e-Informatica Software Engineering Journal, Volume 7, Issue 1, 2013, pages: 45-52, DOI 10.5277/e-Inf130105

From Principles to Details: Integrated Framework

for Architecture Modelling of Large Scale
Software Systems

Andrzej Zalewski*, Szymon Kijas*
* Institute of Automatic Control and Computational Engineering, Warsaw University of Technology

a.zalewski@elka.pw.edu.pl, s.kijas@elka.pw.edu.pl

Abstract

There exist numerous models of software architecture (box models, ADL’s, UML, architectural
decisions), architecture modelling frameworks (views, enterprise architecture frameworks) and even
standards recommending practice for the architectural description. We show in this paper, that
there is still a gap between these rather abstract frameworks/standards and existing architecture
models. Frameworks and standards define what should be modelled rather than which models
should be used and how these models are related to each other. We intend to prove that a less
abstract modelling framework is needed for the effective modelling of large scale software intensive
systems. It should provide a more precise guidance kinds of models to be employed and how
they should relate to each other. The paper defines principles that can serve as base for an
integrated model. Finally, structure of such a model has been proposed. It comprises three layers:
the upper one — architectural policy — reflects corporate policy and strategies in architectural
terms, the middle one —system organisation pattern — represents the core structural concepts
and their rationale at a given level of scope, the lower one contains detailed architecture models.
Architectural decisions play an important role here: they model the core architectural concepts
explaining detailed models as well as organise the entire integrated model and the relations between
its submodels.

1. Introduction

Large scale software intensive systems are built
to serve country- or worldwide organisations em-
ploying thousands of users. They span across
the organisation’s entities and locations often
needing to cope with distributed data storage
management and processing. The research pre-
sented in this paper has been motivated by the
lack of effective approaches to the modelling of ar-
chitecture of such systems. This is caused by the
gap existing between the modelling frameworks
and software architecture models.

The modelling frameworks classify informa-
tion describing system structure rather than in-
dicate precisely how this information should be
represented with appropriate architecture mod-
els. On the other hand, existing models and
modelling approaches usually represent selected
viewpoint on system architecture, however it is
not clear how these different models should be
integrated to create an effective architecture mod-
elling engine.

The research envisaged in this paper is aimed
at integrating various models and modelling ap-
proaches into a uniform, integrated framework

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_7/eInformatica2013Art5.pdf

46

Andrzej Zalewski, Szymon Kijas

providing a precise guidance on employed models
and structure of their relations. The rest of the
paper is organised as follows: state-of-the-art in
architecture modelling is analysed in section 2,
section 3 presents the basic rulesguiding the de-
sign of an integrated architecture model, section
4 contains a proposition of such an integrated
architecture model illustrated with a real world
example, concept summary and range of further
research comprise section 5.

2. State-of-the-art in Architecture
Modelling

Architectural description of software-intensive
systems seems to be a well established practice. It
is defined by IEEE Std 1471-2000 and draft stan-
dard ISO/IEC 42010:2007 [1]. These standards
comprise the most important concepts of the
architecture genre as: stakeholders’ viewpoints,
stakeholders’ concerns, architecture views [2] and
even architecture rationale [3]. However, these
standards do not indicate how architecture mod-
elling should be done in practice, i.e. what kind
of models shall be used, how such a suite of archi-
tecture models should be organised, verified etc.

We argue that this challenge have not been
met yet at least in case of the modelling of large
scale software systems. The above standards are
rather of a declarative than of an imperative
style.

Enterprise architecture frameworks as Zach-
man Framework [4,5] or The Open Group Archi-
tecture Framework (TOGAF) [6] belong to the
same declarative genre: they classify information
describing architecture neither indicating how
this information should be represented and what
models shall be applied nor how different classes
of information are interwoven and interact with
each other.

On the other hand, there is a large variety of
architecture description languages (ADL). ADL’s
as ACME, Wright, Aesop, UniCona and xADL
(for full reference see [7]) have not reached the
level of industrial application maturity. In con-
trast: Unified Modeling Language (UML) plays
a role of an industrial standard, however, because

of its origin, it is rather recognized as a set of
models of software than system architecture. No
wonder, UML is mainly applied in the context
of 441 views [2] of software architecture (logical
view, process view, physical view, development
view, scenarios).

