






Editors

Zbigniew Huzar (Zbigniew.Huzar@pwr.edu.pl)
Lech Madeyski (Lech.Madeyski@pwr.edu.pl, http://madeyski.e-informatyka.pl/)

Institute of Informatics
Wrocław University of Technology, 50-370 Wrocław, Poland

e-Informatica Software Engineering Journal
www.e-informatyka.pl/wiki/e-Informatica/, DOI: 10.5277/e-informatica
Editorial Office Manager: Wojciech Thomas
Typeset by Wojciech Myszka with the LATEX 2𝜀 Documentation Preparation System

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publishers.

Printed in the camera ready form

c○ Copyright by Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2014

OFICYNA WYDAWNICZA POLITECHNIKI WROCŁAWSKIEJ
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
http://www.oficyna.pwr.edu.pl;
e-mail: oficwyd@pwr.edu.pl; zamawianie.ksiazek@pwr.edu.pl

ISSN 1897-7979

Printed by EXPOL, P. Rybiński, J. Dąbek, sp. j., ul. Brzeska 4, 87–800 Włocławek
tel. 54 2323723, e-mail: sekretariat@expol.home.pl

http://madeyski.e-informatyka.pl/
http://www.e-informatyka.pl/wiki/e-Informatica/
http://dx.doi.org/10.5277/e-informatica
http://www.oficyna.pwr.wroc.pl
mailto:oficwyd@pwr.edu.pl
mailto:zamawianie.ksiazek@pwr.edu.pl


Editorial Board
Co-Editors-in-Chief
Zbigniew Huzar (Wrocław University of Technology, Poland)
Lech Madeyski (Wrocław University of Technology, Poland)

Editorial Board Members
Pekka Abrahamsson (VTT Technical Research Centre, Finland)
Sami Beydeda (ZIVIT, Germany)
Miklós Biró (Software Competence Center Hagenberg, Austria)
Pearl Brereton (Keele University, UK)
Mel Ó Cinnéide (UCD School of Computer Science & Informatics, Ireland)
Norman Fenton (Queen Mary University of London, UK)
Joaquim Filipe (Polytechnic Institute of Setúbal/INSTICC, Portugal)
Thomas Flohr (University of Hannover, Germany)
Félix García (University of Castilla-La Mancha, Spain)
Carlo Ghezzi (Politecnico di Milano, Italy)
Janusz Górski (Gdańsk University of Technology, Poland)
Andreas Jedlitschka (Fraunhofer IESE, Germany)
Barbara Kitchenham (Keele University, UK)
Stanisław Kozielski (Silesian University of Technology, Poland)
Ludwik Kuźniarz (Blekinge Institute of Technology, Sweden)
Pericles Loucopoulos (The University of Manchester, UK)
Kalle Lyytinen (Case Western Reserve University, USA)
Leszek A. Maciaszek (Wrocław University of Economics, Poland
and Macquarie University Sydney, Australia)
Jan Magott (Wrocław University of Technology, Poland)
Zygmunt Mazur (Wrocław University of Technology, Poland)
Bertrand Meyer (ETH Zurich, Switzerland)
Matthias Müller (IDOS Software AG, Germany)
Jürgen Münch (Fraunhofer IESE, Germany)
Jerzy Nawrocki (Poznań Technical University, Poland)
Janis Osis (Riga Technical University, Latvia)
Łukasz Radliński (University of Szczecin, Poland)
Guenther Ruhe (University of Calgary, Canada)
Krzysztof Sacha (Warsaw University of Technology, Poland)
Rini van Solingen (Drenthe University, The Netherlands)
Miroslaw Staron (IT University of Göteborg, Sweden)
Tomasz Szmuc (AGH University of Science and Technology Kraków, Poland)
Iwan Tabakow (Wrocław University of Technology, Poland)
Burak Turhan (University of Oulu, Finland)
Rainer Unland (University of Duisburg-Essen, Germany)
Sira Vegas (Polytechnic University of Madrit, Spain)
Corrado Aaron Visaggio (University of Sannio, Italy)
Bartosz Walter (Poznań Technical University, Poland)
Bogdan Wiszniewski (Gdańsk University of Technology, Poland)
Jaroslav Zendulka (Brno University of Technology, The Czech Republic)
Krzysztof Zieliński (AGH University of Science and Technology Kraków, Poland)





Contents

Editorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
On Visual Assessment of Software Quality

Cezary Bartoszuk, Grzegorz Timoszuk, Robert Dąbrowski, Krzysztof Stencel . . . . . . . . . . 7
The Use of Aspects to Simplify Concurrent Programming

Michał Negacz, Bogumiła Hnatkowska . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Generating Graphical User Interfaces from Precise Domain Specifications

Kamil Rybiński, Norbert Jarzębowski, Michał Śmiałek, Wiktor Nowakowski, Lucyna Skrzypek,
Piotr Łabęcki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Supporting Analogy-based Effort Estimation with the Use of Ontologies
Joanna Kowalska, Mirosław Ochodek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Malicious JavaScript Detection by Features Extraction
Gerardo Canfora, Francesco Mercaldo, Corrado Aaron Visaggio . . . . . . . . . . . . . . . . . 65



Editorial

It is a pleasure to present to our readers the eight
volume of the e-Informatica Software Engineering
Journal (EISEJ). It includes five papers carefully
reviewed by Editorial Board members, as well as
external reviewers, and then selected by the editors.

The first of the papers by Bartoszuk et al. (On
Visual Assessment of Software Quality) concerns
visual assessment of software quality and describes
an innovative method of software analysis and visu-
alization using graph-based approach. The benefits
of this approach are shown through experimental
evaluation using a proof-of-concept implementation
– the Magnify tool.

The second paper is The Use of Aspects to Sim-
plify Concurrent Programming by Michał Negacz
and Bogumiła Hnatkowska. The presented results
indicate that the use of aspects does not increase
the complexity of a program while in some cases
aspects can reduce the complexity.

The third paper by Rybiński et al. (Generat-
ing Graphical User Interfaces from Precise Domain
Specifications) is about turning requirements into
working systems in general and generating user in-
terfaces directly from requirements models in par-
ticular. Syntax and semantics of a comprehensible

yet precise domain specification language and the
process of generating code for the user interface
elements are presented.

The forth paper entitled Supporting Anal-
ogy-based Effort Estimation with the Use of Ontolo-
gies by Kowalska and Ochodek is on effort estima-
tion of software development projects and proposes
a new approach to model project data to support
expert-supervised analogy-based effort estimation.
The proposed approach can potentially help experts
in estimating non-trivial tasks that are often under-
estimated.

The fifth paper by Canfora et al. is on detecting
malicious JavaScripts (Malicious JavaScript Detec-
tion by Features Extraction) by feature extraction
based on five features that capture different char-
acteristics of a script. Mixing different types of
features led to improvements empirically evaluated
by the authors.

We look forward to receiving high quality contri-
butions from researchers and practitioners in soft-
ware engineering for the next issue of the journal.
As always, we are interested to hear if you have any
suggestions or comments; please send them to us at
e-informatica (at) pwr.edu.pl.

Editors
Zbigniew Huzar
Lech Madeyski



e-Informatica Software Engineering Journal, Volume 8, Issue 1, 2014, pages: 7–26, DOI 10.5277/e-Inf140101

On Visual Assessment of Software Quality

Cezary Bartoszuk∗, Grzegorz Timoszuk∗, Robert Dąbrowski∗, Krzysztof Stencel∗
∗Institute of Informatics, University of Warsaw

cbart@students.mimuw.edu.pl, gtimoszuk@mimuw.edu.pl, r.dabrowski@mimuw.edu.pl,
stencel@mimuw.edu.pl

Abstract
Development and maintenance of understandable and modifiable software is very challenging.
Good system design and implementation requires strict discipline. The architecture of a project
can sometimes be exceptionally difficult to grasp by developers. A project’s documentation gets
outdated in a matter of days. These problems can be addressed using software analysis and
visualization tools. Incorporating such tools into the process of continuous integration provides
a constant up-to-date view of the project as a whole and helps keeping track of what is going on in
the project. In this article we describe an innovative method of software analysis and visualization
using graph-based approach. The benefits of this approach are shown through experimental
evaluation in visual assessment of software quality using a proof-of-concept implementation – the
Magnify tool.

1. Introduction

Software engineering is concerned with devel-
opment and maintenance of software systems.
Properly engineered systems are reliable, efficient
and robust. Ideally, they satisfy user require-
ments while their development and maintenance
is affordable. In the past half-century computer
scientists and software engineers have come up
with numerous ideas for how to improve the dis-
cipline of software engineering. Edgser Dijkstra
in his article [1] introduced structural program-
ming which restricted imperative control flow to
hierarchical structures instead of ad-hoc jumps.
Computer programs written in this style were far
more readable, easier to understand and reason
about. Another improvement was the introduc-
tion of the object-oriented paradigm [2] as a for-
mal programming concept in Simula 67. Other
improvements in software engineering include
e.g. engineering pipelines and software testing.
In the early days software engineers perceived
significant similarities between software and civil
engineering. However, it has soon turned out that

software differs from skyscrapers and bridges.
The waterfall model [3] that resembles engineer-
ing practices was widely adopted as such, de-
spite its original description actually suggesting
a more agile approach. Contemporary develop-
ment teams lean toward short iterations or so
called sprints rather than fragile upfront designs.
Short feedback loops allow customers’ opinions
to provide timely influence on software develop-
ment. This improves the quality of the software
delivery process.

In the late 1990s the idea of extreme pro-
gramming (XP) emerged [4]. Its key points are
straightforward: keep the code simple, review it
frequently and test early and often. Among nu-
merous techniques, XP introduced a test-driven
approach to software development (today known
as TDD). This approach encloses programming
in a tight loop with three rules: (1) one cannot
write production code unless there is a failing
test; (2) when there is a failing test, one writes
the simplest code for the test to pass; (3) after
the test passes one refactors the code in order
to remove all the duplicates and improve design.



8 Cezary Bartoszuk et al.

This approach notably raised the quality of pro-
duced software and the stability of development
processes [5].

The emergence of patterns and frameworks
had a similar influence on architectures as de-
sign patterns and idioms did on programming.
Unfortunately, there seems to be no way to test
architectures in a similar way to testing code
with TDD. Although we have the ideas of how
to craft the architecture, we still lack the ways
to either monitor the state of an architecture or
enforce it. The problem skyrockets as software
gains features without being refactored prop-
erly. Moreover, development teams change over
time, work under time pressure with incomplete
documentation and requirements that are sub-
ject to frequent changes. Multiple development
technologies, programming languages and coding
standards make this situation even more severe.

Our research pursues a new vision for man-
agement of software architecture. It is based on
an architecture warehouse and software intelli-
gence. An architecture warehouse is a repository
of all software system and software process arti-
facts. Such a repository can capture architecture
information which was previously only stored
in design documents or simply in the minds of
developers. Software intelligence is a tool-set for
analysis and visualization of this repository’s
content [6–8]. That includes all tools able to
extract useful information from the source code
and other available artifacts (like version control
history). All software system artifacts and all soft-
ware engineering process artifacts being created
during a software project are represented in the
repository as vertices of a graph. Multiple edges
of this graph represent various kinds of depen-
dencies among those artifacts. The key aspects
of software production like quality, predictabil-
ity, automation and metrics are then expressed
in a unified way using graph-based terms. The
integration of source code artifacts and software
process artifacts in a single model opens new
possibilities. They include defining new metrics
and qualities that take into account all architec-
tural knowledge, not only the knowledge about
source code. The state of software (the artifacts
and their metrics) can be conveniently visualized

on any level of abstraction required by software
architects (i.e. functional level, package level,
class or method level).

This article demonstrates a new idea and its
proof-of-concept implementation – the tool Mag-
nify. Magnify is focused on quick assessment and
comprehension of software architectures. It visu-
alizes relative importance of components, their
quality and the density of their inter-connections.
The importance is rendered using the size of sym-
bols that depict components. It can be computed
using multiple arbitrary metrics. In our exper-
iments we utilized PageRank as a measure of
component importance, which behaved well in
practice. In order to visualize quality of a com-
ponent we used colors, where as usual green
denoted good quality, while red denoted poor
quality. Again, there are multiple metrics that
can be used to denote code quality. The examples
presented in Section 7 use lines of code as the
measure of quality. Such a simple metric may
seem unreliable. However, it reflects the com-
plexity of units of code (e.g. a class) and clearly
indicates complicated entities. The initial results
obtained from Magnify were presented in [9, 10].

The main contribution of this article when
compared to our previous works [6–11] is the ap-
plication of Magnify to a number of open-source
projects and thorough analysis of the results.
In our opinion Magnify can provide valuable in-
sights into a project for architects and developers
as discussed below.

We have considered numerous usage scenar-
ios of Magnify. Assume newcomers approaching
the project. They use this visualization to find
starting points for their journey through develop-
ment artifacts. They can even analyze whether
it is worth joining a project. If the most im-
portant components are bright red and/or the
coupling between those components is dreadfully
dense, perhaps it is better not to embark this
project. Architects can use the tool for everyday
assessment of the system under their supervision.
They can quickly notice e.g. (1) an unexpected
emergence of a new important component, (2)
a surprising degradation of a component, (3)
a change in quality of a component (i.e. changing
color from green to red), or (4) local or global



On Visual Assessment of Software Quality 9

thickening of the web of dependencies among
components.

The article is organized as follows. Section 2
addresses the related work. Section 3 recalls the
graph-based model for representing architectural
knowledge. Section 4 presents the method of
quick assessment of software architecture. Sec-
tion 5 presents usage scenarios of Magnify, and
Section 6 shows its architecture. Section 7 demon-
strates the application of Magnify to selected
open-source projects. Section 8 concludes.

2. Related Work

The idea described in this article has been con-
tributed to by several existing approaches and
practices. A unified approach to software sys-
tems and software processes has already been
presented in [12]. Software systems were per-
ceived as large, complex and intangible objects
developed without a suitably visible, detailed
and formal descriptions of how to proceed. It
was suggested that software process should be
included in software project as parts of programs
with explicitly stated descriptions. The software
architect should communicate with developers,
customers and other managers through software
process programs indicating steps that are to
be taken in order to achieve product develop-
ment or evolution goals. Nowadays, the process
of architecture evolution is treated as an impor-
tant issue that severely impacts software quality.
There have been proposed formal languages to
describe and validate architectures, e.g. architec-
ture description language (ADL) [13]. In that
sense, software process programs and programs
written in ADLs would be yet another artifact
in the graph recalled in this paper.

Multiple graph-based models have been pro-
posed to reflect architectural facets, e.g. to rep-
resent architectural decisions and changes [14],
to discover implicit knowledge from architecture
change logs [15] or to support architecture anal-
ysis and tracing [16]. Graph-based models have
also become helpful in UML model transforma-
tions, especially in model driven development
(MDD) [17]. Automated transitions (e.g. from

use cases to activity diagrams) have been con-
sidered [18] along with additional traceability
that could be established through automated
transformation. An approach to automatically
generate activity diagrams from use cases while
establishing traceability links has already been
implemented (RAVEN) [19,20].

As the system complexity increases the role
of architectural knowledge also gains importance.
There are multiple tools that support storing and
analyzing that knowledge [21–24]. Architectural
knowledge also influences modern development
methodologies [25, 26]. It can be extended by
data gathered during software execution [27]. The
aspect of tracing architectural decision to require-
ments has been thoroughly investigated in [28–
30]. An analysis of gathering, management and
verification of architectural knowledge has been
conducted and presented in [31]. Changes made
in architecture management during last twenty
years has been summarized in the survey [32].

There are also approaches to trace the archi-
tecture and its possible deterioration. The Struc-
ture101 tool [33] uses the Levelized Structured
Map (LSM) to trace dependencies and to parti-
tion a system into layers. Another method called
Hyperlink Induced Topic Search is used in [34] to
evaluate object-oriented designs by link analysis.
The method has been verified to identify God
classes and reusable components. Furthermore,
the idea of architectural constraints [35] in the
form of constraint coupling can aid preventing
architectural decay. However, the methodology
and the tool Magnify described in this article are
visual and not limited to layered architectures.
Moreover, Magnify does not require adding new
artifacts to a project (like constraints). Every
software project can be evaluated by Magnify
just as it is.

Visualization of software architecture has
been a research goal for years. The tools like
Bauhaus [36], Source Viewer 3D [37], Gevol [38],
JIVE [39], evolution radar [40], code_smarm [41]
and StarGate [42] are interesting attempts in
visualization. However none of them simultane-
ously supports aggregation (e.g. package views),
drill-down, picturing the code quality and depen-
dencies.



10 Cezary Bartoszuk et al.

3. Graph Model

In this Section we recall the theoretical model [7]
for the unified representation of architectural
knowledge. Such a model caters for the following
key needs: (1) natural scalability, (2) abstraction
from programming paradigms, languages, speci-
fication standards, testing approaches, etc, and
(3) completeness, i.e. all software system and
software process artifacts [12] are represented.
The model is based on a directed labeled multi-
graph. A software architecture graph is an or-
dered triple (V,L, E). V is the set of vertices
that reflect all artifacts created during a soft-
ware project. E ⊆ V × L × V is the set of di-
rected labeled edges that represent dependencies
(relationships) among those artifacts. L is the
set of labels which qualify artifacts and their
dependencies.

Vertices of the project graph are created when
artifacts are produced during software develop-
ment process. Vertices can represent parts of the
source code (modules, classes, methods, tests),
documents (requirements, use cases, change re-
quests), coding guidelines, source codes in higher
level languages (yacc grammars, web service spec-
ifications, XML schemata), configuration files,
make files or build recipes, tickets in issue track-
ing systems etc. Vertices may be of different
granularities (densities).

Vertices are subject to modifications during
software development. It happens due to changes
in requirements, implementation process, bug
fixing or refactoring. Therefore, vertices must be
versioned. Versions are recorded in labels con-
taining version numbers (revisions) attached to
vertices and edges. Thus, multiple vertices can
exist for the same artifact in different version.
Example 3.1. A method can be described by
labels showing that it is a part of the source code
( code); written in Java ( java); its revision is 456
( r:456); it is abstract and public.

3.1. Transformations

Transformations give the foundation for the
software intelligence layer of the toolkit [6].
Our graph model is general and scalable as

tested in practice [11]. However, in the case
of a large project the model becomes too com-
plex to be human-tractable as a whole. Soft-
ware architects are interested both in an overall
(top-level) picture and in particular (low-level)
details. Selecting a specific subgraph is an ex-
ample of a transformation (e.g. in a graph of
methods with a call relation properly defined,
the subgraph of methods that call the given
method). Queries that compute such transfor-
mations are computationally inexpensive. Usu-
ally they only need to traverse a small frac-
tion of the graph. Another important family
of transformations are transitions. A transition
maps a graph into a new graph and may in-
troduce new vertices or edges, e.g. lifting the
dependency relation from the level of classes (a
class depends on another) to the level of pack-
ages. Further example of a transformation is
a map that adapts a higher level of abstraction,
e.g. hiding fields and methods while preserv-
ing class dependencies. Transformations can be
combined.
Example 3.2. For a given software graph G =
(V,L, E) and a subset of its labels L′ ⊆ L, the
filter is a transformation G|L′ = (V ′,L′, E ′) where
V ′ and E ′ have a label in L′.
Example 3.3. For a given software graph G =
(V,L, E) and t : L × L 7→ L′, the closure is the
graph Gt = {V,L′, E ′}, where E ′ is the set of new
edges resulting from the transitive closure of t
calculated on pairs of neighboring edges from E.

3.2. Metrics

The graph-based approach is in line with best
practices for metrics [43, 44]. It allows the trans-
lation of existing metrics into graph terms [45].
It ensures that they can be efficiently calculated
using graph algorithms. It also allows designing
new metrics, e.g. such that integrate both soft-
ware system and software process artifacts. In
our model metrics are specific transformations
that map to the set of real numbers. For a given
software graph G = (V,L, E), a metric is a trans-
formation m : G 7→ R where R denotes real
numbers and m can be effectively calculated by
a graph algorithm on G.



On Visual Assessment of Software Quality 11

Example 3.4. For a software graph G let CF
be the counting function CF (n, η1, η2, η3) =
#{m ∈ V | type(n) 3 η1 ∧ type(m) 3 η2 ∧ ∃e ∈
E : source(e) = n∧target(e) = m∧type(e) = η3},
where n ∈ V, η1, η2, η3 ∈ L. For a node n with
a label in set η1, CF counts the number of nodes
m with a label in set η2 such that there is an edge
e of label η3 from n to m. CF can be implemented
on G in O(|G|) time.
Example 3.5. Let NOC (Number Of Chil-
dren) denote a metric that counts the num-
ber of direct subclasses. Calculating such met-
ric in graph-based model reduces to filtering
and counting neighbors. It can be done quickly,
i.e. in O(|G|) time. Using the counting func-
tion NOC is implemented simply as: NOC (c) =
CF(c, class, class, inherits).
Example 3.6. Let WMC (Weighted Method
per Class) denote a metric that counts ∑n

i=1 ci

where ci is the complexity of the i-th method in
the class. If each method has the same complex-
ity, WMC is just the number of methods in the
class. Using the counting function the number
of methods in a class is implemented simply as:
WMC (c) = CF(c, class,method, contains).

Graph metrics depend only on the graph’s
structure. They are independent of any program-
ming language. Hence storing and integrating all
architectural knowledge in one place facilitates
tracing not only dependencies in the source code
but also among documentation and meta-models.
This opportunity gives rise to new graph-defined
metrics concerned with software processes.
Example 3.7. Let CHC (Cohesion of Classes)
denote a metric that counts the number of strongly
connected components of this graph. A software
is cohesive if this metric is 1. In the graph-based
model it is computed quickly, in time O(|G|).

4. Software Analysis Method

Our method uses software architecture graphs
(see Section 3). Its goal is quick assessment
and comprehension of software projects. Assume
a software architecture graph G = (V,L, E)
such that L|V = {package, class} and L|E =
{contains, calls, imports}. A package contains

classes and packages. A package imports a pack-
age. A class calls a class. We also apply a tran-
sition of G that combines the relation contains
of packages and classes and the relation calls
between classes. Its result is the relation calls
among packages.

4.1. Visualization

A quick assessment and comprehension of a soft-
ware project can be done by a visualisation of the
two dimensions: (1) importance and (2) quality
of software artifacts. Following the research on
warehousing and analysis of architectural knowl-
edge [6, 7], we visualize the software in the form
of a planar representation of the directed multi-
graph of software artifacts and their relations.
We render the two dimensions using size and
color. The size of a node depicts its artifact’s
importance. The color of a node shows its arti-
fact’s quality. Intuitively, a big node denotes an
important artifact, while a small node denotes
an unimportant one. A green node denotes an
artifact of good quality, while a red node denotes
an artifact of poor quality. An artifact depicted
as a big red node should gain attention of soft-
ware architects and engineers because of its high
importance and poor quality. Figure 1 shows
basic examples.

As defined in Section 3, the graph-based
model embraces all types of artifacts that oc-
cur in a software project and all types of their
relations. Those include non-software artifacts
like use cases or artifacts related to the software
development process and additional attributes
for graph vertices and edges. We can e.g. enrich
the calls relation with the attribute call count
collected during a runtime analysis [46]. This
kind of data can be obtained using frameworks
like Kieker [27]. Such dimension as call count can
be depicted by thickness of graph edges. A thick
edge denotes frequent calls and a thin edge de-
notes rare calls (see Figure 2c).

4.2. Analysis

In this section we assume a software project with
the following properties. (1) Static data, like the



12 Cezary Bartoszuk et al.

(a) No metrics (b) Quality metrics (c) Importance metrics (d) Both kinds of metrics

Figure 1. Software artifacts – their importance and quality

(a) Package tree (b) Imports relationship (c) Runtime call count

Figure 2. Relationships between software artifacts – static and dynamic

source code, has been uploaded into its software
architecture warehouse. (2) Dynamic data, like
the runtime log of procedure calls, has been up-
loaded into its software architecture warehouse.
(3) These data have been preprocessed, in particu-
lar different project metrics have been calculated.
This allows the preparation of a visualisation of
this software project that facilitates its interest-
ing multi-dimensional analysis. Let us review the
key points of the presented approach.

We have to select artifacts to be depicted as
nodes of the graph. The size of this collection
is first of all determined by the abstraction
level of the assessment. Then further filters or
transformations can be applied (see Section 3).
Figure 3 shows two abstraction levels. Figure 3a
shows a smaller collection of top-level packages.
Figure 3b shows a bigger collection of low-level
classes.

There can be multiple intuitions behind the
definition of the importance of artifacts, e.g.

the amount of work needed to adjust the rest
of the system if this part of code gets changed.
Consequently, there can be different algorithms
that implement those intuitions with different
semantics. In particular PageRank [47] assigns
higher importance to more popular nodes. The
more edges point a node, the higher is its rank.
Such measure properly reflects the practical im-
portance of software artifacts. Figure 4 shows
sample visualizations. Figure 4a does not show
importance, while Figure 4b has big nodes for
important packages and small nodes for less im-
portant packages.

There can also be multiple intuitions behind
the definition of the quality of artifacts. One
possible interpretation is the local complexity
for which there are numerous possible metrics.
One of the most popular is Cyclomatic Com-
plexity [48]. Figure 5 shows quality of artifacts
visualized for two different projects. The one from
Figure 5a seems to have low local complexity as



On Visual Assessment of Software Quality 13

(a) Aggregated artifacts (b) Fine grained artifacts

Figure 3. The importance and the quality at different levels of abstraction

(a) No importance measure applied (b) PageRank as importance measure

Figure 4. Two visualizations of nodes – with and without importance shown

most artifacts are green-brownish. The one from
Figure 5b has few artifacts with reasonable local
complexity.

