
2015 volume 9 issue 1

2015 volume 9 issue 1

Editors

Zbigniew Huzar (Zbigniew.Huzar@pwr.edu.pl)
Lech Madeyski (Lech.Madeyski@pwr.edu.pl, http://madeyski.e-informatyka.pl/)

Institute of Informatics
Wrocław University of Technology, 50-370 Wrocław, Poland

e-Informatica Software Engineering Journal
www.e-informatyka.pl/wiki/e-Informatica/, DOI: 10.5277/e-informatica
Editorial Office Manager: Wojciech Thomas
Proofreader: Anna Tyszkiewicz
Typeset by Wojciech Myszka with the LATEX 2𝜀 Documentation Preparation System

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publishers.

Printed in the camera ready form

c○ Copyright by Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2015

OFICYNA WYDAWNICZA POLITECHNIKI WROCŁAWSKIEJ
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
http://www.oficyna.pwr.edu.pl;
e-mail: oficwyd@pwr.edu.pl; zamawianie.ksiazek@pwr.edu.pl

ISSN 1897-7979

Printed by beta-druk, www.betadruk.pl

http://madeyski.e-informatyka.pl/
http://www.e-informatyka.pl/wiki/e-Informatica/
http://dx.doi.org/10.5277/e-informatica
http://www.oficyna.pwr.edu.pl
mailto:oficwyd@pwr.edu.pl
mailto:zamawianie.ksiazek@pwr.edu.pl
http://www.betadruk.pl

Editorial Board
Co-Editors-in-Chief
Zbigniew Huzar (Wrocław University of Technology, Poland)
Lech Madeyski (Wrocław University of Technology, Poland)

Editorial Board Members
Pekka Abrahamsson (VTT Technical Research Centre, Finland)
Sami Beydeda (ZIVIT, Germany)
Miklós Biró (Software Competence Center Hagenberg, Austria)
Pearl Brereton (Keele University, UK)
Mel Ó Cinnéide (UCD School of Computer Science & Informatics, Ireland)
Norman Fenton (Queen Mary University of London, UK)
Joaquim Filipe (Polytechnic Institute of Setúbal/INSTICC, Portugal)
Thomas Flohr (University of Hannover, Germany)
Félix García (University of Castilla-La Mancha, Spain)
Carlo Ghezzi (Politecnico di Milano, Italy)
Janusz Górski (Gdańsk University of Technology, Poland)
Andreas Jedlitschka (Fraunhofer IESE, Germany)
Barbara Kitchenham (Keele University, UK)
Stanisław Kozielski (Silesian University of Technology, Poland)
Ludwik Kuźniarz (Blekinge Institute of Technology, Sweden)
Pericles Loucopoulos (The University of Manchester, UK)
Kalle Lyytinen (Case Western Reserve University, USA)
Leszek A. Maciaszek (Wrocław University of Economics, Poland
and Macquarie University Sydney, Australia)
Jan Magott (Wrocław University of Technology, Poland)
Zygmunt Mazur (Wrocław University of Technology, Poland)
Bertrand Meyer (ETH Zurich, Switzerland)
Matthias Müller (IDOS Software AG, Germany)
Jürgen Münch (Fraunhofer IESE, Germany)
Jerzy Nawrocki (Poznań Technical University, Poland)
Janis Osis (Riga Technical University, Latvia)
Łukasz Radliński (University of Szczecin, Poland)
Guenther Ruhe (University of Calgary, Canada)
Krzysztof Sacha (Warsaw University of Technology, Poland)
Rini van Solingen (Drenthe University, The Netherlands)
Miroslaw Staron (IT University of Göteborg, Sweden)
Tomasz Szmuc (AGH University of Science and Technology Kraków, Poland)
Iwan Tabakow (Wrocław University of Technology, Poland)
Burak Turhan (University of Oulu, Finland)
Rainer Unland (University of Duisburg-Essen, Germany)
Sira Vegas (Polytechnic University of Madrit, Spain)
Corrado Aaron Visaggio (University of Sannio, Italy)
Bartosz Walter (Poznań Technical University, Poland)
Bogdan Wiszniewski (Gdańsk University of Technology, Poland)
Jaroslav Zendulka (Brno University of Technology, The Czech Republic)
Krzysztof Zieliński (AGH University of Science and Technology Kraków, Poland)

Contents

Editorial . 7
Data Flow Approach to Testing Java Programs Supported with DFC

Ilona Bluemke, Artur Rembiszewski . 9
Cross-Project Defect Prediction with Respect to Code Ownership Model: An Empirical Study

Marian Jureczko, Lech Madeyski . 21
Resolving Conflict and Dependency in Refactoring to a Desired Design

Iman Hemati Moghadam, Mel Ó Cinnéide . 37
An Approach to Assessing the Quality of Business Process Models Expressed in BPMN

Małgorzata Sadowska . 57
Using the Cognitive Walkthrough Method in Software Process Improvement

Péter Balázs Polgár . 79
Construction of Variable Strength Covering Array for Combinatorial Testing
Using a Greedy Approach to Genetic Algorithm

Priti Bansal, Sangeeta Sabharwal, Nitish Mittal, Sarthak Arora 87
Model Driven Web Engineering: A Systematic Mapping Study

Karzan Wakil, Dayang N.A. Jawawi . 107

Editorial

Following the mission of e-Informatica Software
Engineering Journal, we present this ninth edition
with seven scientific papers. The papers refer to dif-
ferent topics, but belong to the scope of the journal,
including methods, practices, technologies and tools
in the software development cycle, with particular
emphasis on empirical evaluation.

The first paper by Bluemke and Rembiszewski
(Data Flow Approach to Testing Java Programs Sup-
ported with DFC [1]) presents the data flow coverage
testing of Java programs. In general, the data flow
is considered an effective testing technique for fault
localization, but it is not used in industry because
supporting tools are not scalable for large programs.
The proposed original testing method and the elab-
orated tool, as an Eclipse plug-in, brings hope to
overcome this obstacle. The tool was applied for
comparison of testing Java programs using data flow
and mutation techniques. The results show that the
effectiveness of mutation testing is higher than the
effectiveness of data flow testing, but mutation tech-
niques appear to be more expensive than the data
flow if time and effort are considered.

The subject of the second paper by Jureczko and
Madeyski (Cross-Project Defect Prediction with Re-
spect to Code Ownership Model: An Empirical Study
[2]) is a statistical analysis of several dozen versions
of industrial, open-source and academic projects.
The main result of the analysis shows that the
open-source, industrial and academic projects may
be treated as separate categories of projects with
regard to defects prediction, and, in consequence,
the prediction models trained on the projects de-
pend on project category. This result does not seem
to be surprising, but a more interesting issue is
identification of the reasons for these differences.
The work makes the next step towards cross-project
reusability of defect prediction models and facilitates
their adoption, which has been very limited so far.

How to detect conflicts and dependencies in refac-
toring during software design is the leading problem
discussed in the third paper by Moghadam, and
Ó Cinnéide (Resolving Conflict and Dependency
in Refactoring to a Desired Design [3]). A novel
automated approach to refactoring scheduling in
the presence of inter-refactoring conflicts and depen-

dencies is proposed. Evaluation based on several
sample programs and one non-trivial open source ap-
plication demonstrates the ability of the approach to
schedule the input refactorings to achieve the desired
design for a medium-sized, real-world application.

A practical proposal of a meta-model for a qual-
ity assessment models of actual models expressed
as process diagrams in BPMN 2.0 is proposed in
the fourth paper by Sadowska (An Approach to
Assessing the Quality of Business Process Models
Expressed in BPMN [4]). The proposal is based
on an elaborated quality model containing selected
characteristics, respective metrics and, finally, pro-
posed quality criterions. A programming tool imple-
menting the meta-model was designed, and through
a survey-based experiment was evaluated. The re-
sults showed the usefulness of the tool and the pro-
posed approach.

The fifth paper by Polgár (Using the Cognitive
Walkthrough Method in Software Process Improve-
ment [5]) may be regarded as an introductory dis-
cussion on how to use the cognitive walkthrough
method to improve the software development pro-
cess. An outline of how to apply this method and
what are the significant changes necessary for its
implementation are briefly presented.

Instead of expensive combinatorial testing, 𝑡-way
testing is usually adopted to trigger faults due to
interactions between components in a component
based software system. A genetic algorithm based
on the greedy principle used to generate optimal
variable strength covering array is the main focus
of the sixth paper by Bansal et al. (Construction
of Variable Strength Covering Array for Combina-
torial Testing Using a Greedy Approach to Genetic
Algorithm [6]). The proposed approach was eval-
uated on several benchmark configurations. The
experiments showed that the elaborated algorithm,
integrating greedy and meta-heuristic techniques,
outperforms, except simulated annealing, other ex-
isting state-of-the-art algorithms in terms of variable
strength covering array sizes.

In the last paper Wakil and Jawawi (Model
Driven Web Engineering: A Systematic Mapping
Study [7]) present a survey of more than 300 primary
studies from last five years on Model Driven Web

8 References

Engineering (MDWE) mainly for identification
of needs for future research. The paper brings
a classification and statistics of the main research
topics on MDWE (Web applications, services, mod-
eling, requirements and design, testing and quality,
development methodologies, management, and eco-
nomics), publication forms (conferences, workshops,

journals), and their character (validation, opinion,
proposals, experience, evaluation).

We look forward to receiving high quality contri-
butions from researchers and practitioners in soft-
ware engineering for the next issue of the journal.

Editors
Zbigniew Huzar
Lech Madeyski

References

[1] I. Bluemke and A. Rembiszewski, “Data flow
approach to testing Java programs supported
with DFC,” e-Informatica Software Engineering
Journal, Vol. 9, 2015, pp. 9–19. [Online]. http://
www.e-informatyka.pl/attach/e-Informatica_
-_Volume_9/eInformatica2015Art1.pdf

[2] M. Jureczko and L. Madeyski, “Cross-project
defect prediction with respect to code
ownership model: An empirical study,”
e-Informatica Software Engineering Journal,
Vol. 9, 2015, pp. 21–35. [Online]. http://
www.e-informatyka.pl/attach/e-Informatica_
-_Volume_9/eInformatica2015Art2.pdf

[3] I.H. Moghadam and M.O. Cinnéide,
“Resolving conflict and dependency in
refactoring to a desired design,” e-Informatica
Software Engineering Journal, Vol. 9,
2015, pp. 37–56. [Online]. http://www.
e-informatyka.pl/attach/e-Informatica_-_
Volume_9/eInformatica2015Art3.pdf

[4] M. Sadowska, “An approach to assessing the
quality of business process models expressed in

BPMN,” e-Informatica Software Engineering
Journal, Vol. 9, 2015, pp. 57–77. [Online]. http://
www.e-informatyka.pl/attach/e-Informatica_
-_Volume_9/eInformatica2015Art4.pdf

[5] P.B. Polgár, “Using the cognitive walkthrough
method in software process improvement,”
e-Informatica Software Engineering Journal,
Vol. 9, 2015, pp. 79–86. [Online]. http://
www.e-informatyka.pl/attach/e-Informatica_
-_Volume_9/eInformatica2015Art5.pdf

[6] P. Bansal, S. Sabharwal, N. Mittal, and
S. Arora, “Construction of variable strength
covering array for combinatorial testing using
a greedy approach to genetic algorithm,”
e-Informatica Software Engineering Journal,
Vol. 9, 2015, pp. 87–105. [Online]. http://
www.e-informatyka.pl/attach/e-Informatica_
-_Volume_9/eInformatica2015Art7.pdf

[7] K. Wakil and D.N.A. Jawawi, “Model driven
web engineering: A systematic mapping study,”
e-Informatica Software Engineering Journal,
Vol. 9, 2015, pp. 107–142. [Online]. http://
www.e-informatyka.pl/attach/e-Informatica_
-_Volume_9/eInformatica2015Art6.pdf

http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_9/eInformatica2015Art1.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_9/eInformatica2015Art1.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_9/eInformatica2015Art1.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_9/eInformatica2015Art2.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_9/eInformatica2015Art2.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_9/eInformatica2015Art2.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_9/eInformatica2015Art3.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_9/eInformatica2015Art3.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_9/eInformatica2015Art3.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_9/eInformatica2015Art4.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_9/eInformatica2015Art4.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_9/eInformatica2015Art4.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_9/eInformatica2015Art5.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_9/eInformatica2015Art5.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_9/eInformatica2015Art5.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_9/eInformatica2015Art7.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_9/eInformatica2015Art7.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_9/eInformatica2015Art7.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_9/eInformatica2015Art6.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_9/eInformatica2015Art6.pdf
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_9/eInformatica2015Art6.pdf

e-Informatica Software Engineering Journal, Volume 9, Issue 1, 2015, pages: 9–19, DOI 10.5277/e-Inf150101

Data Flow Approach to Testing Java Programs
Supported with DFC

Ilona Bluemke∗, Artur Rembiszewski∗
∗Institute of Computer Science, Warsaw University of Technology

I.Bluemke@ii.pw.edu.pl, a.rembiszewski@gmail.com

Abstract
Code based (“white box”) approach to testing can be divided into two main types: control flow
coverage and data flow coverage. The data flow testing was introduced to structural programming
languages and later adopted for object languages. Among many tools supporting code based testing
of object programs, only JaBUTi and DFC (Data Flow Coverage) support data flow testing of Java
programs. DFC is a tool implemented at the Institute of Computer Science, Warsaw University
of Technology, as an Eclipse plug-in. The objective of this paper is to present data flow coverage
testing of Java programs supported by DFC. DFC finds all definition-use pairs in tested unit and
also provides the definition-use graph for methods. After test execution, the information which
def-use pairs were covered is shown. An example of data flow testing of Java program is also
presented.

Keywords: data flow testing, coverage testing

1. Introduction

One of the key issues in developing software
systems is effective testing. Popular approaches
to testing include “black box” and “white box”.
Black-box and white-box testing are complemen-
tary to each other in the sense that they are likely
to uncover different classes of faults. Black-box
testing focuses on the software functional require-
ments. It aims at faults related to incorrect or
missing functions, interface errors, behavior or
performance errors and initialization and termi-
nation errors. White-box testing focuses on the
internal structure of the program, to guarantee
that all independent paths within a code have
been executed at least once, exercise all logical
decisions on their true and false sides, execute
all loops at their boundaries and within their
operational bounds and exercise internal data
structures. White box approach can be divided
into two main types: data flow coverage methods

and control flow coverage. Control flow coverage
methods were studied, e.g. by Woodward and
Hennell (2006) [1], Malevris and Yates (2006) [2].

The idea of data flow testing has been pro-
posed in the seventies by Herman (1976) [3]. In
this testing relationships between data are used
to select test cases.

Although experiments conducted in 1999 by
Mei-Hwa Chen, Kao H.M. [4] show, that data
flow testing applied to object programs can be
very effective, this approach is not widely used
for object programs. Among many tools support-
ing code based testing of object programs, only
JaBUTi [5] supports dataflow testing of Java
programs. At the Institute of Computer Science,
Warsaw University of Technology, a tool, called
DFC (Data Flow Coverage), for data flow testing
of Java program was implemented. DFC is im-
plemented as an Eclipse plug-in so can be used
with other testing tools available in the eclipse
environment.

10 Ilona Bluemke, Artur Rembiszewski

The objective of this paper is to present data
flow coverage testing of Java programs supported
by DFC. The introduction to dataflow approach
and related work is given in section 2. DFC,
presented in section 3, finds all definition-use
pairs in tested unit (section 2) and provides also
the definition-use graph for methods. After the
execution of the test, the tester is provided with
information whose def-uses pairs were covered, so
she/he can add new tests for not covered pairs.
The tester decides which methods change the
state of an object. Such approach is novel and
not available in other testing tools. In section
4 an example of a Java program is used to ex-
plain the data flow coverage testing. Advantages
and disadvantages of data flow testing of Java
programs are also discussed. Section 5 contains
some remarks.

2. Data Flow Testing

In structural testing, also called “white box” test-
ing, tests are derived from the source code. Struc-
tural testing methods can be divided into two
categories: code coverage and data flow coverage.
Each of these techniques includes several crite-
ria defining specific requirements which should
be satisfied by the test set. The requirements
determined by a testing criterion may be used
either for test set evaluation or test set genera-
tion. In code coverage methods test data may
be chosen, e.g. to execute all statements in the
code (statement coverage), or to traverse all
branches (branch coverage). Both control-flow
and data-flow based testing criteria were origi-
nally defined to test procedural programs, they
were also extended to object oriented programs.
The adequacy of testing activity is related to
the determination of test criterion effectiveness.
Test effectiveness is related to the task of cre-
ating the smallest test set for which the output
indicates the largest set of failures. The idea of
data flow testing has been introduced by Herman
(1976) [3]. Later, it was also studied by Laski and
Korel (1983) [6]. Rapps and Weyuker (1985) [7]
showed how to select test data using data flow in-
formation. Ostrand and Weyuker (1991) [8] were

analyzed the test adequacy in data flow testing.
Further research in data flow testing was also
made by, e.g. Harrold and Rothermel (1994) [9],
Harold and Soffa (1989) [10], Vincenzi, Maldon-
ado, Wong and Delamaro (2005) [11], Laski and
Stanley (2009) [12]. Quite recently new methods
hav been proposed by Chaim and de Araujo
(2013, 2014) [13,14] and Vivanti (2014) [15].

In data flow testing the relations between
data are the basis to design test cases. Different
sub-paths from definition of a variable (assign-
ment) into its use are tested.

A definition-use pair (def-u) is an ordered
pair (d, u), where d is a statement containing
definition of a variable v, and u a statement
containing the use of v or some memory location
bound to v that can be reached from d over some
program path.

Test criteria are used to select particular
definition-use pairs. A test satisfies a def-u pair,
if executing the program with this test causes
the traversal of a sub-path from the definition to
the use of this variable v without any v redefini-
tion. A def-u pair is feasible if there exists some
program input being to exercise the pair.

Data-flow testing criteria proposed by Rapps
and Weyuker [7] use the def-use graph (DUG),
which is an extension of the control flow graph
(CFG) with information about the set of vari-
ables defined – def () and used – use() in each
node/edge of the CFG. An example of DUG
for a code in Listing 1 is presented in Figure 1.
A program can be uniquely decomposed into
a set of disjoint blocks whose characteristic prop-
erty is the fact that if the first statement of
the block is executed, the other statements are
executed in a given order. The first statement
of the block is the only statement which may be
executed directly after the execution of a state-
ment in another block. The last statement is
the only one which may have a successor in the
execution outside the block. Every conditional
transfer must be the last statement of a block.
The program graph G representing a program
consists of one node i corresponding to each
block bi of the program and an edge from node
j to node k, denoted (j, k), if and only if ei-
ther the last statement of bi is not an uncon-

Data Flow Approach to Testing Java Programs Supported with DFC 11

ditional transfer and it physically precedes the
first statement of bk, or the last statement of bi is
a transfer whose target is the first statement of bk.

Figure 1. DUG for code given in Listing 1

The node corresponding to the block whose first
statement is the start statement of the program
is the start node and has no predecessors. A node
corresponding to a block whose final statement
is a halt statement is known as an exit node and

has no successors. In addition, a node has two
successors if and only if, the final statement of its
corresponding block is a conditional transfer. All
transfer statements should be effective, it means
that two successors are different nodes. For every
pair of nodes i and j, there is at most one edge
from node i to node j. A path can be represented
as a finite sequence of nodes.

In data flow testing the path selection cri-
teria are based on an investigation of the ways
in which values are associated with variables
and how these associations can affect the exe-
cution of the program. This analysis focuses on
the occurrences of variables within the program.
Each variable occurrence is classified as being
a definitional (def), computation-use (c-use), or
predicate-use (p-use) occurrence.

The def/use graph (DUG) is constructed from
a program graph by associating each node i with
the set of variables for which this node i contains
a definition def (i) and the c-use(i) (the set of
variables for which node i contains a c-use). The
edge (i, j) of DUG is associated with p-use(i, j)
(the set of variables for which edge (i, j) contains
a p-use).

Many def-u criteria have been proposed
and compared. The first criteria, intro-
duced by Rapps and Weyuker, contain
e.g.: all-nodes, all-edges, all-defs, all-du-paths,
all-p-uses, all-c-uses/some-p-use.

The criterion, called all-defs states that for
each DUG node i and all variables v, v ∈ def (i)
(defined in this node) at least one path (i, j) is
covered. In node j this variable is used v ∈ use(j)
and on this path the variable v is not redefined.

The decision which criterion to use as a ba-
sis for test data selection depends on several
factors, including the size of the program, time
and cost requirements and consequence of failure.
The “stronger” the selected criterion, the more
closely the program is scrutinized in an attempt
to locate program faults but a “weaker” criterion
can be fulfilled using fewer test cases. The crite-
ria all-nodes (statement coverage) and all-edges
(branch coverage) are often used in program test-
ing despite the fact that it is well known that
they are weak criteria. Certainly they represent
the necessary conditions, for if some portion of

12 Ilona Bluemke, Artur Rembiszewski

the program has never been executed, one would
not in general feel confident about its behavior.
Similar intuition motivated Rapps and Weyuker
in the definition of all-defs criterion. Even if every
statement and branch had been executed, if the
result of some computation had never been used,
one would have little evidence that the intended
computation had been performed.

The all-uses criterion requires that test data
force some path to be traversed between every
definition and each of its uses. A stronger re-
quirement is that test data cause every path
between a definition and its uses to be traversed.
If the program contains loops, there may be in-
finitely many such paths. Rapps and Weyuker’s
“strongest” criterion, all-du-paths, requires that
test data cause the traversal of every du-path
between a definition and each of its uses, thus
avoiding this problem. Rapps and Weyuker also
proved inclusion between the test criteria shown
in Figure 2.

ALL-PATHS

ALL-DU-PATHS

ALL-USES

ALL-C-USES/
SOME-P-USES

ALL-P-USES/
SOME-C-USES

ALL-DEFS ALL-P-USES

ALL-EDGES

ALL-NODES

Figure 2. Inclusion of data flow test criteria [7]

The dataflow technique, described above, was
dedicated to structural programming languages
and does not consider data flow interactions
which arise when the methods are invoked in
an arbitrary order. In 1989 Harold and Soffa
elaborated [10] the inter-procedural data flow
testing. They proposed an algorithm, called PLR,
to find def-u pairs if the variable definition is
introduced in one procedure, and the variable
usage is in called or calling procedures. The al-

gorithm works on inter-procedural control flow
graph built from control flow graphs of dependent
procedures. A call site is replaced by a call and
a return node. Control flow graphs are connected
by added edges from the call node to entry nodes
and from exit nodes to return nodes to repre-
sent procedure calls in the program. A special
entry node represents the entry to the “main”
procedure of the program. The PLR algorithm
first computes the definition and alias informa-
tion for each procedure. Then, using the data
flow framework, propagates the local information
to obtain inter-procedural reaching definitions
from which inter-procedural def-use pairs can
be calculated. This method can be adapted to
global variables, class attributes and referenced
method arguments in testing object programs.
The def-use pairs can be used to test possible in-
teractions between methods. Data flow approach
to test classes gives opportunities to find errors in
classes that may not be uncovered by functional
testing.

For object programs, in 1994 Harrold and
Rothermel proposed [9] three levels of data flow
testing:
– Intra-method level is based on the basic

Rapps and Weyuker algorithm, it is per-
formed on each method individually; class
attributes and methods interactions cannot
be taken into account. This level of testing
is equivalent to unit testing in procedural
language programs.

– Inter-method tests are applied to the public
method together with other methods in its
class that it calls directly or indirectly. def-u
pairs for class attributes can be found in this
approach. This level of testing is equivalent
to integration testing of procedures in proce-
dural language programs.

– Intra-class – interactions of public methods
are tested, when they are called in various
sequences. The set of possible sequences of
public methods calls is infinite so only the
subset of it is tested. Since users of a class may
invoke sequences of methods in indeterminate
order the intra-class testing can increase the
confidence at witch sequences of calls interact
properly.

Data Flow Approach to Testing Java Programs Supported with DFC 13

For each of the above described testing lev-
els appropriate def-u pairs were defined in 1994
by Harrold and Rothermel [9], i.e. intra-method,
inter-method and intra-class.

3. DFC – A Tool for Data Flow
Testing

The process of testing software is extremely ex-
pensive in terms of labour, time and cost so
many tools supporting this process have been
developed but the authors found only one –
JaBUTi [5], dedicated to the data flow testing of
Java programs (when the research was started in
2008). Data flow testing of object programs can
reveal many errors. An experiment described by
Mei-Hwa Chen and Kao [4], shows, that in the
data flow testing of C++ programs, the number
of detected errors was four times greater, than
in other code coverage methods, i.e. instructions
and conditions coverage. The results of this ex-
periment motivated us to build a tool for data
flow testing of Java programs.

Data flow testing cannot be applied in isola-
tion so the authors decided to implement a tool
supporting this approach, DFC – Data Flow Cov-
erage (Fig. 3), as an Eclipse plug-in. In Eclipse
Java programming environment and testing tools,
e.g. JUnit are available. DFC finds all def-u pairs
in testing Java code and after the test provides
tester information which def-u pairs were covered.
Based on this information, the tester can decide
which coverage criteria should be used and add ap-
propriate test cases (shown in section 4). In prepar-
ing the test cases the tester can also use def-use
graph (DUG) for a method provided by DFC.

Figure 3. DFC menu
In object languages the data flow testing ideas

proposed for structural languages must be modi-
fied. One of the main problems which must be
solved is identification which method is able to

modify the object state and which one is only
using it. In DFC def-u pairs are the intra-method.
Definitions of class attributes are located in the
first node of the DUG graph of the tested method.
The first node of DUG also contains definitions
of arguments of the tested method.

Definitions of variable x are e.g.:
1. int x; Object x; x = 5; x = y; x = new Object();

x = get_object(param);
2. x is an object and a state modifying method,

it is called in its context:
x.method1();

3. x is an object and one of its attributes is
modified:
x. a = 5;
An instruction uses a variable x, e.g.:

1. its value is assigned:
w = 2*x; x++;

2. x is an object and a reference is used in an in-
struction:
w = x; method1(x); if (x == null)

3. x is an object and a method, using the state
of this object is called in its context:
x.method1();

4. x is an object and one of its attributes is used
in the instruction:
w = 2*x.a;

In DFC the tester can decide which method de-
fines and which uses the object state.

In Figure 4 the main parts of DFC and its
collaboration with the Eclipse environment are
presented. The modules of DFC are denoted by
bold lines.

The input for DFC is the Java source code
(SRC in Fig. 4). A DFC user has to identify
which file will be tested and indicate it to DFC.
Module Knowledge base analyses the source code
and generates the list of classes and methods.
On this list the tester may mark methods as
modifying or using object state. The module
Instrumentation instruments a source code i.e.
adds extra instructions needed for finding data
flow coverage and builds def-use graph (DUG).
DUG (example for source code from Listing 1
is shown in Fig. 1) contains information con-
cerning the control flow, variable definitions and
usage in its nodes. DUG is the input for mod-
ule Visualization, drawing the graph, and Re-

14 Ilona Bluemke, Artur Rembiszewski

Table 1. Test cases for method doShopping

Method Test Cases
Name 1 2 3 4 5 6 7
addVat false true false false true false false
minSumForDiscount 200 200 20 200 20 200 200
vatPercent 20 20 20 20 20 20 20
customer item1, item1, item1, item1, item1, item1,
needItems item5 item5 item5 item5 item5 item5
customer 10 10 10 10 10 10 10
getDiscountPercent ()
customer 100 100 100 100 100 50 100
getMoneyAmount()
customer.isSpecial() false false true true true false false

quirements – finding all def-u pairs. The con-
structed DUG graph is presented after pressing
Show DUG button in the DFC menu (Fig. 3). The
instrumented code should be compiled and run
in the Eclipse environment and the responsibility
for these activities is taken by the programmer.

Figure 4. The idea of testing with DFC

During the test execution, an extra code added by
Instrumentation module sends data concerning

coverage to DFC. The Analyzing module locates
covered and not covered def-u pairs. More de-
tails on DFC implementation and its usage were
given by Rembiszewski [16] and by Bluemke,
Rembiszewski [17].

4. Example

In this section the data flow testing of Java code
is presented in a small example. In Listing 1
the source code of the method doShopping from
class Shop is shown. This method was tested
with the DFC tool. The DUG for this method is
shown in Figure 1. The all-defs coverage crite-
rion was used. In Table 1 the test cases are listed.
Column “Name” contains the name of a variable
or method returning the private attribute. The
following columns contain the values used in test
cases. In the objects of class Item the method
getPrice returns 10 for variable item1 and 50
for item5. Code testing, shown in Listing 1, was
performed in two phases. In the first phase the
def-use chains were covered. In DFC all methods
were initially identified as not modifying the state
of object and using it (similarly to JaBUTi [5]).

Listing 1. Method doShopping from class
Shop
25) public Bill doShopping(Customer customer) {
26) Bill bill = new Bill();
27)
28) for (int i=0; i<items.size(); i++) {
29) Item item = items.get(i);
30) if (customer.need(item))

Data Flow Approach to Testing Java Programs Supported with DFC 15

31) bill.add(item.getPrice());
32) }
33)
34) double vatAmount = (vatPercent/100) *

bill.getTotalSum();
35) double discountAmount = bill.getTotalSum() *

(customer.getDiscountPercent()/100);
36)
37) if (addVat) {
38) bill.add(vatAmount);
39) }
40)
41) if (customer.isSpecial()) {
42) if (bill.getTotalSum() > minSumForDiscount) {
43) bill.subtract(discountAmount);
44) }
45) }
46)
47) bill.close();
48)
49) if (bill.getTotalSum() <= customer.getMoneyAmount()) {
50) bill.pay();
51) customer.getFromAcount(bill.getTotalSum());
52) } else {
53) bill.cancel();
54) }
55)
56) return bill;
57) }

When the full coverage of all-defs pairs was
achieved, DFC was reconfigured; the methods
modifying an object state and using it were
marked as shown in Figure 5 (such functionality
is not available in JaBUTi [5]). The DUG graph
after this modification is presented in Figure 6.

After the re-execution of tests, new test cases
for not covered def-use pairs were added. The
test results are given in Table 2.

The “Definition” column shows the name
and line number containing the definition. If
a line contains two definitions (e.g. line 28)
of the same variable, the column of definition
is given after a coma. Definitions 1–11 were
found in the first phase, while definitions 12–18
in the second one. It can be observed, that
definitions found in the first phase are the
subset of definitions found in the second The
“Test cases” n, column contains letter Y , if this

Figure 5. DUG for code in Listing 1 after the
indication of methods changing object state

16 Ilona Bluemke, Artur Rembiszewski

Table 2. The results of tests for method doShopping

Definition Test Cases
Name Line 1 2 3 4 5 6

1 items 13 Y(29) Y(29) Y(29) Y(29) Y(29) Y(29)
2 addVat 14 N Y(37) Y(37) Y(37) Y(37) Y(37)
3 minSumForDiscount 15 N N N Y(42) Y(42) Y(42)
4 vatPercent 16 Y(34) Y(34) Y(34) Y(34) Y(34) Y(34)
5 customer 25 Y(30) Y(30) Y(30) Y(30) Y(30) Y(30)
6 bill 26 Y(31) Y(31) Y(31) Y(31) Y(31) Y(31)
7 i 28,11 Y(28) Y(28) Y(28) Y(28) Y(28) Y(28)
8 i 28,32 Y(28) Y(28) Y(28) Y(28) Y(28) Y(28)
9 item 29 Y(30) Y(30) Y(30) Y(30) Y(30) Y(30)
10 vatAmount 34 N Y(38) Y(38) Y(38) Y(38) Y(38)
11 discountAmount 35/39 N N Y(43) Y(43) Y(43) Y(43)
12 bill 31 Y(34) Y(34) Y(34) Y(34) Y(34) Y(34)
13 bill 38/37 N N N N Y(43) Y(43)
14 bill 43 – – – – – –
15 bill 47 N N N N N Y(49)
16 bill 50 Y(51) Y(51) Y(51) Y(51) Y(51) Y(51)
17 bill 53 N N N N N Y(56)
18 customer 51 – – – – – –
Coverage – phase 1 64% 82% 91% 100% 100% 100%
Coverage – phase 2 56% 69% 75% 81% 87% 100%

definition is in covered def-use pairs in phase.
The line number of the covered usage is given in
brackets. Letter N in column of Table 2 means,
that the covered pair does not contain this defi-
nition and char “–” is written, if reachable usage
for this definition does not exist.

In the last two rows (Tab. 2) the data flow
coverage for the two phases are calculated. This
coverage was calculated as a percentage of cov-
ered pairs to all pairs which could be covered.
The first phase needed the first four test cases to
cover all def-use pairs. In the second phase the
methods modifying the state of object and using
it were marked manually in DFC on the screen
shown in Figure 6. The same four test cases
produced the coverage of only 81% so some new
test cases have to be constructed. Test case
number 5 revealed an error in the doShopping
method. In this test case vat is added to the bill
and the client receives also a discount. In the
code (Listing 1) the discount is calculated before
the vat is added instead of being calculated
afterwards. The modified code is given in List-
ing 2. We tried not to change line numbering as
much as possible. In Table 2, in rows 11 and 13,

the new line numbers follow the slash character.
After the modification, all test, were re-executed
and another test case, number 6, was added
to obtain the 100% coverage. In this example
we showed, that identification which method is
modifying the object’s state forced the tester to
add a test case revealing an error.

In the code given in Listing 1, the definition
of the bill in line 43 and the customer in line 51
no reachable usage exist. According to data flow
coverage rules applied to structural languages
such a situation can be seen as an anomaly in
the code. In object programs such a situation is
not an indicator of code anomalies. The bill is
also defined in line 47. For a simple variable two
successive assignments are incorrect, the second
one, erases the first one. For an object variable
successive assignments, e.g. changing object’s
state, may be reasonable. The customer, defined
in line 51 is not used in the method. This is not
an indicator of code anomalies because customer
is a referenced argument of the doShopping
method and can be used outside this method.

The success of testing (phase 2) strongly de-
pends on the correct identification of the method

Data Flow Approach to Testing Java Programs Supported with DFC 17

Figure 6. Configuration screen in DFC

definition and use of the object’s state. Test cases
1–6 from Table 1 do not test program execution if
bill is empty. This is tested in test case 7. This
test case would be executed if the method adds
in class Bill was marked as modifying an object
but not using it. To cover the definition of bill
in line 26 (Listing 1 and Tab. 2) the instruction
in line 34 should be executed but the redefinition
in line 31 should be skipped. In this example the
simple coverage criteria all-defs was used. Other
coverage criteria, e.g. all-uses can reveal the er-
ror in the doShopping method without manually
setting which method modifies and which one
only uses the object state.

Listing 2. Modified method doShopping
25) public Bill doShopping(Customer customer) {
26) Bill bill = new Bill();
27)
28) for (int i=0; i<items.size(); i++) {
29) Item item = items.get(i);
30) if (customer.need(item))
31) bill.add(item.getPrice());
32) }
33)
34) double vatAmount = (vatPercent/100) *

bill.getTotalSum();
35)
36) if (addVat) {
37) bill.add(vatAmount);
38) }
39) double discountAmount = bill.getTotalSum() *

(customer.getDiscountPercent()/100);
40)

41) if (customer.isSpecial()) {
42) if (bill.getTotalSum() > minSumForDiscount) {
43) bill.subtract(discountAmount);
44) }
45) }
46)
47) bill.close();
48)
49) if (bill.getTotalSum() <=

customer.getMoneyAmount()) {
50) bill.pay();
51) customer.getFromAcount(bill.getTotalSum());
52) } else {
53) bill.cancel();
54) }
55)
56) return bill;
57) }

4.1. DFC and JaBUTi

In JaBUTi [5] every call of a method in the
context of an object variable is treated as using
an object state. In DFC a method call is treated
as using the object state if the state of an object
variable is not changed. An example given in
Listing 3.

Listing 3. Simple example
1) a~= new Object();
2) if(....)
3) a.setState(...);
4) a.m();

18 Ilona Bluemke, Artur Rembiszewski

JaBUTi will not notice the coverage of def-use
pair in lines (3, 4). In DFC it is possible, if
the setState method is correctly indicated as
modifying the object state. This simple example
shows, that DFC is able to treat more instruc-
tions as defining, it is able to show the coverage
of a greater number of def-use pairs and more
errors can possibly be detected.

5. Conclusions

Many authors, e.g. Beizer [18] suggest that effec-
tive testing can be achieved if different testing
approaches, e.g. functional and structural are
used. In the development of software systems
thorough testing can be the crucial issue. In this
paper the authors presented DFC, an Eclipse
plug-in, designed and implemented at the Insti-
tute of Computer Science Warsaw University of
Technology, supporting data flow testing of the
Java methods. By supporting data flow testing
of Java classes we provide opportunities to find
an error which may not be uncovered by black
box testing. In the Eclipse environment there
are other tools available for testing Java pro-
grams using different techniques, e.g. JUnit [19],
EclEmma [20] or TPTP [21]. EclEmma provides
information about instruction coverage. In DFC
a tester can design tests to achieve, e.g. def-uses
or all-uses coverage criteria which also guarantee
instruction coverage (as proved by Rapps and
Weyuker in [7]).

It has been shown that the data flow is an effec-
tive testing technique (e.g. in Hutchins et.al. [22]),
very useful in fault localization (e.g. in Santelices
et.al. [23]) but it is not used in industry. This
phenomenon can be explained by the fact that
tools supporting data flow testing are not scal-
able for large systems due to the costs associated
with tracking def-u associations at the run time.
Recently (2013), Chaim and de Araujo [13] have
proposed a novel algorithm, called Bitwise Al-
gorithm (BA) to tackle this problem. The new
algorithm utilizes efficient bitwise operations and
data structures to track the intra procedural def-u.
They also showed that BA is at least as good as
the most efficient data flow instrumentation tech-

niques, and that it can be up to 100%more efficient.
In 2014 de Araujo and Chaim [14] presented the
BA implementation in programs compiled into
byte codes. Maybe their results will encourage
vendors to consider including data flow testing in
commercial testing tools.

In 2011 Bluemke and Kulesza [24] compared
the data flow and the mutation testing of several
Java programs. Experiments were conducted in
the Eclipse environment. DFC plugin was used to
support the data flow testing while MuClipse [25]
and Jumble [26] pluginswere used for themutation
testing. The results of testing six Java programs us-
ing data flowandmutation techniques showed that
the effectiveness of mutation testing is higher than
the effectiveness of data flow testing.Themutation
technique appeared also to bemore expensive than
the data flow one, if time and effort are considered.

Finally, the authors have outlined the direction
for the future research. An interesting and impor-
tant study would be applying DFC in industry
projects to evaluate the cost and benefits of
data flow based criteria in testing Java programs.
Unfortunately for several years the authors have
not been able to raise interest in this subject in
the software industry (the tool is available for free
and only three university researchers downloaded
it, none from industry). One of the reasons may by
the effort needed in this approach. In DFC a tester
manually identifies defining and using methods
(Fig. 4). However, this process is time consuming,
it cannot be conducted automatically. To identify
if a method is defining or using the object state,
the analysis of the source code must be performed.
In complex, industry programs many libraries are
used so the access to the source code is limited.
Decompilation of the library code preceding the
analysis process, or the comparison of the value
returned by hashCode() before and after the
method call (this approach needs additional code
instrumentation and re-execution of test cases)
might be a solution. Comparing the effort needed
with possible obtained results, the authors think
it is not worth to implement these approaches.
In JaBUTi [5], other tool supporting data flow
testing of Java program, every call of a method
is treated as using object state. In section 4 the
authors demonstrated an example showing that

Data Flow Approach to Testing Java Programs Supported with DFC 19

for some programs the identification of methods
defining object’s state enables finding more errors.

References

[1] M.R. Woodward and M.A. Hennell, “On the
relationship between two control-flow coverage
criteria: all JJ-paths and MCDC,” Information
and Software Technology, Vol. 48, No. 7, 2006,
pp. 433–440.

[2] N. Malevris and D.F. Yates, “The collateral cov-
erage of data flow criteria when branch testing,”
Information and Software Technology, Vol. 48,
No. 8, 2006, pp. 676–686.

[3] P. Herman, “A data flow analysis approach to
program testing,” Australian Computer Journal,
Vol. 8, No. 3, 1976, pp. 92–96.

[4] M.H. Chen and H.M. Kao, “Testing object-ori-
ented programs – an integrated approach,” in
10th International Symposium on Software Reli-
ability Engineering, Proceedings. IEEE, 1999, pp.
73–82.

[5] JaBUTi homepage. (Accessed 12.2007). [Online].
http://jabuti.incubadora.fapesp.br/

[6] J.W. Laski and B. Korel, “A data flow oriented
program testing strategy,” Software Engineering,
IEEE Transactions on, No. 3, 1983, pp. 347–354.

[7] S. Rapps and E.J. Weyuker, “Selecting software
test data using data flow information,” IEEE
Transactions on Software Engineering, No. 4,
1985, pp. 367–375.

[8] T.J. Ostrand and E.J. Weyuker, “Data
flow-based test adequacy analysis for languages
with pointers,” in Proceedings of the sympo-
sium on Testing, analysis, and verification. ACM,
1991, pp. 74–86.

[9] M.J. Harrold and G. Rothermel, “Performing
data flow testing on classes,” in ACM SIGSOFT
Software Engineering Notes, Vol. 19, No. 5. ACM,
1994, pp. 154–163.

[10] M.J. Harrold and M.L. Soffa, “Interprocedural
data flow testing,” in ACM SIGSOFT Software
Engineering Notes, Vol. 14, No. 8. ACM, 1989,
pp. 158–167.

[11] A.M.R. Vincenzi, J.C. Maldonado, W.E. Wong,
and M.E. Delamaro, “Coverage testing of Java
programs and components,” Science of Com-
puter Programming, Vol. 56, No. 1, 2005, pp.
211–230.

[12] J. Laski and W. Stanley, Software verification
and analysis: An integrated, hands-on approach.
Springer Science & Business Media, 2009.

[13] M.L. Chaim and R.P.A. De Araujo, “An efficient
bitwise algorithm for intra-procedural data-flow
testing coverage,” Information Processing Let-
ters, Vol. 113, No. 8, 2013, pp. 293–300.

[14] R.P.A. de Araujo and M.L. Chaim, “Data-flow
testing in the large,” in IEEE Seventh Interna-
tional Conference on Software Testing, Verifi-
cation and Validation (ICST). IEEE, 2014, pp.
81–90.

[15] M. Vivanti, “Dynamic data-flow testing,” in
Companion Proceedings of the 36th International
Conference on Software Engineering. ACM, 2014,
pp. 682–685.

[16] A. Rembiszewski, “Data flow coverage of object
programs,” Master’s thesis, Institute of Com-
puter Science, Warsaw University of Technology,
2009, (in Polish).

[17] I. Bluemke and A. Rembiszewski, “Dataflow
testing of Java programs with DFC,” in Ad-
vances in Software Engineering Techniques, ser.
Lecture Notes in Computer Science, T. Szmuc,
M. Szpyrka, and J. Zendulka, Eds. Springer
Berlin Heidelberg, 2012, Vol. 7054, pp. 215–228.
[Online]. http://dx.doi.org/10.1007/978-3-642-
28038-2_17

[18] B. Beizer, Software system testing and quality
assurance. Van Nostrand Reinhold Co., 1984.

[19] JUnit homepage. (Accessed 12.2008). [Online].
http://www.junit.org/

[20] EclEmma 1.2.0. (Accessed 04.2008). [Online].
http://www.eclemma.org/

[21] TPTP: Eclipse test & performance tools
platform project. (Accessed 2008). [Online].
http://www.eclipse.org/tptp/

[22] M. Hutchins, H. Foster, T. Goradia, and T. Os-
trand, “Experiments of the effectiveness of
dataflow – and controlflow – based test adequacy
criteria,” in Proceedings of the 16th international
conference on Software engineering. IEEE Com-
puter Society Press, 1994, pp. 191–200.

[23] R. Santelices, J.A. Jones, Y. Yu, and M.J. Har-
rold, “Lightweight fault-localization using multi-
ple coverage types,” in IEEE 31st International
Conference on Software Engineering. IEEE, 2009,
pp. 56–66.

[24] I. Bluemke and K. Kulesza, “A comparison of
dataflow and mutation testing of Java methods,”
in Dependable Computer Systems. Springer, 2011,
pp. 17–30.

[25] Muclipse homepage. (Accessed 01.2011). [On-
line]. http://muclipse.sourceforge.net/index.php

[26] Jumble homepage. (Accessed 12.2008). [Online].
http://jumble.sourceforge.net/index.ht

e-Informatica Software Engineering Journal, Volume 9, Issue 1, 2015, pages: 21–35, DOI 10.5277/e-Inf150102

Cross-Project Defect Prediction with Respect to Code
Ownership Model: An Empirical Study

Marian Jureczko∗, Lech Madeyski∗∗
∗Department of Computer Engineering, Wrocław Univeristy of Technology

∗∗Faculty of Computer Science and Management, Wrocław University of Technology
marian.jureczko@pwr.edu.pl, lech.madeyski@pwr.edu.pl

Abstract
The paper presents an analysis of 83 versions of industrial, open-source and academic projects. We
have empirically evaluated whether those project types constitute separate classes of projects with
regard to defect prediction. Statistical tests proved that there exist significant differences between
the models trained on the aforementioned project classes. This work makes the next step towards
cross-project reusability of defect prediction models and facilitates their adoption, which has been
very limited so far.

