
e-Informatica Software Engineering Journal, Volume 7, Issue 1, 2013, pages: 77–85, DOI 10.5277/e-Inf130108

Software Engineering Team Project –
lessons learned

Bogumiła Hnatkowska∗

∗Faculty of Computer Science and Management, Institute of Informatics, Wrocław University of Technology
bogumila.hnatkowska@pwr.wroc.pl

Abstract
In the 2010/11 academic year the Institute of Informatics at Wroclaw University of Technology
issued ’Software Engineering Team Project’ as a course being a part of the final exam to earn
bachelor’s degree. The main assumption about the course was that it should simulate the real
environment (a virtual IT company) for its participants. The course was aimed to introduce issues
regarding programming in the medium scale, project planning and management. It was a real
challenge as the course was offered for more than 140 students. The number of staff members
involved in its preparation and performance was more than 15. The paper presents the lessons
learned from the first course edition as well as more detailed qualitative and quantitative course
assessment.

1. Introduction

Most of the Technical Universities offer a course
‘Team project’ for the under graduate students
but rather rarely such a course is a part of final
exam to earn bachelor’s degree.

Polish Ministry of Education published ’Stan-
dards of education for Computer Science faculty
(Bachelor studies)’ in 2007 [1]. The document not
only forced the Universities to offer the course
mentioned above, but also gave the opportunity
to treat it as a part of bachelor’s thesis. The
Institute of Informatics at Wroclaw University
of Technology seized this chance and included
’Software Engineering Team Project’ in the set
of obligatory courses. The course was issued first
time in the 2010/11 academic year in the winter
semester. However, the course was elaborated
based on experiences gained from others, previ-
ously offered, courses.

The aim of the paper is to present the
lessons learned from the first course edition as
well as more detailed qualitative and quantita-
tive course assessment. The gained experiences

could be helpful in organizing similar courses,
and the description could serve for comparison
purposes.

The paper is organized as follows. Section 2
presents the course assumptions, while Section 3
– the process of course preparation. Section 4
gives a detailed description of the course imple-
mentation. The course evaluation is the main
part of Section 5. It presents valuable statistics,
interesting observations and lessons learned. The
last Section 6 summarizes the paper.

2. Course design

The main assumption about the course was that
it should simulate the real environment (a virtual
IT company) for its participants. The course was
aimed to introduce issues regarding programming
in the medium scale, project planning and man-
agement. It was a real challenge as the course was
offered for more than 140 students. The number
of staff members involved in its preparation and
performance was more than 15.

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_7/eInformatica2013Art8.pdf


78 Bogumiła Hnatkowska

The aim of the course was to develop some-
thing useful for a customer (usually a software
product), and possibly to deploy it in a target
environment. The course was thought as a fi-
nal checking of the effects of previously offered
courses, as it demanded the broad knowledge of
software engineering.

According to [2] the Software Engineering
Team Project was placed at the 3rd level of ma-
turity:

Defined. Class projects are undertaken based
on a defined, documented, and standardized pro-
cess. The instructor relies on an established pro-
cess which serves as a foundation for further
process improvement. Course practices can be
consistently implemented, regardless of the pres-
ence or absence of certain key instructors.

We have also implemented some practices
from the 4rd maturity level [2]:

Quantitative Managed. Course projects are
quantitatively measured using statistical methods.
Measurements on student projects are gathered
and analyzed for further improvement.

The course schedule was planned for only
10 weeks of very intensive work. A student was
given 15 ECTS points for the course, what was
translated into 40 hours per week of work for each
course participant (9 hours at the Institute, and
31 hours for the private study). No other forms
than project were involved in the course. Course
design was prepared and is further presented
according to the suggestions given in [3]. The
description considers following issues:
– team formation,
– team supervision,
– problem statement and assignment,
– team communications,
– team assessment,
– development process.

2.1. Team formation

There are two possibilities for team formation [3]:
1. students create teams by themselves,
2. students are assigned to the teams.

We followed the first scenario, as it was easier
from managerial point of view. The students
were expected to organize themselves into four

people teams (exceptionally, 3 or 5 people were
allowed). The team was organized based on stu-
dent’s previous experiences. The general assump-
tion was that the team is self-organizing with
inter-changeable roles.