When the measure of quality is also a measure
of complexity, it does not have to be independent
from the PageRank. The more complex the class,
the more links it usually has. Those links tend
to raise the PageRank. In our experiments (see
Section 7), we have not observed this dependency.
The quality measure has been the average num-
ber of lines of code per class. It is obviously also
a complexity measure. However, the pictures gen-
erated by Magnify do not confirm its substantial
dependency on PageRank.

Architects usually start depicting a system
at the top-level where vertices are packages. For
most of the software projects they are granular
enough and their amount remains comprehensi-
ble for a human. When an architect moves to
a lower abstraction level where nodes are classes,
the picture gets complicated. In such case, inter-
esting edges are of several kinds. They are: (1)
a dependency of a class on another class, if the
former knows about the latter. (2) an inclusion of
a method in a class, a class in a package, a pack-
age in its parent package, (3) a call between two
classes, if any method of the first class calls the
second class. Moreover, some of dependencies



14 Cezary Bartoszuk et al.

(a) Low local complexity of artifacts (b) High local complexity of artifacts

Figure 5. The quality of artifacts - low vs. high local complexity

Figure 6. The complexity of relations may require applying model transformations

cannot be observed just by processing source
code at the design time. Modern programming
languages provide means for dynamic calls. Thus,
runtime analysis is required. At some abstraction
levels a dense net of dependencies may occur (see
Figure 6). For such cases, our model offers mul-
tiple graph transformations to support software
architects and engineers, like filtering, mapping,
zooming etc.

5. Magnify

Magnify is a proof-of-concept implementation of
the ideas presented in this article. It visualizes

software projects as graphs. The project includ-
ing its source code can be downloaded from https:
//github.com/cbart/magnify. We start from
browsing through potential user groups that can
be interested in using Magnify. The following
sections describe real world situations where our
tool can prove useful.

5.1. Software Architects

Nowadays well managed software teams have
a sophisticated infrastructure that aids efficient
development and reduces risks. Tools and tech-
niques used in a modern software project should
include e.g.: version control, unit testing, con-



On Visual Assessment of Software Quality 15

tinuous integration, code review, code analysis
tools including copy paste detectors, complex-
ity metrics, bug finders, automatic deployment,
stand-ups, short iterations or sprints, planning
meetings and retrospectives. Our tool fits in this
scheme as a code analysis tool that can be run
frequently (e.g. for each revision, hour or day).

Software architects can use Magnify to obtain
an up-to-date holistic view that shows how the
overall development is proceeding in terms of
emerging code artifacts and dependencies. The
architects can quickly notice if recent changes
break e.g. software modularity or other archi-
tectural ideas. Magnify can also be used during
retrospectives. It allows a scrum master to vi-
sualize different revisions of software. The team
can quickly see what was the effect of the given
sprint of their work.

5.2. Software Engineers

Software teams can use Magnify to continuously
analyze their own software in order to improve
its quality. They can also use Magnify as a tool
for analyzing foreign projects. Assume a software
engineer wants to join a new project. Typically,
he/she would contact the development team and
check what programming languages, tools, li-
braries, techniques and practices they use. If
he/she wanted to check the quality of the system
under development, he/she would check its test
coverage, run a static code analysis and observe
the software in runtime environment. Magnify
offers a view of a project from a unified high-level
perspective that gives all those valuable insights.

Consider a perspective where an open-source
solution is incorporated into the system being
developed. The usual approach is to introduce
abstractions between this system and the third
party library or framework. This significantly in-
creases the flexibility. The development team can
also upgrade the third party software and only
reimplement a façade to make everything work.
Sometimes, though, this is not an option. When
an open source software does not provide all the
functionality that is needed, there exist only few
possible solutions. The team can introduce the
needed changes into the next versions of the open

source itself. Sometimes the ideas of the team do
not match the concept of the library’s architect.
Then an implementation of such changes in the
library’s main branch becomes a management
problem. Even if the changes get allowed, their
implementation and review gets time consuming.
The other way is to fork the open source project
and develop the needed changes in house. One
of the consequences of choosing this path is the
lack of support from the library’s authors. In
this case the team might want to examine the
third party software before they start contribut-
ing. As described in Section 5.1 they can use
various tools to investigate the quality. Among
those tools Magnify provides a starting-point
view of the project, depicting it as-is in a unified,
high-level perspective. In Section 7 we present
examples of software project properties that are
well visualized using Magnify.

5.3. Computer Scientists

Magnify can also be used for scientific software
inspection. Thanks to flexibility of the graph
model presented in Section 3, Magnify is an ef-
fective software analysis framework. Scientists
that analyze software can easily implement graph
transformations and custom code metrics. The
graph model and the architecture described in
Section 6 allow using a plethora of well known
graph algorithms in their research.

6. Architecture

Magnify is a JVM application with web interface.
In this Section we describe the architecture of
our tool (see Fig. 7).

Nowadays there are numerous storage tech-
nologies available. For the last 30 years the
database community has been dominated by re-
lational databases with popular database man-
agement systems like Oracle, Postgres, MySQL,
Microsoft SQL Server or SQLite. During that
time so called SQL databases were the de-
fault choice as persistence layers. Most re-
cently the movement of the NoSQL emerged.
It is focused on non-relational (sometimes even



16 Cezary Bartoszuk et al.

Visualization (SVG) Control (JavaScript, DOM)
Presentation (d3.js)

Data boundary (HTTP, REST, JSON)
HTTP server (Scala, Play)

Graph views (Scala, Gremlin)
Graph database (Tinkerpop, Blueprints, Neo4j)

Figure 7. The architecture of the visualisation part of Magnify

schema-less) database technologies including
column-oriented database management systems
(e.g. Google’s BigTable and Apache HBase),
key-value stores (e.g. Riak and Redis), docu-
ment stores (e.g. MongoDB and CouchDB) and
graph databases (e.g. Neo4j and OrientDB).
When implementing Magnify we considered mul-
tiple options for the storage layer. The graph
databases always seemed the most in line with
our graph model described in Section 3. Tin-
kerpop Blueprints is a standard model for
working with graph databases on the JVM.
With its flexible query language Gremlin and
a simple graph model, it made easy to imple-
ment needed graph transformations. Thanks
to Blueprints Graph implementations we were
able to use ready implementations of needed
algorithms. For example, we use a PageRank
implementation from the Java Universal Net-
work/Graph Framework (or JUNG) thanks to
the provided Blueprints JUNG implementa-
tion.

The main feature of Magnify is visualisa-
tion of the software graph. There are abundant
technical possibilities to achieve such goal in
a browser. For two-dimensional diagrams that
are composed of simple shapes, SVG (scalable
vector graphics) seems to be the simplest so-
lution. Elements of an embedded SVG image
are plain old XML tags and thus belong to
the DOM. Thanks to that they can be ma-
nipulated and can react to DOM events (click,
hover, etc.) such as any other parts of HTML
page.

In Magnify we used a library called d3.js,
i.e. a multi-purpose visualisation framework. It
offers tools for creating, manipulation of SVG
graphics and reacting to DOM events. In Mag-
nify we used a custom force directed graph. We

use Force Atlas as our layout algorithm with
attracting force on edges, repulsive charges and
gravity on graph nodes. In practice it has proved
to be a fine way to visualize software graph on
a plain.

There are disparate data formats to repre-
sent a property graph model presented in Sec-
tion 3. One of the most popular is the Graph
XML Exchange Format (GEXF) format. The
schema of GEXF is extensible enough to con-
tain all the required properties of nodes and
edges. It can be read by popular graph manipu-
lation tools like Gephi. At the moment of writing
Magnify supports graph import and export in
JSON format. This was the most convenient
format for integration with other tools in our
research.

7. Experimental Evaluation

In this Section we show the results of apply-
ing Magnify to the following eight open-source
projects: Apache Maven 3.0.4, JLoXiM rev.2580,
Weka 3.5.7, Spring Context 3.2.2, JUnit 4.10,
Cyclos 3.7, Play 1.2.5, Apache Karaf 3.0.0 RC1.
The projects significantly vary in size, quality,
purpose and design. JLoXiM is a research project
developed by students. It was a case-study in our
previous experiments [11]. The remaining seven
projects are well-recognized systems, frameworks
and libraries.

For each system we present its visualisa-
tion created by Magnify and sample conclusions
drawn from this view. Wherever a listed conclu-
sion concerns only a part of the visualization, we
add an oval to the figure in order to indicate the
subject area. We label these ovals with identifiers
of observations.



On Visual Assessment of Software Quality 17

7.1. Apache Maven 3.0.4

Apache Maven is a build automation tool. It
serves a similar purpose to Apache Ant. It com-
piles, packages and deploys projects. Maven sup-
ports dependency management. It can download
external modules and plugins from remote repos-
itories like the Maven 2 Central Repository. Fig-
ure 8 shows its visualizations.
Observation 7.1. org. apache. maven. model
is well encapsulated.

Let us focus on the group of packages on top
of Figure 8b. When we point its center with the
mouse, a tooltip will inform that the name of
this package is org.apache.maven.model. Only
four packages are visible outside this group:
building, io, plugin and resolution. That
means that all the other artifacts inside org.
apache.maven.model can change without affect-
ing the rest of the system. In fact when you
take a look at the structure of Maven subpro-
jects, you can see these two: maven-model and
maven-model-builder. The subproject maven-
model contains mostly tests and only one pub-
lic non-test class. The subproject maven-model-
builder contains all the other classes under the
model package. Thus, in case of org.apache.
maven.model subprojects the directory structure
properly reflects underlying code dependencies.
Observation 7.2. Dependencies around org.
apache. maven. artefact form a dense net-
work.

There is an entanglement on the bottom
side of the picture around org.apache.maven.
artefact. The gray area in Figure 8a shows
substantial amount of dependencies. This means
that the code in this part of the project is tightly
coupled. Therefore, if some pieces change, nu-
merous other items will be affected. Fixing this
tight coupling is not easy as it requires diving
deeper into the code and refactoring the design
of how the classes cooperate.
Observation 7.3. The overall local complexity
is satisfactory.

Apart from the package tree, Figure 8c shows
both the importance and local complexity of
nodes. Most of the nodes are green-brownish.
Thus, the overall quality of classes is satisfactory.

7.2. JLoXiM, Revision 2580

JLoXiM is an experimental semi-structured
database management system. It is developed
by a team of students that is subject to fre-
quent changes. This makes it an interesting case
for analysis of architectural changes [11]. Fig-
ure 9 presents the visualisation of this system by
Magnify.
Observation 7.4. Parts of JLoXiM have mod-
ular structure and are well encapsulated.

When we look at Figure 9, we can graphically
divide the system into two parts. The bottom
part has dense dependencies. The top part con-
tains few aggregates of packages. The groups of
packages on top have numerous internal edges,
i.e. dependencies inside the aggregate. However,
the dependencies between the groups are notably
reduced.

The top part seems well designed from the
architectural point of view. Low level of density
between the aggregates indicates that they are
loosely coupled. Thus, all the pieces are easily
exchangeable. This substantially increases the
ease of development and the flexibility of the
resulting solution.

On the other hand the groups themselves are
far more dense inside than outside. This means
that there are classes that are closely related.
Therefore, one could form modules that would
be both easily interchangeable and easy to under-
stand by developers. Unfortunately, they are not
always packaged as the package dependencies
would suggest.
Observation 7.5. JLoXiM is not well packaged.

In Figure 9 red edges form the package tree.
In several parts of JLoXiM the dependencies
go against packaging, i.e. there are sections of
the package tree that are highly coupled even
though they are not packaged together. When
Magnify applies more attractive power to depen-
dencies, the package tree itself looks like a tangle.
Since there are abundant dependencies on pieces
of code that are not close in the package tree,
browsing the code is particularly difficult. Track-
ing the flow requires jumping back and forth
from one package to another. A way to avoid
that inherent complexity is to repackage classes



18 Cezary Bartoszuk et al.

(a) Package dependencies (b) Package tree with dependencies (c) Package tree, local metrics
and package importance

Figure 8. The visualisation of Maven 3.0.4 using Magnify

in a more natural manner that embraces their
dependencies.
Observation 7.6. There are no God Modules
in JLoXiM.

A God Module is a piece of code that contains
too many responsibilities and seems to do every-
thing. In Magnify its size skyrockets compared to
the other nodes. Besides few slightly bigger nodes,
packages of JLoXiM are more or less of the same
size. Therefore, the architecture is balanced.

Indeed, when one inspects the code with text
processing tools, it becomes obvious that besides
the five most often imported classes (that are
value objects), all the others are imported less
than 100 times each. This is not too much for
approximately 2100 classes in the whole project.
Observation 7.7. Less than a half of JLoXiM
code is touched at runtime by the test suite.

Besides dependencies (gray edges) and pack-
age tree (brown edges) Figure 9 presents also
yellow edges which visualize the control flow. The
thicker is a yellow edge the more flow went from
one package to another during the runtime moni-
toring session. This kind of experiment performed
on different environments can yield interesting re-
sults. One could monitor how control flow passes
in a production environment. This kind of moni-
toring brings a significant performance overhead.
On the other hand plugging it into only small
percent of production instances should not affect
the overall performance too much. However, it
can produce a significant amount of important
data. Another scenario might be capturing call

count during running an acceptance test suite.
For example, if a team wants to introduce con-
tinuous deployment in their release and drifts
towards fully automatic shipping, then their ac-
ceptance test suite will have to embrace most of
the code. In this case visualizing call count can
prove interesting in two ways. (1) It can help
identify dead flows that are not needed any more
and have become clutter over the history of this
system development. (2) It can point out impor-
tant flows that are not covered by acceptance
test scenarios.

7.3. Weka 3.5.7

Weka is a collection of machine learning algo-
rithms. It is used mainly for data mining and
contains tools for classification, regression, clus-
tering, association rules and more. Figure 10
presents visualizations of Weka packages using
Magnify.
Observation 7.8. Weka classes are large and
complex.

The first things to notice at Figure 10b are
red nodes. The red color of nodes indicates that
per-package average local complexity of Weka
classes is notably high. Thus the code is difficult
to grasp and maintain. Fortunately the prob-
lem of local complexity is easy to fix. Modern
tools including IDEs provide numerous methods
that help moderating local complexity of classes.
With series of refactorings one could significantly
reduce this inherent complexity.



On Visual Assessment of Software Quality 19

Figure 9. The visualisation of JLoXiM r2580 using Magnify

Observation 7.9. Weka does not have modular
architecture.

Dependencies between packages do not seem
to form any modular patterns. The graph is rela-
tively dense for such a small project. Compared
to the previous flaw this one is far more diffi-
cult to fix. Repackaging and module formation
usually requires deep understanding of the sys-
tem under refactoring as well as the domain it
works in.
Observation 7.10. weka. core might be a God
Module.

The package node weka.core seems to be
far bigger than all the others. Moreover, it holds
a significant number of dependencies and seems
to be the central place of the system. The bugs
in this part are potentially destructive.

The package weka.core contains 80 classes
itself, which is far too much. We looked in more
depth at weka.core.Utils. This class is approx-
imately 2000 lines long. It contains unrelated util-
ity static methods. To our surprise the quality of
the underlying code is fairly good. The methods
themselves are short and concise, but there are
too many of them. A simple refactoring that will
significantly improve this structure consists in
extracting classes containing cohesive methods
like string manipulation, statistics, comparisons
and so on.

7.4. Spring Context 3.2.2

Spring is one of the most popular enterprise ap-
plication frameworks in Java community. It pro-



20 Cezary Bartoszuk et al.

(a) Package tree, dependencies (b) Local complexity, importance

Figure 10. The visualisation of Weka 3.5.7 using Magnify

(a) Dependencies and complexity (b) Package tree and importance

Figure 11. The visualisation of Spring context 3.2.2 using Magnify

vides an infrastructure for dependency injection,
cache, transactions, database access and many
more. Figure 11 shows how it looks in Magnify.
Observation 7.11. Spring is well designed.

The dependency graph is noteworthy sparse
with a few dependencies between packages. Thus,
the overall coupling in the code is low and/or
the packages are self-dependent.
Observation 7.12. Packages are of equal im-
portance.

The only packages that are indicated as im-
portant are empty vendor packages: the root

package, org and org.springframework. These
packages are not used to store code. They just
form a namespace for the project. All packages
that contain any classes are of same importance.
This resembles a well balanced piece of software.
Observation 7.13. The overall quality of code
is satisfactory.

There are no bright red packages in the pic-
ture. Most of nodes are colored from green to
red-brownish. This means that on average classes
are small in most of packages. With smaller
classes it is far easier for developers to get to



On Visual Assessment of Software Quality 21

know the code. If a class is small enough, even
if the code inside is complex, the idea behind it
will be easy to understand.

7.5. JUnit 4.10

JUnit is a unit testing framework for Java.
Started by Kent Beck and Erich Gamma it
gained popularity and it is still helping test drive
modern Java projects. Figure 12 shows its visu-
alizations.
Observation 7.14. Overall code quality is good.

We can see that all important packages are
green and the web of dependencies is manageable.
Observation 7.15. Not all parts of JUnit were
executed during our test example.

The runtime data visible in Figure 12c are
call counts inside JUnit library gathered while
running one of our test suites. The yellow edges
do not touch all the packages of this small library.
In this particular case the reason might be that
our test case did not use all the features JUnit
has to offer.
Observation 7.16. Some runtime dependencies
are not in line with static dependencies.

One can also spot one peculiar thing. Near
the bottom right corner of Figure 12f we can
see three black nodes. These are (from top to
bottom) the org package, the root package and
the junit package. There are two thin runtime
flow edges adjacent with the root package. Our
first thought when analyzing this visualisation
was that there are some classes in the root pack-
age that are accessed via the reflection. A deeper
investigation had proven that these edges show
the use of dynamic proxies which get compiled
into classes that end up in the root package.

7.6. Cyclos 3.7

Cyclos is a complete on-line payment system. It
also offers numerous additional modules such as
e-commerce or communication tools. The project
allows local banks to offer banking services that
can simulate local trade and development. Cyc-
los is published under the GPL license. Figure
13 presents visualizations of this system in the
Magnify tool.

Observation 7.17. The network of dependen-
cies is exceptionally dense.

The experience shows that software systems
with abundant inter-dependencies tend to be
difficult in comprehension, maintenance and de-
velopment. Such systems are also exceptionally
fragile. In dense dependency networks a software
engineer struggling to understand a piece of code
must read through several other pieces this piece
is dependent on. Cyclos is fragile because a bug
in one part of code affects multiple other parts.
Furthermore, a modification, an improvement or
refactoring of a single piece of code causes copi-
ous additional changes since its neighborhood is
always big.
Observation 7.18. The local complexity of
classes is manageable.

Figure 13b shows few packages in which
classes are big on average. That means that
overall complexity of the classes themselves is
acceptable.
Observation 7.19. Cyclos should be split into
cooperating subsystems.

Cyclos is a profound example of a system
that should be split into orchestrated group of
communicating systems. This kind of refactoring
would significantly improve the quality of this
software itself as well as the costs of further devel-
opment. In our opinion, the introduction of the
Service Oriented Architecture or the Microkernel
with Services would benefit the developing team.
This way system parts would have clearly defined
boundaries, e.g. in the form of RPC interfaces.
Since dealing with separate services makes it
more difficult to depend directly on implementa-
tion details, it discourages high coupling between
services. As long as services are loosely coupled
and small, the code inside them can be fairly
complex, since rewriting a single service from
scratch is significantly less costly than rewriting
the whole system.

7.7. Play 1.2.5

Play is a popular Scala and Java web frame-
work. It is built on a lightweight, stateless and
web friendly architecture. Play is heavily influ-
enced by dynamic language web frameworks like



22 Cezary Bartoszuk et al.

(a) Package tree (b) Package dependencies (c) Runtime data

(d) Package tree, metrics (e) Package dependencies, metrics (f) Runtime data, metrics

Figure 12. JUnit 4.10 visualized with Magnify

(a) Package tree (b) Package dependencies (c) Full information

Figure 13. The visualization of Cyclos 3.7 using Magnify

Rails and Django. That makes a simpler develop-
ment environment when compared to other Java
platforms like JEE or Struts. Figure 14 shows
visualisation of Play using Magnify.
Observation 7.20. The package structure is
flat.

Figure 14 shows a small project with fair
amount of dependencies. The height of the pack-
age tree is small. Unlike classic JVM package
trees this kind of flat package structure is typical
for dynamic languages. The packaging approach

the Play team has taken emphasizes the influ-
ence by popular rapid application development
web frameworks from the family of dynamic lan-
guages.
Observation 7.21. The package play seems
like a do-it-all framework façade.

The biggest node corresponds to the project
root package play. Bright red color reveals po-
tentially high complexity of classes inside. It is
customary in dynamic languages to expose most
of library or framework functionality through few



On Visual Assessment of Software Quality 23

Figure 14. The visualization of Play 1.2.5 using Magnify

classes contained in a single name space. Among
other things, beginners can more easily find all
the needed endpoints. For example, in Scala they
can simply import play._ and have access to
all the features they need.

7.8. Apache Karaf 3.0.0 RC1

Apache Karaf is a small OSGi container in which
various components and applications can be de-
ployed. Karaf supports hot deployment of OSGi
bundles, native operating system integration and
more. Figure 15 shows Magnify visualizations of
Apache Karaf.
Observation 7.22. Apache Karaf is well pack-
aged.

Even though Karaf is split into plentiful pack-
ages, the number of dependencies is small. Most
subtrees of package hierarchy have only a sin-
gle dependency on the rest of the system. That
implies a well packaged system.
Observation 7.23. Local code quality is fair.

Figure 15 shows that overall code quality in
Karaf is good. There are only few packages where
average class size is alarming. The only refactor-
ing we can suggest is to encapsulate subpack-
ages of org.apache.karaf.shell which tend to
spread a web of dependencies in the top part of
the picture.

8. Conclusions

In this article we described the tool Magnify. We
explained how architects could use Magnify in
order to quickly comprehend and assess software.
The idea is to automatically generate a visuali-
sation of the software such that architects can
instantly see the importance and the quality of
software components. They can do it at the level
of abstraction they require.

We have also performed experimental eval-
uation of our approach. The experiments have
proven that a sparse software graph and almost
uniformly distributed node sizes mean a proper
modular architecture. On the other hand, one
node dominating others in size might also mean
a shared kernel architecture, where other func-
tionalities are implemented as services floating
around the kernel.

Magnify is a general tool that can adopt other
quality metrics and importance estimates. Al-
though PageRank as the algorithm to compute
importance have proven to be effective in practi-
cal applications, its adequacy can be questioned.
For example, a common technique for encapsu-
lating a module in an object-oriented language
involves depending on a module’s interfaces and
obtaining instances via a façade. PageRank im-
portance of the façade will be significantly higher



24 Cezary Bartoszuk et al.

(a) Package dependencies (b) Package tree (c) Importance and quality

Figure 15. The visualisation of Karaf 3.0.0-RC1 using Magnify

than importance of implementation classes. This
usually is a poor reflection of the real importance.

Magnify can be extended in disparate direc-
tions. Currently Magnify supports only Java.
Adding support for other programming languages
requires registering a new parser. Its duty is to
analyze source files and add specific nodes and
their relations into the graph database. Since the
graph-based representation of the source code is
language agnostic, all the analysis done inside
Magnify will work equally well for any language
with notions of packages, classes and methods.

Furthermore, even though certain local com-
plexity measures might depend on a program-
ming language, most of them do not. The cyclo-
matic complexity that takes into account execu-
tion paths can be computed in the same way for
most programming languages. Moreover, most
languages use the same keywords for branching
and loops. Thanks to that and the syntactic na-
ture of the cyclomatic complexity one can write
an implementation that works well with most of
the popular programming languages.

Magnify is implemented using standards
for representation, storage and visualisation of
graphs, e.g. Blueprints API or the GEXF graph
format. Measures of importance of a node de-
pend only on the used graph model. Thus, any
algorithm working on those standard graph tech-
nologies will do.
References
[1] E. W. Dijkstra, “Letters to the editor: go to

statement considered harmful,” Commun. ACM,
Vol. 11, No. 3, 1968, pp. 147–148.

[2] J. McCarthy, LISP 1.5 Programmer’s Manual.
MIT Press, 1965. [Online]. http://books.google.
pl/books?id=68j6lEJjMQwC

[3] W. Royce, “Managing the development of large
software systems: Concepts and techniques,” in
WESCOM, 1970.

[4] K. Beck, “Embracing change with extreme pro-
gramming,” IEEE Computer, Vol. 32, No. 10,
1999, pp. 70–77.

[5] R. Kaufmann and D. Janzen, “Implications
of test-driven development: a pilot study,” in
Companion of the 18th annual ACM SIGPLAN
conference on Object-oriented programming, sys-
tems, languages, and applications, ser. OOP-
SLA ’03. New York, NY, USA: ACM, 2003, pp.
298–299. [Online]. http://doi.acm.org/10.1145/
949344.949421

[6] R. Dąbrowski, “On architecture warehouses and
software intelligence,” in FGIT, ser. Lecture
Notes in Computer Science, T.-H. Kim, Y.-H.
Lee, and W.-C. Fang, Eds., Vol. 7709. Springer,
2012, pp. 251–262.

[7] R. Dąbrowski, K. Stencel, and G. Timoszuk,
“Software is a directed multigraph,” in ECSA, ser.
Lecture Notes in Computer Science, I. Crnkovic,
V. Gruhn, and M. Book, Eds., Vol. 6903.
Springer, 2011, pp. 360–369.

[8] R. Dąbrowski, G. Timoszuk, and K. Stencel,
“One graph to rule them all software measure-
ment and management,” Fundam. Inform., Vol.
128, No. 1-2, 2013, pp. 47–63.

