
e-Informatica Software Engineering Journal, Volume 8, Issue 1, 2014, pages: 39–52, DOI 10.5277/e-Inf140103

Generating Graphical User Interfaces from
Precise Domain Specifications

Kamil Rybiński∗, Norbert Jarzębowski∗, Michał Śmiałek∗, Wiktor Nowakowski∗, Lucyna
Skrzypek∗, Piotr Łabęcki∗

∗Faculty of Electrical Engineering, Institute of Theory of Electrical Engineering, Measurement and
Information Systems, Warsaw University of Technology

rybinskk@iem.pw.edu.pl, jarzebon@iem.pw.edu.pl, smialek@iem.pw.edu.pl,
nowakoww@iem.pw.edu.pl, skrzypel@ee.pw.edu.pl, labeckip@ee.pw.edu.pl

Abstract
Turning requirements into working systems is the essence of software engineering. This paper
proposes automation of one of the aspects of this vast problem: generating user interfaces directly
from requirements models. It presents syntax and semantics of a comprehensible yet precise domain
specification language. For this language, the paper presents the process of generating code for
the user interface elements. This includes model transformation procedures to generate window
initiation code and event handlers associated with these windows. The process is illustrated with
an example based on an actual system developed using the presented approach.

1. Introduction

Requirements Engineering (RE) is a very dis-
tinct area of Software Engineering, because re-
quirements define the problem space while other
software artifacts operate in the solution space.
Problems with requirements usually get amplified
in later stages of software development leading to
project failures [1]. This makes RE research espe-
cially important and challenging. When defining
research directions for RE [2], we need to bear
in mind that RE starts with ill-defined and of-
ten conflicting ideas and have to be handled by
very varied groups: from domain experts and
end-users to downstream developers. Challenges
in this broad research field include finding ways
to effectively elicit and formulate requirements
and then turn them into other SE artifacts (de-
sign, code, tests, etc.).

A very promising approach to meet the RE
challenges is Model-Driven Requirements Engi-
neering (MDRE) [3]. MDRE is an emerging area
of Model Driven Software Development (MDSD)

[4, 5]. The basis for constructing an MDRE ap-
proach is a model-based language for express-
ing requirements. Probably the first such lan-
guage is the Requirements Modeling Language
proposed by Greespan et al [6, 7]. More recent
languages include the Requirements Specifica-
tion Language [8] and the Unified Requirements
Modeling Language [9].

Building on the success of MDSD for design
and implementation, Requirements Engineering
can benefit from its techniques when properly bal-
ancing flexibility for capturing varied user needs
with formal rigidity required for model trans-
formations [10]. MDRE makes it possible that
the requirements models define the real scope
and all details of the envisioned software system,
furthermore that the whole development [11, 12],
testing [13] and documentation process will be
driven and controlled by these requirements mod-
els as well.

ReDSeeDS [14] is a tool representing the
MDRE approach by offering an open frame-
work consisting of a scenario-driven development

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_8/eInformatica2014Art3.pdf


40 Kamil Rybiński, Norbert Jarzębowski, Michał Śmiałek, Wiktor Nowakowski, Lucyna Skrzypek, Piotr Łabęcki

method and domain vocabulary management. It
implements the Requirements Specification Lan-
guage (RSL) [8, 15] meta-model which uses con-
strained natural language sentences allowing the
end-users to understand specifications presented
as precise requirements models. Moreover, the
precisely written platform-independent specifica-
tion allows to translate it directly to code using
one of the platform-specific transformations. The
latest ReDSeeDS transformations generate not
only the entire code of the application logic layer,
and the method stubs for the model layer, but
also a fully functional graphical user interface.
This paper concentrates on this last topic. It
presents an approach to generate fully functional
code of the UI elements from precisely specified
domain models, expressed in RSL.

The solution separates essential complexity
connected with the domain description such as
business rules and application logic, from the ac-
cidental (technological) complexity related with
platform specific design and implementation [16].
The complexity of software development process
using ReDSeeDS is significantly reduced from
the user and developer point of view. Most of the
accidental complexity is hidden within a special
model transformation program, used to convert
requirements specifications into code.

