
e-Informatica Software Engineering Journal, Volume 6, Issue 1, 2012, pages: 61–70, DOI 10.5277/e-Inf120105

Towards Automation Design Time Testing
of Web Service Compositions

Dessislava Petrova-Antonova∗, Sylvia Ilieva∗, Ilina Manova∗∗, Denitsa Manova∗∗

∗Sofia University, Faculty of Mathematics and informatics
∗∗Rila Solutions

d.petrova@fmi.uni-sofia.bg, sylvia@acad.bg, ilinam@rila.bg, denitsat@rila.bg

Abstract
Service-Oriented Architectures (SOA) allows software applications to interoperate in a new way
in distributed environment. Currently, web services are the most widely adopted technology for
implementation of SOA. However, they bring a number of challenges to development as well as to
testing. Testing web service compositions is one of the major problems in SOA domain that is
due to the unknown context, absence of web service source code, multiple provider coordination,
lack of tool support, etc. In such context, the paper proposes a framework, named Testing as
a Service Software Architecture (TASSA), which aims to provide design time testing of both
functional and nonfunctional behavior of web service compositions described with Business Process
Execution Language (BPEL). TASSA consists of set of tools that can be used together with existing
development environments of service based applications. The paper focuses on an approach for
negative testing and unit testing of BPEL processes. The negative testing is supported by TASSA
tool, called Fault Injector tool, which implements a fault injection technique providing message
delays, wrong message data, etc. The goal of unit testing is to test a BPEL process in isolation
from its dependent web services. The isolation technique is implemented in another TASSA tool,
named Isolation tool.

1. Introduction

Service-Oriented Architecture (SOA) is a dom-
inant paradigm for design and development of
distributed and interoperable software applica-
tions. The most widely adopted approach to SOA
implementation is web services based on stan-
dards such as SOAP, WSDL and UDDI. Testing
such implementations is challenging for various
reasons. It is difficult to simulate all possible con-
figurations and loads during testing process due
to dynamic nature of web services and their con-
sumers, varying load on SOA infrastructure and
underlying network [1]. In addition, web services
are outside of the control of consumers, leading
to potential misunderstandings between parties.

The need of automation of SOA testing pro-
cess results in targeting of many research efforts

to SOA domain. There are separate testing tools
and complex proprietary frameworks that can
be used for testing of web service compositions,
but open, a complete solution that meets SOA
testing challenges is still missing. This paper ad-
dresses this problem by proposing a framework,
named Testing as a Service Software Architec-
ture (TASSA). The main goal of TASSA is to
support the testing, validation and verification
of both functional and nonfunctional behavior
of web service compositions at design time [2].
It consists of set of tools that can be used to-
gether with existing development environments
of service based applications. This paper focuses
on two of TASSA tools, namely Fault Injection
tool and Isolation tool that respectively provide
functionality for negative testing and unit test-
ing of web service compositions described with

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_6/eInformatica2012Art5.pdf

62 Dessislava Petrova-Antonova, Sylvia Ilieva, Ilina Manova, Denitsa Manova

Business Process Execution Language (BPEL).
The goal of the negative testing is to test the
BPEL process in case of message delays, errors in
message data, wrong business logic, etc. The unit
testing aims to test the BPEL process in isolation
from its partner web services. The essence of fault
injection and isolation techniques as well as their
automation and application to real scenario are
presented in the paper.

The content of the paper from this point for-
ward is organized as follows. Section 2 introduces
current approaches for web service composition
testing. Section 3 presents TASSA tools. Section
4 shows experimental results from execution neg-
ative test cases over a sample BPEL process in
TASSA framework. Finally, section 5 concludes
the paper.