Architectural decisions [8,9] are often per-
ceived as another wave in architecture modelling
— compare “third epiphany” in [3]. The idea that
systems architecture, as every design, results
from a set of decisions seems to be strongly
appealing to both engineers and scientists. Ar-
chitectural decisions can potentially represent
any architectural concept belonging to any archi-
tectural view [3]. On the contrary to the other
architecture models as UML or ADL’s architec-
tural decisions help to capture design rationale,
which is a part of tacit knowledge which usually
evaporates as soon as design is ready or as archi-
tect is gone. This ability to capture design intent
is perceived as the most important advantage
that architectural decisions provide.

However, hopes that architectural decisions
alone will become an effective model of software
architecture seem to be unfounded, especially in
case of large scale software systems. The funda-
mental limitations of this modelling approach
have been investigated in our former paper [10].
Architectural decisions are represented as text
records, sometimes accompanied with illustrating
diagrams [11]. The limitations of textual models
are well-known in the genre of software engineer-
ing. Therefore, sets of hundreds of architectural
decisions necessary to sufficiently represent ar-
chitecture of a large system, are difficult to com-
prehend, analyse, verify and ensure completeness
and consistency or even just to navigate through
them.

This creates a substantial risk that modelling
approaches based only on architectural decisions
will collapse under their own weight as they cre-
ate complexity of their own rather than helping
to control complexity of system architecture. The
effort and cost necessary to create and maintain
such a large set of architectural decisions can
discourage engineers and managers from using
them at all. The existence of standards (e.g.
IEEE-1471) and commercial modelling frame-

From Principles to Details: Integrated Framework for Architecture Modelling of Large Scale Software Systems 47

works (e.g. TOGAF) should indicate that archi-
tecture modelling have matured to the industrial
application. However, the gap between the declar-
ative standards/frameworks and concrete archi-
tecture models still exists. For this reason, newer
frameworks and models still emerge — compare
recent developments: architectural decisions [12],
recent versions of TOGAF [6] or Archimate nota-
tion and modelling approach [13] both promoted
by The Open Group.

The challenge is to make an efficient mod-
elling framework out of the existing models and
frameworks (at least parts of them), in accor-
dance with existing standards.

3. The Basic Rules for the Design of
an Integrated Model of System
Architecture

The observations presented below are supposed
to exploit the advantages of the models and ap-
proaches presented above, while trying to min-
imise their drawbacks. They are aimed at provid-
ing foundation for integrated models of software
architecture.

1. Design rationale should be captured

only for the most important design el-
ements. Hence, architectural decisions
should express only the core design
concepts that are necessary to compre-
hend the structure of a given design
component. They should by no means
express design details.
The value of good system architecture is that
it defines a kind of a skeleton defining basic
organisation of every system’s entity. This
skeleton should remain almost unchanged
throughout the life time of a given system
entity. Here are just two examples of such
skeleton-decisions:

— design pattern (e.g. broker, model-view-con-
troller) defines fundamental design struc-
ture of a given software component usu-
ally remaining unchanged as long as the
component exists;

— decision that the corporate systems will
be integrated at two levels: domain and

enterprise: there will be systems (e.g. En-
terprise Service Bus — ESB , Business
Process Management — BPM) integrating
systems belonging to certain domains (e.g.
sales, financial management) and a sepa-
rate system integrating domains at corpo-
rate level — provides a structure, to which
future system developments have to be
tailored.
Representing these basic structural concepts
does not require modelling of all the details
with architectural decisions as diagrammatic
models are usually more efficient. This should
help to overcome the intrinsic limitations of
architectural decisions simultaneously mak-
ing ADL/UML models easier to comprehend.
Models representing the details of sys-
tems architecture should be chosen ad-
equately to the class and properties
of the modelled system as well as its
stakeholders’ concerns.
This observation is a consequence of the for-
mer one: core concepts can effectively be
modelled with architectural decisions, while
efficient modelling of design details can only
be done with appropriately chosen models.
Efficient architecture models will be differ-
ent for different classes of systems — com-
pare e.g. Service Oriented Architecture (SOA)
and real-time systems. It is also worth noting
that different models can be useful for differ-
ent stakeholders’ concerns — e.g. performance,
security, reliability. Hence, the contents of
integrated model should be chosen with re-
spect to both the selected class of systems
and concerns of architecture stakeholders.
Architectural decisions should explain
detailed models
Models of systems architecture like ADLs or
UML are usually easier to comprehend when
their underlying concepts are clearly stated —
e.g. it is much easier to analyse a class dia-
gram for model-view-controller component if
you know in advance that this pattern has
been followed. It is often difficult to deduce
such an intent straight from the class diagram
itself. Linking architecture decisions with ar-
chitecture models can make ADLs more ef-

