
S2 and half of S1. Zone Z23 covers both sections
and 20% of the section which is the right neigh-
bor of S1. The a1 subsection is covered by the
Z33 zone of P3. This subsection is also covered
by zones Z11, Z12, Z13. Hence, this subsection
is covered by six zones of three protections al-
together. The c subsection, on the other hand,
is covered by three zones Z12, Z13, and Z23.
These zones are used to roughly recognize a fault
location. Finding the zone where fault has oc-
curred is based on measurements of impedance
of transmission line from the place of protection
mounting to the fault location. Protections trip
after Tij , where i ∈ {1, 2, 3} and j ∈ {1, 2, 3},
which is a time delay of j-th zone of protection
Pi. If P2 recognizes a fault in the Z2j zone,
where j ∈ {1, 2, 3}, then after time delay T2j , P2
sends signal to CB2 in order to open it. Graded
times of the tripping delays for zones of Pi, where
i ∈ {1, 2, 3}, are used (Ti1 < Ti2 < Ti3), i.e. the
greater number of the zone, the greater time
delay. For the Zi1 zone, the time delay of the
start of the CBi tripping is usually equal to
zero.
Two distance protection types are considered,
namely:
– single-system relays with starting elements

and one timer,
– multi-system relays without starting elements

and with one timer for each zone.
Let us explain protection schema assumed for
single-system protection with starting element.
In analysis performed in the paper, each dis-
tance protection with starting element has one

timer for each protection. The following protec-
tion schema is assumed. There are impedance
characteristics: Starting, Zone 1, Zone 2, and
Zone 3. The Starting impedance characteris-
tic contains Zone 3, and Zone i characteristic,
where i ∈ {2, 3}, contains Zone (i − 1) one,
i.e. there is decreasing order of characteristic
areas.

Let τ be time instant when the fault started.
An algorithm for protection with starting ele-
ments is as follows:

if the starting element of the protection recog-
nized that measured impedance entered starting
impedance characteristic at instant τ then

the timer is set to τ + T1;
end if
if impedance is in Zone 1 impedance characteristic
at instant τ + T1 then

tripping signal is sent to the CB at instant τ+T1
else

at instant τ + T1 the timer is set to τ + T2;
end if
if impedance is in Zone 2 characteristic at instant
τ + T2 then

at instant τ + T2 tripping signal is sent to the
CB

else
at instant τ + T2 the timer is set to τ + T3;

end if
if impedance is in Zone 3 characteristic at instant
τ + T3 then

at instant τ + T3 tripping signal is sent to the
CB.

end if

The goal is to derive statistical relations be-
tween time settings for protection zones of pro-
tection and the hazard probability. To carry out
investigations, information on operating time of
distance relay with respect to fault occurring
instant, as well as on dropout time with respect
to fault clearance instant are required.

Probability distribution functions of entrance
time to and exit time from all concerned zones
for protections P1, P2, and P3, under assump-
tion of faults located by relays in subsections
a1, a2, b, c of section S1 and subsections a, b, c
of section S2 have to be known (Fig. 1). They
can be obtained by measurements of real sys-
tem or simulation experiments using, e.g. EMTP.
In the paper, these times are expressed by ran-

Time Coordination of Heterogeneous Distance Protections Using a Domain Specific Language 11

dom variables denoted as Tiej|kf entrance time
to (exit time from) impedance characteristics of
the Zone j for the protection Pi, where:
– i ∈ {1, 2, 3} number of protection Pi,
– e ∈ {en, ex} where en (or: ex) stands for the

entrance time to (or: the exit time from) the
impedance characteristics,

– j ∈ {1, 2, 3, S} number of Zone j or S for
starting zone of protection Pi, under assump-
tion: the fault is located by relay (protection)
in section k and its subsection f , where

– k ∈ {1, 2} number of section,
– f ∈ {a, b, c, d} name of subsection.

3. Abstract Syntax of the Domain
Specific Language for
Heterogeneous Power Line
Protection Systems

The need to successfully conduct sensitivity anal-
ysis of the hazard accounts for development of
a language capable of describing distance pro-

tections. Then, on the basis of models expressed
in that language, PFTTD may be automatically
produced and analyzed. To properly support the
process, the language should consists of abstract
and concrete syntax, which will be analyzed in
the current and next section.

As Figure 2 indicates, these are sections and
protections that comprise any power line. Sec-
tions are in turn further divided into subsections,
and each of them has the factor attribute as-
signed that is determining its length in relation
to the containing section. Therefore, the Power-
Line, Section and Subsection classes along with
their containment hierarchy lay the foundations
of designing protections, which is performed us-
ing classes for the remaining metamodel.

Consequently, a number of protections and
their circuit breakers (represented by the Pro-
tection and CircuitBreaker classes) are found in
the metamodel. Since a breaker is triggered by
the protection when a fault is found in one of its
zones, the cb and zones associations have been
added to specify these objects.

Figure 2. Abstract syntax of the domain specific language for heterogeneous power line protection systems

12 Marcin Kowalski, Jan Magott

For the protection to trip the breaker, the tim-
ing constraints for a particular subsection must
are met. This is why every zone works in the
range of a few subsections specified by objects
of the SubSectionProtection class and its Sub-
section association. A set of random variables is
then necessary to perform hazard analysis. When
some protection is local with respect to the sub-
section it protects (i.e. the subsection belongs
to the same section the protection is located in),
only entryTime and delayTime are needed to
run the transformation and simulate the model
(see Section 2). Otherwise, if the protection is
remote, exitTime must be additionally defined
to correctly capture hazard dependencies. The
RandVar class abstracts the variety of probability
distributions that random variables may conform
to. Logarithmic-normal distribution (LogNormal)
has been found to fit well when modeling entry
times (denoted by the entryTime reference in
Fig. 2) and circuit breaker opening times (off-
Time) [13].

Compared with [14], the language has been
refactored to comply with requirements of the
transformation supporting heterogeneous dis-
tance protections. As a result, using enumer-
ations such as StartingElement or ProtectionSys-
tem, power system experts may indicate presence
or absence of a starting element, and whether
the protection consists of one or many parts.

In order to investigate the hazard probability
correctly when a starting element is on the run,
a starting zone of a protection must be indicated.
This is modeled as a non-containment reference,
since all the zones are stored in the zones associ-
ation.

4. Concrete Syntax of the Domain
Specific Language for
Heterogeneous Power Line
Protection Systems

A language may be considered domain spe-
cific when domain experts are enabled to con-
veniently define systems they operate on in
this language. Hence, the power system lan-
guage abstract syntax should be accompa-

nied with concrete syntax, from which an
actual editor could be generated. This way,
power system experts have to understand
neither object oriented paradigms, nor inter-
nals of the language they use, which oth-
erwise would limit intuitiveness of the ap-
proach.

Generally, there are two ways of combin-
ing abstract with concrete syntax [15]. First,
the abstract syntax could be derived automat-
ically from concrete syntax by means of fixed
metamodel-level translation. However, keeping
the distance protection to fault tree model trans-
formation in mind, full control of the abstract
syntax is retained in this paper by incorporating
the second approach. Having defined the abstract
syntax, concrete syntax is built by referencing
objects and their relationships in the grammar
rules. This way we managed to keep the trans-
lation robust and independent from the actual
user representation of the model.

The EMFText [15] tool from the Eclipse Plat-
form was used to design and produce concrete
syntax, but feasibility study showed that the
Xtext [16] tool would have been also useful. By
turning the abstract syntax into a focal point
of development, both tools could be even used
simultaneously.

The grammar definition language is an ex-
tension of Backus-Naur Form consisting of rules,
each starting with a rule name and ending with
a semicolon (for example lines 2–3 from List-
ing 1). Each rule name refers to some concrete
class called alike in the distance protection meta-
model (Fig. 2). Moreover, rules are defined using
tokens and class features (attributes or references
from Fig. 2) from the metamodel. When a parser
enters the rule, it creates a new object conforming
to the proper class from the metamodel. It then
fill values of attributes and references according
to the following tokens.

For example, as line 26 in Listing 1 suggests,
when a parser stumbles across the ‘Section’ token,
it creates a new instance of the Section class.
Next, the parser expects to find the name at-
tribute value, followed by an opening curly brace.
The subSection literal comes from the Section
class drawn in Fig. 2. At that point, it notifies

Time Coordination of Heterogeneous Distance Protections Using a Domain Specific Language 13

the parser to invoke (possibly many times due
to the ‘+’ character) the rule for SubSection and
add newly created objects describing subsections
to the aforementioned association. Once again
for another rule, as line 28 indicates, the parser
expects now the ‘SubSection’ token followed by
the name attribute value, the ‘Factor’ token and
the factor attribute value. There may be many
SubSection objects, but once a closing curly brace
is found, the Section is complete. When a similar
analysis will be started from the ‘PowerLine’ rule
to the last possible rule, the resulting hierarchy
will constitute a tree spanning the metamodel.
As a result, the parser will create a complete
distance protection model designed by a power
system expert.

To be more specific about rule definitions,
when some feature is an attribute, its name is al-
ways followed by square brackets with an optional
type attribute written inside the brackets. On
the other hand, when some feature is a reference
and its name is followed by brackets, the parser
will assign to it some already existing object with
the name attribute equal to the user typed token
at that place. When some feature is a reference
and is not followed by brackets, a new object will
be created. Compare the subSection reference
in the ‘SubSectionProtection’ rule (line 36 in
Listing 1) with a S1a1 subsection protected by
Zone Z33 (line 28 in Listing 2). The latter listing
shows also a definition of the concrete syntax for
heterogeneous power line protection systems.

Listing 1. The DSL concrete syntax definition
1 RULES{
2 PowerLine : := " PowerLine " name [] " { " " Circui tBreakerTypes " " { " cbTypes+ " } "
3 " Sec t i ons " " { " s e c t i o n s+ " } " " Pro t e c t i ons " " { " p r o t e c t i o n s+ " } " " } " ;
4
5 CircuitBreakerType : := "CBType" name [] "OffTime " offTime ;
6
7 WeibullRandVar : := " Weibu l l " " { " " s c a l e " " : " s c a l e [FLOAT]
8 " Shape " " : " shape [FLOAT] " } " ;
9

10 ExpRandVar : := "Exp" " { " "Lambda" " : " lambda [FLOAT] " } " ;
11
12 SPRandVar : := "SP" " { " "R" " : " r [INT] " } " ;
13
14 ErlangRandVar : := " Erlang " " { " "K" " : " k [INT]
15 "Lambda" " : " lambda [INT] " } " ;
16
17 LogNormalRandVar : := "LogNormal " " { " " Sca l e " " : " s c a l e [FLOAT]
18 " Shape " " : " shape [FLOAT] " } " ;
19
20 LogLogisticRandVar : := " LogLog i s t i c " " { " " Alpha " " : " alpha [FLOAT]
21 " Beta " " : " beta [FLOAT] " } " ;
22
23 NonparametricRandVar : := " Nonparametric " " { "
24 " Histogram " " : " f i l e P a t h [] " } " ;
25
26 Sec t i on : := " Sec t ion " name [] " { " subSec t ions+ " } " ;
27
28 SubSection : := " SubSect ion " name [] " Factor " f a c t o r [INT] ;
29
30 Protec t i on : := " Pro tec t i on " name [] " { " cb zones+
31 " System " system [] " S tar t ingElement " s tar t ingElement []
32 (" Star t ingZone " s ta r t ingZone []) ? " } " ;
33
34 Zone : := "Zone " name [] " { " subSec t i onPro t e c t i on s+ " } " ;
35
36 SubSect ionProtect ion : := " SubSect ion " subSect ion []

14 Marcin Kowalski, Jan Magott

37 " { " "EntryTime " entryTime (" ExitTime " exitTime)?
38 ("DelayTime " delayTime)? " } " ;
39
40 Ci rcu i tBreaker : := " Circu i tBreaker " name [] "Type " type [] ;
41 }

Let us consider P1, P2 and P3 protec-
tions of the a1 subsection contained in the
S1 section in Fig. 1. Protections P1, P3 are
multi-system, whereas P2 is one-system. A model
defined in Listing 2 uses the language from
Listing 1, so that the grammar parser can
bind rules and eventually create the object
model (an instance of Fig. 2) that will be-
come subject of transformation described in the
next section.

So, the PowerLine block is started first. Then
come parts for types of circuit breakers (Cir-

cuitBreakersTypes), which are further referenced
while describing protections. Power line structure
(i.e. Section and SubSection rules) is defined next.
Finally, the three protections are described inside
the Protections block in the following way. For
each zone controlled by the protection, a set of
subsections is referenced to assign EntryTime,
DelayTime and possibly ExitTime values. For the
sake of simplicity, only parts of the a1 subsection
are given in this example. Timing parameters
are equal to 0, because EMTP simulator has not
been run yet.

Listing 2. A sample model expressed in the DSL for subsection a1 of S1, where protections P1, P3
are multi-system, whereas P2 is one-system

1 PowerLine powerLine1 {
2 CircuitBreakerTypes {
3 CircuitBreakerType typeA OffTime LogNormal { Scale : 0 Shape : 0 }
4 }
5 Sections {
6 Section S3 {
7 SubSection S3a Factor 80
8 SubSection S3b Factor 20
9 }

10 Section S2 {
11 SubSection S2a Factor 50
12 SubSection S2b Factor 30
13 SubSection S2c Factor 20
14 }
15 Section S1 {
16 SubSection S1a1 Factor 20
17 SubSection S1a2 Factor 30
18 SubSection S1b Factor 30
19 SubSection S1c Factor 20
20 }
21 }
22 Protections {
23 Protection P3 {
24 CircuitBreaker CB3 Type typeA
25 . . .
26 Zone Z_33{
27 . . .
28 SubSection S1a1 {EntryTime Erlang { K: 0 Lambda : 0 }
29 ExitTime Erlang { K: 0 Lambda : 0 } DelayTime SP {R: 0} }
30 }
31 System Multi
32 StartingElement Absent
33 }

Time Coordination of Heterogeneous Distance Protections Using a Domain Specific Language 15

34 Protection P2 {
35 CircuitBreaker CB2 Type typeA
36 . . .
37 Zone Z_22{
38 . . .
39 SubSection S1a1 {EntryTime Erlang { K: 0 Lambda : 0 }
40 ExitTime Erlang { K: 0 Lambda : 0 } DelayTime SP {R: 0} }
41 }
42 Zone Z_23{
43 . . .
44 SubSection S1a1 {EntryTime Erlang { K: 0 Lambda : 0 }
45 ExitTime Erlang { K: 0 Lambda : 0 } DelayTime SP {R: 0} }
46 }
47 Zone Z_2S {
48 . . .
49 SubSection S1a1 {EntryTime Erlang { K: 0 Lambda : 0 } }
50 }
51 System S i n g l e
52 StartingElement Present
53 StartingZone Z_2S
54 }
55 Protection P1 {
56 CircuitBreaker CB1 Type typeA
57 Zone Z11{
58 . . .
59 SubSection S1a1 {EntryTime Erlang { K: 0 Lambda : 0 }
60 DelayTime SP {R: 0} }
61 }
62 Zone Z_12{
63 . . .
64 SubSection S1a1 {EntryTime Erlang { K: 0 Lambda : 0 }
65 DelayTime SP {R: 0} }
66 }
67 Zone Z_13{
68 . . .
69 SubSection S1a1 {EntryTime Erlang { K: 0 Lambda : 0 }
70 DelayTime SP {R: 0} }
71 }
72 System Multi
73 StartingElement Absent
74 }}}

All in all, the S1a1 subsection is protected
in 6 zones: Z33, Z22, Z23, Z11, Z12 and Z13.
The Z22 and Z23 zones are protected by the P2
protection, so their work is driven by the starting
element.

The second example discussed in the follow-
ing sections differs from the first one in the P3

Protection configuration, so now it is one-system
with starting element (Listing 3). First of all,
a new zone Z3S is added (lines 9–13). To indicate
that the zone is starting line 16 has been added.
Changes made in lines 14–15 notify the transfor-
mation to build a PFTTD for a single-system
protection with a starting element.

Listing 3. The sample model with the P3 protection being one-system with starting element
1 Protection P3 {
2 CircuitBreaker CB3 Type typeA
3 . . .
4 Zone Z33{
5 . . .

16 Marcin Kowalski, Jan Magott

6 SubSection S1a1 { EntryTime Erlang { K: 0 Lambda : 0 }
7 ExitTime Erlang { K: 0 Lambda : 0 } DelayTime SP {R: 0} }
8 }
9 Zone Z3S{

10 . . .
11 SubSection S1a1 {EntryTime Erlang { K: 0 Lambda : 0 } }
12 }
13 System S i n g l e
14 StartingElement Present
15 StartingZone Z3S
16 }

One possible application of modeling the
same line with two different protection schema is
to evaluate impact of protection modernization
on the hazard. Differences in the two hazard
scenarios will be analyzed in the subsequent sec-
tions.

5. The Language of Probabilistic Fault
Trees with Time Dependencies

s The PFTTDs (modeled by the FaultTree class
in Fig. 3) are bipartite graphs with a single node
denoted to be the root, which usually specifies
the hazard event. An object of the FaultTree
class contains objects of classes such as Node
and Edge, which are both further specialized
by the notions related to the fault tree lan-
guage. These are Event and Gate which con-
stitute the two types of bipartite graph nodes.
Objects of those classes are connected through
EventOutput- and GateOutput- edges. The first
ones start with events and end with gates (the
one drawn between E7 and G1 in Fig. 5 for ex-
ample), whereas the latter ones start with gates
and end with events (the one drawn between G1
and E1).

The second part of the language depicted in
Fig. 4 refines the PFTTD gates, which can be
causal or generalization. Names of gates consist of
two parts. The first letter denotes a kind of gate
(C for causal and G for generalization) and the
remaining part defines preconditions for a gate
to start its output event. The AND, OR and
NOT types relate to the classical logic, whereas
PAND generates output when both input event
occur and the left one occurred as first. Delay

gates, which are denoted by an hour-glass symbol,
operate like CXOR gates with a single input by
introducing random variable-based time delay
between input and output events.

6. Discussion of a Generated
Probabilistic Fault Trees with Time
Dependencies

Although details of the DSL to PFTTD trans-
lation will be explained in the next section on
the grounds of some specific model cases, in this
section discussion of the output model (Fig. 5
from transformation of the a1 subsection of S1
section from Fig. 1) will follow.

Probabilistic Fault Tree with Time Depen-
dencies (PFTTD) analysis starts with identi-
fying hazards, which is the event: remote cir-
cuit breaker tripping provided the local circuit
breaker can be opened and faults are located
by relays in the a1 subsection. For each hazard,
a PFTTD is created.

Let us make the following assumption regard-
ing fault occurrence.
Assumption 1: At most one fault can occur dur-
ing analysis interval, and once it happens, it is
permanent.
Types of protections are as follows:
P1, P3 – multi-system without starting elements,
and with one timer per each zone,
P2 – single-system with starting elements, and
with one timer per one protection.

According to requirements specification, if
there is a fault in S1, and additionally P1 and
the local breaker CB1 are operational, then only
S1 should be disconnected. The hazard is event

Time Coordination of Heterogeneous Distance Protections Using a Domain Specific Language 17

Figure 3. The core part of the PFTTD language

Figure 4. Causal and generalization gates of the PFTTD language

18 Marcin Kowalski, Jan Magott

Figure 5. A PFTTD for the first example: fault located by relays in the a1 subsection of S1 section, which is
guarded by P1, P3 – multi-system protections without starting elements, and P2 – single-system with

starting element

E1: remote circuit breaker (CB2 or CB3) tripping
provided the local CB1 can be opened. Hence,
the hazard happens when excessively large part
of the power network is isolated. The PFTTD
for this hazard and fault located by relays in
section S1 and its subsection a1 generated by
the translator is illustrated in Fig. 5. The tree
contains parts that are similar to the ones for
multi-system protection [10] and fragments simi-
lar to those for single-system protections [12].

Event E1 occurs if at least one delay time
(T33, T23, T22) is too small, i.e. at least one of the
E7, E10 or E16 events has occurred. Hence, the
hazard occurs, if at least one remote protection
time delay for zones Z22 or Z23 of protection
P2, or zone Z33 of P3 has been set incorrectly.
Time delay between start instant of event E7,
E10 or E16 and start instant of event E1 is equal
to 0. Hence, delays for all inputs of gate G7 are
equal to 0.

Time Coordination of Heterogeneous Distance Protections Using a Domain Specific Language 19

Let τ(Eis) denote instant when event Ei
has started. Some events may stop immediately,
where others last longer. For G6, if event E7
has occurred then event E6 had occurred not
later than the E8 event, i.e. the start of E6
had occurred not later than the start of E8, so
τ(E6s)<τ(E8s). In this case, P3 trips its CB3.
Turning off process will not be stopped, and CB3
will be opened. In this case, tripping of CB3 will
be prior to detection of fault clearance symptoms.
Hence, the P3 relay has reacted too early, what
caused that the hazard event E7 has occurred. In
order to avoid the hazard, the following condition:
τ(E8s)<τ(E6s) has to be satisfied. Additionally,
if CB1 of P1 is not opened, then the P3 will not
detect that CB1 is opened. Hence, the E8 event
does not occur, and consequently neither does
the hazard. On the other hand, let us suppose
that the P3 had observed that the CB1 is opened
(event E8) before time delay T33 has passed, so
P3 will not turn off its CB3. Hence, event E7
does not occur (the hazard does not occur).

Let us consider a sub-tree with the E7 event
as the root. In this sub-tree, the part with the
E6 event concerns the P3 protection and its zone
Z33, while the right sub-tree with E8 concerns
P1. In sub-tree with event E16 as the root, the
part with the E19 event is related to P2 and its
zone Z22, while part with E17 is associated with
opening activity of CB1 by P1.

If there is a fault in subsection a1 of S1 then
impedance seen by P3 can be inside operating
characteristics of Z33. In this case impedance
seen by P2 can be inside characteristics of Z22
or Z23. Hence, tripping of CB3 can be started
after time delay T33 from instant the impedance
entered characteristic of Z33. Time T33 is the
time from start instant of event E5 till start
instant of event E6. The tripping of CB2 can be
started after time delays T22, T23, respectively,
from instant the impedance entered impedance
characteristic of the Starting zone Z2S of P2,
provided the impedance remains in characteris-
tics of Z22, Z23. These times are given by real

numbers, and are represented by delays of the
G9, G15 gates associated with E14 event.

Impedance trajectory measured by P2 enters
characteristics of Z2S after time T2enS|1a1 rela-
tively to instant τ being start of the fault. This
time is the parameter of the G13 delay gate. If
the fault in subsection a1 of S1 occurred at time
instant τ and it still lasts then the impedance
seen by P3 enters characteristics of Z33 at instant
τ +T3en3|1a1. Time T3en3|1a1 is the delay of delay
gate G4. Times T2en2|1a1, T2en3|1a1 respectively,
associated with P2 are the time delays of the
gates G8, G14.

