
e-Informatica Software Engineering Journal, Volume 8, Issue 1, 2014, pages: 27–37, DOI 10.5277/e-Inf140102

The Use of Aspects to Simplify Concurrent Programming

Michał Negacz∗, Bogumiła Hnatkowska∗
∗Faculty of Computer Science and Management, Institute of Informatics, Wrocław University of Technology

michal@negacz.net, bogumila.hnatkowska@pwr.edu.pl

Abstract
Developers who create multi-threaded programs must pay attention to ensuring safe implemen-
tations that avoid problems and prevent introduction of a system in an inconsistent state. To
achieve this objective programming languages offer more and more support for the programmer
by syntactic structures and standard libraries. Despite these enhancements, multi-threaded pro-
gramming is still generally considered to be difficult.
The aim of our study was the analysis of existing aspect oriented solutions, which were designed to
simplify concurrent programming, propose improvements to these solutions and examine influence
of concurrent aspects on complexity of programs.
Improved solutions were compared with existing by listing differing characteristics. Then we com-
pared classical concurrent applications with their aspect oriented equivalents using metrics.
Values of 2 metrics (from 7 considered) decreased after using aspect oriented solutions. Values of 2
other metrics decreased or remained at the same level. The rest behaved unstably depending on
the problem. No metric reported increase of complexity in more than one aspect oriented version
of program from set.
Our results indicate that the use of aspects does not increase the complexity of a program and in
some cases application of aspects can reduce it.

1. Introduction

Multi-core processors and supporting them
systems are widely used at home. It is
expected that the number of available
cores will continue to grow in the next
years [1].

The importance and number of programs
that run concurrently has increased with the
advance of technology. However, support for
multi-core systems forces the use of concurrent
programming techniques that are different from
those known from single-threaded applications.

Aspect-Oriented Programming is a program-
ming paradigm proposed by Gregor Kiczales. Its
purpose is to enable and support a developer
in separation of intersecting concerns and their
modularization [2]. A costs of development and
maintenance of concurrent programs can be re-
duced if a concurrent behavior is implemented

in a modular manner, with minimum changes to
an original source code.

The aim of this study is to analyze ex-
isting aspects, which solve concurrent pro-
gramming problems, to propose improvements
of existing mechanisms and the construc-
tion of a library that implements the ex-
isting solutions with the proposed improve-
ments. The created aspect library is available
at [3].

The library was used to implement typ-
ical programming problems and these im-
plementations were compared with classical
non-apsect solutions with the use of met-
rics. Then we answer the research question:
Does the use of aspects to concurrent pro-
gramming reduce the complexity of applica-
tion?

The remainder of this paper is structured
as follows. In section 2 we list the problems

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_8/eInformatica2014Art2.pdf


28 Michał Negacz, Bogumiła Hnatkowska

that a programmer may encounter when de-
veloping a concurrent application. Then, sec-
tion 3 briefly describes previous research in the
field of concurrent programming with aspects.
In section 4 we present the use of aspects for
concurrent programming and show the intro-
duced improvements. Section 5 presents the re-
sults of complexity comparison of the solutions
with aspects and without them. After that, in
section 6, we present the conclusions and future
work.

2. Problems of Concurrent
Programming

When designing concurrent programs, in addi-
tion to the traditional issues related to the de-
sign, one have to deal with a parallel part of
an application. That is how tasks are divided
between available resources and how to commu-
nicate and synchronize them with each other.
Typical problems occurring in concurrent pro-
gramming are:
– Code scattering [4–6].
– Code tangling [4–6].
– Deadlocks [7–9].
– Livelocks [7–9].
– Starvation [7, 9].
– Race conditions [9].
– Synchronizing access to shared resources,

which consists of [9]:
– Restriction of simultaneous access;
– Visibility of data;
– Publication of objects.
With these problems, reuse, debug or change

the functionality of existing components become
a difficult task [4,6,10]. Moreover, because of the
concurrent code scattering between the vari-
ous components, the understanding of the whole
structure of concurrency in application is also
tough [6]. Costs of developing and maintaining
concurrent applications can be reduced if the
concurrency is added in a modular manner, with
the least possible changes to a code.