2. Related Work

Transition from requirements to design or im-
plementation is considered as a difficult activity
during software development. The complexity re-
lated to it can cause various errors mainly caused
by ambiguity of requirements. To eliminate this
ambiguity, some form of constrained language
could be used. This would allow for providing
semi-automated ways to generate analysis and
design models or code artifacts. There exist vari-
ous approaches to solve this problem.

Some work has focused on requirements in re-
spect to their precision, both by defining new lan-
guages for this purpose [17], as well as properly
using the existing ones [18]. The disadvantage
of these approaches is that they do not propose
further code generation. Some approaches can

be distinguished by their use of use case sce-
narios for requirements specification. Giganto
et al. [19] propose an algorithm to identify use
case sentences from requirements specifications
written in controlled natural language and as a re-
sult – automatically obtain classes from use cases.
Whereas Mustafiz et al. [20] propose transforma-
tion rules for creating different types of behav-
ioral diagrams from use case scenarios. Deeptima-
hanti et al. [21] suggest to analyze requirements
specifications presented in natural language, us-
ing Natural Language Processing techniques and
generate use case diagrams and class models.

Most of the solutions focused on code gener-
ation use graphical notations like UML [22] to
specify static and dynamic aspects of systems.
One example is the open source AndroMDA [23]
code generation framework which supports the
Model Driven Architecture [24] paradigm. As in-
put, AndroMDA takes UML models from various
CASE tools and provides generation of deploy-
able applications and software components. In
turn, textual specifications used as input, turn
out to be often too formalized and thus diffi-
cult to understand by the end-users where the
purpose is specifying requirements [25].

There are also number of solution focusing
directly on graphical user interface generation.
Many of them, however, use notations designed
specifically for this purpose e.g. the one pro-
posed by Falb et al. [26]. Some other solution
use the existing software development notations.
However, these notations operate at significantly
lower level of abstraction than requirements spec-
ification, as e.g. propopsed by Janssen et al. [27].
There also exist a solution based on requirements
scenarios [28], but it only generates graphical user
interface mockups.

3. Syntax for Domain Elements in
RSL

RSL is based on scenarios consisting of sentences
that describe interactions between the actors
and the system, written in constrained natu-
ral language. Scenarios are also grouped into
RSL-specific “Use Cases”, which are similar to



Generating Graphical User Interfaces from Precise Domain Specifications 41

Figure 1. Abstract and concrete syntax for domain elements

the widely-known UML use cases. Additionally,
every specification in RSL contains a domain
model created from the notions used in use case
scenarios. Each noun phrase in a scenario sen-
tence should have a corresponding domain ele-
ment.

The RSL’s domain models are based on the
metamodel, where its simplified version is pre-
sented in Figure 1 (upper part). The high-level
elements in the RSL’s metamodel can be com-
pared to those of UML and to represent them
we could use simply a profile of UML. However,
RSL defines a very detailed notation for require-
ments representations which are precisely linked
to domain elements. This unique feature of RSL
allows for capturing precise models of the soft-
ware system’s essence [10].

In concrete syntax, domain elements resem-
ble UML classes with associations, as presented
in the lower part of Figure 1. For our consid-
erations we will concentrate on “Domain Ele-
ments” of type “Notion”. “Notions” represent
business entities, buttons, windows and other
elements that occur in the problem and system
domain. Each “Notion” has a name represented
as a “Noun Phrase” and contains “Domain State-

ments” with “Phrases” coming from use case
scenarios. “Domain Elements” can be structured
through specifying relationships and generaliza-
tions between them. Some “Notions” can be de-
fined as attributes of other “Notions”. Different
types of notions are distinguished through their
“Stereotypes”.