[9] C. Bartoszuk, G. Timoszuk, R. Dąbrowski, and
K. Stencel, “Magnify – a new tool for software
visualization,” in FedCSIS, M. Ganzha, L. A.
Maciaszek, and M. Paprzycki, Eds., 2013, pp.
1473–1476.

[10] C. Bartoszuk, R. Dąbrowski, K. Stencel, and
G. Timoszuk, “On quick comprehension and
assessment of software,” in CompSysTech,



On Visual Assessment of Software Quality 25

B. Rachev and A. Smrikarov, Eds. ACM, 2013,
pp. 161–168.

[11] R. Dąbrowski, K. Stencel, and G. Timoszuk, “Im-
proving software quality by improving architec-
ture management,” in CompSysTech, B. Rachev
and A. Smrikarov, Eds. ACM, 2012, pp. 208–215.

[12] L. J. Osterweil, “Software processes are software
too,” in ICSE, W. E. Riddle, R. M. Balzer, and
K. Kishida, Eds. ACM Press, 1987, pp. 2–13.

[13] M. T. T. That, S. Sadou, and F. Oquendo,
“Using architectural patterns to define architec-
tural decisions,” in WICSA/ECSA, T. Männistö,
A. M. Babar, C. E. Cuesta, and J. Savolainen,
Eds. IEEE, 2012, pp. 196–200.

[14] M. Wermelinger, A. Lopes, and J. L. Fiadeiro,
“A graph based architectural (re)configuration
language,” in ESEC/SIGSOFT FSE, 2001, pp.
21–32.

[15] A. Tang, P. Liang, and H. van Vliet, “Software
architecture documentation: The road ahead,”
in WICSA, 2011, pp. 252–255.

[16] H. P. Breivold, I. Crnkovic, and M. Larsson,
“Software architecture evolution through evolv-
ability analysis,” Journal of Systems and Soft-
ware, Vol. 85, No. 11, 2012, pp. 2574–2592.

[17] J. Derrick and H. Wehrheim, “Model transfor-
mations across views,” Sci. Comput. Program.,
Vol. 75, No. 3, 2010, pp. 192–210.

[18] T. Kühne, B. Selic, M.-P. Gervais, and F. Ter-
rier, Eds., Modelling Foundations and Applica-
tions, 6th European Conference, ECMFA 2010,
Paris, France, June 15–18, 2010. Proceedings,
ser. Lecture Notes in Computer Science, Vol.
6138. Springer, 2010.

[19] RAVENFLOW, RAVEN: Requirements Author-
ing and Validation Environment. www.ravenflow.
com, 2007. [Online]. http://www.ravenflow.com

[20] J. Whitehead, “Collaboration in software engi-
neering: A roadmap,” in Future of Software En-
gineering (FOSE), 2007. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 214–225. [On-
line]. http://dx.doi.org/10.1109/FOSE.2007.4

[21] P. Kruchten, P. Lago, H. van Vliet, and T. Wolf,
“Building up and exploiting architectural knowl-
edge,” inWICSA, IEEE Computer Society Wash-
ington, DC, USA. IEEE Computer Society, 2005,
pp. 291–292.

[22] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and
M. Ali Babar, “A comparative study of architec-
ture knowledge management tools,” Journal of
Systems and Software, Vol. 83, No. 3, 2010, pp.
352–370.

[23] D. Garlan, V. Dwivedi, I. Ruchkin, and
B. Schmerl, “Foundations and tools for end-user

architecting,” in Large-Scale Complex IT Sys-
tems. Development, Operation and Management,
ser. Lecture Notes in Computer Science, R. Ca-
linescu and D. Garlan, Eds. Springer, 2012, pp.
157–182.

[24] I. Gorton, C. Sivaramakrishnan, G. Black,
S. White, S. Purohit, C. Lansing, M. Madi-
son, K. Schuchardt, and Y. Liu, “Velo:
A knowledge-management framework for mod-
eling and simulation,” Computing in Science
Engineering, Vol. 14, No. 2, March-April 2012,
pp. 12 –23.

[25] N. Brown, R. L. Nord, I. Ozkaya, and M. Pais,
“Analysis and management of architectural de-
pendencies in iterative release planning,” in
WICSA, 2011, pp. 103–112.

[26] R. L. Nord, I. Ozkaya, and R. S. Sangwan, “Mak-
ing architecture visible to improve flow man-
agement in lean software development,” IEEE
Software, Vol. 29, No. 5, 2012, pp. 33–39.

[27] A. van Hoorn, J. Waller, and W. Hasselbring,
“Kieker: a framework for application perfor-
mance monitoring and dynamic software analy-
sis,” in ICPE, D. R. Kaeli, J. Rolia, L. K. John,
and D. Krishnamurthy, Eds. ACM, 2012, pp.
247–248.

[28] P. Avgeriou, J. Grundy, J. G. Hall, P. Lago, and
I. Mistrík, Eds., Relating Software Requirements
and Architectures. Springer, 2011.

[29] G. Spanoudakis and A. Zisman, “Software trace-
ability: a roadmap,” Handbook of Software Engi-
neering and Knowledge Engineering, Vol. 3, 2005,
pp. 395–428.

[30] A. Egyed and P. Grünbacher, “Automating re-
quirements traceability: Beyond the record &
replay paradigm,” in ASE, IEEE Computer So-
ciety Washington, DC, USA. IEEE Computer
Society, 2002, pp. 163–171.

[31] P. Kruchten, “Where did all this good archi-
tectural knowledge go?” in ECSA, ser. Lecture
Notes in Computer Science, M. A. Babar and
I. Gorton, Eds., Vol. 6285. Springer, 2010, pp.
5–6.

[32] D. Garlan and M. Shaw, “Software architecture:
reflections on an evolving discipline,” in SIG-
SOFT FSE, T. Gyimóthy and A. Zeller, Eds.
ACM, 2011, p. 2.

[33] B. Merkle, “Stop the software architecture ero-
sion,” in SPLASH/OOPSLA Companion, W. R.
Cook, S. Clarke, and M. C. Rinard, Eds. ACM,
2010, pp. 295–297.

[34] A. Chatzigeorgiou, S. Xanthos, and
G. Stephanides, “Evaluating object-oriented
designs with link analysis,” in ICSE, A. Finkel-



26 Cezary Bartoszuk et al.

stein, J. Estublier, and D. S. Rosenblum, Eds.
IEEE Computer Society, 2004, pp. 656–665.

[35] M. Ziane and M. Ó. Cinnéide, “The case
for explicit coupling constraints,” CoRR, Vol.
abs/1305.2398, 2013.

[36] R. Koschke, “Software visualization for reverse
engineering,” in Software Visualization, ser. Lec-
ture Notes in Computer Science, S. Diehl, Ed.,
Vol. 2269. Springer, 2001, pp. 138–150.

[37] J. I. Maletic, A. Marcus, and L. Feng, “Source
Viewer 3D (sv3D) – a framework for software
visualization,” in ICSE, L. A. Clarke, L. Dillon,
and W. F. Tichy, Eds. IEEE Computer Society,
2003, pp. 812–813.

[38] C. S. Collberg, S. G. Kobourov, J. Nagra, J. Pitts,
and K. Wampler, “A system for graph-based
visualization of the evolution of software,” in
SOFTVIS, S. Diehl, J. T. Stasko, and S. N.
Spencer, Eds. ACM, 2003, pp. 77–86, 212–213.

[39] S. P. Reiss, “Dynamic detection and visualization
of software phases,” ACM SIGSOFT Software
Engineering Notes, Vol. 30, No. 4, 2005, pp. 1–6.

[40] M. D’Ambros, M. Lanza, and M. Lungu, “The
evolution radar: visualizing integrated logical
coupling information,” in MSR, S. Diehl, H. Gall,
and A. E. Hassan, Eds. ACM, 2006, pp. 26–32.

[41] M. Ogawa and K.-L. Ma, “code_swarm: A de-
sign study in organic software visualization,”
IEEE Trans. Vis. Comput. Graph., Vol. 15, No. 6,
2009, pp. 1097–1104.

[42] K.-L. Ma, “Stargate: A unified, interactive visual-
ization of software projects,” in PacificVis,IEEE

Computer Society Washington, DC, USA. IEEE,
2008, pp. 191–198.

[43] F. Abreu and R. Carapuça, “Object-oriented
software engineering: Measuring and controlling
the development process,” in Proceedings of the
4th International Conference on Software Qual-
ity, 1994.

[44] J. M. Roche, “Software metrics and measure-
ment principles,” SIGSOFT Softw. Eng. Notes,
Vol. 19, January 1994, pp. 77–85. [Online].
http://doi.acm.org/10.1145/181610.181625

[45] S. R. Chidamber and C. F. Kemerer, “A metrics
suite for object oriented design,” IEEE Trans-
actions on Software Engineering, Vol. 20, June
1994, pp. 476–493. [Online]. http://portal.acm.
org/citation.cfm?id=630808.631131

[46] V. Markovets, R. Dąbrowski, G. Timoszuk, and
K. Stencel, “Know thy source code: Is it mostly
dead or alive?” in BCI (Local), ser. CEUR Work-
shop Proceedings, C. K. Georgiadis, P. Kefalas,
and D. Stamatis, Eds., Vol. 1036. CEUR-WS.org,
2013, pp. 128–131.

[47] S. Brin and L. Page, “The anatomy of
a large-scale hypertextual web search engine,”
Computer Networks, Vol. 30, No. 1-7, 1998, pp.
107–117.

[48] T. J. McCabe, “A complexity measure,” IEEE
Trans. Software Eng., Vol. 2, No. 4, 1976, pp.
308–320.



e-Informatica Software Engineering Journal, Volume 8, Issue 1, 2014, pages: 27–37, DOI 10.5277/e-Inf140102

The Use of Aspects to Simplify Concurrent
Programming

Michał Negacz∗, Bogumiła Hnatkowska∗
∗Faculty of Computer Science and Management, Institute of Informatics, Wrocław University of Technology

michal@negacz.net, bogumila.hnatkowska@pwr.edu.pl

Abstract
Developers who create multi-threaded programs must pay attention to ensuring safe implementa-
tions that avoid problems and prevent introduction of a system in an inconsistent state. To achieve
this objective programming languages offer more and more support for the programmer by syntactic
structures and standard libraries. Despite these enhancements, multi-threaded programming is still
generally considered to be difficult. The aim of our study was the analysis of existing aspect oriented
solutions, which were designed to simplify concurrent programming, propose improvements to
these solutions and examine influence of concurrent aspects on complexity of programs. Improved
solutions were compared with existing by listing differing characteristics. Then we compared
classical concurrent applications with their aspect oriented equivalents using metrics. Values of 2
metrics (from 7 considered) decreased after using aspect oriented solutions. Values of 2 other
metrics decreased or remained at the same level. The rest behaved unstably depending on the
problem. No metric reported increase of complexity in more than one aspect oriented version
of program from set. Our results indicate that the use of aspects does not increase the complexity
of a program and in some cases application of aspects can reduce it.

1. Introduction

Multi-core processors and supporting them sys-
tems are widely used at home. It is expected that
the number of available cores will continue to
grow in the next years [1].

The importance and number of programs that
run concurrently has increased with the advance
of technology. However, support for multi-core
systems forces the use of concurrent program-
ming techniques that are different from those
known from single-threaded applications.

Aspect-Oriented Programming is a program-
ming paradigm proposed by Gregor Kiczales. Its
purpose is to enable and support a developer
in separation of intersecting concerns and their
modularization [2]. A costs of development and
maintenance of concurrent programs can be re-
duced if a concurrent behavior is implemented
in a modular manner, with minimum changes to
an original source code.

The aim of this study is to analyze existing
aspects, which solve concurrent programming
problems, to propose improvements of existing
mechanisms and the construction of a library
that implements the existing solutions with the
proposed improvements. The created aspect li-
brary is available at [3].

The library was used to implement typical
programming problems and these implementa-
tions were compared with classical non-apsect
solutions with the use of metrics. Then we answer
the research question: Does the use of aspects to
concurrent programming reduce the complexity
of application?

The remainder of this paper is structured as
follows. In section 2 we list the problems that
a programmer may encounter when developing
a concurrent application. Then, section 3 briefly
describes previous research in the field of con-
current programming with aspects. In section
4 we present the use of aspects for concurrent



28 Michał Negacz, Bogumiła Hnatkowska

programming and show the introduced improve-
ments. Section 5 presents the results of complex-
ity comparison of the solutions with aspects and
without them. After that, in section 6, we present
the conclusions and future work.

2. Problems of Concurrent
Programming

When designing concurrent programs, in addition
to the traditional issues related to the design, one
have to deal with a parallel part of an application.
That is how tasks are divided between available
resources and how to communicate and synchro-
nize them with each other. Typical problems
occurring in concurrent programming are:
– Code scattering [4–6].
– Code tangling [4–6].
– Deadlocks [7–9].
– Livelocks [7–9].
– Starvation [7, 9].
– Race conditions [9].
– Synchronizing access to shared resources,

which consists of [9]:
– Restriction of simultaneous access;
– Visibility of data;
– Publication of objects.
With these problems, reuse, debug or change

the functionality of existing components become
a difficult task [4,6,10]. Moreover, because of the
concurrent code scattering between the various
components, the understanding of the whole
structure of concurrency in application is also
tough [6]. Costs of developing and maintaining
concurrent applications can be reduced if the
concurrency is added in a modular manner, with
the least possible changes to a code.

3. The Use of Aspects in Concurrent
Programming

3.1. Asynchronous Method Execution

Laddad in his book [11] presented the Worker
object creation pattern. In his solution an as-
pect is responsible for creating an anonymous

class of type Runnable, which wraps an original
method call. To use his solution, a programmer
should define a pointcut in the aspect, which indi-
cate the method for asynchronous execution. For
each call the aspect creates an instance, which
is passed to a new thread. As a result, instead
of a direct synchronous execution, it is moved to
a separate thread.

Cunha et al [4] proposed an improved solu-
tion. Unlike the previous, the presented mech-
anism allows threads, which are created in the
aspect, to be assigned to a specific group of pro-
cesses other than the current one. Programmer
can optionally define a pointcut, where the cur-
rent thread waits for spawned threads. It is also
possible to define pointcuts for the interruption
of thread. In addition, instead of explicitly de-
clare a method as a pointcut, it is possible to
give an asynchronous behavior only by marking
it with an annotation.

Listing 1. Asynchronous method execution
1 @Asynchronous
2 void method () {
3 // instructions
4 }

Hohenstein and Gleim also presented their
own version of an asynchronous method execu-
tion [10] (Listing 1). The authors recommended
to perform concurrent code in the thread pool
instead of creating a new thread for each exe-
cution. Concurrent executions are then limited
to the upper limit of threads and do not reach
the physical limits of the machine. When pool is
used, one have to take into account the necessity
of closing it. In the paper [10] authors proposed
to use an additional annotation that indicates
the place where the pool should be closed.

3.2. Asynchronous Method Execution
which Returns a Result

A separate mechanism has been proposed for
a concurrent execution of the methods that re-
turn a result. In the solution proposed by Cunha
et al [4], there are two pointcuts. The first point-
cut defines place where a calculation method
is invoked, while the second indicates location



The Use of Aspects to Simplify Concurrent Programming 29

where a result is used. A thread that calls the
method will be blocked at the second pointcut
as long as the method does not return the result.
The authors also mentioned a possibility of creat-
ing a fake object as the result, which represents
it until it is not available.

Hohenstein et al [10] also created a separate
aspect for methods that return a result. They
noted that an exception thrown from a Future
object requires unwrapping, which is an addi-
tional effort imposed on a programmer. They
found that it could be possible to solve this prob-
lem with an aspect, which uses a generic type
to represent the result (Listing 2). However, in
the examples presented by them one can not see
the way in which they achieve this unwrapping
behavior. As in the previous case, also in this
an annotation can be used.

Listing 2. Asynchronous method execution
which return a result

1 @Asynchronous
2 Result <Object > method () {
3 Object object = // create an object
4 return object ;
5 }

3.3. Asynchronous Execution
of Recursive Methods

A solution proposed for asynchronous execution
method with a result works well for recursive
calls. Its major disadvantage is that it creates
many threads – one for the root call and one
for each of recursive method calls. a better solu-
tion gives Fork/Join Framework, which is a part
of Java since version 7. Hohenstein et al [10]
proposed to use this framework with an aspect.
To simplify its application one can use an anno-
tation. The aspect uses two pointcuts – the first
captures the root call and the second recursive
calls. In this case the generic type is also used to
obtain the results of calculations.

3.4. Barrier

Cuncha et al [4] proposed an aspect oriented
mechanism to implement a barrier. Aspect uses

two pointcuts – both define methods where, re-
spectively, the first blocks the thread before and
the second after the method execution. The bar-
rier can be added by marking the appropriate
method with an annotation. The programmer
should specify the number of threads that barrier
will stop in parameter of the annotation. Option-
ally he may provide the name of the thread group,
to which stopped threads belong.

3.5. Resource Synchronization

Cuncha et al [4] suggested two ways to simplify
a resource synchronization at the method level.
The first solution wraps intercepted method call
into a Java synchronized block. The aspect pro-
vides two possibilities – the first uses a target
object as the monitor, while the second uses
an aspect object. The second resource synchro-
nization solution allows a thread to only read
or write to shared resources. This distinction al-
lows for simultaneous multiple readings, but only
one single write to the resource. It is possible
to use an annotation for easier determination
of synchronized methods.

Hohenstein and Gleim also studied the prob-
lem of resource synchronization [10]. They found
that blocking can be dangerous and prone to
errors due to forgetting to release a lock. An
aspect can solve this problem and ensure the
final release of any lock. In the proposed solu-
tion the following annotation is used @RWPro-
tect (reads = { ”resourceA” }, writes = {”re-
sourceB”, ”resourceC” }). Parameters of this
annotation are resource identifiers in the aspect.
The @RWProtect annotation specifies resources
to read and write in order to coordinate con-
current access. If different annotated methods
reference to the same resource, their access is
synchronized – simultaneous reading is allowed
at the same time, but writing excludes other writ-
ings and readings. Locks at resources are always
applied in a specific order to avoid deadlocks.
However, in the proposed aspect, despite of use
of non-blocking map, there is a race condition. In
addition, in certain circumstances a thread star-
vation may appear, when the thread is waiting
for a lock.



30 Michał Negacz, Bogumiła Hnatkowska

3.6. Conditions of Method Execution

Execution of some methods may depend on the
state of an object. Cuncha et al [4] proposed wait-
ing guards mechanism, which is based on an as-
pect. When the condition is not met, a thread is
blocked until there is an action that changes the
state of the object, which will trigger a condition
reevaluation. Additionally, the reevaluation may
occur after a defined timeout. The concrete as-
pect defines pointcuts, which indicate methods
for which conditions are checked and a method
that can change the state of the object, forcing
the reevaluation of conditions.

3.7. Active Object

The active object pattern separates method call
from its execution. It allows multiple threads to
access data which is modeled as a single object.
Traditional implementations of the pattern are
divided into three layers. The first layer contains
a client object, which makes a call, the second
layer includes a mechanism to transfer the call
to a target object and the third layer is the tar-
get active object running in a separate thread,
which is still waiting for method calls [12]. The
implementation of the active object in an aspect
way [4] moves the second and the third layer
to aspects. In addition, this solution makes par-
ticipating classes unaware of their roles in the
pattern. To give an object the behavior of the
active object one should use specified annotation.

4. Proposed Solution

4.1. Asynchronous Method Execution

To perform an asynchronous method execution,
a programmer should mark it with the annota-
tion @Asynchronous. By default, the method is
performed in a thread pool created by Execu-
tors.newCachedThreadPool(). All method calls
marked with this annotation will be executed in
one common pool shared for the entire program.
Methods that are annotated with the optional
parameter standalone = true are executed in

their own, single threaded, private pool that is
immediately closed after the call. The common
thread pool can be controlled by the annotation
@Startup. The pool is created before calling the
method marked with this annotation.

Annotation attributes which can be modified
are:
– threadPool: ThreadPool – type of pool:

– FIXED – pool with a fixed number
of threads coming from the method Ex-
ecutors.newFixedThreadPool(. . . ). Num-
ber of threads is taken from the parameter
maxThreads.

– CACHED – pool with a dynamic num-
ber of threads coming from the method
Executors.newCachedThreadPool().

– CUSTOM – pool with the characteristics
defined by a programmer.

– maxThreads: int – the number of threads
for FIXED type pool and maximum num-
ber of threads for CUSTOM type pool. If
not specified, it is assumed to be a maximum
value from the set {1, the number of available
processors - 1}.

– coreThread: int – the working number
of threads for CUSTOM type pool. If not
specified, the default value is calculated from
the formula 1.

– timeout: int – time after an unused thread
is killed. Attribute is used exclusively by the
CUSTOM type pool and it is measured in
seconds. The default value is 60 seconds.

– shutdownAfterMainMethod: boolean – at-
tribute specifies whether to automatically
close the pool after leaving a main method
of a program.

coreThread = maxThreads/3 + 1 (1)
The annotation @Shutdown is used for clos-

ing the common thread pool. After completing
marked by this annotation method, the pool will
not accept new tasks. The attribute now = true
results in an immediate closing the pool, calls
waiting in a queue will not be executed.

If the method declares an opportunity to
throw controlled exceptions, they are softened
by an aspect. This facility is dictated by a lack
of an exception handling capabilities, which will
be thrown in a separate thread. The code placed



The Use of Aspects to Simplify Concurrent Programming 31

in the catch part of the try {} catch {} structure
would be unreachable (Listings 3 and 4).

Listing 3. Example of an unreachable code
1 @Asynchronous
2 void method () throws Exception {
3 // ...
4 }
5

6 void callMethod () {
7 try {
8 method ();
9 } catch ( Exception e) {

10 // this code cannot be reached
11 }
12 }

To specify where asynchronous method
should join to a calling thread, methods can
be annotated with @JoinBefore or @JoinAfter
annotations.

Listing 4. Asynchronous method execution in
a pool

1 @Startup ( threadPool = ThreadPool .FIXED ,
2 maxThreads = 3,
3 shutdownAfterMainMethod = true)
4 @Asynchronous
5 void method () throws Exception {
6 // instructions , which we want
7 // to call asynchronously
8 }
9

10 void callMethod () {
11 method (); // there is no need for
12 // handling thrown
13 // exception
14 }

Table 1 compares features of previous aspect
oriented solutions with our proposal.

4.2. Asynchronous Method Execution
which Return a Result

The proposed aspect oriented solution considers
two cases. The first case are methods that return
an object type, which is not final. As in the case
of methods that do not return a result, it is
sufficient to mark a method with the annotation
@Asynchronous. This method will immediately
return automatically created Proxy object (List-
ing 5). Any call to a method on this object is
delegated to the correct result and if it is not

yet available, an execution is blocked until it is
available. The second case is a situation where
the return type is final. In this case a change in
a structure of a program is needed. The function
result should be wrapped with a generic type.
Methods marked with the @Asynchronous an-
notation execute in the same thread pool that
methods, which do not return a result. When,
during the execution of the method, it will en-
counter an exceptional situation, an exception
will be thrown in its original form when one
tries to fetch the result. Aspects are not capable
of dynamic declaring new exceptions to methods,
so special property of generic type has been used
to work around this limitation.

Listing 5. Example of an asynchronous method
execution with a proxy as result

1 @Asynchronous
2 ExampleObject method () throws
3 ExampleException {
4 // instructions , which we want
5 // to call asynchronously
6 }
7

8 void callMethod () {
9 try {

10 ExampleObject proxy = method ();
11 // asynchronous
12 // method call
13

14 // instructions that you want
15 // to do before the result
16 // is available
17

18 String something =
19 proxy. getSomething ();
20 } catch ( ExampleException e) {
21 // exception handling
22 }
23 }

In Table 2 we presented comparison of fea-
tures of previous aspect oriented solutions with
our proposal.

4.3. Asynchronous Execution
of Recursive Methods

A method may be performed recursively in three
ways. Each of them requires marking the method
with the annotation @AsynchronousRecursively.
For each recursive call of the marked method



32 Michał Negacz, Bogumiła Hnatkowska

Table 1. Comparison of asynchronous method execution solutions

Property Previous solution Proposed solution

Usage of a thread pool No [11], No [4],
Yes [10] Yes

The need to handle exceptions
in a calling code Yes No

Table 2. Comparison of asynchronous method execution solutions which return a result

Property Previous solution Proposed solution
Usage of a thread pool No Yes
Usage of a proxy object No Yes

The need to unwrap exceptions Yes [4], No [10] No

an aspect creates a separate Fork/Join pool. It
is possible to control the number of threads in
the pool by the parameter threads = 2. The
default number of threads is equal to the number
of available processors.

The first possibility is to use generic object
Result, which wraps an original result returned
from the method. In order to better use the
Fork/Join pool, in the second possibility, one
can use the method Result.scheduleWith(. . . )
proposed in [10]. Presented in this article method
can take only one parameter. We have extended
it to any number of parameters. It creates a fork
for each result passed, but the result object, on
which the method was called, is calculated in
a current thread. However, a disadvantage of this
solution is the need to change the program source
code and adding the call which is not directly
related to the application logic. Last, the third
possibility is to use auto generated Proxy ob-
jects (Listing 6). This case allows one to make
an application completely independent from the
library.

Listing 6. An aspect oriented calculation of 10th
Fibonacci number with a proxy object

1 void callMethod () {
2 Number proxy = fibonacci (10L);
3

4 // instructions that you want to
5 // do before the 10th fibonacci
6 // number is available
7

8 Long result = proxy. longValue ();
9 }

10 @AsynchronousRecursively
11 Number fibonacci (Long n) {
12 if (n <= 1) {
13 return n;
14 } else {
15 return fibonacci (n - 1). longValue ()
16 + fibonacci (n - 2). longValue ();
17 }
18 }

Methods, which are performed recursively,
use the same concept of exception handling as
asynchronous methods that return result. This
means that exceptions will be thrown unchanged
when one tries to fetch a result.