Trajectory of the impedance seen by P3 exits
from characteristics of Z33 after time T3ex3|1a1
since separation of CB1 contacts. This time is
the delay of gate G7. CB1 tripping lasts the time
given by random variable TOff (Fig. 5). Hence,
delay of gate G2 (time between start instant of
event E3 and start instant of event E4) is equal
to TOff .

If there is a fault in a1 of S1 then impedance
seen by P1 can be inside operating characteris-
tics of Z11, Z12 or Z13. Hence, CB1 tripping can
be started either immediately, or after time T12,
or after T13, relatively to the instant when the
impedance seen by P1 entered characteristic for
Z11, Z12 or Z13 respectively. Therefore, three
times, namely T11 = 0, T12 or T13 are delays of
the G3 COR gate. They are all equal to time
intervals between start instants of input events
E20, E21, E22 of this gate and start instant of
the E3 output event. Entry times of impedance
into characteristics for zones Z11, Z12 and Z13 of
P1 are random variables T1en1|1a1, T1en2|1a1 and
T1en3|1a1 respectively. These random variables
characterize delays of the G19, G20, G21 delay
gates.

Detailed explanation of fault trees with time
dependencies for single-system protection with
starting elements can be found in [12], while
explanation of probabilistic fault trees with time
dependencies for multi-system protection is given
in [10].

20 Marcin Kowalski, Jan Magott

7. A Power Line Protection DSL
to PFTTD Transformation

According to the procedure proposed in the In-
troduction, the third step of hazard analysis is
to translate a domain model into PFTTD. The
translation in question is discussed below.

Generation of output models takes place in
three phases. The first one produces a fault tree
skeleton and is protection independent. In the
second phase, the skeleton is supplemented with
elements generated from local protections guard-
ing a subsection. Finally, parts related to re-
mote protections are created. The procedures
described below (or mappings in the Query View
Transformation parlance [17]) constitute the sec-
ond and third phase and are run iteratively for
each protection guarding the subsection.

The skeleton of every model consists of the
E1, E2, E3 and E4 events along with G1, G2 and
G3 gates (see Fig. 5). These parts are common
among any produced models and describe the
fault, hazard and breaker tripping performed by
the local protection. Depending upon type and
placement of subsection’s protections, modifica-
tions will be applied to the resulting fault tree.

When a local protection without a starting
element is employed, time to trigger the breaker
depends on zone entry time as well as on a delib-

erately introduced delay (possibly 0). Hence, the
missing part between the E2 event and G3 gate
is composed of: a delay gate, event and delay
variable assigned to the G3 gate. For example,
G19, E20 and T13 in Fig. 5.

Presence of a starting element, however, sub-
stitutes that model fragment with the one pre-
sented in Fig. 6. The tripping process is altered in
such a way that impedance must enter character-
istic of a protecting zone (E23) before (E22), so
it enters the starting zone (E25) and awaits the
delay of the G22 gate. The translation process of
this PFTTD model fragment will be discussed on
the basis of code snippet presented in Listing 4.

As the name of the localProtectionWithSe
mapping suggests (line 10), it produces a set
of PFTTD elements related to the operation of
a local protection driven by a starting element.
They all fit between the line fault event (E2)
and the COR gate (G3), hence the mapping’s
arguments. The class name after the query or
mapping keywords (e.g. line 1 or 10) indicates
the execution context, i.e. a class of the self local
variable specific to a particular mapping invoca-
tion. Moreover, in this case the mapping can be
executed only when the isLocal and hasSe queries
both return the logical truth (lines 10–11), which
is when the mapping is applicable. Otherwise,
some other mappings (not listed) are executed.

Listing 4. A QVT mapping for translation of a single system protection with a starting element
1 query SubSect ionProtect ion : : hasSe () : Boolean {
2 return s e l f . zone . p r o t e c t i o n . s tar t ingElement = Start ingElement : : Present ;
3 }
4
5 query SubSect ionProtect ion : : i s L o c a l () : Boolean {
6 return s e l f . subSect ion . l o c a l P r o t e c t i o n () = s e l f . zone . p r o t e c t i o n ;
7 }
8
9

10 mapping SubSect ionProtect ion : : l oca lProtec t ionWithSe (in l i n e F a u l t : Event ,
11 inout cbTripping : COR) when { s e l f . hasSe () and s e l f . i s L o c a l ()}{
12
13 var delayElapsed := new Event (s t r oke ("T_{" +
14 s e l f . zone . p r o t e c t i o n . protect ionNo () +
15 s e l f . zone . zoneNo () + " } ") + latexText (" e l ap s ed ")) ;
16 var impdInZone := new Event (latexText (" Imp . in ") + s t roke (s e l f . zone . name)) ;
17
18 var impInZoneBeforeDelay := new Event (latexText (" Imp . in ") + s t roke (s e l f . zone .
19 name) + newLine () + latexText (" b e f o r e ") + s t roke ("T_{" + s e l f . zone .
20 p r o t e c t i o n . protect ionNo () + s e l f . zone . zoneNo () + " } ") + latexText (" e l ap s ed ")) ;

Time Coordination of Heterogeneous Distance Protections Using a Domain Specific Language 21

21
22 var entry := new Delay () ;
23 var delay := new Delay () ;
24 var order := new CPAND() ;
25
26 new GateOutputEdge (delay , de layElapsed) ;
27 new GateOutputEdge (order , impInZoneBeforeDelay) ;
28 new EventOutputEdge (impInZoneBeforeDelay , cbTripping) ;
29
30 new EventOutputEdge (l i n eFau l t , entry) ;
31 new GateOutputEdge (entry , impdInZone) ;
32
33 new EventOutputEdge (impdInZone , order) ;
34 new EventOutputEdge (delayElapsed , order) ;
35
36 new EventOutputEdge (s e l f . subSect ion .map
37 Start ingElement (s e l f . zone . p ro tec t i on , l i n e F a u l t) , de lay) ;
38
39 cbTripping . de lays += new RandomVariable (" 0 ") ;
40 entry . de lays := Sequence { s e l f .map toEntryTime () } ;
41 de lay . de lays += new RandomVariable (s t r oke ("T_{" + s e l f . zone . p r o t e c t i o n .
42 protect ionNo () + s e l f . zone . zoneNo()+ " } ")) ;
43 }
44
45 mapping SubSection : : Start ingElement (in p r o t e c t i o n : Protect ion ,
46 in l i n e F a u l t : Event) : Event {
47
48 in i t {
49 result := new Event (latexText (" Imp . in ") + s t roke ("Z_" +
50 p r o t e c t i o n . protect ionNo () + "S")) ;
51 }
52 var f au l t InZoneS := new Delay () ;
53 fau l t InZoneS . de lays := Sequence{ p r o t e c t i o n . s ta r t ingZone .
54 subSec t i onProtec t i ons −>s e l e c t (e | e . subSect ion = s e l f)−>
55 f i r s t () .map toSeEntryTime () } ;
56
57 new EventOutputEdge (l i n eFau l t , fau l t InZoneS) ;
58 new GateOutputEdge (fault InZoneS , result) ;
59 }

The first query (lines 1–3) traverses the dis-
tance protection model to find out whether
the starting element has been indicated by
a user. The second query checks if the protection
that the subsection protection (self) belongs to
(right-hand operand in line 9) is the same as the
local protection of the subsection being analyzed
(left-hand side operand).

Three events are created in lines 13–20. For
example, the E22 event, delayElapsed was gener-
ated using the delayElapsed variable. Similarly,
impInZone is E23 and impInZoneBeforeDelay is
E24. Arguments of the event constructor (not
shown) are expressions wrapped in some Latex

tags using the stroke and latexText queries (not
shown).

Next, the G21, G22 and G23 gates are cre-
ated, in that order, in lines 22–24. Then, starting
from line 26 up to 37 are all the aforementioned
elements are bound together by the GateOut-
putEdge and EventOutputEdge objects. In each
case, the first constructor argument is the source
element, and the second is target. Finally, the
starting element part, whose creation will be
discussed shortly, is connected with the gate rep-
resented by delay variable (lines 36–37).

The final part of the mapping is the assign-
ment of correct random variables. When the

22 Marcin Kowalski, Jan Magott

Figure 6. The local circuit breaker tripping by the single-system protection with starting element

starting element is present, all random variables
of the COR gate should be equal 0 (line 39).
Contrary, entry time of the subsection protec-
tion should be transferred from the DSL model,
which is performed by the toEntryTime mapping
(not shown). When it comes to delay values (lines
41–42), only a new random variable is created
without assigning its distribution. It should be
filled manually by a domain expert while analyz-
ing the resulting PFTTD.

Special attention should be paid to the
StartingElement mapping invoked in lines 36–37,
whose code is listed in lines 45–59. It is responsi-
ble of creating the G24 and E25 elements, which
specify how a starting element operates. This
mapping has returned, for example, the E25
event initialized in lines 48–51. Next, the Delay

gate is created and initialized. When assigning its
timing parameters (lines 53–55), the respective
starting element description is searched over the
collection of entry times to the starting zone.
Newly created elements are finally connected in
lines 57 and 58.

Independently of the local protection type,
the main goal of the second phase is to refine E3,
being the circuit breaker tripping event, which
is referred to in the last step.

The hazard results from competitions be-
tween the local breaker tripping and each of
remote protections, which may interrupt too soon
some excessively large line area before the local
protection will disconnect the local breaker. The
third phase binds E4 with E1 in a way dependent
on presence of a starting element.

Time Coordination of Heterogeneous Distance Protections Using a Domain Specific Language 23

Figure 7. A PFTTD for the a1 subsection in S1 section, which is guarded by: P1 – multi-system protection
without starting elements, P2, P3 – single-system with starting element

24 Marcin Kowalski, Jan Magott

Z12

Z23
Z22

Z33
Z32

Z31
Z13

P3P2

delay time

22
T31T21

Z21

T

CB3

P1

Z11

S350%80%

a1
a2

T33

T11

T12

T

T

abcbc

23

CB2

CB1

S2
S1 50%80%20%

32

80%

Figure 8. A three-section transmission line with protections placed at the sections’ ends

When there is no starting element, the struc-
ture such as E5, E6, E7 and E8 is constructed
similarly to Fig. 5. However, as described by the
end of Section 4, in the second example, protec-
tion P3 was turned into a single-system with
a starting element. The transformation correctly
captured that change and produced a new model
fragment with E5, E6, E7, E8 and E9 as shown
in Fig. 7.

Furthermore, depending on the real system
configuration, protections may be placed either
at the beginning of the section (as in Fig. 1) or
at its end (as in Fig. 8). Sometimes protections
are located at both sides of a section. By ana-
lyzing the hazard probability for the model with
reverted zones, power system experts may decide
on redesigning the real system. Figure 9 depicts
the results of transforming the system defined
in Fig. 8 for the a2 subsection in the S3 section.
Originally there were no remote protections for
this subsection, so no redundant safety measures
were taken in the case of fault. According to new
protection schema, however, two zones of remote
protection P2 additionally guard the area and
hazard estimation is possible owing to model
drawn in Fig. 9.

8. Final Remarks

The new domain specific language for represen-
tation of a transmission line with its distance

protection schema accompanied by the translator
to probabilistic fault trees with time dependen-
cies were designed, implemented and verified.
The verification was run for different protec-
tion schemes. Two types of distance protections:
single-system relays with starting elements as
well as multi-system relays without starting ele-
ments were analyzed. Additionally, protections
were located at both ends of the section.

Since structures of FTTD models for distance
protection are the same as those conforming to
the PFTTD metamodel, the translator might be
also employed to the non-deterministic models.

In the DSL, protection schema for line with
transformer can be expressed according to pa-
per [9], and the translator can be used for sections
with transformer too.

The resulting fault tree proves its useful-
ness in:
– communication of the risk analysis outcome

between power system experts,
– simulation,
– hazard sensitivity analysis by means of alter-

ing protection schema,
– hazard sensitivity analysis due to upgrade of

protection type.
The last step of the distance protection coordina-
tion process proposed in Introduction, i.e. model
simulation, requires respective tooling. Software
capable of handling PFTTDs generated from the
DSL was described in [18].

Time Coordination of Heterogeneous Distance Protections Using a Domain Specific Language 25

Figure 9. A PFTTD for the a2 subsection in S3 section when protections are placed at the end of sections:
P1 – single-system with a starting element, P2 – single-system with a starting element, P3 – multi-system

26 Marcin Kowalski, Jan Magott

Acknowledgment

The authors wish to express sincere gratitude to
Prof. Leszek Trybus for his in-depth review.

References

[1] Network Protection and Automation Guide, AL-
STOM T and D, 2002, version 1.

[2] L. Jenkins and H. P. Khincha, “Deterministic
and stochastic Petri Net models of protection
schemes,” IEEE Transaction on Power Delivery,
Vol. 7, No. 1, July 1992, pp. 84–90.

[3] L. G. Perez and A. J. Urdaneta, “Optimal co-
ordination of directional overcurrent relays con-
sidering definite time back-up relaying,” IEEE
Transaction on Power Delivery, Vol. 14, No. 4,
October 1999, pp. 1276–1284.

[4] ——, “Optimal computations of distance relay
second zone timing in a mixed protection scheme
with directional overcurrent relays,” IEEE Trans-
action on Power Delivery, Vol. 6, No. 3, July
2001, pp. 385–388.

[5] C. W. So and K. K. Li, “Time coordination
method for power system protection by evolu-
tionary algorithm,” IEEE Transactions on In-
dustry Applications, Vol. 36, No. 5, 2000, pp.
1235–1240.

[6] J. H. Chen, S. H. Chen, and Y. M. Yang,
“Multi-agent based protection relay system for
transmission network,” in Proc. Second Inter-
national Conference on Machine Learning and
Cybernetics, J. Smith, Ed. IEEE Press, Novem-
ber 2003, pp. 2251–2254.

[7] H. A. Abyaneh, S. Kamangar, F. Razavi, and
R. M. Chabanloo, “A new genetic algorithm
method for optimal coordination of overcurrent
relays in a mixed protection scheme with dis-
tance relays,” in 43rd International Universi-
ties Power Engineering Conference UPEC 2008,
2008, pp. 1–5.

[8] S. Jamali and M. Pourtandorost, “New approach
to coordination of distance relay zone-2 with
overcurrent protection using linear program-
ming methods,” in 39th International Univer-
sities Power Engineering Conference, 2004, pp.

827–831.
[9] M. Łukowicz, J. Magott, and P. Skrobanek, “Se-

lection of minimal tripping times for distance
protection using fault trees with time dependen-
cies,” Electric Power Systems Research, Vol. 81,
2011, pp. 1556–1571.

[10] T. Babczyński, M. Łukowicz, and J. Magott,
“Time coordination of distance protections using
probabilistic fault trees with time dependencies,”
IEEE Transaction on Power Delivery, Vol. 25,
No. 3, July 2010, pp. 1402–1409.

[11] Electromagnetic Transient Program EMTP, Leu-
ven Center, 1987.

[12] J. Magott and M. Łukowicz, Reliability, risk and
safety : back to the future. London: Taylor,
Francis, 2010, ch. Time coordination of primary
and back-up distance protections with starting el-
ements in electrical power systems, pp. 514–521.

[13] J. Zając, “Short circuit duration time in
110 kV electrical power networks in the light
of statistical-probabilistic research (in Polish),”
Ph.D. dissertation, Poznań University of Tech-
nology, Electrical Faculty, 2007.

[14] M. Kowalski and J. Magott, Methods of devel-
opment and application of real time systems
(in Polish). Gdańsk: Pomorskie Wydawnictwo
Naukowo-Techniczne, 2010, ch. A domain spe-
cific language for time coordination of distance
protections in power systems, pp. 199–208.

[15] F. Heidenreich, J. Johannes, S. Karol, M. Seifert,
and C. Wende, “Derivation and refinement of
textual syntax for models,” in Model Driven Ar-
chitecture – Foundations and Applications, ser.
Lecture Notes in Computer Science. Springer
Berlin/Heidelberg, 2009, Vol. 5562, pp. 114–129.

[16] Xtext Reference Documentation, Itemis,
www.eclipse.org/text/documentation.

[17] MOF Query/Views/Transformations Specifica-
tion, Object Management Group, http://www.
omg.org/spec/QVT/, Dec. 2009, version 1.1.

[18] M. Kowalski, Software engineering in the pro-
cess of information system integration (in
Polish). Gdańsk: Pomorskie Wydawnictwo
Naukowo-Techniczne, 2010, ch. A model driven
tool for design and simulation of Probabilistic
Faults with Time Dependencies, pp. 225–234.

e-Informatica Software Engineering Journal, Volume 6, Issue 1, 2012, pages: 27–37, DOI 10.5277/e-Inf120102

Supporting Applications Development and
Operation Using IT Security and Audit Measures

Katalin Szenes∗
∗Faculty John von Neumann, University Obuda

szenes.katalin@nik.uni-obuda.hu

Abstract
The market success of the enterprises depends on the ability to support their business processes.
This involves the requirement of a seamless, well-ordered operation of the whole company. Operation
is greatly affected by the quality of its IT support. The information should be available, handled
confidentially, preserving its integrity, have to be processed in a reliable, efficient, effective way,
in compliance with the requirements of supervisory authorities. Extending the scope of these
information criteria to criteria determining operations quality and adding two business-level
requirements to them makes possible to find preventive, detective and corrective, originally
information security control measures, raised to the level of operational quality, that support the
market success of the institutions.

1. A Method Based on IT Security
and Audit for Supporting
Corporate Governance

The goal is to facilitate the use of the originally
information security and information systems
audit ideas and tools in the area of corporate
governance. In the followings the criteria charac-
terizing such a corporate IT functioning, that is
able to contribute to the compliance to a widely
accepted set of requirements, are extended to
the area of corporate operations. To operations
belong every area, that supports business. Cor-
porate finance, controlling, human resource man-
agement, and the like all belong here. Without
them no business could operate.

In order to improve IT processes ISACA (In-
formation Systems Audit and Control Associa-
tion) was probably the first organization, that
collected all these criteria. If we extend the scope
of the measures by which some of these criteria
can be fulfilled, to other business-supporting ar-
eas, then these criteria can also be raised to the
level op corporate operations. This possibility

of discussing the problems in a greater arena
then before, will be illustrated here on a special
application, on the service-oriented architectures.

2. Business Goals and Information
Security

Seamless operation is one of the basic factors of
the corporate market success. Improvement of op-
erational quality, and compliance to the require-
ments coming from government and other author-
ities are vital. IT applications are non-separably
interwoven into the everyday and even into the
strategic level activities of every company. Thus
to the fulfillment of the strategic business goals,
computer applications have to support the – of-
ten contradictory – aspects of operation and com-
pliance.

An efficient IT of a professionally operating
firm follows best practice methods. Good exam-
ples are the methodologies of such prominent
organizations as ISACA, or the ISO standards.
ISACA and ISO both require the availability,

28 Katalin Szenes

confidentiality and integrity of corporate data.
In its methodology ISACA appends to these the
requirements of effective, efficient, reliable pro-
cessing, and compliance to the authorities’ pre-
scriptions [1].

To this set two business-level requirements
are to be added, according to my experience.
One is appropriate functionality of every IT sys-
tem, meaning, that the business-, or any kind of
end-users are asked to confirm, that the systems
help them reaching their strategic and business
goals. The other is keeping order in every aspect
of the company life.

The functionality requirement, that means
actually involving the end-users into the devel-
opment process, can directly be translated to
a lower level goal to be set to IT: the deliveries
of every milestone of the systems development
lifecycle should be approved by the responsible
organizational unit.

One of the necessary conditions of maintain-
ing order in a company is to do so in every de-
partment. Doing so, involves specifically, among
other requirements, up-to-date documentation,
and configuration & change management of the
whole IT architecture. An important factor of
order is, of course, planning the other support-
ing, and what is more important, the business
activities, too, before acting [2].

If we extend to operations our seven criteria
originally set by ISACA as a best practice for IT,
and add to them IT systems functionality, and
order in every corporate activity, then we get
a list of conditions usable in the improvement of
operational quality.

Applying these conditions to different tar-
gets taken from the company life we get a gen-
eralization of the notion of IT “control objec-
tive”. Information systems auditors and security
professionals refer to best practice management
objectives set to IT activities as “control ob-
jectives”. Let us call these as “IT control ob-
jectives”, and extend this notion to such best
practice management objectives, that the oper-
ational areas have to achieve. This way we get
the “operational control objective” and we will
call this as “control objective” in the followings.
(This will not arise disturbance, as IT control

objective is a special case of operational control
objective.)

To reflect the intentions of the top manage-
ment in devising (operational) control objectives
this term was extended to mean any kind of goals
that can be derived from the corporate strat-
egy [2]. Actually the scope of the original control
objective is extended from IT to the broader
arena of corporate operations.

Using this terminology, the above consider-
ations mean, in other words, that lower level
operational control objectives help the company
to achieve one of its most important, high level
control objective: raising the level of company
operation so that it supports corporate success
as well as possible.

The weights of these often contradictory, even
if perhaps not completely independent require-
ments are always to be balanced, of course, ac-
cording to the requirements of the given situa-
tions. The actual weights to be assigned have to
depend on the business requirements. To find an
optimal balance, that suits to the business goals
the best way, risk management methodologies
can be used [3].

Methods taken from the knowledge base of
information security and audit, will be shown
here to be able to help a lot in satisfying these
control objectives, in order to illustrate how in-
formation security and audit are able to serve
directly corporate strategy through the improve-
ment of the quality of operation. It should be
noted, that for managing risks the same or simi-
lar information security & audit ideas and tools
could be exploited, as the ones presented here [3].

Having chosen our control objectives, the next
step is to find measures, so-called “control mea-
sures”, that can help reaching them. If the con-
trol measures are categorized, then to find the
appropriate one will be easier. As the goal is
operational excellence, the proposed categories
are based on the three basic pillars of corporate
operations [2]:
– organization,
– regulational system,
– technics.

The control measures will be presented here
together with the control objective they help

Supporting Applications Development and Operation Using IT Security and Audit Measures 29

achieving, or the problem they help solving. We
must not forget, that all these control objec-
tives – at least in a balanced way – are nec-
essary to supporting the business, but they
are not enough. Without them the business
users will not have a clear and exact picture
on the present state of their tasks, but reach-
ing these control objectives is not enough, will
not totally transform the company. The other
value of information security and audit ideas
will be just the control measures. All of them,
by themselves, will help the company towards
a better organized way of living. However, it
should be noted, that the complex process of
identifying those strategic goals that help best
the company to market success can not be
spared. There are systems analysis methods for
this purpose, that we have no room to discuss
here.