3. The Use of Aspects in Concurrent
Programming

3.1. Asynchronous Method Execution

Laddad in his book [11] presented the Worker
object creation pattern. In his solution an as-
pect is responsible for creating an anonymous
class of type Runnable, which wraps an original
method call. To use his solution, a programmer
should define a pointcut in the aspect, which in-
dicate the method for asynchronous execution.
For each call the aspect creates an instance,
which is passed to a new thread. As a result,
instead of a direct synchronous execution, it is
moved to a separate thread.

Cunha et al [4] proposed an improved solu-
tion. Unlike the previous, the presented mech-
anism allows threads, which are created in the
aspect, to be assigned to a specific group of pro-
cesses other than the current one. Programmer
can optionally define a pointcut, where the cur-
rent thread waits for spawned threads. It is also
possible to define pointcuts for the interruption
of thread. In addition, instead of explicitly de-
clare a method as a pointcut, it is possible to
give an asynchronous behavior only by marking
it with an annotation.

Listing 1. Asynchronous method execution.
1 @Asynchronous
2 void method () {
3 // instructions
4 }

Hohenstein and Gleim also presented their
own version of an asynchronous method execu-
tion [10] (listing 1). The authors recommended
to perform concurrent code in the thread pool
instead of creating a new thread for each exe-
cution. Concurrent executions are then limited
to the upper limit of threads and do not reach
the physical limits of the machine. When pool is
used, one have to take into account the necessity
of closing it. In the paper [10] authors proposed
to use an additional annotation that indicates
the place where the pool should be closed.



The Use of Aspects to Simplify Concurrent Programming 29

3.2. Asynchronous Method Execution
which Returns a Result

A separate mechanism has been proposed for
a concurrent execution of the methods that re-
turn a result. In the solution proposed by Cunha
et al [4], there are two pointcuts. The first point-
cut defines place where a calculation method
is invoked, while the second indicates location
where a result is used. A thread that calls the
method will be blocked at the second pointcut
as long as the method does not return the result.
The authors also mentioned a possibility of cre-
ating a fake object as the result, which represents
it until it is not available.

Hohenstein et al [10] also created a separate
aspect for methods that return a result. They
noted that an exception thrown from a Future
object requires unwrapping, which is an addi-
tional effort imposed on a programmer. They
found that it could be possible to solve this prob-
lem with an aspect, which uses a generic type
to represent the result (listing 2). However, in
the examples presented by them one can not see
the way in which they achieve this unwrapping
behavior. As in the previous case, also in this
an annotation can be used.

Listing 2. Asynchronous method execution
which return a result.

1 @Asynchronous
2 Result <Object > method () {
3 Object object = // create an object
4 return object;
5 }

3.3. Asynchronous Execution
of Recursive Methods

A solution proposed for asynchronous execution
method with a result works well for recursive
calls. Its major disadvantage is that it creates
many threads – one for the root call and one
for each of recursive method calls. a better solu-
tion gives Fork/Join Framework, which is a part
of Java since version 7. Hohenstein et al [10] pro-
posed to use this framework with an aspect. To
simplify its application one can use an annota-
tion. The aspect uses two pointcuts – the first

captures the root call and the second recursive
calls. In this case the generic type is also used to
obtain the results of calculations.

3.4. Barrier

Cuncha et al [4] proposed an aspect oriented
mechanism to implement a barrier. Aspect uses
two pointcuts – both define methods where, re-
spectively, the first blocks the thread before and
the second after the method execution. The bar-
rier can be added by marking the appropriate
method with an annotation. The programmer
should specify the number of threads that barrier
will stop in parameter of the annotation. Op-
tionally he may provide the name of the thread
group, to which stopped threads belong.

3.5. Resource Synchronization

Cuncha et al [4] suggested two ways to simplify
a resource synchronization at the method level.
The first solution wraps intercepted method call
into a Java synchronized block. The aspect pro-
vides two possibilities – the first uses a target
object as the monitor, while the second uses
an aspect object. The second resource synchro-
nization solution allows a thread to only read or
write to shared resources. This distinction allows
for simultaneous multiple readings, but only one
single write to the resource. It is possible to use
an annotation for easier determination of syn-
chronized methods.

