
e-Informatica Software Engineering Journal, Volume 6, Issue 1, 2012, pages: 39–45, DOI 10.5277/e-Inf120103

Middleware Architecture for the Interconnection
of Distributed and Parallel Systems

Ovidiu Gherman∗, Stefan Gheorghe Pentiuc∗

∗Electrical Engineering and Computer Sciences Faculty, “Stefan cel Mare” University
ovidiug@usv.ro, pentiuc@eed.usv.ro

Abstract
Grid computing is a fast evolving technology, bringing more computing power to its users. Two
main directions are observable: creating dedicated supercomputers for scientific and commercial
tasks and creating distributed commodity-based systems. The first ones are usually much expensive,
but have the advantage of performance, better control and uniformity in platforms. The second
one is more affordable but lacks in flexibility and easy maintenance. The computing necessities
that often require supplementary computing power for certain time periods are better satisfied
by interconnecting available resources than buying new, expensive ones. But interconnecting
platforms – sometimes radically different – can be a difficult task. The proliferation of hybrid
parallel computing systems can be even more complicated because it puts in contact systems
with various operating flows at the parallelism level. In this frame, the present article proposes
a new middleware architecture that can connect multiple parallel or distributed resources, of
different types, allowing unitary resource utilization and reservation for the user’s jobs. The new
architecture is described functionally and structurally.

1. Introduction

This article presents a middleware architecture
that can connect a diversity of grid and parallel
systems so that the users can run seamless jobs
on multiple platforms, of different architectures,
the compiling and executing part being sourced
to the suitable resources assigned by a centralized
(or decentralized) manager (broker). The main
scope is interconnecting clusters of computers
with different architectures and platforms (for
example as MPI and hybrid Cell-based systems)
so that the access will be transparent and uni-
form to the user, without the problems arising
from the use of multiple computing clusters [1].

Certain acronyms will be used in the next
pages: MPI – Message Passing Interface (commu-
nication protocol and specification set regarding
communications between processes in parallel
computers; popular software implementation are

OpenMPI, MPICH1/2 and LAM-MPI), Cell and
PowerXCell8i microprocessors manufactured by
an alliance led by IBM (International Business
Machines), hybrid systems (computing platforms
that seamlessly integrates multiple CPU archi-
tectures), HPC – high performance computing,
SSH/SFTP (Secure Shell and Secure File Trans-
fer Protocol – widely used communication pro-
tocols in computers data transfers) SPF (single
point of failure, showing a critical component
that can disrupt or stop the entire system from
normal work) and Beowulf systems (parallel com-
puter systems built from inexpensive PCs).

Using a middleware (that offers a set of ser-
vices) has the advantage of being easier to im-
plement and can be installed on top of the al-
ready existent equipment (both hardware and
software). Being message-oriented, can be easily
extended and allows dynamic reconfiguration of
the platform (for example when new resources

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_6/eInformatica2012Art3.pdf


40 Ovidiu Gherman, Stefan Gheorghe Pentiuc

are brought in the grid or crash and are removed
from the available pool). The middleware can be
extended so that new facilities can be attached.
Once a new resource is added to the resource
availability pool and properly set up (depending
on the particular configuration of the software
environment on that resource) it can be chosen
to run certain jobs (in a generic way or a specific
one – if it has a desired particularity).

2. Proposed Middleware Architecture

2.1. Introduction

The necessity of using large parallel and dis-
tributed computing systems required the cre-
ation of computing clusters – both homogeneous
and heterogeneous regarding the distribution of
hardware and software components. The most
difficult step is to control and manage them effi-
ciently and satisfactory for the user – goals that
sometimes are opposite.

The proposed architecture wants to be a
“glue” between parallel computing platforms that
use the grid infrastructure already on the lo-
cal resources (such as parallel clusters or Be-
owulf systems using MPI platforms – OpenMPI,
MPICH1/2, LAM-MPI – and/or hybrid plat-
forms like MPI on global level and PowerXCell
locally [1]) and to extend the functionality of
these systems, in the same time connecting them
in an unitary fashion, transparently to the user.
This middleware is built on top of the local op-
erating systems in order to benefit from the se-
curity and optimization layout of the OS and
parallel middleware, allowing fast development
and optimization.

The middleware architecture provides an easy
access method to numerous resources with dif-
ferent specifications, in which a set of services
are made available to the users, services that
allow to define a set of attributes required for
the execution of the programs (and the programs
themselves), with the actual process of allocation
and reservation of certain resources being made
automatically. Remote compilation and execu-
tion allows writing only one source code for a

given project (respecting the characteristics of
the desired target machine) and thus creating
platform-agnostic programs.