2. Related work

The BPEL inherently brings a challenge for test-
ing due to its specific syntax, dynamic binding
during execution and the fact that it integrates
web services implemented by various providers.
This section presents a review of various tech-
niques, methods and tools that meet this chal-
lenge. The generation of the test suite for basis
path testing of WS-BPEL and an accompanying
tool that can be used by service testers are pre-
sented in [3]. The proposed testing tool does not
support all XML schema data types in the gen-
eration of test data (only integer, float, boolean,
and string are supported). Also, only sequence,
condition, and repetition patterns of control are
allowed. The tool does not consider infeasible
paths that cannot be accessed. In [4] the au-
thors propose a gray-box testing approach that
has three key enablers: test-path exploration,
trace analysis, and regression test selection. In
order to improve the preciseness of the gener-
ated test paths IBM BPEL extensions, like Java
snippets, need to be handled. The experimen-
tal results show that the test-generation time
is linear to the number of test paths searched.
Thus a more efficient generation algorithm is
needed to avoid the performance problem for
complex processes. In [5] a formal model for an

abstract-based workflow framework that can be
used to capture a composed web service under
test is introduced. It is focusing on verifying,
based on structural-based testing strategies that
a composed web service can function correctly
according to its semantic, activities and data de-
pendencies. In [1] the authors use High-level Petri
nets (HPNs) to model BPEL web service compo-
sition. The relationship between BPEL concep-
tions and HPNs is specified in four levels accord-
ing to inter-service, intra-service, inter-activity,
and intra-activity. In [6] a model-driven approach
toward generating executable test cases for the
given business process is presented. Its drawback
is that the generated test cases still needs some
effort to develop the adapter and codec to run.
In [7] WSA is proposed to model concurrency,
fault propagation, and interruption features of
BPEL process. A model checking based test case
generation framework for BPEL is implemented.
An open issue is to prove the correctness of the
model transformation. The approach in [10] is
more applicable to programs without complex
variable sharing or process interaction patterns.
The messages’ maximum enablement is limited to
one time during the transformation of BPEL pro-
cess into Extended Control Flow Graph XCFG.
Also, the exception handling logic does not af-
fect the other running threads, which run to
undisturbed completion. An advantage of the
approach is that it is modularized so that it can
be used together with other testing technologies.
It avoids the state space explosion problem and is
applicable for programs in which concurrent com-
putation units have only very few or no shared
variables or other types of synchronization. In [8]
an approach to unit testing of WS-BPEL and
a tool prototype extending JUnit are presented.
The proposed BPEL-Unit provides the following
advantages: allow developers simulate partner
processes easily, simplify test case writing, speed
test case execution, and enable automatic re-
gression testing. In [9] the authors propose a
layer-based approach to creating frameworks for
repeatable, white-box BPEL unit testing, which
is applied to new testing framework. The frame-
work does not provide much support in test case
creation and the monitoring of the PUT. Devel-

Towards Automation Design Time Testing of Web Service Compositions 63

Table 1. Comparison of BPEL testing approaches

Approach EH FH A ER TCG NT
Lertphumpanya [3] no no yes yes yes no
Li [4] yes yes yes yes yes no
Karam [5] no no no no no no
Yuan [6] no no yes yes yes no
Zheng [7] yes yes yes no yes yes
Li [8] no no yes yes yes no
Mayer [9] no no yes no yes yes
Dong [1] no no yes yes yes no
Yan [10] yes yes no yes yes no
Karam [5] yes yes yes yes yes yes

opers have to manually prepare large amount
of coherent XML data and XPath expression to
compose a test case. This is a painstaking task
considering the complex structure of involved
XML data. The results from comparison analy-
sis of the current BPEL testing approaches are
shown in Table 1. More detailed results can be
found in [11].

The most of the authors propose to transform
the BPEL process into intermediary model using
CFG, HPN, etc. in order to find the executable
paths of the process and generate test cases.
Some of the approaches do not cover all BPEL
activities during transformation. That is why the
table has columns that show which approaches
consider event handling (EH) and fault handling
(FH) BPEL activities. The forth column of the
table, called Automated (A), shows which ap-
proaches are implemented as tools or frameworks
that are ready to use by testers. The next ta-
ble column, named Experimental results (ER)
indicates which of the approaches are proved
via case studies, experimental results, etc. Only
one of the approaches does not provide test case
generation (TCG). This can be seen from column
before the last one. And finally, the last column
shows which of the approaches supports negative
testing (NT).

3. TASSA tools

The TASSA framework consists of several tools
that can be used jointly to achieve end-to-end
testing of BPEL processes. The architecture of
TASSA framework is presented on Figure 1.