Comparison of features of previous aspect
oriented solutions with our proposal is presented
in Table 3.

4.4. Barrier

To implement a barrier in an aspect oriented
approach it is sufficient to mark a method with
annotations @BarrierBefore or @BarrierAfter
with the number of threads that the barrier stops.
Barriers can also be named with the name param-
eter of the annotation. The default name of the
barrier is thisMethod, which means that the bar-
rier is assigned only to the annotated method. If
for the one named barrier there are many anno-
tations with different number of threads, then
created barrier has a limit indicated in the first
method, which is called in a flow of a program.

The problem may be a situation in which
a method uses two or more barriers. Then it is



The Use of Aspects to Simplify Concurrent Programming 33

Table 3. Comparison of asynchronous execution of recursive methods solutions

Property Previous solution Proposed solution
The need to use specific methods

(scheduleWith(. . . )) Yes No

Usage of a proxy object No Yes

not known which barrier a thread has to consider
first. In this case, a developer must determine
an order by creating an artificial cascade of meth-
ods marked with barrier annotations (Listing 7).

Listing 7. A cascade of two methods with two
barriers

1 @BarrierBefore (value = 3,
2 name = " firstBarrier ")
3 void method () {
4 otherMethod ();
5 }
6

7 @BarrierBefore (value = 3,
8 name = " secondBarrier ")
9 void otherMethod () {

10 // instructions executed after
11 // reaching " firstBarrier " and
12 // " secondBarrier " by 3 threads
13 }

The solution does not include restrictions for
groups of threads, because they are obsolete and
it is not recommended to use them [7].

Table 4 compares barrier features of previous
aspect oriented solutions with our proposal.

4.5. Resource Synchronization

To synchronize the whole method it is sufficient
to mark it with the annotation @Synchronize.
This will perform a synchronization on a lock
assigned to a current object or an object of class
Class in the case where the method is static. If
one wants to synchronize the method using an an-
other lock, then he should specify its identifier.
To facilitate the connection of identifiers with
resources, they should be marked by @Share-
dResource with a resource name (Listing 8), al-
though for proper operation of a program it is not
required. Resource identifiers are global to the
program. If one wants to synchronize multiple
resources, then their identifiers should be listed in
the annotation. An aspect acquires locks always

in the same order, so the order of identifiers in
the annotation is not important. To set up locks,
that distinguish between reading and writing to
resources, identifiers should be specified in appro-
priate parameters. Default parameter assumes
two types of synchronization.

Following keywords can be also used as a name
of identifier in the @Synchronize annotation:
– this – a lock is assigned to a current object

or an object of class Class. The behavior is
analogous to precede a method with the word
synchronized.

– this.name – a lock is assigned as in the case
this, but also supplemented by the given name.
The behavior can be understood as embracing
the body of a method with the synchronized
block with an object field as the argument.

– global – a global lock.

Listing 8. Resource synchronization
1 @SharedResource (" sharedResource ")
2 Object sharedResource ;
3

4 @Synchronize (reads = " sharedResource ")
5 void readResourceMethod () {
6 // instructions that read resource
7 }
8

9 @Synchronize ( writes = " sharedResource ")
10 void writeResourceMethod () {
11 // instructions that write
12 // to resource
13 }

In Table 5 we presented comparison of fea-
tures of previous aspect synchronization solutions
with our proposal.

4.6. Conditions of Method Execution

In the proposed aspect oriented solution it
is sufficient to mark a method with the an-
notation @WaitUntilPreconditions, then define
precondition methods (with the annotation



34 Michał Negacz, Bogumiła Hnatkowska

Table 4. Comparison of barrier solutions

Property Previous solution Proposed solution
A possibility of sharing barrier

between the methods and objects
through its naming

No Yes

A possibility to restrict a barrier
only to a select group of threads Yes No

Table 5. Comparison of resource synchronization solutions

Property Previous solution Proposed solution
The ability to synchronize

static methods No Yes

Mark resources with
an identifying annotation No Yes

Keywords No Yes

@Precondition) and a method for re-evaluation
of the conditions (the annotation @Evalu-
atePreconditions). A thread, which tries to ex-
ecute the method marked with the annota-
tion @WaitUntilPreconditions will be slept un-
til all preconditions are not met. Evaluation
of conditions can be automatically executed at
a time interval set in the annotation parameter
@WaitUntilPreconditions(waitingTime = 1000)
in milliseconds or by calling from a program
code the method marked with the annotation
@EvaluatePreconditions. The precondition can be
named and then the annotation @WaitUntilPre-
conditions could specify its identifier (Listing 9).
If the method is annotated with no parameters,
then by default is assumed that all of conditions
marked with @Precondition must be met in or-
der to execution. As preconditions are considered
only methods annotated with @Precondition and
which return boolean expression.

Listing 9. Method execution after fulfilling pre-
conditions

1 private boolean state;
2 @WaitUntilPreconditions ({
3 " onePrecondition ",
4 " anotherPrecondition " })
5 public void method () {
6 // instructions executed after
7 // fulfilling the preconditions
8 }
9 @Precondition (" onePrecondition ")

10 public boolean precondition1 () {
11 return state;
12 }
13

14 @Precondition (" anotherPrecondition ")
15 public boolean precondition2 () {
16 return true;
17 }
18

19 @EvaluatePreconditions
20 public void notifyMethod () {
21 state = true;
22 }

Comparison of features of previous aspect
oriented solutions with our proposal is presented
in Table 6.

4.7. Active Object

In the proposed, aspect oriented solution to im-
plement active object it is sufficient to mark
a class with the annotation @ActiveObject. If
the execution of a method has preconditions,
one has to list its identifiers in the annotation
@GuardedBy and to mark an appropriate pred-
icate method with the annotation @Precondi-
tion. Marking the class with a parameter termi-
nateAfterMainMethod = true will automatically
close a thread of the active object after leaving
a main method of a program.

Table 7 compares features of previous aspect
oriented solutions with our proposal.



The Use of Aspects to Simplify Concurrent Programming 35

Table 6. Comparison of precondition solutions

Property Previous solution Proposed solution
Usage only a metadata from a program No Yes

Table 7. Comparison of active object solutions

Property Previous solution Proposed solution
Full implementation of the pattern

(guard conditions) No Yes

Automatically termination
of the active object No Yes

5. Comparison of the Applications

To be able to compare traditional and proposed
solutions we found concurrent programs, which
solve the classic problems:
– Dining philosophers problem [13],
– Producer – consumer problem [14],
– Calculation of the n-th Fibonacci num-

ber [15].
The next step was to write our own versions of the
applications, which solve the above problems,
using created aspects. After that we calculated
selected metrics with the use of Chechstyle 5.7
and STAN 2.1.2 (see Table 8). For all applications
following count metrics were calculated:
– LOC/NCSS – Lines Of Code/Non Comment-

ing Source Statements (Checkstyle),
– NOF/NOA – Number Of Fields/Number Of

Attributes (STAN),
– NOM – Number Of Methods (STAN),
– TLC – Top Level Classes (STAN).
And the complexity metrics:
– CC – Cyclomatic Complexity (Checkstyle),
– DAC – Data Abstarction Coupling (Check-

style),
– CFOC – Class Fan Out Complexity (Check-

style).
Count metrics (LOC/NCSS, NOF/NOA,

NOM, TLC) were chosen because of their quan-
titative representation of the complexity and ad-
ditive behavior. CC is a classic measure of the
complexity of methods. For this metric values
below 7 are considered to be acceptable, while
above this value metric indicate the need for
refactoring. The motivation for choice of DAC
and CFOC metrics was, that they measure the

complexity of individual classes, they are able to
demonstrate differences in relationships of classes.
Both are supported by tools. The Checkstyle
tool in a default configuration allows 7 for DAC
and 20 for CFOC. For all selected metrics, the
smaller is the value, the less is the complexity
of the examined class.

For each of three problems the number of lines
of code and CFOC values are smaller in the as-
pect than in the traditional solution. For metrics
NOF and DAC two aspect oriented programs
are less complex than their traditional counter-
parts, while both versions of the third program
are equally complex. For the remaining metrics
(NOM, TLC, CC) in one problem the aspect
oriented version is less complex, in the second
problem the traditional and in third both ver-
sions are equally complex.

Aspect oriented versions are more complex
in three cases. In the case where the number
of methods is higher in the aspect than in the clas-
sical solution the increase is because of the need
to create separate predicates method. In found
classical dining philosophers solution, Philoso-
pher class is nested and not considered by the
metric, while in the aspect oriented version
Philosopher is a separate class. In traditional,
concurrent calculation of the n-th Fibonacci num-
ber, there are 4 more methods than in the aspect
oriented solution. These methods mostly have
CC metric value equal to 1, thus they are lower-
ing the average. The maximum CC metric value
is equal in both applications.

No metric had shown that in all three cases,
the complexity of the aspect oriented solution
was higher than a classic application. Also, there



36 Michał Negacz, Bogumiła Hnatkowska

Table 8. Comparison of programs using metrics

Metric Pr1 (cla) Pr1 (asp) Pr1 (chg) Pr2 (cla) Pr2 (asp) Pr2 (chg) Pr3 (cla) Pr3 (asp) Pr3 (chg)
LOC 69 36 −33 86 63 −23 39 10 −29
NOF 6 4 −2 6 6 0 5 0 −5
NOM 7 7 0 11 13 +2 7 3 −4
TLC 1 2 +1 3 3 0 3 1 −2
CC 1.71 1.71 0 1.7 1.17 −0.53 1.33 1.5 +0.17
DAC 1 1 0 1.2 1 −0.2 1.33 0 −1.33
CFOC 2 1.5 −0.5 2.75 1.5 −1.25 1.33 1 −0.33

where
– Pr1 denotes the dining philosophers problem,
– Pr2 denotes the producer – consumer problem,
– Pr3 denotes the calculation of the n-th Fibonacci number,
– cla denotes a classic version of application (downloaded from the Internet),
– asp denotes an aspect oriented version of application (written by us with the use of aspect library),
– chg denotes a change between an aspect and a traditional version,
– Values of LOC, NOF, NOM, TLC were counted as a sum of metrics for all classes in the application,
– Values of CC, DAC, CFOC were counted as means of metrics for all classes in the application.

was no increase of complexity in more than one
aspect oriented version of program per a metric.

In response to the research question, it can
be concluded that the use of aspects to the sim-
plification of concurrent programming does not
increase complexity of a program and in some
cases application of aspects can reduce it.

6. Conclusions

This paper presented an effort to develop an as-
pect library which simplifies concurrent program-
ming. We improved the previously proposed so-
lutions and presented new features. Then, we
conducted research and have shown that the use
of aspects may reduce the complexity of concur-
rent application.

In general, using aspects for the concurrent
programming can improve selected maintainabil-
ity sub-characteristics, i.e. analysability and mod-
ifiability. But maintainability also includes testa-
bility sub-characteristic. While the proposed as-
pects may help in understanding and implement-
ing concurrent applications, an open problem is
how to test a correctness of the solution.

It should be noted that our research was con-
ducted on a small sample of programs. These
programs are small applications and do not come
from an industry. In addition, credibility of re-

search is highly influenced by a quality of pro-
grams, both those created by the authors and
those collected.

Therefore, in the future we are going to repeat
the research with bigger number of programs.
Moreover, we want explore the use of aspects in
Proactor and Reactor concurrent patterns.

References

[1] B. Schauer, “Multicore processors–a necessity,”
ProQuest discovery guides, 2008, pp. 1–14.

[2] G. Kiczales, J. Lamping, A. Mendhekar,
C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin, Aspect-oriented programming. Springer,
1997.

[3] M. Negacz, “concurrent aspects library,”
2014. [Online]. https://github.com/mnegacz/
concurrent-aspects

[4] C. A. Cunha, J. a. L. Sobral, and M. P. Mon-
teiro, “Reusable aspect-oriented implementa-
tions of concurrency patterns and mechanisms,”
in Proceedings of the 5th international confer-
ence on Aspect-oriented software development,
ser. AOSD’06. New York, NY, USA: ACM, 2006,
pp. 134–145. [Online]. http://doi.acm.org/10.
1145/1119655.1119674

[5] B. Harbulot and J. R. Gurd, “Using AspectJ
to separate concerns in parallel scientific java
code,” in Proceedings of the 3rd international
conference on Aspect-oriented software develop-
ment, ser. AOSD’04. New York,NY, USA: ACM,



The Use of Aspects to Simplify Concurrent Programming 37

2004, pp. 122–131. [Online]. http://doi.acm.org/
10.1145/976270.976286

[6] J. L. Sobral, “Incrementally developing paral-
lel applications with AspectJ,” in Proceedings
of the 20th international conference on Paral-
lel and distributed processing, ser. IPDPS’06.
Washington, DC, USA: IEEE Computer Society,
2006, pp. 116–116. [Online]. http://dl.acm.org/
citation.cfm?id=1898953.1899048

[7] J. Bloch, Effective Java (2Nd Edition) (The Java
Series), 2nd ed. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2008.

[8] B. Eckel, Thinking in Java, 3rd ed. Prentice Hall
Professional Technical Reference, 2006.

[9] T. Peierls, B. Goetz, J. Bloch, J. Bowbeer,
D. Lea, and D. Holmes, Java Concurrency in
Practice. Addison-Wesley Professional, 2005.

[10] U. D. Hohenstein and U. Gleim, “Using
aspect-orientation to simplify concurrent pro-
gramming,” in Proceedings of the tenth interna-

tional conference on Aspect-oriented software
development companion, ser. AOSD’11. New
York, NY, USA: ACM, 2011, pp. 29–40. [Online].
http://doi.acm.org/10.1145/1960314.1960324

[11] R. Laddad, AspectJ in Action: Practical
Aspect-Oriented Programming. Greenwich, CT,
USA: Manning Publications Co., 2003.

[12] R. G. Lavender and D. C. Schmidt, “Active ob-
ject – an object behavioral pattern for concurrent
programming,” 1995.

[13] “Dining philosophers problem implmentation,”
2013. [Online]. https://github.com/vonhessling/
DiningPhilosophers

[14] D. Ryan, “Producer-consumer problem imple-
mentation,” 2014. [Online]. https://github.com/
dcryan/Producer-Consumer

[15] I. Tsagklis, “Java Fork/Join for Par-
allel Programming,” 2011. [Online].
http://www.javacodegeeks.com/2011/02/java-
forkjoin-parallel-programming.html





e-Informatica Software Engineering Journal, Volume 8, Issue 1, 2014, pages: 39–52, DOI 10.5277/e-Inf140103

Generating Graphical User Interfaces from
Precise Domain Specifications

Kamil Rybiński∗, Norbert Jarzębowski∗, Michał Śmiałek∗, Wiktor Nowakowski∗,
Lucyna Skrzypek∗, Piotr Łabęcki∗

∗Faculty of Electrical Engineering, Institute of Theory of Electrical Engineering, Measurement and
Information Systems, Warsaw University of Technology

rybinskk@iem.pw.edu.pl, jarzebon@iem.pw.edu.pl, smialek@iem.pw.edu.pl,
nowakoww@iem.pw.edu.pl, skrzypel@ee.pw.edu.pl, labeckip@ee.pw.edu.pl

Abstract
Turning requirements into working systems is the essence of software engineering. This paper
proposes automation of one of the aspects of this vast problem: generating user interfaces directly
from requirements models. It presents syntax and semantics of a comprehensible yet precise domain
specification language. For this language, the paper presents the process of generating code for
the user interface elements. This includes model transformation procedures to generate window
initiation code and event handlers associated with these windows. The process is illustrated with
an example based on an actual system developed using the presented approach.

1. Introduction

Requirements Engineering (RE) is a very dis-
tinct area of Software Engineering, because re-
quirements define the problem space while other
software artifacts operate in the solution space.
Problems with requirements usually get amplified
in later stages of software development leading to
project failures [1]. This makes RE research espe-
cially important and challenging. When defining
research directions for RE [2], we need to bear
in mind that RE starts with ill-defined and of-
ten conflicting ideas and have to be handled by
very varied groups: from domain experts and
end-users to downstream developers. Challenges
in this broad research field include finding ways
to effectively elicit and formulate requirements
and then turn them into other SE artifacts (de-
sign, code, tests, etc.).

A very promising approach to meet the RE
challenges is Model-Driven Requirements Engi-
neering (MDRE) [3]. MDRE is an emerging area
of Model Driven Software Development (MDSD)

[4, 5]. The basis for constructing an MDRE ap-
proach is a model-based language for express-
ing requirements. Probably the first such lan-
guage is the Requirements Modeling Language
proposed by Greespan et al [6, 7]. More recent
languages include the Requirements Specifica-
tion Language [8] and the Unified Requirements
Modeling Language [9].

Building on the success of MDSD for design
and implementation, Requirements Engineering
can benefit from its techniques when properly bal-
ancing flexibility for capturing varied user needs
with formal rigidity required for model trans-
formations [10]. MDRE makes it possible that
the requirements models define the real scope
and all details of the envisioned software system,
furthermore that the whole development [11, 12],
testing [13] and documentation process will be
driven and controlled by these requirements mod-
els as well.

ReDSeeDS [14] is a tool representing the
MDRE approach by offering an open frame-
work consisting of a scenario-driven development



40 Karol Rybiński et al.

method and domain vocabulary management. It
implements the Requirements Specification Lan-
guage (RSL) [8, 15] meta-model which uses con-
strained natural language sentences allowing the
end-users to understand specifications presented
as precise requirements models. Moreover, the
precisely written platform-independent specifica-
tion allows to translate it directly to code using
one of the platform-specific transformations. The
latest ReDSeeDS transformations generate not
only the entire code of the application logic layer,
and the method stubs for the model layer, but
also a fully functional graphical user interface.
This paper concentrates on this last topic. It
presents an approach to generate fully functional
code of the UI elements from precisely specified
domain models, expressed in RSL.

The solution separates essential complexity
connected with the domain description such as
business rules and application logic, from the ac-
cidental (technological) complexity related with
platform specific design and implementation [16].
The complexity of software development process
using ReDSeeDS is significantly reduced from
the user and developer point of view. Most of the
accidental complexity is hidden within a special
model transformation program, used to convert
requirements specifications into code.

2. Related Work

Transition from requirements to design or im-
plementation is considered as a difficult activity
during software development. The complexity re-
lated to it can cause various errors mainly caused
by ambiguity of requirements. To eliminate this
ambiguity, some form of constrained language
could be used. This would allow for providing
semi-automated ways to generate analysis and
design models or code artifacts. There exist vari-
ous approaches to solve this problem.

Some work has focused on requirements in re-
spect to their precision, both by defining new lan-
guages for this purpose [17], as well as properly
using the existing ones [18]. The disadvantage
of these approaches is that they do not propose
further code generation. Some approaches can

be distinguished by their use of use case sce-
narios for requirements specification. Giganto
et al. [19] propose an algorithm to identify use
case sentences from requirements specifications
written in controlled natural language and as
a result – automatically obtain classes from use
cases. Whereas Mustafiz et al. [20] propose trans-
formation rules for creating different types of
behavioral diagrams from use case scenarios.
Deeptimahanti et al. [21] suggest to analyze re-
quirements specifications presented in natural
language, using Natural Language Processing
techniques and generate use case diagrams and
class models.

Most of the solutions focused on code gener-
ation use graphical notations like UML [22] to
specify static and dynamic aspects of systems.
One example is the open source AndroMDA [23]
code generation framework which supports the
Model Driven Architecture [24] paradigm. As in-
put, AndroMDA takes UML models from various
CASE tools and provides generation of deploy-
able applications and software components. In
turn, textual specifications used as input, turn
out to be often too formalized and thus diffi-
cult to understand by the end-users where the
purpose is specifying requirements [25].

There are also number of solution focusing
directly on graphical user interface generation.
Many of them, however, use notations designed
specifically for this purpose e.g. the one pro-
posed by Falb et al. [26]. Some other solution
use the existing software development notations.
However, these notations operate at significantly
lower level of abstraction than requirements spec-
ification, as e.g. propopsed by Janssen et al. [27].
There also exist a solution based on requirements
scenarios [28], but it only generates graphical user
interface mockups.

3. Syntax for Domain Elements
in RSL

RSL is based on scenarios consisting of sentences
that describe interactions between the actors
and the system, written in constrained natu-
ral language. Scenarios are also grouped into



Generating Graphical User Interfaces from Precise Domain Specifications 41

Figure 1. Abstract and concrete syntax for domain elements

RSL-specific “Use Cases”, which are similar to
the widely-known UML use cases. Additionally,
every specification in RSL contains a domain
model created from the notions used in use case
scenarios. Each noun phrase in a scenario sen-
tence should have a corresponding domain ele-
ment.

The RSL’s domain models are based on the
metamodel, where its simplified version is pre-
sented in Figure 1 (upper part). The high-level
elements in the RSL’s metamodel can be com-
pared to those of UML and to represent them
we could use simply a profile of UML. However,
RSL defines a very detailed notation for require-
ments representations which are precisely linked
to domain elements. This unique feature of RSL
allows for capturing precise models of the soft-
ware system’s essence [10].

In concrete syntax, domain elements resem-
ble UML classes with associations, as presented
in the lower part of Figure 1. For our consid-
erations we will concentrate on “Domain Ele-
ments” of type “Notion”. “Notions” represent
business entities, buttons, windows and other
elements that occur in the problem and system
domain. Each “Notion” has a name represented

as a “Noun Phrase” and contains “Domain State-
ments” with “Phrases” coming from use case
scenarios. “Domain Elements” can be structured
through specifying relationships and generaliza-
tions between them. Some “Notions” can be de-
fined as attributes of other “Notions”. Different
types of notions are distinguished through their
“Stereotypes”.

An important part of the RSL meta-model
is centred around “Phrases”, which is presented
in Figure 2. Phrases occur in scenario sentences
and in domain statements. Phrases are divided
into “Noun Phrases” and “Verb Phrases”, where
the second type can be further divided into “Sim-
ple Verb Phrases” and “Complex Verb Phrases”.
A “Noun Phrase” contains a “Noun” and an op-
tional “Modifier”, which can describe the “Noun”
more precisely. A “Simple Verb Phrase” can
be used as a sentence predicate and consists of
a verb and a noun e.g. adds selected student.
“Complex Verb Phrases” extend “Simple Verb
Phrases” with a preposition and an additional
“Noun Phrase” representing the indirect object.
More detailed description of RSL syntax and
its role in code generations can be found in [29]
and [11].



42 Karol Rybiński et al.

Figure 2. Abstract and concrete syntax for phrases

For the purpose of generating user interface
code, the above meta-model of domain elements
in RSL needed some additions. The fundamen-
tal distinction takes the form of a “notion type”
which stems from the “Stereotype” attached to
a “Notion”. Possible notion types are: Concept,
Attribute, Simple View, List View, Screen, Mes-
sage and Trigger. These types of notions can
be used as sentence objects in use case sce-
narios. For user interface generation it is also
important to distinguish verbs associated with
these notion types, as part of verb phrases. The
verbs like ‘show’, ‘refresh’ and ‘close’ are associ-
ated in phrases with Screens and form so-called
System-to-Actor sentences (e.g. “System shows
new student window”). The verbs like ‘select’
are associated with Triggers and form so-called
Actor-to-System sentences (e.g. “User selects
save button”).

4. Semantics for Domain Elements
in RSL

The notion types described at the end of the
previous section have specific meaning, which
determines correct generation of the user inter-
face code. A Concept is a representation of
a business entity stored and processed by the sys-
tem. It has no direct impact on generating user
interface code, however it groups atomic data
attributes for the purpose of their further pro-
cessing. An Attribute describes one of the Con-
cept’s properties just like class attributes in UML.

It should be noted that in RSL, Attributes are
separate model entities. Each Attribute should
be connected with at least one Concept. More-
over, each Attribute has its specific type which
describes specific kind of data it represents like
Text, Number, Date etc. A Screen is a repre-
sentation of a window or a web-page depend-
ing on the transformation’s target technology
(for web-based technologies like JavaFX, Echo3,
a Screen will be transformed into a web-page
and for desktop technologies like Swing – into
a window). A variant of Screen is a Message
that represents a simple modal window used to
show some error or confirmation message to the
user. It causes generation of a proper pop-up
message window.

A Simple View represents a set of data
made available to the user during some inter-
action with the system. It can point to the at-
tributes of many different Concepts, but should
have defined a main Concept. If the Simple View
is connected with a Screen, its attributes will be
used as the basis for the window content. For
every Attribute connected to a Simple View, an
appropriate user interface widget will be created.
Its type will depend on the Attribute type; for ex-
ample it will be a text field for a text or a number
Attribute or a check-box for a true/false attribute.
Attributes typed as Date should generate not
only a labeled text field, but also a button to call
a calendar pop-up with the possibility to select
the date.

A List View is similar to a Simple View,
however presents many instances of given data



Generating Graphical User Interfaces from Precise Domain Specifications 43

set in an ordered form. It causes generation of
a table or a list. Attributes connected to a List
View are used in the creation of its fields in
the way analogical to that of a Simple View.
Both Simple Views and List Views can be called
Data Views. Data Views are usually connected
to Screens. The direction of this relationship in-
dicates type of access to data. Connection from
a Screen to a Data View indicates that data will
be entered, and connection from a Data View to
a Screen indicates that some existing data will
be presented. In case that there is no direction –
both access types are assumed (modification of
existing data).