Keywords: software metrics, software defect prediction, cross-project prediction

1. Introduction

Assuring software quality is known to require
time-consuming and expensive development pro-
cesses. The costs generated by those processes
may be minimized when the defects are predicted
early on, which is possible by means of defect
prediction models [1]. Those models, based on
software metrics, have been developed by a num-
ber of researchers (see Section 2). The software
metrics which describe artifacts of the software
development process (e.g. software classes, files)
are generally used as the models’ input. The
model output usually estimates the probability
of failure, the occurrence of a defect or the ex-
pected number of defects. The predictions are
made for a given artifact. The idea of building
models on the basis of experienced facts, called
inductive inference, is discussed in the context of
software engineering by Samuelis [2].

Defect prediction models are extraordinarily
useful in software testing process. The available
resources are usually limited and, therefore, it
may be difficult to conduct the comprehensive

tests on, and the reviews of, all artifacts. Defect
prediction models are extraordinarily useful in
the software testing process. The available re-
sources are usually limited and, therefore, it may
be difficult to conduct the comprehensive tests
on, and the reviews of, all artifacts [1]. The pre-
dictions may be used to assign varying priorities
to different artifacts (e.g. classes) under test [3,4].
According to the 80:20 empirical rule, a small
amount of code (often quantified as 20% of the
code) is responsible for the majority of software
defects (often quantified as 80% of the known
defects in the system) [5, 6]. Therefore, it may
be possible to test only a small amount of arti-
facts and find a large amount of defects. In short,
a well-designed defect prediction model may save
a lot of testing efforts without decreasing software
quality.

The defect prediction models may give sub-
stantial benefits, but in order to build a model,
a software measurement program must be
launched. According to Kaner and Bond [7], only
few companies establish such programs, even
fewer succeed with them and many of the com-

22 Marian Jureczko, Lech Madeyski

panies use them only to conform to the criteria
laid down in the Capability Maturity Model [8].
The costs may be one of the reasons behind the
limited adoption of the defect prediction mod-
els, e.g. an average overhead for metrics collec-
tion was estimated to be 4–8% of the overall
value [8, 9]. Using cross-project defect prediction
could reduce the expenditure, since one model
may be used in several software projects, which
means that it is not necessary to launch a com-
pletely new software measurement program for
each project. The cross-project defect prediction
is also helpful with solving the problems con-
nected with the lack of historical data indispens-
able to train a model [10]. Unfortunately, the
body of knowledge of cross-project defect predic-
tion does not support us with the results that
are advanced enough to be used (details in the
next section). The intention of this work is to
reveal the facts regarding high level prediction
boundaries, particularly the possibility of using
prediction models across different project code
ownership models. The conducted experiments
aiming at verifying whether cluster of projects
can be derived from the source code ownership
model, where the cluster is a group of software
projects that share a common prediction model.
Such finding eases the application of defect pre-
diction by removing the necessity of training
the model. It is enough to identify the cluster
a given project belongs to and use the common
model.

This study investigates whether there is a rel-
evant difference between industrial, open-source
and academic software projects with regard to
defect prediction. In order to explore that po-
tential disparity, the data from 24 versions of 5
industrial projects, 42 versions of 13 open-source
projects and 17 versions of 17 academic projects
were collected. Several defect prediction models
were built and the efficiency of the predictions
was compared. Statistical methods were used in
order to decide whether the obtained differences
were significant or not. It is worth mentioning
that a somehow related question of suitability of
software quality model for projects within differ-
ent application domains was raised by Villalba
et al. [11], whereas the results of other works

which investigate the cross-project defect predic-
tion (i.e. [12,13]) suggest that the code ownership
model might be a relevant factor with regard to
the prediction performance.

The rest of this paper is organized as follows:
subsequent sections describe related work, the
design of empirical evaluation used in this study
(including the details of data collection and analy-
sis methodology), the descriptive statistics of the
collected data, the results of empirical evaluation,
threats to the validity of the empirical study, and
conclusions.

2. Related Work

Cross-project reusability of defect prediction
models would be extremely useful. Such general-
ized prediction models would serve as a starting
point in software development environments that
cannot provide historical data and, as a result,
they would facilitate the adoption of defect pre-
diction models.

A preliminary work in this area was conducted
by Subramanyam and Krishnan [14]. The authors
investigated a software project where C++, as
well as Java, were employed and found substantial
differences between classes written in different
programming languages with regard to defect
prediction, e.g. the interaction effect (the defect
count grows with the CBO value for C++ class
but decreases for the Java classes; the relation
was calculated with respect to the DIT metric).
Hence, the results indicate issues with regard to
cross-language predictions. The authors investi-
gated only one project, nevertheless, similar dif-
ficulties might arise in cross-project predictions.

Nagappan et al. [15] analyzed whether defect
predictors obtained from one project history are
applicable to other projects. It turned out that
there was no single set of metrics that would
fit into all five investigated projects. The defect
prediction models, however, could be accurate
when obtained from similar projects (the similar-
ity was not precisely defined, though). The study
was extended by Zimmerman et al. [12], who
performed 622 cross-project predictions for 12
real world applications. A project was considered

Cross-Project Defect Prediction with Respect to Code Ownership Model: An Empirical Study 23

as a strong predictor for another project when
all precision, recall, and accuracy were greater
than 0.75. Only 21 cross-project validations sat-
isfied this criterion, which sets the success rate
at 3.4%. Subsequently, the guidelines to assess
the cross-project prediction chance of success
were given. The guidelines were summarized in
a decision tree. The authors constructed separate
trees for assessing prediction precision, recall, and
accuracy, but only the tree for precision was given
in the paper.

A study of cross-company defect prediction
was conducted by Turhan et al. [10]. The authors
concluded that there is no single set of static
code features (metrics) that may serve as defect
predictor for all the software projects. The ef-
fectiveness of the defect prediction models was
measured using probability of detection (pd) and
probability of false alarm (pf). Cross-company
defect prediction dramatically increased pd as
well as pf. The authors were also able to decrease
the pf by applying the nearest neighbor filtering.
The similarity measure was the Euclidean dis-
tance between the static code features. However,
there was still a drawback for cross-company de-
fect prediction models: the project features which
might influence the effectiveness of cross-company
predictions were not identified.

In an earlier paper [13], we presented an em-
pirical study showing that data mining tech-
niques may be used to identify project clus-
ters with regard to cross-project defect predic-
tion. The k-means and Kohonen’s neural net-
works were applied to correlation vectors in or-
der to identify the clusters. The correlation vec-
tors were calculated for each version of each
project respectively and represented Pearson’s
correlation coefficients between software metrics
and numbers of defects. Subsequently, a defect
prediction model was created for each identi-
fied cluster. In order to validate the existence
of a cluster, the efficiency of the cluster model
was compared with the efficiency of a general
model. The general model was trained using
data from all the projects. Six different clus-
ters were identified and the existence of two of
them was statistically proven. The clusters char-
acteristics were consistent with Zimmerman’s

findings [12] about the factors that are criti-
cal in cross-project prediction. In our paper, we
make a step towards simplifying the setup of
defect prediction in the software development
process. The laborious activities regarding cal-
culation of correlation vectors and mining the
clusters are not needed as it is obvious from
the very beginning to which cluster a project
belongs. A subset of the same data set had al-
ready been analysed in [16,17]. In [16] 5 industrial
and 11 open-source projects were investigated.
The study was focused on the role of the size
factor in defect prediction. The other paper was
focused on the cross-project defect prediction.
In [17], published in Polish, being a preliminary
study to this one, we focused on the differences
and similarities between industrial, open-source
and academic projects, whereas in this paper, we
additionally performed a comprehensive statisti-
cal analysis. As a result, new projects may take
advantage of the prediction models developed
for the aforementioned classes of the existing
projects.

It is also worth mentioning that a different ap-
proach, based on the idea of inclusion additional
software projects during the training process, can
provide a cross-project perspective on software
quality modelling and prediction [18].

A comprehensive study of cross-project defect
prediction was conducted by He et al. [19]. The
authors investigated 10 open source projects to
check whether training data from other projects
can provide better prediction results than train-
ing data from the same project – in the best
cases it was possible. Furthermore, in 18 out of
34 cases the authors were able to obtain a Recall
greater than 70% and a Precision greater than
50% for the cross-project defect prediction.

3. Empirical Evaluation Design

3.1. Data Collection

The data from 83 versions of 35 projects was col-
lected and analyzed. It covers 24 versions of 5 in-
dustrial projects, 42 versions of 13 open-source
projects and 17 versions of 17 academic projects.

24 Marian Jureczko, Lech Madeyski

The number of versions is greater than the num-
ber of projects because there were projects in
which data from several versions were collected.
For example, in the case of the Apache Ant
project (http://ant.apache.org), versions 1.3, 1.4,
1.5, 1.6 and 1.7 were analyzed. For each of the
analysed versions there was an external release,
which was visible to the customer or user.

Each of the investigated industrial projects
is a custom-built enterprise solution. All of the
industrial projects have already been success-
fully developed by different teams of 10 to 40
developers and installed in the customer envi-
ronments. All of them belong to the insurance
domain but implement different feature sets on
top of Java-based frameworks. Each of the in-
dustrial projects were developed by the same
vendor.

The following open-source projects were in-
vestigated: Apache Ant, Apache Camel, Apache
Forrest, Apache Log4j, Apache Lucene, Apache
POI, Apache Synapse, Apache Tomcat, Apache
Velocity, Apache Xalan, Apache Xerces, Ckjm
and Pbeans.

The academic projects were developed by the
fourth and the fifth-year graduate MSc computer
science students. The students were divided into
the groups of 3, 4 or 5 persons. Each group de-
veloped exactly one project. The development
process was highly iterative (feature driven de-
velopment). Each project lasted one year. During
the development for each feature UML documen-
tation was prepared. Furthermore, high level of
test code coverage was obtained by using the
latest testing tools, e.g. JUnit for unit tests, Fit-
Nesse for functional tests. The last month of
development was used for additional quality as-
surance and bug fixing; the quality assurance was
conducted by an external group of subjects (i.e.
not the subjects involved in the development).
The projects were from different domains, were
built using different frameworks, had different
architectures and covered different sets of func-
tionalities, nonetheless all of them were written
in Java.

The objects of the measurement were soft-
ware development products (Java classes). The
following software metrics were used in the study:

– Chidamber & Kemerer metrics suite [20]:
Weighted Method per Class (WMC), Depth of
Inheritance Tree (DIT), Number Of Children
(NOC), Coupling Between Object classes
(CBO), Response For a Class (RFC) and Lack
of Cohesion in Methods (LCOM);

– a metric suggested by Henderson-Sellers [21]:
Lack of Cohesion in Methods (LCOM3);

– Martin’s metrics [22]: Afferent Couplings (Ca)
and Efferent Couplings (Ce).

– QMOOD metrics suite [23]: Number of Public
Methods (NPM), Data Access Metric (DAM),
Measure Of Aggregation (MOA), Measure of
Functional Abstraction (MFA) and Cohesion
Among Methods (CAM);

– quality oriented extension of Chidamber
& Kemerer metrics suite [24]: Inheritance
Coupling (IC), Coupling Between Methods
(CBM) and Average Method Complexity
(AMC),

– two metrics which are based on the McCabe’s
cyclomatic complexity measure [25]: Maxi-
mal Cyclomatic Complexity (Max_CC) and
Average Cyclomatic Complexity (Avg_CC),

– Lines Of Code (LOC),
– Defects – the dependent variable; in the case

of industrial and open source projects the
sources of the defect data were testers and
end users, in the case of academic projects
the source of the defect data were students
(not involved in a development of a partic-
ular projects) who validated the developed
software against the specification during the
last month (devoted to testing) of the 1-year
project.
Definitions of the metrics listed above can

be found in [16]. In order to collect the met-
rics, we used a tool called Ckjm (http://gromit.
iiar.pwr.wroc.pl/p_inf/ckjm). The version of
Ckjm employed here was reported earlier by
Jureczko and Spinellis [16]). The defect count
was collected with a tool called BugInfo (http:
//kenai.com/projects/buginfo). The collected
metrics are available online in a Metric Repository
(all metrics: http://purl.org/MarianJureczko/
MetricsRepo, metrics used in this research:
http://purl.org/MarianJureczko/MetricsRepo/
IET_CrossProjectPrediction). Data sets related

Cross-Project Defect Prediction with Respect to Code Ownership Model: An Empirical Study 25

to the analyzed software defect prediction models
are available from the R package [26] to streamline
reproducible research [27,28].

The employed metrics might be considered
as the classic ones. Each of them has been in use
for at least several years. Hence, the metrics are
well known, already recognized by the industry
and have a good tool support. There is a number
of other metrics, some of them very promising in
the field of defect prediction, e.g. the cognitive,
the dynamic and the historical metrics [15,29,30].
A promising set of metrics are process metrics
analysed by Madeyski and Jureczko [31]. Some
of them, like Number of Distinct Committers
(NDC) or Number of Modified Lines (NML), can
significantly improve defect prediction models
based on classic software product metrics [31].
Nevertheless, we decided not to use them, since
those metrics are not so popular yet (especially in
the industry) and the collecting process could be
challenging. One may expect that the limited tool
support would result in decreasing the number of
investigated projects, which is a crucial factor in
cross-project defect prediction. We fully under-
stand and accept the value of using metrics that
describe a variety of features. Furthermore, we
are involved in the development of a tool which
includes support for the historical metrics [32].
We are going to use the tool to collect metrics
for future experiments.

3.2. Data Analysis Methodology

The empirical evaluation described further was
performed to verify whether there is a difference
between industrial, open-source and academic
projects with regard to defect prediction. Sta-
tistical hypotheses were formulated. The defect
prediction models were built and applied to the
investigated projects. The efficiency of prediction
was used to evaluate the models and to verify
the hypotheses.

To render that in a formal way, it is neces-
sary to assume that E(M, v) is the evaluation
function. The function assesses the efficiency of
prediction of the model M on the version v of
the investigated software project. Let c1, c2, ..., cn
be the classes from the version v in descending

order of predicted defects according to the model
M , and let d1, d2, ..., dn be the number of de-
fects in each class. Di is the

∑
(d1, ..., di) , i.e.,

the total defects in the first i classes. Let k be
the smallest index so that Dk > 0.8 ∗Dn, then
E(M,v) = k/n ∗ 100%. Such evaluation function
has been used as it clearly corresponds with the
software projects reality we faced. It is closely
related to the quality goal: detect at least 80% of
defects. The evaluation function shows how many
classes must be tested (in practice it corresponds
well to how much effort must be committed) to
reach the goal when testing according to predic-
tion model output. The properties of the group
of evaluation functions that the one selected by
us belongs to have been analysed by Weyuker et
al. [33].

The empirical evaluation is defined in
a generic way which embraces three investigated
classes of software projects. Let A,B and C be
those classes (i.e. industrial, open-source and aca-
demic, respectively). Let us interpret the classes
of software projects as the sets of versions of
software projects. Let A be the object of the
current empirical evaluation. B and C will be
investigated in subsequent experiments using the
analogous procedure. Let a be a member of the
set A, a ∈ A. Let Mx be the defect prediction
model which was trained using data from ver-
sions that belong to set X. Specifically, there are
MA, MB, MC and MB∪C(B ∩ C = ¬A). Subse-
quently, the following values were calculated for
each a ∈ A:
– E(MA, a) – let us call the set of obtained

values EA,
– E(MB, a) – let us call the set of obtained

values EB,
– E(MC , a) – let us call the set of obtained

values EC ,
– E(MB∪C , a) – let us call the set of obtained

values EB∪C .
The following statistical hypothesis may be

formulated with the use of EA, EB , EC and EB∪C
sets:
– H0,A,B – EA and EB come from the same

distribution.
– H0,A,C – EA and EC come from the same

distribution.

26 Marian Jureczko, Lech Madeyski

Table 1. Descriptive statistics of metrics in different projects classes (X – mean; s – standard
deviation; r – Pearson correlation coefficient; ∗ – correlation significant at 0,05 level)

Industrial Open-source Academic
X s r X s r X s r

WMC 5.2 8.6 0.13∗ 10.5 13.7 0.29∗ 9.7 10.8 0.38∗
DIT 3 1.7 −0.07∗ 2.1 1.3 −0.01 2.1 1.7 0.29∗
NOC 0.6 8.8 0 0.5 3.4 0.03∗ 0.2 1.5 −0.04
CBO 15.1 20.8 0.26∗ 10.3 16.9 0.20∗ 8 8.1 0.25∗
RFC 24.7 27.5 0.28∗ 27.1 33.3 0.34∗ 26 30.6 0.53∗

LCOM 37.6 660.2 0.03∗ 95.2 532.9 0.19∗ 62 276.5 0.37∗
Ca 2.8 17.7 0.16∗ 5.1 15.3 0.11∗ 3.8 6.7 0.19∗
Ce 12.3 10.3 0.24∗ 5.4 7.4 0.26∗ 4.7 5.9 0.38∗

NPM 3.4 7.9 0.08∗ 8.4 11.5 0.22∗ 7.4 8.7 0.08∗
LCOM3 1.4 0.6 −0.04∗ 1.1 0.7 −0.07∗ 1.1 0.6 −0.11∗

LOC 170.4 366.7 0.26∗ 281.3 614.7 0.29∗ 248.1 463.4 0.53∗
DAM 0.2 0.3 0.02∗ 0.5 0.5 0.06∗ 0.6 0.5 0.07∗
MOA 0.1 1 0.03∗ 0.8 1.8 0.27∗ 0.8 1.6 0.27∗
MFA 0.6 0.4 −0.06∗ 0.4 0.4 −0.02∗ 0.3 0.4 0.16∗
CAM 0.6 0.2 −0.13∗ 0.5 0.3 −0.19∗ 0.5 0.2 −0.17∗

IC 1.1 1.1 −0.04∗ 0.5 0.8 0.06∗ 0.3 0.5 −0.03
CBM 1.7 2.4 −0.03∗ 1.5 3.1 0.10∗ 0.5 1.5 0.02
AMC 30.4 39.8 0.14∗ 28.1 80.7 0.07∗ 21.2 24.7 0.24∗

Max_cc 3.3 5.7 0.17∗ 3.8 7.5 0.17∗ 3.2 5.5 0.31∗
Avg_cc 1.3 1.5 0.13∗ 1.3 1.1 0.12∗ 1.1 0.8 0.17
Defects 0.232 0.887 0.738 1.906 0.382 1.013

– H0,A,B∪C – EA and EB∪C come from the
same distribution.
The alternative hypothesis:

– H1,A,B – EA and EB come from different dis-
tributions.

– H1,A,C – EA and EC come from different dis-
tributions.

– H1,A,B∪C – EA and EB∪C come from different
distributions.
When the alternative hypothesis is accepted

and mean(EA) < mean(EX), there is a signifi-
cant difference in prediction accuracy: the model
trained on the data from set A gives a signifi-
cantly better prediction than the model trained
on the data from set X. The predictions are made
for all the project versions which belong to the
set A. Hence, the data from set X should not
be used to build defect prediction models for the
project versions which belong to set A.

The hypotheses were evaluated by the para-
metric t-test for dependent samples. The general
assumptions of parametric tests were investigated
beforehand. The homogeneity of variance was
tested using Levene’s test and the normality of

distribution was tested using the Shapiro–Wilk
test [34]. All hypotheses were tested on the de-
fault significance level: α = 0.05.

4. Experiments and Results

4.1. Descriptive Statistics

The three aforementioned classes of software
projects, namely: industrial, open-source and aca-
demic, were described in Table 1. The description
provides information about the mean value and
standard deviation of each of the analyzed soft-
ware metrics. Each metric is calculated per Java
class, and the statistics are based on all Java
classes in all projets that belong to a given class
of projects. Moreover, the correlations with the
number of defects were calculated and presented.
Most of the size related metrics (WMC, LCOM,
LOC, Max_cc and Avg_cc) had higher values
in open-source projects, while coupling metrics
(CBO and Ce) had the greatest values in the
industrial projects. In the case of eachof the in-

Cross-Project Defect Prediction with Respect to Code Ownership Model: An Empirical Study 27

Table 2. The number of classes per project

Industrial Open-source Academic
X s X s X s

No of classes 2806.3 831.7 302.6 219.4 56.4 58.4

Table 3. The number of defects
per Java class

Type X s

Open-source 0.7384 1.9
Industrial 0.2323 0.9
Academic 0.3816 1.0

vestigated project classes, the RFC metric has
a higher correlation coefficient with the number
of defects. However, there are major differences
in its value (it is 0.28 in the case of the industrial
projects, and 0.53 in the case of the academic
projects) and in the sets of other metrics that
are highly correlated with the number of defects.

Collected data suggest that in all kinds of the
projects (industrial, open-source and academic)
the mean LOC per class follows the rule of thumb
presented by Kan in his book [35] (Table 12.2 in
Chapter 12) that LOC per C++ class should be
less than 480. A similar value is expected for Java.
Bigger classes would suggest poor object-oriented
design. Low LOC per class does not mean that
the code under examination is small. To give
an impression with regard to the size of the in-
vestigated projects Table 2 presents numbers of
classes per project.

The number of defects per Java class is pre-
sented in Table 3. It appears that the number of
defects per Java class in industrial and academic
projects is close with regards to standard devi-
ation and mean, while open source projects are
characterized by higher standard deviation as well
as mean. A plausible explanation is that lower
standard deviations in academic and industrial
projects come from a more homogeneous develop-
ment environment than in open source projects.

4.2. Empirical Evaluation Results

The empirical evaluation has been conducted
three times. Each time a different class of soft-
ware projects was used as the object of study.

4.2.1. Industrial Projects

The descriptive statistics are summarized in Ta-
ble 4. The models that were trained on the data
from the industrial projects (‘Industrial models’

in Table 4) gave the most accurate prediction.
The predictions were made only for the indus-
trial projects. Furthermore, the mean value of the
evaluation function E(M, v) was equal to 50.82
in the case of the ‘Industrial models.’ In the case
of the other models, the mean values equaled
53.96, 55.38 and 73.59. A smaller value of the
evaluation function implies better predictions.

The predictions obtained from the models
trained on the data from the industrial projects
were compared with the predictions from the
other models. The predictions were made only for
the industrial projects. The difference was statis-
tically significant only in the case of comparison
with the predictions from models trained on the
data from the academic projects (see Table 5).
In this case the calculated effect size d = 1.56 is
extremely high (according to magnitude labels
proposed by Cohen d effect size equal to 0.2
is considered small, equal to 0.5 is considered
medium, while equal to 0.8 is considered high)
while the power of a test (i.e., the probability
of rejecting H0 when in fact it is false) is equal
to 1. This important finding shows that there
exist significant differences between industrial
and academic software projects with respect to
defect prediction.

4.2.2. Open-source Projects

The descriptive statistics of the results of ap-
plying defect prediction models to open-source
projects are presented in Table 6. The mod-
els, which were trained on the data from the
open-source projects (‘Open-source models’ in
Table 6), gave the most accurate prediction.

Table 7 shows the t-test statistics, power
and effect size calculations for the open-source
projects.

In all of the cases p-value is lower than 0.05.
However, instead of coming to the conclusions

28 Marian Jureczko, Lech Madeyski

Table 4. Models evaluations for the industrial projects

Model Non-industrial Open-source Academic Industrial

X 53.96 55.38 73.59 50.82
s 13.29 12.01 9.68 9.86

Table 5. Dependent samples t-test for the industrial
projects

H0,ind,open∪acad H0,ind,open H0,ind,acad

t, df = 23 −.979 −1.482 −7.637
p 0.338 0.152 0.000

effect size d 0.200 0.302 1.559
power 0.244 0.418 1

Table 6. Models evaluations for the open-source projects

Model Industrial Non-open-source Academic Open-source

X 57.67 57.26 65.17 54.00
s 19.22 18.02 14.31 16.66

now we suggests performing the Bonferroni cor-
rection (explained in Section 4.2.4) beforehand.
The calculated effect sizes are between medium
and small int the first two cases, while medium to
large in the last case which is an important find-
ing suggesting serious differences between open
source and academic projects with respect to
defect prediction. The power of a test is cal-
culated as well very high (close to 1) proba-
bility of rejecting H0 is suggested when in fact
it is false.

4.2.3. Academic Projects

The descriptive statistics of the results of apply-
ing defect prediction models to academic projects
are presented in Table 8. The obtained results are
surprising. The ‘Academic models’ gave almost
the worst predictions. Slightly worse were only
the ‘Industrial models’, whilst the ‘Open-source
models’ and ‘Non-academic models’ gave defi-
nitely better predictions.

The analysis presented in Table 9 is based on
the t-test for dependent samples. The predictions
obtained from the models which were trained on
the data from the academic projects, were com-
pared with predictions from the other models.
The predictions were made only for the academic

projects. The differences were not statistically
significant, the effect sizes were below small (in
the first and third case) and between small and
medium in the second case.

4.2.4. Bonferroni Correction

Since several different hypotheses were tested
on the same data set, the following kinds of
errors were likely to occur: errors in inference,
including confidence intervals which fail to in-
clude their corresponding population parame-
ters, or hypothesis tests that incorrectly reject
the null hypothesis. Among several statistical
techniques that have been developed to pre-
vent such instances is the Bonferroni correc-
tion. The correction is based on the idea that
if n dependent or independent hypotheses are
being tested on a data set, then one way of
maintaining the familywise error rate is to test
each individual hypothesis at a statistical sig-
nificance level of 1/n times. In our case n = 9
as there are nine different hypotheses. Hence,
the significance level should be decreased to
0.05/9 = 0.0055. Consequently, the H0,ind,acad

and H0,open,acad hypotheses will be rejected but
H0,open,ind and H0,open,ind∪acad hypotheses will
not be rejected.

Cross-Project Defect Prediction with Respect to Code Ownership Model: An Empirical Study 29

Table 7. Dependent samples t-test for the open-source
projects

H0,open,ind H0,open,ind∪acad H0,open,acad

t, df = 41 −2.363 −2.193 −4.325
p 0.023 0.034 0.000

effect size d 0.365 0.338 0.667
power 0.752 0.695 0.995

Table 8. Models evaluations for the academic projects

Model Industrial Open-source Non-academic Academic

X 56.34 50.60 53.19 55.02
s 20.71 15.56 18.54 20.21

Table 9. Dependent samples t-test for the academic projects

H0,acad,ind H0,acad,open H0,acad,ind∪open

t, df = 16 0.312 −1.484 −0.696
p 0.759 0.157 0.496

effect size d 0.076 0.360 0.169
power 0.009 0.412 0.164

4.3. Which Metrics are Relevant?

There is some evidence that the three investigated
code ownership models differ with respect to de-
fect prediction. Therefore, it could be helpful for
further research to identify the casual relations
that drive those differences. Unfortunately, the
scope of software metrics (independent variables
of the defect prediction models) does not cover
many aspects that may be a direct cause of de-
fects. Let us assume that there is an inexperienced
developer who gets a requirement to implement
and he does something wrong, he introduces a de-
fect into the system. The true cause of the defect
is a composition of several factors including the
developer’s experience, requirement complexity
and the level of maintainability of the parts of
the system that were changed by the developer.
Only a fraction of the aforementioned factors can
be covered by the metrics available from software
repositories and hence many of them must be
ignored by the defect prediction models. Taking
into consideration the above arguments we de-
cided not to define the casual relations upfront,
but investigate what emerges from the models we
obtained. Since it does not follow the commonly

used procedure (start with a theory and then
look for confirmation in empirical data), it is
important to keep in mind that results of such
analysis do not indicate casual relations, but only
a coexistence of some phenomena.

The analysis is based on the relevancy of
particular metrics in models obtained for differ-
ent code ownership types. The defect prediction
model has the following form:

ExpectedNumberOfDefects = a1∗M1+a2∗M2 . . .

where ai represents coefficients obtained from re-
gression, Mi software metrics (independent vari-
ables in the prediction). For each metric we cal-
culated its importance factor (the factors are
calculated for each code ownership model respec-
tively) using the following form:

IFMi =
ai ∗Mi∑

j

|aj ∗Mj |

whereMi is the average value of metricMi in the
type of code ownership for which the factor is cal-
culated (the averages are reported in Tab. 1). The
above definition results in a factor that shows for

30 Marian Jureczko, Lech Madeyski

given metric what part of the prediction model
output is driven by the metric and additionally
preserves the sign of the metric’s contribution.
The obtained values of importance factors are
reported in Tab. 10.

Table 10. Importance of metrics in different code
ownership models.

Model Industrial Open-source Academic

WMC −0.06 0 0
DIT −0.08 0 0.08
NOC −0.01 0 0
CBO 0.17 0 −0.36
RFC 0.19 0.35 0.04
LCOM 0 0 0
Ca 0 0.05 0.17
Ce 0 0.17 0.20
NPM 0 0 0.01
LCOM3 0.13 0 −0.05
LOC 0.05 0.14 0
DAM −0.01 −0.17 −0.04
MOA 0 0.12 0
MFA 0.05 0 −0.02
CAM −0.16 0 0
IC 0 0 −0.02
CBM −0.03 0 0.01
AMC −0.04 0 0
Max_cc 0.01 0 0
Avg_cc 0 0 0

The importance factors show that there are
similarities as well as differences between the
prediction models trained for different types of
code ownership. In all of them an important role
is played by the RFC metric and all of them
take into consideration coupling related metrics.
However, in the case of academic projects these
are Ca and Ce, in the case of open-source Ce is
much more important than Ca and for industrial
projects only CBO matters. There are also met-
rics with positive contribution in only one type
of projects (positive contribution means that the
metric value grows with the number of expected
defects), i.e. LCOM3 for industrial projects (as
well as the mentioned earlier CBO), MOA and
LOC for the open-source projects, DIT for the
academic ones. More significant differences have
been observed with regard to negative contri-
bution. The greatest negative contribution for

academic projects have CBO and LCOM3, for
open-source DAM and for industrial CAM.

5. Threats to Validity

5.1. Construct Validity

Threats to construct validity refer to the extent
to which the measures accurately reflect the theo-
retical concepts they are intended to measure [34].
The mono-method bias reflects the risk of a sin-
gle means of recording measures. As a result,
an important construct validity threat is that we
cannot guarantee that all the links between bugs
and versioning system files, and, subsequently,
classes, are retrieved (e.g. when there is no bug
reference identifier in the commit comment), as
bugs are identified according to the comments in
the source code version control system. In fact,
this is a widely known problem and the method
that we adopted is not only broadly used but
also represents the state of the art with respect
to linking bugs to versioning system files and
classes [36,37].

A closely related threat concerns anonymous
inner classes. We cannot distinguish whether
a bug is related to anonymous inner classes or
their containing class, due to the file-based nature
of source code version control systems. Hence, it
is a common practice not to take into consider-
ation the inner classes [38–40]. Fortunately, the
inner classes usually constitute a small portion
of all classes (in our study it was 8.84%).

Furthermore, the guidelines of commenting
bugfixes may vary among different projects.
Therefore, it is possible that the interpretation
of the term bug is not unique among the investi-
gated projects. Antoniol et al. [41] showed that
a fraction of issues marked as bugs are problems
unrelated to corrective maintenance. We did our
best to remove such occurrences manually but in
future research we plan to apply the suggestion
by Antoniol et al. to filter the non-bug issues out.

It is also worth mentioning that it was not
possible to track operations like changing the
class name or moving the class between pack-

Cross-Project Defect Prediction with Respect to Code Ownership Model: An Empirical Study 31

ages. Therefore, after such a change, the class is
interpreted as a new one.

5.2. Statistical Conclusion Validity

Threats to statistical conclusion validity relate to
the issues that affect the validity of inferences. In
our study we used robust statistical tools: SPSS
and Statistica.

5.3. Internal Validity

The threats to internal validity concern the true
causes (e.g., external factors) that may affect
the outcomes observed in the study. The exter-
nal factor we are aware of is the human factor
pointed out by D’Ambros et al. [38]. D’Ambros
et al. decided to limit the human factor as far as
possible and chose not to consider bug severity
as a weight factor when evaluating the number
of defects. We decided to follow this approach as
Ostrand et al. reported how those severity ratings
are highly subjective and inaccurate [42].

Unfortunatley, each of the investigated clus-
ters (i.e. code ownership models) has limited vari-
ability. All academic projects were developed at
the same university. However, they differ a lot
with respect to requirements and architecture.
Only two open-source projects (PBeans and ckjm)
do not come from Apache and all of them can
be classified as a tool or library what is in op-
position to industrial projects which are enter-
prise solutions that employ database systems.
Furthermore, all the industrial projects were de-
veloped by the same vendor which poses a major
threat to external validity. In consequence, it is
possible to define an alternative hypothesis that
explains the differences between clusters, e.g. the
open-source cluster can be redefined into tools
& libraries, while the industrial cluster can be
redefined into enterprise database oriented solu-
tion and then a hypothesis that regards difference
between such clusters may be formulated. Un-
fortunately, those alternative hypotheses cannot
be invalidated without additional projects and
even with additional projects we cannot avoid
further alternative hypotheses with more fancy
definitions of cluster boundaries. The root cause

of this issue is the sample selection procedure
which does not guarantee random selection. Only
a small part of the population of software projects
is available for researchers and collecting data
for an experiment is a huge challenge taking
into account how difficult is to get access to the
source code or software metrics of real, industrial
projects. We were addressing this issue by taking
into consideration the greatest possible number
of projects we were able to cover with a common
set of software metrics. It does not solve the
issue, but reduces the risk of accepting wrong
hypothesis due to some data constellations that
are a consequence of sample selection.

5.4. External Validity

The threats to external validity refer to the gen-
eralization of research findings. Fortunately, in
our study we considered a wide range of different
kinds of projects. They represent different own-
ership models (industrial, open source and aca-
demic), belong to different application domains
and have been developed according to different
software development processes. However, our
selection of projects is by no means representa-
tive and that poses a major threat to external
validity. For example, we only considered software
projects developed in the Java programming lan-
guage. Fortunately, thanks to this limitation all
the code metrics are defined identically for each
system, so we have alleviated the parsing bias.

6. Conclusions

Our study has compared three classes of soft-
ware projects (industrial, open-source and aca-
demic) with regard to defect prediction. The
analysis comprised the data collected from 24
versions of 5 industrial projects, 42 versions of
13 open-source projects, and 17 versions of 17
academic projects. In order to identify differ-
ences among the classes of software projects listed
above, defect prediction models were created and
applied. Each of the software project classes was
investigated through verifying three statistical hy-
potheses. The following two noteworthy findings

32 Marian Jureczko, Lech Madeyski

were identified: two of the investigated hypotheses
were rejected: H0,ind,acad and H0,open,acad. In the
case of H0,open,ind∪acad and H0,open,ind p-values
were below 0.05, but the hypotheses can not be
rejected due to the Bonferroni correction. Such
results are not conclusive due to threats to ex-
ternal validity discussed in Secton 5.4, as well
as the possibility that even small changes in the
input data may change the decision regarding
hypothesis rejection in both directions and thus
we encourage further investigation.

As a result, we obtained some evidence that
the open-source, industrial and academic projects
may be treated as separate classes of projects
with regard to defects prediction. In consequence,
we we do not recommend using models trained on
the projects from different code ownership model,
e.g. making predictions for an industrial project
with a model trained on academic or open-source
projects. Of course the investigated classes (i.e.
academic, industrial and open-source) may not
be optimal and smaller classes could be identified
in order to increase the prediction performance.
Identification of smaller projects classes consti-
tutes a promising direction for further research.

The prediction models trained for each of the
investigated classes of projects were further anal-
ysed in order to reveal key differences between
them. Let us focus on the differences between
open-sources and industrial ones as we have very
limited evidence to support the thesis that aca-
demic projects constitutes a solid class of projects
with respect to defect prediction. However, the
analysis revealed an almost self-explaining fact
with regard to this class of projects. Namely, the
deeper the inheritance tree the more likely it is
that a student will introduce a defect in such
a class. Typically, API of a class with a number
of ancestors is spread among the parent classes
and thus a developer that looks at only some
of them may not understand the overall concept
and introduce changes that are in conflict with
the source code of one of the other classes. In
consequence, we may expect that inexperienced
developer, e.g. a student, will miss some impor-
tant details.

The differences between open-source and in-
dustrial projects can be explained by the so called

crowd-driven software development model com-
monly used in open-source projects. High value
of the model output in those projects is mainly
driven by the LOC and MOA metrics. The first
of them simply represents the size of a class and
it is not surprising that it could be challenging
to understand a big class for someone who com-
mits to a project only occasionally. Furthermore,
the MOA metric can be considered in terms of
the number of classes that must be known and
understood to effectively work with a given one,
which creates additional challenges for developers
that do not work in a project in a daily manner.
There also is the negative contribution of the
DAM metrics which also fits well to the picture
as high values of this metric correspond with
low number of public attributes and thus nar-
rows the scope of source code that a developer
should be familiar with. Both, industrial and
open-source models use the RFC metric, how-
ever, in the case of open-source its more relevant
which also supports the aforementioned hypoth-
esis regarding crowd-driven development. The
industrial projects are usually developed by peo-
ple who know the project under development very
well. That does not mean that everyone knows
everything about each class. When it is neces-
sary to be familiar with a number of different
classes to make a single change in the project it
is still likely to introduce a defect. However, in
the case of industrial projects the effect is not
so strong. Furthermore, the industrial prediction
model uses metrics that regard flaws in the class
internal structure, i.e. LCOM3 and CAM), which
make challenges in the development regardless of
developer knowledge about other classes.

The models that were trained on the academic
projects usually gave the worst predictions. Even
in the case of making predictions for academic
projects, the models trained on the academic
projects did not perform well. It was not the pri-
mary goal of the study, but the obtained results
made it possible to arrive at that newsworthy
conclusion. The academic projects are not good
as a training set for the defect prediction models.
Probably, they are too immature and thus have
too chaotic structure. The obtained results point
to the need of reconsidering the relevancy of the

Cross-Project Defect Prediction with Respect to Code Ownership Model: An Empirical Study 33

studies on defect prediction that rely solely on the
data from the academic projects. Academic data
sets were used even in the frequently cited [43–45]
and recently conducted [46,47] studies.

Detailed data are available via a web-based
metrics repository established by the authors
(http://purl.org/MarianJureczko/MetricsRepo).
The collected data may be used by other re-
searchers for replicating presented here experi-
ments as well as conducting own empirical studies.
The obtained defect prediction models related
to the conducted empirical study presented in
this paper are available online (http://purl.org/
MarianJureczko/IET_CrossProjectPrediction).
However, we recommend using the models for
cross-project defect prediction with great cau-
tion, since the obtained prediction performance
is moderate and presumable in most cases can
be surpassed by a project specific model.

References

[1] L. Briand, W. Melo, and J. Wust, “Assessing the
applicability of fault-proneness models across
object-oriented software projects,” IEEE Trans-
actions on Software Engineering, Vol. 28, No. 7,
2002, pp. 706–720.

[2] L. Samuelis, “On principles of software
engineering-role of the inductive inference,”
e-Informatica Software Engineering Journal,
Vol. 6, No. 1, 2012, pp. 71–77.

[3] L. Fernandez, P.J. Lara, and J.J. Cuadrado, “Ef-
ficient software quality assurance approaches ori-
ented to UML models in real life,” Idea Group
Pulishing, 2007, pp. 385–426.

[4] M.L. Hutcheson and L. Marnie, Software testing
fundamentals. John Wiley & Sons, 2003.

[5] B.W. Boehm, “Understanding and controlling
software costs,” Journal of Parametrics, Vol. 8,
No. 1, 1988, pp. 32–68.

[6] G. Denaro and M. Pezzè, “An empirical evalua-
tion of fault-proneness models,” in Proceedings
of the 24rd International Conference on Software
Engineering. IEEE, 2002, pp. 241–251.

[7] C. Kaner and W.P. Bond, “Software engineering
metrics: What do they measure and how do we
know?” in 10th International Software Metrics
Symposium. IEEE, 2004, p. 6.

[8] N.E. Fenton and M. Neil, “Software metrics: suc-
cesses, failures and new directions,” Journal of

Systems and Software, Vol. 47, No. 2, 1999, pp.
149–157.

[9] T. Hall and N. Fenton, “Implementing effec-
tive software metrics programs,” IEEE Software,
Vol. 14, No. 2, 1997, pp. 55–65.

[10] B. Turhan, T. Menzies, A.B. Bener, and
J. Di Stefano, “On the relative value of
cross-company and within-company data for de-
fect prediction,” Empirical Software Engineering,
Vol. 14, No. 5, 2009, pp. 540–578.

[11] M.T. Villalba, L. Fernández-Sanz, and
J. Martínez, “Empirical support for the
generation of domain-oriented quality models,”
IET software, Vol. 4, No. 1, 2010, pp. 1–14.

[12] T. Zimmermann, N. Nagappan, H. Gall, E. Giger,
and B. Murphy, “Cross-project defect prediction:
a large scale experiment on data vs. domain vs.
process,” in Proceedings of the 7th Joint Meeting
of the European Software Engineering Confer-
ence and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering. ACM,
2009, pp. 91–100.

[13] M. Jureczko and L. Madeyski, “Towards iden-
tifying software project clusters with regard to
defect prediction,” in Proceedings of the 6th In-
ternational Conference on Predictive Models in
Software Engineering. ACM, 2010, p. 9.

[14] R. Subramanyam and M.S. Krishnan, “Empir-
ical analysis of CK metrics for object-oriented
design complexity: Implications for software de-
fects,” IEEE Transactions on Software Engineer-
ing, Vol. 29, No. 4, 2003, pp. 297–310.

[15] N. Nagappan, T. Ball, and A. Zeller, “Mining
metrics to predict component failures,” in Pro-
ceedings of the 28th international conference on
Software engineering. ACM, 2006, pp. 452–461.

[16] M. Jureczko and D. Spinellis, “Using
object-oriented design metrics to predict
software defects,” in Models and Methods of
System Dependability. Oficyna Wydawnicza
Politechniki Wrocławskiej, 2010, pp. 69–81.

[17] M. Jureczko and L. Madeyski, “Predykcja de-
fektów na podstawie metryk oprogramowania
– identyfikacja klas projektów,” in Proceedings
of the Krajowa Konferencja Inżynierii Opro-
gramowania (KKIO 2010). PWNT, 2010, pp.
185–192.

[18] Y. Liu, T.M. Khoshgoftaar, and N. Seliya, “Evo-
lutionary optimization of software quality mod-
eling with multiple repositories,” IEEE Trans-
actions on Software Engineering, Vol. 36, No. 6,
2010, pp. 852–864.

[19] Z. He, F. Shu, Y. Yang, M. Li, and Q. Wang, “An
investigation on the feasibility of cross-project

34 Marian Jureczko, Lech Madeyski

defect prediction,” Automated Software Engi-
neering, Vol. 19, No. 2, 2012, pp. 167–199.

[20] S.R. Chidamber and C.F. Kemerer, “A metrics
suite for object oriented design,” IEEE Trans-
actions on Software Engineering, Vol. 20, No. 6,
1994, pp. 476–493.

[21] B.H. Sellers, Object-Oriented Metrics. Measures
of Complexity. Prentice Hall, 1996.

[22] R. Martin, “OO design quality metrics – an
analysis of dependencies,” in Proc. Work-
shop Pragmatic and Theoretical Directions in
Object-Oriented Software Metrics, 1994.

[23] J. Bansiya and C.G. Davis, “A hierarchical model
for object-oriented design quality assessment,”
IEEE Transactions on Software Engineering,
Vol. 28, No. 1, 2002, pp. 4–17.

[24] M.H. Tang, M.H. Kao, and M.H. Chen, “An
empirical study on object-oriented metrics,” in
Proceedings of the Sixth International Software
Metrics Symposium. IEEE, 1999, pp. 242–249.

[25] T.J. McCabe, “A complexity measure,” IEEE
Transactions on Software Engineering, No. 4,
1976, pp. 308–320.

[26] L. Madeyski, reproducer: Reproduce Statis-
tical Analyses and Meta-Analyses, 2015, R
package. [Online]. http://CRAN.R-project.org/
/package=reproducer

[27] L. Madeyski and B.A. Kitchenham, “Re-
producible Research – What, Why and
How,” Wroclaw University of Technology, PRE
W08/2015/P-020, 2015.

[28] L. Madeyski, B.A. Kitchenham, and S.L.
Pfleeger, “Why Reproducible Research is Ben-
eficial for Security Research,” (under review),
2015.

[29] J.K. Chhabra and V. Gupta, “A survey of dy-
namic software metrics,” Journal of Computer
Science and Technology, Vol. 25, No. 5, 2010, pp.
1016–1029.

[30] S. Misra, M. Koyuncu, M. Crasso, C. Mateos,
and A. Zunino, “A suite of cognitive complex-
ity metrics,” in Computational Science and
Its Applications–ICCSA. Springer, 2012, pp.
234–247.

[31] L. Madeyski and M. Jureczko, “Which
Process Metrics Can Significantly Im-
prove Defect Prediction Models? An Em-
pirical Study,” Software Quality Journal,
Vol. 23, No. 3, 2015, pp. 393–422. [Online].
http://dx.doi.org/10.1007/s11219-014-9241-7

[32] M. Jureczko and J. Magott, “QualitySpy:
a framework for monitoring software develop-
ment processes,” Journal of Theoretical and Ap-
plied Computer Science, Vol. 6, No. 1, 2012.