2.2. Team supervision

To simulate the reality, students should have a
considerable amount of freedom. On the other
hand, since students usually had no project expe-
rience, some amount of supervision, monitoring
and guidance was needed to ensure sufficient
progress and a successful result [3]. It was the
responsibility of a team supervisor. Each supervi-
sor looked after 1–4 teams (in one case 8 teams).

Project’s supervisor played many roles. First
of all his/hers responsibility was to formulate a
project subject and its requirements (both func-
tional and non-functional). In that way the per-
son became a product owner. He or she was also
responsible for steering the project complexity.
The supervisor was allowed to reduce the scope
(if it occurred unrealistic) or to extend it (if the
capability of the team was greater). He/she also
decided about final product assessment. Addi-
tional responsibility of the person was to give
continuous feedback to the teams.

2.3. Problem statement and assignment

Each team selected a subject of the project from
the list of themes, proposed by academic teach-
ers playing the role of supervisors. Teams were
also allowed to propose something interesting
by themselves (the proposals were assessed by
the supervisors, and after acceptance were real-
ized). As the course was a part of the final exam,
all themes had to be accepted by Department
Authorities before the start of classes.

2.4. Team communications

Team members needed to communicate quite
often. The responsibility of the University was
to prepare the conditions for that. Depending
on the type of project and the decision of the
supervisor the team met at the University (orga-



Software Engineering Team Project – lessons learned 79

nized lessons): once per week for 9 hours, twice
a week for 4,5 hours or three times a week for
3 hours. In one classroom at most 4 teams were
working in the same time. Each had access to
computers, and a blackboard. In [3] there was a
suggestion, that each team should create and reg-
ularly maintain a web page, and have documents
repository.

2.5. Assessment

The supervisor was responsible for determining
student’s final grade. There are two common
approaches to students’ assessment [3]:
1. to give each team member the same grade

and,
2. to give each team member a grade based on

his individual contribution.
We combined both of them. In general the whole
team obtained the same grade. It was offered bas-
ing on product quality, documentation quality,
and the product presentation. The main focus
was put on the final product itself. Its presence
was a necessary condition to pass the course.
The second element taken into account was the
student engagement. To motivate the students
to better work, the supervisor was allowed to
give a student so called yellow card to indicate
that his/her engagement in the project was too
low, and the quality of his/hers artifacts were
bad. The first yellow card decreased the final
grade by 1, while the second yellow card became
a red card and meant that the student failed the
course.

We pondered over including peer to peer as-
sessment component to the student’s assessment
recommended by many authors [3, 4], but finally
we rejected this idea. We had bad experiences in
using it in past projects. The students did not
want to fairly judge each other. Similar results of
formally conducted experiments were reported
in [5].

2.6. Development process

The course assumption was that a development
process should involve all necessary stages of
software development from requirements to im-

plementation and testing. A stage of project
deployment was welcomed. The selected devel-
opment process should fit to different projects’
characteristics.

3. Course preparation

Preparation for the course was rather a long
process which took about 6 months. The au-
thorities of Institute of Informatics appointed
8 people team for that purpose. The staff
members team involved experts from differ-
ent domains: software engineering, data bases,
computer networks, programming languages,
and net administrators. The team consisted
of people with experiences in providing team
projects before, what resulted in some publica-
tions, e.g. [6].

The main task of the team was to develop
course’s recommendations including methodolo-
gies (both development and managerial), best
practices, and supporting tools. It was expected
that the team will also prepare educational ma-
terials for both: the faculty staff members, and
students attending the course.

The task was challenging of many reasons:
(1) very short time of project realization (only 10
weeks), (2) diversity of projects’ subject (the rec-
ommended tools, techniques and practices must
have been adjusted to all of them).

The outcomes of the course preparation pro-
cess included a report, published as an internal
document by the Institute of Informatics, cov-
ering all the topics mentioned above as well as
some publications presented on the National Con-
ference in Software Engineering [7], and on the
International Conference ISAT [8].