Hohenstein and Gleim also studied the prob-
lem of resource synchronization [10]. They found
that blocking can be dangerous and prone to
errors due to forgetting to release a lock. An
aspect can solve this problem and ensure the
final release of any lock. In the proposed solu-
tion the following annotation is used @RWPro-
tect (reads = { ”resourceA” }, writes = {”re-
sourceB”, ”resourceC” }). Parameters of this
annotation are resource identifiers in the as-
pect. The @RWProtect annotation specifies re-
sources to read and write in order to coordi-
nate concurrent access. If different annotated
methods reference to the same resource, their
access is synchronized – simultaneous reading



30 Michał Negacz, Bogumiła Hnatkowska

is allowed at the same time, but writing ex-
cludes other writings and readings. Locks at
resources are always applied in a specific or-
der to avoid deadlocks. However, in the pro-
posed aspect, despite of use of non-blocking
map, there is a race condition. In addition,
in certain circumstances a thread starvation
may appear, when the thread is waiting for
a lock.

3.6. Conditions of Method Execution

Execution of some methods may depend on
the state of an object. Cuncha et al [4] pro-
posed waiting guards mechanism, which is based
on an aspect. When the condition is not met,
a thread is blocked until there is an action
that changes the state of the object, which
will trigger a condition reevaluation. Addition-
ally, the reevaluation may occur after a defined
timeout. The concrete aspect defines pointcuts,
which indicate methods for which conditions are
checked and a method that can change the state
of the object, forcing the reevaluation of condi-
tions.

3.7. Active Object

The active object pattern separates method call
from its execution. It allows multiple threads to
access data which is modeled as a single object.
Traditional implementations of the pattern are
divided into three layers. The first layer contains
a client object, which makes a call, the second
layer includes a mechanism to transfer the call
to a target object and the third layer is the tar-
get active object running in a separate thread,
which is still waiting for method calls [12]. The
implementation of the active object in an aspect
way [4] moves the second and the third layer
to aspects. In addition, this solution makes par-
ticipating classes unaware of their roles in the
pattern. To give an object the behavior of the
active object one should use specified annota-
tion.

4. Proposed Solution

4.1. Asynchronous Method Execution

To perform an asynchronous method execution,
a programmer should mark it with the annota-
tion @Asynchronous. By default, the method is
performed in a thread pool created by Execu-
tors.newCachedThreadPool(). All method calls
marked with this annotation will be executed
in one common pool shared for the entire pro-
gram. Methods that are annotated with the op-
tional parameter standalone = true are executed
in their own, single threaded, private pool that is
immediately closed after the call. The common
thread pool can be controlled by the annotation
@Startup. The pool is created before calling the
method marked with this annotation.

Annotation attributes which can be modified
are:
– threadPool: ThreadPool – type of pool:

– FIXED – pool with a fixed number
of threads coming from the method Ex-
ecutors.newFixedThreadPool(. . . ). Num-
ber of threads is taken from the parame-
ter maxThreads.

– CACHED – pool with a dynamic num-
ber of threads coming from the method
Executors.newCachedThreadPool().

– CUSTOM – pool with the characteristics
defined by a programmer.

– maxThreads: int – the number of threads
for FIXED type pool and maximum num-
ber of threads for CUSTOM type pool. If
not specified, it is assumed to be a maximum
value from the set {1, the number of available
processors - 1}.

– coreThread: int – the working number
of threads for CUSTOM type pool. If not
specified, the default value is calculated from
the formula 1.

– timeout: int – time after an unused thread
is killed. Attribute is used exclusively by the
CUSTOM type pool and it is measured in
seconds. The default value is 60 seconds.



The Use of Aspects to Simplify Concurrent Programming 31

– shutdownAfterMainMethod: boolean – at-
tribute specifies whether to automatically
close the pool after leaving a main method
of a program.

coreThread = maxThreads/3 + 1 (1)
The annotation @Shutdown is used for clos-

ing the common thread pool. After completing
marked by this annotation method, the pool will
not accept new tasks. The attribute now = true
results in an immediate closing the pool, calls
waiting in a queue will not be executed.

If the method declares an opportunity to
throw controlled exceptions, they are softened
by an aspect. This facility is dictated by a lack
of an exception handling capabilities, which will
be thrown in a separate thread. The code placed
in the catch part of the try {} catch {} structure
would be unreachable (listings 3 and 4).