A Trigger is a representation of a link, but-
ton or any other element of user interaction. Just
like the Screen - it is a platform-independent term
and its final form depends on a platform-specific
transformation. Additionally, some Trigger in-
voking an operation, can be connected to a Data
View that determines the data involved in that
operation. There is no need need to define
relations between Triggers and Screens. The
transformation generates them based on sce-
narios assuring that there won’t be any Trig-
ger without functionality described in a sce-
nario and there will be no Trigger described
in a scenario which does not have a related
Screen.

In addition to these domain elements, user
interface elements are generated based on cer-
tain use case scenario configurations. This in-
volves two types of sentences. A System-to-Actor
sentence refers to a Screen or Message. It de-
notes an interaction of the system with an ac-
tor through displaying a window or message.
These kind of sentences result in generating
code that contains invocations of methods to
display, refresh or close some user interface el-
ement. An Actor-to-System sentence refers to
a Trigger. It denotes an interaction of an actor
with the system through selecting some active
element (button, hyperlink) in a window. An
Actor-to-System sentence generates an appropri-
ate event handler code. This code is generated
in the code of the user interface element that
was referred by a previous System-to-Actor sen-
tence.

5. Code Generation Process

Figure 3 presents an overview of the software
development process using the ReDSeeDS tool.
The first step is to formulate and write require-
ments in RSL according to the rules described
in the previous sections. The tool supports this
process by offering a specialized scenario editor,
automatic notion creation, notion editor with
type assignments and much more.

The next step in the process is to ex-
ecute a model transformation and generate
detailed-design-level UML models with embed-
ded code. The appropriate transformation pro-
gram for generating the user interface ele-
ments was developed in the language MOLA
(MOdel transformation LAnguage) [30]. MOLA
is a graphical language which uses pattern match-
ing algorithms on meta-model level to transform
one model into another. In our case, this will
be an RSL model translated into a UML class
model with inserted code fragments. MOLA con-
tains both declarative and imperative constructs.
The declarative elements include rules which rep-
resents queries on the model, connected with
indications which elements should be created or
deleted. MOLA declarative rules are presented
as gray rectangles with rounded corners, con-
taining objects from the meta-model. Query el-
ements have solid black borders, whereas create
elements have thick red dashed borders. Imper-
ative elements include control flows between the
rules which are denoted by dashed arrows in
a notation similar to UML’s activity diagrams.
Also, loops are possible, which are denoted by
thick black boxes with rules that are to be it-
erated, contained inside them. The first rule in-
side a loop is the loop’s iterator rule with one
element being a loop-head and denoted with
a thicker border. MOLA is also a procedural lan-
guage, where procedure calls are denoted with
special actions with procedure names and pa-
rameters. Procedure definitions declare these pa-
rameters as large arrow-shaped boxes. Proce-
dures also declare variables as white rectangular
boxes.

To present the idea of the user interface gen-
eration program, we provide three of its frag-



44 Karol Rybiński et al.

Figure 3. Process overview

Figure 4. Procedure (‘genViewClass’) for generating classes from Screens and Messages



Generating Graphical User Interfaces from Precise Domain Specifications 45

Figure 5. Procedure (‘genViewClassContent’) for generating the ‘addContent’ operation

ments. The actual transformation is much more
elaborate and thus had to be simplified and
abridged. Figure 4 shows the basic procedure
(‘genViewClass’) for the creation of classes that
handle widow-related code. These classes stem
from the Screens or Messages. The appropriate
Notion is given as the parameter to this proce-
dure. After retrieving the Notion’s name and
converting it to camel case format, the proce-
dure creates a properly named class (prefixed
with ‘V’). This class realises (see ‘InterfaceRe-
alisation’) the standard ‘ActionListener’ inter-
face. Then, the notion type is checked and de-
pending on this, appropriate generalisation is
created with either the standard ‘WindowPane’
or ‘ContentPane’ class. After this, the trans-

formation calls the procedure to generate com-
mon code for all such classes (‘genVClassStan-
dardCode’) and code individual for each class
(‘genViewClassContent’).

Figure 5 shows this second procedure, which
is more interesting. It generates the contents
of the previously generated class, based on the
features of the appropriate Notion and the as-
sociated elements. Firstly, the transformation
checks the direction of the relation between the
given Notion (Screen or Message) and another
Notion which is a Simple View or a List View.
Then depending on this determined direction, it
assigns the type of access to window elements,
to be provided by the generated controls. Af-
ter that, the transformation generates an oper-



46 Karol Rybiński et al.

Figure 6. Procedure (‘genViewClassContentEntry’) for generating field initiation code

ation (‘addContent’) to fill the window content
and fills it with standard code (‘generateCon-
tentGridCode’). The last part of the procedure
contains two loops (for two possible directions
between the Notion and its related Data Views).
In each iteration, an appropriate Data View and
its Attributes are processed and appropriate field
initiation code is created and inserted into the
‘addContent’ method.

Figure 6 shows fragment of the procedure
that generates the actual field initiation code.
Firstly, the standard initial part of code for the
control group is generated through a call to an
appropriate procedure. Then, a loop is performed

for each Attribute pointed-to from the Data View
which is the procedure’s parameter. Inside the
loop, firstly, the notion name is retrieved and con-
verted to camel case format. After that, a private
class property (attribute) is generated to hold
the label field for the given Attribute. Then, the
Attribute’s data type is retrieved and depending
on it, a property (attribute) for holding the ac-
tual control type is generated. For simplicity, the
Figure shows fully only the fragment associated
with the generation of Text Fields. The last part
of the loop contains a call to the procedure that
generates the proper code that initialises the just
generated attributes.



Generating Graphical User Interfaces from Precise Domain Specifications 47

Figure 7. Use case model fragment for the case study

Figure 8. Scenarios of the “Add promotion” use case

As we can see, the output of the presented
transformation is a UML model consisting of
classes with attributes, operations and code em-
bedded in these operations. The next step is
to export this UML model and generate code
with a UML tool providing an appropriate code
generator (see Fig. 3). The code generator is
invoked automatically and thus from the user
perspective is seen as part of the overall transfor-
mation process. ReDSeeDS currently supports
export and code generation using Enterprise Ar-
chitect [31] and Modelio [32]. The full generated
code complies with the Model-View-Presenter
pattern [33] and is also based on the Echo
framework [34].

6. Illustrative Example

The presented approach has been validated dur-
ing a case study which was to implement a sports
centre management system. This involved about
30 use cases, of which some are presented in
Figure 7. In this brief example, we will show
mainly the code generated around the domain
models for the use case surrounded by the green
thick frame (“Add promotion”). This use case has
two scenarios, presented in Figure 8. In addition,
we will show the user interface generated from
the use case surrounded by a dashed blue frame
(“Display Promotion management”). This will
allow to present support for generating lists.



48 Karol Rybiński et al.

Figure 9. Domain model for the “new promotion form”

Figure 9 presents the domain model that
complements the scenarios of “Add promotion”,
together with the actually generated user in-
terface for the “new promotion form” window.
We can observe that “new promotion form” is
a Screen which points at “promotion data” which
is a Simple View. This results in generating the
“new promotion form” window (1) with the ap-
propriate section corresponding to “promotion
data” (2). The connection is directed from the
Screen to the Simple View, which means that
the window will serve entering data. The main
Concept associated with “promotion data” is the
“promotion”. The Simple View points to several
Attributes contained in the “promotion” and in
the associated “promotion type” Concept. This
set of relations to Attributes means that the
section corresponding to “promotion data” will
be filled with controls to input data related to
the mentioned Attributes.

The types of these controls depends on the
data types of the given attributes. We can see
the equivalence in Figure 9. For instance, “Pro-
motion name” (3) typed as Text is created as
a Text field, and “Expiration date” (6) typed as

Date is generated as a Text field with a button
to open the date chooser.

A special case is the “Promotion type” (4)
which is part of a Concept that is not the main
Concept. It is generated into an separate embed-
ded group of labelled controls. In this particu-
lar case, only one Text field (“Promotion type
name”) is generated from the appropriate At-
tribute. We can also notice an additional button
(“Select”) which was not covered by the semantic
rules in the previous sections and can be used
to select one value from a pop-up list. “Promo-
tion type” takes the form of an embedded group
of controls, not a list, because of the singular
multiplicity of the relationship between the pro-
motion (main Concept) and the promotion type
(associated Concept).

Code for creating these controls as the content
of “new promotion form” is shown in Figure 10.
Apart from generating the fields, code contains
creation of the “Add promotion” button. This
is based on sentence 4, in relation to sentence 2
of the use case scenario shown in Figure 8. The
code generator produces also an event handler
associated with this button, presented in Fig-



Generating Graphical User Interfaces from Precise Domain Specifications 49

Figure 10. Fragment of code for creating content of “new promotion form”

Figure 11. Handler code for the “add promotion” button

ure 11. This is presented to show completeness
and coherence of the generated code but more
detailed discussion is out of scope of this paper.

In addition to generating simple forms, the
code generator can produce lists from List View
elements. This is illustrated in Figure 12. The
situation is in most part similar to the previous
case, but data is represented in a collection form
because a List View is used instead of a Simple
View. Moreover, only some of the Attributes of
the “promotion” are presented on the screen,
because not all are connected to the List View.

7. Conclusion and Future Work

The presented approach aims to give the require-
ments model the feature of executability. The
functional requirements are represented using the
Requirements Specification Language in which
emphasis is placed on both readability and pre-
cision. Using the presented transformation pro-
gram in combination with a precise RSL specifi-
cation, we obtain a typical business application,
with simple, but fully functional graphical user
interface, ready for deployment. Still, we can find



50 Karol Rybiński et al.

Figure 12. Domain model for the “promotion list”

some limitations of the presented transformations
due to limitations of the current RSL syntax for
domain elements. However, we plan to remove
these limitations by extending the RSL notation
and refining its semantics.

Currently, this approach can be used with suc-
cess for fast prototyping. furthermore, through
refinement of the graphical interface arrangement
and use of appropriate outlook styles, it can also
be brought to the condition of the final prod-
uct. The presented solution is being validated
on a much larger case study based on a legacy
corporate banking system. Furthermore there
are plans to conduct experiments with university
students. Their goal will be to compare produc-
tivity and quality when the presented solution is
used versus traditional approaches.

Future development work will include extend-
ing the ReDSeeDS tool with an editor to enable
management of user interface element arrange-
ment. There are also plans to further develop
the overall transformation, taking into account
various new technologies and platforms. There
is ongoing work on developing new transforma-
tions which will provide high-level separation
of concerns and thereby high reusability. In the
future, the transformations are planned to offer

several technology options to build the presenta-
tion layer such as Google Web Toolkit, Apache
Wicket, JavaFX, Adobe Flex.

Acknowledgment

Part of this research has been carried out in the
REMICS project and partially funded by the
EU (contract number ICT-257793 under the 7th
Framework Programme), see www.remics.eu.

References

[1] K. El Emam, “A Replicated Survey of IT Soft-
ware Project Failures,” IEEE Software, Vol. 25,
No. 5, 2008, pp. 84–90.

[2] B. H. C. Cheng and J. Atlee, “Research Direc-
tions in Requirements Engineering,” in Future
of Software Engineering, FOSE ’07, 2007, pp.
285–303.

[3] B. Berenbach, “A 25 year retrospective on
model-driven requirements engineering,” in
Model-Driven Requirements Engineering Work-
shop (MoDRE), 2012 IEEE, 2012, pp. 87–91.

[4] M. Brambilla, J. Cabot, and M. Wimmer,
Model-driven Software Engineering in Practice.
Morgan & Claypool, 2012.



Generating Graphical User Interfaces from Precise Domain Specifications 51

[5] D. Schmidt, “Guest Editor’s Introduction:
Model-Driven Engineering,” Computer, Vol. 39,
No. 2, 2006, pp. 25–31.

[6] S. Greenspan, J. Mylopoulos, and A. a. Borgida,
“Capturing More World Knowledge in the Re-
quirements Specification,” in Proc. 6th In-
ternational Conference on Software Engineer-
ing. IEEE Computer Society Press, 1982, pp.
225–234.

[7] S. Greenspan, J. Mylopoulos, and A. Borgida,
“On formal requirements modeling languages:
RML revisited,” in ICSE ’94: Proc. 16th Interna-
tional Conference on Software Engineering. Los
Alamitos, CA, USA: IEEE Computer Society
Press, 1994, pp. 135–147.

[8] H. Kaindl, M. Śmiałek, P. Wagner, D. Svetinovic,
A. Ambroziewicz, J. Bojarski, W. Nowakowski,
T. Straszak, H. Schwarz, D. Bildhauer, J. P.
Brogan, K. S. Mukasa, K. Wolter, and T. Krebs,
“Requirements Specification Language Defini-
tion,” ReDSeeDS Project, Project Deliverable
D2.4.2, 2009. [Online]. www.redseeds.eu

[9] J. Helming, M. Koegel, F. Schneider, M. Haeger,
C. Kaminski, B. Bruegge, and B. Berenbach,
“Towards a unified Requirements Modeling Lan-
guage,” in Requirements Engineering Visualiza-
tion (REV), 2010 Fifth International Workshop
on, Sept 2010, pp. 53–57.

[10] W. Nowakowski, M. Śmiałek, A. Ambroziewicz,
and T. Straszak, “Requirements-Level Lan-
guage and Tools for Capturing Software System
Essence,” Computer Science and Information
Systems, Vol. 10, No. 4, 2013, pp. 1499–1524.

[11] M. Śmiałek, N. Jarzebowski, and W. Nowakow-
ski, “Translation of Use Case Scenarios to Java
Code,” Computer Science, Vol. 13, No. 4, 2012,
pp. 35–52.

[12] M. Śmiałek, W. Nowakowski, N. Jarzebowski,
and A. Ambroziewicz, “From Use Cases and
Their Relationships to Code,” in Second IEEE
International Workshop on Model-Driven Re-
quirements Engineering, MoDRE 2012. IEEE,
2012, pp. 9–18.

[13] T. Straszak and M. Śmiałek, Advances in Soft-
ware Development. Polish Information Process-
ing Society, 2013, ch. Acceptance test generation
based on detailed use case models, pp. 116–126.

[14] “ReDSeeDS project home page.” [Online]. http:
//redseeds.eu/

[15] M. Śmiałek, A. Ambroziewicz, J. Bojarski,
W. Nowakowski, and T. Straszak, “Introducing
a unified Requirements Specification Language,”
in Proc. CEE-SET’2007, Software Engineering
in Progress. Nakom, 2007, pp. 172–183.

[16] F. P. Brooks, “No Silver Bullet: Essence and
Accidents of Software Engineering,” IEEE Com-
puter, Vol. 20, No. 4, April 1987, pp. 10–19.

[17] P. Shaker, J. Atlee, and S. Wang,
“A feature-oriented requirements modelling
language,” in Requirements Engineering
Conference (RE), 2012 20th IEEE International,
2012, pp. 151–160.

[18] M. El-Attar and J. Miller, “AGADUC: Towards
a More Precise Presentation of Functional Re-
quirement in Use Case Mod,” in Software Engi-
neering Research, Management and Applications,
2006. Fourth International Conference on, 2006,
pp. 346–353.

[19] R. Giganto and T. Smith, “Derivation of Classes
from Use Cases Automatically Generated by
a Three-Level Sentence Processing Algorithm,”
in Systems, 2008. ICONS 08. Third Interna-
tional Conference on, 2008, pp. 75–80.

[20] S. Mustafiz, J. Kienzle, and H. Vangheluwe,
“Model transformation of dependability-focused
requirements models,” in Modeling in Software
Engineering, 2009. MISE ’09. ICSE Workshop
on, 2009, pp. 50–55.

[21] D. K. Deeptimahanti and R. Sanyal,
“Semi-automatic generation of UML models from
natural language requirements,” in Proceedings
of the 4th India Software Engineering Confer-
ence, ser. ISEC ’11, 2011, pp. 165–174. [Online].
http://doi.acm.org/10.1145/1953355.1953378

[22] Unified Modeling Language: Superstructure, ver-
sion 2.2, formal/09-02-02, Object Management
Group, 2009.

[23] “AndroMDA project home page.” [Online]. http:
//andromda.org/

[24] “MDA website.” [Online]. http://omg.org/mda/
[25] Y. Wang and M. Wu, “Case studies on transla-

tion of RTPA specifications into Java programs,”
in Canadian Conference on Electrical and Com-
puter Engineering, Vol. 2, 2002, pp. 675–680.

[26] J. Falb, S. Kavaldjian, R. Popp, D. Raneburger,
E. Arnautovic, and H. Kaindl, “Fully Automatic
User Interface Generation from Discourse Mod-
els,” in Proceedings of the 14th International
Conference on Intelligent User Interfaces, ser.
IUI ’09. New York, NY, USA: ACM, 2009, pp.
475–476. [Online]. http://doi.acm.org/10.1145/
1502650.1502722

[27] C. Janssen, A. Weisbecker, and J. Ziegler, “Gen-
erating User Interfaces from Data Models and
Dialogue Net Specifications,” in Proceedings of
the INTERACT ’93 and CHI ’93 Conference
on Human Factors in Computing Systems, ser.
CHI ’93. New York, NY, USA: ACM, 1993, pp.



52 Karol Rybiński et al.

418–423. [Online]. http://doi.acm.org/10.1145/
169059.169335

[28] M. ElKoutbi, I. Khriss, and R. Keller, “Gener-
ating user interface prototypes from scenarios,”
in Requirements Engineering, 1999. Proceedings.
IEEE International Symposium on, 1999, pp.
150–158.

[29] M. Śmiałek, N. Jarzebowski, and W. Nowakow-
ski, “Runtime semantics of use case stories,” in
Visual Languages and Human-Centric Comput-
ing (VL/HCC), 2012 IEEE Symposium on, Sept
2012, pp. 159–162.

[30] A. Kalnins, J. Barzdins, and E. Celms, “Model
Transformation Language MOLA,”Lecture Notes

in Computer Science, Vol. 3599, 2004, pp. 14–28,
MDAFA’04.

[31] “Enterprise Architect Website.” [Online]. http:
//www.sparxsystems.com/products/ea/

[32] “Modelio Website.” [Online]. http://www.
modelio.org/

[33] M. Potel, “MVP: Model-View-Presenter, The
Taligent Programming Model for C++ and Java,”
Taligent Inc., Tech. Rep., 1996. [Online]. http:
//www.wildcrest.com/Potel/Portfolio/mvp.pdf

[34] “Echo Framework Home Page.” [Online]. http:
//echo.nextapp.com/



e-Informatica Software Engineering Journal, Volume 8, Issue 1, 2014, pages: 53–64, DOI 10.5277/e-Inf140104

Supporting Analogy-based Effort Estimation
with the Use of Ontologies

Joanna Kowalska∗, Mirosław Ochodek∗
∗Faculty of Computing, Institute of Computing Science, Poznan University of Technology

miroslaw.ochodek@cs.put.poznan.pl

Abstract
The paper concerns effort estimation of software development projects, in particular, at the
level of product delivery stages. It proposes a new approach to model project data to support
expert-supervised analogy-based effort estimation. The data is modeled using Semantic Web
technologies, such as Resource Description Framework (RDF) and Ontology Language for the
Web (OWL). Moreover, in the paper, we define a method of supervised case-based reasoning. The
method enables to search for similar projects’ tasks at different levels of abstraction. For instance,
instead of searching for a task performed by a specific person, one could look for tasks performed
by people with similar capabilities. The proposed method relies on ontology that defines the core
concepts and relationships. However, it is possible to introduce new classes and relationships,
without the need of altering the search mechanisms. Finally, we implemented a prototype tool that
was used to preliminary validate the proposed approach. We observed that the proposed approach
could potentially help experts in estimating non-trivial tasks that are often underestimated.

1. Introduction

Accurate effort estimate is invaluable at every
stage of software development. At early stages, it
helps to assess feasibility of a project and negoti-
ate the contract, whereas during product delivery
stages, it helps to establish achievable deadlines
and to reasonably allocate project resources.

Unfortunately, the unique nature of effort esti-
mation at different stages of software development
makes it difficult to establish a single, coherent
method of collecting data for the purpose of effort
prediction. The main reason of that is because the
required level of details visibly differs between the
levels of tasks. At the level of software develop-
ment project we usually collect some of its general
properties. For instance, in the ISBSGdatabase [1]
one can find information such as customer’s do-
main, type of application, level of programming
language, etc. This data is usually sufficient to
identify and indicate the values of so-called cost
drivers used in most of the model-based effort es-

timation methods (e.g., a well-known COCOMO
II [2] defines 22 such factors – 17 cost-drivers and
5 scale-drivers) or to use analogy-based methods
such as ACE [3], ANGEL [4], Estor [5]. However,
such general data becomes less usable if one would
like to estimate smaller tasks performed within
short development cycles advocated by agile
software development methods, like Scrum [6]
or eXtreme Programming [7]. This is mainly
because the contexts of such small tasks are more
diverse, what makes definition of a universal set
of cost drivers a cumbersome task. For instance,
let us consider how contextually different could
be these two tasks: conducting a meeting with
a customer and implementing a login function in
a web application.

This at least partially explains why estima-
tion of low-level tasks is usually performed with
the use of expert-judgment methods (e.g., group
methods such as Planning Poker [8–11]) and why
there are almost no model-based methods to es-
timate effort of such tasks. However, it is impor-



54 Joanna Kowalska, Mirosław Ochodek

tant to mention that the expert-based judgment
methods are far from being perfect, because they
frequently involve a high degree of wishful think-
ing and inconsistency. In addition, their results
could be biased by business pressure [12,13]. Ac-
cording to Jørgensen [12] the organizations that
have had the most success at meeting cost and
schedule commitments use a mix of model-based
and expert-judgment methods.

Therefore, the question arises whether it
is possible to collect and store project data
in such a way that it would enable to com-
bine expert-based and model-based methods of
project tasks estimation.

In the paper, we address this question by
proposing a new approach to model information
regarding projects tasks. Our ultimate goal is
to combine expert-based and analogy-based ef-
fort estimation methods. The proposed approach
is based on Semantic Web technologies, such
as Resource Description Framework (RDF) and
Ontology Language for the Web (OWL) and has
the following features:
– it enables to model and store information

regarding project tasks and allows to dynami-
cally extend the ontology by introducing new
concepts and relationships (Section 2),

– it supports supervised case-based reasoning –
allows to dynamically change the abstraction
level of search criteria (Section 3),

– it can be potentially applied to support
expert-based effort estimation at the level
of product delivery stage (Section 4).

2. Modeling Projects Tasks

Semantic Web technologies in their simplest form
offer means to express and store facts in the
form of triples (subject, predicate, object) using
Resource Description Framework (RDF). Each
piece of information is uniquely identified by its
Uniform Resource Identifier (URI). This repre-
sentation of information can be augmented with
ontologies expressed in one of the variants of
Ontology Language for the Web (OWL). It is
also possible to use reasoners and rules engines.

The ontology forms an information domain
model. It uses a predefined, reserved vocabulary
of terms to define concepts and the relationships
between them for a specific area of interest, or
domain [14]. Although ontologies are developed
and studied for many years, we have recently
observed rapid evolution of technologies that
support ontology modeling.

An example of a simple knowledge base in
a form of semantic network is presented in Fig-
ure 1. It states that there are two individuals:
John and Simon. Each of them is uniquely identi-
fied by its URI, e.g., my_data:John1. Both John
and Simon belong to the class my_onto:Person
(Person has a type of owl:Class). Because they are
people, they have property my_onto:hasName,
which represents person’s name. In addition,
there is a relationship between both of them
stating that John knows Simon.

The great advantage of using Semantic Web
technologies to store information is that the data
model can be easily extended. It is easy to in-
troduce new individuals, classes, properties and
constraints – usually, without the need of modi-
fying the source code of a computer program.

2.1. Projects Tasks Ontology

Assuming that the contexts can differ visibly
between project tasks, we would like to propose
an ontology that defines the most important
concepts and relationships to enable modeling
project tasks for the purpose of effort estima-
tion. We also assume that the ontology can be
extended by definitions of new classes and re-
lationships that are characteristic for a specific
context.

The proposed knowledge model will focus on
modeling five types of facts regarding project
task:
– Who? – it represents information about the

one that performed the task. It could be either
an individual or a group of people.

– Did what? – it corresponds to both the type
of activity and inputs/outputs of the task.

– How? – it regards any tools, methods, tech-
nologies that were used to complete the task.

1 We are going to omit the namespace part of URI (e.g., my_data:) unless there is a collision between names.



Supporting Analogy-based Effort Estimation with the Use of Ontologies 55

"John Smith"

my_data:John my_data:Simon

my_onto:Person

my_onto:hasName

my_onto:knows

rdf:typerdf:type

"Simon Jones"

my_onto:hasName

owl:Classrdf:type

2

1 4

3

Figure 1. An example of knowledge representation in RDF and OWL (¬ an individual that belongs to the
class Person;  a data property stating that John has a name John Smith; ® Person is an OWL class;

¯ an object property stating that John knows Simon)

– When? – it relates to the actual effort and
timespan of the task completion.
An exemplary knowledge base storing infor-

mation about a project task called Task1 is pre-
sented in Figure 2. It shows the usage of classes
(ellipses with dashed lines) and relationships de-
fined in the proposed ontology. a project task
is represented by an individual that belongs to
the class Task. Each task can have a number of
properties corresponding to the aforementioned
questions – Who?, Did what?, How? and When?:
– hasPerformer – it relates to individuals be-

longing to the class Performer (or its sub-
classes) that were involved in the comple-
tion of the task. Performers can have dif-
ferent capabilities indicated by the property
hasCapability. a capability has its level and
the property in referring to the subject the
capability concerns. In the example, Task1
was performed by John Smith, who is highly
skilled Java developer.