In this section the cooperation of TASSA
tools with the focus of Fault Injection and Isola-
tion tools is presented. The main task of Fault
Injection tool, called faultInjector, is to simulate
faults during message exchange in order to gen-
erate negative test cases. The possible situations
that are simulated are (1) overload of the commu-
nication channel that leads to delay of sending
or receiving a message, (2) failure of the com-
munication channel that leads to impossibility
of sending or receiving a message, (3) noise in
communication channel that leads to receiving a
message with syntax and structure errors, and
(4) wrong business logic of particular web service
that leads to sending or receiving a message with
syntax errors in its data. faultInjector takes as in-
put a BPEL process under test, a list with failure
parameters that describes the above situations
and a string with values, which correspond to the
arguments of the activity causing the failure. It
returns a transformed BPEL process with simu-
lated failure. The fault injection process consists
of the following steps:
– identification of message exchanged when the

failure is simulated,
– modification of communication channel, so

that the failures expected by the tester occur,
– modification of an activity that corresponds

to the message in order to send message to
the proxy created between the message sender
and receiver,

– serialization of input arguments of the real
receiver (marshalling),

– invocation of the proxy,
– deserialization of output arguments and send-

ing to the real receiver (unmarshalling).

64 Dessislava Petrova-Antonova, Sylvia Ilieva, Ilina Manova, Denitsa Manova

Figure 1. Architecture of TASSA framework

Similar steps are performed for the response
of the invocation.

The formal representation of the process of
marshalling and unmarshalling is as follows:

o = invoke(i1, i2, ..., in)
o = Unmarshal(ProxyInvoke(Marshal(i1, i2, ..., in), R))
where i1, i2, ..., in are the real arguments of

the modified Invoke activity, o is the original
output data, Marshal and Unmarshal are the
embedded BPEL functions for marshalling and
unmarshalling, and ProxyInvoke is the call of the
proxy with failure parameters specified by R.

The proposed approach is applicable only to
invoke activities because their corresponding ex-
change of the messages is initiated by the BPEL
process. It is necessary condition for the real-
ization of the approach because activities for
marshalling and unmarshalling need to be placed
round the initiator of the message exchange.

The values passed to faultInjector are gen-
erated from a tool, called Value Generation
Tool (VGT). Its goal is to generate valid val-
ues for all field of a given variable defined with
XML Schema Definition (XSD). The main func-
tionality of VGT is provided by a tool, called
WS-TAXI, which is developed by a research team
of Software Engineering Research Laboratory
at the ISTI - Istituto di Scienza e Tecnologie
dell’Informazione A.Faedo in Pisa. WS-TAXI
generates compliant XML instances from a given
XML Schema by using well-known Category
Partition technique [12]. VGT takes as input
a BPEL process under test and an array with
identifiers of variables, whose values need to be
generated.

The array of variables is produced by a tool,
called Data Dependency Analysis Tool (DDAT)
[2]. For a given path of the BPEL process DDAT
finds all conditional activities along the path
and specifies which variables affect those condi-
tional activities. It receives as input a BPEL
process and an array of unique identifiers of
activities, describing the path that the BPEL
process needs to follow. The path is generated by
a tool, called Test Case Generation Tool (TCGT).
TCGT solves two tasks. Its first task is to iden-
tify all paths of a given BPEL process in order
to assist the tester in the process of test case
generation. The second task of TCGT is to en-
sure management capabilities and storage for
test cases.

The output of DDAT is also needed for a tool,
named Isolation Tool (IsT). IsT provides tempo-
rary removal of BPEL process dependencies from
one or more external web services. This allows
the tester to control the web service returned
results and pre-determine the possible routines
in the BPEL process, as well as to continue test-
ing even if a particular web service is missing.
The BPEL process’s dependency upon external
services can be described as follows:
– synchronous execution of operation provided

by an external service (Invoke activity in the
BPEL process description),

– asynchronous execution of operation provided
by an external Service (combination of Invoke
and Receive activity in the BPEL process
description),

– unforced message receipt from external ser-
vice (Pick activity),

Towards Automation Design Time Testing of Web Service Compositions 65

Table 2. Replacement of the BPEL process activities

Original Activity Replacement Activity
Synchronous Invoke Assign
Asynchronous Invoke Empty
Receive Assign
Reply Empty
Pick/OnAlarm Wait and OnAlarm branch
Pick/OnMessage Assign and OnMessage branch
HumanTask Invoke

– sending message to external service (resulting
from an ingoing message),

– HumanTask activity, which requires human
intervention and which affects the application
through its output data (operator-entered
values).
Invoke activity is modeled with following ex-

pression:
o = f(i1, i2, ..., in, R)
Herein the letter f denotes the functionality

of the operation provided by the external service,
i1, i2, ..., in are the input parameters of the opera-
tion, o is the returned result, and R is additional
parameters of the activity not directly related to
the operation execution.