[33] E.J. Weyuker, T.J. Ostrand, and R.M. Bell,
“Comparing the effectiveness of several mod-
eling methods for fault prediction,” Empirical
Software Engineering, Vol. 15, No. 3, 2010, pp.
277–295.

[34] L. Madeyski, Test-driven development: An em-
pirical evaluation of agile practice. Springer,
2010.

[35] S.H. Kan, Metrics and models in software quality
engineering. Addison-Wesley Longman Publish-
ing Co., Inc., 2002.

[36] M. Fischer, M. Pinzger, and H. Gall, “Populating
a release history database from version control
and bug tracking systems,” in Proceedings Inter-
national Conference on Software Maintenance.
IEEE, 2003, pp. 23–32.

[37] T. Zimmermann, R. Premraj, and A. Zeller,
“Predicting defects for eclipse,” in International
Workshop on Predictor Models in Software Engi-
neering. IEEE, 2007, pp. 9–9.

[38] M. D’Ambros, A. Bacchelli, and M. Lanza, “On
the impact of design flaws on software defects,”
in 10th International Conference on Quality Soft-
ware (QSIC). IEEE, 2010, pp. 23–31.

[39] M. D’Ambros, M. Lanza, and R. Robbes, “An
extensive comparison of bug prediction ap-
proaches,” in 7th IEEE Working Conference
on Mining Software Repositories (MSR). IEEE,
2010, pp. 31–41.

[40] A. Bacchelli, M. D’Ambros, and M. Lanza, “Are
popular classes more defect prone?” in Fun-
damental Approaches to Software Engineering.
Springer, 2010, pp. 59–73.

[41] G. Antoniol, K. Ayari, M. Di Penta, F. Khomh,
and Y.G. Guéhéneuc, “Is it a bug or an enhance-
ment?: a text-based approach to classify change
requests,” in Proceedings of the 2008 Conference
of the Center for Advanced Studies on Collabo-
rative Research: Meeting of Minds. ACM, 2008.

[42] T.J. Ostrand, E.J. Weyuker, and R.M. Bell,
“Where the bugs are,” in ACM SIGSOFT Soft-
ware Engineering Notes, Vol. 29, No. 4. ACM,
2004, pp. 86–96.

[43] V.R. Basili, L.C. Briand, and W.L. Melo, “A val-
idation of object-oriented design metrics as qual-
ity indicators,” IEEE Transactions on Software
Engineering, Vol. 22, No. 10, 1996, pp. 751–761.

[44] F. Brito e Abreu and W. Melo, “Evaluating the
impact of object-oriented design on software
quality,” in Proceedings of the 3rd International
Software Metrics Symposium. IEEE, 1996.

[45] W.L. Melo, L. Briand, and V.R. Basili,
“Measuring the impact of reuse on
quality and productivity in object-oriented

Cross-Project Defect Prediction with Respect to Code Ownership Model: An Empirical Study 35

systems,” Univ. of Maryland, Dep. of
Computer Science, College Park, MD,
USA 20742, Tech. Rep., 1995. [Online].
http://drum.lib.umd.edu/bitstream/handle/
1903/686/CS-TR-3395.pdf?sequence=2

[46] K. Aggarwal, Y. Singh, A. Kaur, and R. Malho-
tra, “Empirical study of object-oriented metrics,”

Journal of Object Technology, Vol. 5, No. 8, 2006,
pp. 149–173.

[47] P. Martenka and B. Walter, “Hierarchical
model for evaluating software design quality,”
e-Informatica Software Engineering Journal,
Vol. 4, No. 1, 2010, pp. 21–30.

e-Informatica Software Engineering Journal, Volume 9, Issue 1, 2015, pages: 37–56, DOI 10.5277/e-Inf150103

Resolving Conflict and Dependency in Refactoring

to a Desired Design

Iman Hemati Moghadam∗, Mel Ó Cinnéide∗∗
∗Department of Computer Science, University College London, United Kingdom

∗∗School of Computer Science and Informatics, University College Dublin, Ireland

I.moghadam@ucl.ac.uk, mel.ocinneide@ucd.ie

Abstract

Refactoring is performed to improve software quality while leaving the behaviour of the system
unchanged. In practice there are many opportunities for refactoring, however, due to conflicts and
dependencies between refactorings, only certain orders of refactorings are applicable. Selecting
and ordering an appropriate set of refactorings is a challenging task for a developer. We propose
a novel automated approach to scheduling refactorings according to their conflicts and depen-
dencies as well as their contribution to design quality expressed by a desired design. The desired
design is an improved version of the current program design, and is produced by the developer.
Our approach is capable of detecting conflicts and dependencies between refactorings, and uses
a sequence alignment algorithm to identify the degree of similarity between two program designs
expressed as sequence of characters, thereby measuring the contribution of a refactoring to achiev-
ing the desired design. We evaluated our approach on several sample programs and one non-trivial
open source application. Our results demonstrate the ability of the approach to order the input
refactorings so as to achieve the desired design even in the presence of intense inter-refactoring
conflict and dependency, and when applied to a medium-sized, real-world application.

Keywords: refactoring, refactoring scheduling, design similarity

1. Introduction

Refactoring is performed to improve the qual-
ity of the software in some way. It may in-
volve floss refactoring, where minor improve-
ments are applied frequently, typically several
times a day, or it may involve remedial refactor-
ing1 where a more significant design overhaul
takes place [1]. In this paper we are concerned
with automated refactoring support for the re-
medial refactoring scenario. A developer per-
forming remedial refactoring typically has a no-
tion of a desired design that they are refactoring
the program towards. This desired design may

come about by way of an interactive design pro-
cess, as in the work of Simons et al. [3, 4] or it
may be created by the intellectual effort of the
developer [5,6]. Either way, the challenge the de-
veloper faces is that of refactoring the program
from its current design to its new, desired design.

In earlier work, we presented an approach
to refactor a program based both on its desired
design and on its source code [5]. In this work,
a new UML-based desired design is first created
by the developer based on the current software
design and their understanding of how it may be
required to evolve. The resulting design is then
compared with the original one using a differenc-

1 Termed ‘root canal’ refactoring by Murphy-Hill and Black [1] and ‘batch mode’ refactoring by Liu et al. [2].
Liu et al. provide strong evidence of the practical importance of this type of refactoring.

38 Iman Hemati Moghadam, Mel Ó Cinnéide

ing algorithm [7], and the detected differences
are expressed as refactoring instances. The origi-
nal source code is then refactored using a heuris-
tic approach based on the detected refactorings
to conform more closely to the desired design [5].
Overall, the process of refactoring the program
to comply with its desired design involves three
distinct steps as follows:
1. The developer must decide what refactorings

are required to bring the program from its
current design to its desired design.

2. They must decide in what order the refac-
torings should be applied.

3. The refactorings must then be applied to the
program in this sequence.
As mentioned, recent work has sought to au-

tomate this refactoring process. For example,
UMLDiff [7, 8] is a tool that addresses step (1)
by detecting what refactorings are required to
bring a program design from its current state to
a new desired design. Step (3) is supported by
a broad range of refactoring tools that apply in-
dividual refactorings, such as the Eclipse Refac-
toring Tools, and also by more sophisticated re-
search prototypes, such as Code-Imp, that can
apply a series of refactorings guided by a fitness
function [9]. The focus of this paper however,
is step (2), the ordering of the refactorings into
a valid sequence.

Given a set of refactorings, finding a valid
sequence in which they may be applied is
a non-trivial problem. A refactoring is charac-
terised by a precondition and a postcondition.
The precondition determines if the refactoring
may be applied, and the postcondition states
what the result of applying the refactoring is,
assuming its precondition was true when it was
applied. A refactoring may be applicable to the
initial program, but if it is not applied then, an-
other refactoring in the sequence may render it
inapplicable. Conversely, a refactoring may be
inapplicable to the initial program, but another
refactoring in the sequence may render it ap-
plicable later on. These observations have led
to the notions of conflict and dependency in
a refactoring sequences [10,11]. Two refactorings
are in conflict if they cannot both be applied to
the program, e.g. a method cannot be moved

to a deleted class. A dependency exists between
two refactorings if they can only be applied in
a particular order, e.g. a refactoring that creates
a new class must be executed before a refac-
toring that moves a method to that new class.
Precise definitions of these terms are provided
in Section 3.2.

The question addressed in this paper then
is as follows. Given a set of proposed refactor-
ings that are to be applied to a program so as
to bring its design to a desired state, how can
the refactorings be ordered such that they can
be applied to the program while respecting the
constraints imposed by the conflicts and depen-
dencies that may exist between the refactorings
in the set? To answer this question, we propose
an automated refactoring scheduling approach
that finds a valid order of the refactorings in
the set, according to their conflict and depen-
dency relationships as well as their contribution
to achieving the desired design. The main con-
tribution of this paper is two-fold:
– We extend the refactoring scheduling algo-

rithm proposed by Liu et al. [10] by con-
sidering not just conflicts between refactor-
ings but also dependencies. Furthermore, we
take into account a type of refactoring con-
flict not handled in the work of Liu at al.,
where the application of one refactoring vi-
olates the precondition of another. We refer
to this algorithm as REDaCT (REfactoring
Dependency and ConflicT).

– We develop the idea of refactoring to a de-
sired design, introduced by the authors in
earlier work [5], and show how it can be used
to guide the refactoring process more effec-
tively. In particular we measure not only the
effect of a refactoring in terms of its direct
contribution to achieving the desired design,
but also its indirect contribution in terms of
the refactorings it enables and disables. This
extension to the REDaCT algorithm is re-
ferred to as REDaCT+.
The remainder of this paper is structured as

follows. Section 2 presents a motivating example
to illustrate the necessity of scheduling refactor-
ings. In Section 3 we deal with preliminaries by
providing a brief description of the software tool

Resolving Conflict and Dependency in Refactoring to a Desired Design 39

a) The initial design b) The desired design

Figure 1. UML class diagrams of an Event application

upon which our approach is based, Design-Imp,
and defining precisely our notions of conflict and
dependency. The proposed scheduling approach
to find a valid order between the set of refac-
torings according to their conflict and depen-
dency relationships, REDaCT, is explained in
Section 4, while in Section 5 the REDaCT+ al-
gorithm is presented which extends REDaCT by
considering the direct and indirect contribution
of each refactoring to achieving the desired de-
sign. In Section 6 the REDaCT and REDaCT+
algorithms are evaluated on a number of exam-
ples. A survey of related work is presented in
Section 7, while in Section 8 we conclude the
paper and provide some suggestions for future
work.

2. Motivating Example

Consider as a motivating example, the simpli-
fied UML class diagrams shown in Figure 1. The
design in Figure 1a represents the original de-
sign while the design in Figure 1b represents
the desired design that the developer would like
the program to have. We applied the design dif-
ferencing approach proposed by the authors in
earlier work [5] that takes as input two UML
class diagrams and then uses a UML design dif-
ferencing algorithm to find differences between
the designs and categorises these as refactoring
instances. In other words, the approach returns

the refactorings that are required to bring a pro-
gram design from its current state to a new de-
sired design. In this example, the desired design
is achieved after applying 15 refactorings to the
initial design as follows:
R1,R2: Two classes, Event and Concert, are
added to the design using Extract Hierarchy and
Extract Subclass refactorings respectively.
R3,R4: Field address and method setAddress,
both in class Entertainment, are renamed to lo-
cation and setLocation using Rename Field and
Method refactorings respectively. These refac-
torings prepare the application of refactorings
R7 and R10 described below.
R5,R6,R7: The location fields in classes Discus-
sion and Reading and the field address in the
class Entertainment are pulled up to the class
Event using three separate Pull Up Field refac-
torings.
R8,R9,R10: The setLocation methods in classes
Discussion and Reading and the method setAd-
dress in the class Entertainment are pulled up
to the class Event using three separate Pull Up
Method refactorings. Refactorings R5 to R10 re-
duce code duplication and improve readability.
R11,R12,R13: Two methods getPrice and re-
trieveDetails as well as the field conductor, all
defined in the class Entertainment, are pushed
down to the class Concert using two separate
Push Down Method refactorings and one Push
Down Field refactoring respectively. The moti-
vation for these refactorings is to move features

40 Iman Hemati Moghadam, Mel Ó Cinnéide

that are used only in some instances of the orig-
inal class.
R14,R15: To simplify the interface and im-
prove understandability, the method retrieveDe-
tails and the field conductor are made more pri-
vate using the Decrease Method Accessibility and
Decrease Field Accessibility refactorings respec-
tively.

The aim is to find an order between the afore-
mentioned refactorings that, while requiring the
minimum effort, results in the desired design from
the initial design. However, because of interde-
pendencies between the refactorings, only some
specific refactoring orders are applicable to the
initial design. A list of interdependencies between
the aforementioned refactorings is as below:x
– RefactoringsR3 toR13 are directly dependent

on R1, or R2, i.e. a method or field cannot be
moved to a class if the target class has not been
created yet.

– The setLocation methods in the class Discus-
sion use the field location of the local class.
Therefore, Pull Up setLocation (R8) should
be applied to the design after Pull Up loca-
tion (R5). Were the method to be pulled up
before the field, it would also be necessary to
add an instance of the local class as parame-
ter to the method, resulting in a method with
two input parameters, which differs from the
corresponding method in the desired design.

– Forthesamereason,twoPullUpMethod refac-
torings, R9 and R10, should be applied to the
design only after their corresponding Pull Up
Field refactorings, R6 and R7, have been ap-
plied.

– The refactoring Rename address (R3) can be
appliedtothedesignbeforeorafterPullUpad-
dress (R5). If R3 is performed before R5, then
other two Pull Up Field refactorings namely
R6 and R7 can be applied before or after R3.
Otherwise, R6 and R7 must be applied to the
design after R3. The second case happens be-
causeaprecondition inRenameField prevents
the field name from being changed if there is
already a field with the same name in the class
and the fields are used by different methods.

– The method getPrice should be pushed down
to its subclass using refactoring R11 before

moving the method retrieveDetails and the
field conductor. This is necessary as getPrice
uses both this method and field. Were re-
trieveDetails or conductor to be pushed down
to the subclass (using R12 or R13) before get-
Price, then they would not be accessible in get-
Price. Similarly, the method retrieveDetails
should be moved before the field conductor.

– The accessibility of the field conductor can
be reduced using R15 after the field is pushed
down to the subclass byR13. Were the accessi-
bility of the field to be reduced before the push
down refactoring, then the field would not be
accessible in the subclass. This would prevent
the pushing down of the methods getPrice and
retrieveDetails as well as the field itself to the
subclass. A similar situation arises for the De-
crease Accessibility Method refactoring (R14).
The accessibility of the method retrieveDe-
tails should be reduced only after the method
is pushed down to the subclass (R12) in order
for it to be accessible in getPrice.

– The above dependencies also reveal an im-
plicit dependency between the two refactor-
ings Decrease Accessibility Method (R14) and
Decrease Accessibility Field (R15)withtheEx-
tract Subclass refactoring (R2). Both Decrease
Accessibility refactorings can be performed
only after the class Concert has been created
andthecorrespondingmethodsandfieldshave
been moved to the newly created class.
As the example above demonstrates, there

can be many relationships between refactorings,
and even in this simple motivating example it is
difficult to identify them all manually. As shown,
the application of one refactoring may prevent
certain other refactorings or make possible cer-
tain other refactorings. What makes the refac-
toring process more difficult is that the effect of
each refactoring is only seen after the refactor-
ing is applied to the design. The preconditions
of a refactoring fail at its turn even though they
were satisfied at the start of the sequence, and
vice versa.

We describe our automated scheduling ap-
proach (REDaCT and REDaCT+) that ad-
dresses these problems in Sections 4 and 5, but
we first present some preliminary information

Resolving Conflict and Dependency in Refactoring to a Desired Design 41

Figure 2. Typical workflow when using Design-Imp

about the software tools we use in this work, and
precise definitions of conflict and dependency.

3. Preliminaries

This section provides some necessary prelimi-
nary information about the software tool em-
ployed in our experiments (Section 3.1) and for-
mal definitions for conflict and dependency in
a refactoring sequence (Section 3.2).

3.1. Design-Imp

The investigations described in this paper make
use of a software tool named Design-Imp.
Design-Imp is an interactive refactoring frame-
work developed by the authors to facilitate ex-
perimentation in improving the design of exist-
ing programs. It refactors the software system
at a higher level of abstraction than its source
code. Figure 2 depicts a typical workflow when
using Design-Imp.

Design-Imp takes Java version 7 source
code as input, extracts design information from
the source code using the extract model pro-
cess and expresses the extracted information
as an attributed type graph [12]. This graph
is then refactored using an interactive evolu-
tionary search technique to improve the pro-
gram according to a fitness function, expressed
in terms of standard software quality metrics
such as a combination of cohesion and coupling
metrics.

The output comprises the refactored graph,
expressed as a UML class diagram, as well as
detailed refactoring and metrics information. As
most of the program detail, especially method
bodies, has been abstracted away, faster pre-
condition checking and refactoring execution is
possible. The result of the refactoring process is
a desired design based on the employed fitness
function and confirmed by the developer.

Design-Imp uses AGG API2 as a graph
transformation engine [13, 14] to implement
graph transformation rules. Each rule (i.e. refac-
toring) includes a pattern that is specified by
two graphs, left and right hand side, and a mor-
phism between them. Transformation rules may
specify negative and positive application condi-
tions as transformation preconditions. A nega-
tive application condition (NAC) specifies cer-
tain structures that are forbidden, while a posi-
tive application condition (PAC) expresses cer-
tain structures that are necessary to perform
a transformation. Currently, Design-Imp sup-
ports 20 refactorings shown in Table 1. In the
rest of this paper we use the term refactoring
instead of transformation rule when referring to
a transformation on the graph.

Design-Imp defines a meta-model, expressed
as a type graph, based on the syntax of the Java
language in order to specify how a Java program
should be represented as a graph. It is not possible
to define all necessary Java constraints as a type
graph, e.g. cyclical inheritance is hard to prevent,
so we added some general constraints similar to
those defined by Mens [15] to our model.

2 http://user.cs.tu-berlin.de/∼gragra/agg/

42 Iman Hemati Moghadam, Mel Ó Cinnéide

Table 1. A list of refactorings provided by Design-Imp

No. Class-Level Refactorings Description

1 Rename Class Changes the name of a class to a new name, and updates its references.
2 Extract Hierarchy Adds a new subclass to a non-leaf class C in an inheritance hierarchy.
3 Extract Subclass Adds a new subclass to class C and moves the relevant features to it.
4 Extract Superclass Adds a new super class to class C and moves the relevant features to it.
5 Collapse Hierarchy Removes a non-leaf class from an inheritance hierarchy.
6 Inline Class Moves all features of a class into another class and deletes it.
7 Extract Class Creates a new class and moves the relevant features from the old class

into the new one.

Method-Level Refactorings

8 Push Down Method Moves a method from a class to those subclasses that require it.
9 Pull Up Method Moves a method from some class(es) to the immediate superclass.
10 Rename Method Changes the name of a method to a new one, and updates its references.
11 Decrease Method Accessibility Decreases the accessibility of a method, i.e from protected to private.
12 Increase Method Accessibility Increases the accessibility of a method, i.e from protected to public.
13 Move Method Creates a new method with a similar body in the class it uses most.

Either turns the old method into a simple delegation, or removes it.

Field-Level Refactorings

14 Push Down Field Moves a field from a class to those subclasses that require it.
15 Pull Up Field Moves a field from some class(es) to the immediate superclass.
16 Move Field Moves a field from a class to another one which uses the field most.
17 Rename Field Changes the name of a field to a new name, and updates its references.
18 Decrease Field Accessibility Decreases the accessibility of a field, i.e from protected to private.
19 Increase Field Accessibility Increases the accessibility of a field, i.e from protected to public.
20 Encapsulate Field Creates getter and setter methods for the field and uses only those to

access the field.

Design-Imp is also capable of detecting
conflicts and dependencies between refactor-
ings through the use of a static analysis tech-
nique provided by AGG API called criti-
cal pair analysis. Critical pair analysis com-
putes all the potential conflicts and depen-
dencies between refactorings based on the no-
tion of independence of graph transforma-
tions [12]. Using this technique, Design-Imp can
distinguish three kinds of conflict and three
kinds of dependency between refactorings as
described in Table 2. Definitions for conflict
and dependency are presented next in Sec-
tion 3.2.

3.2. Definitions of Conflict and
Dependency between Refactorings

In this section we provide precise definitions for
the concepts of conflict and dependency. These

are concerned with the relationships between
refactorings and are widely used in this paper.
Definition 1: Dependency
For two given refactorings (R1 and R2), R2 is
dependent on R1 (R2 → R1) if R2 can be ap-
plied after R1, but not before that.

In this paper, as shown in Table 2, we
distinguish three types of dependency be-
tween refactorings: produce-use, delete-forbid,
and change-use. A produce-use dependency can
happen if R1 produces an element that is used
by R2. For example, in the motivating example,
refactorings R3 to R15 are dependent on one of
R1 or R2. It is a kind of produce-use dependency
as a method or field can be moved to a class only
if the class has already been created.

As another example, consider a method that
uses directly a private field in its own class. To
push this method down to a subclass it is nec-
essary first to increase the accessibility of the

Resolving Conflict and Dependency in Refactoring to a Desired Design 43

Table 2. Relationships that can be detected between refactorings using AGG [16]

No. Conflict Description

1 Delete-use A refactoring deletes a graph object that is used by another refactoring.

2 Produce-forbid A refactoring produces a graph structure that is forbidden by another refactoring.

3 Change-use A refactoring changes an attribute value of a graph object in such a way that it can
no longer be used by another refactoring.

No. Dependency Description

1 Produce-use A refactoring produces a graph object that is used by another refactoring.

2 Delete-forbid A refactoring deletes a graph objects that is forbidden by another refactoring.

3 Change-use A refactoring changes an attribute value of a graph object in such a way that it can
be used by another refactoring.

field to at least protected to make it accessible
to the method in the subclass. In this case, the
Push Down Method refactoring has a change-use
dependency on the Increase Field Accessibility
refactoring.
Definition 2: Asymmetrical Conflict
For two given refactorings (R1 and R2), R1 has
an asymmetrical conflict with R2 (R1 9 R2)
if R2 cannot be applied after R1.

In this paper, as shown in Table 2, we
distinguish three kinds of conflicts: delete-use,
produce-forbid, and change-use. As an exam-
ple, a delete-use conflict between R1, and R2

can happen if R1 deletes one or more elements
(classes, methods, or fields) that are used by R2.

Asymmetrical conflict is a one-way conflict.
Thus, a conflict between R1 and R2 (R1 9 R2)
does not imply that the application of R2 will
disable R1. In addition, while an asymmetrical
conflict is indeed a kind of dependency, we dis-
tinguish between them in this paper. In a con-
flict situation (R1 9 R2), both refactorings
can be run individually, but R2 cannot be run
after R1. However, in a dependency situation
(R1 → R2), R2 can only be run if R1 is run first.
Definition 3: Symmetrical Conflict
For two given refactorings (R1 and R2), R1 has
a symmetrical conflict with R2 (R1 = R2)
if and only if they cannot both be performed on
the design in any order, i.e. (R1 9 R2 ∧R2 9
R1 ⇒ R1 = R2).

As an example of a symmetrical conflict, con-
sider a case where a method is moved from the
same original class to two different target classes

using two separate Move Method refactorings.
While both refactorings are applicable, only one
of them can be performed on the design. The
other refactoring will fail subsequently as the
method is no longer in its original class and so
cannot be moved from there.
Definition 4: Uninjurious Refactoring
A refactoring with no symmetrical or asym-
metrical conflict with any other refactoring is
termed an uninjurious refactoring, in the termi-
nology of Liu et al. [10]. This type of refactoring
is of interest as it can be added to a refactoring
sequence at any stage with no deleterious effect
in terms of disabling other refactorings.

4. The REDaCT Algorithm: Handling
Conflict and Dependency
in Software Refactoring Scheduling

In this section we describe one of the key contri-
butions of this paper: the creation of a refac-
toring scheduling algorithm that can handle
the conflicts and dependencies described in Sec-
tion 3.2.

To find a valid refactoring sequence, we ex-
tend the conflict-aware scheduling approach pro-
posed by Liu et al. [10]. They propose a heuris-
tic algorithm to improve refactoring activities by
arranging an application sequence for the avail-
able conflicting refactorings. Their approach
computes symmetrical and asymmetrical con-
flicts between refactorings, where, in a conflict
situation, the refactoring that has more effect

44 Iman Hemati Moghadam, Mel Ó Cinnéide

on software quality, as defined by the QMOOD
metric suite [17], has a higher priority than the
other one. The solution we present here improves
on the approach of Liu et al. in the following
regards:
– The approach of Liu et al. only supports

delete-use and change-use conflicts, and
does not support produce-forbid conflicts, al-
though they do propose this idea as future
work. A produce-forbid conflict occurs when
a refactoring produces an element or struc-
ture that is prohibited by the precondition of
another refactoring [18]. Our approach han-
dles all the conflict types in Table 2.

– The approach of Liu et al. does not sup-
port any kind of dependency between refac-
torings. In contrast, our approach is capa-
ble of detecting all inter-refactoring depen-
dency types as shown in Table 2. By con-
sidering dependencies between refactorings,
our scheduling algorithm is able to take into
account the effect of a refactoring in terms
of the other refactorings that it enables,
whereas Liu et al. only consider cases where
a refactoring disables other refactorings.

In Section 4.1 we describe how our refactoring
scheduling algorithm, REDaCT, handles conflict
and dependency relationships between refactor-
ings. In Section 4.2 we discuss the strengths
and weaknesses of this approach to refactoring
scheduling.

4.1. The REDaCT Scheduling Algorithm

Our proposed scheduling algorithm, REDaCT
is presented as pseudocode in Figure 3. As illus-
trated, the algorithm takes as input the set of
refactorings to be scheduled as well as a square
matrix, called RMatrix, that contains informa-
tion about how the input refactorings are related
to each other. It is assumed that the refactorings
are all beneficial, so a perfect solution is where
all the refactorings can be applied. REDaCT is
a heuristic that attempts to find the longest pos-
sible valid sequence of refactorings that can be
applied to the initial design.

RMatrix is computed by Design-Imp and
contains information about conflicts and de-

pendencies between refactorings. A character
‘C’ in (rowi, columnj) of the matrix means
an asymmetrical conflict exists between refac-
torings Ri and Rj , so applying Ri will prevent
Rj from running. A symmetrical conflict will
exist if (rowi, columnj) also contains a charac-
ter ‘C’. On the other hand, a character ‘D’ in
(rowi, columnj) means that Rj is dependent on
Ri, so Rj is only applicable if Ri has already
been applied to the design. Note that a sym-
metrical dependency is an impossibility.

The REDaCT scheduling algorithm is de-
picted in Figure 3. Five critical steps in the algo-
rithm are highlighted and are elucidated in the
paragraphs below:
Step 1: In the first step, it is necessary to
find refactorings that are not dependent on any
refactorings as well as having no conflict with
other refactorings. A refactoring with no sym-
metrical or asymmetrical conflict with other
refactorings is selected in order to prevent it
from being disabled by other refactorings that
might have an asymmetrical conflict with it [10].
However, such an uninjurious refactoring (see
Section 3.2) is only selected if it is also not
dependent on any refactorings except those al-
ready added to the refactoring sequence. This
step guarantees that, where possible, all refac-
torings upon which a candidate refactoring is
dependent are added to the refactoring sequence
early in the process.

After a refactoring is added to the refactor-
ing sequence, its corresponding row and column
is removed from RMatrix as well. The algorithm
may terminate at the end of first step if all refac-
torings have been added to the refactoring se-
quence. This only happens if there is no symmet-
rical conflict between any pair of refactorings in
the set.
Step 2: In the second step, assuming that RMa-
trix is not empty, the score for each applicable
refactoring Rc is computed using the following
formula:

score(Rc) = directEffect(Rc)+

positiveEffect(Rc)−
negativeEffect(Rc)

(1)

Resolving Conflict and Dependency in Refactoring to a Desired Design 45

It is assumed that each refactoring in the
refactoring set has a positive effect, i.e. that
the developer has selected only refactorings that
have a positive effect on the design of the
program. Therefore, the maximum quality im-
provement is obtained if all refactorings in the
refactoring set are applied to the initial design.
Hence, we set the directEffect of each refactor-
ing to 1, meaning that the application of each
refactoring leads the refactoring process one step
closer to the maximum achievable quality im-
provement. (Later, in Section 5, we will use
a more sophisticated approach for computing
the direct effect of a refactoring.)

The application of a refactoring Rc enables
refactorings that are dependent on Rc to be run,
assuming that they are not dependent on other
available refactorings (see Section 3.2). In this
paper, we count all these effects as the positive-
Effect of the candidate refactoring Rc. So the
positive effect of a candidate refactoring is the
total number of refactorings that are enabled
by it.

When a candidate refactoring Rc is applied
to the design, it also disables other refactorings,
Ro, with which it has an asymmetrical conflict
[10]. In addition, if Ro is disabled, its dependent
refactorings are disabled as well. In this paper,
we count all these effects as the negativeEffect
of the candidate refactoring, Rc. So the nega-
tive effect of a candidate refactoring is the total
number of refactorings that are disabled by it.
Step 3: In the third step, the refactoring with
the highest score is selected and added to the
refactoring sequence. Since the score is based on
the number of refactorings that will be disabled
or enabled by the refactoring, the selection of
a high-scoring refactoring promotes refactorings
that increase the number of refactorings that can
be selected in subsequent iterations.
Step 4: After the best refactoring is added to
the refactoring sequence, it is necessary to up-
date the scoring of refactorings that have been
positively affected by the application of this
refactoring. This includes refactorings that have
an asymmetrical conflict with the selected refac-
toring [10], as well as refactorings that are de-
pendent on the selected refactoring. The score

for these positively affected refactorings is up-
dated using Eq. 2 below. As shown, the merit of
the selected refactoring is added to its affected
ones in order to increase their chance of being
selected in subsequent iterations.

score(Raffected) = score(Raffected)+

score(Rselected)
(2)

As shown in Figure 3, after the best refac-
toring is added to the refactoring sequence, all
newly disabled refactorings are also removed
from RMatrix to prevent them from being need-
lessly selected in subsequent iterations.

Step 5: In this step, refactorings that are
neither dependent on, nor in conflict with, any
remaining refactorings are added to the refac-
toring sequence. They can be safely applied at
this stage, and doing so immediately prevents
such a refactoring from being subsequently dis-
abled by a refactoring with a better score that
has an asymmetrical conflict with it.

At the end of the algorithm, refactoringSeq
will contain the longest sequence of refactorings
found that can be applied to the initial design.

4.2. Summary

To summarise this section, we have presented
the REDaCT algorithm, which is our novel ap-
proach to refactoring scheduling that extends
the state of the art [10] by handling a more
extensive range of conflicts and dependencies.
This algorithm is evaluated later in Section 6.
REDaCT ignores the effect the refactorings have
in terms of how close they bring the program to
its desired design. In the next section we address
this issue.

5. The REDaCT+ Algorithm:
Improving Refactoring Scheduling
by Estimating the Contribution of
Refactorings to Achieving the
Desired Design

The approach proposed by Liu et al. uses the
QMOOD metric suite [17] to measure the effect

46 Iman Hemati Moghadam, Mel Ó Cinnéide

Input: refactoringSet: set of refactorings to be scheduled.
Input: RMatrix: square matrix contains relationships between refactorings.
Output: refactoringSeq: contains a valid order of refactorings.

procedure Scheduling Algorithm(refactoringSet, RMatrix)
refactoringSeq = null
while (hasUninjuriousRefactoring()) do . Step 1

refactoringSeq.add(pickUninjuriousRefactoring()
updateRMatrix ()

end while
if (!RMatrix.isEmpty()) then

measureScore() . Step 2
repeat

refactoringSeq.add(pickBestRefactoring())) . Step 3
updateScores() . Step 4
updateRMatrix ()
while (hasUninjuriousRefactoring()) do . Step 5

refactoringSeq.add(pickUninjuriousRefactoring())
updateRMatrix ()

end while
until (RMatrix.isEmpty())

end if
return refactoringSeq

end procedure

The functions used are defined as follows:
hasUninjuriousRefactoring(): Returns true if RMatrix contains at least one independent and uninju-
rious refactoring. Otherwise, returns false.
pickUninjuriousRefactoring(): Returns the first independent and uninjurious refactoring.
pickBestRefactoring(): Returns the refactoring with the highest score.
updateRMatrix(): The selected refactoring is removed from RMatrix(). The refactorings with which
the selected refactoring has a conflict are removed from RMatrix () as well.
measureScore(): Computes the score for all remaining refactorings using equation 1.
updateScores(): Updates the score for the affected refactorings using equation 2.

Figure 3. The REDaCT algorithm. It orders the input refactorings to create the longest possible applicable
refactoring sequence, in the presence of conflict and dependency between the refactorings

of refactorings on software quality. However, ap-
plying refactorings to the design and measuring
their effect requires considerable effort. In ad-
dition, as no dependency between refactorings
is detected by Liu et al., the impact of each
refactoring is measured individually, and that
cannot capture the real effect of a sequence of
refactorings. In Section 5.1 below we describe
a known, string-based approach to comparing
software designs and put this to novel use in
Section 5.2 to introduce a novel, lightweight ap-
proach to measuring the effect of a refactoring
without actually applying the refactoring to the
design. Finally, in Section 5.3, this approach to
measuring refactoring effect is included in the
scheduling algorithm to improve the accuracy of

the scheduling approach; we term this extension
REDaCT+.

5.1. Measuring Similarity between
Software Designs

In this paper, an improvement in quality means
an improvement in the similarity between the
initial and desired designs. Therefore, during the
refactoring process, a refactoring that improves
the similarity between the initial and desired de-
signs has priority over other refactorings.

To measure the degree of similarity between
two designs, REDaCT+ uses a sequence align-
ment algorithm called Fast Optimal Global Se-
quence Alignment Algorithm (FOGSAA) de-

Resolving Conflict and Dependency in Refactoring to a Desired Design 47

veloped by Chakraborty and Bandyopadhyay
[19]. This algorithm is capable of finding the
best alignment between two input strings with
a lower computational complexity than other
global alignment approaches. Full details of
this algorithm are presented in the paper cited
above.

To use the FOGSAA alignment algorithm in
REDaCT+, the first step is to represent pro-
gram’s features such as classes, methods, fields
etc. as a sequence of characters. In this paper, we
use the approach proposed by Kessentini et al.
[20] as a method to represent program elements
as a string. Each element in the input Java pro-
gram is represented using a specific character
as follows: Class (C), generalization relationship
(G), realization relationship3 (I), attribute (A),
method (M), method parameter (P), and a cou-
pling between two classes (R). As an example,
the representation of class B shown in Figure 4a
is CGMMPR. This sequence shows that the class
inherits from another class, has a coupling rela-
tionship with one other class in the program and
contains two methods, where the second method
has a parameter.

However, our representation differs from that
of Kessentini et al. [20] in two significant ways.
Firstly, in their work each character includes
more detailed information such as name, type,
accessibility etc. depending on the program el-
ement it represents. However, in our approach
the element name is the only information that
is included with each character. Secondly, in
Kessentini et al. [20] every method invocation
or field reference is represented by one R char-
acter. Therefore, if a class invokes a method
in another class n times, n R characters are
added to the resulting string. However, the
number of accesses to fields and methods in
a class is usually far greater than the num-
ber of fields and methods in the class, so this
approach overemphasises the importance of R
relationships over the other types when mea-
suring similarity. To improve the efficiency of
the alignment algorithm, we use a single R
character to denote a coupling from the orig-
inal class to another class without counting

the number of connections between the two
classes.

5.2. Expressing Refactoring Effect on the
String Representation of a Program

Expressing the program as a sequence of charac-
ters and using an alignment algorithm to mea-
sure similarity between strings helps in measur-
ing the effect of refactorings without actually
applying them to the design. However, in or-
der to do this it is necessary to determine first
how the resulting string should be changed when
a refactoring is applied to it.

Figure 4 illustrates an example of how the
Move Method refactoring changes the software
design and the related string representation. In
this example, method b2(c) is moved from its
original class, named B, to a related target class
named C. Figures 4a, and 4b show the UML
design and the related string before and af-
ter refactoring respectively. Because the classes
are related through the method parameter, af-
ter refactoring the input parameter is removed
from the method signature. As illustrated, the
sequence that shows class A (the first part in
each sequence indicated by CA) is not changed
as the refactoring has no effect on that. How-
ever, both sequences related to class B, and C
(the second and third parts in each sequence)
are changed because of the refactoring.

For each of the refactoring types in Table 1,
its effect on the string representation of a pro-
gram design is defined in a similar way as de-
scribed for the Move Method refactoring. This
enables us to estimate quickly the approximate
effect of a refactoring without having to operate
on source code parse trees. Note that the effect of
a refactoring is only measurable when all refac-
torings upon which it depends have been applied
to the design, e.g. the effect of a Move Method
refactoring is only measurable if the target class
has already been created. We use a topological
sort to create a linear ordering of the refactor-
ings based on their dependency to ensure that all
refactorings upon which a refactoring depends
precede it in the ordering. Note that the refac-

3 Realization in Java is the relationship between a class and an interface that it implements.

48 Iman Hemati Moghadam, Mel Ó Cinnéide

a) The initial design: CA (class A) CGMMPR
(class B) CGAMR (class C)

b) The refactored design: CA (class A) CGMR
(class B) CGAMMRR (class C)

Figure 4. How refactoring effect is expressed on the string representation of a design

toring sequence produced by the topological sort
algorithm does not show the optimal ordering
between refactorings as it does not take conflicts
between refactorings into account.

The quality improvement achieved by
a refactoring is thus measured by the FOGSAA
string alignment algorithm. It expresses the dif-
ference in similarity between the current and de-
sired designs before and after the applied refac-
toring. Using this approach, we can determine,
for any refactoring under consideration, to what
extent it contributes to achieving the desired de-
sign. In the next section we include this measure
in the refactoring scheduling approach.

5.3. Including Refactoring Effect in the
Scheduling Algorithm

The REDaCT scheduling algorithm described
earlier in Section 4 tries to order the refactorings
so that the maximum number of refactorings can
be applied to the design. However, finding the
longest sequence of refactorings is not always
the best option to order refactorings, especially
if there are symmetrical conflicts between refac-
torings, and different refactorings make different
contributions to achieving the desired design.

To improve the scheduling algorithm, we ex-
tend it to include the contribution of the refac-
toring to achieving the desired design. We term

this contribution the refactoringEffect, and it is
measured as described in Section 5.2. Thus, the
scoring function defined by Eq. 1 in Section 4 is
changed as below. As shown, the default value
for directEffect used in Eq. 1 is changed from
1 to the contribution of the refactoring on the
similarity between designs:

score(Rc) =refactoringEffect(Rc)+

positiveEffect(Rc)−
negativeEffect(Rc)

(3)

All components of this summation are equally
weighted. Thus the decision on whether to ac-
cept a refactoring depends equally on the con-
tribution the refactoring makes to the desired
design, the effect of refactorings it enables and
the effect of refactorings it disables. In Section
6 this new approach, REDaCT+, is evaluated
and it is compared with the vanilla REDaCT
algorithm.

6. Evaluation

We have presented an algorithm for refactoring
scheduling in the presence of conflict and depen-
dency (REDaCT) and augmented this algorithm
to exploit a desired design, if one is available
(REDaCT+). In this section we evaluate these

Resolving Conflict and Dependency in Refactoring to a Desired Design 49

algorithms by applying them to a number of ex-
amples and assessing the results.

This section is structured as follows. In Sec-
tion 6.1 we test the correctness of the REDaCT
algorithm by applying it to the Event system de-
scribed in the motivating example of Section 2.
In Section 6.2 we demonstrate the necessity for
the REDaCT+ algorithm, and evaluate this al-
gorithm. In Section 6.3 we evaluate the ability of
the REDaCT+ algorithm to schedule a ‘noisy’
refactoring sequence to achieve a desired design,
while in Section 6.4 we evaluate the REDaCT+
algorithm on a medium-sized open source appli-
cation. In Section 6.5 we summarise the results
of our experiments.

6.1. Testing the Correctness of the
REDaCT Algorithm

To test that the scheduling algorithm operates
correctly, we applied it to the Event system that
was used as a motivating example in Section
2. The aim is to determine if our refactoring
scheduling algorithm can order the refactorings
in such a way as to generate the desired design
shown in Figure 1b from its initial one depicted
in Figure 1a. The refactorings in question are
R1 to R15 as defined in Section 2. As detailed in
that section, a considerable amount of conflict
and dependency exists between these refactor-
ings and it is not immediately clear if they can
all be applied to the initial design or not, so this
forms a robust test for the REDaCT algorithm.

Applying REDaCT to the refactoring set
shown in Section 2 yielded an ordering that en-
abled all 15 refactorings to be applied to the
design as follows: R1, R3, R5, R8, R4, R2, R6,
R7, R10, R9, R11, R12, R13, R14, R15. The result-
ing design was identical to the refactored design,
meaning that the refactorings were indeed per-
formed in the correct order. As no symmetrical
conflict was detected between the input refac-
torings, all 15 refactorings could be applied to
the design.

The example used here is small, but the con-
flicts and dependencies between the refactorings
are more complicated than would usually be en-
countered in a real-world system. In a larger sys-

tem, typically only a few refactorings are applied
to a class and its immediate relatives, so the level
of conflict and dependency tends to be lower and
sparser than in the example we use here. Nev-
ertheless, when such conflicts and dependencies
occur, they have to be addressed.

The result we obtain above demonstrates the
ability of the REDaCT algorithm to handle the
conflicts and dependencies between refactorings
and hence to find an effective application order
for the given refactorings.

6.2. Contrasting the REDaCT and
REDaCT+ Algorithms

The example we use here is a simplistic Au-
tomatic Teller Machine (ATM) simulation ap-
plication [21]. It was developed by an inexperi-
enced Java programmer, and so we expect that
its design is not optimum and is easy to im-
prove. Using Design-Imp, this ATM application
was refactored using a fitness function defined as
a combination of the two software metrics SCC
(Similarity-based Class Cohesion) [22] and DCC
(Direct Class Coupling) [17]. Table 3 depicts the
refactoring sequence R1 . . . R10 that led to the
design for the ATM system depicted in Figure 5.

When REDaCT was applied to the origi-
nal ATM design and the set of refactorings, it
produced the refactoring sequence R8, R5, R1,
R2, R4, R3, R6, R9, R7, R10. This refactoring se-
quence is correct in that it yields the de-
sired design when applied to the original ATM
program design. However it is apparent that
during the refactoring process the methods
printReceipt() and displayBalance() are need-
lessly moved around various classes before being
placed in their final target class.

To test if REDaCT is capable of find-
ing a better sequence, we added two new
Move Method refactorings, R11 and R12, to the
refactoring set. These new refactorings directly
move the methods printReceipt() and display-
Balance() from their original class to their cor-
rect target class. These refactorings are high-
lighted in grey in Table 3. The addition of the
new refactorings created two symmetrical con-
flicts as follows: R1 = R12, and R3 = R11, and,

50 Iman Hemati Moghadam, Mel Ó Cinnéide

Figure 5. UML class diagram of an ATM application after refactoring

Table 3. Sequence of refactorings applied to the ATM application. R1 to R10 represent the sequence pro-
duced by Design-Imp in creating the design of Figure 5. R11 and R12 were both added by hand to test the
REDaCT+ algorithm

No. Refactoring Feature Source class Target class

R1 Move Method displayBalance() Transaction CustomerInfo
R2 Move Method displayBalance() CustomerInfo ATM
R3 PullUp Method printReceipt() ATM Account
R4 Encapsulate Field customers Account
R5 PushDown Method print() CustomerInfo Account
R6 PullUp Method printReceipt() Account CustomerInfo
R7 Decrease Method Accessibility displayBalance() ATM
R8 Encapsulate Field holderName CustomerInfo
R9 Move Method printReceipt() CustomerInfo Transaction
R10 Decrease Method Accessibility printReceipt() Transaction

R11 Move Method printReceipt() ATM Transaction
R12 Move Method displayBalance() Transaction ATM

because of the dependencies among the refactor-
ings, three new symmetrical conflicts as follows:
R2 = R12, R6 = R11 and R9 = R11.

In this new situation, an optimal schedul-
ing algorithm should select both new Move
Method refactorings instead of other refactorings
(R1, R2, R3, R6 and R9), as the newly added
Move Method refactorings move the methods di-
rectly to their target class, which is the clear-
est and most comprehensible solution. However,
the REDaCT algorithm still selects the same

sequence as it did before, without including
R11 and R12 in the sequence. This happens be-
cause the REDaCT algorithm favours refactor-
ings that in turn increase the number of refactor-
ings that can be selected in subsequent iterations
of the algorithm.

We tested if the REDaCT+ algorithm could
find the optimum refactoring sequence for the
example described above, where the vanilla
REDaCT algorithm failed, and found that the
improved REDaCT+ algorithm did indeed find

Resolving Conflict and Dependency in Refactoring to a Desired Design 51

the equally good, but shorter, order among
the 12 input refactorings shown in Table 3.
REDaCT+ moved the two methods printRe-
ceipt, and displayBalance directly to their tar-
get class using the two added Move Method
refactorings R11 and R12, and rejected the
now-superfluous refactorings R1, R2, R3, R6 and
R9. REDaCT+ succeeded as it does not simply
apply the maximum number of refactorings as
REDaCT does, but it uses its knowledge of the
design desired to select refactorings that moved
the program design towards this desired design,
as detailed in Section 5.