To illustrate how these measures support the
business goals, such a practical example was
chosen, as an extension of former information
security considerations [4], that belongs to an
emerging area of application development: the
service oriented architecture, SOA.

3. Implementation of Business
Intelligence Using Service Oriented
Architectures

This already for years fashionable architecture
can be considered as a set of business processes
performing business functions. The processes are
implemented by so-called services, programs usu-
ally written in Java. These processes are “loosely
coupled” to each other. This relation means ei-
ther direct communication or a kind of orchestra-
tion – cooperation, that provides for the schedul-
ing of process execution. For implementing this
loose coupling different, complex ready-made
products are available.

The processes are known to each other or to
the outer world only through their communica-
tions so newly built and old, legacy applications
can be packed together into this architecture and
then the individual applications will be reached
through this common platform.

According to ISACA researchers choosing
this type of architecture positively affects the
return of IT portfolio because of its promising
cost/efficiency of solution delivery [5]. The SOA
system is stated to reduce systems complexity,
implementation and maintenance costs, and to
enhance test effectivity at the same time.

This architecture is not an off-the-self prod-
uct, but rather an approach to problem solving
that supports a new way of thinking which is
very useful in building such complex structures
as e.g. enterprise portals that collect information
from various background information sources.

SOA is on the way to contribute to the align-
ment of IT to the business processes by the means
of a transparent and integrated application, ser-
vice and process landscape. The technical pro-
cesses can directly be derived from the business
process models by the means of an integrated
enterprise-wide meta repository of the available
components. This is a repository of such services
from which a complete IT projection of a business
model can be built.

On the level of the reference model, however,
SOA is a collection of distributed capabilities,
that are created by people or by organizations
and are needed by somebody to solve a problem.
SOA is said to be “a paradigm for organizing
and utilizing distributed capabilities that may
be under the control of different ownership do-
mains” [6].

The idea originated in the middle nineties
with the ambitious goal to share the business
logic of an enterprise between its different com-
puter applications and to facilitate a kind of
multi-threaded execution of these applications,
even if some of them operate on the same
database.

The step that surely leads beyond the lim-
its of the enterprise architecture integration is
the spreading of the applications systems compo-
nents all over the internet. The 21th century SOA
consists also of loosely coupled, in a way individ-
ual parts, but these parts are now so-called web
services, such services, that can be made avail-
able, or, in other words, can be invoked, either
from the corporate intranet or from the internet
and they use these two media for communication.

30 Katalin Szenes

Not only the system components can reside
on different nodes of the world wide web, but
the users of the system, too. Nowadays when
employees have to access the corporate applica-
tions practically from anywhere, the availability
of an application system from the outskirts of
the company is a very important point. Thus
the service orientation turned into web service
orientation both from the viewpoint of its build
and that of its way of using.

4. SOA Main Features

The architecture of these new systems presents
a unified surface to their user but their services
might
– reside on different network nodes of the cor-

porate network or even those of the internet,
– are diversified and run on different hardware,

software – operating systems and database
platforms,

– are developed by different vendors, using dif-
ferent methodologies.
To satisfy availability, confidentiality and in-

tegrity of the information, to process it effectively,
efficiently, reliably, taking the requirements on
compliance, order and functionality into consid-
eration, is not at all trivial, with these complex
applications, having parts spreading over the
internet. To make matters even more difficult,
when we pack new and old applications together
as if they were individual services but called
from a central entry point, this diversification
of users and services, and the possibility of in-
corporation of the legacy systems into a brand
new applications architecture at the same time,
together with the loose coupling of so different
components, by communication and scheduling,
arouse new problems, preserving – due to the
components – the traditional difficulties just as
well.

These latter come from the legacy systems,
that their users do not want to part with. These
systems are independent islands in the enterprise
information system. Their services are completely
satisfactory to their users who are accustomed
to them. Unfortunately, they frequently rely on

obsolete databases, and are written in out-of date
programming languages. Their documentation, if
it ever existed, has been lost long ago. However,
these drawbacks are the problem of the IT person-
nel while the end-users insist on preserving these
systems. A solution is the wrapping of a legacy
system in such a way as if it were a black box
affecting the state of its environment only by its
input/output. To find ways to implement this
wrapping became a subject of interest already in
the end of the last century [7].

Some experts consider the service oriented
concept as a successor or an improvement of
the idea of enterprise architecture integration.
This integration wanted to provide for a common
framework connecting every application of an en-
terprise [8]. This connection usually provides for
a common entry point for the applications, too,
so it can serve as a front-end system. One of the
tasks of a front-end is to authenticate the users
of the package of application systems behind it,
then, according to their roles, the users are autho-
rized. This authorization determines, how they
will be able to use the systems of this package. As
a next step, according to their authorized access
rights the front-end offers the users the services of
the systems. For the end-users this functionality
looks like a menu system. This is the first thing
they meet having authenticated themselves to
the operating sytem of their computer.

The front-end systems of such heterogenous
and giant corporate applications as the account-
ing systems of financial institutions are built
quite frequently according to this structure. The
users in the bank connect to the application
portfolio – customer accounting systems, trea-
sury, brokers’ systems – through a menu sys-
tem. At this menu the users have to be au-
thenticated and then authorized to perform dif-
ferent functions – to invoke menu points – ac-
cording to their work roles, that is defined by
their job descriptions. Thus this is a point where
confidential access of the employees to the set
of applications behind the menu can be en-
forced. Besides confidentiality the fulfillment of
other requirements can also be illustrated on
front-end systems and service-oriented architec-
tures.

Supporting Applications Development and Operation Using IT Security and Audit Measures 31

The vulnerabilities and other issues concern-
ing any architecture can be grouped in different
ways. A possible classification of the SOA vulner-
abilities can be, that to one group belong those,
that are caused by the SOA architecture itself,
for example by the difficulties involved in plan-
ning such a system, and the other group can be
formed from those, that the operation of the SOA
systems yields. The lack of considerate planning
and/or that of the perfunctory implementation
can undermine, of course, either the structure or
the operation.

It will be marked here, which control objec-
tive, by what kind of control measure can be
fulfilled, and to which – organizational, regula-
tional, or technical – pillar does that control
measure belong to. Our example will set mostly
IT-related goals, but the measures will be on
operational level, classified according to these
three proposed pillars of operation.

5. Architectural Issues

A first step in finding the weak points of this
architecture might be to explore, what is that
mentioned loose coupling, that keeps its parts
together. The parts are the so-called web services,
that implement such activities, usually one ser-
vice by one activity, that the business processes
invoke. The business processes serve the business
goals directly, the services perform usually one
step that helps achieving the business goals. In
order to make cooperation possible between these
parts a kind of communication is necessary.

The services do not call each other in
a subroutine-calling way. They communicate,
using mostly XML, and the other connection
between them is a kind of organization of their
cooperation, the so-called orchestration of the
web services, or rather the orchestration of their
quite various functionalities. The orchestration
and the communication together provides for
the loose coupling, that makes a SOA from the
components. The orchestration is to
– implement the business logic that connects

the business processes to each other, and

– contribute to the building of such an applica-
tion system from these various web services
that is able to serve the current business goals
set by the end-user.
Practically the execution of a SOA structure

is based on an integrated handling of resources,
together with such an administration of these
resources that yields the satisfactory provisioning
of the resources. This requires:
– choosing the appropriate web service, invok-

ing it, and managing the passing of the con-
trol from one service or administration func-
tion to the other according to the needs of
the user,

– the management of the communication be-
tween users, system, auxiliary components.
To achieve the high-level goals of the orches-

tration described above different solutions are
available. The so-called enterprise service bus
(ESB) was one of the most popular among them.
It collected references of the available services
into a kind of registry from where they could be
chosen in case of need [9]. These ESBs became
collections of such business service capabilities
that could be invoked.

Compliance of the Application System to
Business’ and Authorities’ Requirements. Served
by: Regulational Pillar Type Control Measure –
Involves Administering Order.

Authorities here mean those government and
other institutions that have the authority to de-
mand compliance to their requirements.

Such a compliance can only be based to have
regulations on preliminary planning and on the
continuous documentation of the satisfaction
of both the users’ and the compliance require-
ments at the different phases of development and
throughout the whole life-cycle of the application.
Planning before doing anything, and preparing
documentation are both preventive control mea-
sures, they might parry quite a lot of problems.

Availability. Served by: Regulational Pillar
Type Control Measures; Change Management,
Configuration Management.

As it was already mentioned, documentation,
change management and configuration manage-
ment are vital information security measures

32 Katalin Szenes

both in developing and in operating any kind of
applications [2, 10].

Changes of the application develop-
ment projects, either shifting the goals, or
adding/revoking resources, or any other event
should be rigorously managed. This involves,
among others, the documentation of the change
requests, that of the permissions of the com-
petent officers before the change is actually
committed, etc. Otherwise sooner, than later
the application becomes inconsistent with the
information available about it. This results in
chaos, in incompatibility of the running en-
vironment with the actual needs, in impos-
sibility of administering any further correc-
tions or impossibility of tuning the system to
the business users’ requirements, as nobody
will know where is the point to be corrected,
etc.

If we turn for advice to the COBIT method-
ology of ISACA, the description of the “Major
Upgrades to Existing Systems” process of the
domain Acquire and Implement says that if we
carry out a major change to our application then
we should “follow a similar development process
as that used for the development of new sys-
tems” [1].

Without configuration management the cur-
rent state and the whereabouts of the IT facili-
ties will be unknown, and then the maintenance
and other tasks to be executed can not be allo-
cated. The instructions concerning documenta-
tion, change and, of course, release management
should be part of the regulational system of every
institution.

Availability of the Application. Served by:
Technical and Regulational Pillar Type Control
Measures.

The availability of the SOA architecture can
be unpredictable when incompatibilities between
the parts of the applications are realized too
late. It can happen that the repositories used
do not seem to be able to handle the services of
other suppliers and then these services will be
unreachable.

Even if the application doesn’t always require
the presence of every service at the same time, ev-
ery service should be available. Some consider the

asynchronous, publisher/subscriber way of com-
munication to be a flexible possibility [11]. In this
case the services are invoked in an event-driven
way.

The ideas behind the SOA methodology and
the building tools are changing, every day new
issues arise. So many enthusiastic professionals
began dealing with this new promising land that
to track every direction would be hopeless. The
variety of building blocks is very rich and these
blocks are even developed according to different
quality standards, if any are used at all.

In order to ensure the interoperability of
these security solutions the Liberty Alliance [12]
was founded by the suppliers. If a product com-
plies with the requirement set of the gener-
ally accepted version of the Security Assertions
Mark-up Language (SAML) then it is compatible
with the products of other suppliers.

The other organization, where the security of
communicating web services are widely discussed
is XML Protocol Working Group of the W3C –
World Wide Web Consortium [13].

Presently the service oriented architectures
operate mostly in a client-server way so the ser-
vices have to be present, too. For implementing
the details of interaction a widely accepted stan-
dard should be chosen and then ordered to be
followed. These are technical, and regulational
control measures at the same time. Having them
executed, we will have compliant products that
are able to cooperate with each other.

6. Operational Issues

Here we follow an imaginary operation of
a front-end system based on SOA technology.
Looking for weaknesses in the execution of
a front-end system, when we find one, then
we look for appropriate control measures. Our
palette of vulnerabilites to be cured will be here
far from complete, of course, books could be
written on this subject.

Preserving Confidentiality at the End/Abort
of Service Execution – Locating Point of Termi-
nation. Served by: Technical Pillar Type Control
Measure.

Supporting Applications Development and Operation Using IT Security and Audit Measures 33

One vulnerable point when these program
systems begin operating is surely common. This
is the flexible way of calling this set of services
by a simple click that incurs all of the threats
that usually endanger a remote connection. This
connection can be invoked either from the more
or less defended corporate network or remotely
from the outside and the point of termination
can be anywhere in the internet.

It would be desirable, if the requestor of the
service could decide, when and how is the re-
quested service to be terminated. Without pre-
defined plans and painstaking programming this
is not possible. Should anything go wrong other-
wise, then, besides doing something unplanned,
the service might go astray, carrying along some
valuable business/personal data or logic.

Balancing Between Control Objectives: Avail-
ability Versus Confidentiality Balancing between
the requirements is very important as the SOA
applications usually support rich and complex
functionality.

In this case, against unathorized outsiders the
sensitive data could be encrypted but then avail-
ability might suffer as encryption/decryption will
decrease performance. Business requirements are
to decide, which opportunity is to be chosen.

First Confidentiality Issue in Operation – Pro-
visioning for the Users’ Access Rights. Served
by: Organizational, Regulational, and Technical
Pillar Type Control Measures.

Some years ago the so-called middlewares be-
gan replacing the ESBs. These are able to extend
the business support capability by a facility of
access right management [14].

This means that here we can use an important
organizational control measure: the tasks of the
organizational units and those of the employees
are to be clearly defined in the job descriptions
in such a way that the duties are appropriately
separated.

This organizational control measure should
be written into a rulebook. Having put then
this rule into effect we have built a regulational
control measure.

If the access rights are assigned in such a way,
that everybody is permitted to reach those and
only those data that are necessary to perform

their duties, then the application built on this
middleware will support the confidentiality re-
quirement.

Segregation or separation of duties is con-
sidered to be appropriate according to the best
professional practice, if it satisfies at least the two
most important basic requirements [1]. The first
is, that there is no employee with too big power
in modifying the corporate data, e.g. nobody
has development and operation responsibility at
the same time. The second is that there is no
employee who has to supervise himself/herself.
This way the business secrets and other, e.g. for
privacy reasons sensitive data will have a chance
to be confidentially handled.

Second Confidentiality Issue in Operation
Identification and Then Complete Authentica-
tion of the User Who is Asking an Entry Per-
mission. Served by: Technical and Regulational
Pillar Type Control Measures.

When the application system is based on
a SOA architecture then the user authentica-
tion process is even more important with all the
internet connections involved. To one customer
different companies might provide for web ser-
vices that cooperate with each other and the user
has to be known to every service.

As first step of the authentication, the user
has to be identified by the means of a user identi-
fier that is valid according to the records kept by
the operating system. If this identity is accepted,
then he/she has to be authenticated in order
to ascertain if this identifier really belongs to
the user who has given it. After the successful
authentication the user will be authorized to go
forward, according to the settings belonging to
this user identifier.

The threats entail the necessity of a really
rigorous identification – authentication – autho-
rization process that is advised to be extended
towards federated identity management if more
than one companies are involved in the provi-
sioning of the web services comprising the SOA.
Federated is the identity management if it sup-
ports a check throughout different companies by
the means of strong authentication tools.

Federated identity management raises the
level of the user authentication from that of the

34 Katalin Szenes

individual web services to a level of a synergy
of these services. Serving the end-user these ser-
vices have to communicate and have to pass
the control to each other. The user has to be
identified by all of the services that have any-
thing to do in fulfilling his/her needs. Federated
identity provides for a single sign on facility at
the entry point of the SOA. This is the con-
trol point where the access rights of the user
are to be set according to his/her role in the
company. Having the user authenticated the ser-
vices can communicate with each other on behalf
of the user.

Federated identity management is described
by OASIS [6], a non-profit organization, that
develops standards and specifications to support
e-business.

The strong user authentication requires more
information pertaining to the user than a simple
user password. Biometrical tools can be used to
provide some personal characteristics. Tokens,
smart cards, and the like devices, that are based
on possessing something can also be used to
enhance security.

These technical control measures, of course,
have to be described by regulations. The pro-
cesses of authentication and authorization are
to be defined. The requirements of a successful
authentication have to be clearly stated.

Third Confidentiality Issue in Operation: Au-
thorization of the Authenticated User. Served
by: Technical, Regulational and Organizational
Pillar Type Control Measures.

After the successful authentication the com-
puter system has to authorize the user according
to his/her organizational roles in the corporate.
Having clicked onto the entry point of the SOA
the user encounters a menu. This again is a pos-
sibility to administer defensive measures. After
the successful identification and authentication
of the user, the access right management system
should authorize him/her exactly according to
his/her role in the organization.

Some of the bases of authorization were al-
ready mentioned. Summarizing the most impor-
tant ones:
– regulations concerning the enrolment, and
– termination of the employees,

– their job description,
– the process of asking for and then,
– confirming permissions,
– the revocation of the permissions.

The facilities of the system offered usually as
menu points are to be just those options that
he/she is permitted to use. The range can be
properly set only if an exact job description is
available which:
– is aligned to the organizational structure,
– defines the tasks to be performed,
– takes the segregation of duties principle into

consideration.
The users should have access to

– those and only to those systems and within
them,

– to those systems functionalities, and
– data, that are necessary in order to perform

the duties given in their job description.
Devising organizational diagrams, defining

the tasks of the organizational units and the em-
ployees, their job descriptions, in such a way, that
their duties are properly segregated belong to
the organizational type of the control measures.
All of these are preconditions of a well-planned
authorization process.

Fourth Confidentiality Issue in Operation:
Defending Important Business Data. Served by:
Technical, Organizational and Regulational Pil-
lar Type Control Measures.

The data of the information systems are re-
sources, necessary to perform that functionality
of the SOA system which satisfies the user’s
request.

To illegal program modification more internal
knowledge and skills are needed then to attack
data directly. According to its function the data
can be:
– applications data – these relate to the busi-

ness of the institution,
– management data – needed to the adminis-

tration of the information systems.
To the management data belong:

– the databases containing the user identifica-
tion, authentication and authorization infor-
mation – e.g. password tables, some of these
might be embedded into different access con-
trol systems,

Supporting Applications Development and Operation Using IT Security and Audit Measures 35

– the data supporting the operations of the
SOA and that of the IT infrastructure.
Examples for management data are: the data

that are necessary to the scheduling of the web
services or to operating the network devices or
managing intrusion detection systems. Lots of
other data set are vital to a well-functioning
operations support. To the user databases be-
long those that are needed for the entry to the
corporate network. This user information, unfor-
tunately, can not be stored in one central collec-
tion but is usually spread all over the corporate
network. These data describe, among others:
– PC users who are permitted to connect to

the corporate network – this is usually an
operating system table,

– the users of the different applications – stored
usually in the applications themselves,

– the users of the different devices and facilities,
etc.
The applications user groups are normally

part of the group of PC users. Those firms that
are strong enough financially to melt these groups
into a single – sign – on user community have
a chance to strive for a central user administra-
tion.

All of these data have to be defended against
stealing. Defense involves hiding the users’ iden-
tification and authentication data. We can not
detail here, how to choose a safe solution, but
we mention that one of them is encryption. En-
crypted data can, of course, be decrypted, so such
algorithms have to be chosen that cost/effectively
defend the data.

In Windows-based networks Microsoft Active
Directory is rather frequently used for storing
the authentication informations of users’ groups.
To its advantages belong the more or less ready
availability of the systems engineers who are
Windows experts. Their cost is usually less than
that of a skilled Linux/Unix professional where
the openness of these operating systems requires
considerable inside knowledge besides manage-
ment & maintenance experience. This wider re-
quirement set might make the company quite
dependant on these employees.

One of the most important drawbacks of the
Active Directory is the lack of a facility to main-

tain the history of the access rights of the users
from the point of time they were employed till
the termination of their employment. Active Di-
rectory shows always the present state only.

The risk of this lack of control can be mit-
igated sometimes on application level. Enter-
prise integrated system SAP is a positive ex-
ample. It is able to track its users’ access right
history throughout their life in the company
from entering till termination. Without such an
application the organized and regulated track-
ing and archiving of the changes in the ac-
cess rights might be a feasible solution. The
respective tasks should, of course, be allocated,
thus this is both regulational and organizational
control measure.

As far as the access control on database level
is concerned a considerable improvement of some
of the database systems seems to be necessary
in the near future. In some cases there are ready
solutions available.

If there is no such control of every field of
a record that the system could log the employee
who modified something then the suppliers of
these database system and the customers have
to find other solutions. Confidential data can be
locked from trivial access, e.g. the data can be put
in a kind of vault. Some of the database systems
facilitate fine-tuning of access rights according
to the roles in the organizational units and to
the sensitivity classes defined for the data [14].

There is a possibility to control field level
access in such a way that the database adminis-
trators do not have full access rights full time but
they get the access right necessary to complete
their work from a security administrator just
for the time interval when they need it. Field
level access might improve the data processing
performance of the applications and facilitates
the fine tuning of access rights at the same time.

It must be noted, that the control measures
defending the data should usually be supple-
mented by application level control procedures.
These latter depend partly on the specific fea-
tures of the given database system [15]. If these
control measures are still not enough then come
the organizational level control measures that
usually define rules concerning the personal be-

36 Katalin Szenes

haviour of the employees. These measures should
be explicitly described in procedural rulebooks.

Fifth Confidentiality Issue in Operation:
Screening Users’ Legal Activities; Tracking the
Unauthorized Access Attempts. Served by: Tech-
nical, Organizational, and Regulational Pillar
Type Control Measures.

Should an auditor want to ascertain if the
data are safe or not then he /she might want to
compare the actual activities to the documented
permissions. Another important question is: what
do the users do with their legal permissions?

The logging of the users’ activities and those
of the data base administrators is not only a de-
tective control measure but might help these
employees to prove their innocence in case of
security incidents. Of course, the logs provide
for authentic proofs only if they can not be tam-
pered with from that point of time when they
were created. The solution is to sign digitally the
log records, and to stamp them with the point
of time of their creation, and doing so immedi-
ately at creation time. Digital signature means
– roughly speaking – the creation of a so-called
hash code. This code is composed from the bytes
of the record to be preserved intact in its original
form.

To log the activities the logging facility has to
be set on – if the target system has such a facility
at all. But all of these efforts are worthless if the
log records are not managed, that is they are not
archived, handled, etc., and if the collection of
logs of different systems is not analysed, taking
into consideration, of course, their relations to
each other. All of the log records should be in-
troduced into a central log management system.
These are called as SIEM – Security Information
and Event Management Systems.

Besides the users’ information other equally
important data are the log records of the vari-
ous IT infrastructural elements. Infrastructural
elements are the different hardware, operating
system, databases, or even computer applica-
tions, the network devices, the defense systems
and other special facilities such as those that
participate in providing for the internet service:
the proxy servers, the web servers and the like.
Some of these devices are able to give signs about

their current, or sometimes even about their fu-
ture state in the form of log records. (Some of
them can “complain” that it will go wrong within
a short time.) The appropriate use of this infor-
mation should be included in the maintenance
regulations.

All of the duties enumerated above have to be
assigned to somebody – this is an organizational
measure, and the measures are to be described
and regulated, these are regulational measures.
Making all this possible by the means of handling
the log records is a set of technical measures.