An important part of the RSL meta-model is
centred around “Phrases”, which is presented in
Figure 2. Phrases occur in scenario sentences and
in domain statements. Phrases are divided into
“Noun Phrases” and “Verb Phrases”, where the
second type can be further divided into “Simple
Verb Phrases” and “Complex Verb Phrases”. A
“Noun Phrase” contains a “Noun” and an op-
tional “Modifier”, which can describe the “Noun”
more precisely. A “Simple Verb Phrase” can be
used as a sentence predicate and consists of a
verb and a noun e.g. adds selected student.
“Complex Verb Phrases” extend “Simple Verb
Phrases” with a preposition and an additional
“Noun Phrase” representing the indirect object.
More detailed description of RSL syntax and
its role in code generations can be found in [29]
and [11].



42 Kamil Rybiński, Norbert Jarzębowski, Michał Śmiałek, Wiktor Nowakowski, Lucyna Skrzypek, Piotr Łabęcki

Figure 2. Abstract and concrete syntax for phrases

For the purpose of generating user interface
code, the above meta-model of domain elements
in RSL needed some additions. The fundamen-
tal distinction takes the form of a “notion type”
which stems from the “Stereotype” attached to
a “Notion”. Possible notion types are: Concept,
Attribute, Simple View, List View, Screen, Mes-
sage and Trigger. These types of notions can
be used as sentence objects in use case sce-
narios. For user interface generation it is also
important to distinguish verbs associated with
these notion types, as part of verb phrases. The
verbs like ‘show’, ‘refresh’ and ‘close’ are associ-
ated in phrases with Screens and form so-called
System-to-Actor sentences (e.g. “System shows
new student window”). The verbs like ‘select’
are associated with Triggers and form so-called
Actor-to-System sentences (e.g. “User selects
save button”).

4. Semantics for Domain Elements
in RSL

The notion types described at the end of the
previous section have specific meaning, which
determines correct generation of the user inter-
face code. A Concept is a representation of a
business entity stored and processed by the sys-
tem. It has no direct impact on generating user
interface code, however it groups atomic data
attributes for the purpose of their further pro-
cessing. An Attribute describes one of the Con-
cept’s properties just like class attributes in UML.

It should be noted that in RSL, Attributes are
separate model entities. Each Attribute should
be connected with at least one Concept. More-
over, each Attribute has its specific type which
describes specific kind of data it represents like
Text, Number, Date etc. A Screen is a repre-
sentation of a window or a web-page depending
on the transformation’s target technology (for
web-based technologies like JavaFX, Echo3, a
Screen will be transformed into a web-page and
for desktop technologies like Swing – into a win-
dow). A variant of Screen is a Message that
represents a simple modal window used to show
some error or confirmation message to the user.
It causes generation of a proper pop-up message
window.

A Simple View represents a set of data
made available to the user during some inter-
action with the system. It can point to the at-
tributes of many different Concepts, but should
have defined a main Concept. If the Simple View
is connected with a Screen, its attributes will be
used as the basis for the window content. For
every Attribute connected to a Simple View, an
appropriate user interface widget will be created.
Its type will depend on the Attribute type; for
example it will be a text field for a text or a
number Attribute or a check-box for a true/false
attribute. Attributes typed as Date should gener-
ate not only a labeled text field, but also a button
to call a calendar pop-up with the possibility to
select the date.

A List View is similar to a Simple View,
however presents many instances of given data



Generating Graphical User Interfaces from Precise Domain Specifications 43

set in an ordered form. It causes generation of
a table or a list. Attributes connected to a List
View are used in the creation of its fields in
the way analogical to that of a Simple View.
Both Simple Views and List Views can be called
Data Views. Data Views are usually connected
to Screens. The direction of this relationship in-
dicates type of access to data. Connection from
a Screen to a Data View indicates that data will
be entered, and connection from a Data View to
a Screen indicates that some existing data will
be presented. In case that there is no direction –
both access types are assumed (modification of
existing data).

A Trigger is a representation of a link, but-
ton or any other element of user interaction. Just
like the Screen - it is a platform-independent term
and its final form depends on a platform-specific
transformation. Additionally, some Trigger in-
voking an operation, can be connected to a
Data View that determines the data involved
in that operation. There is no need need to
define relations between Triggers and Screens.
The transformation generates them based on
scenarios assuring that there won’t be any Trig-
ger without functionality described in a sce-
nario and there will be no Trigger described
in a scenario which does not have a related
Screen.