6.3. Evaluating REDaCT+ on a ‘Noisy’
Refactoring Sequence

To test how REDaCT+ would deal with a larger
application, we applied it to the Design-Imp
software itself. Design-Imp contains 65 classes
that include 227 attributes and 600 methods,
and so is larger than the earlier examples. In
this experiment we also wanted to test how well
REDaCT+ could deal with a ‘noisy’ refactor-
ing set, one that contains redundant refactorings
and so is a superset of the set of refactorings re-
quired to bring the initial program to its desired
design.

The ‘noisy’ refactoring set was created as
follows. First we use Design-Imp to automati-
cally refactor the Design-Imp software twice in
order to create two separate desired designs.
As described in Section 3.1, the search-based
algorithm used by Design-Imp is a stochastic
one so each refactoring process yields a dif-
ferent set of refactorings but with the possi-
bility of some commonality between the two
refactoring sets. Figure 6 shows a breakdown
of the combined set of refactorings produced
by both refactoring processes. The ‘noisy’ refac-
toring set then is the union of these two
sets. Duplicates were not removed, so this set
(technically a multiset) contained 60 refactor-
ings in total. In fact only one refactoring ap-
peared in both refactoring sets, so the com-
bined set contained 59 unique refactorings.
A total of 3 conflicts and 298 dependencies

were found to exist in this combined refactor-
ing set.

We then selected one of these resulting
designs as the final desired design and used
REDaCT+ to try to refactor the initial design
towards the selected final desired design. This is
a robust challenge, where both the conflict and
dependency aspects of the base REDaCT algo-
rithm have to combine with the ‘desired design’
aspects of the REDaCT+ algorithm in order to
filter out the unnecessary refactorings and at-
tempt to produce a refactoring sequence that
yields the given desired design.

REDaCT+ was able to find a refactoring se-
quence that was 93% correct and brought the
program design to one close to the given desired
design. In two cases the algorithm categorised
two correct Move Field refactorings as detrimen-
tal even though both refactorings were critical to
achieving the desired design. This problem oc-
curred as Design-Imp incorrectly detected a spu-
rious dependency between these two refactorings
and another truly detrimental refactoring.

To sum up, this example shows the ability of
the REDaCT+ algorithm to filter out refactor-
ings that do not help in achieving the desired de-
sign. It also reveals how invalid inter-refactoring
dependencies detected by Design-Imp can affect
the accuracy of the REDaCT+ algorithm, lead-
ing to two correct refactorings being ignored.
From this we see that the ability of REDaCT+
to correctly order a refactoring set is dependent
on the accuracy of the detected conflicts and de-
pendencies between the refactorings.

6.4. Evaluating REDaCT+ on an Open
Source Example

To investigate how REDaCT+ works with
a non-trivial open source application, we used
JGraphX 4 as an application to investigate.
JGraphX is a medium-sized Java library that is
used to display interactive diagrams and graphs
and comprises 188 classes, 1356 attributes and
2908 methods.

In this experiment, we used Design-Imp to
automatically refactor the design of the origi-

4 http://www.jgraph.com/jgraphdownload.html

52 Iman Hemati Moghadam, Mel Ó Cinnéide

Figure 6. Breakdown of the 60 refactorings included in the refactoring set

nal JGraphX application to create a desired de-
sign to use in our experiments. We then used
Design Imp to generate a refactoring set from
the differences between the two designs, which
yielded a refactoring set containing 50 refactor-
ings.

To test the REDaCT+ algorithm, we ap-
plied it to the initial and desired designs of
the JGraphX application as well as the gen-
erated refactoring set. The challenge here is
that this is an open source application that the
experimenters have no a priori knowledge of,
and the refactoring set is non-trivial in size.
However, REDaCT+ produced a refactoring se-
quence that transformed the initial design to
the desired design with 100% success and with
no spurious refactorings appearing in the se-
quence.

Note that in a large software system there are
many possibilities for refactoring, and the size of
the system tends to lead to less dependency and
conflict between applied refactorings. However,
as mentioned, the aim of this experiment was
to show the proposed approach can be used for
larger applications as well.

6.5. Evaluation Conclusion

The goal of this evaluation section was to pro-
vide an overall assessment of how the REDaCT
and REDaCT+ algorithms perform when faced
with a variety of challenges.

We demonstrated the basic correctness of the
REDaCT algorithm in Section 6.1 by showing
that it able to correctly sequence a heavily con-
flicted and interdependent set of refactorings.
While the refactoring set was small in size, the
intensity of the conflict and dependency was far

greater than that found in our tests with an open
source example in Section 6.4.

In Section 6.2 we demonstrated that, when
several options exist, REDaCT fails to find
the shortest refactoring sequence but that
REDaCT+ is able to succeed by using its ex-
tra knowledge of the desired design that the
refactoring sequence is trying to achieve. This
established the case for the the REDaCT+ algo-
rithm and this is the algorithm that we evaluate
further.

In Section 6.3 we demonstrated that
the REDaCT+ algorithm can schedule
a ‘noisy’ refactoring sequence that has many
optically-relevant but useless refactorings.
A perfect solution was not achieved, but the
93% success rate is very satisfactory. In effect
this means that a design very close to the desired
design is achieved, and it is left to the developer
to perform the final refactoring steps by hand.

In our final evaluation in Section 6.4 we
demonstrated that the REDaCT+ algorithm
can find a correct refactoring sequence when
trying to schedule a non-trivial refactoring set
(50 refactorings) on a medium-sized open source
application. This demonstrates that REDaCT+
can perform well in a more realistic context.

We found that the size of program under in-
vestigation has only a minor effect on the speed
of the REDaCT+ scheduling algorithm. The
only time-consuming part is the algorithm used
to identify conflicts and dependencies between
refactorings. The number of comparisons to find
conflict and dependency between refactorings is
equal to n ∗ (n− 1)/2, where n is the number of
refactorings included in the refactoring set.

Resolving Conflict and Dependency in Refactoring to a Desired Design 53

7. Related Work

The work related to this paper can be di-
vided into three research areas: ranking refac-
toring opportunities, search-based refactoring
and scheduling refactoring. These topics are dis-
cussed below.

Ranking refactoring opportunities involves
sorting refactoring opportunities according to
one or more criteria such as their impact
on the overall design quality. Tsantalis and
Chatzigeorgiou [23] propose a semi-automatic
approach to identifying refactoring opportuni-
ties related to code smells based on system
history and find that a refactoring opportu-
nity involving a highly changeable code frag-
ment is most likely to be improved through
refactorings in the future, and therefore such
refactorings should have a higher priority than
others. In other work they propose an ap-
proach for detecting Move Method refactoring
opportunities based on code smells [24] and
also propose an approach to finding refactor-
ing opportunities that introduce polymorphism
as an alternative to state checking [25]. In
these approaches, detected refactoring oppor-
tunities are ranked based on their impact on
the overall design quality. However, the effect
of refactorings is measured individually, with-
out considering impact of refactorings on one
another, and so it cannot guarantee to find the
best sequence in which to apply the proposed
refactorings.

In contrast to the aforementioned semi-au-
tomatic approaches, other research works aim
to automate the whole process by using search
based refactoring to find and apply a sequence of
refactorings to a program [26]. In this approach,
the process of refactoring is guided by a fitness
function and a refactoring is accepted only if it
improves the merit of the design based on met-
rics included in the fitness function. This ap-
proach has been used for several purposes: soft-
ware quality improvement [27, 28], to fix code
smells [20,29] and to apply design patterns [30].
Although search-based refactoring techniques
help to automatically find a close-to-optimal se-
quence of refactorings based on the employed

fitness function, they do not usually generate the
most effective refactoring order.

In the remainder of this section we examine
closely related research that also aims to detect
dependencies and conflicts between refactorings
in order to sort refactorings into an optimum
order for application. Mens et al. [11] use par-
allel and sequential dependency analysis to de-
tect relationships among a set of input refactor-
ings. Like our approach, the program and refac-
toring activities are considered as a graph and
graph-based rules respectively. However, they
only focus on specifying relationship between
refactorings without introducing a practical al-
gorithm on how the refactorings should be ar-
ranged. Further, in their work, sequential depen-
dencies are only detected after a candidate refac-
toring is applied to the design and then find out
which refactorings become applicable or inappli-
cable. Thus, the approach cannot detect existing
sequential dependencies between refactorings at
once without applying refactorings to the source
code.

Zibran and Roy [31] introduce a schedul-
ing approach based on three factors: maximised
quality gain measured based on standard soft-
ware quality metrics, minimised refactoring ef-
fort estimated by a proposed refactoring effort
model and satisfaction of higher priorities de-
fined manually by the developer. They formu-
late the scheduling of code clone refactorings as
a constraint satisfaction optimisation problem,
and use constraint programming to implement
the proposed model.

Estimation of clone refactoring effort using
an effort model has also been investigated by
Bouktif et al. [32]. They use a simple genetic
algorithm to schedule clone refactoring activi-
ties in order to achieve the greatest quality im-
provement with minimum resource consumption
while satisfying priority constraints. However,
they ignore conflicts between clone refactorings
and assume that duplicated codes can be refac-
tored independently, which is not a correct as-
sumption.

Among the research works focused on
scheduling code smell refactoring, the work of
Liu et al. [10] is most closely related to ours.

54 Iman Hemati Moghadam, Mel Ó Cinnéide

They propose a heuristic algorithm to schedule
code smell refactorings. We extend their refac-
toring scheduling algorithm by considering not
just conflicts between refactorings but also de-
pendencies. Furthermore, we take into account
a type of refactoring conflict not handled in their
work, where the application of one refactoring
violates the precondition of another. We also in-
troduce the idea of a desired design and show
how it can be included in the scheduling al-
gorithm to guide the refactoring process more
effectively. We measure not only the effect of
a refactoring in terms of its direct contribution
to achieving the desired design, but also its indi-
rect contribution in terms of the refactorings it
enables and disables. Later work by Liu at al. [2]
looks at the related problem of scheduling code
smell detection and resolution when a software
system is radically refactored in ‘batch’ mode.
They show that the order in which code smells
are addressed is significant due to the overlap
between smells, and show that refactoring effort
can be reduced significantly (by up to 20%) by
appropriate scheduling.

Lee et al. [33] also take into account that
a refactoring can also enable other refactorings.
They use a genetic algorithm to identify an ap-
propriate refactoring schedule for code clones.
To support both cases, the original refactor-
ing set is updated according to changes ap-
plied in the program after the refactoring is per-
formed. The effect of each refactoring sequence
expressed as a chromosome is measured using
the QMOOD quality model [17]. However, the
fitness evaluation is expensive due to the fact
that each chromosome must be individually ap-
plied to the system and then its effect on qual-
ity measured. It is different from our approach,
where refactorings are applied to a sequence of
characters (representing the source code) and
each refactoring is simulated only once and its
effect on the quality is measured at that time.

8. Conclusions and Future Work

In this paper we presented the REDaCT al-
gorithm, our approach to refactoring schedul-

ing in the presence of inter-refactoring conflicts
and dependencies that extends the state of the
art [10] by handling a more extensive range of
conflicts and dependencies. We also developed
an extension to this algorithm, REDaCT+, that
also takes into account the contribution of each
refactoring towards achieving a given desired de-
sign for the software. To validate our proposed
scheduling approach, we carried out evaluations
on four examples: two small constructed exam-
ples, a software tool developed by the authors
and a medium-sized open source software sys-
tem. The results obtained demonstrated that
REDaCT can order a refactoring sequence in
the presence of conflicts and dependencies, that
REDaCT+ can outperform REDaCT and that
REDaCT+ works well even when many irrele-
vant refactorings are included in the refactor-
ing set.

In future work we plan to explore further
the process of creating the desired design, using
an interactive process similar to that proposed
by Simons et al. [3,4]. This paves the way for the
REDaCT+ refactoring algorithm to form part
of a larger, interactive framework that helps the
developer to create a desired design, and then
refactors the code to comply with this design,
a notion described in our earlier work [5]. In this
context, more extensive evaluation with larger
software systems and with software developers
will be necessary.

Acknowledgments

This work was funded by the Irish Pro-
gramme for Research in Third-Level Institutions
(PRTLI) and in part by Science Foundation Ire-
land grant 10/CE/I1855 to Lero – the Irish Soft-
ware Research Centre (www.lero.ie).

References

[1] E. Murphy-Hill and A.P. Black, “Refactoring
tools: Fitness for purpose,” IEEE Software,
Vol. 25, No. 5, 2008, pp. 38–44.

[2] H. Liu, Z. Ma, W. Shao, and Z. Niu, “Schedule
of bad smell detection and resolution: A new

Resolving Conflict and Dependency in Refactoring to a Desired Design 55

way to save effort,” IEEE Transactions on Soft-
ware Engineering, Vol. 38, No. 1, 2012, pp.
220–235.

[3] C.L. Simons, I.C. Parmee, and R. Gwynllyw,
“Interactive, evolutionary search in upstream
object-oriented class design,” IEEE Transac-
tions on Software Engineering, Vol. 36, 2010,
pp. 798–816.

[4] C.L. Simons and I.C. Parmee, “Elegant
object-oriented software design via interactive,
evolutionary computation,” IEEE Transactions
on Systems, Man, and Cybernetics: Part C: Ap-
plications and Reviews, Vol. 42, No. 6, Novem-
ber 2012, pp. 1797–1805.

[5] I. Hemati Moghadam and M. Ó Cinnéide, “Au-
tomated refactoring using design differencing,”
in Proceedings of the 16th European Conference
on Software Maintenance and Reengineering,
ser. CSMR’12. Washington, DC, USA: IEEE
Computer Society, 2012, pp. 43–52.

[6] I. Hemati Moghadam, “Multi-level automated
refactoring using design exploration,” in Pro-
ceeding of the 3rd International Symposium on
Search Based Software Engineering, ser. SS-
BSE’11. Springer, September 2011, pp. 70–75.

[7] Z. Xing and E. Stroulia, “Differencing logical
UML models,” Journal of Automated Software
Engineering., Vol. 14, June 2007, pp. 215–259.

[8] Z. Xing and E. Stroulia, “Refactoring detec-
tion based on UMLDiff change-facts queries,”
in Proceedings of the 13th Working Conference
on Reverse Engineering. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 263–274.

[9] I. Hemati Moghadam and M. Ó Cinnéide,
“Code-Imp: a tool for automated search-based
refactoring,” in Proceeding of the 4th workshop
on Refactoring tools, ser. WRT ’11. New York,
NY, USA: ACM, 2011, pp. 41–44.

[10] H. Liu, G. Li, Z.Y. Ma, and W.Z. Shao,
“Conflict-aware schedule of software refactor-
ings.” IET Software, Vol. 2, No. 5, 2008, pp.
446–460.

[11] T. Mens, G. Taentzer, and O. Runge,
“Analysing refactoring dependencies using
graph transformation,” Software and Systems
Modeling, Vol. 6, No. 3, 2007, pp. 269–285.

[12] R. Heckel, J.M. Küster, and G. Taentzer, “Con-
fluence of typed attributed graph transforma-
tion systems,” in Graph Transformation, ser.
Lecture Notes in Computer Science. Springer,
2002, Vol. 2505, pp. 161–176.

[13] G. Taentzer, “AGG: A tool environment for al-
gebraic graph transformation,” in Applications
of Graph Transformations with Industrial Rele-

vance, ser. Lecture Notes in Computer Science,
Vol. 1779. Springer, 2000, pp. 481–488.

[14] G. Taentzer, “AGG: A graph transformation en-
vironment for modeling and validation of soft-
ware,” in Applications of Graph Transforma-
tions with Industrial Relevance, ser. Lecture
Notes in Computer Science. Springer, 2004, Vol.
3062, pp. 446–453.

[15] T. Mens, “On the use of graph transformations
for model refactoring,” in Generative and trans-
formational techniques in software engineering.
Springer, 2006, pp. 219–257.

[16] O. Runge, “The AGG 1.5.0 development
environment – the user manual,” 2014. [On-
line]. http://user.cs.tu-berlin.de/∼gragra/agg/
AGG-ShortManual/AGG-ShortManual.html

[17] J. Bansiya and C. Davis, “A hierarchical model
for object-oriented design quality assessment,”
IEEE Transactions on Software Engineering,
Vol. 28, 2002, pp. 4–17.

[18] L. Lambers, H. Ehrig, and F. Orejas, “Conflict
detection for graph transformation with nega-
tive application conditions,” in Graph Transfor-
mations, ser. Lecture Notes in Computer Sci-
ence. Springer, 2006, Vol. 4178, pp. 61–76.

[19] A. Chakraborty and S. Bandyopadhyay,
“FOGSAA: Fast optimal global sequence
alignment algorithm,” Scientific reports, Vol. 3,
2013.

[20] M. Kessentini, R. Mahaouachi, and K. Ghedira,
“What you like in design use to correct
bad-smells,” Software Quality Journal, Vol. 21,
No. 4, 2013, pp. 551–571.

[21] O. Mursleen, “Java code for atm
operations,” June 2010. [Online]. http:
//freesourcecode.net/javaprojects/13191/Java-
code-for-ATM-Operations#.VL PC6YqYaA

[22] J.A. Dallal and L.C. Briand, “An object-ori-
ented high-level design-based class cohesion
metric,” Journal of Information & Soft-
ware Technology, Vol. 52, No. 12, 2010, pp.
1346–1361.

[23] N. Tsantalis and A. Chatzigeorgiou, “Rank-
ing refactoring suggestions based on histori-
cal volatility,” in Proceedings of the 15th Euro-
pean Conference on Software Maintenance and
Reengineering, ser. CSMR’11. IEEE Computer
Society, March 2011, pp. 25–34.

[24] N. Tsantalis and A. Chatzigeorgiou, “Identifi-
cation of move method refactoring opportuni-
ties,” IEEE Transactions on Software Engineer-
ing, Vol. 35, 2009, pp. 347–367.

[25] N. Tsantalis and A. Chatzigeorgiou, “Identifi-
cation of refactoring opportunities introducing

56 Iman Hemati Moghadam, Mel Ó Cinnéide

polymorphism,” Journal of Systems and Soft-
ware, Vol. 83, March 2010, pp. 391–404.

[26] O. Raiha, “A survey on search-based soft-
ware design,” Computer Science Review, Vol. 4,
No. 4, 2010, pp. 203–249.

[27] M. Harman and L. Tratt, “Pareto optimal
search based refactoring at the design level,”
in Proceedings of the 9th annual Conference
on Genetic and Evolutionary Computation, ser.
GECCO ’07. New York, NY, USA: ACM, 2007,
pp. 1106–1113.

[28] M. O’Keeffe and M. Ó Cinnéide, “Search-based
refactoring for software maintenance,” Journal
of Systems and Software, Vol. 81, No. 4, 2008,
pp. 502–516.

[29] A. Ouni, M. Kessentini, H. Sahraoui, and
M. Boukadoum, “Maintainability defects de-
tection and correction: a multi-objective ap-
proach,” Automated Software Engineering,
Vol. 20, No. 1, 2013, pp. 47–79.

[30] A.C. Jensen and B.H. Cheng, “On the use of
genetic programming forautomated refactoring

and the introduction of design patterns,” in Pro-
ceedings of the 12th annual Conference on Ge-
netic and Evolutionary Computation, 2010, pp.
1341–1348.

[31] M.F. Zibran and C.K. Roy, “Conflict-aware op-
timal scheduling of prioritised code clone refac-
toring,” IET Software, Vol. 7, No. 3, 2013, pp.
167–186.

[32] S. Bouktif, G. Antoniol, E. Merlo, and
M. Neteler, “A novel approach to optimize
clone refactoring activity,” in Proceedings of the
8th Annual Conference on Genetic and Evolu-
tionary Computation, ser. GECCO ’06. Seattle,
Washington, USA: ACM, 8-12 July 2006, pp.
1885–1892.

[33] S. Lee, G. Bae, H.S. Chae, D.H. Bae, and Y.R.
Kwon, “Automated scheduling for clone-based
refactoring using a competent GA,” Software:
Practice and Experience, Vol. 41, No. 5, 2011,
pp. 521–550.

e-Informatica Software Engineering Journal, Volume 9, Issue 1, 2015, pages: 57–77, DOI 10.5277/e-Inf150104

An Approach to Assessing the Quality of
Business Process Models Expressed in BPMN

Małgorzata Sadowska∗
∗Faculty of Computer Science and Management, Departament of Software Engineering,

Wrocław University of Technology
m.sadowska@pwr.edu.pl

Abstract
Introduction: The quality of business process models is important in the area of model-based
software development. To the best knowledge of the author there is no working practical model
for quality assessment of BPMN 2.0 Process Diagrams which measures the actual models and
automatically interprets the measured values.
Objectives: To propose a metamodel for assessing the quality of BPMN 2.0 process models and
a working solution – a model for quality assessment of process models in BPMN (called MAQ)
and a tool which implements MAQ.
Methods: The metamodel was built upon the information presented in ISO/IEC 25010 (2011)
standard. The methodology of MAQ was driven by its essential elements. Quality characteristics
were selected through a systematic literature review. Quality metrics were identified through
a literature review restricted by questions that every relevant literature work had to affirmatively
answer. Quality metrics were implemented in the tool and quality criteria were proposed based
on the interpretation of the results of measuring a repository of BPMN models. Finally, quality
functions were proposed and the complete MAQ was implemented in the tool.
Conclusions: MAQ was preliminary evaluated for usefulness through a survey-based experiment.
The results showed that the model works in most cases and in general is needed.

Keywords: BPMN quality model

1. Introduction

Working with models has become a common
practice in model-based software development.
Models play an important role in the entire de-
velopment process. In order to model business
processes, various notations and languages are
used, such as BPMN, UML Activity Diagram,
UML EDOC Business Processes, IDEF, ebXML
BPSS, Activity-Decision Flow (ADF) Diagram,
RosettaNet, LOVeM and Event Process Chains
(EPCs). In this paper BPMN was chosen be-
cause it is a standard notation used to model
business processes [1] and it was created in such
a way that it is readily understandable by all

business users, while still being able to represent
complex process semantics [2].

Nowadays the need for achieving high quality
BPMN models seems to be undeniable [1, 3, 4].
To start with, quality has an impact on the
ease of early detection and therefore correction
of BPMN models. Early discovery of defects
in software artifacts is cheaper than repairing
consequences of modelling errors in later design
phases [3,5]. Also, poor quality of process models
can result in poor information systems [6]. Next,
models of good quality are claimed to have a pos-
itive influence on reducing software maintenance
costs [7]. Finally, all the mentioned aspects may
lead to economic benefits through satisfaction

58 Małgorzata Sadowska

of user requirements for BPMN models and the
resulting software.

The desire to ensure high quality in the ac-
tual BPMNmodels is the background underlying
the idea of the model for assessing the quality of
BPMN models (called MAQ). MAQ is designed
for quality assessment of BPMN 2.0 Process Di-
agrams, but MAQ was not intended to calculate
other types of BPMN models (Collaboration Di-
agrams or Choreography Diagrams) which can
be considered a limitation of the model. MAQ
considers every graphical construct for process
models defined in the standard, thus it is able
to calculate actual models. By “an actual model”
the author understands a Process Diagram which
is not limited to a truncated subset of BPMN
graphical elements, represents complex process
semantics and is able to graphically represent the
actual business process. Supporting the quality of
the so understood actual models in the opinion of
the author is essential and is the aim of this paper.

A solution that seeks to help modellers in ver-
ifying the quality of actual models in an effective
automated way cannot be abstract and should
be easy to be directly used on actual BPMN
models. Therefore, the focus of this paper is
on developing a model, and more importantly,
a method for assessing the quality of business
process models in BPMN.

Measuring business process models is a rela-
tively new discipline [8] even though the first ver-
sion ofBPMN1.0was released already in 2004 and
the final adopted specification of BPMN 1.0 was
finalized in 2006. Currently, BPMN has already
been evaluated both empirically and analyti-
cally [9]. The literature describes many metrics
that can be potentially used for assessing the
quality of business process models. Please notice
that MAQ is designed for quality assessment of
the actual models which use a full range of the
BPMN Process Diagram graphical constructs.
The need for supporting all constructs triggered
the need to apply a list of assumptions or changes
in the selected metrics. This is caused by the
fact that many of the original versions of met-
rics were designed to calculate only models with
a truncated subset of elements, not actualmodels,
which represent complex process semantics.

The rest of the paper is organized as follows:
Section 2 presents related works, Sections 3-5
define a quality metamodel, the developed MAQ
and the implemented tool, Section 6 summarizes
preliminary evaluation of MAQ, Sections 7 and
8 present threats to validity and conclusions.

2. Related Work

The model for assessing the quality of business
process models in BPMN was only found to be
directly related to the findings of two other pa-
pers: [10] and [11].

The contribution of [11] known as the
3QM-Framework, provides quality marks, met-
rics and measurement procedures which mainly
focus on evaluating the quality of handwrit-
ten BPMN models. The overall quality in
3QM-Framework is based on aggregation of met-
rics and measurement procedures and its result
may vary depending on the project context.
Therefore, user groups have to derive weighting
of measurement. This paper differs by proposing
a model for an instant and automatic assess-
ment of quality, which is aimed to be helpful
also for non-expert users. Quality marks from
3QM-Framework are referred to in Section 4.1
among other findings from systematic literature
review.

Makni et al. [10] implemented a tool which
can provide the results of measuring some of
BPMN metrics chosen from the literature by its
authors. The tool is aimed to help designers to
choose a subset of metrics corresponding to de-
sign perspectives. Interpretation of the results of
measurements is left to users.

A systematic literature review in the area of
model quality was conducted by Mohagheghi,
Dehlen and Neple [5]. The focus of this paper is
set only on business process models created with
the use of BPMN. The classification of model
quality goals developed in [5] is referred among
other literature references to in Section 4.1.

Sánchez-González et al. [4] presented a sys-
tematic review of measurements for business
processes. The metrics from the review were
taken into consideration while developing the

An Approach to Assessing the Quality of Business Process Models Expressed in BPMN 59

Figure 1. Metamodel for assessing the quality of business process models in BPMN

MAQ. Additional help in choosing relevant met-
rics came from [12]. Nonetheless, the final list of
quality metrics used in the MAQ was extracted
from the literature based on the proposed selec-
tion criteria listed in Section 4.2. The metrics
in some cases were additionally adjusted by the
author to calculate actual models in BPMN.

MAQ and the metamodel for assessing the
quality of business process models in BPMN was
initially developed in the author’s master thesis
[13]. This article presents a reanalyzed approach
to the information contained in the thesis and
the improved version of MAQ, the tool that im-
plements MAQ and the metamodel. There were
many major changes and improvements in the
metamodel, and some changes in MAQ and the
tool. The most important change in MAQ was
removing the indicators for the syntactic qual-
ity of BPMN models. All the definitions and de-
scriptions presented in the article were rethought
and reanalyzed from its initial proposition.

3. Metamodel for Assessing the
Quality of Business Process Models
in BPMN

This section introduces the proposed metamodel
for assessing the quality of business process mod-

els in BPMN. The structure of the metamodel
is presented in Figure 1. An example instanti-
ation of the metamodel is MAQ (described in
Section 4).

The metamodel is built upon the informa-
tion presented in ISO/IEC 25010 [14] in con-
junction with ISO/IEC 14598 [15] standard. Fol-
lowing [14], a quality model is a “defined set
of characteristics, and of relationships between
them, which provides a framework for specify-
ing quality requirements and evaluation quality.”
The hierarchical decomposition is the main idea
of the model which is aimed to decompose qual-
ity down to a level which can be measured and
thus the quality can be evaluated.

By quality characteristics, the quality of ac-
tual BPMN model can be described and eval-
uated. Quality characteristics are further de-
composed into related quality subcharacteristics.
The role of the subcharacteristics is to spec-
ify the general characteristics more concretely.
Quality characteristics and subcharacteristics in
the metamodel are suggested to be named and
defined in a natural language.

In order to talk about measurement, both
terms “metric” and “measure” are often used in-
terchangeably by researchers [16]. In this paper
the term “quality metric” is adopted. Quality
metrics are aimed for measuring quality subchar-

60 Małgorzata Sadowska

acteristics. One metric may be assigned to more
than one subcharacteristic and, as it is suggested
in the standard, more than one quality metric
may be used to measure a quality subcharac-
teristic. A scale mathematically defines theoret-
ically possible results that a potential BPMN
model can obtain for a specific quality metric, as
a result from the calculation of the mathemat-
ical equation. The scale is also used to specify
a scale of results obtained by a repository of ac-
tual models in BPMN – this scale is a subset of
the scale of theoretically possible results. Each
quality metric also owns a desired trend of val-
ues that are favorable for a metric. The trend can
be described in a natural language, e.g. the lower
obtained value of the quality metric by an actual
BPMN model, the better quality of the model.

Quality rating defines rating levels for the
measured values. In the metamodel, quality cri-
teria are used to determine the rating levels as-
sociated with the results. The results are the ob-
tained values on the scale of quality metric for
a specific BPMN model. Finally, quality func-
tions are used to assess the quality of quality sub-
characteristics or the overall quality of the actual
BPMN model. Quality functions are based on
the quality criteria and either quality subcharac-
teristic or a quality model, which is represented
by a XOR constraint in the metamodel.

4. MAQ

The metamodel presented in Section 3 defines
the structure of MAQ. The metamodel may be
used to produce other models for assessing the
quality of business processes models in BPMN,
MAQ is only one of the possible instantiations
of the metamodel. The following subsections are
aimed to present how the essential elements of
MAQ were obtained.

4.1. Selection of Quality Characteristics
and Quality Subcharacteristics

The set of quality characteristics and quality
subcharacteristics subsequently determined and
collected together constitute a hierarchical struc-

ture of MAQ. In order to identify characteristics,
a systematic literature review (SLR) was con-
ducted. Following [17], “a systematic literature
review (. . .) is a means of identifying, evaluating
and interpreting all available research relevant
to a particular research question, or topic area,
or phenomenon of interest.” The goal of this re-
view was to provide definitions of characteris-
tics based on the analysis of previous literature
in the field. The synthesis of the literature was
conducted using a well-defined methodology and
search strategy with specified two research ques-
tions being addressed: RQ1: “What quality char-
acteristics of models exist?” and RQ2: “Which of
the identified quality characteristics are suitable
to the developing model?”.

In order to make the process replicable, the
search strategy consisted of several steps as out-
lined in [17]. At first, keywords were identified
in order to minimize the effect of differences in
terminologies. The following are the keywords
that were formulated from the terms used in
the domain and research questions; or their syn-
onyms, alternate words and meaningful com-
binations: “BPMN,” “business process models,”
“model-driven engineering,” “conceptual mod-
elling,” “quality,” “model quality,” “quality char-
acteristics,” “quality goals,” “quality of business
process models.” The keywords were used to
build search queries in order to obtain relevant
articles. Six queries were based on the Boolean
AND to join keywords: 1) “model quality” AND
“business process models” 2) “quality charac-
teristics” AND “business process models” AND
BPMN 3) “quality goals” AND “business pro-
cess models” AND BPMN 4) “quality of busi-
ness process models” 5) “conceptual modeling”
AND “model quality” 6) “model-driven engineer-
ing” AND quality.

The search was conducted within the fol-
lowing electronic databases: ACM Digital Li-
brary, SpringerLink, ScienceDirect, Emerald,
Academic Search Complete, Elsevier/ICM and
ProQuest. Strategy for searching was conducted
in two phases. In the first phase, the chosen pub-
lication channels were searched for. After elim-
inating duplicates and reading titles and ab-
stracts in all of the found papers, the literature

An Approach to Assessing the Quality of Business Process Models Expressed in BPMN 61

was chosen for further reading based on the stud-
ies selection criteria. Two inclusion criteria were
applied: “paper describes quality characteristics
of models” and “paper must contain the search
keywords.” In spite of that, two exclusion criteria
were used: “paper describes quality characteris-
tics of software products” and “paper does not re-
late to Software Engineering/Development.” Fi-
nally, the full body of the filtered literature was
read and the literature relevant for this system-
atic literature review was identified. After the
first phase of searching, the second phase was
initiated in order to obtain a more representa-
tive set of studies. In this phase, the reference
list of all the selected literature was scanned in
order to discover more papers. Lastly, if the lit-
erature was claimed to be relevant, it was found
in electronic databases.

The first phase of searching resulted in 10
papers and the second search phase additionally
included 7 papers. The final list of primary stud-
ies included in systematic literature review con-
tains the following papers: [3, 5, 11, 18–30]. The
description of the studies with identified quality
characteristics can be found in [13].

To summarize, the primary studies describe
14 sets of quality characteristics of models.
The obtained results concentrate mostly around
characteristics of UML models (8 papers). The
other resulting papers refer to characteristics
for: conceptual models (3 papers), collaborative
modelling including models (1 paper) and infor-
mation models (2 papers). Only 3 papers directly
discussing quality characteristics of business pro-
cess models were found, however, the studies are
rather recent, from the years 2010–2012.

In order to answer RQ1 and RQ2, definitions
of characteristics from findings, explicitly rele-
vant to BPMN models, were gathered together
and compared against each other. The selected
and systematized characteristics from the liter-
ature particularize the area of quality in order
to be relevant for business process models in
BPMN. Definitions of the quality characteristics
and quality subcharacteristics of MAQ:
1. “Correctness” – in accordance with

an analysis regarding making correct state-
ments about the domain AND following

BPMN notation according to the specifica-
tion, e.g. not violating rules and conventions
(well formedness and syntactic correctness).
a) “Syntactic correctness” – model in

BPMN is syntactically correct if all terms
are used in accordance with the syntax
rules of the BPMN notation.

b) “Semantic correctness” – model in
BPMN is semantically correct if it cor-
responds to the domain and the reality of
the analysed situation.

2. “Integrity” – description of all and only rele-
vant elements of the domain, business process
and purpose of modelling.
a) “Informational completeness” –

a correct scope of the BPMN model (does
the model in BPMN include all and only
relevant features of the domain).

b) “Consistency” – no contradictions in
the model and the domain concepts are
adequately represented in the model.

c) “Accordance with purpose” – it oc-
curs when the BPMN model meets the
original goals for why it was created.

3. “Modifiability” – ability of the BPMN
model to be modified or changed AND sup-
porting reusability and extensibility.
a) “Changeability” – support for changes

or improvements.
b) “Reusability and extensibility” – sup-

port for the model to be used in the cre-
ation of new models or extended with new
terms.

4. “Complexity” – related to the complexity of
the BPMN model with the goal of simplicity
and minimalism.
a) “Minimality and simplicity” – if the

BPMN model contains the minimum pos-
sible constructs.

5. “Understandability” – satisfaction of the
users and their comprehensibility AND
an aesthetics of BPMN model.
a) “User comprehensibility” – under-

standable by users – both human and
tools.

b) “Aesthetics of model” – when the or-
ganization of the BPMN model improves
its look in order to ease its understanding-

62 Małgorzata Sadowska

model improves its look in order to ease
its understanding.

Important remarks to MAQ:
(1) MAQ considers only models with the ensured
correctness. A BPMN model must be syntacti-
caly and semantically correct before the model
quality can be assessed. This decision is moti-
vated by the fact that it is useless to assess fur-
ther quality factors if the model does not adhere
to the syntax rules of the BPMN notation (syn-
tactic correctness) and does not correspond to
the reality of the analysed situation (semantic
correctness). Similarly, as it is useless to discuss
the quality of the software which does not fulfil
customer requirements.
(2) MAQ only provides the characteristics of
canBeMeasuredAutomatically = false but it does
not take it into further consideration.

4.2. Selection of Quality Metrics

After outlining the quality subcharacteristics
(Section 4.1), some important questions arose,
such as how to measure the subcharacteristics
and how to interpret the measured values. In
order to evaluate the quality of subcharacteris-
tics, a set of metrics to measure models of busi-
ness processes was required. The relevant metrics
were identified by performing a literature review
restricted by a proposed set of selection criteria.
The focus of literature search was to obtain qual-
ity metric(s) for each of the quality subcharac-
teristics, the knowledge of how to calculate each
metric and what its values mean.

For each quality subcharacteristic, a metric
or a set of metrics were chosen from the litera-
ture and rationalized. The choice was based on
the selection criteria, which were questions that
relevant literature describing metric had to af-
firmatively answer. The selection criteria for the
literature were as follows:
1. Is the metric useful (or can the metric be

useful after changes or adjustments) for the
context of modelling of business processes in
BPMN?

2. Is it possible to calculate the metric for busi-
ness process models in BPMN (directly or
after changes or adjustments)?

3. Is the method of calculating the metric well
described in the literature (or is it possible to
propose a method of calculating the metric
logically)?

4. Is there a general trend known from the lit-
erature which identifies a good or bad value
of the metric ?

5. Do not the metrics limitations exclude it
from being applicable to the relevant sub-
characteristic(s)?
Only a few of the selected metrics were cre-

ated for BPMN models, e.g. Control-flow Com-
plexity metric [31] or Cross-connectivity met-
ric [32]. Many more metrics were originally pro-
posed in the related to BPMN areas, e.g. to mea-
sure UML models [5, 30], to measure business
processes modelled in the YAWL language [33],
or they were adjusted to a new purpose from ma-
ture metrics used in software engineering, espe-
cially used in object-oriented software engineer-
ing, e.g. [1, 8, 34].

The metrics selected from the literature are
listed below. As previously explained, for some
metrics it was necessary to introduce and apply
additional assumptions, adjustments or changes
in order to be able to use the metrics on
the actual models in BPMN. One general as-
sumption about the metrics calculation method
from the literature was adopted in this pa-
per. There are 5 different types of gateways in
BPMN. These five types of gateways are: Exclu-
sive Gateway, Event-based Gateway, Inclusive
Gateway, Parallel Gateway and Complex Gate-
way. In MAQ both Data-based Exclusive De-
cision/Merge Gateway and Event-based Exclu-
sive Decision/Merge Gateway are considered as
XOR gateways wherever XOR gateway is stated
in the definition of the metric. The distinction
between data-based and event-based XOR gate-
ways is based on whether the information re-
quired to make the decision is available within
the process (data-based is used) or comes from
an external source (event-based is used). How-
ever, both XORs represent a decision to take
exactly one path in the flow so from the point
of view of metrics in MAQ they are consid-
ered as XOR gateways and calculated in the
same way.

An Approach to Assessing the Quality of Business Process Models Expressed in BPMN 63

The details of the selected quality metrics
and the applied changes to their original defi-
nitions are presented below. Due to the limited
space, in order to get familiar with the method of
metric calculation, please refer to the indicated
literature references.
1. Coupling metric (CP) [8]

Short description: CP metric calculates the
degree of coupling, which is related to the
number of interconnections among the tasks
of a process model.
Desired values: Low CP values are desired.
The higher coupling value of the process, the
more difficult it is to change the process and
the higher probability that there will be er-
rors in the process.
Assumptions or changes: The original met-
ric [8] considers AND, OR, XOR gateways
and does not provide the calculation method
of connected function between gateways. In
order to be able to calculate actual examples
of BPMN models two additional assumptions
to the method of calculating the metric were
required:
t1, t2 – activities; g1, . . . , gn – gateways
a) connected(t1, t2) = 0, if (t1 → g1 → . . . →
gn → t2) ∧ (g1 6= . . . 6= gn) ∧ (t1 6= t2),
b) connected(t1, t2) = 0, if (t1 → Complex
Gateway → t2) ∧ (t1 6= t2).
The following examples illustrate situations
where the assumptions are needed:

2. Control-flow Complexity metric (CFC)
[31, 35]
Short description: CFC is an additive metric.
In order to calculate the complexity of a pro-
cess, one should add the control-flow com-
plexity value of all split and join constructs.
Desired values: Low CFC values are desired.
The greater the overall structural complexity
of a process is, the higher value of the CFC
will be obtained.

Assumptions or changes: CFC metric distin-
guishes between AND, OR, XOR gateways.
In order to allow calculating actual BPMN
models with all possible constructions, in
MAQ the split for Complex Gateways results
in value 0 so that it does not change the result
of calculations of CFC metric for the whole
BPMN model. Further research may consider
changing this method of calculating Complex
Gateway.

3. Cross-connectivity metric (CC) [32]
Short description: Let a process model be
given by a set of nodes and a set of directed
arcs. Each arc goes from a source node to
a destination node. CC metric is designed to
measure the strengths of arcs between model
nodes. It aims to capture the cognitive effort
to understand the relationship between every
pair of process model elements.
Desired values: High CC values are desired.
The more difficult it is to understand the
model or the model is more likely to include
errors; the lower the CC value is assigned to
the model.
Assumptions or changes: CC metric is very
sensitive to the syntactic correctness of the
BPMN model. The following is a list of addi-
tional assumptions that were applied to CC
metric so that the algorithm could calculate
the actual BPMN models:
a) The original CC metric [32] does not ad-
dress the problem of BPMN models with
events and how events influence the re-
sults. In BPMN it is hard to model with-
out events. For different types of events (start
events, end events and intermediate events)
the weight of node is assumed to be equal 0.
Further research should provide information
if this value should be different or if there
should be a spectrum of weights for different
event nodes.
b) The original CC metric [32] does not con-
sider any gateway types other than AND,
OR, XOR. In order to allow calculating ac-
tual BPMN models, metric result for the
models with Complex Gateways is currently
set as “Undefined.” Further research may con-
sider stating this value.

64 Małgorzata Sadowska

c) CC metric cannot calculate business pro-
cess models smaller than two elements (e.g.
two tasks), however it seems to be of minor
importance because the majority of models
are more complex.
d) Following Vanderfeesten et al. [32], CC
metric is based on the assumption that tasks
in a model have at most one input and output
arc while connectors can have multiple input
and output arcs. Therefore, the metric result
for other BPMN models is currently set as
“Undefined.”

4. Imported Coupling of a Process metric
(ICP) [1]
Short description: ICP is a coupling metric
that focuses on process if it is highly de-
pendent on external services offered by other
processes.
Desired values: Low ICP values are desired.
The higher ICP value, the more dependent
the process is on the services offered by other
processes, what might increase delays, costs
and error probability.
Assumptions or changes: Metrics in MAQ
ought to provide a value for the whole BPMN
model. The original ICP metric by Khlif et
al. [1] calculates the result for each single task
or sub-process in BPMN model. In MAQ,
ICP metric for the whole business process
model is defined as the greatest ICP value
obtained by any of its tasks or sub-processes.
Additionally, in order to properly calculate
ICP values for models in BPMN, associa-
tions and data associations should also be in-
cluded. Therefore the changed metric counts
the sent message flows, sequence flows, asso-
ciations and data associations.

5. Exported Coupling of a Process metric
(ECP) [1]
Short description: ECP is a coupling metric
that focuses on process and its influence on
the whole model based on how many other
processes depend on its services.
Desired values: Low ECP values are desired.
The higher ECP value, the more other pro-
cesses depend on the services of the process,
which might increase delays, costs and error
probability.

Assumptions or changes: The assumptions
for ECP are nearly the same as the as-
sumptions for ICP, but for the fact that the
changed metrics counts the received message
flows not the sent message flows.

6. Fan-in/fan-out metric (FIO) [36]
Short description: FIO metric can be used
to analyse the complexity of a business pro-
cess model based on the modular structure.
Modular modelling is supported in BPMN by
sub-processes. The metric is similar to the
metric proposed by Khlif et al. [1], however,
it does not include length.
Desired values: Low FIO values are desired.
The higher structural complexity of a model
or sub-model according to the FIO value, the
more difficult it is to use the model and there
is more likelihood that it is badly designed.
Assumptions or changes: Metrics in MAQ
ought to provide a value for the whole BPMN
model. The original FIO metric [36] counts
only sub-processes (it does not count tasks)
and calculates a separate result for each sin-
gle sub-process in BPMN model. In MAQ,
FIO metric for the whole business process
model is defined as the greatest FIO value
obtained by any of its sub-processes. Due to
the fact that from the definition of the met-
ric it is not clear what should be adopted if
the model does not have a modular structure,
if the model does not have sub-processes, in
MAQ FIO value is assumed to be equal zero.

7. Number of Activities, Joins and Splits
(NOAJS) [37]
Short description: Splits in BPMN do not
necessarily have corresponding joins. NOAJS
complexity metric can measure such not well
structured processes based on counting ac-
tivities, joins and splits together.
Desired values: Low NOAJS values are de-
sired.
Assumptions or changes: None.

8. Interface complexity of an activity met-
ric (IC) [37]
Short description: IC metric can be used to
evaluate the complexity of processes.
Desired values: Low IC values are desired.

An Approach to Assessing the Quality of Business Process Models Expressed in BPMN 65

Assumptions or changes: From the original
definition of the metric [37], it is not clear
how Length should be calculated for BPMN
models. In MAQ, it is calculated as follows:
Length=1 for a task element and Length=3
for a sub-process (representing sub-processes
as a collection of activities).
Metrics in MAQ ought to provide a value
for the whole BPMN model. The origi-
nal IC metric [37] calculates a result for
each single activity. In MAQ, IC metric
for the whole model is defined as the sum
of all IC values obtained by all activities
in the model. These will reduce a limita-
tion of the original metric, which can give
the zero result as the value of complex-
ity if an activity has no external interac-
tions, e.g. for the end activities of the pro-
cess.
Assumption for the following points 10,
11 and 12 describing Halsted-based Process
Complexity metrics: The following refine-
ment of the metrics is used in MAQ:
n1 – number of unique activities, splits, joints
and control-flow elements.
n2 – number of unique data objects, data in-
puts, data outputs and data stores (dupli-
cates removed).
N1 – number of unique types of activities and
control-flow elements used in BPMN model,
e.g. task, sub-process, XOR gateway, OR
gateway, etc.
N2 – number of unique data types used in the
BPMN model – data objects, data inputs,
data outputs and data stores.