7. On Other Issues to be Handled

Here we can only call the attention to some also
very important SOA issues that are also to be
taken into consideration. All the problems can
not even be listed here, that are known to the
professional community, and to which different
departments of the company have to answer by
detective, corrective or preventive control mea-
sures. Here we restrict ourselves to giving only
a sample in the followings.

Managing the resources needed by the ser-
vices to perform their business function arises the
question of availability again. These resources are
mostly data in databases but to the resources
belong, in a broader sense, all of those infras-
tructural elements that support somehow the
operation of the web services. There is a lot
of type of them, that all have their identifiable
role in the SOA infrastructure, just as in the
case of any other program system architecture.
The infrastructural elements are subjected to
the usual threats characterized by the nature of
the given element, thus the elements one-by-one,
and the whole system too, has to be defended,
as a complex structure. This defense involves
physical and logical measures alike. To the latter
belong numerous maintenance tasks for improv-
ing the availability, integrity, confidentiality of
the information and the resources.

Besides the supporting architecture, problems
can arise from using SOA, too. The communi-
cation of its components with each other, and
with the user, the cooperation of the parts by

Supporting Applications Development and Operation Using IT Security and Audit Measures 37

a kind of deadlock-free scheduling have to be
managed [4, 16].

The communication protocols used for these
communications can be attacked. The lack of
planning, or omitting systems analysis phase
yield vulnerabilities in the production systems.
Unfortunately, this organizational and regula-
tional defect of the support of corporate strategy
is quite frequent.

8. Conclusions

Informatin security and audit methodology used
for many years successfully for IT Governance
is being extended to the support of corporate
governance [2]. As an illustration of this research
ways of at least partially solving some formerly
discussed problems arisen by the complexity of
service oriented architectures [4] were discussed
above.

To prevent, detect or correct such problems
operational level organizational, regulational and
IT technical level measures were suggested. In-
formation criteria belonging to the toolkit of
information security and audit were extended to
the level of evaluation of corporate operations.

References

[1] “Cobit 4.1 framework, management guidelines,
maturity models,” 2007.

[2] K. Szenes, “IT GRC versus? enterprise GRC
but: IT GRC is a basis of strategic governance,”
in EuroCACS 2010 – Conf. on Computer Au-
dit, Control and Security. Budapest, Hungary:
ISACA, Rolling Meadows, Illinois, USA, March
2010.

[3] ——, “Building a corporate risk management
methodology and practice,” in EuroCACS 2002
– Conf. for IS Audit, Control and Security. Bu-

dapest, Hungary: ISACA, Rolling Meadows, Illi-
nois, USA, March 2002.

[4] ——, “On the intelligent and secure scheduling
of web services in service oriented architectures
– soas,” in Procds. of the 7th International Sym-
posium of Hungarian Researchers on Computa-
tional Intelligence, Budapest, Hungary, Novem-
ber 2006, pp. 473–482.

[5] P. Williams, J. Spangenberg, and S. Kovaleva,
“It and shareholder return: Creating value in
the shareholder industry,” Information Systems
Control Journal, Vol. 4, 2007, pp. 39–42.

[6] Oasis – organization for the advancement of
structured information standards. http://www.
oasis-open.org.

[7] M. Yoshioka, T. Sodo, A. Yoshikawa, and
K. Sakata, “Legacy system integration technol-
ogy for legacy application utilization from dis-
tributed object environment,” Hitachi Review,
Vol. 47, No. 6, 1998, pp. 284–290.

[8] S. Bennett, S. McRobb, and R. Farmer,
Object-Oriented Systems Analysis and Design
Using UML. McGraw-Hill Education, 2006, ch.
System Architecture, pp. 338–370.

[9] C. Nelson, J. Miller, W. Farrell, R. Reinitz, and
K. Brown, “Implementing a service – oriented
architecture version 1.0,” September 2005.

[10] D. Melancon, “Security controls that work,” IS
Control Journal, Vol. 4, 2007.

[11] J. van Hoof. Client server versus publish sub-
scribe. http://soa-eda.blogspot.com/2010/09/
clientserver-versus-publishsubscribe.html.

[12] Liberty alliance. http://www.projectliberty.org.
[13] W3C – world wide web consortium. http://www.

w3.org.
[14] C. Everett, “Oracle spreads into the middle,”

Infosecurity Today, Vol. 3, No. 4, Jul. 2006, pp.
34–36. [Online]. http://www.sciencedirect.com/
science/article/pii/S1742684706704359

[15] J. H. White, “Important but often dismissed:
Internal control in a microsoft access database,”
Information Systems Control Journal, Vol. 6,
2006, pp. 30–34.

[16] D. Perelman-Hal, “Ajax and record locking,” Dr.
Dobb’s Journal, October 2006, pp. 45–51.

e-Informatica Software Engineering Journal, Volume 6, Issue 1, 2012, pages: 39–45, DOI 10.5277/e-Inf120103

Middleware Architecture for the Interconnection
of Distributed and Parallel Systems

Ovidiu Gherman∗, Stefan Gheorghe Pentiuc∗
∗Electrical Engineering and Computer Sciences Faculty, “Stefan cel Mare” University

ovidiug@usv.ro, pentiuc@eed.usv.ro

Abstract
Grid computing is a fast evolving technology, bringing more computing power to its users. Two
main directions are observable: creating dedicated supercomputers for scientific and commercial
tasks and creating distributed commodity-based systems. The first ones are usually much expensive,
but have the advantage of performance, better control and uniformity in platforms. The second
one is more affordable but lacks in flexibility and easy maintenance. The computing necessities
that often require supplementary computing power for certain time periods are better satisfied
by interconnecting available resources than buying new, expensive ones. But interconnecting
platforms – sometimes radically different – can be a difficult task. The proliferation of hybrid
parallel computing systems can be even more complicated because it puts in contact systems
with various operating flows at the parallelism level. In this frame, the present article proposes
a new middleware architecture that can connect multiple parallel or distributed resources, of
different types, allowing unitary resource utilization and reservation for the user’s jobs. The new
architecture is described functionally and structurally.

1. Introduction

This article presents a middleware architecture
that can connect a diversity of grid and parallel
systems so that the users can run seamless jobs
on multiple platforms, of different architectures,
the compiling and executing part being sourced
to the suitable resources assigned by a centralized
(or decentralized) manager (broker). The main
scope is interconnecting clusters of computers
with different architectures and platforms (for
example as MPI and hybrid Cell-based systems)
so that the access will be transparent and uni-
form to the user, without the problems arising
from the use of multiple computing clusters [1].

Certain acronyms will be used in the next
pages: MPI – Message Passing Interface (commu-
nication protocol and specification set regarding
communications between processes in parallel
computers; popular software implementation are

OpenMPI, MPICH1/2 and LAM-MPI), Cell and
PowerXCell8i microprocessors manufactured by
an alliance led by IBM (International Business
Machines), hybrid systems (computing platforms
that seamlessly integrates multiple CPU archi-
tectures), HPC – high performance computing,
SSH/SFTP (Secure Shell and Secure File Trans-
fer Protocol – widely used communication pro-
tocols in computers data transfers) SPF (single
point of failure, showing a critical component
that can disrupt or stop the entire system from
normal work) and Beowulf systems (parallel com-
puter systems built from inexpensive PCs).

Using a middleware (that offers a set of ser-
vices) has the advantage of being easier to im-
plement and can be installed on top of the al-
ready existent equipment (both hardware and
software). Being message-oriented, can be easily
extended and allows dynamic reconfiguration of
the platform (for example when new resources

40 Ovidiu Gherman, Stefan Gheorghe Pentiuc

are brought in the grid or crash and are removed
from the available pool). The middleware can be
extended so that new facilities can be attached.
Once a new resource is added to the resource
availability pool and properly set up (depending
on the particular configuration of the software
environment on that resource) it can be chosen
to run certain jobs (in a generic way or a specific
one – if it has a desired particularity).

2. Proposed Middleware Architecture

2.1. Introduction

The necessity of using large parallel and dis-
tributed computing systems required the cre-
ation of computing clusters – both homogeneous
and heterogeneous regarding the distribution of
hardware and software components. The most
difficult step is to control and manage them effi-
ciently and satisfactory for the user – goals that
sometimes are opposite.

The proposed architecture wants to be
a “glue” between parallel computing platforms
that use the grid infrastructure already on the
local resources (such as parallel clusters or Be-
owulf systems using MPI platforms – OpenMPI,
MPICH1/2, LAM-MPI – and/or hybrid plat-
forms like MPI on global level and PowerXCell
locally [1]) and to extend the functionality of
these systems, in the same time connecting them
in an unitary fashion, transparently to the user.
This middleware is built on top of the local op-
erating systems in order to benefit from the se-
curity and optimization layout of the OS and
parallel middleware, allowing fast development
and optimization.

The middleware architecture provides an easy
access method to numerous resources with dif-
ferent specifications, in which a set of services
are made available to the users, services that
allow to define a set of attributes required for
the execution of the programs (and the programs
themselves), with the actual process of alloca-
tion and reservation of certain resources being
made automatically. Remote compilation and
execution allows writing only one source code for

a given project (respecting the characteristics of
the desired target machine) and thus creating
platform-agnostic programs.

2.2. Resource Classification and
Performance Criteria

The proposed architecture uses a set of different
resources that are allocated to the incoming jobs.
For a more suitable planning, every resource can
be scored [2,3] as to ascertain the trustfulness of
the given resource regarding the online time ratio
V and the success ratio G (and to quantify the
level of QoS compliance). This way, the resources
can be classified for better QoS compliance (the
most reliable resources are the most used). Al-
though there are more parameters that can be
used to measure quantitative the QoS level [4],
the most meaningful in this case are:

V = timeonline
timetotal

(1)

and:

G = jobssuccesful
jobstotal

(2)

2.3. Layered Architecture

The proposed middleware amalgamates multi-
ple clusters and distributed general-use systems
into a unitary platform, under a centralized or
decentralized management system.

The parallel clusters have – usually – a local
management system that is highly optimized [5].
When multiple such clusters are interconnected
(even if those clusters are homogenous internally,
having identical components in the nodes and
a global parallel environment), the differences in
the platform, operating systems, middleware for
parallel applications or administration policies
can generate difficulties in the competent and
automatic allocation of the available resources
and in the seamless running of the client’s ap-
plications. This allows a better level of quality
of service also by simplifying the overall archi-
tecture and hiding the QoS penalties induced by
the computing systems themselves. Their opti-

Middleware Architecture for the Interconnection of Distributed and Parallel Systems 41

mization is executed apart, by the rightful ad-
ministrators, the management system (including
the resource broker) monitoring and scoring ev-
ery resource accordingly. This makes easier to
deploy the middleware across multiple parallel
and distributed systems and to create a unique
grid infrastructure. The scoring allows to employ
specific selection algorithms that will reserve the
most appropriate resource (depending on the
user’s requirements and his job’s requirements),
making possible to guarantee a certain level of
QoS. Supplementary modules can be employed
(future work) to obtain a greater redundancy
in executing jobs (checkpoint, job migration,
etc.) [6] and a superior QoS level, even for volatile
grids.

The proposed architecture uses multiple lay-
ers to describe the level of operation in the sys-
tem, as in Fig. 1.

The middleware uses the operating systems
mechanism to operate with the user files and
the communication systems, compiling and run-
ning them in the parallel application environ-
ments installed locally on every cluster (resource)
(usually MPI or MPI/hybrid) [7, 8]. It also em-
ploys the security layer already in use at the
cluster/node level. The communication protocols
are SSH/SCP/SFTP, used by virtually every

*nix OS used on the HPC (High Performance
Computing) systems and distributed systems in
use. Thus, no other security holes will be opened
in the security infrastructure, the systems will
be properly patched as part of the maintenance
requirements and the deployment will benefit
from a stable and tested protocol/security mod-
ule. The middleware will use the well known and
reliable facilities offered by the system itself.

Similar application are usually deployed for
dedicated platforms – high throughput comput-
ing like Condor Project [9] or distribution for
Beowulf clusters (such as Rocks Cluster). These
solutions are dedicated to job scheduling or clus-
ter management, lacking a lightweight approach
that allows using volatile resources or diverse
communities of parallel and distributed systems.

The deployment of the middleware will be on
top of the local grid infrastructure, at three levels:
user, resource manager (broker) and resource. It
will use every resource in conformity with its
particularities.

2.4. Architecture, Modules and
Functioning

The architecture of the middleware has three
main areas.

Figure 1. The layered architecture of the proposed middleware, built on top of the communication
and security mechanisms offered by the underlying operating systems

42 Ovidiu Gherman, Stefan Gheorghe Pentiuc

The user (client) area, which represents the
only method of interaction between an autho-
rized user and the resources (without implicat-
ing a system administrator). Once the middle-
ware is set and configured, the interface allows
submitting jobs (along with the required at-
tributes) and retrieving the result of the jobs
either positive or negative if the job fails from
user fault (wrong instructions or conditions, er-
rors in programming, errors in algorithms, etc.)
or system fault (node malfunction, environment
problems, software failure, etc.) – all transparent
to the user. The error messages produced by
the operating system/middleware/software inter-
faces can be automatically analyzed or logged
for further study (since the module operates
on top of the software platform, it can record
the activities associated with the client appli-
cations). If no suitable resource is found the
job is aborted. The user must specify – along
the source code of the program – a set of at-
tributes that will define the requirements of the
job (number of CPUs, special software require-
ments, and particular hardware architectures –
such as the hybrid ones). These requirements,
along with the user’s profile (access rights, his-
tory, program’s nature and execution length)
will be factored in selecting a suitable resource
(with immediate execution or advance reserva-
tion).

The resource manager (the resource broker)
area must monitor the available resources (espe-
cially the volatiles ones – resources that often
come online/offline, completely or partially, or
those that have heavily variable performance)
in order to make an accurate and valid selec-
tion (suitable to the user and efficient for the
platform). Also, it must employ an algorithm to
select the suitable resources (based on resource
specifications, job requirements and user profile).
Because of the modularity of the middleware,
such multiple algorithms can be used (from the
simple to the most complex ones), allowing even
to benchmark those algorithms.

The resource manager must have a database
with the resources’ behaviour in order to make
accurate prediction regarding the suitability of
the resources. The monitoring module must be

permanently online and in communication with
the resources, activity that can lead to significa-
tion overhead at the manager level (in computa-
tion and communication alike). It is best to use
a dedicated machine for this module. Since the
middlware uses communication methods already
present at the system-level, the informations can
be send as commands or data strings.

Also, a QoS module must be used to ensure
that the selected resource will run the job in
time. If a better performance than best-effort is
sought, a series of estimates must be generated
for every job – the estimated computation length
of the job and a programmed date for the start
of the program (for advanced reservation). The
job estimates can be generated by the user (and
mediated by that user’s history in giving accurate
predictions) for example. If a job is not executed
in the allotted time, the event is logged and used
for scoring the resource/algorithm.

The resource area will receive user jobs (with
the attributes and the broker’s instructions) and
will compile and run the requested jobs, in confor-
mity with the local parallel environment. Because
the compilation is local, the user has the flexibil-
ity in writing the source code (providing that he
specifies correctly the attributes). Every resource
(cluster or grid) will have its own environment,
with specific commands, that will be given in the
setup stage by the manager of that resource.

The resource area must also monitor the node
behaviour and must report to the resource man-
ager.

The proposed architecture of the middleware
is described in Fig. 2.

The platform must be modular, flexible, in
order to permit using multiple selection and plan-
ning algorithms to test their performance and
the resource consumption on the given QoS spec-
ifications. This is more important for the volatile
systems. If a parallel cluster is more reliable (it
is homogenous and has a compact nature), the
network outage (Internet) can influence greatly
(and easily) the volatility of the system based
on multiple parameters. There are 4 steps to be
taken in order to work: user-resource manager
communication, resource allocation, sending the
job in accordance with the allocation scheme,

Middleware Architecture for the Interconnection of Distributed and Parallel Systems 43

Figure 2. The architecture of the proposed middleware (GLUE)

taking back the processed job. Each activity is
logged and analyzed afterward.

One of the main vulnerability of this archi-
tecture is the use of a centralized unit to run
the resource manager components. This inserts
a single point of failure (SPF) vulnerability – in
the event that the unit crashes or loses the Inter-
net connection, the middleware becomes broken
(requiring recovery from the previous states, pos-
sibly with loss of information). There are at least
2 possible methods to avoid this vulnerability:
– Using multiple resource managers that run

synchronized; the loss of one unit is covered
by one of the neighbours. Every job analysis
and resource monitoring is repeated in all
units (but only one is active), so that no in-
formation will be lost if the unit fails (Fig. 3).
To avoid the waste in terms of bandwidth and
CPU time (mainly as redundancy) if a repli-
cation service for multiple manager modules

is employed, only one manager will be active,
logging the results of different actions; in the
event of a crash, every other instance (se-
lected by a default order) can take its place,
losing only the current action (if any). This
way, a certain degree of redundancy is assured
and the possibility of a SPF is avoided.

– The resource manager can be completely de-
centralized. Every instance is running a cer-
tain number of connections (the users select
the managers in conformity with a default
order or randomly) so that the grid is de-
congested (using different units and differ-
ent communication routes). For efficient plan-
ning, at certain time moments the databases
must be synchronized (for efficiency and con-
sistency) between the managers. If a unit
crashes, its jobs and data can fallback to
a backup unit (losing only the current opera-
tion, if any) or can be taken by a neighbour

44 Ovidiu Gherman, Stefan Gheorghe Pentiuc

Figure 3. Schematic diagram using distributed (decentralized) resource managers

unit. The users can download actualized lists
for the updated resource managers.

3. Conclusions

The proposed architecture brings advantages for
interconnecting clusters systems: the architecture
is modular (with modifiable modules and the
possibility to insert new selection algorithms),
flexible and portable, being written using Perl
scripting language (scripting language is flexible,
portable and powerful, allowing access to the
underlying architecture below the middleware
level). Also, the architecture provides increased
security because it uses a reliable security mech-
anism that is already in place at the OS level
and allows management of different clusters and
systems and easy upgrade to the software. The
middleware allows transparent, seamless appli-
cation build and execution for the user. Users
can specify certain particularities of the intended
target machine to help selection (for example

when having commodity hardware based clusters
or parallel and hybrid clusters). The applica-
tion itself is written in Perl, a known scripting
language that offers flexibility to the platform
and allows designing the work modules (and the
addition of new ones).

Some observed disadvantages are: the possi-
bility of SPFs at the resource management level
avoidable if the system is decentralized, as been
observed [10]; the resources crashing can – miss-
ing a recovery solution – lose jobs (worsening the
QoS compliance of the system); it cannot allow
execution of big jobs across multiple resources
(but allows the simultaneous execution of multi-
ple jobs on a resource, providing there are enough
free CPUs); computing the planning for resource
allocation can generate an overhead for complex
algorithms and an increased number of users
and resources (although the algorithm can be
parallelised for increased performance). Finally,
the middleware has a rather specific purpose and
reduced applicability outside it (e.g. not fit for
commercial domain).

Middleware Architecture for the Interconnection of Distributed and Parallel Systems 45

4. Future Work

The middleware will be expanded (functional-
ity-wise) in the future, including new selection
algorithms (for the resource manager), preparing
the source code to be error-tolerant and stable on
the diversity of available grid platforms, improv-
ing resource monitoring (increasing number of
relevant logged parameters), possibility to state
advanced reservation for certain jobs and plans
and others and – possibly – methods of increasing
the quality of service offered by preventing the
loss of jobs (for example by using job replication).

Acknowledgment

This paper was supported by the project
“Doctoral Burses at USV”, contract
POSDRU/6/1.5/S/22, funded from European
Social Fund for Operational Sectoral for Human
Resources Development 2007–2013.

References

[1] O. Gherman, I. Ungurean, and S. G. Pentiuc,
“Principles of interconnecting a hybrid cluster in
a grid system,” 7th edition of National Scien-
tific Conference Distributed Systems, No. 7, Dec.
2009.

[2] N. Fujimoto and K. Hagihara, “A comparison
among grid scheduling algorithms for indepen-
dent coarse-grained tasks,” International Sym-
posium on Applications and Internet Workshps
SAINT 2004, 2004.

[3] I. Goiri, F. Julia, O. Fito, M. Macias, and J. Gui-
tart, “Resource-level QoSmetric for CPU-based

guarantees in cloud providers,” 7th International
Workshop on Economics of Grids, Clouds, Sys-
tems and Services GECON 2010, No. 7, 2010.

[4] S. Kalepu, S. Krishnaswamy, and S. W. Loke,
“Verity: a QoS metric for selecting web services
and providers,” 4th International Conference
on Web Information Systems Engineering Work-
shops WISEW’03, No. 4, 2003.

[5] O. Gherman, I. Ungurean, S. G. Pentiuc, and
O. Vultur, “Data communication in a HPC hy-
brid cluster and performance evaluation,” 10th
International Conference on Development and
Application Systems DAS 2010, No. 10, May
2010.

[6] C. Dabrowski, “Reliability in grid computing
systems,” The Special Issue of the Open Grid
Forum (OGF) Journal – Concurrency and Com-
putation: Practice and Experience, Vol. 21, No. 8,
2009.

[7] K. Koch, “Roadrunner platform overview,”
Roadrunner Technical Seminar Series, Los
Alamos National Laboratory, SUA, Technical
report, 2008.

[8] C. Kessler, “Programming techniques for the
cell processor,” Multicore Day Seminar, Sweden,
Technical report, 2009.

[9] T. Tannenbaum, D. Wright, K. Miller,
and M. Livny. Condor – a distributed
job scheduler, ch. 15, research project at
the Unversity of Wisconsin-Madison. (2001).
[Online]. http://www.cs.wisc.edu/condor/doc/
beowulf-chapter-rev1.pdf

[10] R. Buyya, D. Abramson, and J. Giddy, “An econ-
omy driven resource management architecture
for global computational power grids,” Proceed-
ings of the International Conference on Parallel
and Distributed Processing Techniques and Ap-
plications PDPTA 2000, 2000.

e-Informatica Software Engineering Journal, Volume 6, Issue 1, 2012, pages: 47–59, DOI 10.5277/e-Inf120104

A View on a Successful International Educational
Project in Software Engineering

Zoran Budimac∗, Zoran Putnik∗, Mirjana Ivanović∗, Klaus Bothe∗∗
∗Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad

∗∗Institute of Informatics, Humboldt University Berlin
zjb@dmi.uns.ac.rs, putnik@dmi.uns.ac.rs, mira@dmi.uns.ac.rs,

bothe@informatik.hu-berlin.de

Abstract
In this paper, a successful and fruitful joint project will be presented. The project joins participants
from 9 countries and from 15 universities. Since it started in 2001, this project entitled “Software
Engineering: Computer Science Education and Research Cooperation” helped participants to gain
excellent, up to date educational material, apply modern teaching methods, exchange experiences
with other participants, and work jointly on the further development of lectures, case-studies,
assignments, examination questions, and other necessary elements of a course. Project works
under auspices of Stability Pact of South-Eastern Europe, and is supported by DAAD. The
project started with the creation of a common beginning course in “Software Engineering”, but
over time it grew and the number of other courses was developed. Finished almost completely
are the courses in “Object-oriented programming”, “Software Project Management”, “Advanced
Compiler Construction”, and “Data Structures and Algorithms”, and some other courses are under
development. Aside from the educational collaboration, project members also developed good
scientific cooperation, and published several research papers.