In addition to these domain elements, user
interface elements are generated based on cer-
tain use case scenario configurations. This in-
volves two types of sentences. A System-to-Actor
sentence refers to a Screen or Message. It de-
notes an interaction of the system with an ac-
tor through displaying a window or message.
These kind of sentences result in generating
code that contains invocations of methods to
display, refresh or close some user interface el-
ement. An Actor-to-System sentence refers to
a Trigger. It denotes an interaction of an actor
with the system through selecting some active
element (button, hyperlink) in a window. An
Actor-to-System sentence generates an appropri-
ate event handler code. This code is generated
in the code of the user interface element that
was referred by a previous System-to-Actor sen-
tence.

5. Code Generation Process

Figure 3 presents an overview of the software
development process using the ReDSeeDS tool.
The first step is to formulate and write require-
ments in RSL according to the rules described
in the previous sections. The tool supports this
process by offering a specialized scenario editor,
automatic notion creation, notion editor with
type assignments and much more.

The next step in the process is to ex-
ecute a model transformation and generate
detailed-design-level UML models with embed-
ded code. The appropriate transformation pro-
gram for generating the user interface elements
was developed in the language MOLA (MOdel
transformation LAnguage) [30]. MOLA is a
graphical language which uses pattern match-
ing algorithms on meta-model level to transform
one model into another. In our case, this will
be an RSL model translated into a UML class
model with inserted code fragments. MOLA con-
tains both declarative and imperative constructs.
The declarative elements include rules which rep-
resents queries on the model, connected with
indications which elements should be created or
deleted. MOLA declarative rules are presented
as gray rectangles with rounded corners, con-
taining objects from the meta-model. Query el-
ements have solid black borders, whereas create
elements have thick red dashed borders. Imper-
ative elements include control flows between the
rules which are denoted by dashed arrows in
a notation similar to UML’s activity diagrams.
Also, loops are possible, which are denoted by
thick black boxes with rules that are to be iter-
ated, contained inside them. The first rule inside
a loop is the loop’s iterator rule with one el-
ement being a loop-head and denoted with a
thicker border. MOLA is also a procedural lan-
guage, where procedure calls are denoted with
special actions with procedure names and pa-
rameters. Procedure definitions declare these pa-
rameters as large arrow-shaped boxes. Proce-
dures also declare variables as white rectangular
boxes.

To present the idea of the user interface gener-
ation program, we provide three of its fragments.



44 Kamil Rybiński, Norbert Jarzębowski, Michał Śmiałek, Wiktor Nowakowski, Lucyna Skrzypek, Piotr Łabęcki

Figure 3. Process overview

Figure 4. Procedure (‘genViewClass’) for generating classes from Screens and Messages



Generating Graphical User Interfaces from Precise Domain Specifications 45

The actual transformation is much more elabo-
rate and thus had to be simplified and abridged.
Figure 4 shows the basic procedure (‘genView-
Class’) for the creation of classes that handle
widow-related code. These classes stem from the
Screens or Messages. The appropriate Notion is
given as the parameter to this procedure. After
retrieving the Notion’s name and converting it
to camel case format, the procedure creates a
properly named class (prefixed with ‘V’). This
class realises (see ‘InterfaceRealisation’) the stan-
dard ‘ActionListener’ interface. Then, the notion
type is checked and depending on this, appro-
priate generalisation is created with either the
standard ‘WindowPane’ or ‘ContentPane’ class.
After this, the transformation calls the procedure
to generate common code for all such classes
(‘genVClassStandardCode’) and code individual
for each class (‘genViewClassContent’).