The main recommendations were as follows:
– methodologies: Scrum methodology was se-

lected as a basic one, as it fited to different
kinds of projects which could be done in an it-
erative manner. The team considered several
methodologies, both agile (Scrum, XP) and
heavier ones e.g. UP, RUP. The UP method-
ology was recommended only for typical soft-
ware development projects, for which the
strong need for documentation existed. The



80 Bogumiła Hnatkowska

assumption was that each project should use
at least: Product backlog, and Sprint back-
log [9]. The Sprint backlog should contain
tasks together with time evaluation (for at
least 90% of sprint capability, about 30 h
a week for each team member). The other
artifacts (e.g. specifications, documentations
etc.) were under supervisor jurisdiction,

– best practices: The staff team analyzed the
best practices for all above mentioned soft-
ware development processes, trying to define
a minimal set of the most useful ones (oblig-
atory practices). The selected practices in-
cluded: iterative development (sprints), and
self-organizing team with daily meetings [9].
Since each development process includes re-
quirement specification, the requirements
were presented with the use of product back-
log. Requirement analysis, if it is possible,
should be based on use-cases specification.
The coding standards should be used at im-
plementation stage. The other recommended
(but not obligatory) practices included: source
code sharing, TDD development, and contin-
uous integration,

– tools: Team Foundation Server (TFS) [10]
was selected as a primary supporting tool,
mainly because the University obtained pro-
fessional support from the Microsoft Pol-
ska Company; the tool allows to plan re-
leases, sprints, and tasks according to Scrum
methodology; it offers also other useful capa-
bilities, as source code management system,
or continuous integration support. It inte-
grates well with Microsoft Visual Studio and
good enough with Eclipse platform. Moreover,
it offers a web site for each projects, and is a
good mean for communication purposes (e.g.
Wiki). The functionality is available by the
Internet. Students were also allowed to use
virtual machines to deploy their solutions.

Before running the course, the staff team pre-
sented the assumptions about it to all members of
the Institute, e.g. organization details. Moreover,
a training covering the usage of the Team Founda-
tion Server in the context of Scrum methodology
was conducted.

4. Course implementation

The course was attended by 37 groups (146 stu-
dents) supervised by 17 people. Each supervisor,
as a product owner, set a number of releases,
a number of sprints, and a length of sprints.
Mostly, the projects had one release (66%), or
two (32%). One project had three releases (2%).
Sprints lasted 7 days (89%) or 14 days (11%).
The capacity for 7 days iterations was calculated
usually for 30h/iteration/person (10 teams) or
40h/iteration/person (27 teams) – it was under
supervisor jurisdiction.

The subjects were very diverse, e.g. Con-
ference management system, Team competi-
tion management system, System for collection
and analyzing samples of handwriting, Virtual
campus of Wroclaw University of Technology,
Collision-free motion of a group of autonomous
vehicles – an algorithm using the Webots en-
vironment. A few subjects came from industry,
e.g. System for support decision making based on
data collected in a data warehouse. The results of
some projects are visible in the Internet: [11–13].

5. Course assessment

5.1. Quantitative assessment

To compare different teams, and to find out ex-
isting shortcomings a quantitative assessment of
the course was done. The measure values were
taken from the TFS (product backlog, and sprint
backlog) which was the obligatory managerial
tool for all teams, and their supervisors. However,
one team of unknown reasons did not use the
TFS, so it was excluded from further considera-
tion. The research questions were formulated as
follows:
– What was the number of product back-

log items (PBI), and sprint backlog items
(tasks)?

– How many hours did the teams spend on
tasks realizing during the whole project?

– What was the coverage (in percent) of the
declared capacity?



Software Engineering Team Project – lessons learned 81

Statistic The number The number The number Capacity coverage
of PBI of tasks of work hours [%]

Average 22,68 128,33 792,50 0,77
Minimum 4,00 32,00 40,00 0,04
Maximum 89,00 313,00 1698,00 1,77
Standard deviation 19,53 68,76 375,76 0,36

Table 1. The basic measures for projects obtained from TFS tool

I wanted to establish the parameters of a ’typi-
cal’ project which could serve as a reference for
other projects. The answers for the questions are
presented in Table 1.

The number of PBI fluctuated from 4 to 89,
with the average 22,68. Lower numbers of PBI
usually meant that the granularity of them was
bigger. In many cases where the PBI number
was below 10, a development process was rather
a waterfall than iterative one with PBI elements
representing requirement specification, analysis,
design etc., and the tasks associated with them
were done in many sprints.