2.2. Resource Classification and
Performance Criteria

The proposed architecture uses a set of different
resources that are allocated to the incoming jobs.
For a more suitable planning, every resource can
be scored [2,3] as to ascertain the trustfulness of
the given resource regarding the online time ratio
V and the success ratio G (and to quantify the
level of QoS compliance). This way, the resources
can be classified for better QoS compliance (the
most reliable resources are the most used). Al-
though there are more parameters that can be
used to measure quantitative the QoS level [4],
the most meaningful in this case are:

V = timeonline
timetotal

(1)

and:

G = jobssuccesful
jobstotal

(2)

2.3. Layered Architecture

The proposed middleware amalgamates multi-
ple clusters and distributed general-use systems
into a unitary platform, under a centralized or
decentralized management system.

The parallel clusters have – usually – a local
management system that is highly optimized [5].
When multiple such clusters are interconnected
(even if those clusters are homogenous internally,
having identical components in the nodes and a
global parallel environment), the differences in
the platform, operating systems, middleware for
parallel applications or administration policies
can generate difficulties in the competent and
automatic allocation of the available resources
and in the seamless running of the client’s ap-
plications. This allows a better level of quality
of service also by simplifying the overall archi-
tecture and hiding the QoS penalties induced by
the computing systems themselves. Their opti-



Middleware Architecture for the Interconnection of Distributed and Parallel Systems 41

mization is executed apart, by the rightful ad-
ministrators, the management system (including
the resource broker) monitoring and scoring ev-
ery resource accordingly. This makes easier to
deploy the middleware across multiple parallel
and distributed systems and to create a unique
grid infrastructure. The scoring allows to employ
specific selection algorithms that will reserve the
most appropriate resource (depending on the
user’s requirements and his job’s requirements),
making possible to guarantee a certain level of
QoS. Supplementary modules can be employed
(future work) to obtain a greater redundancy
in executing jobs (checkpoint, job migration,
etc.) [6] and a superior QoS level, even for volatile
grids.

The proposed architecture uses multiple lay-
ers to describe the level of operation in the sys-
tem, as in Fig. 1.

The middleware uses the operating systems
mechanism to operate with the user files and
the communication systems, compiling and run-
ning them in the parallel application environ-
ments installed locally on every cluster (resource)
(usually MPI or MPI/hybrid) [7, 8]. It also em-
ploys the security layer already in use at the
cluster/node level. The communication protocols
are SSH/SCP/SFTP, used by virtually every

*nix OS used on the HPC (High Performance
Computing) systems and distributed systems in
use. Thus, no other security holes will be opened
in the security infrastructure, the systems will
be properly patched as part of the maintenance
requirements and the deployment will benefit
from a stable and tested protocol/security mod-
ule. The middleware will use the well known and
reliable facilities offered by the system itself.

Similar application are usually deployed for
dedicated platforms – high throughput comput-
ing like Condor Project [9] or distribution for
Beowulf clusters (such as Rocks Cluster). These
solutions are dedicated to job scheduling or clus-
ter management, lacking a lightweight approach
that allows using volatile resources or diverse
communities of parallel and distributed systems.

The deployment of the middleware will be on
top of the local grid infrastructure, at three levels:
user, resource manager (broker) and resource. It
will use every resource in conformity with its
particularities.

2.4. Architecture, Modules and
Functioning

The architecture of the middleware has three
main areas.

Figure 1. The layered architecture of the proposed middleware, built on top of the communication and
security mechanisms offered by the underlying operating systems.



42 Ovidiu Gherman, Stefan Gheorghe Pentiuc

The user (client) area, which represents the
only method of interaction between an autho-
rized user and the resources (without implicat-
ing a system administrator). Once the middle-
ware is set and configured, the interface allows
submitting jobs (along with the required at-
tributes) and retrieving the result of the jobs
either positive or negative if the job fails from
user fault (wrong instructions or conditions, er-
rors in programming, errors in algorithms, etc.)
or system fault (node malfunction, environment
problems, software failure, etc.) – all transparent
to the user. The error messages produced by
the operating system/middleware/software inter-
faces can be automatically analyzed or logged
for further study (since the module operates
on top of the software platform, it can record
the activities associated with the client appli-
cations). If no suitable resource is found the
job is aborted. The user must specify – along
the source code of the program – a set of at-
tributes that will define the requirements of the
job (number of CPUs, special software require-
ments, and particular hardware architectures –
such as the hybrid ones). These requirements,
along with the user’s profile (access rights, his-
tory, program’s nature and execution length)
will be factored in selecting a suitable resource
(with immediate execution or advance reserva-
tion).