Listing 3. Example of an unreachable code.
1 @Asynchronous
2 void method () throws Exception {
3 // ...
4 }
5

6 void callMethod () {
7 try {
8 method ();
9 } catch(Exception e) {

10 // this code cannot be reached
11 }
12 }

To specify where asynchronous method
should join to a calling thread, methods can be
annotated with @JoinBefore or @JoinAfter an-
notations.

Listing 4. Asynchronous method execution in
a pool.

1 @Startup(threadPool = ThreadPool.FIXED ,
2 maxThreads = 3,
3 shutdownAfterMainMethod = true)
4 @Asynchronous
5 void method () throws Exception {
6 // instructions , which we want
7 // to call asynchronously
8 }
9

10 void callMethod () {
11 method (); // there is no need for
12 // handling thrown
13 // exception
14 }

Table 1 compares features of previous aspect
oriented solutions with our proposal.

4.2. Asynchronous Method Execution
which Return a Result

The proposed aspect oriented solution considers
two cases. The first case are methods that re-
turn an object type, which is not final. As in the
case of methods that do not return a result, it is
sufficient to mark a method with the annotation
@Asynchronous. This method will immediately
return automatically created Proxy object (list-
ing 5). Any call to a method on this object is
delegated to the correct result and if it is not
yet available, an execution is blocked until it is
available. The second case is a situation where
the return type is final. In this case a change in
a structure of a program is needed. The function
result should be wrapped with a generic type.
Methods marked with the @Asynchronous an-
notation execute in the same thread pool that
methods, which do not return a result. When,
during the execution of the method, it will en-
counter an exceptional situation, an exception
will be thrown in its original form when one tries
to fetch the result. Aspects are not capable of dy-
namic declaring new exceptions to methods, so
special property of generic type has been used to
work around this limitation.

Listing 5. Example of an asynchronous method
execution with a proxy as result.

1 @Asynchronous
2 ExampleObject method () throws
3 ExampleException {
4 // instructions , which we want
5 // to call asynchronously
6 }
7

8 void callMethod () {
9 try {

10 ExampleObject proxy = method ();
11 // asynchronous
12 // method call
13

14 // instructions that you want
15 // to do before the result
16 // is available
17

18 String something =
19 proxy.getSomething ();



32 Michał Negacz, Bogumiła Hnatkowska

Table 1. Comparison of asynchronous method execution solutions.

Property Previous solution Proposed solution

Usage of a thread pool No [11], No [4],
Yes [10] Yes

The need to handle exceptions
in a calling code Yes No

20 } catch (ExampleException e) {
21 // exception handling
22 }
23 }

In table 2 we presented comparison of fea-
tures of previous aspect oriented solutions with
our proposal.

4.3. Asynchronous Execution
of Recursive Methods

A method may be performed recursively in three
ways. Each of them requires marking the method
with the annotation @AsynchronousRecursively.
For each recursive call of the marked method
an aspect creates a separate Fork/Join pool. It
is possible to control the number of threads in
the pool by the parameter threads = 2. The de-
fault number of threads is equal to the number
of available processors.

The first possibility is to use generic object
Result, which wraps an original result returned
from the method. In order to better use the
Fork/Join pool, in the second possibility, one
can use the method Result.scheduleWith(. . . )
proposed in [10]. Presented in this article method
can take only one parameter. We have extended
it to any number of parameters. It creates a fork
for each result passed, but the result object,
on which the method was called, is calculated
in a current thread. However, a disadvantage
of this solution is the need to change the program
source code and adding the call which is not di-
rectly related to the application logic. Last, the
third possibility is to use auto generated Proxy
objects (listing 6). This case allows one to make
an application completely independent from the
library.

Methods, which are performed recursively,
use the same concept of exception handling as
asynchronous methods that return result. This

means that exceptions will be thrown unchanged
when one tries to fetch a result.

Listing 6. An aspect oriented calculation of 10th
Fibonacci number with a proxy object.