The number of tasks for a project ranged
from 32 to 313 (the average was equal to 128,33).
Lower number of tasks usually meant that they
were very long (sometimes they were estimated
for more than 30h) or that most of the tasks were
not documented in the TFS (for a team with 32
tasks, the coverage of the declared capacity was
23%, and for another team with 37 tasks, the
coverage was only 0,04%). A team with the high-
est number of tasks (313) defined – during the
whole project – a lot of small (2–4 hours) tasks.
The coverage of the declared capacity fluctuated
from 0,04% (for a team that defined only 37
tasks for 40 hours) to 170% (for a team with
the tasks estimated for 1698 hours). Probably, in
the former case, the team did not use the TFS
tool, while in the later case, the duration of tasks
were overestimated; half of them lasted more
than 8 hours, many – 20 hours. The average of
the capacity coverage was equal to 0,77%. The
number of teams with the capacity in the range
[80%;120%] was equal to 17, only 2 teams defined
the tasks for more than 120%.

The additional research questions were about
other good practices the teams could use, mainly,
how many teams used the source control version
tool, integrated with the TFS? (20 teams, 54%),

how many teams registered bugs in the TFS?
(8 teams, 21%, while only 5 had more than 3
bugs), how many teams used automatic tests?
(5 teams) It should be mentioned that the data
were collected only from the TFS tool. From
the qualitative assessment of the course I know
that some teams used another system of version
control, e.g. Git.

Because in [3] there is a suggestion to make
available some projects as good examples, I tried
to classify projects (product bakclog, sprints, str-
pint backlog) stored into the TFS into three
groups of quality: (1) target (2) minimal (3)
non-accepted.

To do that a checklists with disqualifying
questions were defined. Below the checklist to
disqualify a project to have a target quality is
presented:
1. PBI not associated with iterations,
2. Tasks not associated with PBI items, or some

sprints without the tasks at all,
3. Tasks without time evaluated,
4. Very long tasks – lasted more than 30h,
5. Mistakes in PBI and/or tasks descriptions,

e.g. many repetitions of the same PBI defini-
tion,

6. PBI realized in waterfall manner (tasks asso-
ciated with PBI were realized during many
sprints),

7. Capacity coverage outside the range [70%;
130%],

8. States of sprints and tasks not changed prop-
erly.
The elements disqualifying a project to have

a minimal quality are as follows:
1. 1–5 as for target quality,
2. Capacity coverage outside the range [50%;

150%].
According to the rules defined above we had

6 projects with target quality, 17 – with mini-



82 Bogumiła Hnatkowska

Statistic Course Quality of supporting Course
usefulness materials organization

Average 4,66 3,37 4,32
Minimum 2,00 1,00 1,00
Maximum 5,00 5,00 5,00
Standard deviation 0,65 0,96 0,82

Table 2. The assessment of course components steaming from closed questions

mal quality, and 14 – with non-accepted quality.
The number of bad projects seems to be too
big, but I hope that in the next edition this
number will decrease as there are some good
examples.

The conclusion from the facts presented
above is that the supervisors need to better
monitor the usage of the TFS tool. The limits
(min, and max) for the number of hours for a
person/week must be defined and obeyed – the
recommended value is 30. The maximal duration
for task estimation (8 hours) must be strongly
obeyed.

5.2. Qualitative assessment

To perform qualitative assessment of team
project a questionnaire for the students were
prepared. The questionnaire questions were as
follows:
1. (Closed question): Assess the following ele-

ments in the scale from 1 (the worst mark)
to 5 (the best mark):
– Course usefulness: . . .
– Quality of supporting materials: . . .
– Course organization: . . .

2. (Open question) Which elements of the course
were the most valuable?

3. (Open question) Which elements of the course
need to be improved/changed in the next is-
sues?
The questionnaires were filled after the final

exams, so telling the truth, we asked bachelors
about their opinion. The questionnaires were
available in two forms: paper and digital one
(published in the Internet). We gained the an-
swers from 93 students from 146 who managed
to finish the course (what gives 64% response
rate). The answers for the closed questions are
presented in Table 2.

The grades for all components were rather
high – the highest for course usefulness, the
smallest for course supporting materials. It is
something that should be improved in the next
edition.

The questionnaire consisted mainly of open
questions. It was a challenge to analyze them. I
had defined some synonyms that were present
in different answers, and next counted the num-
bers of people, who used these synonyms in their
answers. The results are presented below. The
threshold, below which the answers are not pre-
sented, was set to 10.

Figure 1 presents how many people pointed
out a specific element to be the most valuable.