48

Andrzej Zalewski, Szymon Kijas

ficient. This is quite an opposite approach
to [11], where architectural decisions are il-
lustrated with diagrams. In fact, both possi-
bilities are included in the proposed model.
Architecture should be represented at
different levels of detail/scope/view
(scope [14]), being useful for different
stakeholders

The complexity of large scale software sys-
tem architecture results from the fact that
organisation of software systems can be per-
ceived at different levels of details and from
the viewpoints of different stakeholders. This
is both virtue (helps to cope with systems
complexity) and vice (the relations between
models at different levels of scope and/or
belonging to different views are by no means
clear increasing the overall architecture model
complexity).

Architectural decisions related to the
detailed models can become a kind of
an index helping to navigate through
them

The architectural decisions are a versatile
model of system architecture modelling effi-
ciently only its core concepts. As such they
can be used to integrate all the models across
all the levels of scope, detail and views. If
detailed models are appropriately linked to
the core architectural decisions they can be
used as a kind of an index to the detailed
models.

Integrated model should support sys-
tems evolution

Almost all the software systems are subject to
changes throughout their lifetime. Hence, ar-
chitecture models representing current-state
system architecture only are of a limited use
nowadays. Mechanisms of capturing changes,
presenting model snap-shots for a selected
moment of time should accompany an inte-
grated architecture model.

Support alignment of systems architec-
ture with business strategy/policies
The need for the alignment with business
strategy and policies does not have to be
explained. However, it is usually difficult to
assess whether architecture of systems or IT

products really supports business strategy.
Therefore, integrated architecture model shall
make such an assessment easier.

8. Promote and enable validation/verifi-

cation of one model against other con-
nected ones (especially higher level
models).
As architectures are modelled at different lev-
els of scope, detail and from different points
of view these models can potentially be as-
sessed /verified /validated one against another.
This requires that architecture models are ap-
propriately organised and interrelated with
each other.

4. The Integrated Model of Large
Scale Software System Architecture

The concepts of integrated model of large scale
software systems will be illustrated with an ex-
ample of a real system used in the banking sector.
The system presented in fig. 1 has been developed
to support the exchange of various kinds of in-
formation and documents (claims, direct debits,
information concerning accounts moved from one
bank to another, etc.) between banks and other
institutions (e.g. bailiffs’ offices, social security
agencies). Additionally, it is used as a fail-over
communication channel in case of a failure of
the main clearing system. The system generally
follows the service oriented architecture scheme
providing both www and web services interfaces
to its functionality.

The overall structure of the proposed inte-
grated model of software architecture has been
presented in fig. 2. It comprises the following
tiers:

— Architectural Policy: comprises a set of
clauses that translate the enterprise strategy
and relevant policies to a set of principles
shaping the architecture of corporate I'T sys-
tems. Architectural Policy is represented as
a set of clauses being simply text records con-
sisting of the following fields (similar to the
architecture principles of TOGAF [6]): a.p.
policy rule name, a.p. policy rule, a.p. rule
explanation. As Architectural Policy reflects

From Principles to Details: Integrated Framework for Architecture Modelling of Large Scale Software Systems 49

Ly gp—p—— Clearing data replication

B i

.| Social security
inquiries

» Bailiff inquiries

Bailiff
occupations

Figure 1. Banking data and document exchange system

enterprise strategy and relevant policies in the
architectural categories it can provide criteria
for the assessment of the alignment between
system architecture and business strategy or
enterprise policies.
Our example: if the corporate strategy says
that the mission of the company is to pro-
vide fully secure services to banking sector,
it can be translated into a number of archi-
tectural policy clauses — e.g. “all in-coming
and out-going data is securely transferred”,
“all the processing of clients data can be
back-traced”, “all the users have to be se-
curely authorised before accessing its ser-
vices”. These rules can be used to veri-
fy /assess the rules of system organisation
pattern (in our example: the first architecture
policy clause applies to the rules concerning
communication framework selection and data
input organisation (see below).
System Organisation Pattern: is set of
architectural decisions (called System Organ-
isation Pattern Rules) representing core con-
cepts organising system (this extends the
idea presented in [15]) at different levels of
scope [14]: enterprise, domain, system /appli-
cation, component. These basic decisions in-
clude but are not limited to:
— Decomposition into set of domains/sub-
systems/applications: defines organisation

of system functionality — from conceptual
or business (domain) to technical level
(applications/subsystems).