9. Halsted-based Process Difficulty met-
ric (HPC_D) [37]
Short description: HPC_D is a quantitative
measure of complexity and is aimed to calcu-
late the difficulty of the process.
Desired values: Low values are desired.
Assumptions or changes: HPC_D has a limi-
tation, because its value cannot be calculated
if n2 equals 0. In MAQ, the result of such
calculation is set as “Undefined.”

10. Halsted-based Process Length metric
(HPC_N) [37]

Short description: HPC_N is a quantitative
measure of complexity and is aimed to calcu-
late the length of the process.
Desired values: Low values are desired.
Assumptions or changes: HPC_Nmetric can
be calculated only if (n1>0 and n2>0), oth-
erwise it cannot be calculated because the
log value is undefined. In MAQ, the result of
such calculation is set as “Undefined.”

11. Halsted-based Process Volume metric
(HPC_V) [37]
Short description: HPC_V is a quantitative
measure of complexity and is aimed to calcu-
late a volume of the process.
Desired values: Low values are desired.
Assumptions or changes: HPC_Vmetric can
be calculated only if (n1+n2 >0), otherwise
it cannot be calculated because the log value
is undefined. In MAQ, the result of such cal-
culation is set as “Undefined.”

12. Sequentiality metric (S(G)) [12]
Short description: S(G) is a structural met-
ric. The sequentiality ratio is the number of
arcs between none-connector nodes divided
by the number of arcs.
Desired values: High S(G) values are desired.
The higher S(G) value, the less likely it is to
have errors in the overall model.
Assumptions or changes: None.

13. Number of Nodes metric (Sn(G)) [12]
Short description: Sn(G) is a structural met-
ric that calculate the number of nodes of pro-
cess model.
Desired values: Low Sn(G) values are desired.
The higher Sn(G) value, the more likely it is
to have errors in the overall model.
Assumptions or changes: None.

14. Number of Activities metric (NOA)
[37]
Short description: NOA metric sums up ac-
tivities in a business process model. It is
a simple and popular metric that can be used
to measure complexity.
Desired values: Low NOA values are desired.
Assumptions or changes: None.

15. Coefficient of Connectivity metric
(CNC(G)) [12]

66 Małgorzata Sadowska

Short description: CNC(G) is a structural
metric. The coefficient of connectivity gives
the ratio of arcs to nodes in BPMN models.
Desired values: Low CNC(G) values are de-
sired. The higher CNC(G) value, the more
likely it is to have errors in the overall model.
Assumptions or changes: None.

16. Cognitive complexity measure (W) [33]
Short description: Cognitive complexity
measure is a cognitive weight proposed to
measure the effort needed for comprehending
the model.
Desired values: Low W values are desired.
The higher W value, the more difficult it is
to understand the model.
Assumptions or changes: Cognitive weights
of business process model elements in [33]
were proposed for YAWL language. Based on
the analogy with BPMN language, the ad-
equate cognitive weights for BPMN models
are proposed in Table 1. In MAQ, the cogni-
tive weight of the BPMN model is defined as
a sum of the cognitive weights of its individ-
ual elements.

17. Density metric (D(G)) [12]
Short description: D(G) is a structural met-
ric that calculates the ratio of the total num-
ber of arcs to the maximum number of arcs.
Desired values: Low D(G) values are desired.
The higher D(G) value, the more likely it is
to have errors in the overall model.
Assumptions or changes: None.
The chosen quality metrics were assigned to

quality subcharacteristics of MAQ based on in-
formation derived from the literature. Some met-
rics are useful for more than one subcharacteris-
tic (please refer to metamodel in Fig. 1).

Rationale for assigning metrics to sub-
characteristics is as follows:

Quality subcharacteristic: “Changeability”
has the following metrics assigned:
– CP: The lower value of coupling, the easier

to change the process [8].
– CFC: Models with a reasonable complexity

are easier to modify and maintain. The met-
ric may help to develop simpler processes
when it is possible [35]. Following [38], CFC
metric is suitable to measure changeability.

– D(G) and S(G): In [4], conducted experi-
ments showed that Density and Sequentiality
metrics are closely connected with modifia-
bility.

– HPC_D, HPC_V and HPC_N: Metrics can
predict maintenance effort [37].

– ECP and ICP: Business process models that
have high coupling metric are difficult to be
changed or maintained because they have
a high level of informational dependency be-
tween activities [1].
Quality subcharacteristic: “Reusability”

and extensibility has the following metric as-
signed:
– FIO: In accordance with [36], FIO metric de-

tects poor modularization. If modularization
is used in a reasonable way, dividing a model
in modular sub-models can lead to smaller,
reusable models.
Quality subcharacteristic: “Minimality and

Simplicity” has the following metrics assigned:
– FIO: Following [36], if the examined

sub-process in the model has both a large
fan-in and a fan-out, this may indicate that
the model does not have an appropriate size
or was not partitioned into modules in a sen-
sible way. Redesigning in this situation could
improve the sub-process.

– NOA and NOAJS: These simple metrics may
show models that are badly designed with
an excessive number of activities [1].
Quality subcharacteristic: “User compre-

hensibility” has the following metrics assigned:
– CFC: It is easier to understand and maintain

business process models with low complex-
ity. Business processes should minimize their
complexity in order to be helpful to the var-
ious stakeholders [35]. Following [38], CFC
metric is suitable to measure understandabil-
ity.

– CC: Models with high cross-connectivity can
facilitate understanding of business processes
among various stakeholders [32].

– NOA and NOAJS: The metrics provide some
information about the understandability of
designs [37].

– W: The measure can state whether models
are easy or difficult to comprehend [33,38].

An Approach to Assessing the Quality of Business Process Models Expressed in BPMN 67

Table 1. Proposition of cognitive weights for BPMN models in Cognitive Complexity Measure

BPMN structure BPMN
symbol

Cognitive
weight

Single consecutive step in a work-flow 1

All joins. In [33], the metric was originally defined only for business process
models that are well-structured. In BPMN, corresponding joins are not
necessary. The weight of join elements is considered as equal to the cognitive
weight of sequence elements.

1

XOR-split (exactly one of two branches is chosen) 2

XOR-split (exactly one of more than two branches is chosen) 3

AND-split 4

OR-split or Complex Gateway 7

Sub-process (can be used for decomposing BPMN models) 2

Start or End event 2

Intermediate event (both intermediate events attached to the boundary
of activities and intermediate events within the normal flows) 3

– FIO: The metric was developed for analysing
the modularization; modular sub-processes
can help to make the model easier to com-
prehend [36].

– Sn(G), CNC(G) and S(G): In [4], the con-
ducted experiments showed that the metrics
are closely connected with user’s understand-
ability.

– CP: High complexity in a process may result
in bad understandability, therefore, process
complexity should be kept at low level [8].

– IC: The metric is a measure of complexity of
process models and complexity measures the
understandability of a design [1].
Quality subcharacteristic: “Aesthetics of

diagrams” has the following metrics assigned:
– CP: Business process models with high CP

metric have complicated connections, which
can be reflected in the organization of BPMN
models [8].

– ICP and ECP: The organization of BPMN
models with high ICP or ECP metrics may
not be clear and thus difficult to under-
stand. The coupling metrics detect models
in which multiple processes depend on each
other, which may influence the look of the
whole design.

– CNC(G): In formal esthetics the coefficient
of network complexity measure is considered
with the notion of elegance [37].
Figure 2 presents a schema of the hierarchical

structure of the extracted quality characteristics,
quality subcharacteristics and quality metrics.

4.3. Selection of Quality Criteria

Very rarely does it happen that the literature in-
dicates which values of metrics are good or bad,
and an accurate analysis of the results is mostly
left to the user. This is not a problem if the user

68 Małgorzata Sadowska

Reusability and extensibility

Syntactic correctnessCorrectness

Semantic correctness

Informational completeness

Consistency

Changeability

Integrity

Modifiability

Complexity Minimality and simplicity

Understandability User comprehensibility

Aesthetics of models

MAQ

Accordance with purpose

CC metric

CP metric

ECP metric
ICP metric
CFC metric

W metric

FIO metric
NOA metric

NOAJS metric

HPC_N metric
HPC_D metric
HPC_V metric

IC metric

Sn(G) metric

CNC(G) metric
S(G) metric

d(G) metric

BPMN model must be syntactically
and semantically correct before the
model quality can be assessed.

Quality CharacteristicsQuality Model Quality Subcharacteristics

Quality Metrics

Figure 2. A schema of the hierarchical structure of MAQ

is an expert and a quick analysis of multiple met-
rics and models is not required. The purpose of
MAQ is to automate the process of model qual-
ity assessment. Therefore, it is very important
to define exact quality criteria as functions that
appraise the results of quality metrics.

More often than specific numbers, the au-
thors of metrics indicate the general trend of
metrics’ results, e.g. a lower (higher) value of
a metric, a better model. Therefore, one of the
selection criteria for the literature in Section 4.2
rejected literature and metrics for which this
trend was not clear. With this knowledge in
mind, quality criteria for metrics based on the
results obtained from measuring models from
a pre-prepared BPMN repository. The reposi-
tory contained 57 business process models in
BPMN; collected from five different Internet
sources [13]. The identified BPMN models had
varying quality in different sources because they
were created by users with different levels of
experience in BPMN. The repository contained
officially correct BPMN examples given by the
OMG, models from master and doctoral theses
and models created by various individuals, who
had less experience with BPMN. This variety of

models helped to define which results of metrics
were obtained by high and low quality models.
An effort was made to collect models of diverse
quality, however it poses a threat to validity. In
order to be able to examine the repository of
BPMN models and to propose quality criteria,
two tools were needed:
1. A tool that implements all the chosen qual-

ity metrics from Section 4.2. This tool was
created and is reviewed in Section 5.

2. Additional statistical software which con-
tains tools for clustering. In this case Weka
software was chosen and simple k-means
function was selected for clusterization.
The algorithm of k-means clustering was de-

veloped by Hartigan and Wong [39]. In MAQ, in
the k-means clustering function, the k value was
declared as equal 4 or 2, based on the results of
metrics used on the repository. The seed value
for each metric was chosen individually as inte-
ger value without rounding from the equation:
maximal metric’s value minus minimal metric’s
value divided by 2.

Quality rating in MAQ is defined as an or-
dinal scale that describes whether the result of
the metric is of good or bad quality on a scale of

An Approach to Assessing the Quality of Business Process Models Expressed in BPMN 69

Class A (highest) through Class E (lowest). The
chosen scale is ordinal since the quantitative lev-
els of quality had varying distances between them
for each metric. For example, the range of values
obtained from the BPMN repository for CP met-
ric had a range of 0 to 0.3 and the CFC metric
had a range from 0 to 16. Clearly, the ranges be-
tween metrics were different in practice and not
easily comparable without the use of an ordinal
scale. The ordinal scale was created using results
of measurements of the repository. The values
for each entity of the ordinal scale were based
on an interval of values which were relevant to
each metric. For example, the CFC metric had
an observed range from 0 to 16. The trend of
values for each metric suggests what are good or
bad values in terms of quality for each metric.
This information was used to assign intervals to
quality ratings. For example, in the case of CFC
metric, the value should be low in order to attain
a good quality. Clusterization of the metric was
then used to create intervals of ordinal elements,
e.g. zero to one for Class A, from one to four for
Class B, etc.

Example calculations of quality criteria pre-
sented below are based on CP metric. A full list
of the defined quality criteria is available in [13].

Summary of CP metric:
– Type of measurement method: Objective,
– Scale of theoretically possible results: Real

from zero to infinity,
– Scale of results obtained by models from the

repository: [0.0, 0.333333],
– Low CP values are preferable for high quality

models.

Figure 3. The result of measures of CP metric on
the repository of BPMN models

Weka software settings: Simple k-means
function, Number of clusters: 4, Seed: 0. Clusters
obtained through the use of the software were as
follows: cluster 0: 0.114167, cluster 1: 0.176786,
cluster 2: 0.064361, cluster 3: 0.003934.

Table 2. Assignment of results to quality ratings

Range of results Quality Rating

[0.0, 0.003934) Class A
[0.003934, 0.064361) Class B
[0.064361, 0.114167) Class C
[0.114167, 0.176786) Class D
[0.176786, ∞) Class E

The obtained quality criteria for CP metric:

QC() =





Class A, if CP ∈ [0.0, 0.003934)
Class B, if CP ∈ [0.003934, 0.064361)
Class C, if CP ∈ [0.064361, 0.114167)
Class D, if CP ∈ [0.114167, 0.176786)
Class E, if CP ∈ [0.176786,∞)

4.4. Selection of Quality Functions

Quality functions combine the results of qual-
ity criteria for both quality subcharacteristics
and the overall quality of actual BPMN mod-
els. In this way, they indicate whether the model
quality is good or bad. More specifically, the
result of quality function for e.g. “Minimality
and Simplicity” subcharacteristic has to com-
bine the results of quality criteria for FIO, NOA
and NOAJS metrics. Based on this example,
the quality function determines what should be
stated as an overall quality if, for example, cri-
teria for FIO results in Class B, NOA in Class C
and NOAJS in Class B.

There are many possible interpretations of
how to propose quality functions. For example,
the function for a subcharacteristic could be cal-
culated as follows:
– The best quality rating obtained by any of

metrics assigned to the subcharacteristic
QFsch = min {QualityRating}

– The ceiling of the mean quality rating ob-
tained by metrics assigned to the subchar-
acteristic. Let Class A = 1, Class B = 2,
Class C = 3, Class D = 4, Class E = 5

70 Małgorzata Sadowska

QFsch = (QualityRating) d∑M
m=1QRm/Me

where M is a number of the assigned metrics
– etc.

In MAQ, quality functions were proposed
taking into account the following issues:

a) Not every quality metric can be calcu-
lated for each actual BPMN model. Some met-
rics may result in an “Undefined” value. Hence
the need for differentiation in interpretation be-
tween metrics which always result in a real value
(ECP, ICP, d(G), Sn(G), HPC(V), CNC(G),
CFC, W, FIO, NOAJS, NOA, IC) and met-
rics that may result in an “Undefined” value
(HPC(D), HPC(N), S(G), CC, CP).

b) Metrics that result in an “Undefined” value
for an actual BPMN model should be excluded
from the calculation of quality and only met-
rics which result in a non-undefined result should
have influence on the quality.

c) The proposed quality functions use a Fi-
bonacci sequence and the ceiling function. The
Fibonacci sequence may help in addressing the
differences between the results of metrics whose
values are not easy to be directly compared. The
distance between quality ratings varies depend-
ing on quality criteria. Fibonacci sequence seems
to be relevant since the direct comparing of qual-
ity rating as ratios of each other (e.g. Class E
as half of the quality of Class D) would over-
estimate the result. It seems to be relevant also
because when the quality is low, it is important
that this is clear for the user. The Fibonacci se-
quence increases rapidly from the initial value of
1 to 8. As a result, the quality rating for a bad
quality model can be represented using higher
values such as 8 in order to make the whole qual-
ity function more sensitive to bad quality. In or-
der to make the rating more sensitive to a bad
quality, the Fibonacci sequence is used starting
from the third value. To summarize, Fibonacci
sequence and ceiling function are chosen because
they are more informative to have results that
are sensitive to a low quality. These more sen-
sitive results show clearly when the quality is
low. Nevertheless, at this stage of research in
the field it is difficult to assess if this interpreta-
tion is acceptable. Further research should inves-

tigate which interpretation of the quality func-
tion is best for combining metrics for models
in BPMN.

Quality functions for quality subcharacteris-
tics are defined as follows (the quality function
for the whole BPMN model is analogical):

QFsch() = (QualityRating)d
∑M

m=1 QRvalue(m)
M e

where:

QRvalue(m) =





1, if QC(m) = Class A
2, if QC(m) = Class B
3, if QC(m) = Class C
5, if QC(m) = Class D
8, if QC(m) = Class E

;

m – quality metric assigned to the quality sub-
characteristic, which produced a non-undefined
result for the measured BPMN model;
M – number of the assigned quality metrics;
(QualityRating) – The result of the equation is
transferred into a adequate quality rating with
casting so that the lower (worse) value of qual-
ity rating is assigned. An example: Class A = 1,
Class C = 3, Class E = 8 results in: QFsch() =
(QR)d1+3+8

3 e = (QR)d4e = Class D .

5. BPMN Quality Tool

BPMN Quality Tool1 is a plug-in implemented
in the Java language to Business Process Visual
ARCHITECT (Simulacian) – well-known soft-
ware for modeling in BPMN (tested in the 4.0
version of the software).

5.1. Initial Functionality of the Tool

BPMN Quality Tool in its initial functionality
allows for measuring and displaying values of
quality metrics for actual BPMN models (an ex-
ample is presented on the left side of Fig. 4). This
functionality was used to gather data needed to
propose quality criteria for metrics (described in
Section 4.3).

An additional functionality of the plug-in,
available through a pop-up menu, shows rela-
tionships of BPMN elements in actual models.

1 The plug-in is available online and can be found in: <https://sourceforge.net/projects/bpmn-quality/>.

An Approach to Assessing the Quality of Business Process Models Expressed in BPMN 71

Figure 4. An example of measures of MAQ on a BPMN model

“Show Relationship of Element” option lists all
relationships of the chosen element (example can
be found in Fig. 5). It provides information es-
pecially about:
– the type of flow going to or from the chosen

element (it distinguishes between a sequence
flow and a message flow),

– the name of the flow (if the flow has a name,
otherwise “Unnamed”),

– the direction of the flow (if flow goes “To” or
“From” the chosen element),

– the icon of the BPMN model’s element to or
from which the flow goes.

Figure 5. An example use of “Show Relationships of
Element” option for the AND gateway element

This functionality may help to get more in-
formation about elements in complex BPMN
models or in models with bad aesthetics, e.g.
where arches cross. The analysis of the re-
lationships of elements was a base to imple-
mentation of quality metrics presented in Sec-
tion 4.2.

5.2. Implementation of MAQ

The final functionality of BPMN Quality Tool
allows for assessing the quality of actual busi-
ness process models in BPMN. “Quality Assess-
ment” option is an implementation of the devel-
oped MAQ. The option shows a quality of sub-
characteristics and an overall quality (example
is presented on the right side of Fig. 4).

6. Preliminary Evaluation of MAQ

This section describes the process of how the
preliminary evaluation of MAQ was conducted
by a survey-based experiment and what results
were obtained. The survey can be found in [13]
in Appendix E.

6.1. Survey Study Design

Research question: The survey and survey-based
experiment was aimed to provide an answer to
the question “Is the developed model for
assessing the quality of business process
models in BPMN considered useful?” .

Types of questions: The survey was based on
the questionnaire which consisted of closed ques-
tions. This form was chosen because it allowed
for a more quantitative feedback. In some sur-

72 Małgorzata Sadowska

veys the respondents left additional comments.
The comments mostly added details to the ques-
tions of the survey. The most interesting sug-
gestions were about some additional functions
the tool for assessing the quality of the models
should have so that it would be useful for mod-
elers. And there were also very important com-
ments which helped to improve the definitions
of the characteristics. These responses were later
analyzed in a qualitative manner.

Population of the survey: The survey popu-
lation consisted of experts on BPMN who used
BPMN at work, for research or for private pur-
poses. The author identified potential experts to
be contacted, however, the final classification if
someone is or is not an expert was based on how
high the respondent rated his or her knowledge
of BPMN (an additional question in the survey).

The initial question in the survey was:
"Please select a number which best describes the
level of your knowledge of BPMN notation" on
a five point scale, where 1 meant a novice and 5
meant an expert. Experts in the survey were re-
spondents who declared the level of their BPMN
knowledge as 3 or more, as well as ticked that
they used BPMN in their work, research or for
private purposes.

In total 14 expert responses were obtained
from 125 potential experts contacted.

6.2. Survey-based Experiment

Objective and Design: The aim was to evalu-
ate practical usefulness of the MAQ model. This
was done by comparing assessment given by the
tool which implemented MAQ and the assess-
ment given by the expert respondents. It was
checked if the respondents’ evaluation of the
quality of BPMN models agreed with the re-
sults determined by the tool. This indicated how
useful MAQ and the tool for automatic assess-
ment of the quality of business process models
in BPMN were. The respondents assessed three
BPMN models based on the identified qual-
ity subcharacteristics. The subcharacteristics for
each BPMN model were assessed using the pre-
viously introduced quality rating from Class A
to Class E. The same process was conducted by

the tool. Later, results were compared and anal-
ysed. The goal of the experiment was defined
according to the goal template in [40] as follows:
analyse the quality of BPMN models
[for the purpose of] the evaluation of MAQ
with respect to its accuracy in the evalua-

tion of quality of business process models in
BPMN

from the point of view of BPMN experts
in the context of the business process mod-

elling domain.
Objects: The objects were BPMN models.
Subjects: Responses from expert respondents.
Independent variables: Independent variables
were three models in BPMN. The BPMN mod-
els for the survey were chosen in order to be of
either good or bad quality. The chosen models
of good quality were visually different. The se-
lected models seemed to be relevant since they
represented both good and bad quality mod-
els. The fact that the choice of the models was
based on the author’s knowledge and the chosen
models could possibly not be representative for
the whole population of business process mod-
els in BPMN posed a threat to validity (please
refer to Section 7). Besides quality, a number
of other concerns were taken into consideration
when selecting the BPMN models for the sur-
vey. Firstly, the models needed to be non-trivial
by representing processes which could be of im-
portance. For example, the three BPMN models
represented a trouble ticket system, a purchase
ordering process and a software upgrade process.
Secondly, the BPMN models needed to be rea-
sonably complex, so that the respondents could
easily understand them. This was seen in the
models as they did not consist of more than 50
elements (including flows). Thirdly, the number
of BPMN models chosen for the survey had to be
limited in order to increase the response rate of
the survey – more models could discourage the
respondents. All of these reasons contributed to
the choice of three non-trivial and appropriately
complex BPMN models.
Dependent variables: The assessment by the tool
and the assessment by experts who responded to
the survey were the two dependent variables of
the experiment. Dependent variables of the ex-

An Approach to Assessing the Quality of Business Process Models Expressed in BPMN 73

periment were selected in order to understand
the correlation between the respondent’s ratings
of the quality versus the tool’s use of the quality
rating scale.
Hypotheses: Null hypothesis H0: The mean of
the survey result for each characteristic was
equal to the MAQ model’s result.
Alternative hypothesis H1: The mean of the sur-
vey result for each characteristic was not equal
to the MAQ model’s result.
The hypotheses were tested using a student’s
t-test and the 95% confidence interval of the
mean of the expert responses.

6.3. Results of the Preliminary
Evaluation

The graphical charts that present the comparison
of expert responses with tool response are avail-
able in Section 10.2 of [13]. In the survey-based
experiment, the equality of the mean of expert’s
assessment of the quality of the surveyed BPMN
models with that of the tool was mostly not re-
jected. The results of the MAQ model fell within
the confidence interval for the characteristics of
“Changeability” and “User comprehensibility” for
all three models indicating that the equality of
expert’s responses and the responses of the tool
cannot be rejected for the models surveyed. The
hypothesis of the expert and tool agreement was
rejected in one of the three models for “Aesthetics
of the model.” However, “Reusability and extensi-
bility” was rejected in two of the three models and
“Minimality and simplicity” was rejected in all
models, indicating that they mostly did not equal
the response of experts. The reason mostly lay in
the fact that currently there is very little research
on metrics that can calculate BPMN models and
be proper indicators for the “Minimality and sim-
plicity” subcharacteristic (only 3 relevant metrics
were found) and the “Reusability and extensibil-
ity” subcharacteristic (only 1 relevant metric was
found and the metric takes into consideration
only the models with sub-processes). The MAQ
is built in a way which is easily extensible if future
research proposes updated or new metrics rele-
vant for the subcharacteristics. Due to the fact
that the number of the collected responses to the

survey cannot be accepted as representative, the
obtained results may be used only as suggestions
for the direction of the research, if it could be
correct and helpful. It is identified as a threat to
validity in Section 7.

7. Threats to Validity

The author has identified a number of threats
to validity. The following is the explanation of
them and their mitigating factors to the devel-
oped model. Threats to validity for research in
the field of software engineering are presented as
consisting of four types, which are: construct va-
lidity, conclusion validity, internal validity and
external validity [40]. For each type of validity
threat, risks which could pose a threat to the
validity of MAQ are identified.

Conclusion validity threats are issues
which affect the way conclusions are made from
treatments.
Reliability of measures: When measurements are
not consistently applied there is a possible risk
of threatened validity. The created tool assured
that all metrics, quality criteria and quality func-
tions were calculated automatically so that the
threat that calculations would be unreliable was
mitigated.
Random heterogeneity of BPMN models: Varia-
tion poses a risk when the objects under study
are heterogeneous. The BPMN models needed to
be heterogeneous in terms of quality since good
and bad quality was under assessment. In order
to mitigate the consequences of heterogeneous
BPMN models, the author narrowed the focus
to Process Diagrams in BPMN 2.0 notation.

Internal validity threats are concerned
with whether the relationship between the treat-
ment and outcome is causal. This means that the
relationship between the treatment and outcome
cannot be caused by some unknown factor.
Quality assurance of SLR: A threat to validity is
posed for the systematic literature review by the
a lack of quality assurance activities. The activ-
ities could include reviewing the selected papers
to see if they match the inclusion criteria by an-
other reviewer, developing and verifying the pro-

74 Małgorzata Sadowska

tocol with another reviewer to make sure if the
extracted data are correctly interpreted.
Literature review for metrics: The choice of the
literature was restricted by the proposed selec-
tion criteria for the literature. There is a threat
to validity that an important work could have
been omitted.
Selection of BPMN models: BPMN models were
selected by the author of the article. The mod-
els were selected from publicly available sources
where the licensing allowed for them to be used
for research. This poses a threat to validity since
models which are licensed in a research-friendly
way could be different than BPMN models in
general. In order to mitigate this, 57 models
from 5 different sources were collected so that
a more general selection could be achieved. Fur-
thermore, a number of models needed to be re-
drawn, so they could have a file format sup-
ported by a tool created by the author. The au-
thor tried to rewrite the models without defects,
however, rewriting models always possibly may
increase defects.
Selection of BPMN models in survey: There were
three models chosen to be used in the survey.
They were selected based on their varying qual-
ity in respect to the quality subcharacteristics
measured. By selecting only three models of the
57 models there is a threat to validity that the
models which were selected were not representa-
tive of the whole population of business process
models.
Selection of experts to the survey: Naturally
there is a variation in the level of expertise in
the field of BPMN, and so the contacted experts
may not be representative of the whole BPMN
expert population. The author tried to mitigate
this threat by contacting experts directly and
also verifying through the survey whether they
really were experts.

Construct validity threat refers to the
theory and the observation if they are related
in a causal way.
Lack of metric validation: If the metrics used in
the paper have not been validated theoretically
or empirically and were used in the MAQ model.
Some metrics were additionally adjusted to the
need of MAQ by the author. The selected metrics

come from scientific research and so that the se-
lection was based on peer-reviewed metrics. Nev-
ertheless, it poses a threat to the validity of the
model.

External validity threats are concerned
whether the result of the research is generaliz-
able to a larger scope.
Interaction of selection and treatment: This is
a threat when the subject of a study is not rep-
resentative of the general population. Quality
characteristics and subcharacteristics were se-
lected using a SLR with a well-defined protocol
that followed systematic guidelines [17]. Further-
more, the metrics were selected using a defined
set of selection criteria that was applied to the
literature. As a result, a well-defined methodol-
ogy was applied in order to collect quality char-
acteristics and metrics from the population of
scientific literature relevant to BPMN models.
Generalization of survey responses: There is a se-
rious risk that the survey respondents are not
generalizable to the population of practitioners
when the used sample used is not representative.
The population used cannot be considered as
representative for the general population. There-
fore, the results obtained from the survey-based
experiment may be used only as suggestions
showing whether the direction of the research
is correct and helpful for practitioners but the
cannot be considered a statistically significant
result.
Generalization of BPMN models: Threats to va-
lidity resulting from BPMN models not being
generalized to the population pose a risk since
the result can only be generalized to an appro-
priate scope. The repository of BPMN models
consisted of only BPMN 2.0 Process Diagrams.
This means that the conclusions cannot be gen-
eralized to other types of BPMN diagrams.

8. Conclusions

The quality of business process models is impor-
tant in the area of model-based software develop-
ment. The need for high quality of models is sup-
ported by many arguments both industrial and
research based. This paper focuses on a practical

An Approach to Assessing the Quality of Business Process Models Expressed in BPMN 75

proposal of a model for quality assessment of ac-
tual models in BPMN called MAQ. The first part
of the paper presents a metamodel of the MAQ.
The metamodel defines a structure of the MAQ
and is built upon the information presented in
ISO/IEC 25010 [14] standard. Later on, all parts
of the MAQ are described. The most important
MAQ parts are: quality characteristics, quality
subcharacteristics, quality metrics, quality cri-
teria and quality functions. Later section shows
BPMN Quality Tool which implements MAQ
and can be helpful for modelers to ensure that
the generated actual BPMN models are correct
and properly built. The model was preliminarily
evaluated for usefulness through a survey-based
experiment in [13].

MAQ aims to assess only the quality charac-
teristics which can be measured in isolation from
any additional information about the domain,
but the BPMN model itself. Therefore, MAQ
only lists but is not designed to automatically
assess subcharacteristic of Syntactic correctness,
characteristic of Integrity and its subcharacter-
istics: Informational completeness, Consistency
and Accordance with purpose. This might be con-
sidered as a limitation of MAQ.

Not all of the metrics chosen from the liter-
ature were validated. Additionally, some of the
original metrics operated or were tested only on
a subset of BPMN elements. Therefore, some ad-
ditional changes to the original metrics metrics
had to be applied in order to be able to measure
actual models in BPMN. These changes have
not been validated yet either. Future research
may validate, change or extend the proposed
metrics.

The MAQ and its implementation seem to be
a good starting point for further development.
The MAQ and BPMN Quality Tool can be fur-
ther extended while new metrics will be intro-
duced, existing metrics will be further developed
in order to be able to measure actual models,
and new quality criteria or quality functions will
be suggested. This may lead to consideration of
new perspectives and more compatible correla-
tion between quality characteristics, quality sub-
characteristics, quality metrics, quality criteria
and quality functions.

References

[1] W. Khlif, L. Makni, N. Zaaboub, and
H. Ben-Abdallah, “Quality metrics for busi-
ness process modeling,” in Proceedings of the
9th WSEAS international conference on Ap-
plied computer science (ACS’09), R. Revetria,
V. Mladenov, and N. Mastorakis, Eds. Stevens
Point, Wisconsin, USA: World Scientific and
Engineering Academy and Society (WSEAS),
2009, pp. 195–200.

[2] Business process model and notation (BPMN)
version 2.0. Object Management Group, Inc.
(2011). [Online]. http://www.omg.org/spec/
BPMN/2.0/

[3] H. Reijers, J. Mendling, and J. Recker, “Busi-
ness process quality management,” in Handbook
on Business Process Management 1, ser. Inter-
national Handbooks on Information Systems,
J. vom Brocke and M. Rosemann, Eds. Springer
Berlin Heidelberg, 2015, pp. 167–185.

[4] L. Sánchez-González, F. García, J. Mendling,
F. Ruiz, and M. Piattini, “Prediction of business
process model quality based on structural met-
rics,” in Conceptual Modeling – ER 2010, ser.
Lecture Notes in Computer Science, J. Parsons,
M. Saeki, P. Shoval, C. Woo, and Y. Wand, Eds.
Springer Berlin Heidelberg, 2010, Vol. 6412, pp.
458–463.

[5] P. Mohagheghi, V. Dehlen, and T. Neple, “Def-
initions and approaches to model quality in
model-based software development – A review
of literature,” Information and Software Tech-
nology, 2009, pp. 1646–1669.

[6] T. Rozman, G. Polancic, and R.V. Horvat,
“Analysis of most common process modelling
mistakes in BPMN process models,” 2007. [On-
line]. http://www.slideshare.net/tomirozman/
eurospi2007trozman

[7] I. Dubielewicz, B. Hnatkowska, Z. Huzar, and
L. Tuzinkiewicz, “Quality-driven software devel-
opment for maintenance,” in Emerging Tech-
nologies for the Evolution and Maintenance of
Software Models, J. Rech and C. Bunse, Eds.
Hershey: Information Science Reference, 2012,
pp. 1–31.

[8] J. Cardoso, I. Vanderfeesten, and H.A.
Reijers, “Computing coupling for busi-
ness process models,” 2006. [Online].
https://eden.dei.uc.pt/~jcardoso/Research/
Papers/Old%20paper%20format/Caise-19th-
Coupling-Cardoso-Vanderfeesten.pdf

[9] G. Aagesen and J. Krogstie, “Analysis and de-
sign of business processes using BPMN,” in

76 Małgorzata Sadowska

Handbook on Business Process Management 1,
ser. International Handbooks on Information
Systems, J. Brocke and M. Rosemann, Eds.
Springer Berlin Heidelberg, 2010, pp. 213–235.

[10] L. Makni, W. Khlif, Z.H. Nahla, and
H. Ben-Abdallah, “A tool for evaluating
the quality of business process models,”
2010. [Online]. http://subs.emis.de/LNI%20/
Proceedings/Proceedings177/234.pdf

[11] S. Overhage, D.Q. Birkmeier, and S. Schlaud-
erer, “Quality marks, metrics, and measure-
ment procedures for business process models,”
Business & Information Systems Engineering,
Vol. 4, No. 5, 2012, pp. 229–246.

[12] J. Mendling, “Metrics for business process mod-
els,” in Metrics for process models: empiri-
cal foundations of verification, error prediction.
Springer-Verlag, 2008, pp. 103–133.

[13] M. Sadowska, “Quality of business models ex-
pressed in BPMN,” M.S. thesis, Wrocław Uni-
versity of Technology, Wrocław, 2013.

[14] Systems and software engineering – Systems
and software Quality Requirements and Evalu-
ation (SQuaRE) – System and software quality
models, ISO/IEC Std. 25 010:2011(E), 2011.

[15] Information technology – Software product eval-
uation – Part 1: General overview, ISO/IEC
Std. 14 598-1:1999 (E), 1999.

[16] S. Wagner, “Quality models,” in Software prod-
uct quality control. Berlin: Springer, 2013, pp.
29–89.

[17] B. Kitchenham and S. Charters, “Guidelines
for performing systematic literature reviews in
software engineering, v2.3,” Software Engineer-
ing Group at Keele University and Department
of Computer Science at University of Durham,
Tech. Rep. EBSE-2007-01, 2007.

[18] T. Arendt and G. Taentzer, “UML model
smells and model refactorings in early soft-
ware development phases,” Universität Mar-
burg, Tech. Rep. FB 12 - Mathematics
and Computer Science, Nov 2010. [On-
line]. http://spes2020.informatik.tu-muenchen.
de/results/AT-AP4-D-AT-4_1_c.pdf

[19] J. Becker, M. Rosemann, and C. Von Uthmann,
“Guidelines of business process modeling,” in
Business Process Management. Springer, 2000,
pp. 30–49.

[20] F. Fieber, M. Huhn, and B. Rumpe, “Mod-
ellqualität als indikator für softwarequalität:
eine taxonomie,” Informatik-Spektrum, Vol. 31,
No. 5, 2008, pp. 408–424.

[21] A.A. Jalbani, J. Grabowski, H. Neukirchen, and
B. Zeiss, “Towards an integrated quality assess-

ment and improvement approach for UML mod-
els,” in SDL’09 Proceedings of the 14th interna-
tional SDL conference on Design for motes and
mobiles. Berlin, Heidelberg: Springer-Verlag,
2009, pp. 63–81.

[22] J. Krogstie and A. Sølvberg, Information sys-
tems engineering: Conceptual modeling in a
quality perspective. Trondheim, Norway: Kom-
pendiumforlaget, 2003.

[23] C. Lange and M. Chaudron, “Managing model
quality in UML-based software development,” in
13th IEEE International Workshop on Software
Technology and Engineering Practice, 2005, pp.
7–16.

[24] O. Lindland, G. Sindre, and A. Solvberg, “Un-
derstanding quality in conceptual modeling,”
IEEE Software, Vol. 11, No. 2, March 1994, pp.
42–49.

[25] J. Mendling, H. Reijers, and W. van der
Aalst, “Seven process modeling guide-
lines (7PMG),” Information and Software
Technology, Vol. 52, No. 2, 2010, pp.
127–136. [Online]. http://www.sciencedirect.
com/science/article/pii/S0950584909001268

[26] H.J. Nelson, G. Poels, M. Genero, and M. Pi-
attini, “A conceptual modeling quality frame-
work,” Software Quality Journal, Vol. 20, No. 1,
2012, pp. 201–228.

[27] R. Schuette and T. Rotthowe, “The guidelines of
modeling – an approach to enhance the quality
in information models,” in Conceptual Modeling
– ER’98, ser. Lecture Notes in Computer Sci-
ence, T.W. Ling, S. Ram, and M. Li Lee, Eds.
Springer Berlin Heidelberg, 1998, Vol. 1507, pp.
240–254.

[28] S.S. Cherfi, J. Akoka, and I. Comyn-Wattiau,
“Conceptual modeling quality – from EER to
UML schemas evaluation,” in Conceptual Mod-
eling – ER 2002, ser. Lecture Notes in Com-
puter Science, S. Spaccapietra, S. March, and
Y. Kambayashi, Eds. Springer Berlin Heidel-
berg, 2003, Vol. 2503, pp. 414–428.

[29] D. Ssebuggwawo, S. Hoppenbrouwers, and
E. Proper, “Assessing collaborative model-
ing quality based on modeling artifacts,” in
The Practice of Enterprise Modeling, ser. Lec-
ture Notes in Business Information Processing,
P. van Bommel, S. Hoppenbrouwers, S. Over-
beek, E. Proper, and J. Barjis, Eds. Springer
Berlin Heidelberg, 2010, Vol. 68, pp. 76–90.

[30] B. Unhelkar, “The quality strategy for UML,” in
Verification and Validation for Quality of UML
2.0 Models. Hoboken, NY: Wiley-Interscience,
2005, pp. 1–26.

An Approach to Assessing the Quality of Business Process Models Expressed in BPMN 77

[31] J. Cardoso, “How to measure the control-flow
complexity of web processes and workflows,” in
Workflow Handbook, 2005, pp. 199–212.

[32] I. Vanderfeesten, H. Reijers, J. Mendling,
W. van der Aalst, and J. Cardoso, “On a quest
for good process models: The cross-connectivity
metric,” in Advanced Information Systems En-
gineering, ser. Lecture Notes in Computer Sci-
ence, Z. Bellahsène and M. Léonard, Eds.
Springer Berlin Heidelberg, 2008, Vol. 5074, pp.
480–494.

[33] V. Gruhn and R. Laue, “Adopting the cogni-
tive complexity measure for business process
models,” in 5th IEEE International Confer-
ence on Cognitive Informatics, Vol. 1, 2006, pp.
236–241.

[34] G. Muketha, A. Ghani, M. Selamat, and
R. Atan, “A survey of business process complex-
ity metrics,” Information Technology Journal,
Vol. 9, No. 7, 2010, pp. 1336–1344.

[35] E. Rolón, J. Cardoso, F. García, F. Ruiz,
and M. Piattini, “Analysis and validation
of control-flow complexity measures with
BPMN process models,” in Enterprise,
Business-Process and Information Systems
Modeling, ser. Lecture Notes in Business
Information Processing, T. Halpin, J. Krogstie,

S. Nurcan, E. Proper, R. Schmidt, P. Soffer,
and R. Ukor, Eds. Springer Berlin Heidelberg,
2009, Vol. 29, pp. 58–70.

[36] V. Gruhn and R. Laue, “Complexity metrics
for business process models,” in 9th Interna-
tional Conference on Business Information sys-
tems (BIS 2006), Vol. 85, 2006, pp. 1–12.

[37] J. Cardoso, J. Mendling, and H.A. Reijers, “A
discourse on complexity of process models,” in
Proceedings of the 2006 International Confer-
ence on Business Process Management Work-
shops (BPM’06), J. Eder and S. Dustdar, Eds.
Berlin, Heidelberg: Springer-Verlag, 2006, pp.
117–128.

[38] L. Sánchez-González, F.G. Rubio, F.R.
González, and M.P. Velthuis, “Measurement
in business processes: a systematic review,”
Business Process Management Journal, Vol. 16,
No. 1, 2010, pp. 114–134.

[39] J.A. Hartigan and M.A. Wong, “Algorithm AS
136: A k-means clustering algorithm,” Jour-
nal of the Royal Statistical Society, Series C
(Applied Statistics), Vol. 28, No. 1, 1979, pp.
100–108.

[40] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson,
B. Regnell, and A. Wesslén, Experimentation in
Software Engineering. Springer, 2012.

e-Informatica Software Engineering Journal, Volume 9, Issue 1, 2015, pages: 79–86, DOI 10.5277/e-Inf150105

Using the Cognitive Walkthrough Method
in Software Process Improvement

Péter Balázs Polgár∗
∗Eötvös Loránd University, Budapest

sirpepe@elte.hu

Abstract
In the past years, efforts in the field of Software Process Improvement were increasingly focusing on
human aspects making one aware that people participating in the processes have a high impact
on the success of any improvement. Applying the usability methodology to these problems is
a promising new approach to dealing with the people issues in Software Process Improvement.
This approach builds on the strengths of the usability perspective, most importantly its rich
method library. One of these methods is the cognitive walkthrough method, used extensively by
practitioners in software development projects.

Keywords: usability, software process improvement, cognitive walkthrough

1. Introduction

Recently, more and more Software Process Im-
provement (SPI) research studies the impact
of people aspects on SPI projects, for example
Korsaa et al. [1], Biró et al. [2, 3], Mahrin et
al. [4], Kellner et al. [5], Prikladnicki [6], Siakas
& Siakas [7] and Mumford [8] This impact stems
from several factors. People taking ownership of
the processes care more for the results and the
proper execution, they are also more empow-
ered for improvement and innovation, resulting
in better processes and better products based on
Messnarz et al. [9], O’Keeffee & Harington [10]
and Christiansen & Johansen [11].

While SPI has an ever greater emphasis on
people issues, another discipline, usability, is be-
coming more important as computers become
ubiquitous. The usability methodology is about
designing software and systems based on human
needs, and as we are increasingly surrounded
by computers, the ease of use of these devices
becomes a major factor. Usability as a discipline
has a history of helping to produce software,

and more recently systems which are suitable for
users, thus resolving many people related prob-
lems other engineering fields are not suitable
to handle. The usability methodology builds on
a wide range of methods based on psychology
and ergonomics principles helping practitioners
to design systems which support users in their
tasks. The user-centered design [12], forming the
core value of the usability methodology, enables
to view all development projects, including SPI
projects with a fresh eye focusing on the humans
involved in the systems.

We presented the usability approach to SPI
in our previous paper [13], and while we dis-
cussed the application of some usability meth-
ods, more elaboration is needed to make this ap-
proach viable in practical work. Following this,
I will describe the usage of the cognitive walk-
through method in SPI in this paper.

The remainder of this paper is structured as
follows. The second section describes the peo-
ple issues in SPI, the usability methodology and
the usability approach to SPI. The third section
introduces the cognitive walkthrough method

80 Péter Balázs Polgár

and discusses its use in usability projects. The
forth section presents the use of the cognitive
walkthrough method in SPI. Finally section five
I draw some conclusions.

2. The Usability Approach in
Software Process Improvement

2.1. People Issues in Software Process
Improvement

Processes are considered the cornerstone for
many organizations as the most effective way
of producing quality products. Organizations
also realize the need to improve these processes
to become more successful in their business, to
be more competitive, to make products of higher
quality and cheaper than their competitors. In
the end processes are still carried out by people,
so the effective process completion relies on the
abilities, skills and motivation of individuals.
While employing excellent team members cer-
tainly helps, personalities of people can still make
or break a process influencing the end product.
This inspires process improvement professionals
to handle people issues.

The importance of people issues was realized
gradually by practitioners. Korsaa et al. [1] de-
scribes how the focus got on people instead of
the processes from the early days of process im-
provement. A study about organizational learn-
ing by O’ Keeffe & Harington [10] showed ev-
idence to support this shift of focus to people,
stating that 58% of the success factors for the
implementation of innovation and improvement
are influenced by human and organizational as-
pects.

Recent models also address people issues as
an important factor in improvement:
– In the ImprovAbility Model [11] by Chris-

tiansen and Johansen people aspects appear
in most of the 20 parameters.

– In the Process and Enterprise Maturity
Model [14] by Hammer people issues appear
on most organizational and process maturity
levels.

– In the team centered processes by Jacobson
et al. [15] by looking at a processes from

a performer’s perspective concludes that pro-
cess needs to enable responses to situations.
Most recently, the SPI Manifesto [16] stated

the principle: “We truly believe that SPI must
involve people actively and affect their daily
activities”. This reinforces the focus on human
aspects shifting from expert designers to the
process applicators in defining and improving
the processes. This principle is also supported
by a number of values in the SPI Manifesto:
– “Know the culture and focus on needs”: for

the SPI to work, the organizational culture
should be studied, as the people making up
the organization carry values and practices.
The SPI must consider these values to suc-
ceed.