Figure 5 shows this second procedure, which
is more interesting. It generates the contents
of the previously generated class, based on the
features of the appropriate Notion and the as-
sociated elements. Firstly, the transformation
checks the direction of the relation between the
given Notion (Screen or Message) and another
Notion which is a Simple View or a List View.
Then depending on this determined direction, it
assigns the type of access to window elements,
to be provided by the generated controls. Af-
ter that, the transformation generates an oper-
ation (‘addContent’) to fill the window content
and fills it with standard code (‘generateCon-
tentGridCode’). The last part of the procedure
contains two loops (for two possible directions
between the Notion and its related Data Views).
In each iteration, an appropriate Data View and
its Attributes are processed and appropriate field
initiation code is created and inserted into the
‘addContent’ method.

Figure 6 shows fragment of the procedure
that generates the actual field initiation code.
Firstly, the standard initial part of code for the
control group is generated through a call to an
appropriate procedure. Then, a loop is performed
for each Attribute pointed-to from the Data View
which is the procedure’s parameter. Inside the
loop, firstly, the notion name is retrieved and con-

verted to camel case format. After that, a private
class property (attribute) is generated to hold
the label field for the given Attribute. Then, the
Attribute’s data type is retrieved and depending
on it, a property (attribute) for holding the ac-
tual control type is generated. For simplicity, the
Figure shows fully only the fragment associated
with the generation of Text Fields. The last part
of the loop contains a call to the procedure that
generates the proper code that initialises the just
generated attributes.

As we can see, the output of the presented
transformation is a UML model consisting of
classes with attributes, operations and code em-
bedded in these operations. The next step is to
export this UML model and generate code with
a UML tool providing an appropriate code gener-
ator (see Fig. 3). The code generator is invoked
automatically and thus from the user perspective
is seen as part of the overall transformation pro-
cess. ReDSeeDS currently supports export and
code generation using Enterprise Architect [31]
and Modelio [32]. The full generated code com-
plies with the Model-View-Presenter pattern [33]
and is also based on the Echo framework [34].

6. Illustrative Example

The presented approach has been validated dur-
ing a case study which was to implement a sports
centre management system. This involved about
30 use cases, of which some are presented in
Figure 7. In this brief example, we will show
mainly the code generated around the domain
models for the use case surrounded by the green
thick frame (“Add promotion”). This use case has
two scenarios, presented in Figure 8. In addition,
we will show the user interface generated from
the use case surrounded by a dashed blue frame
(“Display Promotion management”). This will
allow to present support for generating lists.

Figure 9 presents the domain model that
complements the scenarios of “Add promotion”,
together with the actually generated user in-
terface for the “new promotion form” window.
We can observe that “new promotion form” is a
Screen which points at “promotion data” which



46 Kamil Rybiński, Norbert Jarzębowski, Michał Śmiałek, Wiktor Nowakowski, Lucyna Skrzypek, Piotr Łabęcki

Figure 5. Procedure (‘genViewClassContent’) for generating the ‘addContent’ operation

is a Simple View. This results in generating the
“new promotion form” window (1) with the ap-
propriate section corresponding to “promotion
data” (2). The connection is directed from the
Screen to the Simple View, which means that
the window will serve entering data. The main
Concept associated with “promotion data” is the
“promotion”. The Simple View points to several
Attributes contained in the “promotion” and in
the associated “promotion type” Concept. This
set of relations to Attributes means that the
section corresponding to “promotion data” will
be filled with controls to input data related to
the mentioned Attributes.

The types of these controls depends on the
data types of the given attributes. We can see

the equivalence in Figure 9. For instance, “Pro-
motion name” (3) typed as Text is created as a
Text field, and “Expiration date” (6) typed as
Date is generated as a Text field with a button
to open the date chooser.

A special case is the “Promotion type” (4)
which is part of a Concept that is not the main
Concept. It is generated into an separate embed-
ded group of labelled controls. In this particu-
lar case, only one Text field (“Promotion type
name”) is generated from the appropriate At-
tribute. We can also notice an additional button
(“Select”) which was not covered by the semantic
rules in the previous sections and can be used
to select one value from a pop-up list. “Promo-
tion type” takes the form of an embedded group



Generating Graphical User Interfaces from Precise Domain Specifications 47

Figure 6. Procedure (‘genViewClassContentEntry’) for generating field initiation code

of controls, not a list, because of the singular
multiplicity of the relationship between the pro-
motion (main Concept) and the promotion type
(associated Concept).