Our example: the following domains
have been defined: Human Resources
(HR) Management, Finance Management,
Clearing Systems, Digital Signature and
Auxiliary Services. The ,,Data exchange
system” belongs to Clearing Systems Do-
main. It has been divided into 15 subsys-
tems/modules (comp fig. 1)
Geographical and organizational alloca-
tion of system entities: defines both the
deployment of system entities in terms
of organization’s geography and organiza-
tion structure.

Our example: The components of ,,Data
exchange system” are supposed to be de-
ployed in central company’s data cen-
tre, client applications will be provided
throughout the company and its clients.
Organisation of data input: indicates
where and how the data is fed into the
System.

Our example: The data will enter/leave
the system via central interfaces only:
WWW interface, web service interface and
file interface.

50

Andrzej Zalewski, Szymon Kijas

Business strategy,
corporate policies, etc.

Architectural
decisions

J‘

Architectural
decisions

UML, BOX-
Models, etc.

Figure 2. The overall structure of the integrated architecture model for large scale software systems

— Data storage distribution: defines how

permanent data is distributed among
databases;
Our example: Lack of distributed data
(all of data are allocated in one central
database) eliminates the need for dis-
tributed data storage management and
allows for short transactions only.

— Distributed data storage management: de-
fines the means of database synchroniza-
tion, data transmission between remote
locations etc.

— Transaction management: concerns the
selection of mechanisms and/or solutions
that are used to ensure transactional pro-
cessing.

— Communication framework: defines com-
munication mechanisms between equiv-
alent system entities (e.g. queuing solu-
tions).

Our example: subsystems exchange data
only via database; clients communicate
with the system via SSL channel.

— Core pattern/style selection: the selection
of design patterns or architectural styles
that define the overall structure of a given
architecture entity.

Our example: all the subsystems are sup-
posed to follow three-tier architecture.

These decisions are supposed to be repre-
sented as text records as in [9, 16]. Other
models can be employed here as they emerge.
Detailed Architecture Models: represent
details of system architecture. Obviously the
suite of models used at this level has to be
tailored to the class and properties of the
modelled system. We plan to develop such
a model suite for SOA systems as an integral
part of our research and a mean of valida-
tion of our concepts. Obviously, other suites
should also be developed for other domains
or classes of systems.

The detailed structure of the contents of the

integrated architecture model has been pre-

sented in fig. 3. The following properties could
be observed from the model presented in

fig. 3:

— Rules of system organisation pattern can
be related to a number of architectural
policy clauses, which should support the
assessment of strategic alignment of sys-
tem architecture;

— A number of rules of system organisation
pattern can be applied to a given detailed
model, sometimes detailed model can be
used to illustrate a given rule;

— System organisation pattern rules belong
to one of the levels of scope and describe
architectural entities defined at this level;

From Principles to Details: Integrated Framework for Architecture Modelling of Large Scale Software Systems

o1

1

illustrate 0.

[

Architecture Policy Clause e~ 1 SOP Rule

relate

v

Detailed Model

appiy

/,’Jb

Enterprise Rule Domain Rule System/Application Rule Component Rule
0. 0" 0.
% dedenbed s described i describad
1 1
Domain System/Application Component
: 3 | $ 9
1 0.* 1 0.

Figure 3. Class diagram illustrating dependencies between model entities

— Association between system organisation
pattern rules and detailed models indi-
cates models of a given system entity.

The dependencies that may exist between
system organisation pattern rules have not
been shown to make the class diagram more
legible, however, enterprise level rules, can
be applicable to some lower level decisions,
especially domain ones, the latter ones to
the system/application rules etc. etc. These
dependencies can be used to verify whether
lower level models are compliant with higher
level ones.