To eliminate the dependency upon f the fol-
lowing modifications are necessary to isolate the
BPEL process from operation 1:
– Modification of the process, where the rele-

vant Invoke activity is replaced with Assign
activity to assign the output variable o spe-
cific values set by the user;

– When isolating the process from one activity
there is created a test artifact (a variant of the
BPEL process, in which the Invoke activity
is replaced by an Assign activity).
The other dependencies are handled in a sim-

ilar way, e.g. in the asynchronous mode for op-
eration call (Invoke and Receive), the Invoke
activity is replaced by the Empty activity (as
it does not influence it) and Receive activity is
replaced by Assign activity. Table 2 illustrates
the mechanisms for isolation of the process from
the different dependencies.

Through the cooperation of the above de-
scribed tools the automation of the functional
testing is largely achieved. Furthermore, lack of
functionality for automation of testing in con-
ditions of poor or unavailable communication

channels with remote services is to a great ex-
tent overcome. Automation of negative testing
is also supported.

4. Application of fault injection and
isolation techniques in TASSA
framework

This section presents the interoperability be-
tween faultInjector and IsT of TASSA framework.
The tools are verified through testing of sample
BPEL process, called Order Data Verifier Busi-
ness Process (ODVBP). The process consists of
four web services that are described in Table 3.

ODVBP uses the web services presented in
Table 3 to validate the clients order data, namely
email, credit card number and Zip code. It also
retrieves the state abbreviation form Zip code
and converts the total amount of the order into
appropriate currency according to current rate.

Listing 1 shows an invoke activity, called
CardValidatorInvoke, that is responsible for in-
vocation of web service for validation of client
credit card number.
<invoke name="CardValidatorInvoke"

partnerLink="CardValidatorPartner"
operation="Validate_CreditCard"
xmlns:tns="http://www.Softwaremaker.Net/
WebServices/" portType=
"tns:ValidatorSoap"
inputVariable="Validate_CreditCardIn"
outputVariable="Validate_CreditCardOut">

</invoke>
Listing 2 shows transformation of the above

activity after execution of faultInjector and IsT
of TASSA framework.
<assign name="Assign1">

<copy><from>

66 Dessislava Petrova-Antonova, Sylvia Ilieva, Ilina Manova, Denitsa Manova

Table 3. Web services called from Order Data Verifier Business Process
Web service Description
Email Validator Validates email addresses for client applications
Credit Card Validator Validated credit card number and type
Currency Convertor Get conversion rate from one currency to another currency
Zip Code Validator Validate Zip code and returns USA state abbreviation,

latitude (decimal degrees) and longitude (decimal degrees)

sxxf:doMarshal($Validate_CreditCardIn.parameters)
</from><to>

$ProxyInvokeOperationIn.operationIn/tassaP:part1
</to></copy>

<copy><from>
’http://www.softwaremaker.net/webservices/
swm/validator/validator.asmx?WSDL’

</from><to>
$ProxyInvokeOperationIn.operationIn/
tassaP:endpoint

</to></copy>
<copy><from>20</from><to>

$ProxyInvokeOperationIn.operationIn/tassaP:wait
</to></copy>

<copy><from>0</from><to>
$ProxyInvokeOperationIn.operationIn/
tassaP:errorsFactor

</to></copy>
</assign>
<invoke xmlns:tns="http://www.rila.com/tassa/ProxyInvoke"

inputVariable="ProxyInvokeOperationIn"
name="ZipCodeInvoke"
operation="ProxyInvokeOperation"
outputVariable="ProxyInvokeOperationOut"
partnerLink="PartnerLink1"
portType="tns:ProxyInvokePortType"/>