As it is easily to observe, the team work (39
answers) and agile methodology (38) were per-
ceived as the best choices. An opportunity to
acquaintance the new technologies (17) and to
put different pieces together (to build the whole
project from the beginning to the end – deploy-
ment, 17 answers) was inspiring experience. The
students appreciated also regular meetings as
the means that motivated them to hard work
(14) – they needed to answer 3 questions at the
beginning of each meeting (what was done, what
problems were encountered and what is going to
be done to the next meeting). The team members
also thanked for interesting themes that allowed
them to deeply involve to the project (11).

Of course not all elements were the full suc-
cess. Figure 2 presents the elements that need to
be improved.

First of all the students complained about
the short time of the project (24 answers). The
Project Management Course was run in parallel
with the team project. The students reasonably
suggested to move Project Management Course
one semester back. They also found TFS envi-
ronment quite difficult and suggested to do a



Software Engineering Team Project – lessons learned 83

Figure 1. Number of answers for the questionnaire question nr 2

Figure 2. Number of answers for the questionnaire question nr 3

training before vacations (20). The access to the
TFS was not such efficient the students expected
(19). The students wanted also to meet more of-
ten (this opinion was given by the team members
who had organized meeting only 1 per week). The
students suffered a little from not clear enough
assessment system (10).

The same questions were asked to the aca-
demic teachers playing the role of projects’ su-
pervisors. But the results were very similar to
those obtained from the students.

Below a list of possible improvements is pre-
sented.

Course preparation:
– Project Management course should be moved

to the 6th semester,
– Training of the tools used within a course

should be provided in the 6th semester of
during vacations,

– Supporting materials should be improved.
Supporting tools:

– Performance parameters (throughput, re-
sponse time) of the TFS should be better,

– Opportunity of usage of another popular sup-
porting tool should be considered.
Course organization:



84 Bogumiła Hnatkowska

– Give the students a longer time for their own
topics formulation,

– Attract more topics from the industry,
– Make an assessment system more transpar-

ent.

6. Conclusions

The Software Engineering Team Project starting
from 2010/11 academic year is a compulsory
subject to all students of Informatics at Wroclaw
University of Technology. Many universities offer
a team engineering course as a part of the stud-
ies, e.g. [3, 14–17], but there are some important
differences between them and our proposal:
– Course outcome: system prototype versus a

working release of a system, often with its
installation version and a user manual,

– Focus: educational aims versus put things
together (part of the final exam),

– Methodology: due to documentation reasons
rather heavier methodologies versus as light
methodology as possible,

– Accompanying courses: lecture or seminars
versus none.
We found the first course edition as a success,

however some elements could be improved. The
weakest part of the course was the assessment.
More strict rules for it should be defined, espe-
cially taking into account the number of working
hours. We are going to introduce an obligatory
presentation of the project before the members
of faculty staff (the last time it was under a
supervisor jurisdiction). We are also going to
reward the best project with the highest grade
(5.5). At that moment we are preparing to the
second edition of the course for more than 160
students, e.g. a new version of training materials
is under development. The number of topics com-
ing from industry is a little bit higher than the
last year. We hope that we manage to eliminate
shortcomings and not to lose good points.

References

[1] Rozporządzenie ministra nauki i szkolnictwa
wyższego z dnia 12 lipca 2007. (2007). [Online].

http://www.bip.nauka.gov.pl/_gAllery/21/97/
2197/20070712_rozporzadzenie_standardy_
ksztalcenia.pdf

[2] J. Collofello and C. H. Ng, “Assessing the pro-
cess maturity utilized in software engineering
team project,” Journal of Engineering Educa-
tion, Vol. 90, No. 1, 2001, pp. 75–78.

[3] M. Bielikova and P. Navrat, “Experiences with
designing a team project module for teaching
teamwork to students,” Journal of Computing
and Information Technology, Vol. 13, No. 1,
2005.

[4] N. Clark, P. Davies, and R. Skeers, “Self and peer
assessment in software engineering projects,” in
Proc. of 7th Australasian Computing Education
Conference (ACE 2005), D. T. A. Young, Ed.
CRPIT, 2005, pp. 91–100.

[5] N. Herbert, “Quantitative peer assessment:
Can students be objective?” in Proc. of 9th
Australasian Computing Education Conference
(ACE 2009), S. Mann and S. Mann, Eds. CR-
PIT, 2009, pp. 63–71.

[6] I. Dubielewicz and B. Hnatkowska, “Improving
software development process implemented in
team project course,” in Proc. of the 8th Inter-
national Conference on Computational Science,
Part II. Berlin: Springer-Verlag, 2008, pp. 687
– 696.