1. Introduction

Since its beginning in 2001, an international
project entitled “Software Engineering: Com-
puter Science Education and Research Cooper-
ation” assembles participants from nine coun-
tries, and from fifteen universities. Project ex-
ists under the sponsorship of “Stability Pact of
South-Eastern Europe”, and is financially sup-
ported by DAAD (”Deutscher Akademischer Aus-
tausch Diens”, or “German Academic Exchange
Service”). At the beginning, the project was con-
cerned with the creation of a common course
in the field of “Software Engineering”, yet as
it progressed, project dealt with the develop-
ment of a number of other courses. Mostly fin-
ished so far are the courses in “Object-oriented
programming”, “Software Project Management”,
“Advanced Compiler Construction”, and “Data

Structures and Algorithms”, while some other
courses are still under the development. The most
developed one is still the course in “Software
Engineering”. Aside from presentations of a theo-
retical material, a whole set of learning resources
has been developed: e-Lessons, case-studies, team
and individual assignments, or pool of questions,
for example. Naturally, beside the educational
purpose, members of a project later developed
nice cooperation within the area of scientific re-
search, and published several papers.

At first, cooperation within the project has
been started by the group of researchers and edu-
cators that still make the core group of a project,
and consists of members from: Germany, Serbia,
FYR Macedonia, and Bulgaria. Head and the
main coordinator of a project is Professor Klaus
Bothe from the Humboldt University in Berlin.
Over the years, project was enlarged through

48 Zoran Budimac, Zoran Putnik, Mirjana Ivanović, Klaus Bothe

the inclusion of participants from other Balkan
countries: Croatia, Romania, Bosnia and Herze-
govina, Albania, and Montenegro. While origi-
nally project was granted for the period of three
years, excellent results in cooperation and de-
velopment of joint teaching resources induced
project continuation and new grants year after
year, so the project still lasts. DAAD founda-
tion also reported about the successful results of
a project in [1] and [2]. The basic information
about the project, its participants, and achieve-
ments can be found on its home-page [3].

There are several other projects of a similar
type and purpose, let us mention [4–8] MuSoft,
ISEUC, Swenet, Ariadne, Merlot, where the first
three are also dealing with the field of “Software
Engineering”. Still, we feel that there is a sub-
stantial difference between those and our project,
mainly in the approach to the creation of teach-
ing material. All of mentioned projects created
a set of relatively independent modules that can
be combined and used as lecturers decide. In
the case of our project, the idea was to create
a complete course and the whole teaching ma-
terial, creating a unity consisting of a sequence
of interconnected material, yet allowing the sub-
stantial level of parameterization. The scheme
behind this concept is to make the whole ma-
terial usable even to those lecturers for whom
“Software Engineering” is not in the key focus of
interest.

The main official aim of the project was
“academic reconstruction of a South-Eastern Eu-
rope”. Still, it had a whole list of basic and more
down-to-earth aims, of which we list here the
most important:
– Inclusion of the course “Software Engineering”

into curricula of participating universities;
– Creation of a consensus about the common

course in “Software Engineering”, selection
of topics it will cover, and creation of jointly
created pool of presentations from which the
participants can choose the most appropriate
ones for their university;

– Creation and development of joint teaching
and examination materials for selected top-
ics: presentations, case-studies, team and in-
dividual assignments, pool of examination

questions, adequate literature, lecture notes,
etc;

– Forming of bases for the further scientific
and educational cooperation in the field, so
that the actuality and quality of the teaching
material is preserved.
All of the participating countries, more or

less, took their part in the development of cer-
tain topics or subtopics. Some of the particular
activities were:
– Further development of the existing teaching

resources;
– Usage of the course as a whole, or some of

its parts within the appropriate courses;
– Creation of reports based on the experiences

and surveys performed;
– Creation of new topics, case-studies, assign-

ments, and so on;
– Liability analysis, suggestions for the further

development paths, creation of re-sources for
additional common courses.
In the beginning, the course of “Software

Engineering” was based on teaching mate-rials
used at the Humboldt University in Berlin, which
are in turn based on the text-book on software
engineering [9]. All of the most important sug-
gestions from the significant world computer sci-
ence associations were taken into account [10,11].
This way, all of the basic and introductory topics
were created, but also a lot of advanced topics
suggested by the ACM, IEEE, and other world
expert bodies. Recommendation was also made,
that the course should be conducted on final
years of studies, after they cover all of the neces-
sary basic notions indispensable for the field. So
far, all of the participating universities, followed
the recommendation, and the course in “Soft-
ware Engineering” has been conducted for the
students of the final year of studies everywhere.

The rest of the paper is organized as fol-
lows: Section 2 presents the contents of the “Soft-
ware Engineering” course, with all of its basic
components. In Section 3, some problems that
project participants encounter in their work for
the project are presented. Section 4 presents
the other courses developed through joint work
within a project, based on the positive experi-
ence with the first one. Section 5 brings some

A View on a Successful International Educational Project in Software Engineering 49

students’ reactions and opinions. Finally, in the
6th Section, more general conclusions are given,
and further development paths are considered
for the project members.

2. The Development of the Project

Based on the first and the most developed course
created within the project (course on “Software
Engineering”) we will present the current prac-
tice of course development and refinement. Over
the years, this course went through three, very
often overlapping phases:
– During the first phase, existing topics based

on [9] were translated from German to En-
glish language, and then, through the partic-
ipation of all project members, refined, pol-
ished, and further developed. The bases for
the refinement were the experiences with the
course presentation at the home university;

– In the second phase, new topics were cre-
ated and developed, basic and advanced.
Those new topics are also continuously re-
fined and polished over the years. General
rule is that those new topics are at first
developed in English, as a universal, com-
mon language for all of the participants. Af-
ter that, through participation of all inter-
ested members, presentations and materials
are refined and improved. Only in the fi-
nal phase, after all of the members are sat-
isfied with the quality of the material, re-
sources are translated back to local languages,
if needed;

– During the third phase, the final forms of
the teaching materials, agreed by all of the
project participants, were translated to local
languages [12]. For those purposes, a special-
ized tool has been created [13].
As the basic outcomes for the project, it has

been defined that the teaching materials should
help students to develop the following abilities:
1. To work in a team;
2. To have analytic and synthetic approach to

decision making;
3. To apply gained knowledge on practical as-

signments in realistic surroundings;

4. To renew, expand, and continually improve
their knowledge, and

5. To make the appropriate decisions during the
software development cycle [14].
All of the abilities mentioned here are rather

generic, not related only to software engineering,
yet that doesn’t diminish nor weakens their im-
portance. And, as “basic outcomes”, we can say
that after 10 years experience, those are quite
fulfilled, if we believe the reports we get from the
industry.

2.1. Teaching Materials for
the “Software Engineering” Topics

One of the basic components of the “Software
Engineering” course are teaching materials or-
ganized in five parts, with altogether 28 topics
covered. Each topic is presented primarily as
PowerPoint presentation, enriched with the mul-
tiply useful “lecture notes” for the lecturer. Those
serve as a starting point for the exchange of ideas
between the users of teaching resources (lectur-
ers and students); they contain the answers to
the questions presented during the lecture, and
they enable creation of printouts of the materials
presented during the lectures. Topics are divided
into parts and organized as presented in Table 1.

From this pool of topics for which teaching
materials were developed, each of the lecturers
is allowed to select those suitable for his view on
the course, or suitable for the curriculum as it
is defined at his/her university. A natural conse-
quence of this agreement is a variety of methods
for the usage of teaching resources within the
“Software Engineering” course. For example:
– Humboldt University of Berlin, Germany and

University “Paisi Hilendarski” from Plovdiv,
Bulgaria, use all of 28 topics in their course.
The course is conducted on the fourth, final
year of the bachelor studies;

– University of Novi Sad, Serbia and Univer-
sity “St. Ciril and Methodius”, Skopje, FYR
Macedonia, are using almost all of the topics,
except several from the last part, “Advanced
problems”. Some of those topics that are not
used are covered within some other master
courses, while for some of the others there

50 Zoran Budimac, Zoran Putnik, Mirjana Ivanović, Klaus Bothe

is simply not enough time. Also, it is worth
mentioning that the course is lectured on the
last year of studies for couple of different di-
rections, so there are students from the third,
and from the fourth year of studies;

– Universities from Belgrade and Kragujevac,
Serbia; Zagreb and Rijeka, Croatia; Podgor-
ica, Montenegro; Sarajevo and Banja Luka,
Bosnia and Herzegovina; Tirana, Albania,
and Timisoara, Romania selected a subset
of topics. Depending on the university, the
number of topics varies between 5 and 12,
and those are incorporated successfully into
already existing courses on “Software Engi-
neering”, becoming the integral part of those;

– A special case is Polytechnic University of
Tirana, where the course is not conducted
during the regular school-year, but instead
as a one-week crash-course, when about 18
topics are presented. Lecturers are visiting
professor from Berlin, Germany, and assistant
from Novi Sad, Serbia, and the course is con-
ducted as a part of master studies. After the
four crash-courses, part of the topics is taken
over by local assistants from Tirana, while
the general plan is that the whole course will
be once conducted by local lecturers.
With this variety of types of course conduc-

tion, it is quite likely that topics are continuously
being developed and refined. Large number of lec-
turers, each one with his/her own teaching style,
habits, and pedagogical principles, guarantees
the actuality and quality of teaching resources.
All of the new ideas, techniques, suggestions,
and innovations are exchanged during the regu-
lar meetings of the project members, conducted
each autumn at some of the participating coun-
tries.

One of the methodologies presented, certainly
deserves greater attention. Since at the moment,
the most of the development methodologies are
built around UML, this methodology is repre-
sented within the course also. Methodology is
not introduced formally, since it has been studied
within other, previously taught courses in that
manner. Still, because of this fact, the lecturer
is in a position to introduce the methodology
through examples.

Within the introductory topics, the impor-
tance of UML is explained, and so are the nota-
tions, being the part of it. The “body of knowl-
edge” for it is not described deeper, because it
was the part of several compulsory courses pre-
ceding the “Software Engineering” course. Later
on, the methodology is used wherever it is needed,
as convenient to the lecturer.

To confirm that the students covered this
important methodology sufficiently, one of the
obligatory assignments students have also re-
quires knowledge and usage of it. We will not
discuss it in more details here, since more about
this will be given in a subsection dealing with
the assignments.

2.2. Case-studies for the Course of
“Software Engineering”

Second important course component, linked with
both theoretical and practical exercises, are rel-
atively complex case-studies. The main reason
for usage of those case-studies is the need to
illustrate theoretical concepts presented during
lectures on some practical and realistic exam-
ples. The original course, used as a basic element
for the development of the final project result-
ing course, used throughout the lectures two
case-studies:
– “Seminar organization” – a software system,

taken and adapted from [9], used to help run-
ning the company that deals with the orga-
nization of various educational seminars and
their presentations to interested clients. The
system is also supposed to help with: contact
with clients and other companies, communica-
tion with the lecturers, students, hotels, travel
agencies, and all other necessary users and
services. This case-study is used within ten
topics to illustrate theory presented during
the lectures.

– “XCTL” – a real life software system, used
to control the work of measuring instruments
at the Institute of Physics, Humboldt Univer-
sity in Berlin, Germany [15]. System was ana-
lyzed, measured and enhanced using methods
of re-engineering, software metrics, software
testing, and some other fields, so the students

A View on a Successful International Educational Project in Software Engineering 51

Table 1. Topics presented within a course

Part I: Introduction to software engineering Part III: Software Design
1. What software engineering is 15. Overview of design activities
2. Quality criteria for software products 16. Structured design
3. Software process models 17. Object-oriented design
4. Basic concepts for software

development documents
Part II: Requirements engineering Part IV: Implementation and testing
5. Results of the “analysis 18. Implementation

and definition” phase 19. Systematic structured testing
6. Cost estimation 20. Functional testing
7. Function-oriented view
8. Data-oriented view Part V: Advanced problems
9. Rule-oriented view 21. Software metrics

10. Structured analysis 22. Maintenance
11. State-oriented view 23. Reverse engineering
12. Scenario-oriented view 24. Quality of software development process
13. Object-oriented analysis and its standardization
14. Formal software specification 25. Introduction to software ergonomics

and program verification 26. User manuals
27. Project management
28. Configuration and version management

are faced with the realistic results of those
analysis, within four topics. Being sufficiently
big, system and the results of the mentioned
measurements, present adequate and satisfac-
tory base for the explanation of all needed
methodologies.
During the years of usage, more case-studies

have been developed. At Skopje, FYRMacedonia,
case-study covering classical functions of a univer-
sity library was developed. Currently, at the Uni-
versity of Novi Sad, Serbia, two case-studies are
arising. One of them presents a system for agent
selling of consumer products, while the other is
again adapted from [9] and is dealing with the
control console for a car. This last case-study
is especially important and different from the
others by being the only one from a technical
domain.

The idea behind the existence of several
case-studies is the wish that the lecturers have
a possibility to interchange those examples, de-
pending on their needs and wishes. This type of
usage would require some deeper work by the
lecturer, who would have to change presenta-
tions and examples, but is doable. Another, even
more important moment, connected with the
case-studies is the fact that they are used within

the complex team assignments, used to assess
the knowledge students gained during the lessons,
and their ability to put it into practice. Within
those assignments, it is often necessary to change
the case-study used, in order to prevent students
from cheating and taking the solution of previous
generations. This requires almost no additional
effort, since all of the case-studies contain all of
the elements needed by all of the assignments.

2.3. Assignments for the Course
“Software Engineering”

The third essential component of the course is
the assignments, created and prepared for team
solving. Over the course conduction students are
obliged to solve certain number of team assign-
ments. As a common practice for all universities,
it has been accepted that the students have to
achieve 50% of the points for the assignments,
but how are those points used later, is different.
At some universities, this is just a condition that
students have to fulfill to be able to approach
the exam. On other universities, besides being
a condition for the exam, number of points gained
for the assignments is used for calculation of the
final grade.

52 Zoran Budimac, Zoran Putnik, Mirjana Ivanović, Klaus Bothe

With the assignments, the situation is the
same as with the topics. Number of assign-
ments created is much bigger than it is neces-
sary for a successful realization of the practical
part of the exam. This way, each of the lectur-
ers has enough material to be able to choose
those assignments that (s)he finds the most suit-
able compared to: the topics presented, quality
and affinities of students, or compared to other
courses available that semester at the university
in question.

This gives the course flexibility, enabling
usage of the assignments within crash-courses,
one-semester course, and within longer,
two-semester courses. Large number of assign-
ments, and the fact that they are parameterized,
gives lecturers also the possibility to exchange
assignments over the years, so the plagiarism and
copying of solutions is decreased to a bearable
level. The pool of assignments consists of the
following ones:

Assignment 1: Reading and reviewing of
the preliminary requirements specification and
requirements specification for a case-study “Sem-
inar Organization” (or alternative). Students are
supposed to find and correct errors, misunder-
standings, and ambiguousness, and suggest the
ways of improving the text. This assignment was
generally created in order to test students’ ability
to present their ideas in a precise and concise
manner;

Assignment 2: Application of the “Function
point” method on the requirements specification,
in order to calculate the price and the human
resources needed for a chosen case-study. The
purpose of this assignment was to create a habit
for students to follow the rules and procedures
they heard during classes;

Assignment 3: Analysis of a product model,
resulting from the application of structure anal-
ysis. Again, “Seminar Organization” (or alter-
native) case-study is used, where students are
faced with several data-flow diagrams (including
some errors), and are required to notice those,
and suggest the ways of improving the diagrams.
Data-flow diagrams are taken from an important
and distinguished book [9]. As a consequence, we
hope to teach the students not to trust blindly

to any authority, but to observe and check all of
the information they reach;

Assignment 4: Development of a part of
a static model by creation of class diagram and
use-case diagram. Students are this time faced
with a new, small problem, so their creativity is
tested here.

This assignment was the one intended to
check on students’ ability to use UML methodol-
ogy. While that seemed not to be the problem,
a need for creativity that this assignment re-
quired, was one of the largest problems amongst
the assignments, be-cause the usual fact was that
the students were over-creative;

Assignment 5: Development of a formal
specification for several new operations, based
on formal specifications presented during lectures.
With most of the students selecting this study
direction because of their love for computers,
this assignment has a purpose of showing them
that they also need some knowledge in other,
related fields, such as mathematics and formal
logic;

Assignment 6: Analysis and review of an-
other teams’ solution of the fourth assignment
“Development of the part of a static model”. Stu-
dents are here presented a different view on the
same problem, a have to comment on it, and
critic it. This gives students a chance not only to
see the different view on the same problem, but
also to try to assess the value of someone else’s
solution;

Assignment 7: Application of software met-
rics methods, through usage of a tool. This assign-
ment faces students with the regular situation in
a working life of a soft-ware developer, namely,
with the need to find, install, learn, and use tool
never seen before;

Assignment 8: Specification of a regres-
sion test. Students are required to define a set
of test-cases that guarantees branch-coverage
condition, using the tool for regression testing.
This one, and the next one, introduces stu-
dents with the most expensive, and probably the
most important part of the software development
life-cycle, the testing process, and

Assignment 9: Creation of “classification
tree” for software testing. Again using the “Sem-

A View on a Successful International Educational Project in Software Engineering 53

inar Organization” case-study, this time in com-
bination with the tool for functional testing, stu-
dents are required to define a set of test cases,
and check the correctness of a program.

In practice, for all of the participating uni-
versities, the same procedure is applied: teams
get their assignment and a term of no less than
two weeks, to submit a solution. Team members
are required to read and review the assignment
and given material, to contemplate about it, and
to create their version of a solution before the
team meeting. Over (usually) several meetings,
a team discusses individual judgments, and cre-
ates a common solution.

Occasionally, but compulsory after the first
assignment is submitted (but not yet graded)
a class is organized where the team of students
who submitted the most intriguing solution for
the first assignment, present it to other students.
Decision, and classification of assignments so
that “the most intriguing” solution is found, is
up to the assistant. While the experience helps
for making the right choice, we think that the
presentation of any solution would be interesting.
Namely, solutions are different, so each one will
have their opponents, students who would chal-
lenge and confront it, so the fruitful discussion
would happen in any case.

The rest of the teams, confronted with a dif-
ferent view on the same problem con-template,
analyze, discuss, and critic suggested solution.
Here we can also mention the cooperation of assis-
tants from Humboldt University Berlin, Germany
and University of Novi Sad, Serbia, who jointly
created the most logical and most appropriate
“correct solutions” for all of the assignments,
based on several years of experience with those
submitted. Typical, common errors are then pre-
sented to other students, while this solution is
also used as a model for checking other assign-
ments. Naturally, every year this “correct solu-
tion” is tested and further developed, through
fruitful discussions with students.

Because of the trend noticed that some of the
students participate less, or do not participate at
all in some of the assignment solving, while the
other students cover for them, at some univer-
sities the “experiments” started with the usage

of wiki as a tool for the purpose of assignment
solving. The idea behind this is to recognize,
by care-fully reading through the history log of
a learning management system, how much each
of the team members participated in creation
of final document. Since the application of this
technique is still new, it is too easy to comment
on it more. Still, the first experiences show that
the better students are quite satisfied with this
methodology, while those inclining to “cheating”
at the exam had a lot of objections. Still, it is
worth mentioning that the whole idea aroused
from the pleas of students given in the surveys
about their satisfaction with the course. Namely,
there have been several cases where students
asked the lecturers, to find the way of either pun-
ishing students not participating in assignment
solving, or rewarding those who did most of the
hard work.

Another characteristic problem with the as-
signments is a universal one, noticed at each
participating university. Students, who are less
ambitious, abandon their team as soon as they
achieve minimal number of points needed. As
mentioned, assessing the assignments is different
amongst universities. So at some this means that
students achieved 50% of the points are allowed
to approach the exam, and they are not inter-
ested to learn additional methods and techniques.
On other universities it additionally means that
they are satisfied with the lower grade. In any
case, this puts additional burden on those stu-
dents willing to continue with the assignments.
Assignments are created for team solving, so
when only one or two students approach the work,
they are much more difficult! Adequate and fair
solution for this problem has not been found
yet, and participants from several universities
are working on it.

As mentioned, not all of the assignments are
used each year at all universities. That decision
depends on some subjective factors - choice and
ideas of a lecturer, but also, and mostly objective
factors. Some of the assignments are based on
usage of the tools that require significant finan-
cial investments and registration of the faculties
for their usage, which is not always possible. At
other faculties the course is shorter, so there is

54 Zoran Budimac, Zoran Putnik, Mirjana Ivanović, Klaus Bothe

not enough time for all of the assignments to be
conducted.

3. Difficulties and Peculiarities
of the Course

Over the years, quantity of teaching ma-
terial for the course grew to a significant
size. There are 28 presentations with lec-
ture notes included, 5 case-studies (more or
less used and finished), 9 assignments, col-
lection of around 500 examination questions,
and many more. Also, most of those re-
sources exist in several different languages, be-
cause interested lecturers were usually obliged
by local laws to translate materials to local
languages.

Under these circumstances, a natural prob-
lem arose. Modifications and improvements of
the materials are hard to maintain, evolve, and
spread throughout all of it. Even the corrections,
improvements of style, grammar, typing errors, or
occasional logical or material errors, are repeated
over and over again. Between the team of core
members of a project, a possibility to employ
some kind of configuration management system
is considered, but not yet utilized.

Even biggest problem is present at univer-
sities who use local, translated versions of the
material, we must admit. Those lecturers improve
and refine local versions, and hardly are able to
find the time to send those refinements back to
be used in English versions. So, two versions
diverge from each other more and more each
school-year, without realistic chance to become
one again ever.

Discussing the above problem, the core mem-
bers were able to recognize additional complica-
tion. Even if creators of the local versions find
the time, collect all of the versions to send them
back, the question would be – send them back
to whom? Who is the one (or possibly more)
person(s), who would be able to dedicate enough
time to incorporate new ideas and findings, com-
bine those coming from several different sources
and in several different languages, and create
a valid, refined new teaching material. The con-

clusion was that the solution would be if an em-
ployee could be found, permanently connected
with the project, in charge of keeping the mate-
rial up-to-date, of collecting and unifying changes
made at different participating universities. Still
and unfortunately, this idea is at the moment
unsolvable, because there is no possibility for
such a thing within a project.