The resource manager (the resource broker)
area must monitor the available resources (espe-
cially the volatiles ones – resources that often
come online/offline, completely or partially, or
those that have heavily variable performance)
in order to make an accurate and valid selec-
tion (suitable to the user and efficient for the
platform). Also, it must employ an algorithm to
select the suitable resources (based on resource
specifications, job requirements and user profile).
Because of the modularity of the middleware,
such multiple algorithms can be used (from the
simple to the most complex ones), allowing even
to benchmark those algorithms.

The resource manager must have a database
with the resources’ behaviour in order to make ac-
curate prediction regarding the suitability of the
resources. The monitoring module must be per-

manently online and in communication with the
resources, activity that can lead to signification
overhead at the manager level (in computation
and communication alike). It is best to use a
dedicated machine for this module. Since the
middlware uses communication methods already
present at the system-level, the informations can
be send as commands or data strings.

Also, a QoS module must be used to ensure
that the selected resource will run the job in
time. If a better performance than best-effort is
sought, a series of estimates must be generated
for every job – the estimated computation length
of the job and a programmed date for the start
of the program (for advanced reservation). The
job estimates can be generated by the user (and
mediated by that user’s history in giving accurate
predictions) for example. If a job is not executed
in the allotted time, the event is logged and used
for scoring the resource/algorithm.

The resource area will receive user jobs (with
the attributes and the broker’s instructions) and
will compile and run the requested jobs, in confor-
mity with the local parallel environment. Because
the compilation is local, the user has the flexibil-
ity in writing the source code (providing that he
specifies correctly the attributes). Every resource
(cluster or grid) will have its own environment,
with specific commands, that will be given in the
setup stage by the manager of that resource.

The resource area must also monitor the node
behaviour and must report to the resource man-
ager.

The proposed architecture of the middleware
is described in Fig. 2.

The platform must be modular, flexible, in
order to permit using multiple selection and plan-
ning algorithms to test their performance and
the resource consumption on the given QoS spec-
ifications. This is more important for the volatile
systems. If a parallel cluster is more reliable (it
is homogenous and has a compact nature), the
network outage (Internet) can influence greatly
(and easily) the volatility of the system based
on multiple parameters. There are 4 steps to be
taken in order to work: user-resource manager
communication, resource allocation, sending the
job in accordance with the allocation scheme,



Middleware Architecture for the Interconnection of Distributed and Parallel Systems 43

Figure 2. The architecture of the proposed middleware (GLUE).

taking back the processed job. Each activity is
logged and analyzed afterward.

One of the main vulnerability of this archi-
tecture is the use of a centralized unit to run
the resource manager components. This inserts
a single point of failure (SPF) vulnerability – in
the event that the unit crashes or loses the Inter-
net connection, the middleware becomes broken
(requiring recovery from the previous states, pos-
sibly with loss of information). There are at least
2 possible methods to avoid this vulnerability:
– Using multiple resource managers that run

synchronized; the loss of one unit is covered
by one of the neighbours. Every job analysis
and resource monitoring is repeated in all
units (but only one is active), so that no
information will be lost if the unit fails (Fig
3). To avoid the waste in terms of bandwidth
and CPU time (mainly as redundancy) if a
replication service for multiple manager mod-

ules is employed, only one manager will be
active, logging the results of different actions;
in the event of a crash, every other instance
(selected by a default order) can take its place,
losing only the current action (if any). This
way, a certain degree of redundancy is assured
and the possibility of a SPF is avoided.

– The resource manager can be completely de-
centralized. Every instance is running a cer-
tain number of connections (the users select
the managers in conformity with a default
order or randomly) so that the grid is de-
congested (using different units and differ-
ent communication routes). For efficient plan-
ning, at certain time moments the databases
must be synchronized (for efficiency and con-
sistency) between the managers. If a unit
crashes, its jobs and data can fallback to a
backup unit (losing only the current opera-
tion, if any) or can be taken by a neighbour



44 Ovidiu Gherman, Stefan Gheorghe Pentiuc

Figure 3. Schematic diagram using distributed (decentralized) resource managers.

unit. The users can download actualized lists
for the updated resource managers.