– “Motivate all people involved”: motivated
people are more eager to participate in in-
novation and improvement, striving to look
for solutions in their work.

– “Base improvement on experience and mea-
surements”: the SPI efforts must be based
on the actual practices done by the organi-
zation, and all improvement activities should
be based on quantifiable data.

– “Create a learning organization”: the main
benefit of this value is the culture supporting
the continuous improvement.
Processes are represented by artifacts,

namely the process descriptions. The ease of
use or more specifically the usability of process
descriptions was investigated by Mahrin et al.
[4]. They found that there are usability related
factors (for example understandable, tailorable,
reusable, etc.), but their impact was not deter-
mined. Some of these factors were also proposed
by Kellner et al. [5]. Other studies by Moe &
Dybå [17], Scott [18] and Wang [19] showed that
process descriptions have many usability prob-
lems impacting the application of the processes
in a negative way.

2.2. Usability for Software Process
Improvement

Usability is part of the software engineering
quality model described in the ISO 9126 stan-
dard [20], and is often the most important at-
tribute of a product from the user’s point of

Using the Cognitive Walkthrough Method in Software Process Improvement 81

view. It also belongs to the broader field of
Human-Computer Interaction studies on how
humans use systems with software.

The most broadly accepted definition for us-
ability is from the ISO 9241-11 standard [21]:
“3.1 Usability: Extent to which a product can
be used by specified users to achieve specified
goals with effectiveness, efficiency and satisfac-
tion in a specified context of use.” This defi-
nition implies that we cannot produce a sys-
tem that provides the same results under dif-
ferent contexts, with different users and dif-
ferent goals. Also the definitions state that
with usability we are not just striving to get
things done (effectiveness), but we need to do it
with as little effort and resources consumed as
possible (efficiency), while providing the users
with a positive feeling and motivation (satisfac-
tion).

Accurately describing the three product us-
age aspects (context, user and task) is an im-
portant part of usability engineering activities.
Practitioners developed many methods, some of
them coming from other disciplines (for exam-
ple psychology, marketing and anthropology).
Methods can be grouped based on the delivered
data type (quantitative or qualitative), on the
goal of the study (summative or formative) or
on the persons involved (experts or experts and
users). While not all methods produce quanti-
tative data, most can produce easily measured
values as described by Tullis [22].

For long, usability was mainly a software-en-
gineering related discipline. With recent techno-
logical advancement and ubiquitous computing,
usability is now considered in a much broader
sense, also applicable to complex systems. This
is reflected in the definition too, using product
instead of software. The broader interpretation
makes it possible to think in usability terms
about complex themes like the interaction be-
tween citizens and the state (Citizen centered
design, as presented by Hewitt [23]).

In discussing usability, there should be
a clear distinction between the different mean-
ings of the term. Practitioners use it to denote
the quality of a software, the process of the
design, and it is often hard to discern the ex-

act meaning. Keinonen has described all these
meanings in [24]:
1. The development process of a product.
2. The attribute of a product
3. The use of a product
4. The user’s experiences while using a product
5. The user’s expectations about the usage of

a product.
For the remainder of this paper, I will use

the first and second meaning and use “usabil-
ity” when referring to the product quality and
“usability engineering” when referring to the de-
velopment process.

Applying usability concepts in SPI has two
advantages, the first one is focusing on the user
and designing systems based on their needs. The
resulting systems will have greater acceptance
because of user involvement and will be more
efficient because they more accurately capture
the needs and expectations of the process per-
formers. If this is an SPI related system, besides
acceptance, the performers will have an easier
time to follow it, as it was designed with the spe-
cific context in mind. Another advantage is the
already established set of methods of usability
engineering applicable to many kinds of tasks.
While some of the methods need adaptation to
be usable in an SPI environment, basic ideas
stay the same.

For the usability approach to work, its con-
cepts for the definitions have to be aligned to
the SPI environment:
– Product: The system where the SPI is going

to be applied, a set of processes, a process
model.

– User: The performer of the process, the per-
son doing the task.

– Context: Work conditions and situations, in-
cluding the organizational and other levels of
culture. Some elements of the cultural con-
text may be strongly connected to the user
(for example when having a strong national
cultural background)

– Task: The process that the user performs.
While the preconditions of a given process
are defined by outlying elements (business
goals, organizational needs, standards) the
exact realization, the design of the task and

82 Péter Balázs Polgár

the task conditions are well within the scope
of usability engineering.

– Effectiveness: The process has to come
to an end with process goals successfully
achieved.

– Efficiency: The process execution shall re-
quire as little resources and effort from the
user as possible

– Satisfaction: The user’s experience of the ex-
ecuted process should be positive, empower-
ing.
There is previous research mentioning the

application of the usability methodology in the
field of SPI, but these studies concentrate on the
process descriptions, on the physical artifacts of
the processes (for example by Mahrin et al. [4]).
There is also some work concerning the usability
of the tools used in SPI (for example by Al-Ani
et al. [25]). While both of these fields are im-
portant, they represent just part of the scope
of usability as they only deal with parts of the
presentation and infrastructure layers.

Further details were presented on the usabil-
ity approach in SPI by the author with Biró [13].

3. The Cognitive Walkthrough
Method

The cognitive walkthrough method was de-
scribed in detail by Nielsen and Mack [26]. It
is one of the more widely used inspection meth-
ods. While it has its roots in the code-reviewing
technique, the code walkthrough has been mod-
ified to identify usability issues in a product.
An overview of the theory underlying the cogni-
tive walkthrough method is provided by Rieman
et al. [27].

The cognitive walkthrough is a quick and re-
source light method, and is usable even in the
concept phase of development as it does not need
a working code. The cognitive walkthrough is es-
sentially based on the tasks of the user it tries to
follow the user’s thinking while trying to learn
a system through exploring the systems options.

A walkthrough is composed of six steps:
1. List the tasks the users of the system are

expected to perform. If only a part of the

system is analyzed, a subset of these tasks
should be chosen for evaluation.

2. Separate the tasks into intentions and goals
(of the user). The intention is the overall end
result the user is trying to achieve, while the
goals are the result of the steps the user per-
forms to arrive at the end result.

3. Decompose the tasks into steps. This helps
to understand exactly where the system has
problems.

4. The tasks and steps should be organized into
evaluation sheets.

5. Perform the evaluation with chosen tasks. In
each step the following questions should be
asked (from [26]):
a) Will the user try to achieve the effect that

the subtask has? Does the user under-
stand that this subtask is needed to reach
the user’s goal?

b) Will the user notice that the correct ac-
tion is available? E.g. is the button visi-
ble?

c) Will the user understand that the wanted
subtask can be achieved by the action?
E.g. the right button is visible but the
user does not understand the text and
therefore will not click on it.

d) Does the user get feedback?
Will the user know that they have done
the right thing after performing the action?
If one or more of these questions uncover
issues, a weight should be added, and if
necessary also notes describing the prob-
lem.

6. After the evaluation is complete a review
should be held to decide how to act on the
issues.
An example evaluation worksheet is shown

in Table 1.
– Step No.: The number of the current task

step.
– Task step: The name and short description

of the current task step.
– Operation: The operation the user has to

perform in the current step.
– Result: The expected result of the operation.
– Aspect: The question that has uncovered

some issues.

Using the Cognitive Walkthrough Method in Software Process Improvement 83

Table 1. Example of a cognitive walkthrough evaluation worksheet

<Task identifier>-<Task name>
Step no. Task step Operation Result Aspect Weight Note

1.

– Weight: Weight given to the uncovered is-
sues.

– Note: A short description of the found issue
or anything else the evaluators found out or
would liked to note down.
While the cognitive walkthrough is a uni-

versal method (meaning its usage is not lim-
ited to a type of software systems), it has been
adapted to specific types of software, for ex-
ample Pinelle & Gutwin modified it to group-
ware [28], and Rowley & Rhoades presented
a light weight modification the cognitive jogth-
rough [29]. These examples show the flexibility
of the method.

Little research was made however on its
applicability to processes. Novick describes
a method to apply the cognitive walkthrough
for operating procedures [30]. Operating pro-
cedures are similar to processes; they provide
step by step instructions to follow to ensure
a predefined, good outcome. As Novick states
cognitive walkthrough for operating procedures
provides insight into usefulness and safety be-
yond that associated with the cognitive walk-
through for physical interfaces. He changed the
method for adaptation to procedures in five
points:
1. As the steps are part of a procedure, some

steps are not necessarily performed on an in-
terface, for example when human–human in-
teraction is concerned.

2. Procedures exist most of the time as artifacts
informing the user what to do. This means
that the form of these artifacts modifies the
user’s understanding of the instructions.

3. At each step it has to be decided if training
or experience needed for the step’s execution.

4. The correct execution of the steps should be
identified not just from the user’s viewpoint
but from the overall systems viewpoint too.

5. In safety critical systems (where operating
procedures are often used) errors can af-

fect overall safety, so the error’s probability
should be identified.
This application of the cognitive walk-

through method to operating procedures can be
expanded to the SPI environment.

4. Applying the Cognitive
Walkthrough Method to Software
Processes

Cognitive walkthroughs can be applied to SPI
based on two observations:
– Novick’s work with operating procedures can

be extended to the more general software
processes improvement environment.

– Process can be viewed as a special type of
software. Following this thought, the user in-
terface through which the user works with
the software is also the main concern of us-
ability and the usability methods, or in this
case the cognitive walkthrough. If we think
of processes as software, there is an interface
too, the process artifacts: descriptions, tem-
plates, tools, guidelines, standards, but also
the activities and work product descriptions.
Based on these two observations we can use

the cognitive walkthrough in a SPI environment.
To apply the cognitive walkthrough we first

have to decide in which steps it can be used. The
following generic steps of process improvement
were described by Wang & King [31]:
1. Examine the needs for process improvement
2. Conduct a baseline assessment
3. Identify process improvement opportunities
4. Implement recommended improvement
5. Review process improvement achievement
6. Sustain improvement gains.

As cognitive walkthroughs are useful for
evaluating design concepts, prototypes and fin-
ished products, they can be used for reviews in
the second and fifth steps, their results present

84 Péter Balázs Polgár

issues for the third step and can evaluate im-
provement measures in the fourth step before
executing them.

To adapt the method to SPI the changes
made by Novick should be modified with pro-
cess specific changes. The significant changes to
the original method will be as follows:
– Using process steps instead of interface steps.

Most of the time this involves the process
performer interacting with a system or an-
other human. While human–human interac-
tions depend heavily on the individual and
the organizational culture, the steps should
be analyzed realistically (for example re-
sponse times and schedules).

– How the process performer gets the informa-
tion on the process should be evaluated too.
This not only means the process descriptions
should be inspected but more broadly the ac-
cessibility of these descriptions, the provided
trainings etc.

– Each role involved in the process has to
be evaluated separately, and also parallel to
identify role interferences.

– The process achieves the results required by
the overall system, the processes should be
evaluated in the process environment.

– Determine if the errors found affect the pro-
cess risk measures. Most projects include
some kind of risk control, sometimes defined
in processes. Risk should be evaluated at the
process and also at the organizational level,
which means that issues that may affect risk
measures should be evaluated.

– Check if the step executions are aligned with
the policies guiding the process.

– Key activities should be evaluated if they im-
plement the overall goals of the process while
they are executed as steps.

– Deliverables should be evaluated if they are
accessible and understandable.

– Check if tools are used during the execution
of the process, they should be inspected for
potential issues.

– Other artifacts (guidelines, standards, tem-
plates and generally the contents of the pro-
cess assets library) should be reviewed the
same way as the deliverables.

With these changes to the original the cog-
nitive walkthrough method is a viable method
to apply in the SPI environment.

5. Conclusion

People issues in SPI are gradually recognized
as an important success factor in improvement
projects and the new approach of applying the
usability methodology has a potential to handle
these issues. This paper has introduced a prac-
tical aspect of this approach, the applications
of the cognitive walkthrough usability inspec-
tion method to the SPI. I have shown how to
execute the cognitive walkthrough method, and
what are the significant changes needed for its
application.

Cognitive walkthrough is a relatively quick
and cheap method (in terms of resources, re-
quired staff and training), so its application
should be viable in most organizations. While its
benefits seem to be creating processes and pro-
cess improvement more adaptable to the people
using the processes, further research is needed
on its performance under real project conditions.

References

[1] M. Korsaa, J. Johansen, T. Schweigert, D. Vo-
hwinkel, R. Messnarz, R. Nevalainen, and
M. Biró, “The people aspects in modern (S)PI
management approaches,” 2010, presented at
the EuroSPI 2010.

[2] M. Biró, R. Messnarz, and A. Davison, “The
impact of national cultural factors on the ef-
fectiveness of process improvement methods:
The third dimension,” Software Quality Profes-
sional, Vol. 4, 2002.

[3] M. Biró, R. Messnarz, and A. Davison, “Expe-
riences with the impact of cultural factors on
SPI,” 2001, presented at the EuroSPI 2001.

[4] M. Mahrin, D. Carrington, and P. Strooper,
“Investigating factors affecting the usability of
software process descriptions,” in Proceedings of
the Software Process, 2008 International Con-
ference on Making Globally Distributed Software
Development a Success Story, Springer-Verlag,
Berlin, Heidelberg, 2008, pp. 222–233.

Using the Cognitive Walkthrough Method in Software Process Improvement 85

[5] M. Kellner, U.Becker, W. Riddle, J. Tomal, and
M. Verlage, “Process guides: Effective guidance
for process participants,” in Proceedings of the
Fifth International Conference on the Software
Process, ISPA Press, Chicago, IL, USA, 1998,
pp. 11–25.

[6] R. Prikladnicki, “QUASE – A quantitative
approach to analyze the human aspects of
software development projects,” in Proceed-
ings of the 2009 ICSE Workshop on Coopera-
tive and Human Aspects on Software Engineer-
ing, IEEE Computer Society, Washington, DC,
USA, 2009, p. 78.

[7] K.V. Siakas and E. Siakas, “The human factor
deployment for improved agile quality,” in Eu-
ropean Software Process Improvement and In-
novation (EuroSPI 2006), 2006, pp. 11–23.

[8] E. Mumford, “The ethics approach,” Communi-
cations of the ACM, Vol. 36, No. 6, 1993, p. 82.

[9] R. Messnarz, G. Spork, A. Riel, and
S. Tichkiewitch, “Dynamic learning organ-
isations supporting knowledge creation for
competitive and integrated product design,”
in Proceedings of the 19th CIRP Design
Conference – Competitive Design. Cranfield
University Press, 2009.

[10] T. O’Keeffe and D. Harington, “Learning to
learn an examination of organisational learning
in selected Irish multinationals,” Journal of Eu-
ropean Industrial Training, Vol. 25, No. 2/3/4,
2001, pp. 137–147.

[11] M. Chirstiansen and J. Johansen,
“ImprovAbilityTM guidelines for low maturity
organisations,” Software Process: Improvement
and Practice, Vol. 13, No. 4, 2008, pp. 319–325,
presented at the EuroSPI 2007.

[12] Human-centred design processes for interactive
systems, ISO Std. 13 407:1999, 1999.

[13] P. Balázs Polgár and M. Biró, “The usability
approach in software process improvement,”
in Systems, Software and Service Process
Improvement, ser. Communications in Com-
puter and Information Science, R. O‘Connor,
J. Pries-Heje, and R. Messnarz, Eds. Springer
Berlin Heidelberg, 2011, Vol. 172, pp. 133–142.
[Online]. http://dx.doi.org/10.1007/978-3-642-
22206-1_12

[14] M. Hammer. The process and enterprise
maturity model. Retrieved on 10.05.2011.
[Online]. http://www.hammerandco.com/
HammerAndCompany.aspx?id=58

[15] I. Jacobson and I. Spence, “Enough of processes
– lets do practices,” Journal of Object Technol-
ogy, No. 6, 2007, pp. 41–66.

[16] J. Pries-Heje, J. Johansen, and R. Mess-
narz. SPI manifesto. Retrieved on 10.05.2011.
(2010). [Online]. http://www.iscn.com/Images/
SPI_Manifesto_A.1.2.2010.pdf

[17] N.B. Moe and T. Dybå, “The use
of an electronic process guide in a
medium-sized software development company,”
Software Process: Improvement and Practice,
Vol. 11, No. 1, 2006, pp. 21–34. [Online].
http://dx.doi.org/10.1002/spip.250

[18] L. Scott, L. Carvalho, R. Jeffery, J. D’Ambra,
and U. Becker-Kornstaedt, “Understand-
ing the use of an electronic process
guide,” Information and Software Tech-
nology, Vol. 44, No. 10, 2002, pp.
601–616. [Online]. http://www.sciencedirect.
com/science/article/pii/S0950584902000800

[19] Y. Wang, Software engineering processes: prin-
ciples and applications. Boca Raton, Fla: CRC
Press, 2000.

[20] Software engineering – Product quality,
ISO/IEC Std. 9126:2001, 2001.

[21] Ergonomic requirements for office work with vi-
sual display terminals (VDTs) – Part 11: Guid-
ance on usability, ISO Std. 9241-11:1998, 1998.

[22] T. Tullis and B. Albert, Measuring the user
experience: collecting, analyzing, and present-
ing usability metrics. Amsterdam, Boston: El-
sevier/Morgan Kaufmann, 2008.

[23] J.F. Hewitt, “Citizen-centered design (slowly)
revolutionizes the media and experience of US
elections,” interactions, Vol. 16, No. 5, 2009, pp.
18–25.

[24] T. Keinonen, “One-dimensional usability – in-
fluence of usability on consumers’ product pref-
erence,” Master’s thesis, University of Art and
Design Helsinki UIAH, 1998.

[25] B. Al-Ani, E. Trainer, R. Ripley, A. Sarma,
A. van der Hoek, and D. Redmiles, “Continu-
ous coordination within the context of cooper-
ative and human aspects of software engineer-
ing,” 2008, pp. 1–4.

[26] J. Nielsen and R. Mack, Usability Inspection
Methods. Wiley, 1994.

[27] J. Rieman, M. Franzke, and D. Redmiles,
“Usability evaluation with the cognitive walk-
through,” in Conference companion on Hu-
man factors in computing systems, 1995, pp.
387–388.

[28] D. Pinelle and C. Gutwin, “Groupware walk-
through: Adding context to groupware usability
evaluation,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing
Systems, ser. CHI ’02. New York, NY,

86 Péter Balázs Polgár

USA: ACM, 2002, pp. 455–462. [Online].
http://doi.acm.org/10.1145/503376.503458

[29] D. Rowley and D. Rhoades, “The cognitive
jogthrough: a fast-paced user interface evalua-
tion procedure,” in Proceedings of the SIGCHI
conference on Human factors in computing sys-
tems. New York, NY, USA: ACM, 1992, pp.
389–395.

[30] D. Novick, “Using the cognitive walkthrough for
operating procedures,” nteractions, No. 6, 1999,
pp. 31–37.

[31] Y. Wang and G. King, “Philosophies and ap-
proaches to software process improvement,”
in Conference on Software Process Improve-
ment (EuroSPI’99), Pori, Finland, 1999, pp.
7.24–7.38.

e-Informatica Software Engineering Journal, Volume 9, Issue 1, 2015, pages: 87–105, DOI 10.5277/E-INF150107

Construction of Variable Strength Covering Array
for Combinatorial Testing Using

a Greedy Approach to Genetic Algorithm

Priti Bansal∗, Sangeeta Sabharwal∗, Nitish Mittal∗, Sarthak Arora∗∗
∗Netaji Subhas Institute of Technology, University of Delhi

∗∗School of Computer Science and Engineering, Vellore Institute of Technology, Tamil Nadu
bansalpriti79@gmail.com, ssab63@gmail.com, nitishmittal94@gmail.com,

sarthak10193@gmail.com

Abstract
The limitation of time and budget usually prohibits exhaustive testing of interactions between
components in a component based software system. Combinatorial testing is a software testing
technique that can be used to detect faults in a component based software system caused by the
interactions of components in an effective and efficient way. Most of the research in the field of
combinatorial testing till now has focused on the construction of optimal covering array (CA) of
fixed strength t which covers all t-way interactions among components. The size of CA increases
with the increase in strength of testing t, which further increases the cost of testing. However, not
all components require higher strength interaction testing. Hence, in a system with k components
a technique is required to construct CA of fixed strength t which covers all t-way interactions
among k components and all ti-way (where ti > t) interactions between a subset of k components.
This is achieved using the variable strength covering array (VSCA). In this paper we propose
a greedy based genetic algorithm (GA) to generate optimal VSCA. Experiments are conducted on
several benchmark configurations to evaluate the effectiveness of the proposed approach.

Keywords: combinatorial testing, variable strength covering array, genetic algorithm,
greedy approach

1. Introduction

The increasing dependence on software systems
in every field, such as medicine, agriculture, com-
munication systems has increased the need to per-
form software testing in an effective and efficient
manner so as to ensure the delivery of reliable
and quality software. In the case of a component
based software system, interactions among com-
ponents are often complex and they may cause
interaction errors. It is therefore important to
check all the possible interactions among various
components to uncover faults caused by their in-
teractions. As each component may have multiple
configurations, testing all possible combinations

of components is practically impossible due to
time and cost constraints. Furthermore, the num-
ber of test cases increases exponentially with the
increase in number of components. A sampling
strategy is therefore required to select a subset of
configurations to be tested from the large inter-
action space. Combinatorial testing is a testing
technique that samples the set of configurations
in such a way that it covers all t-way (t denotes
the strength of testing) interactions of compo-
nents [1].

Covering arrays (CAs) and mixed covering
arrays (MCAs) are combinatorial structures that
have enjoyed a wide range of application in the
field of software and hardware testing [2]. Due to

88 Priti Bansal, Sangeeta Sabharwal, Nitish Mittal, Sarthak Arora

the importance of CAs, significant research has
been carried out to construct CAs of optimal size
by the researchers in the past. ACAconstructed to
perform t-way (2-way, 3-way, etc.) testing checks
only all t-way interactions of components. Em-
pirical studies show that a test set covering all
possible 2-way combinations of input parameter
values is effective for software systems [1, 3–5].
Dalal et al. [6] showed that testing all pair-wise
interactions in a software system finds a large
percentage of the existing faults. Kuhn et al. [7]
examined fault reports for many software systems
and concluded that more than 70% of the faults
are triggered by a 2-way interaction of the input
parameters. Faults can also be caused by the inter-
action of more than two parameters. In order to
uncover faults caused by the interaction of more
than two components, it is required to test higher
strength interactions of components. Empirical
studies in Kuhn et al. [7] and Kuhn and Reilly [8]
show that most of the faults are triggered by
a relatively low degree of interactions and suggest
the need to perform testing up to t = 6.

Consider a Graphical User Interface (GUI)
based on a windowing system which has five
components, each with three possible values as
shown in Table 1. For exhaustively testing the
components’ interactions in this system, 243 test
cases are required whereas only 11 test cases
for 2-way testing and 37 test cases for 3-way
testing are required respectively. Evidently, the
increase in strength of testing leads to the in-
crease in number of test cases. However, it is
quite often the case that certain components
have stronger interactions while others may have
few or none [9]. Hence, it is not desirable to
perform higher strength interaction testing of all
the components. A better way to test the system
is to identify the subsets of components which
are involved in stronger interactions and apply
higher strength interaction testing only on these
subsets to uncover the faults caused by their
interactions. This is achieved using the variable
strength covering array (VSCA), which is a CA
or MCA of fixed strength t and also contains a set
of disjoint CAs or MCAs of strength greater than
t. As mentioned above, the example shown in
Table 1 requires 11 test cases for 2-way testing.

Assume, first four components have stronger in-
teractions compared to the fifth component. So
it is feasible to perform 3-way testing only on
the first four components, which additionally re-
quires 16 test cases as illustrated in Figure 1 and
Figure 2. Consequently, a total of 27 test cases are
required for variable strength testing against 37
test cases required for a complete 3-way testing.
We can see that VSCA achieves higher strength
interaction coverage with the reduced number
of test cases. So it is advantageous to find an
effective technique to construct optimal VSCA
to perform testing of a component based system
efficiently.

Kernel DS WM DSCP GI
FreeBSD Weston Awesome Wayland KDE Plasma
FreeBSD X.Org Compiz X11 Aqua
XNU X.Org OpenBox Wayland KDE Plasma
XNU KWin Awesome X11 KDE Plasma
XNU Weston Compiz X11 Gnome Shell
Linux KWin Compiz Wayland Aqua
XNU Weston Awesome Quartz Aqua
Linux X.Org Compiz Wayland KDE Plasma
Linux X.Org Awesome Wayland Gnome Shell
FreeBSD KWin OpenBox Quartz Gnome Shell
Linux Weston OpenBox X11 Aqua

Figure 1. CA (11, 2, 35)

Kernel DS WM DSCP GI
FreeBsd X.Org Compiz Quartz Aqua
XNU Kwin Awesome Quartz KDE Plasma
FreeBsd Weston Compiz Wayland KDE Plasma
Linux Weston Compiz X11 Gnome Shell
Linux Kwin OpenBox Wayland KDE Plasma
FreeBsd X.Org Awesome X11 Aqua
FreeBsd Kwin Compiz X11 KDE Plasma
XNU X.Org OpenBox Quartz Gnome Shell
FreeBsd Weston Awesome Quartz Gnome Shell
FreeBsd Kwin Awesome Wayland Gnome Shell
XNU Weston Awesome X11 Gnome Shell
FreeBsd X.Org OpenBox Wayland Gnome Shell
Linux X.Org OpenBox X11 KDE Plasma
XNU Weston OpenBox Wayland Aqua
XNU Weston Compiz Quartz Gnome Shell
Linux Kwin Awesome X11 Aqua
Linux Weston Awesome Wayland KDE Plasma
XNU X.Org Awesome Wayland Gnome Shell
Linux X.Org Compiz Wayland Gnome Shell
XNU X.Org Compiz X11 Gnome Shell
XNU Kwin OpenBox X11 Aqua
Linux Weston OpenBox Quartz Aqua
XNU Kwin Compiz Wayland Gnome Shell
Linux X.Org Awesome Quartz Gnome Shell
FreeBsd Weston OpenBox X11 Gnome Shell
FreeBsd Kwin OpenBox Quartz Aqua
Linux Kwin Compiz Quartz KDE Plasma

Figure 2. VSCA (27; 2, 35, (3, 34))

Construction of Variable Strength Covering Array for Combinatorial Testing . . . 89

Table 1. GUI based on a windowing system having five components, each with three values

Kernel Display Server (DS) Window Manager (WM)
Display Server
Communication
Protocol (DSCP)

Graphical Interface (GI)

Linux Weston Awesome X11 KDE Plasma
FreeBSD KWin Compiz Wayland Aqua
XNU X.Org OpenBox Quartz Gnome Shell

The problem of constructing an optimal
VSCA is NP-complete [10,11]. Although many
algebraic and computational construction meth-
ods have been proposed by the researchers to
construct optimal CA/MCA, fewer strategies
(greedy and meta-heuristic) exist to construct op-
timal VSCA. The amount of work that has been
done to construct VSCA using meta-heuristic
techniques such as Simulated Annealing (SA),
Particle Swarm Optimization (PSO), Harmony
Search (HS) and their impressive results has mo-
tivated us to explore GA to construct optimal
VSCA.

To exploit the strength of both greedy and
meta-heuristic techniques we present a technique
that augments GA with a greedy technique to
construct optimal VSCA efficiently. Experiments
are conducted to evaluate the performance of the
proposed technique with the existing techniques.

However, the problem that exists with the
construction of VSCA is the existence of con-
straints or dependencies between components
values in terms of restrictions or compulsion
on components values that can coexist. For
instance, in the example shown in Table 1,
Quartz is a Mac technology and therefore cannot
be run on Linux or FreeBSD. This constraint
must be taken into account when generating
test cases so that Quartz and Linux/FreeBSD
do not appear in the same test case. Simi-
larly, KDE Plasma and XNU cannot appear in
the same test case as XNU does not support
KDE Plasma. If constraints and dependencies
are considered, then combinatorial testing be-
comes constrained combinatorial testing. In this
paper, we focus on combinatorial testing and
leave constrained combinatorial testing for future
work.

The remainder of this paper is organized
as follows. Section 2 gives the necessary back-

ground on combinatorial objects. Section 3 gives
an overview of GA. Section 4 presents vari-
ous methods available to construct VSCA. Sec-
tion 5 describes the proposed strategy to gen-
erate VSCA for t-way testing. Section 6 de-
scribes the implementation and presents re-
sult of experiments performed to compare
the effectiveness of the proposed approach
with other existing approaches. Section 7
presents threats to validity. Section 8 con-
cludes the paper and future plans are out-
lined.

2. Background

This section discusses the necessary background
related to combinatorial objects.

2.1. Orthogonal Array

An orthogonal array OAλ(N ; t, k, v) is an N × k
array on v symbols such that every N × t
sub-array contains all ordered subsets of size
t from v symbols exactly λ times and they have
the property λ = N/vt [12]. The use of OA in
the field of software testing is limited due to
the restrictions imposed on OA that all param-
eters have same number of values and that each
pair of values can be covered the same num-
ber of times [13]. In general, OA is difficult to
generate and its test suite is often quite large
with λ > 1. However, OA has its advantages,
such as making it relatively easy to identify
the particular combination that caused a fail-
ure [11]. If an OA with λ = 1 exists for some
value of k and v, then it is an optimal array.
To complement OA construction and to over-
come its restrictions, CA and MCA have been
introduced.

90 Priti Bansal, Sangeeta Sabharwal, Nitish Mittal, Sarthak Arora

2.2. Covering Array

Acovering array [12] denotedbyCAλ(N ; t, k, v), is
anN×k two dimensional array on v symbols such
that every N × t sub-array contains all ordered
subsets from v symbols of size t at least λ times.
If λ = 1, it means that every t-tuple needs to be
covered only once and we can use the notation
CA(N ; t, k, v). Here, k represents the number of
values of each parameter and t is the strength of
testing. An optimal CA contains a minimum num-
ber of rows to satisfy the properties of the entire
CA.Theminimumnumber of rows is known as cov-
ering array number and is denoted byCAN(t, k, v).
A CA of sizeN×k represents a test set where each
row corresponds to a test case, each column rep-
resents a component and the values in the column
represent the domain of the respective component.

2.3. Mixed Covering Array

A mixed covering array [14], denoted by MCA(N ;
t, k, (v1, v2, . . . , vk)), is an N × k two dimen-
sional array, where v1, v2, . . . , vk is a cardinal-
ity vector which indicates the values for every
column. An MCA has the following two prop-
erties: i) Each column i (1 ≤ i ≤ k) contains
only elements from a set Si with |Si| = vi and
ii) The rows of each N × t sub-array cover all
t-tuples of values from the t columns at least
once. The minimum N for which there exists an
MCA is called a mixed covering array number
and is denoted by MCAN(t, k, (v1, v2, . . . , vk)).
A shorthand notation can be used to represent
MCAs by combining equal entries in vi : 1 ≤
i ≤ k. An MCA(N ; t, k, (v1, v2, . . . , vk)) can be
represented as MCA(N ; t, k, (wq1

1 , w
q2
2 , . . . , w

qs
s)),

where k = ∑s
i=1 qi and wj |1 ≤ j ≤ s ⊆

{v1, v2, . . . , vk}. Each element wjqi in the set
{w1q1 , w2q2 , . . . , ws

qs} means that qi parameters
can take wj values each. A MCA of size N × k
represents a test set withN -test cases for a system
with k components, each with varying domain size.

2.4. Variable Strength Covering Array

A variable strength covering array [9], de-
noted by VSCA(N ; t, k, (v1, v2, . . . , vk), C), is

an N × k CA or MCA of strength-t contain-
ing C where, C is a set of disjoint CAs or
MCAs each of strength greater than t. Each
element of C is a subset of VSCA and they can
have variable strength of testing. For example,
a VSCA(N ; 2, 435362, {CA(3, 43),MCA(4, 5361)})
is shown in Fig. 3(a). Here, the overall array
is an MCA having three components with four
values, three with five values and two with six
values each (the values of each component are
labelled 0, 1, 2, 3, . . .). It covers all 2-way interac-
tions among components. In addition to this, it
contains two sub arrays: a CA of strength-3 that
covers all 3-way interactions among first three
components with four values and an MCA of
strength-4 covering all 4-way interactions among
three components with five values and one com-
ponent with six values. The order of columns in
the sub arrays in C is important and they are
listed consecutively from left to right. If a VSCA
contains n identical sub arrays with the same t,
k and v, they can be represented as CA(t, vk)n.
For instance, VSCA(N, 2, 311, (3, 34)2) shown in
Figure 3(b) represent a CA that covers all 2-way
interactions among eleven components with three
values and contains two disjoint sub arrays, each
of which covers all 3-way interactions among
four components with three values each.

3. Genetic Algorithm

The basics of GA were first proposed by Hol-
land [15]. GA is a meta-heuristic search based
optimization technique originating from the Dar-
winian theory of evolution by natural selection
where fitter individuals are more likely to survive
in a competing environment [16]. It is a global
search technique characterized by evolution in
every generation, starting with a randomly gen-
erated initial population. The initial population
represents potential solutions to the given prob-
lem. Each individual in the population is associ-
ated with a fitness value that is calculated using
a fitness function. The fitness function is a func-
tion of the objective that we want to optimize
(maximize or minimize). The fitness value of an
individual apprises us of the merit of a solution

Construction of Variable Strength Covering Array for Combinatorial Testing . . . 91

MCA(N ; 2, 435362)
︷ ︸︸ ︷
0 1 0 1 0 1 1 0
1 0 1 0 1 2 3 1
1 2 3 1 4 3 0 1
2 3 2 4 2 3 2 2
0 2 1 2 3 0 1 5
. .
. .
3 0 0 3 4 4 5 3
0 3 3 3 2 2 4 4
︸ ︷︷ ︸ ︸ ︷︷ ︸
CA(3, 43) MCA(4, 5361)

(a)

CA(N ; 2, 311)
︷ ︸︸ ︷
0 0 1 1 1 0 0 1 0 1 0
1 0 0 0 1 0 1 2 1 0 2
2 1 2 0 0 1 0 1 2 1 1
1 2 1 2 1 2 2 0 0 2 1
. .
. .
. .
0 1 0 0 0 1 2 1 1 2 0
1 1 0 2 2 2 1 0 0 1 2
︸ ︷︷ ︸ ︸ ︷︷ ︸
CA(3, 34) CA(3, 34)

(b)

Figure 3. Representation of VSCA

for the given problem. In each generation, the
population evolves towards better solutions by
means of evolutionary operators such as selec-
tion, crossover and mutation. This process con-
tinues until a satisfactory solution is found or
the maximum number of generations is reached.
As compared to other meta-heuristic techniques,
GA starts with a population of solutions instead
of a single solution that helps GA to cover the
solution search space more thoroughly and avoid
its chances of getting stuck in the local minima.
Moreover, GA is easy to understand and can be
applied to an optimization problem which can
be described with chromosome encoding. On the
contrary, the complexity of crossover and muta-
tion operations is attributed to longer run time
and, furthermore, GA cannot assure a constant
optimization response time which limits its use
in real time applications. The basic outline of
GA is shown in Fig. 4.

Having described the notations, in the next
section we will briefly discuss the existing
state-of-the-art algorithms for constructing opti-
mal VSCA for pair-wise testing.

4. Related Work

In an extensive survey performed by Khalsa
and Labiche in [17], it has been found that 75
tools/algorithms exist to generate CA/MCA for
combinatorial testing but not all of them sup-

port construction of VSCA. The strategies that
support the construction of VSCA are broadly
classified into computational strategies and ar-
tificial intelligence based strategies. Computa-
tional strategies use greedy approach to con-
struct VSCA by using either one-test-at-a-time or
one-parameter-at-a-time approach. The strate-
gies based on one-test-at-a-time approach use
a greedy heuristic and try to select a test case
that covers the maximum number of uncov-
ered interactions from a pool of candidate test
cases. However, selecting such a test case it-
self is an NP-complete problem [18]. Some of
the strategies that use one-test-at-a-time ap-
proach are the Test Vector Generator (TVG)
[19], Pairwise Independent Combinatorial Test-
ing (PICT) [20], Intelligent Test Case Han-
dler1 (ITCH), Density [21], DA-RO and DA-FO
[22], and TSG [23]. The strategies that use
one-parameter-at-a-time approach are ACTS
[24,25] and ParaOrder [21].

Recently the search based software testing
(SBST) is increasingly gaining importance and
is been used to solve a wide range of problems
in software testing. Meta-heuristic techniques
are being used by the SBST community to find
an optimal solution for software testing prob-
lems. The problem of generating an optimal
CA/MCA/VSCA is also considered as a SBST
problem [26,27]. Meta-heuristic techniques start
by searching over a large set of feasible solu-
tions and can often find better solutions with

1 IBM Intelligent Test Case Handler

92 Priti Bansal, Sangeeta Sabharwal, Nitish Mittal, Sarthak Arora

generate an initial population P randomly
evaluate fitness of each individual in P using the fitness function
while ((generation ≤ maximum generation) and solution not found)

select a subset of individuals P’ from current generation for offspring production
apply crossover to P’
apply mutation to P’
replace low fitness individuals in P by offspring in P’
evaluate P

end while
return individual with highest fitness

Figure 4. Outline of basic GA

fewer computational efforts efforts as compared
to other algorithms, iterative methods or sim-
ple heuristics [28]. To the best of our knowl-
edge, only five meta-heuristic based strategies
to generate VSCA exist in the literature. Ta-
ble 2 list features of all tools/algorithms that
use meta-heuristic techniques and some selected
tools that use greedy techniques to construct
CA/MCA/VSCA.

5. The Proposed Approach for
Construction of VSCA

In this section, we present our proposed strat-
egy of VSCA-GA that aims to generate an opti-
mal VSCA to cover all (100%) t-way and ti-way
interactions between components in a compo-
nent based system. Here, t denotes the overall
strength of VSCA and ti denotes the strength
of sub arrays. VSCA-GA uses a greedy based
approach to GA to generate optimal VSCA.
Let VSCA(N ; t, k, (v1, v2, . . . , vk), C) represent
a VSCA configuration. VSCA-GA starts by cre-
ating an initial population of Psize individuals
where each individual chromosome represents
a candidate solution which is a VSCA of size
N × k. Here, N the number of rows of VSCA
corresponds to test cases and k represents the
number of components in a component based
system. At the start of the search process N is
unknown, so we use the method suggested by
Stardom [39], where we start with a large random
array and apply binary search repeatedly until
a solution is found. In case the size of N is known
in advance, i.e. best bound achieved in the exist-
ing state-of-the-art, we can start with the known

size and try to optimize it further. An individual
chromosome in the population is represented by
VSCAf |1 ≤ f ≤ Psize and each VSCAf in the
population has a fitness associated with it which
is defined as the total number of distinct variable
strength interactions covered by it. It is calculated
as
Fitness(VSCAf) =

∑

i=t,t1,...,tn

number of distinct i -way

interactions covered by VSCAf (1)

Where, t is the overall strength of VSCA,
t1, t2, . . . , tn are the strength of sub-arrays.

After initialization, GA searches the solution
space by applying genetic operators such as selec-
tion, crossover and mutation repeatedly to find
the best solution. The process continues until
a solution is found or the maximum number of
iterations is reached. In case VSCA-GA starts
by taking N from the existing literature and
a solution is found at this N , then the size of
VSCA is decreased by one, otherwise the size
of VSCA is increased by one and VSCA-GA is
executed again in both cases. When VSCA-GA
is re-executed, we seed the initial population
by supplying the best VSCA generated in the
previous run. If the size of VSCA in the cur-
rent run is less than that in the previous run,
we decrease the size of seeded VSCA by one
by removing the test case that contributes least
to the fitness of VSCA whereas, if the size of
VSCA in the current run is greater than the size
in the previous run, then we add a randomly
generated test case to the existing VSCA. The
various steps of VSCA-GA strategy are explained
below.

Construction of Variable Strength Covering Array for Combinatorial Testing . . . 93

Table 2. Comparison of various tools/algorithms for constructing CA/MCA/VSCA for CIT

S.
No.

Tool /
Algorithm

Variable
Strength

Maximum
Strength
Support(t)

Technique Employed Test
Generation
Strategy

Constraint
Handling

1. AETG [1] 7 2

Greedy

One Test at
a Time

3

2. ITCH1 3 6 3

3. TVG [19] 3 6 3

4. PICT [20] 3 6 3

5. Density [21] 3 3 7

6. DA-RO [22] 3 3 7

7. DA-FO [22] 3 3 7

8. TSG [23] 3 3 7

9. Jenny [29] 7 8 3

10. ACTS (IPOG)
3 6 One Parameter

at a Time
3[24, 25]

11. ParaOrder [21] 3 3 7

12. SA [9] 3 3

Meta-heuristic

Simulated Annealing

One Test at
a Time

7

13. GA [30] 7 3 Genetic Algorithm 7

14. ACA [30] 7 3 Ant Colony Optimization 7

15. ACS [31] 3 3 Ant Colony Optimization 7

16. TSA [32] 7 6 Tabu Search 7

17. GAPTS [33] 7 2 Genetic Algorithm 7

18. PWiseGen [34] 7 2 Genetic Algorithm 7

19. VS-PSTG [35] 3 6 Particle Swarm Optimization 7

20. HSS [36] 3 15 Harmony Search 3

21. HSTCG [37] 3 7 Harmony Search 3

22. CASA [27] 7 3 Simulated Annealing 3

23. PSO [38] 7 2 Particle Swarm Optimization One Parameter
at a Time

7

24. PSO [38] 7 2 Particle Swarm Optimization 7

5.1. A Greedy Approach to Generate
Initial Population

When GA is used to construct VSCA, the role
of initial population on the performance of GA
cannot be ignored as it can affect the convergence
speed and quality of the final solution [40, 41].
Generally, initial population is generated ran-
domly. However, recognizing the effect of initial
population on GA performance, several popu-
lation initialization methods for GA have been
proposed in the past by the researchers [41–46].
Here, we present a greedy approach for generat-
ing a good quality initial population of VSCA,
which is achieved by focusing on the coverage of
maximum number of possible uncovered interac-
tions.

Let us consider the system under test con-
sisting of k components where a component is
represented by Cm|1 ≤ m ≤ k and each compo-
nent Cm can take values from 0 to (vm − 1) (vm

is the number of possible values of component
Cm). The jth|1 ≤ j ≤ vm value of component
Cm is represented by valmj . To generate an ini-
tial population of VSCAs, VSCA-GA starts by
computing and storing all the possible t-way and
ti-way interactions between the values of all the
components in an interaction list L, based on the
configuration of VSCA. Then, it calculates the
number of uncovered interactions of each value
valmj of every component Cm, stores it in a vari-
able Nuncovered(valmj) and assigns a probability
of selection denoted by P (valmj) to each of them.
The probability of selection assigned to a value
valmj of component Cm represents its chances
of getting selected when a test case is created.
In our case, the probability assigned to a value
vmj of component Cm depends upon the number
of uncovered interactions of valmj as well as the
total number of uncovered interactions of compo-
nent Cm. Initially all values valmj of a component
Cm are involved in an equal number of uncovered

94 Priti Bansal, Sangeeta Sabharwal, Nitish Mittal, Sarthak Arora

interactions, therefore each of them will have an
equal probability of getting selected. For instance,
if a component has four possible values then ini-
tially each one of them will have the probability
of selection equal to 0.25. VSCA-GA generates
the first test case tcf1 in VSCAf |1 ≤ f ≤ Psize
by selecting a value of each component randomly
as each one of them have an equal probability of
selection. After the generation of first test case,
VSCA-GA updates the interaction list L by elim-
inating interactions that are covered in tcf1. Let
the value valms of component Cm be selected in
tcf1 and the number of interactions covered by
valms in tcf1 is Ncovered(valms), then the number
of interactions of valms left uncovered is denoted
by N ′uncovered(valms) and is calculated as:

N ′uncovered(valms) =
Nuncovered(valms)−Ncovered(valms) (2)

Let Pold(valms) denote the probability of selec-
tion of value valms before selection, then after
selection the probability of valms becomes:

Pnew(valms) =

Pold(valms)× N ′uncovered(valms)
Nuncovered(valms) (3)

The decrease in the probability of value valms is
calculated using Equation 4 and is distributed
among the remaining values valmj |1 ≤ j ≤ vm
and j 6= s of component Cm according to Equa-
tion 5.
Pdecrement(valms) =

Pold(valms)×
(

1− N ′uncovered(valms)
Nuncovered(valms)

)
(4)

Pnew(valmj) = Pold(valmj)+
(

Nuncovered(valmj)
∑j 6=s

j=1 to vm
Nuncovered(valmj)

×

Pdecrement(valms)
)

(5)

Equation 5 increases the probability of the value
valmj of component Cm based on the number
of its uncovered interactions and the total num-
ber of uncovered interactions of the remaining
values (except valms) of component Cm. Hence,

the higher the number of remaining uncovered
interactions of a value, the higher will be the
increase in its probability and vice versa, thereby
getting greedy by extending a higher opportunity
of selection to the values with maximum uncov-
ered interactions. Once the probability of each
value of every component is updated, the number
of uncovered interactions of the selected value
valmj ∀m is updated by assigning the value of
N ′uncovered(valms) to Nuncovered(valms). The suc-
ceeding test cases tcfi|2 ≤ i ≤ N are generated
by selecting a value for each component based
on the probabilities that are updated after the
generation of every test case. Since each value
valmj of a component Cm may have different
probability of selection, to select a value of a com-
ponent, a random number is generated in the
range [0, 1] and based on the interval in which
the random number falls; the value valmj of the
component Cm is selected. For instance, consider
a component Cm having four possible values and
assume that at some point of time during the
test case generation process, the probability of
selection of each of the four values valm1, valm2,
valm3 and valm4 becomes 0.20, 0.35, 0.35 and
0.10 respectively. If the generated random num-
ber lies in the range [0, 0.2] then value valm1 is
selected, if it lies in the range (0.2, 0.55] then
value valm2 is selected, if it lies in the range
(0.55, 0.9] then value valm3 is selected otherwise
valm4 is selected. An example to illustrate the
greedy approach to generate initial population
is given below.