A temporary solution for a problem of ma-
terial unification occurs every now and then, in
a form of an interested student! Several students
at different universities, project members were
employed to do certain tasks of common interest,
as a part of their seminar papers, diploma, or
master thesis. Not being a lasting solution, this
option helps at least in a part, and decreases
number of unsolved issues.

There is one addition to the grading process,
as an experiment at some of the participating
universities. Besides those generally agreed and
used big team assignments, another type of “as-
signments” is also used. Namely, since “Bologna
rules” of course conduction require regular stu-
dents participation and course attendance, at
some universities this was becoming a problem
to some extent. In a situation when the course
is conducted at master studies, the most of the
students are regularly employed, and were unable
to be present at all of the lectures. On the other
hand, for some of those regular, undergraduate
students, topics and lectures, but also the field in
general, was not too interesting, while the course
was obligatory. Their presence at the lectures
was because of that more an annoyance to other
students, than help to them, since they were not
paying attention at all.

As a result, at some universities, a solu-
tion was found through a free interpretation
of a notion of “course attendance”. Not all of
the present students were given points for at-
tendance, but only those who actively partic-
ipated in the lectures, answering (and asking)
questions and commenting on presented mate-
rials. For questions asked during lecture presen-
tations (possibly and usually several during one
lecture), students were able to earn so-called
“bonus” points, and advance their grades. Those
points could help a person to improve, but also

A View on a Successful International Educational Project in Software Engineering 55

make up for the points lost at tests, or within
the assignments.

Very soon, only those interested in the field
were present at the lectures, while the others were
just involved in teamwork, and came to the final
exam. This had good consequences on the class
atmosphere and learning curve of those present.
Still, in order to give the equal possibility to all
of the students to earn points for participation,
and interest them in the field, small assignments,
requiring some thinking, searching, and research-
ing were often given to students to be solved at
home. The first person, who answers the given
question by mail, or using the common “forum”
of a learning management system used, would
be awarded a bonus point.

4. The Other Courses Created Within
the Project

Based on the good experiences and successful
cooperation realized for the “Soft-ware Engineer-
ing” course, members of the project decided to
extend their cooperation to other courses. So
far, joint work has been conducted for the devel-
opment of additional four courses, where some
of them are already largely used, while the oth-
ers are still partly in the development phase.
All of those courses are related to the “Soft-
ware engineering” course: either as a required
pre-knowledge, further developed part of it, or
simply belonging to the very close expert field.
– “Joint teaching materials on OOP using Java”

[16] Java, is a subproject started very early,
after the beginning of the project “Software
Engineering: Computer Science Education
and Research Cooperation”, during the year
2004. The subproject is dealing with the devel-
opment of joint teaching materials for several
project participating institutions. Since this
course already existed in curricula of all coun-
tries, the entire effort was invested to a pure
educational and research cooperation, with-
out triggering a complicated administrative
procedure of introducing the new course, as
it was the case with the course in “Software
Engineering”. Participants of this subproject

are lecturers from six universities (project
members). By joining their existing materials,
refined and improved, but also by creating
the new material, relatively fast a new course
of a very high quality has been created. Such
a new course is successfully conducted by six
universities who contributed to its’ develop-
ment;

– “Software Project Management” is a subpro-
ject started in 2004, with the aim of devel-
opment of additional material for this very
important subfield of “Software Engineering”.
For this purpose, mostly participant from the
University of Novi Sad, Serbia and Humboldt
University of Berlin, Germany were active,
with the partial help from the University “St.
Ciril and Methodius”, Skopje, FYR Macedo-
nia. So far, course is successfully conducted
only in Novi Sad, Serbia, since the year 2005;

– “Advanced Compiler Construction” is a sub-
project started in 2004. The important issue
here is that courses with this name already
existed at the universities in Novi Sad and
Belgrade, Serbia, and Humboldt University in
Berlin, Germany. The main purpose of a sub-
project was to make those courses compatible,
and improve them through the exchange of
the existing, and creation of new teaching
resources. This cooperation was also success-
ful and the new course has been conducted
for five years now, at mentioned universities.
Possibility to transfer this and other devel-
oped courses to other universities, project
participants is also considered, and probable
in the future;

– “Data Structures and algorithms” is a sub-
project started in 2006. Within this one, Uni-
versities from Novi Sad, Serbia, and Skopje,
FYR Macedonia were largely involved. Since
course under this name and with the simi-
lar contents exists at all other universities,
project participants assisted and helped in
the development and review of the course;

– For the last three mentioned subprojects, the
development of specially dedicated web-pages
is under construction, while the teaching ma-
terials that are developed so far, and are used
in teaching, can be found at the local learn-

56 Zoran Budimac, Zoran Putnik, Mirjana Ivanović, Klaus Bothe

ing management systems of the participating
universities. For Department of Mathematics
and Informatics in Novi Sad, that page is
available at [17].

5. Reactions and Opinions of Students

Almost everything we stated in this paper was
the views from the position of lecturers. What
about the other side? What students think about
the course? For autumn workshops of the project
participants, we have for years prepared reports
with opinions and answers to the anonymous
questionnaire we ask our students to fill. We will
summarize those results here, and present part
of the results.

For start, let us first recognize the character
of our students. Even though their average grade
is between 7 and 8 (60%) (on the scale from
6–10), only 32% of them between 8–9, and just
a symbolical 8% over 9, their expectations stated
before the course in “Software Engineering” were
much higher. They stated that they will de-serve
grade 10 (17%), or 9 (63%)! The rest of 20%
said they will deserve the grade 8, and even that
grade is above their average.

In reality, the problem with the course was
not passing it, but grades were at the same level
as for the other courses. Also, a general conclu-
sion over the years was that the more students
attended the lectures, their grades were higher.
The more concrete questions and answers for
bachelor students at the University of Novi Sad,
Serbia, and master students of the Polytechnic
University of Tirana, Albania were:
– Considering the question “Rate the amount

of knowledge offered in the lectures” (where
grades meant 5=too much, 1=too little): over
the last five years, grades for the course
were almost ideal, around 3. Grades given
to the course by students of master studies in
Tirana, were a little bit towards “too much”,
but we must admit here the existence of lan-
guage problem, since the course is conducted
in non-mother tongue;

– About the question “Rate the contents of the
lecture” (5=too easy, 1=too difficult) in last

five years, we received the following grades:
2.75, 2.78, 3.00, 3.00, and 3.04. Master stu-
dent had on the average, almost the same
opinion. Again, this gives the course almost
ideally balanced difficulty of its’ content;

– For the question “Is the course well struc-
tured”, for the first time there is a signifi-cant
difference in opinion. Students of undergrad-
uate studies in Novi Sad rated the course on
the scale 5=very well to 1=unstructured, with
3.4 on the average. Still, master students had
a much higher opinion of a course, around 4.5;

– Similar difference was repeated with the ques-
tion “Is the amount of information on slides
adequate?” where undergraduate students
rated the course with 3.3, while master stu-
dents estimated it with 4.1. Without wishing
to dispraise students of un-dergraduate stud-
ies, we estimate that master students have
more pre-knowledge, and thus better chance
to assess our course accordingly;

– The greatest difference in opinion was
shown with the question “Are the slides
well-structured and clearly arranged?”
Grades from undergraduate students were
between 3.4 and 3.7. At the same time, the
lowest grade by master students was 4.4,
while the other grades went up to 4.63;

– Both groups assessed very well knowledge of
the lecturers (undergraduate around 4.3, mas-
ters around 4.7), their preparation and readi-
ness for conducting the lectures (4.3 by under-
graduate, almost 5 by masters), their engage-
ment during the lectures (same as the previ-
ous question), and their willingness to answer
questions (by both around 5, this time);

– Finally, when we consider some more gen-
eral opinions about the course, situation is
probably the best graded:
– Did you learn a lot of new things (5=much,

1=not), grades were around 4.05 by the
undergraduates, and around 4.20 by mas-
ters;

– Do you think that the content of the lec-
tures was useful: 4.1 by undergraduates
and 4.4 by masters;

– Overall rank of the course (5=very well,
1=bad) grades are 4 (with a very slight

A View on a Successful International Educational Project in Software Engineering 57

margin over the years) by undergraduates,
and 4.5 by masters.

What we feel that must be noted here is
that for the master students, attendance of the
lectures was obligatory. For undergraduate stu-
dents in Novi Sad, it wasn’t. Yet, even though
undergraduate students estimated that they at-
tended only about 40% of the lectures, on the
average, and that this fact forced them to spend
more time both on studying and assignment solv-
ing, they felt qualified to assess presentations,
lecturers and the course in general. What can
give us optimistic bust is the fact that even those
lower grades were very good, and that they prove
that joint creation of common courses worth
the effort.

6. Conclusions

Experience we gained so far during the ten years
of creation and usage of common course and
teaching resources developed by the project par-
ticipants, can be in short enumerated with several
basic results [18]:
– Courses are developed as a whole set of re-

sources, containing presentations, but also
lecture notes, assignments, case-studies, and
all other necessary materials. Still, our experi-
ence shows that such a course can be adjusted
to local curriculums, and also to style and
needs of a lecturer, and be taught in different
ways, at different universities, and different
countries;

– Courses have been taught at different uni-
versities in a different manners and using
a diverse subset of teaching materials, yet
in each case those resources proved to be
extremely useful;

– Examination and practice assignments were
also used in different ways, but they also
proved to be developed in a satisfactory qual-
ity and quantity to fulfill all of the needs
arising;

– Exchange of the teaching materials is worth-
while. The development time is greatly short-
ened, guarantee for actuality and quality of
the material is largely increased, exchange of

experiences in enabled, and so is the exchange
of technical and educational findings;

– Development of “lecture notes” enables usage
of the teaching material and lecture conduc-
tion even to lecturers with less experience in
the field that is taught. On the other hand,
for those closer to the field, preparation time
for the lectures was largely shortened;

– The validity of the previous two claims we
can illustrate and prove by actual situations
at Skopje University in FYR Macedonia, and
Rijeka University in Croatia. Since the course
was already conducted at Humboldt Univer-
sity in Berlin, Germany, and University of
Novi Sad, Serbia, all of the needed materials
were developed and practically tested. As
a consequence, the whole course was rapidly
introduced at Skopje University, where the
professor and her assistants needed only two
months to introduce the course. Still, this
was the extreme case, caused by the fact
that both professor and the assistant were
the long time members of the project, that
they have heard lectures during the work-
shops, heard the experiences with the assign-
ments and case-studies, and so on. The other
mentioned University of Rijeka is a more
natural case that even better proves that
this joint preparation of a course was worth-
while. Rijeka University is a member of our
project, but a professor that introduced the
course there, never was. She just took over
our joint course, including all of the presen-
tations, case-studies, assignments, and ev-
erything else, and within six months, she
started conducting it successfully. We are still
waiting for the written, numerical results of
a survey conducted on students, but verbally
given opinions and experiences are highly
positive;

– Existence and usage of the common material
enabled also exchange of experiences between
lecturers, conductions of surveys and appli-
cation of students’ wishes and suggestions,
as much as the continual improvement of
courses;

– The various experiences collected over the
years have been described in several papers

58 Zoran Budimac, Zoran Putnik, Mirjana Ivanović, Klaus Bothe

published over the years, at several confer-
ences and journals: [12–14,18–24].
Since the starting idea of the project was

the exchange of experiences, rising of the teach-
ing quality, and decreasing the effort needed for
a creation of new courses, the above conclusions
clearly prove that these aims are not only fulfilled,
but surpassed by far. Based on the experiences
gained with the first course in “Software Engi-
neering”, collaboration was extended to the devel-
opment of new courses, already used in practice,
but still refining and developing.

Currently, most of the efforts in a process of
further refinement of the course are aimed at the
development of appropriate e-Learning support
for the course. Depend-ing on the University,
these activities are in different phases. Universi-
ties in Novi Sad, Serbia, Skopje, FYR Macedonia,
and Rijeka, Croatia incorporated joint materials
into their learning managements systems, and
students are freely using them. Even more, in
Novi Sad, e-Lessons, glossaries, and quizzes for
knowledge self-testing based on original presen-
tations were developed, so that the students can
choose the type of study resources they prefer.

Lecturers gathered around this project didn’t
stopped just to deal with the educational ele-
ments – great cooperating experiences with the
development of new teaching materials have been
deepened with the research cooperation. This co-
operation extended over the limits of the courses
that started it. Autumn each year is the time
when participants of the project gather to ex-
change ideas and experiences, and to communi-
cate and consult about the further educational
and research efforts. Each year, these workshops
include young assistants, but also the best stu-
dents from the participating universities. Over
the ten years of project existence, among the stu-
dents that participated in the workshops, more
than 10 have been selected as new assistants at
various participating universities.

References

[1] “Bringing curriculums and equipment up to
date,” DAAD, Sep 2002, issue 3.

[2] “DAAD newsletter,” www.daad.de/imperia/
md/content/hochschulen/stabilitaetspakt/
newsletter/2009_1-en.pdf, 2009.

[3] Project home-page. (2011). [Online]. http://
www2.informatik.hu-berlin.de/swt/intkoop/jcse/

[4] E.-E. Doberkat, C. Kopka, and G. Engels,
“MuSofT – multimedia in der softwaretechnik,”
Softwaretechnik-Trends, Vol. 24, No. 1, 2004.

[5] K. Modesitt, “International software engineering
university consortium (iseuc), a glimpse into the
future of university and industry collaboration,”
in Proceedings of 15th CSEET, Covington,
Kentucky, USA, 2002, pp. 32–41.

[6] T. Hilburn, G. Hislop, M. Lutz, S. Mengel,
and M. Sebern, “Software engineering course
materials workshop,” in Proceedings of 16th
CSEET, Madrid, Spain, 2003.

[7] Ariadne Project. (2011). [Online]. http:
//www.ariadne-eu.org

[8] Merlot project. (2011). [Online]. http:
//www.merlot.org

[9] H. Balzert, Lehrbuch der Software-Technik.
Spektrum Akademischer Verlag, 1998, Vol. 1
and 2.

[10] Computing curricula 2001, ACM and the
Computer Society of the IEEE. (2011). [Online].
http://www.acm.org

[11] P. Bourque and R. Dupuis, Eds., Guide to the
Software Engineering Body of Knowledge SWE-
BOK. IEEE Computer Society, 2001.

[12] K. Bothe, K. Schuetzler, Z. Budimac, and
K. Zdravkova, “Collaborative development of
a multi-lingual software engineering course
across countries,” in Proceedings of 35th
ASEE/IEEE Frontiers in Education Conference,
Indianapolis, USA, 2005, pp. T1A–1–T1A–5.

[13] K. Bothe and S. Joachim, “Tool support for
developing multi-lingual course materials,” in
Proceedings of ONLINE EDUCA Berlin, 10th
Intl. Conference on Technology Supported Learn-
ing & Training, Berlin, Germany, 2004.

[14] Z. Budimac, Z. Putnik, M. Ivanovic, K. Bothe,
and K. Schuetzler, “On the assessment and
self-assessment in a students teamwork based
course on software engineering,” Computer Ap-
plications in Engineering Education, Vol. 19,
No. 1, 2011, pp. 1–9.

[15] Behavioral specification (requirements) of
XCTL-control program. (2011). [Online]. http:
//www2.informatik.hu-berlin.de/swt/intkoop/
jcse/case_studies/xctl/XCTL-Man-Adj.html

[16] Java course home page. (2011). [Online].
http://perun.pmf.uns.ac.rs/java

A View on a Successful International Educational Project in Software Engineering 59

[17] Course home page. (2011). [Online]. http:
//perun.pmf.uns.ac.rs/moodle

[18] K. Bothe, K. Schützler, Z. Budimac, Z. Putnik,
M. Ivanovic, S. Stoyanov, A. Stoyanova-Doyceva,
K. Zdravkova, B. Jakimovski, D. Bojic, I. Ju-
rca, D. Kalpic, and B. Cico, “Experience with
shared teaching materials for software engineer-
ing across countries,” in Proceedings of Infor-
matics Education Europe IV, Freiburg, Germany,
2009, pp. 57–62.

[19] K. Bothe, K. Schuetzler, Z. Budimac,
K. Zdravkova, D. Bojic, and S. Stoyanov,
“Technical and managerial principles of
a distributed cooperative development of
a multi-lingual educational course,” in Proceed-
ings of the 1st Balkan Conference in Informatics,
Thessaloniki, Greece, 2003, pp. 112–120.

[20] K. Bothe and S. Joachim, “Interactive tool-based
production of multilingual teaching and learn-
ing materials,” in Proceedings of the 5th IEEE
International Conference on Advanced Learn-
ing Techniques, Kaohsiung, Taiwan, 2005, pp.
516–518.

[21] Z. Budimac, Z. Putnik, M. Ivanovic, and
K. Bothe, “Common software engineering course:
Experiences from different countries,” in Pro-
ceedings of the 1st International Conference on
Computer Supported Education, Lisboa, Portu-
gal, 2009, pp. 375–378.

[22] M. Ivanovic, Z. Budimac, Z. Putnik, and
K. Bothe, “Short comparison of tasks and
achievements of different groups of students with
the common software engineering course,” in
Proceedings of the International Conference on
Software Engineering Theory and Practice, Or-
lando, USA, 2009, pp. 84–91.

[23] K. Zdravkova, K. Bothe, and Z. Budimac,
“SETT-net: A network for software engineer-
ing training and teaching,” in Proceedings of
the Information Technology Interfaces, Cavtat,
Croatia, 2003, pp. 281–286.

[24] ——, “The structure of SETT-net,” in Proceed-
ings of the Eurocon, Ljubljana, Slovenia, 2003,
pp. 126–129.

e-Informatica Software Engineering Journal, Volume 6, Issue 1, 2012, pages: 61–70, DOI 10.5277/e-Inf120105

Towards Automation Design Time Testing
of Web Service Compositions

Dessislava Petrova-Antonova∗, Sylvia Ilieva∗, Ilina Manova∗∗, Denitsa Manova∗∗
∗Sofia University, Faculty of Mathematics and Informatics

∗∗Rila Solutions
d.petrova@fmi.uni-sofia.bg, sylvia@acad.bg, ilinam@rila.bg, denitsat@rila.bg

Abstract
Service-Oriented Architectures (SOA) allows software applications to interoperate in a new way
in distributed environment. Currently, web services are the most widely adopted technology for
implementation of SOA. However, they bring a number of challenges to development as well as to
testing. Testing web service compositions is one of the major problems in SOA domain that is
due to the unknown context, absence of web service source code, multiple provider coordination,
lack of tool support, etc. In such context, the paper proposes a framework, named Testing as
a Service Software Architecture (TASSA), which aims to provide design time testing of both
functional and nonfunctional behavior of web service compositions described with Business Process
Execution Language (BPEL). TASSA consists of set of tools that can be used together with existing
development environments of service based applications. The paper focuses on an approach for
negative testing and unit testing of BPEL processes. The negative testing is supported by TASSA
tool, called Fault Injector tool, which implements a fault injection technique providing message
delays, wrong message data, etc. The goal of unit testing is to test a BPEL process in isolation
from its dependent web services. The isolation technique is implemented in another TASSA tool,
named Isolation tool.

1. Introduction

Service-Oriented Architecture (SOA) is a dom-
inant paradigm for design and development of
distributed and interoperable software applica-
tions. The most widely adopted approach to SOA
implementation is web services based on stan-
dards such as SOAP, WSDL and UDDI. Testing
such implementations is challenging for various
reasons. It is difficult to simulate all possible con-
figurations and loads during testing process due
to dynamic nature of web services and their con-
sumers, varying load on SOA infrastructure and
underlying network [1]. In addition, web services
are outside of the control of consumers, leading
to potential misunderstandings between parties.

The need of automation of SOA testing pro-
cess results in targeting of many research efforts

to SOA domain. There are separate testing tools
and complex proprietary frameworks that can
be used for testing of web service compositions,
but open, a complete solution that meets SOA
testing challenges is still missing. This paper ad-
dresses this problem by proposing a framework,
named Testing as a Service Software Architec-
ture (TASSA). The main goal of TASSA is to
support the testing, validation and verification
of both functional and nonfunctional behavior
of web service compositions at design time [2].
It consists of set of tools that can be used to-
gether with existing development environments
of service based applications. This paper focuses
on two of TASSA tools, namely Fault Injection
tool and Isolation tool that respectively provide
functionality for negative testing and unit test-
ing of web service compositions described with

62 Dessislava Petrova-Antonova et al.

Business Process Execution Language (BPEL).
The goal of the negative testing is to test the
BPEL process in case of message delays, errors in
message data, wrong business logic, etc. The unit
testing aims to test the BPEL process in isolation
from its partner web services. The essence of fault
injection and isolation techniques as well as their
automation and application to real scenario are
presented in the paper.

The content of the paper from this point for-
ward is organized as follows. Section 2 introduces
current approaches for web service composition
testing. Section 3 presents TASSA tools. Section
4 shows experimental results from execution neg-
ative test cases over a sample BPEL process in
TASSA framework. Finally, section 5 concludes
the paper.