[7] ——, “Praktyki w inzynierii oprogramowania –
perspektywa pracy zespolowej,” in Inzynieria
oprogramowania w procesach integracji syste-
mow informatycznych, C. O. Janusz Gorski,
Ed. Gdansk: Pomorskie Wydawnictwo
Naukowo-Techniczne PWNT, 2010, pp. 121–228.

[8] ——, “Best practices in students team projects,”
in Information systems architecture and technol-
ogy: IT models in management process, Z. Wil-
imowska, Ed. Wroclaw: Oficyna Wydawnicza
Politechniki Wrocławskiej, 2010, pp. 487–497.

[9] R. Levin. Understanding scrum –
best practices guide. (2010). [On-
line]. http://www.brighthub.com/office/project-
management/articles/68791.aspx

[10] J. Meier, J. Taylor, P. Bansode, A. Mack-
man, and K. Jones. Team development with
visual studio team foundation server. (2007,
Sep). [Online]. http://msdn.microsoft.com/en-
us/library/bb668991.aspx

[11] Collision-free motion of a group of au-
tonomous vehicles – an algorithm using the
webots environment. (2011). [Online]. http:
//www.youtube.com/watch?v=tzm2uU8_nQA

[12] Laboratory of the distributed computer
networks portal. (2011). [Online]. http:

http://www.bip.nauka.gov.pl/_gAllery/21/97/2197/20070712_rozporzadzenie_standardy_ksztalcenia.pdf
http://www.bip.nauka.gov.pl/_gAllery/21/97/2197/20070712_rozporzadzenie_standardy_ksztalcenia.pdf
http://www.bip.nauka.gov.pl/_gAllery/21/97/2197/20070712_rozporzadzenie_standardy_ksztalcenia.pdf
http://www.brighthub.com/office/project- management/articles/68791.aspx
http://www.brighthub.com/office/project- management/articles/68791.aspx
http://msdn.microsoft.com/en-us/library/bb668991.aspx
http://msdn.microsoft.com/en-us/library/bb668991.aspx
http://www.youtube.com/watch?v=tzm2uU8_nQA
http://www.youtube.com/watch?v=tzm2uU8_nQA
http://156.17.130.12/Main.aspx
http://156.17.130.12/Main.aspx


Software Engineering Team Project – lessons learned 85

//156.17.130.12/Main.aspx
[13] Virtual campus of wroclaw university of

technology. (2011). [Online]. http://www.ii.pwr.
wroc.pl/WirtualnyKampusPWr/index.html

[14] D. Delaney and G. Mitchell. Tutoring
project-based learning: a case study of a third
year software engineering module at nui. (2005).
[Online]. http://www.aishe.org/readings/2005-
2/contents.html

[15] G. Dobbie and G. Bartfai, “Teaching software
engineering in a computer science department,”

in Proc. of International Conference Software
Engineering: Education and Pracitce, Dunedin,
New Zealand, 1996, pp. 58–63.

[16] Unit of study engg1805 professional
engineering & it. (2011). [Online]. http:
//sydney.edu.au/engineering/it/~engg1805/
Documents/ENGG1805CourseOutline.pdf

[17] M. Zaigham, “A framework for software engi-
neering education: A group projects approach,”
International Journal of Education and Infor-
mation Technologies, Vol. 1, 2007.

http://156.17.130.12/Main.aspx
http://www.ii.pwr.wroc.pl/WirtualnyKampusPWr/ index.html
http://www.ii.pwr.wroc.pl/WirtualnyKampusPWr/ index.html
http://www.aishe.org/readings/2005-2/contents.html
http://www.aishe.org/readings/2005-2/contents.html
http://sydney.edu.au/engineering/it/~engg1805/ Documents/ENGG1805CourseOutline.pdf
http://sydney.edu.au/engineering/it/~engg1805/ Documents/ENGG1805CourseOutline.pdf
http://sydney.edu.au/engineering/it/~engg1805/ Documents/ENGG1805CourseOutline.pdf

	Introduction
	Course design
	Team formation
	Team supervision
	Problem statement and assignment
	Team communications
	Assessment
	Development process

	Course preparation
	Course implementation
	Course assessment
	Quantitative assessment
	Qualitative assessment

	Conclusions
	References