Code for creating these controls as the con-
tent of “new promotion form” is shown in
Figure 10. Apart from generating the fields,
code contains creation of the “Add promo-
tion” button. This is based on sentence 4, in
relation to sentence 2 of the use case sce-
nario shown in Figure 8. The code gener-
ator produces also an event handler associ-
ated with this button, presented in Figure 11.
This is presented to show completeness and

coherence of the generated code but more de-
tailed discussion is out of scope of this pa-
per.

In addition to generating simple forms,
the code generator can produce lists from
List View elements. This is illustrated in Fig-
ure 12. The situation is in most part simi-
lar to the previous case, but data is repre-
sented in a collection form because a List
View is used instead of a Simple View. More-
over, only some of the Attributes of the
“promotion” are presented on the screen, be-
cause not all are connected to the List
View.



48 Kamil Rybiński, Norbert Jarzębowski, Michał Śmiałek, Wiktor Nowakowski, Lucyna Skrzypek, Piotr Łabęcki

Figure 7. Use case model fragment for the case study

Figure 8. Scenarios of the “Add promotion” use case

7. Conclusion and Future Work

The presented approach aims to give the re-
quirements model the feature of executability.
The functional requirements are represented us-
ing the Requirements Specification Language
in which emphasis is placed on both readabil-
ity and precision. Using the presented transfor-
mation program in combination with a precise
RSL specification, we obtain a typical business
application, with simple, but fully functional
graphical user interface, ready for deployment.
Still, we can find some limitations of the pre-
sented transformations due to limitations of the
current RSL syntax for domain elements. How-

ever, we plan to remove these limitations by
extending the RSL notation and refining its
semantics.

Currently, this approach can be used with suc-
cess for fast prototyping. furthermore, through
refinement of the graphical interface arrangement
and use of appropriate outlook styles, it can also
be brought to the condition of the final product.
The presented solution is being validated on a
much larger case study based on a legacy cor-
porate banking system. Furthermore there are
plans to conduct experiments with university stu-
dents. Their goal will be to compare productivity
and quality when the presented solution is used
versus traditional approaches.



Generating Graphical User Interfaces from Precise Domain Specifications 49

Figure 9. Domain model for the “new promotion form”

Future development work will include extend-
ing the ReDSeeDS tool with an editor to enable
management of user interface element arrange-
ment. There are also plans to further develop
the overall transformation, taking into account
various new technologies and platforms. There
is ongoing work on developing new transforma-
tions which will provide high-level separation
of concerns and thereby high reusability. In the
future, the transformations are planned to offer
several technology options to build the presenta-
tion layer such as Google Web Toolkit, Apache
Wicket, JavaFX, Adobe Flex.

Acknowledgment

Part of this research has been carried out in the
REMICS project and partially funded by the
EU (contract number ICT-257793 under the 7th
Framework Programme), see http://www.remics.
eu.

References

[1] K. El Emam, “A Replicated Survey of IT Soft-
ware Project Failures,” IEEE Software, Vol. 25,
No. 5, 2008, pp. 84–90.

[2] B. H. C. Cheng and J. Atlee, “Research Direc-
tions in Requirements Engineering,” in Future
of Software Engineering, FOSE ’07, 2007, pp.
285–303.

[3] B. Berenbach, “A 25 year retrospective on
model-driven requirements engineering,” in
Model-Driven Requirements Engineering Work-
shop (MoDRE), 2012 IEEE, 2012, pp. 87–91.

[4] M. Brambilla, J. Cabot, and M. Wimmer,
Model-driven Software Engineering in Practice.
Morgan & Claypool, 2012.

[5] D. Schmidt, “Guest Editor’s Introduction:
Model-Driven Engineering,” Computer, Vol. 39,
No. 2, 2006, pp. 25–31.