– hasInput – this property describes all the pre-
requisites of the task, e.g., requirements, con-
straints. In the example, Task1 has a single
input. It is a use case (UC1) describing user
functional requirements to be implemented.
We do not restrict the types of inputs to
any classes. However, an input can poses
a property hasSize that is recognized and
interpreted by the case-based reasoning algo-
rithm. For instance, the size of the use case
UC1 is expressed using the number-of-steps
measure. We would also like to emphasize
that the presented ontology could be dynam-
ically extended or merged with existing do-
main ontologies to precisely model the in-
puts. For instance, UC1 belongs to the class
Creation Use Case that is not a part of the

proposed ontology, however, it still can be
used to support effort estimation.

– hasType – it represents the type of activity
being performed. The taxonomy of types has
a hierarchical structure.

– hasMeans – the property determines all the
means that were used to complete the task.
In the example, Java was used to implement
UC1.

– hasOutput – it represents the artifacts that
need to be produced.

– hasSource – it provides information about the
entity that proposed the task. For instance,
it could be a person or company.

– actualEffortInHours and estimatedEffortIn-
Hours – the properties correspond to the ac-
tual effort of the tasks, and if available, its
estimated effort.

– from and to – properties defining a timespan
when the task was performed.
Tasks can be composed into hierarchies using

the subTaskOf relationship. This relationship
is transitive, which means that if a task has
sub-tasks defined, it automatically poses all their
features. For instance, in the showed example,
Task1 is a sub-task of Task2. This means that
Task2 poses all the properties of Task1. For in-
stance, one could conclude that John Smith also
participated in completion of Task2. In addition,
one of the goals of Task2 was to implement UC1.
The composition of tasks enables to compare
tasks at different levels.

3. Supervised Case-based Reasoning

In order to perform case-based reasoning using
the proposed ontology we need a method to nav-



56 Joanna Kowalska, Mirosław Ochodek

Task1

John

hasPerformer

UC1

hasInput

Capability1

JavahasCapability
in

"High"

level

hasMeans

"Add an article"

Development
taskType

title

Creation
Use Case Use Caserdfs:subClassOf

rdf:type

CompanyA

hasSource

name

"John Smith"

Task2

subTaskOf

Task rdf:type

rdf:type

05-02-2014

actualEffortInHours

25

estimatedEffortInHours

20

3GL

rdf:type

C#

rdf:type

from

08-02-2014

to

Capability

rdf:type

Steps1

Size 
measure

4

value

rdfs:subClassOf

hasSize
Number of steps 

measure

rdf:type

CodehasOutput

Performer

rdf:type

Figure 2. An example of project-task model using the proposed ontology

igate through semantic network. As the individ-
uals in the ontology form a complicated graph of
relationships, we decided to introduce x-level no-
tation to indicate the depth of graph exploration.
For instance, 1-level of navigation means that
the exploration starts at the given node (RDF
resource or OWL class) and finishes at the node’s
direct neighbors. The 2-level navigation implies
traversing through all nodes available on 1-level
and recursive invocation of 1-level navigation for
each of them.

The main goal of the proposed case-based
reasoning method is to give the expert possibil-
ity to dynamically adjust the demanded level of
similarity between tasks. We defined five levels
of similarity:
– Near-exact similarity – only tasks which have

exactly the same values of all properties at
1-level would be classified as similar. For in-
stance, if two tasks are being compared that
have almost the same values of all properties,
but the sets of performers are different, then,
these tasks will not meet conditions to classify
them as similar.

– Similarity after generalization to a given
class – generalization can be defined as nav-
igating up in the hierarchical taxonomy of
classes. If two tasks were connected to individ-
uals belonging to the same, given class, then
these two tasks would be classified as similar.
For instance, let us assume that there are two
tasks: the first one was implemented in Java
and the second one was implemented in C#.
If one considers their similarity after gener-
alizing them to the class 3GL programming
language, then the tasks would be considered
similar.

– Similarity after generalization to classes on
a given level – this approach is more general
than the generalization to a given class, be-
cause the process of navigating up in class
hierarchy is not based on a single class, but
it is performed for all classes on a given level.
For instance, if a task has individuals that
directly belong to both 3GL programming
language and Web Framework classes, a sim-
ilar task will also have to be connected to
individuals that belong to these classes.



Supporting Analogy-based Effort Estimation with the Use of Ontologies 57

– Similarity when values of a given property
are equal – tasks in the project ontology are
not only connected with individuals, but also
with plain values. Generalizations work only
for class instances, so there is a need to intro-
duce a mechanism of comparing tasks based
on so-called datatype properties (e.g., integers,
strings, etc.). Tasks are considered similar if
they have the same values of a given property.

– Similarity when values of properties on
a given level are equal – it is a more gen-
eral version of similarity based on equality
of properties. This time, all datatype proper-
ties at a given level need to be the same to
conclude that the tasks are similar.
The proposed approach makes it possible to

give the expert opportunity to select which levels
of similarity should be selected in a given con-
text. The decision is made by invoking one of
the following commands:
– ExactSearch() – it performs a search using

near-exact similarity comparison,
– Generalize(Relation, Class) – it alters search

criteria by introducing the similarity after
generalization to the Class.

– Generalize(Relation, Level) – it alters search
criteria by introducing the similarity after
generalization to the classes on the given
Level.

– SameProperties(Relation, Property) – it al-
ters search criteria by introducing the simi-
larity when values of the given Property are
equal.

– SameProperties(Relation, Level) – it alters
search criteria by introducing the similarity
when values of the properties on the given
Level are equal.
The Relation parameter shows in which direc-

tion the mechanism should work. It is important
to emphasize, that if an expert decides to ex-
ecute command on the specific relation, then
the remaining relations still have to match the
previously defined criteria. In addition, all the
previously applied commands might be reverted.

The method always starts from the Exact-
Search command, because it finds the tasks
that are the most similar. Afterwards, an expert
has possibility to execute different commands

and observe the results. The results could be
any means supporting expert-based effort esti-
mation, e.g., cumulative density function plots,
regression-based models, description of similar
tasks.

An example of supervised search session is
presented in Figure 3. It presents how the sim-
ilarity assessment of Task1 and Task2 changes
due to execution of commands. Initially, the
tasks cannot be classified as similar, because
on the 1-level only the Development and Java
is connected to both of them. When the expert
executes the SameProperties(hasPerformer, 2)
command, John and Anna become similar, be-
cause they both share the same node HighJava
on the 2-level. Finally, the expert executes Gener-
alize(hasInput, 1) that generalizes UC1 and UC3
to the same class Creation Use Case. As a result,
Task1 and Task2 are classified as similar.

4. Preliminary Empirical Evaluation

In order to preliminary evaluate the potential
usefulness of the proposed approach, we decided
to perform a post-mortem analysis of a software
development project. In particular, we wanted
to investigate whether estimates provided by the
proposed method could potentially prevent ex-
perts from making the most significant estima-
tion errors (especially prevent them from under-
estimating effort of tasks).

For the purpose of the method evaluation
we implemented a prototype tool on the top of
Apache Jena Framework. At current stage of
development, the tool cannot be used on-line
by an expert, because it lacks easy-to-use user
interface. Therefore, instead of conducting the
action research study, we decided to perform
analysis of existing data. This, however, visibly
limits the conclusions we could draw from the
study.

4.1. The Project under Study

The selected project (eProto3) was an in-house
software development project conducted at
Poznan University of Technology (PUT) in



58 Joanna Kowalska, Mirosław Ochodek

Task1

John

hasPerformer

UC1

hasInput

HighJava

Java

hasCapability in

"High" level

hasMeans

"Add an article"

DevelopmenttaskType

title

Creation
Use Case

Use Case

rdfs:subClassOf

rdf:type

Capabilityrdf:type

Task2

UC3

hasInput

"Add an author"

title

rdf:type

hasMeans

Anna

hasPerformer

hasCapability

taskType

1

1

1

Near-exact similarity

2

2

2

2 Nodes similar after executing the SameProperties(hasPerformer, 2) command

3

3

3

3 Nodes similar after executing the Generalize(hasInput, 1) command

Figure 3. An example of supervised search

2011-2012. Its main goal was to enhance the
existing system used to collect students’ final
grades. The development of the new version of
the system was one of the steps taken by the
University to fully eliminate the need of paper
students’ record books.

The project was conducted according to
the XPrince methodology [15], which combines
PRINCE2 [16] at organization level and eXtreme
Programming [7] at the product delivery level.

The project team consisted of PUT employ-
ees, 3rd and 4th year students. The total reported
effort in the project was around 1600 man-hours.

The lifecycle of the project was convergent
with PRINCE2 recommendations. During the
Initiating a Project stage (IP) non-functional
and functional requirements in form of use cases
were elicited. The prepared software require-
ments specification (SRS) served as a product
backlog. XPrince assumes that delivery stages
are organized similarly to releases in most of ag-
ile software development methods. The scope of
each delivery stage was agreed during a Planning

Game session [7]. Therefore, it was possible that
the project would not deliver whole functionality
that was defined in SRS.

The analysis was performed based on the
tasks recorded in the project’s issue tracker (Red-
mine) during the IP stage, and three delivery
stages (the distributions of the tasks’ actual
effort are presented in Figure 4). Tasks con-
tained information about the estimated effort
by the project team members (we would re-
fer to them as expert estimates) and actual
effort. The recorded tasks related to large va-
riety of activities, e.g., meetings, requirements
engineering, implementation, testing, etc. Many
of these tasks had hierarchical structure, espe-
cially ones defined during the delivery stages.
For instance, each delivery stage had a cor-
responding task, which was decomposed into
set of smaller tasks. For example, some of the
sub-tasks were concerning implementation of use
cases. These tasks were further decomposed to
tasks which goals were to implement use-case
steps.



Supporting Analogy-based Effort Estimation with the Use of Ontologies 59

● ● ●●● ● ●●● ●●● ●●● ● ●● ●●● ●●● ●● ●

● ● ●● ● ● ●●

●●●● ●

● ●● ●●

●● ●●● ● ●● ●

A
ll

IP
R

1.
1

R
1.

2
R

1.
3

0 5 11 18 25 32 39 46 53 60 67 74 81 88 95

n=
26

9
n=

97
n=

46
n=

37
n=

89

Figure 4. Box-plots presenting actual effort of the tasks in man-hours for all stages (All),
Initiating a Project stage (IP), and three releases (R1.1-3)

We were able to automatically retrieve most
of the data from the Redmine instance and miss-
ing information, e.g., performers capabilities, was
added manually (in this particular case, we sur-
veyed team members about their capabilities
during the project).

4.2. Evaluation Methodology

We wanted to compare the accuracy of tasks’
estimates obtained from three sources:
– (ES) analogy-based effort estimates based on

the results of exact search,
– (SS) analogy-based effort estimates based on

supervised search,
– (Exp) project team members’ estimates (ex-

perts’ estimates).
In order to compare the accuracy of estimates

we used a prediction error metric called balanced
measure of relative error (BRE)2, which is calcu-
lated as:

BRE = |actual effort − estimated effort|
min(actual effort, estimated effort)

We also wanted to investigate if the predic-
tion method provided unbiased results. For this
purpose, we used slightly modified version of

BRE measure, called BRE_bias that is defined
in the following way:

BRE_bias = actual effort − estimated effort
min(actual effort, estimated effort)

If the value of BRE_bias measure is greater
than zero it means that the effort was underesti-
mated. Negative value indicates overestimation.

We decided to analyze the accuracy of effort
prediction approaches using the k-fold cross-val-
idation method. In the first step we randomly
divided the set of tasks into k = 10 exclusive
subsets with possibly equal cardinality. The val-
idation process took k iterations. During each of
the iterations, a single set T became a testing set
while the remaining k−1 sets were treated as his-
torical database. Each task from the set T was es-
timated using a given effort estimation approach.
The obtained estimate was compared with the ac-
tual effort to calculate prediction error measures.

By definition, the supervised search approach
should be used by an expert, who executes the
commands in order to search for similar tasks.
The choice of command that expert executes is
determined by the results obtained in the previ-
ous step. Therefore, the expert search strategy
can differ depending on the task being estimated

2 We decided to use the BRE error measure instead of MRE (Magnitude of Relative Error), which was more
frequently used in the past, because the latter one was recently criticized by many researchers, mainly for being
unbalanced [17–20].



60 Joanna Kowalska, Mirosław Ochodek

and content of historical database. Unfortunately,
we were not able to simulate such complex be-
havior. Thus, in the analysis we defined a simple
strategy that our virtual expert used to supervise
the search. The will of the expert to refine the
search was based on the number of similar tasks
found in the previous iteration. If the previous
steps did not provide a single similar task, expert
performed the following steps (after each step
verifying if there are any similar tasks found)3:
1. ExactSearch – the search started from finding

nearly-the-same tasks.
2. Generalize(hasInput, 1) – we decided that

the first refinement should concern making
inputs more abstract (e.g., instead of UC1 we
could have a use case with the main theme
of creating an object in the system).

3. SameProperties(hasPerformer, 2) – instead
of finding exactly the same performers, we
would like to find performers with the same
capabilities (e.g., highly skillful Java program-
mers instead of John Smith)4.

4. Generalize(hasMeans, 1) – we searched for
similar tasks that were performed with the
use of similar tools, programming language
or technologies.

5. SameProperties(hasType, 1) – finally, we try
to look for the tasks similar tasks that have
little bit more general type.
The second stage of the case-base reasoning is

to predict effort of the task based on found simi-
lar tasks. In the study, we used the following strat-
egy to estimate effort. If size was available both
estimated and similar historical tasks, we con-
structed a linear regression model. If the size was
not measured for the inputs, we selected mean
actual effort of similar tasks as the task estimate.

4.3. Data Analysis

During the analysis of the eProto3 project data it
turned out that the experts’ estimates were pro-
vided for 132 out of 269 tasks (Exp). In addition,
the exact search approach was able to estimate

100 tasks (ES) and the supervised search pro-
vided estimates for 199 tasks (SS). Therefore,
in order to compare the prediction accuracy of
approaches we decided to analyze the following
sets of tasks: a = Exp ∩ ES ∩ SS (51 tasks),
B = Exp ∩ SS (100 tasks) and C = ES ∩ SS
(100 tasks).

The first observation was that when all tasks
are considered, expert-based estimated are the
most accurate (error measures are presented in
Table 1). The average values of BRE ranged from
0.33 to 1.06 (depending on the measure of central
tendency and set of tasks). They also seemed to
be median-unbiased, while for mean-bias we ob-
served a tendency to underestimate. The exact
and supervised search approaches on average per-
formed visibly worse than experts – average BRE
ranged from 0.76 to 2.53. The estimates seemed
to be median-unbiased and contrary to experts’
estimates we observe a tendency to overestimate
for mean-bias (which from practical point of view
is favorable).

The second, not surprising, observation was
that the experts performed almost perfect when
it comes to small tasks (e.g., 1 man-hour or less).
Therefore, it seems that for such tasks no sup-
port is necessary. However, taking into account
how short iteration-cycles are planned in agile
software development, it is rarely observed that
tasks are decomposed to such a level. In eProto3
project, during the Planning Game sessions the
negotiation between the customer representative
and development team was usually at the level
of use cases (and rarely at the level of use-case
steps). Team members often added the estimates
of smaller tasks during the development.

As a result, we decided to filter out tasks
having actual effort lesser than 1 man-day
(8 man-hours) and repeat the analysis. This time
the on average values of BRE for experts’ esti-
mates ranged from 0.70 to 2.56. We also observed
a visible tendency to underestimate effort of big-
ger tasks by the experts. The exact and super-
vised search approaches on average performed

3 As it was presented in Section 4, the execution of commands Generalize and SameProperties does not redefine
the search criteria, but refine the existing ones.

4 During the analysis, it turned out that eProto3 team members had exclusive sets of capabilities, therefore, this
step did not have any effect on the results.



Supporting Analogy-based Effort Estimation with the Use of Ontologies 61

Table 1. Effort estimation errors (BRE and BRE_bias)

BRE BRE_bias

Tasks set median mean SD median mean SD

All tasks:
Experts A = 51 0.33 1.06 2.17 0.00 0.43 2.38

Exact Search A = 51 1.00 1.91 3.85 0.00 −0.33 4.29
Supervised Search A = 51 1.00 1.91 3.85 0.00 −0.33 4.29

Experts B = 100 0.45 1.05 1.80 0.00 0.39 2.05
Supervised Search B = 100 1.19 2.53 3.96 −0.06 −1.25 4.53

Exact Search C = 100 0.76 1.78 3.05 −0.01 −0.52 3.49
Supervised Search C = 100 0.76 1.78 3.05 −0.01 −0.52 3.49

Actual effort >= 8h:
Experts A’ = 8 0.85 2.56 4.25 0.79 2.40 4.35

Exact Search A’ = 8 0.00 0.38 0.63 0.00 0.03 0.75
Supervised Search A” = 8 0.00 0.38 0.63 0.00 0.03 0.75

Experts B’ = 31 0.70 1.49 2.43 0.60 1.29 2.55
Supervised Search B’ = 31 0.70 0.95 0.93 0.00 −0.23 1.32

Exact Search C’ = 10 0.00 0.33 0.57 0.00 0.00 0.67
Supervised Search C’ = 10 0.00 0.33 0.57 0.00 0.00 0.67

All tasks and BRE Experts > 2: (the results for C would be the same as for A)
Experts A” = 6 4.81 6.07 3.32 4.06 2.91 6.72

Exact Search A” = 6 1.69 2.82 3.88 0.22 −1.24 4.77
Supervised Search A” = 6 1.69 2.82 3.88 0.22 −1.24 4.77

Experts B” = 14 4.00 4.75 2.47 3.65 2.39 4.92
Supervised Search B” = 14 1.35 3.16 3.84 −0.64 −2.27 4.47

a little bit better than experts – the average BRE
ranged from 0.00 to 0.95 (the most important
comparison, based on the set B’ indicated differ-
ence in median BRE between experts and the
supervised search approach at the level of 0.00
and for mean BRE at the level of 0.54). Again
the proposed approaches seemed almost unbiased
(in one case a minor tendency to overestimate
was observed).

The goal of the proposed analogy-based effort
estimation method is to support, not eliminate,
expert in effort estimation. Therefore, we decided
to investigate if the proposed approaches could
potentially prevent experts from making most
harmful errors in their estimations. The idea was
to select tasks that had BRE for expert-based ef-
fort estimates greater than 2.00 and observe their
corresponding estimates suggested by the tool.
The first observation was that both experts and
proposed approaches were not able to provide

accurate estimates. The average BRE for experts
ranged from 4.00 to 6.07 with major tendency
to underestimate. The proposed approaches per-
formed better – the average BRE ranged from
1.35 to 3.16. With a single exception, the pro-
posed approaches had tendency to overestimate.

4.4. Discussion of the Results

First of all, we want to emphasize that the goal
of the study was not to prove that the method
provides estimates with higher accuracy than
experts. Instead we treated it as a preliminary
study that would show us further directions for
improvements.

To sum up the results, we have to admit that
generally team members were able to provide ac-
curate effort estimates. The estimates provided
by tool, especially for small tasks, were less accu-
rate. However, when the size of the task increased,



62 Joanna Kowalska, Mirosław Ochodek

the accuracy of the tool was comparable, or tak-
ing into account its tendency to overestimate
even practically favorable.

We observed that the main reason of poor
performance of the proposed approaches was
the lack of quantitative complexity measured
for most of the tasks. We observed that accuracy
of the tool could be increased either by providing
these kind of measures (e.g., even simple measure
such as number of pages of documentation to
be produced, etc.) or to precisely describe tasks
using the ontology. We believe that the prob-
lem could be mitigated if a true human expert
was supervising the tool. From our investigation
many of the tasks were correctly classified as sim-
ilar, taking into account available information,
however, after reading their titles, the difference
between them became obvious.

We also observed that the tool was able to
provide better estimates for the tasks that were
poorly estimated by experts, which in our opin-
ion is a promising finding. However, still the
question arises if the feedback provided by the
system would have strong-enough impact on ex-
perts’ decisions to prevent them from making
significant mistakes in their estimates.

4.5. Limitations and Threats to Validity
of the Study

There are limitations and threats to validity of
the study that needs to discussed. The main
threat to construct validity relates to the fact
that the proposed study assessed only some as-
pects of the proposed approaches. We believe
that the approaches should support expert-based
effort estimation, e.g., as an external voice in
group-based effort estimation methods like Plan-
ning Poker. However, in the study we simulated
behavior of an expert, who always performed in
the same way (even if it was unreasonable in
a given context).

The main threats to internal validity relate
mainly to the project data we obtained from the
Redmine system. We suspect that for smaller
tasks experts could record actual effort in such
a way that it fit the estimated effort (e.g., if
one completes a task that was estimated for 30

minutes in 20 minutes he/she very often will just
copy the estimated effort as actual). From the
practical point of view the difference is not so
visible, but when it comes to calculating BRE
measure its impact becomes visible.

The threats to external validity regard the
ability to generalize the findings. The goal of
the study was to collect first observations re-
garding the method. Therefore, this group of
threats does not affect the results too much. The
most important threats in this category refer to
the size of the sample and software development
methodology that was used. For instance, the
requirements were documented in the form of
use cases rather than in the form of user stories.

5. Related Work

There are three categories of related works that
we would like to discuss, namely, analogy-based
effort estimation, supporting effort estimation
during release planning in agile software devel-
opment and usage of ontologies for effort estima-
tion.

Analogy-based effort estimation has been
developed for many years. Probably the most
recognized methods of this type are ACE [3],
ANGEL [4], Estor [5].

The main challenge of analogy-based effort
estimation is the construction of a mechanism
that will enable us to find similar cases (projects)
to the target one that is estimated. Most of
the methods tackle with this problem by rep-
resenting software projects in vector spaces (each
feature is represented by a single dimension).
Then various techniques are used to find simi-
lar projects, e.g., based on different similarity
distance measures, e.g., Euclidean, Manhattan,
Minkowski.

Another, important problem is that the accu-
racy of analogy-based methods strongly depen-
dent on the precision of historical data. Recently,
Azzeh et al. [21] proposed to use Fuzzy numbers
to mitigate this problem. The advantage of this
solution is that it can be applied when not all
requirements are known. The main drawback is
that it is only usable on the project level.



Supporting Analogy-based Effort Estimation with the Use of Ontologies 63

Our approached differs visibly from the pre-
vious works in the area, because it enhances
case-based reasoning process with semantics. Giv-
ing the analogy to the approaches using vector
spaces, we could say that we are able to dynam-
ically transform the vector space that is used
to describe the projects and to find similarities
between them.

Still, the main aim of our approach is to
support effort estimation during release plan-
ning activities (especially, in agile software de-
velopment). Majority of related works in this
area focus on expert-based (and particularly
grouped-based) effort estimation methods. For
instance, the Planning Poker method has been
recently frequently studied [8–11]. However, there
are some works concerning usage of model-based
effort estimation methods at the release level. For
instance, Hearty et al. [22] proposed the method
to predict Project Velocity using Bayesian Nets
(BNs); Miranda et al. [23] proposed an approach
to support sizing of user stories based on paired
comparison.

The usage of ontologies to effort estimation
was considered by Hamadan et al. [24]. They
identified the importance of organizational and
cultural factors and project leadership for im-
proving effort estimates by analogy. The authors
created a project ontology, which focuses on the
environmental factors. Distance between projects
was calculated and used to assess their similarity.
However, this approach could be used only at
the project level and requires a large number of
similar projects in the database.

6. Conclusions

We proposed a new approach to model project
data to support expert-supervised analogy-based
effort estimation. The data is modeled using Se-
mantic Web technologies, such as Resource De-
scription Framework (RDF) and Ontology Lan-
guage for the Web (OWL).

In addition, we defined a method of super-
vised case-based reasoning. The method enables
to search for similar project tasks at different
levels of abstraction. For instance, instead of

searching for a task performed by a specific per-
son, one could look for tasks performed by people
with similar capabilities.

The proposed method relies on ontology that
defines the core concepts and relationships. How-
ever, it is possible to introduce new classes and
relationships, without the need of altering the
search mechanisms.

Finally, we implemented a prototype tool that
was used to preliminary validate the proposed
approach. We observed that the proposed ap-
proach could potentially help experts in estimat-
ing non-trivial tasks that are often underesti-
mated.

References

[1] P. R. Hill, Practical Software Project Estimation:
A Toolkit for Estimating Software Development
Effort & Duration. McGraw-Hill, 2011.

[2] B. Boehm, B. Clark, E. Horowitz, C. Westland,
R. Madachy, and R. Selby, “Cost models for fu-
ture software life cycle processes: COCOMO 2.0,”
Annals of Software Engineering, Vol. 1, No. 1,
1995, pp. 57–94.

[3] F. Walkerden and R. Jeffery, “An empirical study
of analogy-based software effort estimation,” Em-
pirical Software Engineering, Vol. 4, No. 2, 1999,
pp. 135–158.

[4] M. Shepperd, C. Schofield, and B. Kitchenham,
“Effort estimation using analogy,” in Proceedings
of the 18th International Conference on Soft-
ware Engineering, Berlin, 1996. IEEE, 1996, pp.
170–178.

[5] T. Mukhopadhyay, S. Vicinanza, and M. Pri-
etula, “Examining the feasibility of a case-based
reasoning model for software effort estimation,”
MIS Quarterly, Vol. 16, No. 2, 1992, pp. 155–171.

[6] K. Schwaber and M. Beedle, Agile software de-
velopment with Scrum. Prentice Hall, 2002.

[7] K. Beck and C. Andres, Extreme programming
explained: embrace change. Addison-Wesley Pro-
fessional, 2004.

[8] J. Grenning, “Planning poker or how to avoid
analysis paralysis while release planning,” 2002.