1 void callMethod () {
2 Number proxy = fibonacci (10L);
3

4 // instructions that you want to do
5 // before the 10th fibonacci number
6 // is available
7

8 Long result = proxy.longValue ();
9 }

10

11 @AsynchronousRecursively
12 Number fibonacci(Long n) {
13 if (n <= 1) {
14 return n;
15 } else {
16 return fibonacci(n - 1).longValue ()
17 + fibonacci(n - 2).longValue ();
18 }
19 }

Comparison of features of previous aspect
oriented solutions with our proposal is presented
in table 3.

4.4. Barrier

To implement a barrier in an aspect oriented ap-
proach it is sufficient to mark a method with
annotations @BarrierBefore or @BarrierAfter
with the number of threads that the barrier
stops. Barriers can also be named with the
name parameter of the annotation. The default
name of the barrier is thisMethod, which means
that the barrier is assigned only to the an-
notated method. If for the one named barrier
there are many annotations with different num-
ber of threads, then created barrier has a limit
indicated in the first method, which is called in
a flow of a program.



The Use of Aspects to Simplify Concurrent Programming 33

Table 2. Comparison of asynchronous method execution solutions which return a result.

Property Previous solution Proposed solution
Usage of a thread pool No Yes
Usage of a proxy object No Yes

The need to unwrap exceptions Yes [4], No [10] No

Table 3. Comparison of asynchronous execution of recursive methods solutions.

Property Previous solution Proposed solution
The need to use specific methods

(scheduleWith(. . . )) Yes No

Usage of a proxy object No Yes

The problem may be a situation in which
a method uses two or more barriers. Then it is
not known which barrier a thread has to con-
sider first. In this case, a developer must de-
termine an order by creating an artificial cas-
cade of methods marked with barrier annota-
tions (listing 7).

Listing 7. A cascade of two methods with two
barriers.

1 @BarrierBefore(value = 3,
2 name = "firstBarrier")
3 void method () {
4 otherMethod ();
5 }
6

7 @BarrierBefore(value = 3,
8 name = "secondBarrier")
9 void otherMethod () {

10 // instructions executed after
11 // reaching "firstBarrier"
12 // and "secondBarrier" by 3 threads
13 }

The solution does not include restrictions for
groups of threads, because they are obsolete and
it is not recommended to use them [7].

Table 4 compares barrier features of previous
aspect oriented solutions with our proposal.

4.5. Resource Synchronization

To synchronize the whole method it is sufficient
to mark it with the annotation @Synchronize.
This will perform a synchronization on a lock
assigned to a current object or an object of class
Class in the case where the method is static.
If one wants to synchronize the method us-
ing an another lock, then he should specify its

identifier. To facilitate the connection of iden-
tifiers with resources, they should be marked
by @SharedResource with a resource name (list-
ing 8), although for proper operation of a pro-
gram it is not required. Resource identifiers are
global to the program. If one wants to syn-
chronize multiple resources, then their identifiers
should be listed in the annotation. An aspect
acquires locks always in the same order, so the
order of identifiers in the annotation is not im-
portant. To set up locks, that distinguish be-
tween reading and writing to resources, iden-
tifiers should be specified in appropriate pa-
rameters. Default parameter assumes two types
of synchronization.

Following keywords can be also used as
a name of identifier in the @Synchronize anno-
tation:
– this – a lock is assigned to a current object

or an object of class Class. The behavior is
analogous to precede a method with the word
synchronized.

– this.name – a lock is assigned as in the case
this, but also supplemented by the given
name. The behavior can be understood as
embracing the body of a method with the
synchronized block with an object field as the
argument.

– global – a global lock.

Listing 8. Resource synchronization
1 @SharedResource("sharedResource")
2 Object sharedResource;
3

4 @Synchronize(reads = "sharedResource")
5 void readResourceMethod () {
6 // instructions that read resource



34 Michał Negacz, Bogumiła Hnatkowska

Table 4. Comparison of barrier solutions.

Property Previous solution Proposed solution
A possibility of sharing barrier

between the methods and objects
through its naming

No Yes

A possibility to restrict a barrier
only to a select group of threads Yes No

7 }
8

9 @Synchronize(writes = "sharedResource")
10 void writeResourceMethod () {
11 // instructions that write
12 // to resource
13 }

In table 5 we presented comparison of fea-
tures of previous aspect synchronization solu-
tions with our proposal.