Example: Let us consider a compo-
nent based a system having configuration
(N ; 2, 2331, CA(3, 23)) as shown below:

C1 C2 C3 C4
a1 a2 a3 a4
b1 b2 b3 b4

c4

To construct a VSCA in the initial popula-
tion, VSCA-GA assigns a probability of selection
to each value of every component. Initially, each
value of a component has an equal number of
uncovered interactions; therefore each of them
will have an equal probability of selection. The

Construction of Variable Strength Covering Array for Combinatorial Testing . . . 95

probability of selection of each value of every
component is shown below:

C1 C2 C3 C4

P (a1)=0.5 P (a2)=0.5 P (a3)=0.5 P (a4)=0.333
P (b1)=0.5 P (b2)=0.5 P (b3)=0.5 P (b4)=0.333

P (c4)=0.333

The first test case TC1 is constructed by se-
lecting a value for each component randomly
from their respective input domain. Let TC1 be:
a1, b2, a3, b4.

Now, VSCA-GA changes the probability of
selection of each value of every component based
on the number of their uncovered interactions
using Equations 2–5. The new probabilities be-
come:

C1 C2 C3 C4

P (a1)=0.32 P (a2)=0.68 P (a3)=0.32 P (a4)=0.166
P (b1)=0.68 P (b2)=0.32 P (b3)=0.68 P (b4)=0.417

P (c4)=0.417

Subsequently, for generating the next test
case TC2, VSCA-GA generates random num-
bers. Let the random numbers generated be 0.2,
0.5, 0.2 and 0.3 for each component respectively.
Therefore, TC2 will be: a1, a2, a3, b4.

Now, VSCA-GA again changes the probabil-
ity of selection of each value of every component
based on the number of their uncovered interac-
tions using Equations 2–5. The new probabilities
become:

C1 C2 C3 C4

P (a1)=0.18 P (a2)=0.43 P (a3)=0.18 P (a4)=0.235
P (b1)=0.82 P (b2)=0.57 P (b3)=0.82 P (b4)=0.209

P (c4)=0.556

The same procedure is repeated to construct
the remaining (N − 2)-test cases. Once a VSCA
is generated, the same procedure is repeated to
generate all the remaining VSCAs in the initial
population. Notably, every time a new VSCA is
generated, the interaction list L is reinitialized
to store all the possible t-way and ti-way interac-
tions between the values of all the components
based on the configuration of VSCA.

5.2. A Greedy Approach to Perform
Crossover

The next step after initialization is the appli-
cation of selection, crossover and mutation op-
erators repeatedly to generate optimal VSCA
that covers all possible t-way and ti-way in-
teractions. The crossover operator combines
the genes of two or more parents to gen-
erate an offspring. It is based on the idea
that the exchange of information between good
chromosomes will generate even better off-
spring [47]. There are many variations of the
crossover method, namely single-point crossover,
two-point crossover, multi-point crossover, uni-
form crossover, etc. The number of crossover
points determines how many segments are ex-
changed between the parents. The length (num-
ber of genes) of each segment may vary and
it depends on the position of crossover points.
VSCA-GA performs a crossover at the bound-
aries of test cases and the length of a segment
is always equal to one (i.e. one test case). When
a crossover is performed, it is quite possible that
during the exchange of information between par-
ents, some good features of a parent may get
lost. In our case, based on the configuration of
VSCA each test case tcfi|1 ≤ i ≤ N in VSCAf

covers some fixed number of t-way and ti-way
interactions, out of which some interactions are
distinctly covered by tcfi only. When a random
crossover is performed, it may happen that dur-
ing the exchange of information between two
parent VSCAs say VSCA1 and VSCA2, the best
test case tc1i covering maximum number of dis-
tinct interactions in VSCA1 may get exchanged
with the test case tc2i of VSCA2. This may result
in the gain of new interactions as well as loss of
existing distinct interactions covered by tc1i in
VSCA1 thereby, reducing the net gain in fitness
after the crossover. The net gain in fitness is
calculated using Equation 6.

Net gain in fitness(VSCAf) =
Number of new interactions gained −

Number of existing distinct interactions lost (6)

96 Priti Bansal, Sangeeta Sabharwal, Nitish Mittal, Sarthak Arora

In order to minimize the loss of existing dis-
tinct interactions and to maximize the net gain
in fitness during a crossover, VSCA-GA uses
a greedy approach to perform a crossover. It
takes the number of test cases which are to be
exchanged during the crossover as input (NTC)
instead of the number of crossover points, which
helps it in selecting the test cases greedily for
crossover. VSCA-GA starts by selecting VSCAs
using roulette wheel selection to become parents
during the crossover. In the roulette wheel se-
lection, a probability is being assigned to each
individual in the population. This probability is
calculated on the basis of the fitness of the indi-
vidual and thus the individuals with higher fit-
ness have better chances of getting selected for re-
production. Out of the two parents selected using
roulette wheel for crossover, VSCA-GA chooses
a parent with higher fitness. Let the higher fit-
ness parent be parent1 then VSCA-GA calcu-
lates the number of distinct t-way and ti-way
interactions covered by each test case of parent1.
Subsequently, it checks whether the number of
test cases to be exchanged (NTC) is equal to the
number of test cases covering least number of
distinct interactions. There are three possibili-
ties:
1. The number of test cases covering the least

number of distinct interactions is equal to
NTC – In this case VSCA-GA performs
crossover by exchanging the test cases that
cover the least number of distinct interac-
tions in parent1 by the respective test cases
of parent2. For instance, consider a system
A having configuration (N ; 2, 35, CA(3, 34))
(the value of each component is labelled 0,
1, 2) and let N be 7 which means that
the VSCA will consist of 7 test cases repre-
sented by TC1,TC2, . . . ,TC7. Each test case
TCi|1 ≤ i ≤ 7 contains a value 0/1/2 corre-
sponding to each component. Let NTC be
2. After calculating the number of distinct
interactions covered by each of the 7 test cases
in parent1, it has been found that two test
cases TC2 and TC5 cover the least number of
distinct interactions (i.e. 4) in parent1. Hence,
the number of test cases covering the least
number of distinct interactions in parent1 is

equal to NTC. Accordingly, a crossover is
performed by exchanging TC2 and TC5 in
parent1 with the respective test cases TC2
and TC5 of parent 2 as shown in Figure 5(a).

2. NTC is greater than the number of test cases
covering least number of distinct interactions.
Here VSCA-GA selects first NTC test cases
in parent1 when sorted in the ascending order
by the number of distinct interactions cov-
ered by them and applies a crossover at these
positions. For instance, in the aforementioned
system A, let NTC be 3. Here, NTC is greater
than the number of test cases covering the
least number of interactions, so the crossover
is performed by exchanging TC2, TC5 and
TC4 (which covers next least number of in-
teractions i.e. 7 after TC2 and TC5) with the
respective test cases of parent2 as shown in
Figure 5(b).

3. The number of test cases covering the least
number of distinct interactions is greater than
NTC: Here VSCA-GA calculates all the t-way
and ti-way interactions covered by the re-
spective test cases of parent2 and performs
crossover by exchanging test cases that cover
the maximum number of interactions not cov-
ered by parent1. Again, for the aforemen-
tioned system A, two test cases TC2 and TC5
in parent1 cover the least number of distinct
interactions (i.e., 4). Let NTC be 1, which is
less than the number of test cases covering
the least number of distinct interactions in
parent1. In this case, VSCA-GA calculates
the number of interactions covered by the
respective test cases of parent2, in our case
TC2 and TC5. It is clear from Figure 5(c),
that TC5 covers 5 interactions as compared
to TC2 which covers only 1 interaction, not
covered in parent1. Hence, our strategy per-
forms a crossover by exchanging test cases
TC5 in parent1 and parent2. By choosing the
test case in parent1 that covers the least num-
ber of distinct interactions and exchanging
it with a test case of parent2 that covers
maximum number of interactions not covered
by parent1, we ensure that the resulting off-
spring is of better quality than its parent by

Construction of Variable Strength Covering Array for Combinatorial Testing . . . 97

(a)

(b)

(c)

Figure 5. Multipoint crossover VSCA(N ; 2, 35, CA(3, 34))

minimizing the loss of existing interactions
and maximizing the gain.

5.3. A Greedy Approach to Perform
Mutation

Mutation has a significant effect on the perfor-
mance of GA as the mutation operator randomly
modifies, with a given probability, one or more
genes of a chromosome, thus increasing the diver-
sity of the population and avoids getting stuck
in the local minima. In traditional GA, every
individual has an equal probability of getting
mutated irrespective of their fitness [48]. Thus
the probability of an individual with the highest
fitness to be disrupted by a mutation is equal
compared to the one with the lowest fitness.
Hence a mutation strategy is needed to mutate
an individual to maximize improvement in fitness

by minimizing fitness loss due to the mutation.
Here, we present a greedy mutation strategy to
perform a mutation. First, we select an individ-
ual VSCAf for a mutation and list all the t-way
and ti-way interactions left uncovered by the
selected individual. Subsequently starting from
the highest strength (th) uncovered interaction,
we check interactions of strength th that occurs
multiple times in VSCAf and replace one of its
occurrences with the uncovered th interaction in
an attempt to increase its overall fitness. How-
ever, when an existing interaction is replaced
with an uncovered interaction, then in addition
to the gain of new interactions some old distinct
interactions may get lost. Hence, to maximize
the net gain after mutation, we calculate the
number of distinct interactions covered by the
multiple occurring interactions in the respective
test cases and replaces the one which covers the

98 Priti Bansal, Sangeeta Sabharwal, Nitish Mittal, Sarthak Arora

Figure 6. Greedy Mutation VSCA(N ; 2, 2432,MCA(3, 2232))

least number of distinct interactions. In case
more than one test case covers the least num-
ber of distinct interactions we replace the one
which covers the least number of higher strength
interactions. For instance, consider a system hav-
ing configuration (N ; 2, 2432,MCA(3, 2232)) as
shown in Figure 6. It is evident from Figure 6
that the VSCA selected for mutation does not
cover the triplet ‘b3 b4 a6’. When examining
the VSCA, it is found that the triplet ‘b3 a4 b6’
is covered by both TC5 and TC6. Hence, one
occurrence of ‘b3 a4 b6’ can be replaced by ‘b3
b4 a6’. To replace an occurrence of ‘b3 a4 b6’
by ‘b3 b4 a6’, the proposed greedy approach to
mutation calculates the total number of distinct
interactions of strength-2 and strength-3 covered
by b3, a4 and b6 in TC5 and TC6. In our case
both TC5 and TC6 cover an equal number of
distinct interactions, so the proposed approach
replaces ‘b3 a4 b6’ in TC5 which covers a smaller
number of distinct interactions of higher strength
‘3’ by the uncovered triplet ‘b3 b4 a6’.

The overall VSCA-GA strategy can be found
in Appendix.

6. Experimental Results

To assess the effectiveness of VSCA-GA strat-
egy, we implemented the proposed strategy by
extending an open source tool PWiseGen [49]. It
is an open source tool written in Java to generate
pair-wise (2-way) test set using GA. It does not
provide support for the construction of CA of

strength t > 2 as well as VSCA construction.
We have extended PWiseGen by adding the ca-
pability to generate VSCA of strength up to 6
using the greedy strategies proposed in Section 5
to generate the initial population, crossover and
mutation. We call it PWiseGen-VSCA.

To compare the performance of PWiseGen-
VSCA with the existing greedy based strate-
gies such as IPOG, PICT, ITCH, TVG, DA-RO,
DA-FO, ParaOrder, TSG and AI based strategies
such as SA, ACS, VS-PSTG, HSS and HSTCG
based on VSCA size, we performed experiments
on a set of four benchmark problems taken from
Cohen et al. [9], Ahmed et al. [35] and Alsewari
and Zamli [36]. As the VSCA size is not dependent
on the execution environment, we compare our
result directly with the results published in liter-
ature [9,21–23,31,35,36] with respect to VSCA
size.

The results of experiments conducted to com-
pare VSCA size on four VSCA configurations
with various sub-configuration settings are shown
in Table 3, Table 4, Table 5 and Table 6 respec-
tively. Cells marked NA (not available) in the
table signify that the results are not available
in the publications and the cells marked ‘–’ sig-
nify that the tool/algorithm does not support
the specified strength. As VSCA-GA produces
non-deterministic results, we ran each configura-
tion 30 times on PWiseGen-VSCA and reported
the best VSCA size obtained over 30 runs. It
can be observed from Table 3, Table 4, Table 5
and Table 6 that AI-based strategies generally
perform better than their greedy counterparts.

Construction of Variable Strength Covering Array for Combinatorial Testing . . . 99

Table 3. VSCA Size for VSCA configuration VSCA(N ; 2, 315, C)

{C} No. of PICT ITCH DA-RO DA-FO Para TVG TSG IPOG SA ACS VS-PSTG HSS PWiseGen-VSCA
interactions Order Best Average

φ 945 35 31 21 20 33 22 20 21 16 19 19 20 16 16.33
CA(3, 33) 972 81 48 28 29 27 27 27 27 27 27 27 27 27 27
CA(3, 33)2 999 729 59 28 29 33 30 27 28 27 27 27 27 27 27
CA(3, 33)3 1026 785 69 28 30 33 30 28 29 27 27 27 27 27 27
CA(3, 34) 1053 105 59 32 34 27 35 33 38 27 27 30 27 27 27.9
CA(3, 35) 1215 131 62 40 42 45 41 40 41 33 38 38 38 33 34.13
CA(3, 36) 1485 146 61 46 46 49 48 48 48 34 45 45 45 40 42.13
CA(3, 37) 1890 154 68 53 53 54 54 51 51 41 48 49 51 47 48.2
CA(3, 39) 3213 177 94 60 60 62 62 59 63 50 57 57 60 57 57.33
CA(3, 315) 13230 83 132 70 78 82 81 82 83 67 76 74 77 74 75.8
CA(3, 34),

1863 1376 114 46 46 44 53 48 48 34 40 45 45 40 41.5CA(3, 35),
CA(3, 36)
CA(4, 34) 1026 245 103 – – – 81 – 81 – – 81 81 81 81
CA(4, 35) 1350 301 118 – – – 103 – 100 – – 97 94 91 91
CA(4, 37) 3780 505 189 – – – 168 – 165 – – 158 159 158 158.3
CA(5, 35) 1188 730 261 – – – 243 – 243 – – 243 243 243 243
CA(5, 37) 6048 1356 481 – – – 462 – 461 – – 441 441 441 441
CA(6, 36) 1674 2187 745 – – – 729 – 729 – – 729 729 729 729

Table 4. VSCA Size for VSCA configuration VSCA(N ; 2, 320102, C)

{C} No. of PICT ITCH DA-RO DA-FO Para TVG TSG IPOG SA ACS VS-PSTG HSS PWiseGen-VSCA
interactions Order Best Average

φ 3010 100 NA 100 100 100 101 100 102 100 100 102 106 100 100.33
CA(3, 320) 33790 940 NA 100 105 103 103 100 102 100 100 105 109 100 100
MCA(3, 320102) 73990 423 NA 401 409 442 423 411 442 304 396 481 450 440 446
CA(4, 33101) 3280 810 NA – – – 270 – 270 – – 270 270 270 274.53
MCA(5, 33102) 5710 2430 NA – – – 2700 – 2700 – – 2700 2700 2700 2700
MCA(6, 34102) 11110 7290 NA – – – 8100 – 8100 – – 8100 8100 8100 8100

Table 5. VSCA Size for VSCA configuration VSCA(N ; 2, 435362, C)

{C} No. of in-
teractions PICT ITCHDA-RODA-FO Para

Order TVGTSG IPOG SA ACSVS-PSTGHST-CG HSS PWiseGen-VSCA
Best Average

φ 663 43 48 41 40 49 44 39 40 36 41 42 43 42 37 38.93
CA(3, 43) 727 384 97 64 64 64 67 64 67 64 64 64 64 64 64 64
MCA(3, 4352) 1507 781 164 131 132 141 132 125 132 100 104 124 120 116 120 121.3
CA(3, 53) 788 750 145 125 125 126 125 125 126 125 125 125 125 125 125 125
MCA(4, 4351) 983 1920 354 – – – 320 – 320 – – 320 320 320 320 320
CA(3, 43), 852 8000 194 125 125 129 125 125 126 125 125 125 NA 125 125 125CA(3, 53)
MCA(4, 4351), 1883 288000 1220 – – – 900 – 900 – – 900 NA 900 900 900MCA(4, 5262)
CA(3, 43), 1477 48000 819 – – – 750 – 750 – – 750 NA 750 750 750MCA(4, 5361)
MCA(4, 4352) 2503 2874 510 – – – 496 – 479 – – 472 454 453 458 459.23
MCA(3, 435361) 4290 1266 254 207 211 247 237 197 215 171 201 206 NA 212 204 206.76
MCA(3, 5162) 843 900 188 180 180 180 180 180 180 180 180 180 180 180 180 180
MCA(3, 435362) 7080 261 312 256 261 307 302 239 263 214 255 260 264 263 260 260.33
MCA(5, 4352) 2263 9600 1639 – – – 1600 – 1600 – – 1600 NA 1600 1600 1600
MCA(5, 4353) 11463 15048 2520 – – – 2583 – 2487 – – 2430 2430 2430 2434 2436.53

100 Priti Bansal, Sangeeta Sabharwal, Nitish Mittal, Sarthak Arora

Table 6. VSCA Size for VSCA configuration VSCA(N ; 2, 1019181716151413121, C)

{C} No. of PICT ITCH Density Para TVG IPOG SA ACS VS-PSTG HSS PWiseGen-VSCA
interactions Order Best Average

φ 1266 102 119 NA NA 99 90 NA NA 97 94 92 93.96
MCA(3, 1019181) 1986 31256 765 NA NA 720 720 NA NA 720 720 720 720
MCA(3, 716151) 1476 19515 301 NA NA 210 211 NA NA 210 210 210 210
MCA(3, 413121) 1290 2397 140 NA NA 99 90 NA NA 97 94 92 92.6
MCA(3, 101918171) 3680 22878 806 NA NA 784 772 NA NA 742 740 740 745.03
MCA(3, 1019181),
MCA(3, 716151) 2196 NA 947 NA NA 720 720 NA NA 720 720 720 720

MCA(3, 1019181),
MCA(3, 716151),
MCA(3, 413121)

2220 NA 968 NA NA 720 720 NA NA 720 720 720 720

MCA(4, 51413121) 1386 1200 237 – – 123 142 – – 120 120 120 120
MCA(5, 10191413121) 3426 124157 2276 – – 2160 2160 – – 2160 2160 2160 2160
MCA(6, 716151413121) 6306 NA 5157 – – 5040 5043 – – 5040 5040 5040 5040

Table 7. VSCA generation time (in seconds) for VSCA
configuration VSCA(N ; 2, 315, C)

{C} IPOG TVG PWiseGen-VSCA

φ 0.077 0.056 2.976
CA(3, 33) 0.009 0.071 1.32
CA(3, 33)2 0.025 0.062 13.5
CA(3, 33)3 0.023 0.076 5.424
CA(3, 34) 0.012 0.088 60.042
CA(3, 35) 0.03 0.098 11.4
CA(3, 36) 0.013 0.141 48.06
CA(3, 37) 0.023 0.161 57.6
CA(3, 39) 0.019 0.304 97.8
CA(3, 315) 0.048 2.008 211.08
CA(3, 34), CA(3, 35), CA(3, 36) 0.008 0.302 30.78
CA(4,34) 0.025 0.108 11.4
CA(4, 35) 0.011 0.189 5431.8
CA(4,37) 0.013 0.862 9003.6
CA(5,35) 0.015 0.499 6.6
CA(5,37) 0.046 3.853 12035.4
CA(6,36) 0.093 1.388 19.44
CA(6, 37) 0.078 11.685 21183.6

Table 8. VSCA generation time (in sec-
onds) for VSCA configuration VSCA(N ;
2, 320102, C)

{C} IPOG TVG PWiseGen-VSCA

φ 0.012 0.636 8.9544
CA(3, 320) 0.039 5.972 915
MCA(3, 320102) 0.085 13.559 3813.84
CA(4, 33101) 0.061 1.491 1546.8
VSCA(5, 33102) 0.343 27.409 274.8
VSCA(6, 34102) 1.684 208.681 378

Table 9. VSCA generation time (in seconds) for VSCA
configuration VSCA(N ; 2, 435362, C)

{C} IPOG TVG PWiseGen-VSCA

φ 0.002 0.035 2.37
CA(3, 43) 0.002 0.041 2.106
MCA(3, 4352) 0.002 0.156 433.8
CA(3, 53) 0.005 0.077 0.39
MCA(4, 4351) 0.016 0.189 18.4704
CA(3,43), CA(3,53) 0.001 0.082 0.5772
MCA(4,4351), MCA (4,5262) 0.047 1.136 52.6344
CA(3,43), MCA(4, 5361) 0.032 0.699 35.9112
MCA(4,4352) 0.023 0.917 6992.4
MCA(3, 435361) 0.015 0.733 1173.6
MCA(3,5162) 0.003 0.089 0.45
MCA(3,435362) 0.011 1.621 1579.2
MCA (5, 4352) 0.11 2.84 30.6
MCA (5, 4353) 0.296 26.193 7485.6

Table 10. VSCA generation time (in sec-
onds) for VSCA configuration VSCA(N ; 2,
1019181716151413121, C)

{C} IPOG TVG PWiseGen-VSCA

φ 0.003 0.414 7.8
MCA(3, 1019181) 0.003 0.865 5.148
MCA(3, 716151) 0.007 0.241 6.72
MCA(3, 413121) 0.002 0.131 37.518
MCA(3, 101918171) 0.044 2.169 2586.24
MCA(3, 1019181),
MCA(3, 716151) 0.031 0.893 6.0684

MCA(3, 1019181),
MCA(3, 716151),
MCA(3, 413121)

0.028 0.894 7.7376

MCA(4, 51413121) 0.003 0.021 635.22
MCA (5, 10191413121) 0.234 7.504 85.8
MCA (6, 716151413121) 0.733 38.548 484.02

Construction of Variable Strength Covering Array for Combinatorial Testing . . . 101

When AI-based strategies are compared to
each other, we can see that SA and ACS sup-
port construction of VSCA of strength t ≤ 3
only whereas VS-PSTG supports construction
of VSCA of strength up to 6. The published
results [36] show that unlike other greedy and
AI-based strategies , HSS support construction
of VSCA of strength up to 15 but nothing is
mentioned about the efficiency of HSS in terms
of VSCA generation time. From Table 3, we
can infer that PWiseGen-VSCA outperforms
ACS whereas the results in Table 4 and Table 5
are comparable. Although PWiseGen-VSCA sup-
ports construction of higher interaction strength
VSCA however, VSCA generation time increases
with the increase in interaction strength which
makes it infeasible to generate higher strength
VSCAs. It is evident from Tables 3-6 that
PWiseGen-VSCA generates better results as
compared to VS-PSTG, HSTCG and HSS. From
Tables 3-6, it is clear that SA outperforms ex-
isting state-of-the-art strategies for lower inter-
action strength (t ≤ 3), however, the results
generated by PWiseGen-VSCA are equal or close
to SA.

Finally from Tables 3–6, we can conclude that
PWiseGen-VSCA generates optimal VSCA most
of the time as compared to other greedy and
meta-heuristic techniques for strength ≤ 6.

It is difficult to compare PWiseGen-VSCA
with the existing state-of-the-art algorithms in
terms of VSCA generation time, as the gener-
ation time is dependent on the running envi-
ronment and most of the algorithm implemen-
tations are not publicly available. To perform
a fair comparison, we restrict the comparison of
VSCA generation time against publicly available
algorithm implementation: ACTS (IPOG) and
TVG. These tools are run on Windows using an
INTEL Pentium Dual Core 1.73 GHZ processor
with 1.00 GB of memory The results of com-
parison made on the dataset of Tables 3–6 with
respect to VSCA generation time (in seconds) are
shown in Tables 7–10 respectively. It is evident
from Tables 7–10 that PWiseGen-VSCA requires
more time to construct VSCA as compared to
ACTS (IPOG) and TVG, however, the extra

time consumed by PWiseGen-VSCA allowed the
construction of VSCAs of smaller size.

7. Threats to Validity

One important threat to validity of the ef-
fectiveness of our approach is that we could
not use any sophisticated statistical hypothe-
sis tests such as Welch’s t-test to assess and
compare PWiseGen-VSCA with the existing
meta-heuristic techniques for constructing VSCA
as we do not have access to the source code of
any of them. Also, we could not compare the
efficiency of PWiseGen-VSCA in terms of VSCA
generation time with the existing meta-heuristic
techniques because of the above mentioned rea-
son.

8. Conclusion and Future Work

In this paper we have presented and evaluated
VSCA-GA, a strategy based on GA to con-
struct optimal VSCA for t-way testing. The strat-
egy is implemented in PWiseGen-VSCA. Our
strategy exploits the strength of both greedy
and meta-heuristic techniques by integrating
greedy technique with GA. The experiments con-
ducted on a set of benchmark problems show
that PWiseGen-VSCA outperforms the existing
state-of-the-art algorithms except SA in terms of
VSCA sizes. However, our results are comparable
to SA which generates VSCA for strength t up
to 3 whereas VSCA-GA constructs VSCA for
strength t up to 6.

In future, we plan to construct VSCA to
handle feature constraints and try to improve
the efficiency of PWiseGen-VSCA to construct
higher strength VSCA.

References

[1] D.M. Cohen, S.R. Dalal, M.L. Fredman, and
G.C. Patton, “The AETG system: An approach
to testing based on combinatorial design,” IEEE
Transactions on Software Engineering, Vol. 23,
No. 7, 1997, pp. 437–444.

102 Priti Bansal, Sangeeta Sabharwal, Nitish Mittal, Sarthak Arora

[2] A. Hartman, “Software and hardware testing
using combinatorial covering suites,” in Graph
Theory, Combinatorics and Algorithms. Springer,
2005, pp. 237–266.

[3] D.M. Cohen, S.R. Dalal, A. Kajla, and G.C.
Patton, “The automatic efficient test generator
(AETG) system,” in 5th International Sympo-
sium on Software Reliability Engineering. IEEE,
1994, pp. 303–309.

[4] D.M. Cohen, S.R. Dalal, J. Parelius, and G.C.
Patton, “The combinatorial design approach
to automatic test generation,” IEEE software,
No. 5, 1996, pp. 83–88.

[5] K. Burr and W. Young, “Combinatorial test tech-
niques: Table-based automation, test generation
and code coverage,” in Proc. of the Intl. Conf. on
Software Testing Analysis & Review. San Diego,
1998.

[6] S.R. Dalal, A. Jain, N. Karunanithi, J. Leaton,
C.M. Lott, G.C. Patton, and B.M. Horowitz,
“Model-based testing in practice,” in Proceedings
of the 21st international conference on Software
engineering. ACM, 1999, pp. 285–294.

[7] D.R. Kuhn, D.R. Wallace, and A.M. Gallo Jr,
“Software fault interactions and implications for
software testing,” IEEE Transactions on Soft-
ware Engineering,, Vol. 30, No. 6, 2004, pp.
418–421.

[8] D.R. Kuhn and M.J. Reilly, “An investigation
of the applicability of design of experiments
to software testing,” in 27th Annual NASA
Goddard/IEEE Software Engineering Workshop.
IEEE, 2002, pp. 91–95.

[9] M.B. Cohen, P.B. Gibbons, W.B. Mugridge,
C.J. Colbourn, and J.S. Collofello, “A variable
strength interaction testing of components,” in
27th Annual International Computer Software
and Applications Conference. IEEE, 2003, pp.
413–418.

[10] Y. Lei and K.C. Tai, “In-parameter-order: A
test generation strategy for pairwise testing,” in
Third IEEE International High-Assurance Sys-
tems Engineering Symposium. IEEE, 1998, pp.
254–261.

[11] C. Nie and H. Leung, “A survey of combinato-
rial testing,” ACM Computing Surveys (CSUR),
Vol. 43, No. 2, 2011, p. 11.

[12] A. Hedayat, N. Sloane, and J. Stufken, Orthog-
onal Arrays, ser. Springer Series in Statistics.
Springer, New York, 1999.

[13] R. Mandl, “Orthogonal latin squares: an appli-
cation of experiment design to compiler testing,”
Communications of the ACM, Vol. 28, No. 10,
1985, pp. 1054–1058.

[14] M.B. Cohen, P.B. Gibbons, W.B. Mugridge, and
C.J. Colbourn, “Constructing test suites for in-
teraction testing,” in 25th International Confer-
ence on Software Engineering. IEEE, 2003, pp.
38–48.

[15] J.H. Holland, Adaptation in natural and artificial
systems: an introductory analysis with applica-
tions to biology, control and artificial intelligence.
MIT press, 1992.

[16] K.F. Man, K.S. Tang, and S. Kwong, “Genetic
algorithms: concepts and applications,” IEEE
Transactions on Industrial Electronics, Vol. 43,
No. 5, 1996, pp. 519–534.

[17] S.K. Khalsa and Y. Labiche, “An orchestrated
survey of available algorithms and tools for com-
binatorial testing,” in IEEE 25th International
Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2014, pp. 323–334.

[18] C.J. Colbourn, M.B. Cohen, and R. Turban,
“A deterministic density algorithm for pairwise
interaction coverage.” in IASTED Conf. on Soft-
ware Engineering. Citeseer, 2004, pp. 345–352.

[19] J. Arshem. TVG download web page. (2009).
[Online]. http://sourceforge.net/projects/tvg

[20] J. Czerwonka, “Pairwise testing in real world:
Practical extensions to test case generator,” in
PNSQC’06: Proceedings of 24th Pacific North-
west Software Quality Conference, 2006, pp.
419–430.

[21] Z. Wang, B. Xu, and C. Nie, “Greedy heuristic
algorithms to generate variable strength combi-
natorial test suite,” in The Eighth International
Conference on Quality Software. IEEE, 2008, pp.
155–160.

[22] Z. Wang and H. He, “Generating variable
strength covering array for combinatorial soft-
ware testing with greedy strategy,” Journal of
Software, Vol. 8, No. 12, 2013, pp. 3173–3181.

[23] S.A. Abdullah, Z.H. Soh, and K.Z. Zamli,
“Variable-strength interaction for t-way test gen-
eration strategy.” International Journal of Ad-
vances in Soft Computing & Its Applications,
Vol. 5, No. 3, 2013.

[24] M. Forbes, J. Lawrence, Y. Lei, R.N. Kacker, and
D.R. Kuhn, “Refining the in-parameter-order
strategy for constructing covering arrays,” Jour-
nal of Research of the National Institute of Stan-
dards and Technology, Vol. 113, No. 5, 2008, pp.
287–297.

[25] L. Yu, Y. Lei, R.N. Kacker, and D.R. Kuhn,
“ACTS: A combinatorial test generation tool,”
in IEEE Sixth International Conference on
Software Testing, Verification and Validation
(ICST). IEEE, 2013, pp. 370–375.

Construction of Variable Strength Covering Array for Combinatorial Testing . . . 103

[26] S. Ali, L.C. Briand, H. Hemmati, and R.K.
Panesar-Walawege, “A systematic review of
the application and empirical investigation of
search-based test case generation,” IEEE Trans-
actions on Software Engineering,, Vol. 36, No. 6,
2010, pp. 742–762.

[27] B.J. Garvin, M.B. Cohen, and M.B. Dwyer,
“Evaluating improvements to a meta-heuristic
search for constrained interaction testing,” Em-
pirical Software Engineering, Vol. 16, No. 1, 2011,
pp. 61–102.

[28] C. Blum and A. Roli, “Metaheuristics in combi-
natorial optimization: Overview and conceptual
comparison,” ACM Computing Surveys (CSUR),
Vol. 35, No. 3, 2003, pp. 268–308.

[29] B. Jenkins. Jenny download web page.
(2005). [Online]. http://burtleburtle.net/bob/
math/jenny.html

[30] T. Shiba, T. Tsuchiya, and T. Kikuno, “Using
artificial life techniques to generate test cases
for combinatorial testing,” in Proceedings of the
28th Annual International Computer Software
and Applications Conference. IEEE, 2004, pp.
72–77.

[31] X. Chen, Q. Gu, A. Li, and D. Chen, “Variable
strength interaction testing with an ant colony
system approach,” in APSEC’09. Asia-Pacific
Software Engineering Conference. IEEE, 2009,
pp. 160–167.

[32] L. Gonzalez-Hernandez, N. Rangel-Valdez, and
J. Torres-Jimenez, “Construction of mixed cov-
ering arrays of variable strength using a tabu
search approach,” in Combinatorial Optimiza-
tion and Applications. Springer, 2010, pp. 51–64.

[33] J.D. McCaffrey, “An empirical study of pairwise
test set generation using a genetic algorithm,”
in Seventh International Conference on Infor-
mation Technology: New Generations (ITNG).
IEEE, 2010, pp. 992–997.

[34] P. Flores and Y. Cheon, “PWiseGen: Generating
test cases for pairwise testing using genetic algo-
rithms,” in IEEE International Conference on
Computer Science and Automation Engineering
(CSAE), Vol. 2. IEEE, 2011, pp. 747–752.

[35] B.S. Ahmed and K.Z. Zamli, “A variable
strength interaction test suites generation strat-
egy using particle swarm optimization,” Journal
of Systems and Software, Vol. 84, No. 12, 2011,
pp. 2171–2185.

[36] A.R.A. Alsewari and K.Z. Zamli, “Design
and implementation of a harmony-search-based
variable-strength t-way testing strategy with
constraints support,” Information and Software
Technology, Vol. 54, No. 6, 2012, pp. 553–568.

[37] J. LI, D. XING, and Y. ZHAO, “Combinato-
rial test suite generation of variable strength

based on harmony search,” Journal of Network
& Information Security, Vol. 4, No. 2, 2013, pp.
177–188.

[38] X. Chen, Q. Gu, J. Qi, and D. Chen, “Applying
particle swarm optimization to pairwise testing,”
in IEEE 34th Annual Computer Software and
Applications Conference (COMPSAC). IEEE,
2010, pp. 107–116.

[39] J. Stardom, “Metaheuristics and the search for
covering and packing arrays,” Ph.D. dissertation,
Simon Fraser University, 2001.

[40] Genetic Algorithms in Search, Optimization,
and Machine Learning, 1st ed. Reading, Mass:
Addison-Wesley Professional, Jan. 1989.

[41] H. Maaranen, K. Miettinen, and M.M. Mäkelä,
“Quasi-random initial population for genetic al-
gorithms,” Computers & Mathematics with Ap-
plications, Vol. 47, No. 12, 2004, pp. 1885–1895.

[42] Y.W. Leung and Y. Wang, “An orthogonal ge-
netic algorithm with quantization for global nu-
merical optimization,” IEEE Transactions on
Evolutionary Computation, Vol. 5, No. 1, 2001,
pp. 41–53.

[43] H. Maaranen, K. Miettinen, and A. Penttinen,
“On initial populations of a genetic algorithm
for continuous optimization problems,” Journal
of Global Optimization, Vol. 37, No. 3, 2007, pp.
405–436.

[44] S. Rahnamayan, H.R. Tizhoosh, and M.M.
Salama, “A novel population initialization
method for accelerating evolutionary algorithms,”
Computers & Mathematics with Applications,
Vol. 53, No. 10, 2007, pp. 1605–1614.

[45] H. Wang, Z. Wu, J. Wang, X. Dong, S. Yu,
and C. Chen, “A new population initialization
method based on space transformation search,”
in Fifth International Conference on Natural
Computation, Vol. 5. IEEE, 2009, pp. 332–336.

[46] P. Bansal, S. Sabharwal, S. Malik, V. Arora, and
V. Kumar, “An approach to test set generation
for pair-wise testing using genetic algorithms,”
in Search Based Software Engineering. Springer,
2013, pp. 294–299.

[47] D. Ortiz-Boyer, C. Hervás-Martínez, and
N. García-Pedrajas, “CIXL2: A crossover op-
erator for evolutionary algorithms based on pop-
ulation features.” J. Artif. Intell. Res.(JAIR),
Vol. 24, 2005, pp. 1–48.

[48] S.M. Libelli and P. Alba, “Adaptive mutation
in genetic algorithms,” Soft Computing, Vol. 4,
No. 2, 2000, pp. 76–80.

[49] P. Flores. PWiseGen download web page. (2010).
[Online]. https://code.google.com/p/pwisegen/

104 Priti Bansal, Sangeeta Sabharwal, Nitish Mittal, Sarthak Arora

Appendix

Input: VSCA configuration: (t, k, (v1, v2, . . . , vk), C), VSCA size: N , Population Size: Psize, Maxi-
mum Number of Generations: NOG, Number of Reproductions: NOR, Number of Test Cases for
Crossover: NTC
Output: Optimal VSCA
Algorithm 1. VSCA-GA

1: procedure VSCA-GA
2: Initialize G := 0 . generation number
3: . Generate initial population pop1
4: for each VSCAf in pop1 do . 1 ≤ f ≤ Psize

5: Create an interaction list L of all t-way and ti-way interactions between all components Cm . 1 ≤ m ≤ k
6: for m = 1 to k do
7: for j = 1 to vm do
8: Store the number of uncovered interactions of value valmj of component Cm in Nuncovered(valmj)
9: end for

10: end for
11: for each component Cm do
12: Assign each value valmj an equal probability of selection P (valmj)
13: end for
14: . Generate first test case
15: Create the first test case tcf1 by selecting a value for each component Cm randomly
16: Let valms is the selected value of component Cm

17: . Generate remaining (N − 1) test cases
18: Initialize i := 2
19: for i = 2 to N do
20: for m = 1 to k do
21: Update interaction list L by eliminating the interactions covered by valms in test case tcf(i−1)
22: Store the number of remaining interactions of valms in N ′uncovered(valms)
23: Decrease probability of selection of value valms of Cm selected in test case tcf(i−1) according to

equation 3

24: Update probability of remaining values of Cm according to equation 5.
25: end for
26: for each component Cm do
27: Generate a random number between 1 to 100
28: Create test case tcfi by selecting a value of Cm based on the interval in which the random

number falls

29: end for
30: end for
31: end for
32: Calculate fitness of each VSCAf in pop1 using equation 1
33: G← G + 1
34: while solution not found and G ≤ NOG do
35: . Perform Crossover
36: Initialize counter := 1
37: while counter ≤ NOR do
38: Select two parent VSCA from population popG−1 using Roulette Wheel Selection
39: Let parent1 is the parent VSCA having higher fitness among the two parents
40: Calculate the number of distinct pairs covered by each test case of parent1
41: if NT C < number of test cases covering least number of distinct interactions then
42: Calculate the number of interactions covered by respective test cases of parent2
43: Select NTC test cases of parent2 that cover maximum number of interactions not covered by

parent1

44: else if NT C > number of test cases covering least number of distinct interactions then

Construction of Variable Strength Covering Array for Combinatorial Testing . . . 105

45: Select NTC test cases in parent1 when sorted in ascending order by the number of distinct
interactions covered by them

46: else
47: Select NT C test cases that covers least number of distinct interactions in parent1
48: end if
49: Perform crossover between parent1 and parent2 by exchanging selected test cases to generate

offsprings os1, os2

50: . Perform Mutation
51: Apply greedy mutation on os1 and os2 as discussed in Section 5.3
52: Replace weaker VSCA in popG−1 by os1, os2 to form new population popG

53: counter ← counter + 1
54: end while
55: Calculate fitness of each V SCAf in the popG using equation 1
56: if solution found then
57: break
58: else
59: G← G + 1
60: end if
61: end while
62: if generations > NOG then
63: return (solution not found)
64: else
65: return V SCAf . VSCA with 100% fitness
66: end if
67: end procedure

e-Informatica Software Engineering Journal, Volume 9, Issue 1, 2015, pages: 107–142, DOI 10.5277/E-INF150106

Model Driven Web Engineering: A Systematic Mapping
Study

Karzan Wakil∗, Dayang N. A. Jawawi∗∗
∗Software Engineering Department, Faculty of Computing, University of Technology Malaysia
∗∗Software Engineering Department, Faculty of Computing, University Technology Malaysia

karzanwakil@gmail.com, dayang@utm.my

Abstract
Background: Model Driven Web Engineering (MDWE) is the application of the model driven
paradigm to the domain of web software development, where it is particularly helpful because
of the continuous evolution of Web technologies and platforms. Objective: In this paper, we
prepare a survey of primary studies on MDWE to explore current work and identify needs for
future research. Method: Systematic mapping study uses for finding the most relevant studies
and classification. In this study, we found 289 papers and a classification scheme divided them
depending on their research focus, contribution type and research type. Results: The papers of
solution proposal (20%) research type are majority. The most focused areas of MDWE appear
to be: Web Applicability (31%), Molding and Notation (19%), and Services and Oriented (18%).
The majority of contributions are methods (33%). Moreover, this shows MDWE as a wide, new,
and active area to publications. Conclusions: Whilst additional analysis is warranted within the
MDWE scope, in literature, composition mechanisms have been thoroughly discoursed. Further-
more, we have witnessed that the recurrent recommendation for Validation Research, Solution
Proposal and Philosophical Papers has been done through earlier analysis.

Keywords: model driven web engineering, MDWE, web engineering, systematic mapping
study

1. Introduction

MDWE is the application of the model driven
paradigm in the web domain [1–5]. The advent
of a new area of software engineering, focusing on
the special features of the web environment, was
undertaken by the research community at the
beginning of the 1990s. At the beginning, this
research focused on new methods, models and
notations which were used in hypermedia sys-
tems. However, later the target were web-based
systems that were presented through some ap-
proaches which included the Hypermedia Design
Model (HDM) [6] and the Object-Oriented Hy-
permedia Design Method (OOHDM) [7]. There
are a number of comparative studies and sur-

veys which investigate the evolution of this area
and have drawn attention to areas where fur-
ther research is needed to address a number of
clearly-identified gaps and shortcomings. Within
the Web engineering community, a number of re-
search groups are working towards suitable reso-
lutions to these gaps, which can be broadly clas-
sified within three areas: 1) There is a wide va-
riety of Web development methodologies, using
a multiplicity of different notations, models and
techniques. 2) No single Web development ap-
proach provides coverage for the whole life cycle.
3) There still remains a lack of tool supports for
Web development methodologies [8–12]. Instead
of traditional or conventional methods, special-
ized web development methods were used [13].

108 Karzan Wakil, Dayang N. A. Jawawi

The application of the Model-Driven Archi-
tecture (MDA) initiative has been applied to
numerous domains since 2001. In general, it
works better than those areas controlled by func-
tional requirements, well-structured models, and
accurate separation of concerns and standard
platforms. MDA has created potent advantages
in which web engineering has essentially been
shown to be an application domain. As new plat-
forms emerge and changes in technologies oc-
cur continuously in this area, MDA mainly per-
mits successful highlighting of interoperability,
model evolution and adaptation issues of web
systems [14]. Due to the rapid evolution of web
technologies and platforms, MDWE was also de-
veloped by applying independent models, such
as the content, navigation, process, and presen-
tation issues possessing various issues of web
applications. Moreover, these models are uni-
fied and changed to codes, conversely. These
codes consist of web pages, configuration data
for web frameworks, and also traditional pro-
gram codes [1].

For the design and advancement of many
types of web applications, MDWE approaches
already offer outstanding methodologies and
tools. By applying independent models (includ-
ing navigation, presentation, data and others),
these approaches reveal diverse issues, and are
sustained by model compilers that generate
a vast majority of the application’s web pages
and the logic centered on these models [15].

The specification of the application is built
up step by step by alternating automatic gen-
eration and manual elaboration steps, from the
Computational Independent Model (CIM), to
a Platform Independent Model (PIM), to a Plat-
form Specific Model (PSM), to code. Today,
most approaches based on MDA are ‘elabo-
ration’ approaches, which have to deal with
the problems of model and code synchroniza-
tion. Some tools support the regeneration of the
higher-level models from the lower-level mod-
els [1].

A systematic mapping study is a way of
identifying and classifying research related to
the topic, it has been adapted from other dis-
ciplines to software engineering by Kitchenham

and Charters [16]. When used for a specific re-
search area, it categorizes different types of re-
search reports in various dimensions and often
provides a map of its results. Systematic map-
ping studies have been recommended mostly
when little relevant evidence is found during the
initial study of the domain, or if the topic to be
investigated is very broad [16]. In contrast to sys-
tematic literature reviews, systematic mapping
studies are conducted at a coarse-grained level.
They aim only to find and identify evidence re-
lating to research questions, and to identify re-
search gaps in order to direct future research.
In this context, we believed it would be appro-
priate to conduct a systematic mapping study,
since model-driven web engineering appears to
be a broader concept with multiple research fo-
cus areas. In this paper, a a Systematic Mapping
Study for MDWE is presented from the perspec-
tive of the guidelines extracted from the reports
published by Kitchenham and Charters [16] and
Biolchini et al. [17].