3. Conclusions

The proposed architecture brings advantages for
interconnecting clusters systems: the architecture
is modular (with modifiable modules and the
possibility to insert new selection algorithms),
flexible and portable, being written using Perl
scripting language (scripting language is flexible,
portable and powerful, allowing access to the
underlying architecture below the middleware
level). Also, the architecture provides increased
security because it uses a reliable security mech-
anism that is already in place at the OS level
and allows management of different clusters and
systems and easy upgrade to the software. The
middleware allows transparent, seamless appli-
cation build and execution for the user. Users
can specify certain particularities of the intended
target machine to help selection (for example

when having commodity hardware based clusters
or parallel and hybrid clusters). The applica-
tion itself is written in Perl, a known scripting
language that offers flexibility to the platform
and allows designing the work modules (and the
addition of new ones).

Some observed disadvantages are: the possi-
bility of SPFs at the resource management level
avoidable if the system is decentralized, as been
observed [10]; the resources crashing can – miss-
ing a recovery solution – lose jobs (worsening the
QoS compliance of the system); it cannot allow
execution of big jobs across multiple resources
(but allows the simultaneous execution of multi-
ple jobs on a resource, providing there are enough
free CPUs); computing the planning for resource
allocation can generate an overhead for complex
algorithms and an increased number of users
and resources (although the algorithm can be
parallelised for increased performance). Finally,
the middleware has a rather specific purpose and
reduced applicability outside it (e.g. not fit for
commercial domain).



Middleware Architecture for the Interconnection of Distributed and Parallel Systems 45

4. Future Work

The middleware will be expanded (functional-
ity-wise) in the future, including new selection
algorithms (for the resource manager), preparing
the source code to be error-tolerant and stable on
the diversity of available grid platforms, improv-
ing resource monitoring (increasing number of
relevant logged parameters), possibility to state
advanced reservation for certain jobs and plans
and others and – possibly – methods of increasing
the quality of service offered by preventing the
loss of jobs (for example by using job replication).

Acknowledgment

This paper was supported by the project
“Doctoral Burses at USV”, contract POS-
DRU/6/1.5/S/22, funded from European Social
Fund for Operational Sectoral for Human Re-
sources Development 2007-2013.

References

[1] O. Gherman, I. Ungurean, and S. G. Pentiuc,
“Principles of interconnecting a hybrid cluster in
a grid system,” 7th edition of National Scientific
Conference Distributed Systems, No. 7, Dec 2009.

[2] N. Fujimoto and K. Hagihara, “A comparison
among grid scheduling algorithms for indepen-
dent coarse-grained tasks,” International Sym-
posium on Applications and Internet Workshps
SAINT 2004, 2004.

[3] I. Goiri, F. Julia, O. Fito, M. Macias, and J. Gui-
tart, “Resource-level QoS metric for CPU-based

guarantees in cloud providers,” 7th International
Workshop on Economics of Grids, Clouds, Sys-
tems and Services GECON 2010, No. 7, 2010.

[4] S. Kalepu, S. Krishnaswamy, and S. W. Loke,
“Verity: a QoS metric for selecting web services
and providers,” 4th International Conference
on Web Information Systems Engineering Work-
shops WISEW’03, No. 4, 2003.

[5] O. Gherman, I. Ungurean, S. G. Pentiuc, and
O. Vultur, “Data communication in a HPC hy-
brid cluster and performance evaluation,” 10th
International Conference on Development and
Application Systems DAS 2010, No. 10, May
2010.

[6] C. Dabrowski, “Reliability in grid computing
systems,” The Special Issue of the Open Grid
Forum (OGF) Journal – Concurrency and Com-
putation: Practice and Experience, Vol. Volume
21, No. 8, 2009.

[7] K. Koch, “Roadrunner platform overview,”
Roadrunner Technical Seminar Series, Los
Alamos National Laboratory, SUA, Technical
report, 2008.

[8] C. Kessler, “Programming techniques for the
cell processor,” Multicore Day Seminar, Sweden,
Technical report, 2009.

[9] T. Tannenbaum, D. Wright, K. Miller,
and M. Livny, “Condor – a distributed
job scheduler,” http://www.cs.wisc.edu/condor/
doc/beowulf-chapter-rev1.pdf, 2001, chapter
15, research project at the Unversity of
Wisconsin-Madison.

[10] R. Buyya, D. Abramson, and J. Giddy, “An econ-
omy driven resource management architecture
for global computational power grids,” Proceed-
ings of the International Conference on Parallel
and Distributed Processing Techniques and Ap-
plications PDPTA 2000, 2000.

http://www.cs.wisc.edu/condor/doc/beowulf-chapter-rev1.pdf
http://www.cs.wisc.edu/condor/doc/beowulf-chapter-rev1.pdf

	Introduction
	Proposed Middleware Architecture
	Introduction
	Resource Classification and Performance Criteria
	Layered Architecture
	Architecture, Modules and Functioning

	Conclusions
	Future Work
	Acknowledgment
	References