[6] S. Greenspan, J. Mylopoulos, and A. a. Borgida,
“Capturing More World Knowledge in the Re-
quirements Specification,” in Proc. 6th In-
ternational Conference on Software Engineer-
ing. IEEE Computer Society Press, 1982, pp.
225–234.

[7] S. Greenspan, J. Mylopoulos, and A. Borgida,
“On formal requirements modeling languages:
RML revisited,” in ICSE ’94: Proc. 16th Interna-
tional Conference on Software Engineering. Los

http://www.remics.eu
http://www.remics.eu


50 Kamil Rybiński, Norbert Jarzębowski, Michał Śmiałek, Wiktor Nowakowski, Lucyna Skrzypek, Piotr Łabęcki

Figure 10. Fragment of code for creating content of “new promotion form”

Figure 11. Handler code for the “add promotion” button

Alamitos, CA, USA: IEEE Computer Society
Press, 1994, pp. 135–147.

[8] H. Kaindl, M. Śmiałek, , P. Wagner,
D. Svetinovic, A. Ambroziewicz, J. Bojarski,
W. Nowakowski, T. Straszak, H. Schwarz,
D. Bildhauer, J. P. Brogan, K. S. Mukasa,
K. Wolter, and T. Krebs, “Requirements
Specification Language Definition,” ReDSeeDS
Project, Project Deliverable D2.4.2, 2009.
[Online]. www.redseeds.eu

[9] J. Helming, M. Koegel, F. Schneider, M. Haeger,
C. Kaminski, B. Bruegge, and B. Berenbach,
“Towards a unified Requirements Modeling Lan-

guage,” in Requirements Engineering Visualiza-
tion (REV), 2010 Fifth International Workshop
on, Sept 2010, pp. 53–57.

[10] W. Nowakowski, M. Śmiałek, A. Ambroziewicz,
and T. Straszak, “Requirements-Level Lan-
guage and Tools for Capturing Software System
Essence,” Computer Science and Information
Systems, Vol. 10, No. 4, 2013, pp. 1499–1524.

[11] M. Śmiałek, N. Jarzebowski, and
W. Nowakowski, “Translation of Use Case
Scenarios to Java Code,” Computer Science,
Vol. 13, No. 4, 2012, pp. 35–52.

[12] M. Śmiałek, W. Nowakowski, N. Jarzebowski,

www.redseeds.eu


Generating Graphical User Interfaces from Precise Domain Specifications 51

Figure 12. Domain model for the “promotion list”

and A. Ambroziewicz, “From Use Cases and
Their Relationships to Code,” in Second IEEE
International Workshop on Model-Driven Re-
quirements Engineering, MoDRE 2012. IEEE,
2012, pp. 9–18.

[13] T. Straszak and M. Śmiałek, Advances in Soft-
ware Development. Polish Information Process-
ing Society, 2013, ch. Acceptance test generation
based on detailed use case models, pp. 116–126.

[14] “ReDSeeDS project home page,” http://redseeds.
eu/.

[15] M. Śmiałek, A. Ambroziewicz, J. Bojarski,
W. Nowakowski, and T. Straszak, “Introducing
a unified Requirements Specification Language,”
in Proc. CEE-SET’2007, Software Engineering
in Progress. Nakom, 2007, pp. 172–183.

[16] F. P. Brooks, “No Silver Bullet: Essence and
Accidents of Software Engineering,” IEEE Com-
puter, Vol. 20, No. 4, April 1987, pp. 10–19.

[17] P. Shaker, J. Atlee, and S. Wang, “A
feature-oriented requirements modelling lan-
guage,” in Requirements Engineering Conference
(RE), 2012 20th IEEE International, 2012, pp.
151–160.

[18] M. El-Attar and J. Miller, “AGADUC: Towards
a More Precise Presentation of Functional Re-
quirement in Use Case Mod,” in Software Engi-
neering Research, Management and Applications,
2006. Fourth International Conference on, 2006,
pp. 346–353.

[19] R. Giganto and T. Smith, “Derivation of Classes

from Use Cases Automatically Generated by a
Three-Level Sentence Processing Algorithm,” in
Systems, 2008. ICONS 08. Third International
Conference on, 2008, pp. 75–80.