[9] K. Moløkken-Østvold, N. C. Haugen, and H. C.
Benestad, “Using planning poker for combining
expert estimates in software projects,” Journal
of Systems and Software, Vol. 81, No. 12, 2008,
pp. 2106–2117.

[10] V. Mahnič, “A case study on agile estimating and
planning using scrum,” Electronics and Electrical
Engineering, Vol. 111, No. 5, 2011, pp. 123–128.



64 Joanna Kowalska, Mirosław Ochodek

[11] V. Mahnič and T. Hovelja, “On using planning
poker for estimating user stories,” Journal of
Systems and Software, Vol. 85, No. 9, 2012, pp.
2086–2095.

[12] M. Jorgensen, B. Boehm, and S. Rifkin, “Soft-
ware development effort estimation: Formal mod-
els or expert judgment?” Software, IEEE, Vol. 26,
No. 2, March 2009, pp. 14–19.

[13] R. Popli and N. Chauhan, “Cost and effort esti-
mation in agile software development,” in Opti-
mization, Reliabilty, and Information Technology
(ICROIT), 2014 International Conference on.
IEEE, 2014, pp. 57–61.

[14] J. Hebeler, M. Fisher, R. Blace, and
A. Perez-Lopez, Semantic web programming.
John Wiley & Sons, 2011.

[15] J. Nawrocki, L. Olek, M. Jasinski, B. Paliświat,
B. Walter, B. Pietrzak, and P. Godek, “Balanc-
ing agility and discipline with xprince,” in Rapid
integration of software engineering techniques.
Springer, 2006, pp. 266–277.

[16] A. Murray, Managing Successful Projects with
PRINCE2. TSO, 2009.

[17] T. Foss, E. Stensrud, B. Kitchenham, and
I. Myrtveit, “A simulation study of the model
evaluation criterion mmre,” IEEE Transactions
on Software Engineering, Vol. 29, No. 11, 2003,
pp. 985–995.

[18] M. Jørgensen, “A critique of how we measure
and interpret the accuracy of software develop-
ment effort estimation,” in First International

Workshop on Software Productivity Analysis and
Cost Estimation. Nagoya: Information Process-
ing Society of Japan, 2007.

[19] B. A. Kitchenham, L. M. Pickard, S. G. Mac-
Donell, and M. J. Shepperd, “What accuracy
statistics really measure [software estimation],”
in Software, IEE Proceedings, Vol. 148, No. 3.
IET, 2001, pp. 81–85.

[20] M. Shepperd, M. Cartwright, and G. Kadoda,
“On building prediction systems for software en-
gineers,” Empirical Software Engineering, Vol. 5,
No. 3, 2000, pp. 175–182.

[21] M. Azzeh, D. Neagu, and P. I. Cowling,
“Analogy-based software effort estimation using
fuzzy numbers,” Journal of Systems and Soft-
ware, Vol. 84, No. 2, 2011, pp. 270–284.

[22] P. Hearty, N. Fenton, D. Marquez, and M. Neil,
“Predicting project velocity in XP using a learn-
ing dynamic bayesian network model,” IEEE
Transactions on Software Engineering, Vol. 35,
No. 1, 2009, pp. 124–137.

[23] E. Miranda, P. Bourque, and A. Abran, “Sizing
user stories using paired comparisons,” Infor-
mation and Software Technology, Vol. 51, No. 9,
2009, pp. 1327–1337.

[24] K. Hamdan, H. El Khatib, J. Moses, and
P. Smith, “A software cost ontology system for
assisting estimation of software project effort for
use with case-based reasoning,” in Innovations
in Information Technology, 2006. IEEE, 2006,
pp. 1–5.



e-Informatica Software Engineering Journal, Volume 8, Issue 1, 2014, pages: 65–78, DOI 10.5277/e-Inf140105

Malicious JavaScript Detection
by Features Extraction

Gerardo Canfora∗, Francesco Mercaldo∗, Corrado Aaron Visaggio∗
∗Department of Engineering, University of Sannio

canfora@unisannio.it, fmercaldo@unisannio.it, visaggio@unisannio.it

Abstract
In recent years, JavaScript-based attacks have become one of the most common and successful
types of attack. Existing techniques for detecting malicious JavaScripts could fail for different
reasons. Some techniques are tailored on specific kinds of attacks, and are ineffective for others.
Some other techniques require costly computational resources to be implemented. Other techniques
could be circumvented with evasion methods. This paper proposes a method for detecting malicious
JavaScript code based on five features that capture different characteristics of a script: execution
time, external referenced domains and calls to JavaScript functions. Mixing different types of
features could result in a more effective detection technique, and overcome the limitations of
existing tools created for identifying malicious JavaScript. The experimentation carried out suggests
that a combination of these features is able to successfully detect malicious JavaScript code (in
the best cases we obtained a precision of 0.979 and a recall of 0.978).

1. Introduction

JavaScript [1] is a scripting language usually em-
bedded in web pages with the aim of creating
interactive HTML pages. When a browser down-
loads a page, it parses, compiles, and executes the
script. As with other mobile code schemes, ma-
licious JavaScript programs can take advantage
of the fact that they are executed in a foreign
environment that contains private and valuable
information. As an example, a U.K. researcher
developed a technique based on JavaScript tim-
ing attacks for stealing information from the
victim machine and from the sites the victim
visits during the attack [2]. JavaScript code is
used by attackers for exploiting vulnerabilities
in the user’s browser, browser’s plugins, or for
tricking the victim into clicking on a link hosted
by a malicious host. One of the most widespread
attacks accomplished with malicious JavaScript
is drive-by-download [3, 4], consisting of down-
loading (and running) malware on the victim’s

machine. Another example of JavaScript-based
attack is represented by scripts that abuse sys-
tems resources, such as opening windows that
never close or creating a large number of pop-up
windows [5].

JavaScript can be exploited for accomplish-
ing web based attacks also with emerging web
technologies and standards. As an example, this
is happening with Web Workers [6], a technology
recently introduced in HTML 5. A Web Worker
is a JavaScript process that can perform com-
putational tasks, and send and receive messages
to the main process or to other workers. A Web
Worker differs from a worker thread in Java or
Python in a fundamental aspect of the design:
there is no sharing of the state. Web Workers
were designed to execute portions of JavaScript
code asynchronously, without affecting the per-
formance of the web page. The operations per-
formed byWebWorkers are therefore transparent
from the point of view of the user who remains
unaware of what is happening in the background.



66 Gerardo Canfora et al.

The literature offers many techniques to de-
tect malicious JavaScripts, but all of them show
some limitations. Some existing detection solu-
tions leverage previous knowledge about malware,
so they could be very effective against well-known
attacks, but they are ineffective against zero-day
attacks [7]. Another limitation of many detectors
of malicious JavaScript code is that they are
designed for recognizing specific kinds of attack,
thus for circumventing them, attackers usually
mix up different attack’s types [7]. This paper
proposes a method to detect malicious JavaScript
that consists of extracting five features from the
web page under analysis (WUA in the remaining
of the paper), and using them for building a clas-
sifier. The main contribution of this method is
that the proposed features are independent of
the technology used and the attack implemented.
So it should be robust against zero-day attacks
and JavaScripts which combine different types
of attacks.

1.1. Assumptions and Research
Questions

The features have been defined on the basis of
three assumptions. One assumption is that a ma-
licious website could require more resources than
a trusted one. This could be due to the need to
iterate several attempts of attacks until at least
one succeeds, to executing botnets functions, or
to examining and scanning machine resources.
Based on this assumption, two features have been
identified. The first feature (avgExecTime) com-
putes the average execution time of a JavaScript
function. As discussed in [8, 9], the malware is
expected to be more resource-consuming than
a trusted application. The second feature (max-
ExecTime) computes the maximum execution
time of JavaScript function.

The second assumption is that a malicious
web page generally calls a limited number of
JavaScript functions to perform an attack. This
could have different justifications, i.e. a malicious
code could perform the same type of attacks
over and over again with the aim of maximizing
the probability of success: this may mean that
a reduced number of functions is called many

times. Conversely, a benign JavaScript usually
exploits more functions to implement the busi-
ness logic of a web application [10]. One feature
has been defined on this assumption (funcCalls)
that counts the number of function calls done by
each JavaScript.

The third assumption is that a JavaScript
function can make use of malicious URLs for
many purposes, i.e. performing drive-by down-
load attacks or sending data stolen from the
victim’s machine. The fourth feature (totalUrl)
counts the total number of the URLs into
a JavaScript function, while the fifth feature
(extUrl) computes the percentage of URLs out-
side the domain of the WUA.

We build a classifier by using these five fea-
tures in order to distinguish malicious web appli-
cations from trusted ones; the classifier runs six
classification algorithms.

The paper poses two research questions:
– RQ1: can the five features be used for discrim-

inating malicious from trusted web pages?
– RQ2: does a combination of the features exist

that is more effective than a single feature to
distinguish malicious web pages from trusted
ones?

The paper proceeds as follows: next section dis-
cusses related work; the following section illus-
trates the proposed method; the fourth section
discusses the evaluation, and, finally, conclusions
are drawn in the last section.

2. Related Work

A number of approaches have been proposed
in the literature to detect malicious web pages.
Traditional anti-virus tools use static signatures
to match patterns that are commonly found in
malicious scripts [11]. As a countermeasure, com-
plex obfuscation techniques have been devised
in order to hide malicious code to detectors that
scan the code for extracting the signature. Black-
listing of malicious URLs and IPs [7] requires
that the user trusts the blacklist provider and
entails high costs for management of database,
especially for guaranteeing the dependability of
the information provided. Malicious websites, in



Malicious JavaScript Detection by Features Extraction 67

fact, change frequently the IP addresses espe-
cially when they are blacklisted.

Others approaches have been proposed for
observing, analysing, and detecting JavaScript
attacks in the wild, for example, using
high-interaction honeypots [12–14] and low-in-
teraction honeypots [15–17]. High-interaction
honey-clients assess the system integrity, by
searching for changes to the registry entries, and
to the network connections, alteration of the file
system, and suspect usage of physical resources.
This category of honey-clients is effective, but
entails high computational costs: they have to
load and run the web application for analysing
it, and nowadays websites contain a large
number of heavy components. Furthermore,
high-interaction honey-clients are ineffective with
time-based attacks, and most honey-clients’
IPs are blacklisted in the deep web, or they
can be identified by an attacker employing
CAPTCHAs [7].

Low-interaction honey-clients reproduce au-
tomatically the interaction of a human user with
the website, within a sandbox. These tools com-
pare the execution trace of the WUA with a sam-
ple of signatures: this makes this technique to
fail against zero-day attacks.

Different systems have been proposed for
off-line analysis of JavaScript code [3, 18–20].
While all these approaches are successful with re-
gard to the malicious code detection, they suffer
from a serious weakness: they require a significant
time to perform the analysis, which makes them
inadequate for protecting users at run-time. De-
wald [21] proposes an approach based on a sand-
box to analyse JavaScript code by merging dif-
ferent approaches: static analysis of source code,
searching forbidden IFrames and dynamic analy-
sis of JavaScript code’s behaviour.

Concurrently to these offline approaches, sev-
eral authors focused on the detection of spe-
cific attack types, such as heap-spraying at-
tacks [22,23] and drive-by downloads [24]. These
approaches search for symptoms of certain at-
tacks, for example the presence of shell-code in
JavaScript strings. Of course, the main limitation
is that such approaches cannot be used for all
the threats.

Recent work has combined JavaScript anal-
ysis with machine learning techniques for deriv-
ing automatic defences. Most notably are the
learning-based detection systems Cujo [25], Zoz-
zle [26], and IceShield [27]. They classified mal-
ware by using different features, respectively:
q-grams from the execution of Javascript, con-
text’s attributes obtained from AST and some
DOM tree’s characteristics. Revolver [28] aims
at finding high similarity between the WUA and
a sample of known signatures. The authors ex-
tract and compare the AST structures of the two
JavaScripts. Blanc et al. [29] make use of AST
fingerprints for characterizing obfuscating trans-
formations found in malicious JavaScripts. The
main limitation of this technique is the high false
negatives rate due to the quasi similar subtrees.

Clone detection is a direction explored by
some researchers [2, 30], consisting on finding
similarity among WUA and known JavaScript
fragments. This technique can be effective in
many cases but not all, because some attacks
can be completely original.

Wang et al. [31] propose a method for
blocking JavaScript extensions by intercepting
Cross-Platform Component Object Model calls.
This method is based on the recognition of pat-
terns of malicious calls; misclassification could
occur with this technique so innocent JavaScript
extensions could be signaled as malicious. Barua
et al. [32] also faced the problem of protect-
ing browsers from JavaScript injections of ma-
licious code by transforming the original and
legitimate code with a key. By this way, the
injected code is not recognized after the deci-
phering process and thus detected. This method
is applicable only to the code injection attacks.
Sayed et al. [33] deal with the problem of de-
tecting sensitive information leakage performed
by malicious JavaScript. Their approach relies
on a dynamic taint analysis of the web page
which identifies those parts of the information
flow that could be indicators of a data theft.
This method does not apply to those attacks
which do not entail sensitive data exfiltration.
Schutt et al. [34] propose a method for early
identification of threats within javascripts at
runtime, by building a classifier which uses the



68 Gerardo Canfora et al.

events produced by the code as features. A rel-
evant weakness of the method is represented
by evasion techniques, described by authors
in the paper, which are able to decrease the
performance of the classification. Tripp et al.
[35] substitute concrete values with some spe-
cific properties of the document object. This
allows for a preliminary analysis of threats
within the JavaScript. The method seems to
not solve the problem of code injection. Xu
and colleagues [36] propose a method which
captures some essential characteristics of obfus-
cated malicious code, based on the analysis of
function invocation. The method demonstrated
to be effective, but the main limitation is its
purpose: it just detects obfuscated (malicious)
JavaScripts, but does not recognize other kinds
of threats.

Cova et al. [3] make use of a set of features to
identify malicious JavaScript including the num-
ber and target of redirections, the browser per-
sonality and history-based differences, the ratio
of string definition and string uses, the number
of dynamic code executions and the length of
dynamically evaluated code. They proposed an
approach based on an anomaly detection system;
our approach is similar but different because uses
the classification.

Wang et al. [37] combine static analysis and
program execution to obtain a call graph using
the abstract syntax tree. This could be very ef-
fective with attacks that reproduce other attacks
(this practice is very common among inexperi-
enced attackers, known also as “script-kiddies”)
but it is ineffective with zero-day attacks.

Yue et al. [38] focus on two types of insecure
practices: insecure JavaScript inclusion and inse-
cure JavaScript dynamic generation. Their work
is a measurement study focusing on the counting
of URLs, as well as on the counting of the eval()
and the document.write() functions.

Techniques known as language-based sand-
boxing [33, 39–42] aimed at isolating the un-
trusted JavaScript content from the original
webpage. BrowserShield [43], FBJS from Face-
book [44], Caja from Google [45], and AD-
safe which is widely used by Yahoo [39], are
examples of this technique. It is very effec-

tive when coping with widget and mashup
webpages, but it fails if the web page con-
tains embedded malicious code. A relevant lim-
itation of this technique is that third par-
ties’ developers are forced to use the Soft-
ware Development Kits delivered by sandboxes’
producers.

Ismail et al. [46] developed a method which
detects XSS attacks with a proxy that analy-
ses the HTTP traffic exchanged between the
client (web browser) and the web application.
This approach has two main limitations. Firstly,
it only detects reflected XSS, also known as
non-persistent XSS, where the attack is per-
formed through a single request and response.
Second, the proxy is a possible bottleneck for
performance as it has to analysing all the re-
quests and responses transmitted between the
client and the server. In [47], Kirda et al. propose
a web proxy that analyses dynamically generated
links in web pages and compares those links with
a set of filtering rules for deciding if they are
trusted or not. The authors leverage a set of
heuristics to generate filtering rules and then
leave the user to allow or disallow suspicious
links. A drawback of this approach if that involv-
ing users might negatively affect their browsing
experience.

3. The Proposed Method

Our method extracts three classes of features
from a web application: JavaScript execution
time, calls to JavaScript functions and URLs
referred by the WUA’s JavaScript.

To gather the required information we use:
1. dynamic analysis, for collecting information

about the execution time of JavaScript code
within the WUA and the called functions;

2. static analysis, to identifying all the URLs
referred in the WUA within and outside the
scope of the JavaScript.

The first feature computes the average execution
time required by JavaScript function:

avgExecTime = 1
n

n∑

k=1
ti



Malicious JavaScript Detection by Features Extraction 69

where: ti is the execution time of the i-th
JavaScript function, and n is the number of
JavaScript functions in the WUA.

The second feature computes the maximum
execution time of all JavaScript functions:

maxExecTime = max(ti)
where ti is the execution time of the i-th
JavaScript function in the WUA.

The third feature computes the number of
functions calls made by the JavaScript code:

funcCalls =
n∑

i=1
ci

where n is the is the number of JavaScript func-
tions in the WUA, and ci is the number of calls
for the i-th function.

The fourth feature computes the total number
of URLs retrieved in a web page:

totalUrl =
m∑

i=0
ui

where: ui is the number of times the i-th URL
is called by a JavaScript function and m is the
number of different URLs referenced within the
WUA.

The fifth feature computes the percentage of
external URLs referenced within the JavaScript:

extUrl =

j∑

k=0
uk

m∑

i=0
ui

∗ 100

where: uk is the number of times the k-th URL
is called by a JavaScript function, for j different
external URLs referenced within the JavaScript,
while ui is the number of times the i-th URL
is called by a JavaScript function, for m total
URLs referenced within the JavaScript.

We used these features for building several
classifiers. Specifically, six different algorithms
were run for the classification, by using the Weka
suite [48]: J48, LADTree, NBTree, RandomFor-
est, RandomTree and RepTree.

3.1. Implementation

The features extracted from the WUA by dy-
namic analysis were:
– execution time;
– calls to javascript function;
– number of function calls made by the

javascript code.
The features extracted from the WUA by static
analysis were:
– number of URLs retrieved in the WUA;
– URLs referenced within the WUA.
The dynamic features were captured with
Chrome developer [49], a publicly available tool
for profiling Web Applications. Each WUA was
opened with a Chrome browser for a fixed time
of 50 seconds, and the Chrome developer tool
performed a default exploration of the WUA,
mimicking user interaction and collecting the
data with the Mouse and Keyboard Recorder
tool [50], a software able to record all mouse and
keyboard actions, and then repeat all the actions
accurately.

The static analysis aimed at capturing all the
URLs referenced in the JavaScript files included
in the WUA. URLs were recognized through
regular expressions: when an URL was found, it
was compared with the domain of the WUA: if
the URL’s domain was different from the WUA’s
domain, it was tagged as an external URL.

We have created a script to automate the
data extraction process. The script takes as in-
put a list of URLs to analyse and perform the
following steps:
– step 1: start the Chrome browser;
– step 2: start the Chrome Dev Tools on the

panel Profiles;
– step 3: start the tool for profiling;
– step 4: confirm the inserted URL as parame-

ter to the browser and waiting for the time
required to collect profiling data;

– step 5: stop profiling;
– step 6: save data profiling in the file system;
– step 7: close Chrome;
– step 8: start the Java program to parse pro-

filing saved;
– step 9: extract the set of dynamic features;
– step 10: save source code of the WUA;



70 Gerardo Canfora et al.

– step 11: extract the set of static features;
– step 12: save the values of the features ex-

tracted into a database.
The dynamic features of the WUA are extracted
from the log obtained with the profiling.

4. Experimentation

The aim of the experimentation is to evaluate the
effectiveness of the proposed features, expressed
through the research questions RQ1 and RQ2.

The experimental sample included a set of
5000 websites classified as “malicious”, while the
control sample included a set of 5000 websites
classified as “trusted”.

The trusted samples includes URLs belonging
to a number of categories, in order to make the
results of experimentation independent of the
type of web-site: Audio-video, Banking, Cook-
ing, E-commerce, Education, Gardening, Gov-
ernment, Medical, Search Engines, News, News-
papers, Shopping, Sport News, Weather.

As done by other authors [33] the trusted
URLs were retrieved from the repository “Alexa”
[51], which is an index of the most visited web-
sites. For the analysis, the top ranked websites
for each category were selected, which were
mostly official websites of well-known organi-
zations. In order to have a stronger guaran-
tee that the websites were not phishing web-
sites or did not contain threats, we submit-
ted the URLs to a web-based engine, Virus-
Total [52], which checks the reliability of the
web sites, by using anti-malware software and
by searching the web site URLs and IPs
in different blacklists of well-known antivirus
companies.

The “malicious” sample was built from the
repository hpHosts [53], which provides a clas-
sification of websites containing threats sorted
by the type of the malicious attack they per-
form. Similarly to the trusted sample, websites
belonging to different threat’s type were chosen,
in order to make the results of the analysis in-
dependent of the type of threat. We retrieved
URLs from various categories: sites engaged in
malware distribution, in selling fraudulent ap-

plications, in the use of misleading marketing
tactics and browser hijacking, and sites engaged
in the exploitation of browser and OS vulner-
abilities. For each URL belonging to the two
samples, we extracted the five features defined
in section 3.

Two kinds of analysis were performed on
data: hypothesis testing and classification. The
test of hypothesis was aimed at understanding
whether the two samples show a statistically
significant difference for the five features. The
features that yield the most relevant differences
between the two samples were then used for the
classification.

We tested the following null hypothesis:
H0 : malware and trusted websites have sim-

ilar values of the proposed features.
The H0 states that, given the i-th feature fi,

if fiT denotes the value of the feature fi measured
on a trusted web site, and fiM denoted the value
of the same feature measured on a malicious web
site:

σ(fiT ) = σ(fiM ) for i = 1, . . . , 5

being σ(fi) the means of the (control or experi-
mental) sample for the feature fi.

The null hypothesis was tested with
Mann-Whitney (with the p-level fixed to 0.05)
and with Kolmogorov-Smirnov Test (with the
p-level fixed to 0.05). Two different tests of
hypotheses were performed in order to have
a stronger internal validity since the purpose
is to establish that the two samples (trusted and
malicious websites) do not belong to the same
distribution.

The classification analysis was aimed at
assessing whether the features where able to
correctly classify malicious and trusted WUA.
Six algorithms of classification were used: J48,
LadTree, NBTree, RandomForest, RandomTree,
RepTree. Similarly to hypothesis testing, differ-
ent algorithms for classification were used for
strengthening the internal validity.

These algorithms were first applied to each
of the five features and then to the groups of
features. As a matter of fact, in many cases a clas-
sification is more effective if based on groups of
features rather than a single feature.



Malicious JavaScript Detection by Features Extraction 71

4.1. Analysis of Data

Figure 1 illustrates the boxplots of each feature.
Features avgExecTime, maxExecTime and func-
Calls exhibit a greater gap between the distribu-
tions of the two samples.

Features totalUrl, and extUrl do not exhibit
an evident difference between trusted and mali-
cious samples. We recall here that totalUrl counts
the total number of URLs in the JavaScript,
while extUrl is the percentage of URLs outside
the WUA domain contained in the script. A pos-
sible reason why these two features are similar
for both the samples is that trusted websites may
include external URLs due to external banners
or to external legal functions and components
that the JavaScript needs for execution (images,
flash animation, functions of other websites that
the author of the WUA needs to recall). Using
external resources in a malicious JavaScript is not
so uncommon: examples are drive by download
and session hijacking. External resources can be
used when the attacker injects a malicious web
page into a benign website and needs to lead the
website user to click on a malicious link (which
can not be part of the benign injected website).

We expect that extending this analysis to the
complete WUA (not limited to JavaScript code)
could produce different results: this goal will be
included in the future work.

On the contrary, features avgExecTime, max-
ExecTime and funcCalls seem to be more ef-
fective in distinguishing malicious from trusted
websites, which supports our assumptions.

Malware requires more execution time than
trusted script code because of many reasons
(avgExecTime, maxExecTime). Malware may re-
quire more computational time for performing
many attempts of the attack till it succeeds. Ex-
amples may be: complete memory scanning, al-
teration of parameters, and resources occupation.

Some kinds of malware aim at obtaining the
control of the victim machine and the command
centre, once infected the victim, could occupy
computational resources of the victim for sending
and executing remote commands. Furthermore,
some other kinds of malware could require time
because they activate secondary tasks like down-
loading and running additional malware, as in
the case of drive-by-download.

The feature funcCalls suggests that trusted
websites have a larger number of functions called

Figure 1. Boxplots of features



72 Gerardo Canfora et al.

or function-calls. Our hypothesis for explaining
this finding is that trusted websites need calling
many functions for executing the business logic
of the website, like data field controls, third party
functions such as digital payment, elaborations
of user inputs, and so on. On the contrary, ma-
licious websites have the only goal to perform
the attack, so they are poor of business func-
tions with the only exception for the payload
to execute. Instead, they perform their attack
at regular intervals; for this reason malicious
WUAs show a higher value of avgExecTime and
maxExecTime with respect to the trusted ones.

In order to optimize the client-server interac-
tion, the trusted website could have many func-
tions but usually with a low computational time,
in order to avoid impacting on the website usabil-
ity. This allows, for example, performing controls,
such as data input validation, on the client side
and sending to the server only valid data.

The hypothesis test produced evidence that
the features have different distributions in the
control and experimental sample, as shown in
Table 1.

Summing up, the null hypothesis can be re-
jected for the features avgExecTime, maxExec-
Time, funcCalls, totalUrl and extUrl.

With regard to classification, the train-
ing set T consisted of a set of labelled web
applications (WUA, l) where the label l ∈
{trusted,malicious}. For each WUA we built
a feature vector F ∈ Ry, where y is the number
of the features used in training phase (1 ≤ y ≤ 5).
To answer to RQ1 we performed five different
classifications each with a single feature (y = 1),
while for RQ2 we performed three classifications
with 2 ≤ y ≤ 5).