<assign name="Assign2">
<copy>

<from>
sxxf:doUnMarshal($ProxyInvokeOperationOut.part2)

</from>
<to part="parameters"

variable="Validate_CreditCardOut"/>
</copy>

</assign>
In order to generate transformed BPEL pro-

cess faultInjector and IsT need a configuration
information that describes the simulated failures
as follows:
– Wait interval: an integer value that defines

the delay of message seconds in seconds,

– Error factor: an integer value that that de-
fines the kind of error will be injected (1–100:
insert random errors in the data, which would
possible break the XML structure; 0: usually
used with Wait interval to delay the message;
−1: replace the original values in the message;
−2: interrupt the message),

– End point address: an end point address of
the partner web service,

– Activity variables: input and output variables
of the activity that will be injected.
As can be seen from Listing 1 and Listing 2,

the Invoke activity, named CardValidatorInvoke,
is enclosed with two additional Assign activi-
ties. The first Assign activity initializes the input
parameters of ProxyInvoke operation of faultIn-
jector. The parameters are as follows:
– Serialized input arguments of card validator

operation of Credit Card Validator web ser-
vice;

– End point address of the Credit Card Valida-
tor web service;

– Wait interval initialized with 20;
– Error factor initialized with 0.

The second Assign activity copies deserialized
result from invocation of ProxyInvoke operation
of faultInjector to the output variable of the
Credit Card Validator web service. In addition,
CardValidatorInvoke activity invokes ProxyIn-
voke operation instead actual Credit Card Val-
idator web service.

faultInjector is validated through four test
cases that correspond to its possibility of faults
generation:
– Test Case 1: Message delay
– Test Case 2: Interruption
– Test Case 3: Noise in the message structure
– Test Case 4: Noise in the message data

To prove the fault injection against normal
behavior of the process first the standard use
case should be observed:

Towards Automation Design Time Testing of Web Service Compositions 67

Table 4. Configuration data

Data Description
wait=20 Error factor
error_ratio=0 Wait interval
http://www.softwaremaker.net/webservices/swm/validator/validator.asmx? End point address
WSDL
$Validate_CreditCardIn.parameters=$Validate_CreditCardOut.parameters Activity variables

Table 5. Expected outputs from test cases

Test case Description
Test case 0 Meaningful, well formed message that is executed in time interval ti.
Test case 1 Meaningful, well formed message that is executed in time interval ti + T ,

where T is the delay given as a failure parameter.
Test case 2 Error message, because of interruption
Test case 3 Error message, because of wrong structure
Test case 4 Well formed message with a random or invalid data

Table 6. Input data of Order Data Verifier Business Process

Test data Test data values Remark
Input1 <ord1:firstname>John</ord1:firstname> Valid data

. . . <ord1:currencycode>EUR</ord1:currencycode>
Input2 <ord1:creditcardnumber>5374439468966228000 Invalid credit card

</ord1:creditcardnumber> number
Input3 <ord1:email>dessislava.g.petrovagmail.com</ord1:email> Invalid email
Input4 <ord1:postalcode>070930</ord1:postalcode> Invalid zip code

– Test Case 0: No fault injection (normal be-
havior)
The expected outputs from each test case are

described in Table 5.
Test data are generated according to the XSD

schema of ODVBP. They are presented in Ta-
ble 6.

Table 7 presents the possible output results
from execution of ODVBP.

Test case 0 includes tests representing nor-
mal behavior of the BPEL process. The tests
correspond to the input data presented in Table
6, namely Input 1, Input 2, Input 3 and Input 4.
The results form test executions are respectively
Output 1, Output 2, Output 3 and Output 4.
All tests are performed approximately for about
5.714 seconds.

The results from execution of the rest test
case are presented in Table 8, Table 9, Table 10
and Table 11. As can be seen from the tables, all
tests are passed, which means that the faultIn-
jector successfully detects the faults injected in
the business process.

In Test Case 1 (Message delay) the output
data is the same as in Test Case 0 (Normal be-
havior), but the execution time is longer due to
simulated delay. It is obvious that the execution
time of Test Case1 differs from the execution
time of Test Case 0 in the delay given as a fail-
ure parameter. For example, the Wait interval
of the test for Validate_CreditCard operation
is 10s. Therefore, the execution time of this test
is equal to the execution time of corresponding
test in Test Case 0 plus 10s.