4.6. Conditions of Method Execution

In the proposed aspect oriented solution it
is sufficient to mark a method with the an-
notation @WaitUntilPreconditions, then de-
fine precondition methods (with the anno-
tation @Precondition) and a method for
re-evaluation of the conditions (the anno-
tation @EvaluatePreconditions). A thread,
which tries to execute the method marked
with the annotation @WaitUntilPrecondi-
tions will be slept until all preconditions
are not met. Evaluation of conditions can
be automatically executed at a time in-
terval set in the annotation parameter
@WaitUntilPreconditions(waitingTime = 1000)
in milliseconds or by calling from a pro-
gram code the method marked with the an-
notation @EvaluatePreconditions. The precon-
dition can be named and then the anno-
tation @WaitUntilPreconditions could spec-
ify its identifier (listing 9). If the method is
annotated with no parameters, then by de-
fault is assumed that all of conditions marked
with @Precondition must be met in order
to execution. As preconditions are consid-
ered only methods annotated with @Pre-
condition and which return boolean expres-
sion.

Listing 9. Method execution after fulfilling pre-
conditions.

1 private boolean state;
2

3 @WaitUntilPreconditions ({
4 "onePrecondition",
5 "anotherPrecondition" })
6 public void method () {
7 // instructions executed after
8 // fulfilling the preconditions
9 }

10

11 @Precondition("onePrecondition")
12 public boolean precondition1 () {
13 return state;
14 }
15

16 @Precondition("anotherPrecondition")
17 public boolean precondition2 () {
18 return true;
19 }
20

21 @EvaluatePreconditions
22 public void notifyMethod () {
23 state = true;
24 }

Comparison of features of previous aspect
oriented solutions with our proposal is presented
in table 6.

4.7. Active Object

In the proposed, aspect oriented solution to im-
plement active object it is sufficient to mark
a class with the annotation @ActiveObject. If
the execution of a method has preconditions,
one has to list its identifiers in the annotation
@GuardedBy and to mark an appropriate pred-
icate method with the annotation @Precondi-
tion. Marking the class with a parameter termi-
nateAfterMainMethod = true will automatically
close a thread of the active object after leaving
a main method of a program.



The Use of Aspects to Simplify Concurrent Programming 35

Table 5. Comparison of resource synchronization solutions.

Property Previous solution Proposed solution
The ability to synchronize

static methods No Yes

Mark resources with
an identifying annotation No Yes

Keywords No Yes

Table 6. Comparison of precondition solutions.

Property Previous solution Proposed solution
Usage only a metadata from a program No Yes

Table 7. Comparison of active object solutions.

Property Previous solution Proposed solution
Full implementation of the pattern

(guard conditions) No Yes

Automatically termination
of the active object No Yes

Table 7 compares features of previous aspect
oriented solutions with our proposal.

5. Comparison of the Applications

To be able to compare traditional and
proposed solutions we found concurrent
programs, which solve the classic prob-
lems:
– Dining philosophers problem [13]
– Producer – consumer problem [14]
– Calculation of the n-th Fibonacci num-

ber [15]
The next step was to write our own versions
of the applications, which solve the above prob-
lems, using created aspects. After that we cal-
culated selected metrics with the use of Chech-
style 5.7 and STAN 2.1.2 (see table 8). For all
applications following count metrics were calcu-
lated:
– LOC/NCSS – Lines Of Code / Non Com-

menting Source Statements (Checkstyle)
– NOF/NOA – Number Of Fields / Number

Of Attributes (STAN)
– NOM – Number Of Methods (STAN)
– TLC – Top Level Classes (STAN)
And the complexity metrics:

– CC – Cyclomatic Complexity (Checkstyle)
– DAC – Data Abstarction Coupling (Check-

style)
– CFOC – Class Fan Out Complexity (Check-

style)
Count metrics (LOC/NCSS, NOF/NOA,

NOM, TLC) were chosen because of their quan-
titative representation of the complexity and ad-
ditive behavior. CC is a classic measure of the
complexity of methods. For this metric values
below 7 are considered to be acceptable, while
above this value metric indicate the need for
refactoring. The motivation for choice of DAC
and CFOC metrics was, that they measure
the complexity of individual classes, they are
able to demonstrate differences in relationships
of classes. Both are supported by tools. The
Checkstyle tool in a default configuration allows
7 for DAC and 20 for CFOC. For all selected
metrics, the smaller is the value, the less is the
complexity of the examined class.
where
– Pr1 denotes the dining philosophers problem
– Pr2 denotes the producer – consumer prob-