[20] S. Mustafiz, J. Kienzle, and H. Vangheluwe,
“Model transformation of dependability-focused
requirements models,” in Modeling in Software
Engineering, 2009. MISE ’09. ICSE Workshop
on, 2009, pp. 50–55.

[21] D. K. Deeptimahanti and R. Sanyal,
“Semi-automatic generation of UML models from
natural language requirements,” in Proceedings
of the 4th India Software Engineering Conference,
ser. ISEC ’11, 2011, pp. 165–174. [Online].
http://doi.acm.org/10.1145/1953355.1953378

[22] Unified Modeling Language: Superstructure, ver-
sion 2.2, formal/09-02-02, Object Management
Group, 2009.

[23] “AndroMDA project home page,” http://
andromda.org/.

[24] “MDA website,” http://omg.org/mda/.
[25] Y. Wang and M. Wu, “Case studies on transla-

tion of RTPA specifications into Java programs,”
in Canadian Conference on Electrical and Com-
puter Engineering, Vol. 2, 2002, pp. 675–680.

[26] J. Falb, S. Kavaldjian, R. Popp, D. Raneb-
urger, E. Arnautovic, and H. Kaindl, “Fully
Automatic User Interface Generation from
Discourse Models,” in Proceedings of the
14th International Conference on Intelligent
User Interfaces, ser. IUI ’09. New York,

http://redseeds.eu/
http://redseeds.eu/
http://doi.acm.org/10.1145/1953355.1953378
http://andromda.org/
http://andromda.org/
http://omg.org/mda/


52 Kamil Rybiński, Norbert Jarzębowski, Michał Śmiałek, Wiktor Nowakowski, Lucyna Skrzypek, Piotr Łabęcki

NY, USA: ACM, 2009, pp. 475–476. [Online].
http://doi.acm.org/10.1145/1502650.1502722

[27] C. Janssen, A. Weisbecker, and J. Ziegler,
“Generating User Interfaces from Data Models
and Dialogue Net Specifications,” in Proceed-
ings of the INTERACT ’93 and CHI ’93
Conference on Human Factors in Computing
Systems, ser. CHI ’93. New York, NY,
USA: ACM, 1993, pp. 418–423. [Online].
http://doi.acm.org/10.1145/169059.169335

[28] M. ElKoutbi, I. Khriss, and R. Keller, “Gener-
ating user interface prototypes from scenarios,”
in Requirements Engineering, 1999. Proceedings.
IEEE International Symposium on, 1999, pp.
150–158.

[29] M. Śmiałek, N. Jarzebowski, and
W. Nowakowski, “Runtime semantics of

use case stories,” in Visual Languages and
Human-Centric Computing (VL/HCC), 2012
IEEE Symposium on, Sept 2012, pp. 159–162.

[30] A. Kalnins, J. Barzdins, and E. Celms, “Model
Transformation Language MOLA,” Lecture
Notes in Computer Science, Vol. 3599, 2004, pp.
14–28, MDAFA’04.

[31] “Enterprise Architect Website,” http://www.
sparxsystems.com/products/ea/.

[32] “Modelio Website,” http://www.modelio.org/.
[33] M. Potel, “MVP: Model-View-Presenter,

The Taligent Programming Model for C++
and Java,” Taligent Inc., Tech. Rep., 1996,
http://www.wildcrest.com/Potel/Portfolio/mvp.pdf.

[34] “Echo Framework Home Page,” http://echo.
nextapp.com/.

http://doi.acm.org/10.1145/1502650.1502722
http://doi.acm.org/10.1145/169059.169335
http://www.sparxsystems.com/products/ea/
http://www.sparxsystems.com/products/ea/
http://www.modelio.org/
http://echo.nextapp.com/
http://echo.nextapp.com/

	Introduction
	Related Work
	Syntax for Domain Elements in RSL
	Semantics for Domain Elements in RSL
	Code Generation Process
	Illustrative Example
	Conclusion and Future Work
	Acknowledgment
	References