During execution of Test Case 2 and Test
Case 3, the BPEL process fails, due to impossi-
bility of sending or receiving a message as well
as corruption of message data. These faults are
not handled by the sample BPEL process, so
here the negative test cases catch a bug in the
business logic, which is the main idea of testing
BPEL processes against fault injections.

In Test Case 4 (Noise in the message data)
faultInjector simulates wrong business logic of a
web service by corruption of the received message
with invalid data. The first test of this test case

68 Dessislava Petrova-Antonova, Sylvia Ilieva, Ilina Manova, Denitsa Manova

Table 7. Output data of Order Data Verifier Business Process

Result data Test data values
Output1 <ns0:firstname>John</ns0:firstname>

. . .
<ns0:total>141.74</ns0:total>
<ns0: currencycode>EUR</ns0:currencycode>
<ns0:ordererrors>Validation is successful.</ns0:ordererrors>

Output2 <ns0: ordererrors >ERROR: Invalid Credit Card</ns0:ordererrors>
Output3 <ns0: ordererrors >ERROR: Invalid email</ns0:ordererrors>
Output4 <ns0: ordererrors >ERROR: Invalid Zip Code</ns0:ordererrors>
Output5 exMessage: disconnected
Output6 BPCOR-6130: Activity Name is CardValidatorInvoke

Caused by: javax.xml.soap.SOAPException: javax.xml.stream . . .
Message: An invalid XML character was found in the element
content of the document

Output7 BPCOR-6130: Activity Name is EmailInvoke
Caused by: javax.xml.soap.SOAPException: javax.xml.stream . . .
Message: An invalid XML character was found in the element
content of the document

Output8 BPCOR-6130: Activity Name is ZipCodeInvoke
Caused by: javax.xml.soap.SOAPException: javax.xml.stream . . .
Message: An invalid XML character was found in the element
content of the document

Table 8. Test Case 1 execution results
Wait Error factor Operation Input Output Test result Execution
interval time (s)
wait=10 error_ratio=0 Validate_CreditCard Input1 Output1 Passed 15.714s
wait=20 error_ratio=0 ValidateEmail Input2 Output2 Passed 25.714s
wait=15 error_ratio=0 ConversionRate Input3 Output3 Passed 20.714s
wait=20 error_ratio=0 ValidateZip Input4 Output4 Passed 25.714s
wait=10, error_ratio=0, ConversionRate, Input1 Output1 Passed 25.714s
wait=10 error_ratio=0 ValidateZip
wait=10, error_ratio=0, Validate_CreditCard, Input1 Output1 Passed 30.714s
wait=15 error_ratio=0 ValidateEmail

Table 9. Test Case 2 execution results
Wait Error factor Operation Input Output Test result Execution
interval time (s)
wait=0 error_ratio=-2 Validate_CreditCard Input1 Output5 Passed 8.425s
wait=0 error_ratio=-2 ValidateEmail Input2 Output5 Passed 8.145s
wait=0 error_ratio=-2 ConversionRate Input3 Output5 Passed 8.412s
wait=0 error_ratio=-2 ValidateZip Input4 Output5 Passed 8.345s

Table 10. Test Case 3 execution results
Wait Error factor Operation Input Output Test result Execution
interval time (s)
wait=0 error_ratio=40 Validate_CreditCard Input2 Output6 Passed 5.194s
wait=0 error_ratio=40 ValidateEmail Input3 Output7 Passed 6.594s
wait=0 error_ratio=40 ValidateZip Input4 Output8 Passed 7.194s

Towards Automation Design Time Testing of Web Service Compositions 69

Table 11. Test Case 4 execution results
Wait Error factor Operation Input Output Test result Execution
interval time (s)
wait=0 error_ratio=-1 ValidateEmail Input2 Output1 Passed 4.086s
wait=0 error_ratio=-1 ConversionRate Input2 Output2 Passed 6.411s
wait=0 error_ratio=-1 ValidateZip Input2 Output2 Passed 4.014s

shows that this leads to wrong data values com-
paring with the expected ones in Test Case 0, or
even to incorrect workflow.