We used k-fold cross-validation: the dataset
was randomly partitioned into k subsets of data.
A single subsets of data was retained as the

validation data for testing the model, while the
remaining k − 1 subsets was used as training
data. We repeated the process k-times, each of
the k subsets of data was used once as validation
data. To obtain a single estimate we computed
the average of the k results from the folds.

Specifically, we performed a 10-fold cross val-
idation. Results are shown in Table 2. The rows
represent the features, while the columns repre-
sent the values of the three metrics used to eval-
uate the classification results (precision, recall
and roc-area) for the recognition of malware and
trusted samples. The Recall has been computed
as the proportion of examples that were assigned
to class X, among all examples that truly belong
to the class, i.e. how much part of the class was
captured. The Recall is defined as:

Recall = tp

tp+ fn

where tp indicates the number of true positives
and fn is the number of false negatives.

The Precision has been computed as the pro-
portion of the examples that truly belong to class
X among all those which were assigned to the
class, i.e.:

Precision = tp

tp+ fp

where fp indicates the number of false positives.
The Roc Area is the area under the ROC

curve (AUC), it is defined as the probability that
a randomly chosen positive instance is ranked
above randomly chosen negative one. The classi-
fication analysis with the single features suggests
several considerations.

With regards to the recall:
– Generally the classification of malicious web-

sites is more precise than the classification of
trusted websites.

Table 1. Results of the test of the null hypothesis H0

Variable Mann–Whitney Kolmogorov–Smirnov
avgExecTime 0.000000 p < .001
maxExecTime 0.000000 p < .001
funcCalls 0.000000 p < .001
totalUrl 0.000000 p < .001
extUrl 0.002233 p < .001



Malicious JavaScript Detection by Features Extraction 73

Table 2. Precision, Recall and RocArea obtained by classifying Malicious and Trusted dataset,
using the single features of the model, with the algorithms J48, LadTree, NBTree, RandomForest,

RandomTree and RepTree

Features Algorithm Precision Recall RocArea
Malware Trusted Malware Trusted Malware Trusted

J48 0.872 0.688 0.597 0.898 0.741 0.741
LADTree 0.836 0.691 0.606 0.881 0.789 0.789

avgExecT ime NBTree 0.872 0.686 0.59 0.895 0.771 0.771
RandomForest 0.744 0.758 0.759 0.744 0.762 0.762
RandomTree 0.773 0.762 0.762 0.763 0.766 0.766
RepTree 0.971 0.735 0.704 0.819 0.725 0.725
J48 0.657 0.635 0.606 0.684 0.675 0.675
LADTree 0.638 0.663 0.69 0.606 0.691 0.691

maxExecT ime NBTree 0.672 0.634 0.587 0.713 0.654 0.654
RandomForest 0.683 0.703 0.718 0.667 0.775 0.775
RandomTree 0.678 0.708 0.731 0.653 0.782 0.782
RepTree 0.663 0.686 0.706 0.641 0.724 0.724
J48 0.928 0.677 0.582 0.876 0.722 0.722
LADTree 0.816 0.678 0.587 0.868 0.75 0.75

funcCalls NBTree 0.824 0.677 0.582 0.896 0.727 0.727
RandomForest 0.784 0.719 0.629 0.772 0.672 0.672
RandomTree 0.782 0.683 0.646 0.765 0.696 0.696
RepTree 0.763 0.675 0.686 0.788 0.787 0.787
J48 0.615 0.552 0.381 0.762 0.603 0.603
LADTree 0.566 0.555 0.511 0.609 0.6 0.6

totalUrl NBTree 0.607 0.533 0.284 0.717 0.565 0.565
RandomForest 0.624 0.653 0.689 0.585 0.691 0.691
RandomTree 0.619 0.655 0.7 0.57 0.691 0.691
RepTree 0.617 0.609 0.595 0.631 0.66 0.66
J48 0.514 0.7 0.993 0.061 0.527 0.527
LADTree 0.51 0.704 0.972 0.066 0.512 0.512

extUrl NBTree 0.514 0.716 0.992 0.062 0.527 0.527
RandomForest 0.513 0.513 0.992 0.061 0.532 0.532
RandomTree 0.514 0.787 0.993 0.061 0.527 0.527
RepTree 0.514 0.597 0.593 0.561 0.527 0.527

This could be due to the fact that some
trusted websites have values for the features
comparable with the ones measured for ma-
licious ones. This is evident by looking at
the boxplots (figure 1), which show an area
of overlapping between the boxplots of the
trusted and malicious websites. The prob-
lem is that some trusted websites could have
values comparable with the malware while
others do not. As a matter of fact, some
trusted WUAs can contain more business
functions than other ones, and require more
client machine resources, and so on. This de-

pends on the specific business goals of each
trusted website. And, consequently, on the
type and numbers of the functions that must
be implemented for supporting the business
goals. Except for funcCalls, the trusted web-
sites’ sample include a greater number of
outliers than the malware sample, which is
the main cause of the misclassifications of
trusted websites and supports our explana-
tion.

– The feature extUrl is the best in terms
of recall regarding the malicious websites;
in fact, its value is 0.993 using the algo-



74 Gerardo Canfora et al.

rithms of classification J48 and RandomTree.
This feature is able to reduce the false neg-
atives in malicious detection because ex-
ternal URLs are commonly used by mali-
cious websites, for the reasons previously dis-
cussed.

– Regarding the recall inherent the recogni-
tion of the trusted websites, the best fea-
ture is avgExecTime (recall is 0.898 with
the J48 classification algorithm). This con-
firms the conjecture that malicious scripts
tend to be more resource demanding than
trusted ones.
With regards to the precision:

– The features avgExecTime and funcCalls are
the best for the detection of the malicious
JavaScript, with values, respectively of 0.971
(with the algorithm RepTree) and 0.928 (with
the algorithm J48). This strengthens the con-
jecture that trusted websites make use of less
computational time and a larger number of
functions than malicious websites.

– The precision in the classification of sites
categorized as trusted shows the maximum
value 0.787 (classification of the feature ex-
tUrl with the algorithm RandomTree). This
value is largely unsatisfactory, and it will be
improved by using combinations of features,
as discussed later in this section.
With regards to the roc area:

– The performances of all the algorithms are
pretty the same for malware and trusted ap-
plications.

– The feature avgExecTime presents the max-
imum roc-area value equal to 0.789 with
LADTree algorithm. Reasons have been dis-
cussed previously, even if it cannot be consid-
ered a good value.
In order to make the classification more ef-

fective, we run the classification algorithms by
using groups of features. The first group includes
the features avgExecTime and funcCalls, while
the second includes avgExecTime, funcCalls, and
extUrl. Finally, the last group is made up of
all the five features extracted. The groups were
made on the basis of the classification results of
individual features, in order to improve both the
precision and the recall of the classification.

avgExecTime and funcCalls were the best in
class, so we grouped them together. In particular,
these features were grouped together in order to
obtain the maximum precision value for detecting
malicious web applications.

avgExecTime, funcCalls, and extUrl were
grouped together in order to obtain the max-
imum precision value in the detection of trusted
applications. We excluded maxExecTime and
totalUrl from the second phase of classification,
because they produced the worst results in the
first phase of classification.

The classification of the groups of features
confirms (shown in Table 3) our expectations.
The first set of features, avgExecTime and
funcCalls, presents the maximum precision re-
garding malicious websites, corresponding to
0.982 with the classification algorithm J48, while
in the detection of the trusted web sites the
precision is 0.841 with the classification algo-
rithm REPTree. Compared to the individual
features we have therefore an improvement,
in fact avgExecTime had a precision of 0.971
while funcCalls showed a precision 0.928 in
the recognition of malware websites. The re-
call for malicious websites is 0.873 with the
classification algorithm J48, while for trusted
sites it is 0.897 with the classification algo-
rithm NBTree. With respect to the recogni-
tion of malicious websites we have registered
an improvement, as with individual features
the obtained values were respectively 0.762
(avgExecTime) and 0.686 (funcCalls). With re-
spect to the trusted websites, the situation is
pretty similar, as the values of single features
were 0.898 (avgExecTime) and 0.896 (funcCalls),
i.e. slightly greater.

The second group (avgExecTime, funcCalls,
extUrl) is very close to the first group (two values
are slightly higher and two are slightly lower), but
precision and recall are higher than the second
group.

We can conclude that the best classification
is based on
– avgExecTime, funcCalls, i.e. the average ex-

ecution time (avgExecTime) and the cumu-
lative number of function calls done by each
portion of JavaScript code (funcCalls);



Malicious JavaScript Detection by Features Extraction 75

Table 3. Precision, Recall and RocArea obtained by classifying Malicious and Trusted dataset,
using the three groups of features of the model, with the algorithms J48, LadTree, NBTree,

RandomForest, RandomTree and RepTree

Features Algorithm Precision Recall RocArea
Malware Trusted Malware Trusted Malware Trusted

J48 0.982 0.823 0.873 0.88 0.888 0.888
LADTree 0.87 0.801 0.784 0.873 0.872 0.857

avgExecT ime NBTree 0.848 0.686 0.59 0.897 0.779 0.779
funcCalls RandomForest 0.84 0.825 0.815 0.797 0.985 0.985

RandomTree 0.824 0.818 0.779 0.768 0.977 0.977
RepTree 0.871 0.841 0.824 0.856 0.913 0.913
J48 0.873 0.842 0.835 0.879 0.885 0.885
LADTree 0.86 0.801 0.784 0.873 0.857 0.857

avgExecT ime NBTree 0.848 0.69 0.599 0.893 0.789 0.789
funcCalls RandomForest 0.969 0.978 0.978 0.969 0.985 0.985
extUrl RandomTree 0.97 0.979 0.98 0.97 0.979 0.979

RepTree 0.867 0.852 0.849 0.87 0.918 0.918
J48 0.875 0.878 0.879 0.874 0.922 0.922

avgExecT ime LADTree 0.858 0.804 0.788 0.87 0.858 0.858
maxExecT ime NBTree 0.847 0.72 0.657 0.881 0.827 0.827
funcCalls RandomForest 0.979 0.984 0.985 0.979 0.992 0.992
totalUrl RandomTree 0.982 0.978 0.978 0.982 0.98 0.98
extUrl RepTree 0.877 0.871 0.87 0.879 0.927 0.927

– avgExecTime, funcCalls, extUrl, i.e. the set of
the features of the first group classified along
with the percentage of external domain URLs
that do not belong to the Web Application’s
domain (extUrl).

Although the proposed features show to be ef-
fective in detecting malicious javascript, mis-
classification occurs however. The explanation
maybe the following: each feature represents an
indicator of the possibility that the JavaScript
is malicious, rather than offering the certainty.
The fact that in average a malicious JavaScript
requires a longer execution time (as shown by
boxplots) does not mean that all the benign
JavaScripts require a small execution time (as
outliers in boxplots show). Many payloads con-
tained in malicious javascript entail a long time
to be executed, but also some business logic
of benign javascripts may require long time to
be executed. For instance, a benign javascript
may contain a multimedia file. The same ex-
planation applies to justify the presence of mis-
classification for all the other features. Benign
files could have a smaller fragmentation because
they have a simpler business logic or because

of the style of the programmer who has written
the code.

Finally, the number of the external URLs may
be high in a benign websites for several reasons:
the benign websites make use of many resources
or services hosted in other websites, or it has
many advertisement links in its pages.

5. Conclusion and Future Work

In this paper we propose a method for detecting
malicious websites that uses a classification based
on five features.

Current detection’s techniques usually fail
against zero-day attacks and websites that merge
several techniques. The proposed method should
overcome these limitations, since its independent
of the implementation of the attack and the type
of the attack.

The selected features, combining static and
dynamic analysis, respectively compute the aver-
age and maximum execution time of a JavaScript
function, the number of functions invoked by
the JavaScript code, and finally the number and



76 Gerardo Canfora et al.

the percentage of the URLs contained in the
JavaScript code, but that are outside the domain
of the WUA.

The analysis of data collected by analysing
a sample of 5000 trusted and 5000 untrusted
websites demonstrated that considering groups of
features for classifications, rather than single fea-
tures, produces better performances. As matter
of fact the group (avgExecTime and funcCalls)
and the group (avgExecTime, funcCalls, extUrl)
produce high values of precision and recall, both
for the recognition of malicious websites, and for
trusted websites. Regarding to the second group
(avgExecTime, funcCalls, extUrl), the precision is
0.979 for malware websites and 0.969 for trusted
ones. The recall is 0.978 for malware websites
and 0.969 for trusted ones.

In summary, the two groups of features
seem effective for detecting current malicious
JavaScripts.

Possible evasion techniques that attackers
can assume against this detection method are
the following.

Concerning avgExecTime and funcCalls, the
attacker should reduce the time of scripts ex-
ecution and improve the fragmentation of the
code. The first workaround is very difficult to
implement, because the large amount of time is
often a needed condition of the attacks performed.
Improving the fragmentation of code is possible,
but as the attacker should produce a number of
functions similar to a typical trusted website, the
required effort could make very expensive the
development of the malicious website, and this
could be discouraging. As shown in the boxplot
(figure 1), the gap to fill is rather large. Our
opinion is that extUrl is the weakest feature and
so the easiest to evade, but it must be consid-
ered that in the group of features (avgExecTime,
funcCalls, extUrl) the strength of the other ones
may compensate its weakness.

Obfuscation is an evasion technique that
could be effective especially with regards to
funcCalls, totalUrl and extUrl features; future
works will address this problem by studying:
i) the impact of obfuscated JavaScript on the
classification performances of our method; and
ii) de-obfuscation methods to precisely cal-

culate these features. Many benign websites
may make use of external libraries which are
highly time-consuming. In a future work we
will investigate the possibility to recognize these
time-consuming external libraries in order to ex-
clude them from the computation of the feature.
Additionally we plan to enforce the reliability
of our findings by extending the experimenta-
tion to a larger sample, in order to enforce the
external validity. Another improvement of our
method consists of extending the search of URLs
to the complete WUA, and not limiting it to the
JavaScript scope.

References

[1] D. Flanagan, JavaScript: The Definitive Guide,
4th ed., O’Reilly Media, 2001. [Online]. http:
//shop.oreilly.com/product/9780596000486.do

[2] “Javascript and timing attacks used to steal
browser data,” Blackhat 2013, last visit 19th
June 2014. [Online]. http://threatpost.com/
JavaScript-and-timing-attacks-used-to-steal-
browser-data/101559

[3] M. Cova, C. Kruegel, and G. Vigna, “Detection
and analysis of drive-by-download attacks and
malicious JavaScript code,” in Proc. of the Inter-
national World Wide Web Conference (WWW),
2010, pp. 281–290.

[4] C. Eilers, HTML5 Security. Developer Press,
2013.

[5] O. Hallaraker and G. Vigna, “Detecting mali-
cious JavaScript code in Mozilla,” in Proceedings
of the 10th IEEE International Conference of
Engineering of Complex Computer System, 2005,
pp. 85–94.

[6] “Web workers, W3C candidate recommenda-
tion,” 2012, last visit 19th June 2014. [Online].
http://www.w3.org/TR/workers/

[7] B. Eshete, “Effective analysis, characterization,
and detection of malicious web page,” in Pro-
ceedings of the 22nd International Conference
on World Wide Web companion. International
World Wide Web Conferences Steering Commit-
tee, 2013, pp. 355–360.

[8] L. Martignoni, R. Paleari, and D. Bruschi,
“A framework for behavior-based malware anal-
ysis in the cloud,” in Proceedings of the 5th In-
ternational Conference on Information Systems
Security, 2009, pp. 178–192.

[9] M. F. Zolkipli and A. Jantan, “An approach for
malware behavior identification and classifica-



Malicious JavaScript Detection by Features Extraction 77

tion,” in Proceedings of International Conference
of Computer Research and Development, 2011.

[10] C. Ardito, P. Buono, D. Caivano, M. Costabile,
and R. Lanzilotti, “Investigating and promoting
UX practice in industry: An experimental study,”
International Journal of Human-Computer Stud-
ies, Vol. 72, No. 6, 2014, pp. 542–551.

[11] “ClamAV. Clam AntiVirus,” last visit 19th June
2014. [Online]. http://clamav.net

[12] N. Provos, P. Mavrommatis, M. A. Rajab, and
F. Monrose, “All your iFRAMEs point to us,”
in Proc. of USENIX Security Symposium, 2008.

[13] C. Seifert and R. Steenson, “Capture honey-
pot client (capture hpc),” Victoria University of
Wellington, NZ, 2006. [Online]. https://projects.
honeynet.org/capture-hpc

[14] Y. M. Wang, D. Beck, X. Jiang, R. Roussev,
C. Verbowsk, S. Chen, and S. T. King, “Auto-
mated web patrol with strider honeymonkeys:
Finding web sites that exploit browser vulner-
abilities,” in Proc. of Network and Distributed
System Security Symposium (NDSS), 2006.

[15] A. Büscher, M. Meier, and R. Benzmüller,
“Throwing a monkeywrench into web attackers
plans,” in Proc. of Communications and Multi-
media Security (CMS), 2010, pp. 28–39.

[16] A. Ikinci, T. Holz, and F. Freiling,
“Monkey-Spider: Detecting malicious web-
sites with low-interaction honeyclients,” in
In Proceedings of Sicherheit, Schutz und
Zuverlässigkeit, 2008, pp. 891–898.

[17] J. Nazario, “A virtual client honeypot,” in Proc.
of USENIX Workshop on Large-Scale Exploits
and Emergent Threats (LEET), 2009.

[18] D. Canali, M. Cova, G. Vigna, and C. Kruegel,
“Prophiler: a fast filter for the large-scale de-
tection of malicious web pages,” in Proc. of
the International World Wide Web Conference
(WWW), 2011, pp. 197–206.

[19] S. Karanth, S. Laxman, P. Naldurg, R. Venkate-
san, J. Lambert, and J. Shin, “ZDVUE: prioriti-
zation of JavaScript attacks to discover new vul-
nerabilities,” in Proceedings of the Fourth ACM
Workshop on Artificial Intelligence and Security
(AISEC 2011), 2011, pp. 637–652.

[20] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert,
“Rozzle: De-cloaking internet malware,” Mi-
crosoft Research, Tech. Rep. MSR-TR-2011-94,
2011. [Online]. http://research.microsoft.com/
pubs/152601/rozzle-tr-10-25-2011.pdf

[21] A. Dewald, T. Holz, and F. Freiling, “ADSand-
box: sandboxing JavaScript to fight malicious
websites,” in Proceedingsof the 2010 ACM Sym-

posium on Applied Computing (SAC ’10), 2010,
pp. 1859–1864.

[22] M. Egele, P. Wurzinger, C. Kruegel, and
E. Kirda, “Defending browsers against drive-by
downloads: Mitigating heap-spraying code injec-
tion attacks,” in In Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA),
2009, pp. 88–106.

[23] P. Ratanaworabhan, B. Livshits, and B. Zorn,
“Nozzle: A defense against heap-spraying code
injection attacks,” in Proc. of USENIX Security
Symposium, 2009.

[24] L. Lu, V. Yegneswaran, P. A. Porras, and W. Lee,
“BLADE: an attack-agnostic approach for pre-
venting drive-by malware infections,” in Proc. of
Conference on Computer and Communications
Security (CCS), 2010, pp. 440–450.

[25] K. Rieck, T. Krueger, and A. Dewald,
“Cujo: Efficient detection and prevention of
drive-by-download attacks,” in 26th Annual
Computer Security Applications Conference (AC-
SAC), 2010, pp. 31–39.

[26] C. Curtsinger, B. Livshits, B. Zorn, and
C. Seifert, “Zozzle: Fast and precise in-browser
JavaScript malware detection,” in Proc. of
USENIX Security Symposium, 2010, pp. 3–3.

[27] M. Heiderich, T. Frosch, and T. Holz, “IceShield:
detection and mitigiation of malicious websites
with a frozen dom,” in Proceedings of Recent
Adances in Intrusion Detection (RAID), 2011,
pp. 281–300.

[28] A. Kapravelos, Y. Shoshitaishvili, M. Cova,
C. Kruegle, and G. Vigna, “Revolver: An au-
tomated approach to the detection of eva-
sive web-based malware,” in Proceedings of the
22nd USENIX conference on Security, 2013, pp.
637–652.

[29] G. Blanc, D. Miyamoto, M. Akiyama, and
Y. Kadobayashi, “Characterizing obfuscated
JavaScript using abstract syntax trees: Experi-
menting with malicious scripts,” in Proceedings
of International Conference of Advanced Infor-
mation Networking and Applications Workshops,
2012.

[30] C. K. Roy and J. R. Cordy, “A survey on software
clone detection research,” School of Computing
Queen’s University at Kingston, Ontario, TR
2007-541, 2007.

[31] P. Wang, L. Wang, J. Xiang, P. Liu, N. Gao, and
J. Jing, “MJBlocker: A lightweight and run-time
malicious JavaScript extensions blocker,” in Pro-
ceedings of International Conference on Software
Security and Reliability, 2013.



78 Gerardo Canfora et al.

[32] A. Barua, M. Zulkernine, and K. Welde-
mariam, “Protecting web browser extension from
JavaScript injection attacks,” in Proceedings of
International Conference of Complex Computer
Systems, 2013.

[33] B. Sayed, I. Traore, and A. Abdelhalim, “De-
tection and mitigation of malicious JavaScript
using information flow control,” in Proceedings of
Twelfth Annual Conference on Privacy, Security
and Trust (PST), 2014.

[34] K. Schutt, M. Kloft, A. Bikadorov, and K. Rieck,
“Early detection of malicious behaviour in
JavaScript code,” in Proceedings of AISec 2012,
2012.

[35] O. Tripp, P. Ferrara, and M. Pistoia, “Hybrid
security analysis of web JavaScript code via dy-
namic partial evaluation,” in Proceedings of In-
ternational Symposium on Software Testing and
Analysis, 2014.

[36] W. Xu, F. Zhang, and S. Zhu, “JStill:
Mostly static detection of obfuscated malicious
JavaScript code,” in Proceedings of International
Conference on Data and Application Security and
Privacy, 2013.

[37] Q. Wang, J. Zhou, Y. Chen, Y. Zhang, and
J.Zhao, “Extracting URLs from JavaScript via
program analysis,” in Proceedings of the 2013
9th Joint Meeting on Foundations of Software
Engineering, 2013, pp. 627–630.

[38] C. Yue and H. Wang, “Characterizing insecure
JavaScript practices on the web,” in Proceedings
of the 18th international conference on World
wide web, 2009, pp. 961–970.

[39] J. Politz, S. Eliopoulos, A. Guha, and S. Krish-
namurthi, “ADsafety: type-based verification of
JavaScript sasndboxing,” in Proceedings of the
20th USENIX conference on Security, 2011.

[40] A. Guha, C. Saftoiu, and S. Krishnamurthi,
“The essence of JavaScript,” in ECOOP
2010-Object-Oriented, 2011, pp. 1–25.

[41] M. Finifter, J. Weinberger, and A. Barth, “Pre-
venting capability leaks in secure JavaScript sub-
stes,” in Proceedings of the Network and Dis-
tributed System Security Symposium, 2010.

[42] A. Taly, U. Erlingsson, J. Mitchell, M. Miller,
and J. Nagra, “Automated analysis of
security-critical JavaScript apis,” in 2011 IEEE
Symposium on Security and Privacy, 2011, pp.
363–379.

[43] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky,
and S. Esmeir, “BrowserShield: vulnerabil-
ity-driven filtering of dynamic HTML,” ACM
Transactions on the Web, Vol. 1, No. 3, 2007.

[44] “Facebook SDK for JavaScript,” last visit 13th
October 2014. [Online]. https ://developers .
facebook.com/docs/javascript

[45] “Google Caja,” last visit 13th October 2014. [On-
line]. https://developers.google.com/caja/

[46] O. Ismail, M. Etoh, Y. Kadobayashi, and
S. Yamaguchi, “A proposal and implementa-
tion of automatic detection/collection system
for cross-site scripting vulnerability,” in Proceed-
ings of the 18th International Conference on
Advanced Information Networking and Applica-
tions, Vol. 2, 2014.

[47] E. Kirda, C.Kruegel, G. Vigna, and N. Jovanic,
“Noxes: A client-side solution for mitigating
cross-site scripting attacks,” in Proceedings of
the 2006 ACM symposium on Applied computing,
2006, pp. 330–337.

[48] “Weka 3: Data mining software in Java,” last
visit 19th June 2014. [Online]. http://www.cs.
waikato.ac.nz/ml/weka/

[49] “Chrome DevTools overview,” last visit 19th
June 2014. [Online]. https://developers.google.
com/chrome-developer-tools/

[50] “Robot Soft - mouse and keyboard recorder,”
last visit 13th October 2014. [Online]. http:
//www.robot-soft.com/

[51] “Actionable analytics for the web,” last visit 19th
June 2014. [Online]. http://www.alexa.com/

[52] “VirusTotal,” last visit 19th June 2014. [Online].
https://www.virustotal.com/

[53] “hpHosts onliine,” last visit 19th June 2014. [On-
line]. http://www.hosts-file.net/






	e-Informatica
	e-Informatica (2014, vol.8, issue 1)
	Imprint
	Editorial Board
	Contents
	Editorial
	On Visual Assessment of Software Quality
	The Use of Aspects to Simplify Concurrent Programming
	Generating Graphical User Interfaces from Precise Domain Specifications
	Supporting Analogy-based Effort Estimation with the Use of Ontologies
	Malicious JavaScript Detection by Features Extraction
	e-Informatica (about)
	e-Informatica (ISSN 1897-7979)