5. Summary. Further Research
Prospects

The integrated system architecture model pre-
sented in section 4 fulfils most of the premises
enumerated in section 3. Architectural decisions
model only core architectural concepts at a given
levels of scope (rule 1, 3, 4), relations established
between them and detailed models provide for
the indexing of detailed models (rule 5). Align-
ment with business strategy (rule 7) is ensured
with Architectural policy being an integral com-
ponent of the model.
Further research is needed to:

— Define model suites for different classes of
systems and their stakeholders (rule 2) — our
research is heading towards identification of
such a suite for SOA systems — these are sup-
posed to include at least: BPMN as business

process models (at different levels of detail)
and LOTOS as a formal model of concurrent
processing in Business Processes providing
for extended verification capability;

— Enhance integrated model with mechanisms
supporting system evolution (rule 6);

— Although model is structurally ready for the
assessment of one model against another one,
effective analysis/assessment techniques can
be developed when full suite of models is de-
fined as well as verified properties are know.
This can only be done in the context of a cer-
tain genre of software-intensive systems as
e.g. service-oriented systems. (rule 8).

— Develop tool support the integrated architec-
ture model.

Acknowledgment

This work was sponsored by the Polish Ministry
of Science and Higher Education under grant
number 5321/B/T02,/2010/39.

References

[1] Recommended Practice for Architectural
Description of Software-Intensive Systems,
http://standards.iece.org/findstds/standard/
1471-2000.html, IEEE Std., 2000.

P. Kruchten, “The 441 view model of architec-
ture,” IEEFE Software, Vol. Volume 12, No. 6,
1995, pp. 45-50.

R. C. Philippe Kruchten and J. C. Duenas, “The
decision view’s role in software architecture prac-

http://standards.ieee.org/findstds/standard/1471-2000.html
http://standards.ieee.org/findstds/standard/1471-2000.html

52

Andrzej Zalewski, Szymon Kijas

tice,” IEEE Software, Vol. Volume 26, No. 2,
Mar/Apr 2009, pp. 36-42.

J. Zachman, “Framework for information sys-
tems architecture,” IBM Systems Journal, Vol.
Volume 26, No. 3, 1987, pp. 276-292.

—— (2010) Zachman framework. http://www.
address.org/.

The Open Group Architecture Framework (TO-
GAF). http://www.zifa.com. The Open Group.
A. W. Kamal and P. Avgeriou, “An evaluation
of ADLs on modeling patterns for software ar-
chitecture,” LNCS Springer, Nov 2007, 3rd In-
ternational Workshop on Rapid Integration of
Software Engineering techniques (RISE).

A. Jansen and J. Bosch, “Software architecture
as a set of architectural design decisions,” IEEE
Computer Society, 2005, pp. 109-120, 5thWork-
ing IEEE/IFIP Conference on Software Archi-
tecture (WICSA’05).

J. Tyree and A. Akerman, “Architecture deci-
sions: Demystifying architecture,” IEEE Soft-
ware, Vol. Volume 22, No. 2, Mar 2005, pp.
19-27.

A. Zalewski and S. Kijas, “Architecture
decision-making in support of complexity con-
trol,” LNCS Springer, Vol. Volume 6285, 2010,

[11]

[13]

[14]

[15]

pp- 501-504.

F. N. Rafael Capilla and J. C. Duenas, “Modeling
and documenting the evolution of architectural
design decisions,” IEFE CS Press, 2007, proc.
2nd Workshop Sharing and Reusing Architec-
tural Knowledge Architecture, Rationale and
Design Intent.

P. Kruchten, “An ontology of architectural de-
sign decisions,” Rijksuniversiteit Groningen, Oct
2004, pp. 54-61, in 2nd Groningen Workshop on
Software Variability Management.
ArchiMate® 1.0 specification. http://www.
opengroup.org/archimate/doc/ts__archimate/.
R. Malan and D. Bredemeyer, “Less is more
with minimalist architecture,” IEEE’s IT Pro-
fessional, Sep/Oct 2002.

A. Zalewski, “Beyond ATAM: Architecture anal-
ysis in the development of large scale software
systems,” LNCS Springer, Vol. Volume 4758,
Sep 2007, pp. 92-105, first European Conference,
ECSA 2007 Aranjuez, Spain.

P. A. Neil B. Harrison and U. Zdun, “Using pat-
terns to capture architectural decisions,” IFEFE
Software, Vol. Volume 24, No. 4, Jul/Aug 2007,
pp. 38-45.

http://www.address.org/
http://www.address.org/
http://www.zifa.com
http://www.opengroup.org/archimate/doc/ts_archimate/
http://www.opengroup.org/archimate/doc/ts_archimate/

	Introduction
	State-of-the-art in Architecture Modelling
	The Basic Rules for the Design of an Integrated Model of System Architecture
	The Integrated Model of Large Scale Software System Architecture
	Summary. Further Research Prospects
	Acknowledgment
	References