lem
– Pr3 denotes the calculation of the n-th Fi-

bonacci number



36 Michał Negacz, Bogumiła Hnatkowska

Table 8. Comparison of programs using metrics

Metric Pr1 (cla) Pr1 (asp) Pr1 (chg) Pr2 (cla) Pr2 (asp) Pr2 (chg) Pr3 (cla) Pr3 (asp) Pr3 (chg)
LOC 69 36 -33 86 63 -23 39 10 -29
NOF 6 4 -2 6 6 0 5 0 -5
NOM 7 7 0 11 13 +2 7 3 -4
TLC 1 2 +1 3 3 0 3 1 -2
CC 1.71 1.71 0 1.7 1.17 -0.53 1.33 1.5 +0.17
DAC 1 1 0 1.2 1 -0.2 1.33 0 -1.33
CFOC 2 1.5 -0.5 2.75 1.5 -1.25 1.33 1 -0.33

– cla denotes a classic version of application
(downloaded from the Internet)

– asp denotes an aspect oriented version of ap-
plication (written by us with the use of as-
pect library)

– chg denotes a change between an aspect and
a traditional version

– Values of LOC, NOF, NOM, TLC were
counted as a sum of metrics for all classes
in the application

– Values of CC, DAC, CFOC were counted as
means of metrics for all classes in the appli-
cation

For each of three problems the number of lines
of code and CFOC values are smaller in the as-
pect than in the traditional solution. For metrics
NOF and DAC two aspect oriented programs
are less complex than their traditional counter-
parts, while both versions of the third program
are equally complex. For the remaining metrics
(NOM, TLC, CC) in one problem the aspect ori-
ented version is less complex, in the second prob-
lem the traditional and in third both versions are
equally complex.

Aspect oriented versions are more complex
in three cases. In the case where the num-
ber of methods is higher in the aspect than
in the classical solution the increase is because
of the need to create separate predicates method.
In found classical dining philosophers solution,
Philosopher class is nested and not considered
by the metric, while in the aspect oriented ver-
sion Philosopher is a separate class. In tradi-
tional, concurrent calculation of the n-th Fi-
bonacci number, there are 4 more methods than
in the aspect oriented solution. These methods
mostly have CC metric value equal to 1, thus
they are lowering the average. The maximum CC
metric value is equal in both applications.

No metric had shown that in all three cases,
the complexity of the aspect oriented solution
was higher than a classic application. Also, there
was no increase of complexity in more than one
aspect oriented version of program per a metric.

In response to the research question, it can
be concluded that the use of aspects to the sim-
plification of concurrent programming does not
increase complexity of a program and in some
cases application of aspects can reduce it.

6. Conclusions

This paper presented an effort to develop an as-
pect library which simplifies concurrent pro-
gramming. We improved the previously pro-
posed solutions and presented new features.
Then, we conducted research and have shown
that the use of aspects may reduce the complex-
ity of concurrent application.

In general, using aspects for the concur-
rent programming can improve selected main-
tainability sub-characteristics, i.e. analysability
and modifiability. But maintainability also in-
cludes testability sub-characteristic. While the
proposed aspects may help in understanding and
implementing concurrent applications, an open
problem is how to test a correctness of the solu-
tion.

It should be noted that our research was con-
ducted on a small sample of programs. These
programs are small applications and do not come
from an industry. In addition, credibility of re-
search is highly influenced by a quality of pro-
grams, both those created by the authors and
those collected.

Therefore, in the future we are going to re-
peat the research with bigger number of pro-



The Use of Aspects to Simplify Concurrent Programming 37

grams. Moreover, we want explore the use of as-
pects in Proactor and Reactor concurrent pat-
terns.

References

[1] B. Schauer, “Multicore processors–a necessity,”
ProQuest discovery guides, 2008, pp. 1–14.

[2] G. Kiczales, J. Lamping, A. Mendhekar,
C. Maeda, C. Lopes, J.-M. Loingtier, and J. Ir-
win, Aspect-oriented programming. Springer,
1997.