2. Related Work

The BPEL inherently brings a challenge for test-
ing due to its specific syntax, dynamic binding
during execution and the fact that it integrates
web services implemented by various providers.
This section presents a review of various tech-
niques, methods and tools that meet this chal-
lenge. The generation of the test suite for basis
path testing of WS-BPEL and an accompanying
tool that can be used by service testers are pre-
sented in [3]. The proposed testing tool does not
support all XML schema data types in the gen-
eration of test data (only integer, float, boolean,
and string are supported). Also, only sequence,
condition, and repetition patterns of control are
allowed. The tool does not consider infeasible
paths that cannot be accessed. In [4] the au-
thors propose a gray-box testing approach that
has three key enablers: test-path exploration,
trace analysis, and regression test selection. In
order to improve the preciseness of the gener-
ated test paths IBM BPEL extensions, like Java
snippets, need to be handled. The experimen-
tal results show that the test-generation time
is linear to the number of test paths searched.
Thus a more efficient generation algorithm is
needed to avoid the performance problem for
complex processes. In [5] a formal model for an

abstract-based workflow framework that can be
used to capture a composed web service under
test is introduced. It is focusing on verifying,
based on structural-based testing strategies that
a composed web service can function correctly
according to its semantic, activities and data de-
pendencies. In [1] the authors use High-level Petri
nets (HPNs) to model BPEL web service compo-
sition. The relationship between BPEL concep-
tions and HPNs is specified in four levels accord-
ing to inter-service, intra-service, inter-activity,
and intra-activity. In [6] a model-driven approach
toward generating executable test cases for the
given business process is presented. Its drawback
is that the generated test cases still needs some
effort to develop the adapter and codec to run.
In [7] WSA is proposed to model concurrency,
fault propagation, and interruption features of
BPEL process. A model checking based test case
generation framework for BPEL is implemented.
An open issue is to prove the correctness of the
model transformation. The approach in [10] is
more applicable to programs without complex
variable sharing or process interaction patterns.
The messages’ maximum enablement is limited to
one time during the transformation of BPEL pro-
cess into Extended Control Flow Graph XCFG.
Also, the exception handling logic does not af-
fect the other running threads, which run to
undisturbed completion. An advantage of the
approach is that it is modularized so that it can
be used together with other testing technolo-
gies. It avoids the state space explosion problem
and is applicable for programs in which concur-
rent computation units have only very few or
no shared variables or other types of synchro-
nization. In [8] an approach to unit testing of
WS-BPEL and a tool prototype extending JUnit
are presented. The proposed BPEL-Unit provides
the following advantages: allow developers simu-
late partner processes easily, simplify test case
writing, speed test case execution, and enable
automatic regression testing. In [9] the authors
propose a layer-based approach to creating frame-
works for repeatable, white-box BPEL unit test-
ing, which is applied to new testing framework.
The framework does not provide much support
in test case creation and the monitoring of the

Towards Automation Design Time Testing of Web Service Compositions 63

Table 1. Comparison of BPEL testing approaches

Approach EH FH A ER TCG NT
Lertphumpanya [3] no no yes yes yes no
Li [4] yes yes yes yes yes no
Karam [5] no no no no no no
Yuan [6] no no yes yes yes no
Zheng [7] yes yes yes no yes yes
Li [8] no no yes yes yes no
Mayer [9] no no yes no yes yes
Dong [1] no no yes yes yes no
Yan [10] yes yes no yes yes no
Karam [5] yes yes yes yes yes yes

PUT. Developers have to manually prepare large
amount of coherent XML data and XPath expres-
sion to compose a test case. This is a painstaking
task considering the complex structure of in-
volved XML data. The results from comparison
analysis of the current BPEL testing approaches
are shown in Table 1. More detailed results can
be found in [11].

The most of the authors propose to transform
the BPEL process into intermediary model using
CFG, HPN, etc. in order to find the executable
paths of the process and generate test cases.
Some of the approaches do not cover all BPEL
activities during transformation. That is why the
table has columns that show which approaches
consider event handling (EH) and fault handling
(FH) BPEL activities. The forth column of the
table, called Automated (A), shows which ap-
proaches are implemented as tools or frameworks
that are ready to use by testers. The next ta-
ble column, named Experimental results (ER)
indicates which of the approaches are proved
via case studies, experimental results, etc. Only
one of the approaches does not provide test case
generation (TCG). This can be seen from column
before the last one. And finally, the last column
shows which of the approaches supports negative
testing (NT).

3. TASSA Tools

The TASSA framework consists of several tools
that can be used jointly to achieve end-to-end
testing of BPEL processes. The architecture of
TASSA framework is presented on Figure 1.

In this section the cooperation of TASSA
tools with the focus of Fault Injection and Isola-
tion tools is presented. The main task of Fault
Injection tool, called faultInjector, is to simulate
faults during message exchange in order to gen-
erate negative test cases. The possible situations
that are simulated are (1) overload of the commu-
nication channel that leads to delay of sending
or receiving a message, (2) failure of the com-
munication channel that leads to impossibility
of sending or receiving a message, (3) noise in
communication channel that leads to receiving
a message with syntax and structure errors, and
(4) wrong business logic of particular web service
that leads to sending or receiving a message with
syntax errors in its data. faultInjector takes as in-
put a BPEL process under test, a list with failure
parameters that describes the above situations
and a string with values, which correspond to the
arguments of the activity causing the failure. It
returns a transformed BPEL process with simu-
lated failure. The fault injection process consists
of the following steps:
– identification of message exchanged when the

failure is simulated,
– modification of communication channel, so

that the failures expected by the tester occur,
– modification of an activity that corresponds

to the message in order to send message to
the proxy created between the message sender
and receiver,

– serialization of input arguments of the real
receiver (marshalling),

– invocation of the proxy,
– deserialization of output arguments and send-

ing to the real receiver (unmarshalling).

64 Dessislava Petrova-Antonova et al.

Figure 1. Architecture of TASSA framework

Similar steps are performed for the response
of the invocation.

The formal representation of the process of
marshalling and unmarshalling is as follows:
o = invoke(i1, i2, ..., in)
o = Unmarshal(ProxyInvoke

(Marshal(i1, i2, ..., in), R))
where i1, i2, ..., in are the real arguments of the
modified Invoke activity, o is the original output
data, Marshal and Unmarshal are the embed-
ded BPEL functions for marshalling and unmar-
shalling, and ProxyInvoke is the call of the proxy
with failure parameters specified by R.

The proposed approach is applicable only to
invoke activities because their corresponding ex-
change of the messages is initiated by the BPEL
process. It is necessary condition for the real-
ization of the approach because activities for
marshalling and unmarshalling need to be placed
round the initiator of the message exchange.

The values passed to faultInjector are gen-
erated from a tool, called Value Generation
Tool (VGT). Its goal is to generate valid val-
ues for all field of a given variable defined with
XML Schema Definition (XSD). The main func-
tionality of VGT is provided by a tool, called
WS-TAXI, which is developed by a research team
of Software Engineering Research Laboratory
at the ISTI - Istituto di Scienza e Tecnologie
dell’Informazione A.Faedo in Pisa. WS-TAXI
generates compliant XML instances from a given
XML Schema by using well-known Category Par-
tition technique [12]. VGT takes as input a BPEL
process under test and an array with identifiers
of variables, whose values need to be generated.

The array of variables is produced by a tool,
called Data Dependency Analysis Tool (DDAT)
[2]. For a given path of the BPEL process DDAT
finds all conditional activities along the path
and specifies which variables affect those condi-
tional activities. It receives as input a BPEL
process and an array of unique identifiers of
activities, describing the path that the BPEL
process needs to follow. The path is generated by
a tool, called Test Case Generation Tool (TCGT).
TCGT solves two tasks. Its first task is to iden-
tify all paths of a given BPEL process in order
to assist the tester in the process of test case
generation. The second task of TCGT is to en-
sure management capabilities and storage for
test cases.

The output of DDAT is also needed for a tool,
named Isolation Tool (IsT). IsT provides tempo-
rary removal of BPEL process dependencies from
one or more external web services. This allows
the tester to control the web service returned
results and pre-determine the possible routines
in the BPEL process, as well as to continue test-
ing even if a particular web service is missing.
The BPEL process’s dependency upon external
services can be described as follows:
– synchronous execution of operation provided

by an external service (Invoke activity in the
BPEL process description),

– asynchronous execution of operation provided
by an external Service (combination of Invoke
and Receive activity in the BPEL process
description),

– unforced message receipt from external ser-
vice (Pick activity),

Towards Automation Design Time Testing of Web Service Compositions 65

Table 2. Replacement of the BPEL process activities

Original Activity Replacement Activity
Synchronous Invoke Assign
Asynchronous Invoke Empty
Receive Assign
Reply Empty
Pick/OnAlarm Wait and OnAlarm branch
Pick/OnMessage Assign and OnMessage branch
HumanTask Invoke

– sending message to external service (resulting
from an ingoing message),

– HumanTask activity, which requires human
intervention and which affects the application
through its output data (operator-entered
values).
Invoke activity is modeled with following ex-

pression:
o = f(i1, i2, ..., in, R)
Herein the letter f denotes the functionality

of the operation provided by the external service,
i1, i2, ..., in are the input parameters of the opera-
tion, o is the returned result, and R is additional
parameters of the activity not directly related to
the operation execution.

To eliminate the dependency upon f the fol-
lowing modifications are necessary to isolate the
BPEL process from operation 1:
– Modification of the process, where the rele-

vant Invoke activity is replaced with Assign
activity to assign the output variable o spe-
cific values set by the user;

– When isolating the process from one activity
there is created a test artifact (a variant of the
BPEL process, in which the Invoke activity
is replaced by an Assign activity).
The other dependencies are handled in a sim-

ilar way, e.g. in the asynchronous mode for op-
eration call (Invoke and Receive), the Invoke
activity is replaced by the Empty activity (as
it does not influence it) and Receive activity is
replaced by Assign activity. Table 2 illustrates
the mechanisms for isolation of the process from
the different dependencies.

Through the cooperation of the above de-
scribed tools the automation of the functional
testing is largely achieved. Furthermore, lack of
functionality for automation of testing in con-
ditions of poor or unavailable communication

channels with remote services is to a great ex-
tent overcome. Automation of negative testing
is also supported.

4. Application of Fault Injection and
Isolation Techniques in TASSA
Framework

This section presents the interoperability be-
tween faultInjector and IsT of TASSA framework.
The tools are verified through testing of sample
BPEL process, called Order Data Verifier Busi-
ness Process (ODVBP). The process consists of
four web services that are described in Table 3.

ODVBP uses the web services presented in
Table 3 to validate the clients order data, namely
email, credit card number and Zip code. It also
retrieves the state abbreviation form Zip code
and converts the total amount of the order into
appropriate currency according to current rate.

Listing 1 shows an invoke activity, called
CardValidatorInvoke, that is responsible for in-
vocation of web service for validation of client
credit card number.
<invoke name="CardValidatorInvoke"

partnerLink="CardValidatorPartner"
operation="Validate_CreditCard"
xmlns:tns="http://www.Softwaremaker.Net/
WebServices/" portType=
"tns:ValidatorSoap"
inputVariable="Validate_CreditCardIn"
outputVariable="Validate_CreditCardOut">

</invoke>
Listing 2 shows transformation of the above

activity after execution of faultInjector and IsT
of TASSA framework.
<assign name="Assign1">

<copy><from>

66 Dessislava Petrova-Antonova et al.

Table 3. Web services called from Order Data Verifier Business Process
Web service Description
Email Validator Validates email addresses for client applications
Credit Card Validator Validated credit card number and type
Currency Convertor Get conversion rate from one currency to another currency
Zip Code Validator Validate Zip code and returns USA state abbreviation, latitude (decimal degrees)

and longitude (decimal degrees)

sxxf:doMarshal($Validate_CreditCardIn.parameters)
</from><to>

$ProxyInvokeOperationIn.operationIn/tassaP:part1
</to></copy>

<copy><from>
’http://www.softwaremaker.net/webservices/
swm/validator/validator.asmx?WSDL’

</from><to>
$ProxyInvokeOperationIn.operationIn/
tassaP:endpoint

</to></copy>
<copy><from>20</from><to>

$ProxyInvokeOperationIn.operationIn/tassaP:wait
</to></copy>

<copy><from>0</from><to>
$ProxyInvokeOperationIn.operationIn/
tassaP:errorsFactor

</to></copy>
</assign>
<invoke xmlns:tns="http://www.rila.com/tassa/ProxyInvoke"

inputVariable="ProxyInvokeOperationIn"
name="ZipCodeInvoke"
operation="ProxyInvokeOperation"
outputVariable="ProxyInvokeOperationOut"
partnerLink="PartnerLink1"
portType="tns:ProxyInvokePortType"/>

<assign name="Assign2">
<copy>

<from>
sxxf:doUnMarshal($ProxyInvokeOperationOut.part2)

</from>
<to part="parameters"

variable="Validate_CreditCardOut"/>
</copy>

</assign>
In order to generate transformed BPEL pro-

cess faultInjector and IsT need a configuration
information that describes the simulated failures
as follows:
– Wait interval: an integer value that defines

the delay of message seconds in seconds;

– Error factor: an integer value that that de-
fines the kind of error will be injected (1–100:
insert random errors in the data, which would
possible break the XML structure; 0: usually
used with Wait interval to delay the message;
−1: replace the original values in the message;
−2: interrupt the message);

– End point address: an end point address of
the partner web service;

– Activity variables: input and output variables
of the activity that will be injected.
As can be seen from Listing 1 and Listing 2,

the Invoke activity, named CardValidatorInvoke,
is enclosed with two additional Assign activi-
ties. The first Assign activity initializes the input
parameters of ProxyInvoke operation of faultIn-
jector. The parameters are as follows:
– Serialized input arguments of card validator

operation of Credit Card Validator web ser-
vice;

– End point address of the Credit Card Valida-
tor web service;

– Wait interval initialized with 20;
– Error factor initialized with 0.

The second Assign activity copies deserialized
result from invocation of ProxyInvoke operation
of faultInjector to the output variable of the
Credit Card Validator web service. In addition,
CardValidatorInvoke activity invokes ProxyIn-
voke operation instead actual Credit Card Val-
idator web service.

faultInjector is validated through four test
cases that correspond to its possibility of faults
generation:
– Test Case 1: Message delay,
– Test Case 2: Interruption,
– Test Case 3: Noise in the message structure,
– Test Case 4: Noise in the message data.

To prove the fault injection against normal
behavior of the process first the standard use
case should be observed:

Towards Automation Design Time Testing of Web Service Compositions 67

Table 4. Configuration data

Data Description
wait=20 Error factor
error_ratio=0 Wait interval
http://www.softwaremaker.net/webservices/swm/validator/validator.asmx? WSDL End point address
$Validate_CreditCardIn.parameters=$Validate_CreditCardOut.parameters Activity variables

Table 5. Expected outputs from test cases

Test case Description
Test case 0 Meaningful, well formed message that is executed in time interval ti.
Test case 1 Meaningful, well formed message that is executed in time interval ti + T , where T is the

delay given as a failure parameter.
Test case 2 Error message, because of interruption
Test case 3 Error message, because of wrong structure
Test case 4 Well formed message with a random or invalid data

Table 6. Input data of Order Data Verifier Business Process

Test data Test data values Remark
Input1 <ord1:firstname>John</ord1:firstname> Valid data

. . . <ord1:currencycode>EUR</ord1:currencycode>
Input2 <ord1:creditcardnumber>5374439468966228000 Invalid credit card number

</ord1:creditcardnumber>
Input3 <ord1:email>dessislava.g.petrovagmail.com</ord1:email> Invalid email
Input4 <ord1:postalcode>070930</ord1:postalcode> Invalid zip code

– Test Case 0: No fault injection (normal be-
havior).
The expected outputs from each test case are

described in Table 5.
Test data are generated according to the XSD

schema of ODVBP. They are presented in Ta-
ble 6.

Table 7 presents the possible output results
from execution of ODVBP.

Test case 0 includes tests representing nor-
mal behavior of the BPEL process. The tests
correspond to the input data presented in Table
6, namely Input 1, Input 2, Input 3 and Input 4.
The results form test executions are respectively
Output 1, Output 2, Output 3 and Output 4.
All tests are performed approximately for about
5.714 seconds.

The results from execution of the rest test
case are presented in Table 8, Table 9, Table 10
and Table 11. As can be seen from the tables, all
tests are passed, which means that the faultIn-
jector successfully detects the faults injected in
the business process.

In Test Case 1 (Message delay) the output
data is the same as in Test Case 0 (Normal be-

havior), but the execution time is longer due to
simulated delay. It is obvious that the execution
time of Test Case1 differs from the execution
time of Test Case 0 in the delay given as a fail-
ure parameter. For example, the Wait interval
of the test for Validate_CreditCard operation is
10 s. Therefore, the execution time of this test
is equal to the execution time of corresponding
test in Test Case 0 plus 10 s.

During execution of Test Case 2 and Test
Case 3, the BPEL process fails, due to im-
possibility of sending or receiving a message
as well as corruption of message data. These
faults are not handled by the sample BPEL
process, so here the negative test cases catch
a bug in the business logic, which is the main
idea of testing BPEL processes against fault
injections.

In Test Case 4 (Noise in the message data)
faultInjector simulates wrong business logic of
a web service by corruption of the received mes-
sage with invalid data. The first test of this
test case shows that this leads to wrong data
values comparing with the expected ones in Test
Case 0, or even to incorrect workflow.

68 Dessislava Petrova-Antonova et al.

Table 7. Output data of Order Data Verifier Business Process

Result data Test data values
Output1 <ns0:firstname>John</ns0:firstname>

. . .
<ns0:total>141.74</ns0:total>
<ns0: currencycode>EUR</ns0:currencycode>
<ns0:ordererrors>Validation is successful.</ns0:ordererrors>

Output2 <ns0: ordererrors >ERROR: Invalid Credit Card</ns0:ordererrors>
Output3 <ns0: ordererrors >ERROR: Invalid email</ns0:ordererrors>
Output4 <ns0: ordererrors >ERROR: Invalid Zip Code</ns0:ordererrors>
Output5 exMessage: disconnected
Output6 BPCOR-6130: Activity Name is CardValidatorInvoke

Caused by: javax.xml.soap.SOAPException: javax.xml.stream. . .
Message: An invalid XML character was found in the element content of the document

Output7 BPCOR-6130: Activity Name is EmailInvoke
Caused by: javax.xml.soap.SOAPException: javax.xml.stream. . .
Message: An invalid XML character was found in the element content of the document

Output8 BPCOR-6130: Activity Name is ZipCodeInvoke
Caused by: javax.xml.soap.SOAPException: javax.xml.stream. . .
Message: An invalid XML character was found in the element content of the document

Table 8. Test Case 1 execution results
Wait Error factor Operation Input Output Test result Execution
interval time (s)
wait=10 error_ratio=0 Validate_CreditCard Input1 Output1 Passed 15.714 s
wait=20 error_ratio=0 ValidateEmail Input2 Output2 Passed 25.714 s
wait=15 error_ratio=0 ConversionRate Input3 Output3 Passed 20.714 s
wait=20 error_ratio=0 ValidateZip Input4 Output4 Passed 25.714 s
wait=10, error_ratio=0, ConversionRate, Input1 Output1 Passed 25.714 s
wait=10 error_ratio=0 ValidateZip
wait=10, error_ratio=0, Validate_CreditCard, Input1 Output1 Passed 30.714 s
wait=15 error_ratio=0 ValidateEmail

Table 9. Test Case 2 execution results
Wait Error factor Operation Input Output Test result Execution
interval time (s)
wait=0 error_ratio=-2 Validate_CreditCard Input1 Output5 Passed 8.425 s
wait=0 error_ratio=-2 ValidateEmail Input2 Output5 Passed 8.145 s
wait=0 error_ratio=-2 ConversionRate Input3 Output5 Passed 8.412 s
wait=0 error_ratio=-2 ValidateZip Input4 Output5 Passed 8.345 s

Table 10. Test Case 3 execution results
Wait Error factor Operation Input Output Test result Execution
interval time (s)
wait=0 error_ratio=40 Validate_CreditCard Input2 Output6 Passed 5.194 s
wait=0 error_ratio=40 ValidateEmail Input3 Output7 Passed 6.594 s
wait=0 error_ratio=40 ValidateZip Input4 Output8 Passed 7.194 s

Towards Automation Design Time Testing of Web Service Compositions 69

Table 11. Test Case 4 execution results
Wait Error factor Operation Input Output Test result Execution
interval time (s)
wait=0 error_ratio=-1 ValidateEmail Input2 Output1 Passed 4.086 s
wait=0 error_ratio=-1 ConversionRate Input2 Output2 Passed 6.411 s
wait=0 error_ratio=-1 ValidateZip Input2 Output2 Passed 4.014 s

The obtained results show that faultInjector
is suitable for generation of different types of
faults, which leads to the possibility of using
TASSA framework for negative testing of BPEL
processes.

5. Conclusion

This paper presents TASSA Framework, which
offers approach for web service compositions test-
ing by automating the testing process. Currently,
it supports only design time testing, which is pro-
vided by five tools, composed as services itself,
which integrated together offer to developers and
service integrators the complete environment for
functional testing of BPEL processes. Through
integration of faultInjector tool in TASSA frame-
work the negative testing is also achieved. This
allows testing of BPEL processes in conditions
of poor or unavailable communication channels
with remote services. Furthermore, the testing
process can be performed in isolation of external
partner web services of the BPEL process under
test due to possibility of Isolation Tool to remove
dependency from them. The experimental results
from validation of the testing approach through
simple business process are presented.

Our future work will concentrate on develop-
ing complete testing methodology and validation
of all TASSA framework tools over more complex
BPEL processes.

Acknowledgment

The authors acknowledge the financial support
by the National Scientific Fund, BMEY, grant
agreement no. DO02-182 and SISTER project,
funded by the European Commission in FP7-SP4
Capacities via agreement no. 205030.

References

[1] L. Dong, H. Yu, and Y. Zhang, “Testing
BPEL-based web service composition using
high-level Petri Nets,” in Proceedings of the
IEEE International Enterprise Distributed Ob-
ject Computing Conference, 2006, pp. 441–444.

[2] I. Spassov, D. Petrova-Antonova, V. Pavlov, and
S. Ilieva, “DDAT: Data dependency analysis tool
for web service business processes,” in Second
International Workshop on Software Quality SQ,
June 2011, pp. 232–243.

[3] T. Lertphumpanya and T. Senivongse, “Ba-
sis path test suite and testing process for
WS-BPEL,” WSEAS Transactions on Comput-
ers, Vol. 7, No. 5, 2008, pp. 483–496.

[4] J. Li, H. Tan, H. Liu, J. Zhu, and N. Mit-
sumori, “Business-process-driven gray-box SOA
testing,” IBM Systems Journal, Vol. 47, 2008,
pp. 457–472.

[5] M. Karam, H. Safa, and H. Artail, “An abstract
workflow-based framework for testing composed
web services,” in International Conference on
Computer Systems and Applications (AICCSA),
2007, pp. 901–908.

[6] Q. Yuan, J. Wu, C. Liu, and L. Zhang, “A model
driven approach toward business process test
case generation,” in 10th International Sympo-
sium on Web Site Evolution (WSE), 2008, pp.
41–44.

[7] Y. Zheng, J. Zhou, and P. Krause, “An auto-
matic test case generation framework for web
services,” Journal of Software, Vol. 2, No. 3,
2007, pp. 64–77.

[8] J. Li and W. Sun, “BPEL-Unit: JUnit for
BPEL processes,” in Service-Oriented Comput-
ing, ICSOC, 2006, pp. 415–426.

[9] P. Mayer and D. Lubke, “Towards a BPEL unit
testing framework,” in Proceedings of the work-
shop on Testing, analysis, and verification of
web services and applications, 2006, pp. 33–42.

[10] J. Yan, Z. Li, Y. Yuan, W. Sun, and J. Zhang,
“BPEL4WS unit testing: Test case generation
using a concurrent path analysis approach,” in
Proc. of ISSRE. IEEE Computer Society, 2006,
pp. 75–84.