The obtained results show that faultInjector
is suitable for generation of different types of
faults, which leads to the possibility of using
TASSA framework for negative testing of BPEL
processes.

5. Conclusion

This paper presents TASSA Framework, which
offers approach for web service compositions test-
ing by automating the testing process. Currently,
it supports only design time testing, which is pro-
vided by five tools, composed as services itself,
which integrated together offer to developers and
service integrators the complete environment for
functional testing of BPEL processes. Through
integration of faultInjector tool in TASSA frame-
work the negative testing is also achieved. This
allows testing of BPEL processes in conditions
of poor or unavailable communication channels
with remote services. Furthermore, the testing
process can be performed in isolation of external
partner web services of the BPEL process under
test due to possibility of Isolation Tool to remove
dependency from them. The experimental results
from validation of the testing approach through
simple business process are presented.

Our future work will concentrate on develop-
ing complete testing methodology and validation
of all TASSA framework tools over more complex
BPEL processes.

Acknowledgment

The authors acknowledge the financial support
by the National Scientific Fund, BMEY, grant
agreement no. DO02–182 and SISTER project,

funded by the European Commission in FP7–SP4
Capacities via agreement no. 205030.

References

[1] L. Dong, H. Yu, and Y. Zhang, “Testing
BPEL-based web service composition using
high-level Petri Nets,” in Proceedings of the
IEEE International Enterprise Distributed Ob-
ject Computing Conference, 2006, pp. 441–444.

[2] I. Spassov, D. Petrova-Antonova, V. Pavlov, and
S. Ilieva, “DDAT: Data dependency analysis tool
for web service business processes,” in Second
International Workshop on Software Quality SQ,
June 2011, pp. 232–243.

[3] T. Lertphumpanya and T. Senivongse, “Ba-
sis path test suite and testing process for
WS-BPEL,” WSEAS Transactions on Comput-
ers, Vol. Volume 7, No. 5, pp. 483–496, 2008.

[4] J. Li, H. Tan, H. Liu, J. Zhu, and N. Mit-
sumori, “Business-process-driven gray-box SOA
testing,” IBM Systems Journal, Vol. Volume 47,
pp. 457–472, 2008.

[5] M. Karam, H. Safa, and H. Artail, “An abstract
workflow-based framework for testing composed
web services,” in International Conference on
Computer Systems and Applications (AICCSA),
2007, pp. 901–908.

[6] Q. Yuan, J. Wu, C. Liu, and L. Zhang, “A model
driven approach toward business process test
case generation,” in 10th International Sympo-
sium on Web Site Evolution (WSE), 2008, pp.
41–44.

[7] Y. Zheng, J. Zhou, and P. Krause, “An automatic
test case generation framework for web services.
journal of software,” Journal of Software, Vol.
Volume 2, No. 3, pp. 64–77, 2007.

[8] J. Li and W. Sun, “BPEL-Unit: JUnit for BPEL
processes,” in Service-Oriented Computing, IC-
SOC, 2006, pp. 415–426.

[9] P. Mayer and D. Lubke, “Towards a BPEL unit
testing framework,” in Proceedings of the work-
shop on Testing, analysis, and verification of
web services and applications, 2006, pp. 33–42.

[10] J. Yan, Z. Li, Y. Yuan, W. Sun, and J. Zhang,
“Bpel4ws unit testing: Test case generation using
a concurrent path analysis approach,” in Proc.

70 Dessislava Petrova-Antonova, Sylvia Ilieva, Ilina Manova, Denitsa Manova

of ISSRE. IEEE Computer Society, 2006, pp.
75–84.

[11] D. Petrova-Antonova, I. Krasteva, and S. Ilieva,
“Approaches facilitating WS-BPEL testing,” in
17th Conference on European Systems and
Software Process Improvement and Innovation,

September 2010, pp. 5.1–5.17.
[12] C. Bartolini, A. Bertolino, E. Marchetti, and

A. Polini, “WS-TAXI: A WSDL-based testing
tool for web services,” in International Confer-
ence on Software Testing Verification and Vali-
dation, 2009, pp. 326–335.

	Introduction
	Related work
	TASSA tools
	Application of fault injection and isolation techniques in TASSA framework
	Conclusion
	Acknowledgment
	References