[3] “concurrent aspects library,” https://github.
com/mnegacz/concurrent-aspects.

[4] C. A. Cunha, J. a. L. Sobral, and M. P.
Monteiro, “Reusable aspect-oriented implemen-
tations of concurrency patterns and mecha-
nisms,” in Proceedings of the 5th international
conference on Aspect-oriented software devel-
opment, ser. AOSD ’06. New York, NY,
USA: ACM, 2006, pp. 134–145. [Online].
http://doi.acm.org/10.1145/1119655.1119674

[5] B. Harbulot and J. R. Gurd, “Using aspectj
to separate concerns in parallel scientific java
code,” in Proceedings of the 3rd international
conference on Aspect-oriented software devel-
opment, ser. AOSD ’04. New York, NY,
USA: ACM, 2004, pp. 122–131. [Online].
http://doi.acm.org/10.1145/976270.976286

[6] J. L. Sobral, “Incrementally developing parallel
applications with aspectj,” in Proceedings of
the 20th international conference on Parallel
and distributed processing, ser. IPDPS’06.

Washington, DC, USA: IEEE Computer
Society, 2006, pp. 116–116. [Online]. http:
//dl.acm.org/citation.cfm?id=1898953.1899048

[7] J. Bloch, Effective Java (2Nd Edition) (The
Java Series), 2nd ed. Upper Saddle River, NJ,
USA: Prentice Hall PTR, 2008.

[8] B. Eckel, Thinking in Java, 3rd ed. Prentice
Hall Professional Technical Reference, 2006.

[9] T. Peierls, B. Goetz, J. Bloch, J. Bowbeer,
D. Lea, and D. Holmes, Java Concurrency in
Practice. Addison-Wesley Professional, 2005.

[10] U. D. Hohenstein and U. Gleim, “Using
aspect-orientation to simplify concurrent pro-
gramming,” in Proceedings of the tenth inter-
national conference on Aspect-oriented software
development companion, ser. AOSD ’11. New
York, NY, USA: ACM, 2011, pp. 29–40.
[Online]. http://doi.acm.org/10.1145/1960314.
1960324

[11] R. Laddad, AspectJ in Action: Practical
Aspect-Oriented Programming. Greenwich,
CT, USA: Manning Publications Co., 2003.

[12] R. G. Lavender and D. C. Schmidt, “Active ob-
ject – an object behavioral pattern for concur-
rent programming,” 1995.

[13] “Dining philosophers problem implmen-
tation,” https://github.com/vonhessling/
DiningPhilosophers.

[14] “Producer-consumer problem implementa-
tion,” https://github.com/dcryan/Producer-
Consumer.

[15] “Java Fork/Join for Parallel Programming,”
http://www.javacodegeeks.com/2011/02/java-
forkjoin-parallel-programming.html.

https://github.com/mnegacz/concurrent-aspects
https://github.com/mnegacz/concurrent-aspects
http://doi.acm.org/10.1145/1119655.1119674
http://doi.acm.org/10.1145/976270.976286
http://dl.acm.org/citation.cfm?id=1898953.1899048
http://dl.acm.org/citation.cfm?id=1898953.1899048
http://doi.acm.org/10.1145/1960314.1960324
http://doi.acm.org/10.1145/1960314.1960324
https://github.com/vonhessling/DiningPhilosophers
https://github.com/vonhessling/DiningPhilosophers
https://github.com/dcryan/Producer-Consumer
https://github.com/dcryan/Producer-Consumer
http://www.javacodegeeks.com/2011/02/java-forkjoin-parallel-programming.html
http://www.javacodegeeks.com/2011/02/java-forkjoin-parallel-programming.html

	Introduction
	Problems of Concurrent Programming
	The Use of Aspects in Concurrent Programming
	Asynchronous Method Execution
	Asynchronous Method Execution which Returns a Result
	Asynchronous Execution of Recursive Methods
	Barrier
	Resource Synchronization
	Conditions of Method Execution
	Active Object

	Proposed Solution
	Asynchronous Method Execution
	Asynchronous Method Execution which Return a Result
	Asynchronous Execution of Recursive Methods
	Barrier
	Resource Synchronization
	Conditions of Method Execution
	Active Object

	Comparison of the Applications
	Conclusions
	References