70 Dessislava Petrova-Antonova et al.

[11] D. Petrova-Antonova, I. Krasteva, and S. Ilieva,
“Approaches facilitating WS-BPEL testing,” in
17th Conference on European Systems and
Software Process Improvement and Innovation,
September 2010, pp. 5.1–5.17.

[12] C. Bartolini, A. Bertolino, E. Marchetti, and
A. Polini, “WS-TAXI: A WSDL-based testing
tool for web services,” in International Confer-
ence on Software Testing Verification and Vali-
dation, 2009, pp. 326–335.

e-Informatica Software Engineering Journal, Volume 6, Issue 1, 2012, pages: 71–77, DOI 10.5277/e-Inf120106

On Principles of Software Engineering
– Role of the Inductive Inference

Ladislav Samuelis∗
∗Faculty of Electrical Engineering and Informatics, Technical University of Košice

Ladislav.Samuelis@tuke.sk

Abstract
This paper highlights the role of the inductive inference principle in software engineering. It takes
the challenge to settle differences and to confront the ideas behind the usual software engineering
concepts. We focus on the inductive inference mechanism’s role behind the automatic program
construction activities and software evolution. We believe that the revision of rather ln old ideas
in the new context of software engineering could enhance our endeavour and that is why deserves
more attention.

1. Introduction – Beyond Software,
Beyond Engineering

Before getting into details of the role of inductive
inference in software engineering, we make some
explanatory notes on the notions of software
and engineering as it appears in the title of this
contribution.

We can observe plenty of interpretations of
the software and software engineering throughout
the history of computing. Searching the origin
of the word software F.R. Shapiro states that it
appears for the first time in the work of John
W. Tukey. He used that term in the context of
computing in an article of the American Math-
ematical Monthly, in 1958! The quote is as fol-
lows [1, p. 1]:

Today the ‘software’ comprising the care-
fully planned interpretive routines, com-
pilers, and other aspects of automative
programming are at least as important
to the modern electronic calculator as
its hardware of tubes, transistors, wires,
tapes, and the like.
In 2008, the work of Leon J. Osterweil [2]

appears. He suggests that there may exist other
types of software besides computer software. He

identifies parallels between computer software
and other societal artefacts as laws, processes,
recipes, instructions, and suggests that there are
similar parallels in the ways, in which these arte-
facts are built and evolved.

There are 50 years between these two
above-mentioned interpretations of the word
software. The ‘semantic gap’ between the ideas
that is behind this word has been widened enor-
mously in time. The notion has gained more
specific meanings during its life-span and it is
expected to keep narrowing down. There are
no signs that a rather ‘calm’ period of soft-
ware ‘evolution’ would come. On the contrary,
as we may conclude from the recent perva-
sively distributed and service-oriented software
development.

Recently there has been an incredible increase
in the performance of hardware. This increase it-
self is the reason for the incredible growth of soft-
ware complexity. The Wirth’s, or rather Reiser’s
‘law’: Software is getting slower, faster than hard-
ware is getting faster [3], allegorically points to
the same fact.

After revealing partially the roots of the no-
tion of software, we may focus on the notion
of engineering. The question is as follows:

72 Ladislav Samuelis

What feature of software enables us ‘to
engineer’ it?
We can find a comprehensive answer to this

question in the work of Wei-Lung Wang [4]:
The key reason is that software is a tangi-
ble form of mathematics that lends itself
to being engineered. At its core, a program
is an abstract sequence of instructions
that performs some computation. But
when the program is realized on a com-
puter, it becomes an information tool with
its own use-feedback cycle. It changes
from an ethereal entity to a tangible tool
and its actions can be observed. Instead
of mathematically proving the results of
a program, we can simply run it on some
sets of inputs and observe its behaviour.
This tangibility (or ‘executability’) is both
software’s strength and Achilles heel.
We accept that this specific feature of ob-

servability in the material world is the essence
of the software engineering. In other words,
this tangibility or executability enables specific
ways of experimentation, which is the basis
for observing the behaviour of the software
by perception. In this way, we may create
highly complex models that can be fully mapped
into a computer representation and this model
can be ‘executed’.

Experiences gained from these observations
also trigger needs for deeper understanding of
the implemented ideas. We may say that observa-
tion by perception supports the comprehension
of the modelled reality. This opposite process
is program comprehension; when the task is to
‘understand’ (or to gain a mental image of) the
computer model from the implemented code.

Of course, there also exist attempts that
search a single unified theory of software engineer-
ing. For example, the contribution of P. Johnson
and M. Ekstedt, presented at the recent Interna-
tional Conference on Software Engineering Ad-
vances [5], outlines the requirements for such
a unified theory.

The statement of M. Jackson [6] is against
a unified theory. He says that software engineer-
ing is a clumsy notion. He supports this obser-
vation with the fact that software engineering

is split into various topics (e.g, compiler engi-
neering, operating systems, database engineer-
ing, etc.) and in this way it does not cover any
knowledge gained from solved problems. In other
words, software engineering is an abstraction
and every successful area of software engineering
immediately changes to set up an independent
specialization.

A recent article from M.S. Mahoney [7] char-
acterizes the history of software engineering in
the following way:

Historians and software engineers are both
looking for a history of software engineer-
ing. For historians, it is a matter of finding
a point of perspective from which to view
an enterprise that is still in the process of
defining itself. For software engineers, it
is the question of finding a usable past, as
they have sought to ground their vision of
the enterprise on historical models taken
from science, engineering, industry, and
other professions.
These contradictory views and motivations

of experts outline the broad diversity of research
and ought to remind us to be careful with apply-
ing theory for building software.

2. The Role of the Inductive Inference
in Automatic Program
Construction

Automatic program construction has been a goal
of the first programmer who faced with diffi-
culties of programming. This activity has been
spreading over the history of software engineering
with various intensity and it acts like a moving
target that constantly shifts in order to reflect
changing requirements.

Much of what was originally conceived of
as automatic programming was achieved a long
time ago. In 1958 this term was mentioned for
the first time in connection with the compiler
construction. On the other hand, current expec-
tations regarding its potential are often based
on an idealized view of reality and some of them
probably cannot be met. Nevertheless, a number
of important developments are in progress in

On Principles of Software Engineering – Role of the Inductive Inference 73

research efforts and in commercially available
systems.

The term automatic program construction (or
program synthesis) is used to refer to the study
and implementation of methods for automating
a significant part of the process of developing
and maintaining software within the context of
software life-cycle.

plus.15emAbroader goal of this field is tomake
computer programs significantly easier by means
of automation selected software development pro-
cess. More specific goals include increasing soft-
ware productivity, lowering costs, increasing reli-
ability, making more complex systems tractable,
and allowing users to focus more on solving prob-
lems rather than on the details of implementation.

The big challenges for automatic program
construction are defined, for example, by
L. McLaughlin [8] in the following manner:
– to produce good runtime performance;
– to produce code that someone can look at,

deal with, and understand;
– to ensure the code that is provably correct.

Every point deserves its own ‘science’ and the
emergent research fields on automatic program
synthesis follow roughly these criteria too.

The freedom of language selection allows us-
ing more declarative and less procedural specifi-
cation. In other words, the specification is closer
to the what (end-user defined) and the implemen-
tation is closer to the how end of the spectrum.
A more technical characterization of the ‘gap’
between specification and implementation is that
there is less detailed information content in the
specification than in the implementation. The
program synthesis process consists of filling in
this gap with details that are omitted from the
specification.

The automated synthesis of programs has its
roots in artificial intelligence too. It is interesting
to observe the mutual influence and synergy of
ideas stemming from the field of software engi-
neering and artificial intelligence. In particular,
the task of inference of grammars from pattern
analyses triggered the research on programming
by examples [9].

In general, we distinguish two main methods
in software development. Deductive methods –

deduction is basically a problem of searching for
an inference path from some initial set of facts
to a goal fact. This fundamental mechanism is
behind the deductive approach to automatic pro-
gramming. In principle any method of automated
deduction can be used to support automatic pro-
gramming. For example, programming language
PROLOG [10] (in fact, its inference engine) repre-
sents a deductive system. Despite its limitations,
PROLOG remains among the most popular lan-
guages today, with many free and commercial
implementations available. One of the challenges
in research is to combine automated deduction
with other methods.

Inductive methods – inductive inference is
based in building models on the basis of experi-
enced facts. Let us suppose that we have a mental
model at our disposal. In the next step we may
apply the standard scientific approach, which
consists of finding metrics, finding other descrip-
tions (or refinement of the model) and based on
these new models to infer the future behaviour of
the observed object. These three mental activi-
ties are, in fact, the inductive inference activities.
In other words, finding metrics (or measurable
features, data, observable signs, etc. on the model
or on its output data) is indispensable for the
description (or modelling). This activity is based
on collecting individual data in order to create
a hypothesis (model) with the process of gen-
eralization. We create model not only for the
description of the actual systems but also for
prediction. It means that the inferred model can
serve for the prediction the system’s behaviour
in the future. An example of the application of
the inductive inference is the ‘programming by
examples’ where the examples serve for building
models or rules (in this specific case a grammar).

Many areas exist where demonstration of an
example is a suitable tool for automating tasks.
For example, paths of robots represent linear
plans and the task is to construct program or
the sequence of learning objects represent the
progress of the student in the learning material
and the task is to construct the navigation plan
(learning by watching or incremental learning).
Programming by examples roots in the incremen-
tal learning, which was elaborated in 1970s and

74 Ladislav Samuelis

1980s [11]. The structures of the systems devoted
to synthesis of programs by examples are similar
to the structure of linguistic pattern recognition
systems [11].

It is evident that during the construction of
the final model, a new instruction of the example
could completely modify the existing model (due
to the inductive inference principle). This fact
deserves special awareness in the application of
inductive inference.

In summary, knowledge of the part, which
may be represented at whatever level of granu-
larity, serve for the development of rules. In fact
these rules may serve as basis for a new deductive
system. For example, knowledge condensed in
software design patterns represent higher level
granularity of knowledge and these artefacts may
also serve for building new system.

We may conclude that automatic program
construction during the 1980s was more or less
about the optimization of loops. In other words,
the discovery and the implementation of reusable
code segments was in fact the discovery of loops.

3. Notes on Software Evolution

In the 1950s, the term automatic comput-
ing referred to almost any work related with
a computer. We tend to forget that before the
object-oriented approach the methodology of au-
tomatic program construction was also associ-
ated with the idea of ‘construction of programs
by examples’.

The research on automating programming be-
fore object-orientation was influenced to a great
extent by results gained in artificial intelligence
research ([12], and [13]).

There are plenty of articles and a special IEEE
conference [14] devoted to software evolution. Re-
search on software evolution is discussed in many
software related disciplines. In any case, software
evolution is equal to comprehension. This idea is
briefly expressed by M. Jazayeri [15] as:

Not the software itself evolves, but our un-
derstanding and the comprehension of the
reality.

This is in compliance with the idea that our
understanding of the domain problem incremen-
tally evolves and learning is an indispensable
part of program comprehension.

The complexity of understanding and main-
taining a program is proportional to its size and
complexity. F. Brooks in the well-known paper
‘No Silver Bullet’ [16], argues that programming
is inherently complex. Whether we use a machine
language or a high-level programming language,
in general, we cannot simplify a program below
a certain threshold that he calls an ‘essential
program complexity’. The two main factors that
determine this complexity threshold are:
– the complexity of a problem and its solution

at the conceptual level, and
– the complexity of the infrastructure and the

environment which has to be taken into ac-
count when solving problems by a program
at operational level.
These two factors cannot be clearly separated

from each other in program components, which
constrains our efforts in using conventional de-
composition (‘divide and conquer’) in combating
software complexity. Very often, we cannot cre-
ate a software conform like LEGO models unlike
hardware constructions [17]. This difficulty of
achieving clean decomposability is an important
difference between hardware and software. An-
other important difference is that we do not try
to change hardware so often and in such radical
ways as we do software. The difficulty of clearly
separating concerns by means of decomposability
necessarily hinders changeability.

The inductive inference (or incrementality)
appears in various contexts in the relatively short
history of software engineering. This fact seems
natural because software development processes
like comprehension, design, refinement and real-
ization are done iteratively and incrementally in
practice. Due to this common fact incrementality
notion is applied superficially in software engi-
neering literature. We note that programming
cannot be fully automated, since a computer
must at least be told what to do. Only a human
being is able to create ideas and tell it what to
do. It is hoped that as technology progresses,

On Principles of Software Engineering – Role of the Inductive Inference 75

the required details on how to do the task will
steadily decrease.

4. The Ubiquity of the Inductive
Inference

The following remarks show the wide range of the
usage of incrementality notion. A brief historical
overview of the ‘Incremental and Iterative Devel-
opment’ is presented in the work of C. Larman
and V. Basili [18]. This work summarizes the role
of the iterative and incremental software develop-
ment through significant software projects since
the mid of 1950s. It focuses on the incrementality
utility, applied in software engineering processes,
from the managerial point of view. It describes
the driving thoughts and misbelieves, which were
behind the practices applied in the past decades
in the field of software engineering.

We accept in general that comprehension is
also a continuous iterative and incremental pro-
cess. The fact that problem solving does not
progress in a linear manner from one activity to
the next is highlighted as the conjecture:

Empirically based models mature from un-
derstanding to explaining and predicting
capability.
This conjecture is explained in the handbook

of authors A. Endres and D. Rombach [19, p.273],
which is devoted to the empirical aspects of soft-
ware engineering.

Inductive inference plays an important role in
practical software engineering. At present time
the incremental change in object-oriented pro-
grams are in focus (for example [20]). These
activities investigate the impact of adding new
functionalities into the code and finding the
relevant program dependencies. Incrementality
is important in software visualization too [21],
where the aim is to get a better comprehension of
the software behaviour by representing complex
structures graphically.

The objective of the software development is
to model a certain aspect or abstraction of real-
ity as stated by B. Meyer in his work ‘Reality:
a cousin twice removed’ [22]. Software engineer-
ing, as every engineering discipline, is character-

ized by trials and errors, which are necessary
steps for clarifying the comprehension of the
requirements, design and implementation. On
the other hand we have to note that the incre-
mentality principle has its mathematical roots
and is explained in the theory of inductive infer-
ence [23]. Incremental software development is
sometimes called ‘build a little, test a little’. We
can see the similarity between building concepts
and models in software engineering and building
hypotheses in mathematics. This process is very
clearly highlighted in Pólya’s classic work, ‘How
to Solve It’ [24].

The empirical evidence from the real-world
software suggests that learning or incremen-
tal program development is possible only when
the data are presented incrementally. For in-
stance, programming languages dispose with con-
structs, which help postpone solving some issues.
A good example is the exception mechanism
in object-oriented programming. This process
makes, of course, the software more complex and
drifts away from the original design. These facts
may lower the quality of the software but it is the
task of the validation and verification to ensure
the formal quality software.

To sum up, the inductive inference is ubiqui-
tous in software engineering. With each step we
discover new requirements, analyse, plan, imple-
ment and test them. Every iteration adds new
insights and the system grows or logically clarifies
this way. In other words, software programs are
too complex for getting correct details on any
artefacts without some amount of experimenta-
tion. The software developers’ ideas evolve as
they progress.

5. Conclusion

This paper looks into the question: What is the
role of inductive inference in software engineer-
ing? Its specific aim is to highlight the hidden
role of inductive inference phenomenon behind
the wide variety of software engineering concepts.
It opens with automatic program construction
and proceeds to the software evolution concept.
Analysing the inductive inference in a sterile

76 Ladislav Samuelis

environment is not unusual. We take the chal-
lenge to settle out differences and confront the
ideas behind the usual software engineering con-
cepts in a turbulent and impure environment
of recent software engineering activities. This
approach might help in developing a more con-
densed foresight and provoke constructive think-
ing. We know that we did not invent a new so-
lution to an existing problem; but we rather
revised old ideas and analysed them in recently
applied software engineering practices. Practice
generates always new problems and the task of
software engineers is permanent strive for the
identification essential concepts as it is expressed
in the Semat initiative [25].

Acknowledgement

This work is supported by the Slovak Scientific
Grant Agency: KEGA 040TUKE-4/2011: Mod-
ern software engineering in education – struc-
ture and implementation of software engineer-
ing subjects for university informatics study pro-
grammes.

References

[1] F. S. Preston, F. R. Shapiro, and L. R. Johnson,
“Comments, queries, and debate,” IEEE Annals
of the History of Computing, Vol. 22, No. 2, 2000,
pp. 69–71.

[2] L. J. Osterweil, “What is software?” Automated
Software Engineering, Vol. 15, No. 3, 2008, pp.
261–273.

[3] N. Wirth, “A plea for lean software,” IEEE Com-
puter, Vol. 28, No. 2, 2006, pp. 64–68.

[4] W. Wei-Lung, “Beware the engineering
metaphor,” Commun. ACM, Vol. 45, No. 5,
2002, pp. 27–29.

[5] P. Johnson and M. Eckstedt, “In search of a
unified theory of software engineering,” in In-
ternational Conference on Software Engineering
Advances, ICSEA, 2007, p. 5.

[6] M. Jackson, “Will there ever be software engi-
neering?” IEEE Software, Vol. 15, No. 1, 1998,
pp. 36–39.

[7] M. S. Mahoney, “Finding a history for software
engineering,” IEEE Annals of the History of
Computing, Vol. 26, No. 1, 2004, pp. 8–19.

[8] L. McLaughlin, “Automated programming: The
next wave of developer power tools,” IEEE Soft-
ware, Vol. 23, No. 3, 2006, pp. 91–93.

[9] H. Liebermann, Ed., Your Wish is My
Command- Programming by Example, Automatic
programming, Encyclopedia of Artificial Intelli-
gence. Morgan Kaufmann/San Francisco, Febru-
ary 2001.

[10] R. A. Kowalski, “The early years of logic pro-
gramming,” Commun. ACM, Vol. 31, No. 1, 1988,
pp. 38–43.

[11] A. Cypher, D. C. Halbert, D. Kurlander,
H. Lieberman, D. Maulsby, B. A. Myers, and
A. Turransky, Eds., Watch What I Do: Program-
ming by Demonstration. Cambridge University
Press, 1993, ch. Programming by demonstration.

[12] J. S. Poulin, “Technical opinion: reuse: been
there, done that,” Commun. ACM, Vol. 42, No. 5,
1999, pp. 98–100.

[13] Z. Manna and R. J. Waldinger, “Toward au-
tomatic program synthesis,” Commun. ACM,
Vol. 14, No. 3, 1971, pp. 151–165.

[14] ACM, “IWPSE ’01: Proceedings of the 4th in-
ternational workshop on principles of software
evolution,” New York, NY, USA, 2001, confer-
ence Chair-Tamai, Tetsuo.

[15] M. Jazayeri, “Species evolve, individuals age,”
in International Workshop on Principles of Soft-
ware Evolution. ACM, September 5–6, Lisbon
2005.

[16] J. F. P. Brooks, “No silver bullet essence and
accidents of software engineering,” Computer,
Vol. 20, No. 4, April 1987, pp. 10–19.

[17] A. Ran, “Software isn‘t built from lego blocks,”
in ACM Symposium on Software Reusability,
1999, pp. 164–169.

[18] C. Larman and V. R. Basili, “Iterative and incre-
mental development: A brief history,” Computer,
Vol. 36, No. 6, June 2003, pp. 47–56.

[19] A. Endres and D. Rombach, A Handbook of Soft-
ware and Systems Engineering; Empirical obser-
vations, laws and theories. Pearson, Addison
Wesley, 2003.

[20] V. Rajlich and P. Gosavi, “Incremental change in
object-oriented programming,” IEEE Software,
Vol. 21, No. 4, July/August 2004, pp. 62–69.

[21] C. Knight and M. Munro, “Visual information-
amplifying and foraging,” in Proceedings of SPIE,
San Jose, USA, volume 4032. International So-
ciety for Optical Engineering, January 2001, pp.
88–98.

On Principles of Software Engineering – Role of the Inductive Inference 77

[22] B. Meyer, “Reality: A cousin twice removed,”
IEEE Computer, Vol. 29, No. 7, July 1996, pp.
96–97.

[23] D. Angluin and C. H. Smith, “Inductive infer-
ence: Theory and methods,” Computing Surveys,
Vol. 15, No. 3, September 1983, pp. 283–269.

[24] G. Pólya, How to solve it: A New Aspect of Math-
ematical Method, 2nd ed. Princeton University
Press, 1957.

[25] I. Jacobson, “Discover the essence of software
engineering,” CSI Communications, July 2011,
pp. 12–14.

e-Informatica Software Engineering Journal (EISEJ) is an international, open access, peer-reviewed journal
that concerns theoretical and practical issues pertaining development of software systems. Our aim is to focus on
experimentation and data mining in software engineering.

The purpose of e-Informatica Software Engineering Journal is to publish original and significant results in all
areas of software engineering research.

The scope of e-Informatica Software Engineering Journal includes methodologies, practices, architectures,
technologies and tools used in processes along the software development lifecycle, but particular stress is laid on
empirical evaluation.

e-Informatica Software Engineering Journal is published online and in hard copy form. The online version
(which is our primary version) is open access, which means it is available at no charge to the public.

Topics of interest include, but are not restricted to:

— Software requirements engineering and modeling
— Software architectures and design
— Software components and reuse
— Software testing, analysis and verification
— Agile software development methodologies and practices
— Model driven development
— Software quality
— Software measurement and metrics
— Reverse engineering and software maintenance
— Empirical and experimental studies in software engineering (incl. replications)
— Evidence based software engineering
— Systematic reviews and mapping studies
— Meta-analyses
— Object-oriented software development
— Aspect-oriented software development
— Software tools, containers, frameworks and development environments
— Formal methods in software engineering.
— Internet software systems development
— Dependability of software systems
— Human-computer interaction
— AI and knowledge based software engineering
— Data mining in software engineering
— Prediction models in software engineering
— Tools for software researchers or practitioners
— Project management
— Software products and process improvement and measurement programs
— Process maturity models
— Search-based software engineering

Papers can be rejected administratively without undergoing review for a variety reasons, such as being out of
scope, being badly presented to such an extent as to prevent review, missing some fundamental components of
research such as the articulation of a research problem, a clear statement of the contribution and research methods
via structured abstract or the evaluation of the proposed solution (empirical evaluation is strongly suggested).

The submissions will be accepted for publication on the base of positive reviews done by international Editorial
Board and external reviewers.

English is the only accepted publication language. To submit an article please enter our online paper submission
site.

Subsequent issues of the journal will appear continuously according to the reviewed and accepted submissions.

http://www.e-informatyka.pl/wiki/e-Informatica_-_Editorial_Board
http://www.e-informatyka.pl/wiki/e-Informatica_-_Editorial_Board
https://mc.manuscriptcentral.com/e-InformaticaSEJ
https://mc.manuscriptcentral.com/e-InformaticaSEJ