There are a great number of journals, confer-
ences and workshops within the web engineer-
ing area and MDWE fields that were published.
These included the Journal of Web Engineering
(JWE) [18], the International Journal of Web
Engineering (IJWE) [19], and the International
Conference on Web Engineering (ICWE) [20].
Wherever this topic is mentioned, it is hard to
get a comprehensive overview of the state of
the research. For controlling the review papers
and understanding the subjects of the papers,
we need a systematic mapping study in MDWE.

Following this introduction, this paper has
been structured as follows: In Section 2, we
present a short overview of the context in which
the current study has been conducted, and we
justify its needs. Section 3 describes how the sys-
tematic mapping methodology has been applied.
The classification schemes and their various di-
mensions are discussed in Section 4. Section 5 is
dedicated to presenting the results of mapping
the selected primary studies, and the discussion
of research questions. We discuss the overall re-
sults and identify the potential limitations of our
study in Section 6. Section 7 consists of a con-
clusion and suggestions for future work.

Model Driven Web Engineering: A Systematic Mapping Study 109

2. Background and Motivation

There already exist literature surveys and sys-
tematic review works in this field resulting from
the swift progressed in web engineering and
MDWE. Some investigators completed going
through MDWE methodologies [21], introducing
a crucial assessment of earlier studies of tradi-
tional web methodologies and highlighting the
capability of the MDWE paradigm [2] as well
as systematic review of web engineering research
[22].

Several of the MDWE methods that have
been suggested are presented by Jesús and John,
2012 [21], who consider and investigate the
strengths and weaknesses of such methods asso-
ciated with the present trends and best practices
on Model-Driven Engineering (MDE). Introduc-
ing every approach and investigating the models,
they suggest signifying web applications, the ar-
chitectural factors in the changes, and the appli-
cation of present web user interface technologies
in the code outcome are their aim. This is ac-
complished for the purpose of creating potential
research strategies for upcoming works on the
MDWE area [21].

A crucial review of the earlier studies of clas-
sical web methodologies is presented by Aragón
et al. 2012 [2], who highlights the capability
of the MDWE paradigm to highlight lengthy
overdue issues of web development, encompass-
ing research and enterprise. With respect to the
terms extracted from the literature, the chosen
key MDWE development approaches are investi-
gated and matched. The paper argues that cer-
tain classical gaps can be enhanced with MDWE
and shows that this new tendency introduces
a stimulating as well as novel method to create
web systems inside practical projects. However,
this paper presents a general assessment of the
situation and investigates how MDE can over-
come the classical issues identified in web devel-
opment in the past years [2], as can be concluded
from this introduction.

For the purposes of investigating the rigor of
claims ascending from web engineering research,
Mendes, 2005, applies a systematic literature re-
view. The rigor is measured by applying a stan-

dard spooled from software engineering research.
The outcomes have indicated that just 5% of
173 papers reviewed by them could be consid-
ered methodologically rigorous. On top of show-
ing their outcomes, they offer proposals for the
betterment of web engineering research founded
on lessons picked up by the software engineering
fraternity [22].

In many areas, systematic review has
achieved great attention amongst researchers
these days. In the application investigat-
ing statistical sciences, psychology sciences,
industrial-organizational psychological sciences,
education, medicine, health sciences domain,
and software engineering, it is extensively used.
The idea of Evidence-based software engineer-
ing founded on medical practice by applying
systematic review was assessed by [23], and
presents a guideline for a systematic review that
is conducive for software engineering investiga-
tors [17]. As a result, numerous systematic re-
views were carried out in software engineering
after words and several article were published
in the web engineering domain, such as: Mendes
reviewed 173 papers, only 5% of all papers re-
viewed were designed properly, were based on
a real scenario [22], Alfonso at al. to create
a comprehensive review and synthesis of the cur-
rent state of the art in the literature related to
the engineering requirements in the web domain.
To do this, a total of 3059 papers published in
the literature and extracted from the most rele-
vant scientific sources were considered, of which
43 were eventually analyzed in depth in accor-
dance with the adopted systematic review pro-
cess [24]. Insfran and Fernandez presented a sys-
tematic review of usability evaluation methods
for Web development; total of 51 research pa-
pers have been reviewed from an initial set of
410 papers; the results show that 45% of the
reviewed papers reported the use of evaluation
methods [25].

Where continued investigation is required to
highlight a number of visibly recognized gaps,
and weaknesses, a few comparative studies and
reviews of web development methodologies have
gained attention in these areas. Several inves-
tigative groups within the web engineering fra-

110 Karzan Wakil, Dayang N. A. Jawawi

ternity are pushing towards appropriate solu-
tions to these gaps which, already laid out in the
previous section, can be categorized into three
parts [2]:
– Applying a diversity of dissimilar notations,

models and techniques, there is a vast range
of web development methodologies.

– The non-presence of a single all-in-one an-
swer because no single web development ap-
proach offers coverage for the entire life cy-
cle, which means that web developers need
to mix-and-match factors from diverse ap-
proaches.

– Web development methodologies remain in-
adequately supported via tool support. On
the contrary, there are inadequate methodi-
cal investigation and design components by
way of the majority of development tools.

By implementing a Model-Driven Develop-
ment (MDD) paradigm, for instance MDWE,
these problems can be highlighted to a cer-
tain degree. Investigating approaches adapted
to the model-driven paradigm is the chief fo-
cus which makes an innovative input from the
review paper. Concepts play the utmost sig-
nificance in MDWE, free of their representa-
tions. MDWE suggests applying metamodels
that are platform-independent together with
the representation of ideas. A set of transfor-
mations and relations among ideas that facil-
itate active development and guarantees uni-
formity between models supports the develop-
ment process. In some regions of software en-
gineering and development, the model-driven
paradigm is being applied with outstanding out-
comes. This indicates it could also be adapted
for web engineering. For example, MDE of-
fers an appropriate way to guarantee traceabil-
ity and product derivation in software prod-
uct’s lines [2, 26, 27]. Several articles on the
secondary study in the area of web engineer-
ing, readied by the earlier reviewer, with differ-
ent sides of web engineering methodologies and
MDWE, presented certain problems and meth-
ods for the development of web applications. At
times, they did not present a systematic map-
ping for MDWE as it seemed a concrete work
for MDWE.

Systematic mapping studies belong to the
Evidence-based Software Engineering (EBSE)
paradigm [28]. They provide new, empirical and
systematic methods of research. Although sev-
eral studies have been reported in the broader
MDWE (e.g. [2, 14, 15, 21]), we are not aware
of any systematic mapping study that has been
conducted in this field. Given the fact that var-
ious types of research have appeared addressing
varying focus areas at different levels of granular-
ity related to a broader topic of MDWE, there is
a need for a more systematic investigation of the
topic. Therefore, the current study is intended
to contribute to MDWE through a systematic
and evidence-based approach. This study may
help researchers in the field of MDWE through
providing an overview of the current research in
the area. Furthermore, it may serve as the first
step towards more thorough examination of the
topics addressed in it with the help of systematic
literature reviews.

3. Research Method

The process of continuing a systematic mapping
study in software engineering was expounded by
Petersen et al. [29]. By taking into account their
guidelines, we carried out the present study. Re-
ferring to our subject matter, we discovered de-
marcating certain explicit schemes apart from
utilizing the classification schemes suggested in
their task for some areas. As highlighted in Fig-
ure 1, it is based on the crucial process steps
of (1) Defining research questions. (2) Defining
search strategy. (3) Screening of primary studies.
(4) Defining classification schemes. (5) Mapping
of studies.

3.1. Research Questions

In web engineering, acquiring a general idea of
the present analysis within the scope of the
model driven is the objective of this study. To
clarify this aim, we demarcated three research
questions:
– RQ1: What MDWE subject matters are the

most analyzed ones and how far have these

Model Driven Web Engineering: A Systematic Mapping Study 111

Figure 1. The Systematic Mapping Process [29]

subject matters been explored? In addition,
until now what kinds benefits have been
highlighted? At the design stage, by utilizing
various modeling illustrations, MDWE can
be supported in different ways. Which mod-
elling illustration has constructed MDWE
forms, the demarcation of our question. The
probability of recognizing complementary re-
search requirements would be the solution to
this question. Besides, based explicitly ex-
plicitly on the kind of contributions, this
question is meant to observe how far the-
seapproaches provide for the overall goals at
present.

– RQ2: To publish research on MDWE, which
methods are normally utilized? Early anal-
ysis revealed that web engineering was the
subject matter of certain meetings devoted to
cpecificities and international journals whilst
MDWE was a workshop topic. By our inten-
tion to observe through the question demar-
cation, we seek other forums that are utilized
to publish the investigation in this field.

– RQ3: What diverse kinds of investigation
in this literature has been highlighted and
how far has it gone? As explained in SWE-
BOK and MDWE workshop guides [30, 31],
to heighten the integrity of the investigation,
the utilization of empirical studies and en-
hanced proven approaches is encouraged [32].
In this perspective, with regards to the par-
ticular scope of MDWE, we want to catego-
rize various research types available.

3.2. Search Strategy

With the purpose of ascertaining the largest
number of significant chief studies, we created
a definite pursuit approach. We label it from

three viewpoints: search scope, search method,
and search strings utilized.

As far as the scope is concerned, to identify
the highest quantity of the associated investiga-
tive tasks, we did not limit the scope of our
search to any specific research locations. But,
the investigative outcomes are narrowed to pub-
lications dated between January 2000 and Jan-
uary 2014. We selected this commencement date
because the highest publication regarding this
area commenced post-end 1999. Conversely, the
search scope for manual search (highlighted be-
low) is restricted to the periods indicated for
each location as follows.

In view of search techniques, manual as well
as automatic searches were carried out. The
search carried out by manually going through
journals or meeting events is our idea of a man-
ual search. At the same time, through the amal-
gamation of pre-demarcated search strings to lo-
cate the prime electronic dates is an automatic
search. As the manual search for certain journals
and meeting events published on those areas was
forecasted to be immensely time consuming, we
carried out automatic search for the bulk of lo-
cations.

Based on Table 2, we chose a number of jour-
nals and meetings for the manual tasking ma-
jority of the studies were MDWE, discovered
there during preliminary investigative searches.
We utilized the search string highlighted in Ta-
ble 1 for the automatic searches, being the for-
mer which is characteristic of four rudimen-
tary ideas connected to MDWE. By conducting
a number of initial searches on chosen electronic
data sources, the concluding string was created.
ACM Digital Library, IEEEXplorer, Science Di-
rect, Springer Link, Scopus, Engineering Village,
ProQuest, and Google scholar, as per Table 3,

112 Karzan Wakil, Dayang N. A. Jawawi

Table 1. Search String Used for Automatic Searches

Concept Alternative Used

Model Driven Web Engineering (model driven OR model-driven OR model-driven development OR
MDD OR MD OR Modeling OR meta model OR meta-model OR
model transformation) AND (web engineering OR web engineering
methods OR web based OR web application)

Table 2. Overview of publication forums for selected studies

Sources Name No.

Journals

Journal of Web Engineering 7
International Journal of Web Engineering and Technology 3
International Journal of Information Technology and Web Engineering 2
ACM Transactions on Internet Technology journal 3
international journal of web information system 5
Global Journal on Technology 1

Conferences

International conferences web engineering 58
International Conference web information system engineering 8
International Conference On Web Information Systems And Technologies (WEBIST) 14
International World Wide Web Conferences 14
International Conference Model-Driven Engineering Languages and Systems 3
The Unified Modelling Language Conference 8
Proceedings edition of the Educators’ Symposium 3
International Conference on Information Integration and Web-based Applications
Services 14

International Conference on Software and Data Technologies 7
Hawaii International Conference on System Sciences (HICSS) 5
Symposium on User Interface Software and Technology (UIST) 1
IEEE International Symposium on Web Systems Evolution 4
International Journal of Computer Information Systems and Industrial Management
Applications 1

Workshops Model Driven Web engineering workshop 69
international workshop Model-Driven Security 1

were the primary digital sources that were uti-
lized to carry out automatic searches.

The string provided in Table 1, utilized to
structure an accordingly equivalent string explicit
to each source based on the point that since the
tools furnished by different sources, including the
precise syntax of search strings to be used differ
between each source. For the application of the
search string for safeguarding uniformity, a du-
plicate set of metadata values (i.e. title, abstract
and keywords) covering all sources was chosen.

3.3. Selection of Primary Studies

As mentioned earlier, we utilized an amalgama-
tion of manual and automatic searches. The sys-

tem of choosing chief studies is highlighted in
Figure 2. To ascertain a preliminary set of pub-
lications, we started by conducting a number
of investigative searches on digital libraries pro-
vided earlier. In addition, we utilized six pre-
viously known papers [11, 21, 234, 258, 289] as
the initial point and according to the references
and citing publications. As a result, this step
produced 14 publications [1, 4, 15, 34, 35, 38, 46,
56, 67, 71, 139, 204, 245, 253]. To aid us in as-
certaining certain journals and meeting events
pertinent to our study; we utilized this prelimi-
nary set of publications. Hence, since they were
acknowledged to be famous among web engi-
neering investigators and publications associated
with our study and probably were to be located

Model Driven Web Engineering: A Systematic Mapping Study 113

7

We discovered 253 publications, six from earlier known papers that very relevant papers in this area also any

person can find it easily, 14 from references of six papers, 233 from journals, conferences and workshops through the

manual step in total as shown in Fig.2.

Fig 2: Study Selection Process

Utilizing the search engines of electronic data sources i.e. IEEEXplore, Science Direct, ACM Digital Library, and

Springer Link, we conducted automatic searches in the following phase. The search string provided in Table 1was

utilized by us. Table 4 represents a general view of outcomes taken from the manual and automatic searches. In

addition, we performed the search string to Google Scholar. As a result, as shown in Table 3, we acquired additional

significant studies, and the overall number of studies is 1822.

Table 3: Digital Libraries Used in Automatic Search

Library No.

ACM Digital Library 77

IEEE Xplorer 646

Science Direct 72

Springer Link 347

Scopus 115

Engineering Village 214

Google scholar 120

ProQuest 231

Total 1822

Eventually, we discovered 2075 papers: 253 from manuals, 1822 from the automatic search after merging manual

search and automatic search.

After conducting manual and automatic searches, we did not include the identical publications. By matching

results acquired in this step, we discovered 315 papers identical in nature. Hence, the remaining papers total 1760.

Previously known

publications

Determine initial

set of publications

Screen titles from

relevant journals and

Conference proceeding

Perform automatic

search, include unique

publication only

Read abstract,

Introduction and

Conclusion section
Duplicate publication

Add 6 Add 14 Add 233 Add 1822

Remove315

Relevant Study to

mapping study

Apply the

inclusion/exclusion

criteria

 Result 289

N=6 N=20 N=253 N=2075

N=1760 N=289 N=1760

Remove1471

1760

N=289

Figure 2. Study Selection Process

there as highlighted in Table 2, we made up
our minds to manually search for transactions
on Model Driven in Web Development, events of
the annual conference models and metamodels,
events of the transformation model conference
and MDWE workshop. We acquired additional
significant studies by screening titles in these ar-
eas, and the overall number of studies was 233.
For the purposes of obtaining a general view of
the area and to demarcate initial classification
plans, these publications were screened.

We discovered 253 publications, six from pre-
vious known papers that very relevant papers in
this area also any person can find it easily, 14
from references of six papers, 233 from journals,
conferences and workshops through the manual
step in total as shown in Figure 2.

Utilizing the search engines of electronic data
sources i.e. IEEEXplore, Science Direct, ACM
Digital Library, and Springer Link, we conducted
automatic searches in the following phase. The
search string provided in Table 1 was utilized
by us. Table 4 represents a general view of
outcomes taken from the manual and auto-
matic searches. In addition, we performed the
search string to Google Scholar. As a result, as
shown in Table 3, we acquired additional signif-
icant studies, and the overall number of studies
is 1822.

Eventually, we discovered 2075 papers: 253
from manuals, 1822 from the automatic search
after merging manual search and automatic
search.

Table 3. Digital Libraries Used
in Automatic Search

Library No.

ACM Digital Library 77
IEEE Xplorer 646
Science Direct 72
Springer Link 347
Scopus 115
Engineering Village 214
Google scholar 120
ProQuest 231
Total 1822

After conducting manual and automatic
searches, we did not include the duplicate pub-
lications. By matching results acquired in this
step, we discovered 315 papers were duplicated.
Hence, the remaining papers total 1760.

To resolve about its inclusion or exclusion,
the authors took into account the Abstract, Key-
words, Introduction and Conclusion of each of
these 1760 studies acknowledged to this stage,
for the second time. Because of their shortfall
in significance or fulfilling one of the other ex-
clusion conditions, a total of 1471 studies were
not included either. Based on our selection cri-
teria, which are utilized for the mapping study,
we discovered that the the remaining number of
papers that were ready for systematic mapping
is 289 papers. A general view of outcomes ac-
quired from manual and automatic searches is
presented in Table 4.

114 Karzan Wakil, Dayang N. A. Jawawi

Table 4. Presents Overview of Results Obtained from Manual and Automatic Searches

Sources Study re-
trieved Duplicate Exclusion Inclusion Ready to

mapping

Manual Search:

315 1471 289 289

Previously known publications 6
Determine initial set of publications 14
Journals, Conferences and Workshops 233
Online Search:
ACM Digital Library 77
IEEE Xplorer 646
Science Direct 72
Springer Link 347
Scopus Link 115
Engineering Village Link 214
Google scholar Link 118
ProQuest Link 231

Total 2075 1760 289 289 289

A listing of all criteria on the foundation of
which studies were included or excluded is given
below.
– Inclusion: We highlight some points to inclu-

sion of the papers that answer our research
questions.
– Studies that clearly present an MDWE,

demarcating new structures into UML or
by utilizing its extension mechanisms.

– Papers that demonstrate a distinctive an-
swer to certain metamodeling or model
transformation problem, or MDD, or
MDA.

– Papers that create a current MDWE in
practice and assess it.

– Studies that suggest methods to mapping
MDWE.

– Studies that merged the model driven in
web application’s scope.

– Papers that suggest rudimentary outlines
such as typical case studies for demon-
stration or substantiation of MDWE.

– Exclusion: We highlight some points to ex-
clude the papers that do not answer our re-
search questions.
– Based on abstract, papers which men-

tioned MDWE. This was needed because
in spite of the studies indicating MDWE
in their introductory sentences as a chief
concept, we found that these studies fell
short of highlighting it. Other concepts

such as MDD, MDA and MDSD were also
subjected to the same criterion.

– Papers that address only recommenda-
tions, guidelines or principles, rather than
highlighting a useful approach to MDWE.

– Initial papers for books.
– Editorials, keynotes, tutorial outlines,

tool demonstrations and panel delibera-
tions, books, technical reports and other
non-peer-reviewed publications.

– Identical reports of the same study dis-
covered in various sources.

– Papers from industrial meetings, posters,
and non-English publications.

– Papers unable to solve our research ques-
tions.

A general view of studies acquired by way
of manual and automatic searches is pre-
sented in Table 4. The number of studies
that were chosen in accordance to the inclu-
sion criteria highlighted in Figure 2 is shown
as well.

3.4. Defining a Classification Scheme

The classification schemes suggested by Petersen
et al. [29] were utilized by us (Fig. 3), and we
classified the publications into categories from
three viewpoints: (1) focus area, (2) type of
contribution and (3) research type. But, these
categories were altered to match the details

Model Driven Web Engineering: A Systematic Mapping Study 115

9

Table 4: Presents Overview of Results Obtained from Manual and Automatic Searches

Sources
Study

retrieved
Duplicate Exclusion Inclusion

Ready to

mapping

Previously known publications 6

305 1471 299
299

Determine initial set of publications 17

Manual
233

Journals, Conferences, and Workshops

Online

ACM Digital Library 77

IEEE Xplorer 646

Science Direct 72

Springer Link 347

Scopus 115

Engineering Village 214

Google scholar 118

ProQuest 231

Total 2075 1770 299 299

General view of studies acquired by way of manual and automatic searches is presented in Table 4. The number of

studies that were chosen in accordance to the inclusion criteria highlighted in Fig. 2 is shown as well.

3.4. Defining a Classification Scheme

The classification schemes suggested by Petersen et al. [29] were utilized by us, and we classified the publications

into categories from three viewpoints: (1) focus area, (2) type of contribution and (3) research type. But, these

categories were altered to details of our mapping study. We utilized an iterative strategy while categorizing and

mapping the studies into classification schemes. The concluded classification schemes are shown in Section 4.

Fig. 3: Building Classification Scheme [29]

Techniques to lessen the time required in creating a classification scheme and making sure that the scheme

considers the current studies into consideration is key wording. Key wording is completed in two steps. In the

beginning, the reviewers go through abridgments and search for keywords and ideas that showcase the input paper. In

the process, the reviewer furthermore as certain the framework of the research. Following this, a comprehensive grasp

Abstract Keywording
Classification

Scheme

Update

Article

Sort Article into

Scheme

Systematic

Map

Figure 3. Building Classification Scheme [29]

of our mapping study. We utilized an itera-
tive strategy while categorizing and mapping
the studies into classification schemes. The con-
cluded classification schemes are shown in Sec-
tion 4.

Techniques to lessen the time required in
creating a classification scheme and making
sure that the scheme takes the current studies
into consideration is key wording. Key word-
ing is completed in two steps. At the begin-
ning, the reviewers go through abridgements
and search for keywords and ideas that show-
case the input paper. In the process, the re-
viewer confirms the framework of the research.
Following this, a comprehensive grasp about
the nature and input into research is cre-
ated through a set of keywords from vari-
ous papers merged together. This aids the
reviewers in demarcating a set of categories
that is characteristic of the core population.
In addition, reviewers can choose to study
the opening or closing segments of the paper
when abridgments are found to be of terri-
ble quality to permit important keywords to
be selected. When an absolute set of key-
words has been selected, they can be gathered
and utilized to create the categories for the
map [29].

3.5. Mapping of Studies

As demarcated in Section 4, the real mapping
was undertaken by mapping each involved study
to a specific intersection set in the classification
schemes. Section 5 shows the resultant mapping.

4. Classification Schemes

As deliberated earlier in Section 3, publications
are categorized from three diverse approaches:
focus scope, contribution and research type as
shown in Figures 4, 7 and 8.

4.1. Focus Area

Chosen studies were separated into five research
focus scopes based on specific research subjects,
they addressed based on a broader outlook. Iden-
tifying these research focus areas was achieved
through the key wording method shown in [29].
The eight categories of research focus areas are
concisely described below and as well as in Fig-
ure 4.
Web Applicability: This category includes
studies that present software applications that
run in a web browser and Rich Internet appli-
cations (RIA). Furthermore it presents articles
when related to the Web Information System
(WIS), Search engine, Semantic web and cloud
application. Furthermore, represent any articles
that are related to MDWE with web applica-
tions.
Testing and Quality: This category reflects
papers that present web system qualities, such
as QoS, testing web software and web security.
It also shows the papers that are related to the
quality of websites.
Service and Oriented: One of the most popu-
lar fields in web software is web service. This cat-
egory includes studies that present web services
with Model-driven web services or partially re-

116 Karzan Wakil, Dayang N. A. Jawawi

lated to MDWE ones, such as web services with
UML, Metamodel, and workflow in the web do-
main. It also represents studies related to Service
Oriented Architecture (SOA) with Model Driven
in the web engineering.
Requirements and Design: Requirements
and design are the software engineering steps;
this category presents studies that are related
to UML design and some steps in the design
process; also, report studies that are related to
functional and non-functional requirements.
WebEconomics: This Category presents stud-
ies of software economics; moreover it includes
articles focused on e-commerce, e-business, social
web and social mashup websites.
Modeling and Notation: This category in-
cludes studies that present a modeling and a no-
tation on its own, or in some way, contribute
to the modeling process which uses some exist-
ing notation. This category reflects papers in the
fields: Metamodels (presentation model, naviga-
tion model and user interface), model transfor-
mation (CIM, PIM models), code generation and
adaptively, or other studies with the same con-
cept as MDWE.
Methodologies and Development Process:
While some studies focused on the methodolo-
gies or web development process, this category
reflects papers that study the web engineering
methodologies or the concepts of methodologies.
On the other hand, it represents papers that fo-
cus on the web development process such a busi-
ness process or an agile process .
Web Management: Studies present a novel
method of weaving models, or present some so-
lutions related to management of the model for
websites. In the future, they will include more
papers that work on Content Management Sys-
tem (CMS) or data management in the websites.

The following figure (Fig. 4) shows the topics
of focus areas for MDWE with the percentage
value of each of them . In this classification of
finding topics, we use the SWEBOK guideline
and the guide call paper at the workshop of the
model driven web engineering [30,31].

Figure 4 shows the classification 289 papers
of MDWE for eight topics of research focus; we
found most of the papers in Web Applicability

Figure 4. Distribution of Research Focus

(31%), followed by modeling and notation (19%)
and service & oriented (18%). However, some
categories were very important in software de-
sign, but we could not find more of them, such as:
Requirements & Design (11%), Testing & qual-
ity (8%) whereas development processes covered
only (6%) and some categories have few publica-
tions, such as Web management (4%), and Web
Economics (3%). However, we classified our re-
search focus on eight topics, but it was not easy
to select the research focus because the eight top-
ics were very general; so we classified each topic
into several subtopics by using SWEBOK and
MDWE workshop guides [30, 31], as shown in
Figure 5.

Figure 5 classifies 8 topics of research fo-
cus into 26 subtopics: (1) Web applicability
subtopics (Web Application, RIA, Semantic
Web, WIS, Search Engine, and Cloud Applica-
tion), (2) Testing & Quality has three subtopics
(Security, QoS, Testing), (3) Service & Ori-
ented that has only two subtopics (Web Ser-
vice and SOA), (4) Requirements & Design
subtopics are (Functional & non-functional re-
quirements, UML &Design), (5) Web Economics
subtopics (business, social web, evolution) (6)
Modeling & Notation subtopics (Model trans-
formation, metamodel, adaptivity, code genera-
tion), (7) Methodologies & Development Process
subtopics (Methodology, agile, Development Pro-
cess), (8) Management sub topics (CMS, Weav-
ing, data-intensive). Figure 6 shows the 26 sub

Model Driven Web Engineering: A Systematic Mapping Study 117

Figure 5. Classification of the Research Related to MDWE

topics with a number of publications and refer-
ences.

Figure 6 explains the number of publications
per subtopics. The figure shows the majority of
publications in Web Applications (15.9%), Web
Services (13.5%),Model Transformations (8.7%),
minor publications in Cloud Application (0.3%),
Evolution (0.3%), and Data-insensitive (0.3%).
Other subtopics (between 0.7% to 6.6%) on the
other side of this figure represent the reference
of publications for e.g. RIA has 19 publications
where the references are [77–95], CMS has 9 pub-
lications where the references are [304–312], but
CloudApplication has only one publicationwhere
the reference is [118], and so on.

4.2. Contribution Type

The contribution type is divided into five cate-
gories (see Fig. 7) described below:
Metric: The suggestion or application of met-
rics to effectiveness of MDWE is emphasized
through this contribution.
Tool: In the design of a prototype or a device
which can be assimilated with current outlines is
based on contributions that target on supplying
tool support for MDWE.
Method: Modeling, approaches, model changes
and model structure, which are provided explic-
itly through contributions.

Model Based on papers that theoretically de-
liberate or create contrasts, investigate associa-
tions, seek challenges, or create classifications,
etc.
Process: The papers contribute to the process
which is characterized through papers that ex-
plain the MDWE and furnish a depiction on
their assimilation in the general software devel-
opment process. Furthermore, certain specific is-
sues which are settled through these contribu-
tions are associated with MDWE.

Figure 7 shows major publications in the con-
tribution typewhich are are related to theMethod
(33%) which minor in Metric (2%), between mi-
nor and major there is Model (24%), Process
(23%), and Tool (18%).

4.3. Research Type

The research strategy utilized in the main study
is reflected through research type. For the clas-
sification of research types (RQ3), we have uti-
lized a scheme suggested by Wieringa et al. [32].
A concise depiction of research kinds are as fol-
lows (see Fig. 8):
Evaluation Research: Comparision with val-
idation research, evaluation research focuses on
analyzing the answer which has been essentially
applied by now. It examines the practical appli-
cation of the solution.

118 Karzan Wakil, Dayang N. A. Jawawi

13

Fig. 6: Number of Papers per Research Topic and References

The above figure (Fig.6) explains the number of publications per subtopics. The figure shows the majority of

publications in Web Applications (15.9%), Web Services (13.5%), Model Transformations (8.7%), minor

publications in Cloud Application (0.3%), Evolution (0.3%), and Data-insensitive (0.3%). Other subtopics (between

0.7% to 6.6%) on the other side of this figure represents the reference of publication for e.g. RIA has 19 publications

where the references are [77-95], CMS has 9 publications where the references are [304-312], but Cloud Application

has only one publication where the reference is [118], and so on.

1(0.3%)

2 (0.7%)

9 (3.1%)

4 (1.4%)

7(2.4%)

6(2.1%)

6(2.1%)

9(3.1%)

16 (5.5%)

25 (8.7%)

1 (0.3%)

2(0.7%)

5(1.7%)

14 (4.8)

18 (6.2%)

13 (4.5%)

39 (13.5%)

6 (2.1%)

7 (2.4%)

11(3.8%)

1(0.3%)

2 (0.7%)

3 (1%)

17 (5.9%)

19 (6.6%)

46 (15.9%)

0 10 20 30 40

data-intensive

weaving

CMS

process Development

agile

methodology

code generation

adaptivity

metamodel

model transformation

evolution

social web

ebusiniss

UML & Design

functional & non-functional

SOA

Web Service

testing

QoS

Security

cloud application

search engine

WIS

Semantic web

RIA

web applcation

W
e

b
 A

p
p

li
ca

b
il
it

y
T

e
st

in
g

 &
 Q

u
a

li
ty

S
e

rv
ic

e

&
n

O
ri

e
n

te
d

R
e

q
u

ir
e

m
e

n
ts

&
D

e
sg

in
W

e
b

E
co

n
o

m
ic

s

M
o

d
e

li
n

g
 &

N
o

ta
ti

o
n

M
e

th
o

d
o

lo
g

ie
s

&
 D

e
v

e
lo

p
m

e
n

t

P
ro

cc
e

ss

W
e

b

M
a

n
a

g
e

m
e

n
t

[4, 11, 33-76]

[77-95]

[96-112]

[113-115]

[116-117]

[118]

[119-129]

[130-136]

[137-141]

[142-180]

[181-193]

[15, 194-211]

[212-225]

[226-230]

[231-232]

[233]

[1, 234-257]

[14, 258-272]

[273-281]

[282-287]

[2,21,288,290-292]

[292-298]

[299-302]

[303-311]

[312-313]

[314]

Figure 6. Number of Papers per Research Topic and References

Experience Paper: The personal experiences
of the author from a single or more real life
projects are reported through an experience pa-
per. It normally explains what was achieved in
the project and also how it was accomplished.
Opinion Paper: The author’s own ideas on
the aptness or inaptness of a certain method or
instrument are reported through these papers.
Likewise, on the basis on explanations how cer-
tain methods or instruments should have been
developed etc., these papers are sometimes used
to share personal opinion.
Philosophical Paper: To observe things that
are already present in a novel way through an ar-

rangement presented via theoretical suggestions.
However, it does not accurately overcome a spe-
cific issue. Taxonomies, theoretical outlines, etc.
will be maybe added to theoretical suggestions.
Solution Proposal: By providing either an in-
novative answer or a significant extension of
an existing technique, a solution proposal over-
comes a problem. In addition, its advantages are
highlighted by either a case in point or in-depth
reasoning.
Validation Research: The investigation of the
solution proposal that has not been essentially
put into use is the chief reason for validation
research. By way of systematic manner, valida-

Model Driven Web Engineering: A Systematic Mapping Study 119

Figure 7. Distribution of Contribution Type Figure 8. Distribution of Research Type

tion research is carried out and may pose any
of these: experiments, prototypes, simulations,
mathematical analysis, etc.

Chief and minor publications in the research
type are Validation Research (24%) and Opin-
ion Papers (7%) respectively; other publications
are divided into Solution Proposal (20%), Philo-
sophical Paper (19%), Experience Paper (17%),
and Evaluation Research (13%).

4.4. Scheme Mapping Study

In this study, we have 289 papers that are ready
for systematic mapping, after the extraction of
papers to form categories of the Research Fo-
cus (Fig. 4), Contribution Type (Fig. 7), and
Research Type (Fig. 8); we designed a mapping
study with a number of publications, as shown
in Figure 9.

The Map (Fig. 9) shows the classification
mapping study of 289 papers; these papers show
the number of applications with a focus on re-
search type and contribution type. We will dis-
cuss this in Section 5. For more information
about our papers, we designed a bar chart of
publications per year as shown in Figure 10.

Figure 10 shows 289 papers per year be-
tween 2000 and 2014; the result of a bar chart
is the publication of continual MDWE growth .
In 2000, only one paper was found but in 2013,
there were 29 papers, with most publications be-
tween 2007 and 2013. However, the result for

2013 was such because probably, our search in
January 2014 found some unpublished papers.
Hence, these results show this area is a new and
active area, which means that in the last decade
the researchers focused on this area in publica-
tions.

5. Mapping and Discussion of
Research Questions

With regards to research type and contribution
type, a map covering eight current research tar-
get scopes within the setting of MDWE was
created in order to provide an overview of the
field (see Fig. 9). The framework of the focus of
the current investigation, together with a sug-
gestion of investigative divisions in the area, is
provided on the map. Most of the research pa-
pers are particularly devoted to furnishing model
driven development, and clarifying the related
processes as shown through mapping outcomes.
A higher degree of investigation has been under-
taken regarding the structure of web engineering
methods, model driven development and model
driven architecture, within the scope of web de-
velopment. However, we highlight our findings in
two divergent dimensions to the extent to which
analysis of MDWE subjects in current research is
concerned: (1) main subjects in the area together
with the magnitude of their coverage and con-
tribution types (RQ1) and research type (RQ3),

120 Karzan Wakil, Dayang N. A. Jawawi

Figure 9. Map of Research Focus on MDWE

and (2) forums utilized for publishing the asso-
ciated research (RQ2).

The first dimension of our results, including
the major topics along with specifications of re-
search types, has been covered in the Sections
5.1–5.8. We have organized each subsection in
a way that briefly describes the studies selected
for each topic, while highlighting the extent and
nature of research. Furthermore, it identifies the
types of contribution made by each selected
study. The publications in this area can be di-
vided into eight major focus areas (see Fig. 4),
including Web Applicability, Service and Ori-
entation, Modeling and Notation, Requirements
and Design, Testing and quality, methodologies
and process, management and Economics. Fig-
ure 5 also shows the major topics addressed

by the existing research, divided into related
subtopics where possible. Figure 6 shows a sum-
mary of groups of papers identified per research
subtopic.

An overview of the volume of research se-
lected by major research focus areas is shown
in Figure 4. It shows that most publications
are covered by Web Applicability, at 31%, fol-
lowed by modeling and notation at19% and
web services at 18%. Another level is software
quality, which has a good coverage rate in the
publications, but 11% of publications cover re-
quirements and design, while 8% of publications
cover software testing and quality, and 6% cover
methodologies and processes. A very small num-
ber of publications cover management (4%) and
economics (3%). Figure 7 shows the contribution

Model Driven Web Engineering: A Systematic Mapping Study 121

1 0
2

4

10

27

18

33 34

41

26

32 32

29

0

5

10

15

20

25

30

35

40

45

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Figure 10. Publication per Years

Table 5. Research and contribution types presented by 88 papers on Web applicability

Contribution Type Research Type
Process Method Model Tool Metric

Evaluation Research [41,48,76] [47,48,103,117] [47,53,85] [103] –

Experience Papers [40,55,82] [33,40,61,66,92,
100]

[11,39,57,90,92] [33,57,59,61,
71,72,105]

–

Opinion Papers [93,113] [52,83,93] [69] [82] –

Philosophical Paper
[4, 42,43,45,46,
79,80,87–89,99,
102,106,118]

[35,45,95,96,
99,110,115]

[4, 56,65,80,88,
89,91,98,109,
115]

[4, 43,56,67] [89]

Solution Proposal [58,75,84,97] [36,64,78,101] [58,64,86] [97,104,116] –

Validation Research [50,73] [34,38,44,49,
50,62,63,68,70,
74,108,111,112]

[60,94,107] [37,38,51,54,
63,77,107,114]

–

type of publications, where 33% contribute to
method, but the model, process and tool, have
near percentages, which are 24%, 23% and 18%
respectively. A small percentage of publications
returned to metrics, specifically 2% of publica-
tions. Figure 8 shows that, based on research
type, only 7% of publications reported opin-
ions, but 24% reported validation research, 19%
reported philosophical content, 17% reported
real-life experiences, and 13% reported evalua-
tion research. Furthermore, Figure 10 shows the
bar chart of publications per year, but with most

publications released in 2009 starting with 2005
it is still an active field for publication.

5.1. Web Applicability

In this section, we briefly discuss different stud-
ies related to Web Applicability. Table 5 lists
the papers that focus on this topic. This is an
area where most research effort is spent. Also
in this section we discuss the sub-topics which
consist of web applications, Rich Internet appli-

122 Karzan Wakil, Dayang N. A. Jawawi

cations, semantic web, search engine, and cloud
computing.

In the MDWE web applications there is an
application program that is stored on a remote
server and delivered over the Internet through
a browser interface that is driven by software
engineering methods. With the publications’
growth in this field, Cheung [37] developed a web
application design framework through a tool and
in [55] used a model driven process for the de-
velopment of web applications.

Rich Internet applications (RIAs) offer rich,
engaging experience that improves user satisfac-
tion and increases productivity. Using the broad
reach of the Internet, RIAs can be deployed
across browsers and desktops. In [80], RIA was
defined as a new approach and was developed
through model driven architecture, while [86]
presents a RIA metamodel to deal with the new
technological challenges that have arisen with
Web 2.0 development [86].

Another type of web application is the Se-
mantic web that is represented in [96–112],
web information system that is represented in
[113–115] and search engine that is represented
in [116, 117], while a new field is clouding, as
shown in [118]. In this paper Kumar et.al. used
the Model Driven Approach for Developing
Cloud Application. This paper was published
in 2013.

5.2. Testing and Quality

This category includes papers related to Model
Driven, with software testing, quality of ser-
vice and security. Escott, E. [141] focused on
Model Driven in the development of testing
web applications, Ortiz, G. in [134] presents
a model-based approach to the implementa-
tion of QoS monitors, by describing them
as platform-independent models. On the other
hand, Nakamura, Y. [123] describes a tooling
framework to generate Web services security
configurations, using a model driven architecture
(MDA) as shown in Table 6.

5.3. Services and Oriented

One of the most popular fields in MDWE are
web services, usually with some combination
of programming and data, and possible inclu-
sion of human resources as well. Table 7 shows
the papers related to web services and Ser-
vice Oriented Architecture (SOA), for exam-
ple, Achilleas A. et al. [151]. They propose
a Model-Driven Web Service oriented frame-
work that combines MDE with Web Services, to
automate the development of platform-specific
web-based applications. In another paper, Ba-
johr and Margaria [189] address the high avail-
ability of model-driven SOAs for applications
that are orchestrations of services and are de-
fined by their (behavioral) models.

5.4. Requirements and Design

This category includes papers that explain func-
tional and non-functional requirements that sup-
port Model Driven in the web domain, and also
papers that focus on the UML design in web
domains. Table 8 classifies requirements and de-
sign publications. Aguilar et al. [197] prepared
an algorithm that has been defined in order
to analyze dependencies among functional and
non-functional requirements, and Guzman et
al. [222] showed Web 2.0 patterns requirements
in MDWE.

5.5. Web Economics

Software engineering economics is about mak-
ing decisions related to software engineering in
a business context. The success of a software
product, service and solution depends on good
business management. Yet, in many companies
and organizations, software business relation-
ships to software development and engineering
remain vague. Table 9 has all the publications
that were founded on MDWE. Guotao and Du
[227] implemented e-commerce on the web ap-
plication.

Model Driven Web Engineering: A Systematic Mapping Study 123

Table 6. Research and Contribution Types Presented by 23 Papers on Software Testing and Quality

Contribution Type Research Type
Process Method Model Tool Metric

Evaluation Research [121,135] [121,126,130,135] [134,136] [126,132,134–136] [135]
Experience Papers – [139] – [123] –
Opinion Papers – [122] – – –
Philosophical Paper – [128,131,140,141] [128,131] [131] [141]
Solution Proposal – [120,125] [120] – –
Validation Research [137,138] [127,129,133,138] [124,137] [119] –

Table 7. Research and Contribution Types Presented by 52 Papers on Services and Oriented

Contribution Type Research Type
Process Method Model Tool Metric

Evaluation Research [144,182,187] [153,187] [155,181] [144,182] –
Experience Papers – [160,176,189] [189] – –
Opinion Papers [167] [171] [156,167] – –

Philosophical Paper [152, 159, 165,
193]

[142, 159, 185,
188,190,193]

[161, 164, 165,
174,180]

[147,188] –

Solution Proposal

[145, 177, 178,
183,186]

[146, 150, 157,
158, 169, 170,
172, 173, 175,
177]

[150,170,175,
178,186,191]

[145,178] –

Validation Research [148, 166, 184,
192]

[143,149] [163, 166, 168,
179,192]

[18,151,154–
162]

–

Table 8. Research and Contribution Types Presented by 33 Papers on Requirements and Design

Contribution Type Research Type
Process Method Model Tool Metric

Evaluation Research [195, 198, 200,
201,212]

[195, 200, 206,
211]

[206,211,218] – [201,209,210]

Experience Papers [194, 199, 208,
222] [222,225] – [202,204,208] –

Opinion Papers [197] – – – –
Philosophical Paper – [205,216,224] [203,220] – –
Solution Proposal [213,214] [217,219,221] [221,223] – –
Validation Research [207] [15,196,215] [207] [196] –

Table 9. Research and Contribution Types Presented by 8 Papers on Economics

Contribution Type Research Type
Process Method Model Tool Metric

Evaluation Research – – – – –
Experience Papers – [230] – – –
Opinion Papers – – – – –
Philosophical Paper – [232] [232] – –
Solution Proposal – [231] [226,233] [231] –
Validation Research [227] – [227,229] [228] –

124 Karzan Wakil, Dayang N. A. Jawawi

5.6. Modeling and Notations

In this section, we briefly discuss different studies
related to modeling notations and the associated
notations. Table 4 lists the papers that focus
on this topic. This topic consists of metamod-
els, model transformations, adaptive and code
generation. Jiang et al. [273] propose MAWA,
a method for model-driven development of adap-
tive Web applications. Koch and Kraus [268]
present a first step towards such a common
metamodel by defining first a metamodel for the
UML-based Web Engineering (UWE) approach.
[235, 236, 257] are papers that focused on model
transformation, but [282–287] are papers that fo-
cused on code generation in MDWE, as shown
in Table 10.

5.7. Methodologies and Process

This topic includes papers related to web en-
gineering methodologies and processing, a list
of which can be seen in Table 11. Andrés
and Duitama [21] present some web engineer-
ing methodologies. In Rivero et al. [296] pro-
posed an agile approach to MDWE method-
ologies (called Mockup-Driven Development, or
MockupDD) by inverting the development pro-
cess. This can be seen in Table 11.

5.8. Web Management

The last topic under MDWE is management
websites through different models. This topic
covers papers that are related to CMS, weav-
ing and data management in this area. Ta-
ble 12 lists management papers in MDWE. Joao
and Alberto in [306] proposed the creation of
a model-driven approach for the development
of web-applications, based on Content Manage-
ment Systems.

6. Discussion

In this part, based on findings on future ex-
amination, we provide a summary of the legit-
imacy of threats, related to the crucial findings

of this systematic mapping study, and deliberate
regarding certain consequences of these findings.
We also highlight the limitations of this mapping
study that may represent threats to its validity.

In this paper we propose a systematic map-
ping study for MDWE, the primary studies on
MDWE to explore current work, and we iden-
tify needs for future research. A systematic map-
ping study is used for finding the most rele-
vant studies and classification. In this study, we
found 289 papers and classification schemes di-
vided them into classification schemes on the
basis of research focus, contribution type and
research type. The majority of 20% of the pa-
pers were on the solution proposal type of re-
search. The most common areas in MDWE ap-
pear to be: Web Applicability at 31%, Molding
and Notation at 19%, and Services and Oriented
at 18%. The majority of contributions are meth-
ods, at 33%. Moreover, this shows the MDWE
as a wide, new, and active area for publica-
tions. Whilst additional analysis is warranted
within the MDWE scope, in literature compo-
sition mechanisms have been thoroughly dis-
cussed. Furthermore, we have observed that a re-
current recommendation for validation research,
solution proposals and philosophical papers has
been presented through earlier analysis.

6.1. Threats to Legitimacy

The outcomes of a systematic mapping study
may be affected by diverse factors, for exam-
ple, the researchers who conducted the study,
the databases and the search string developed,
as well as the time limits chosen. As it will be
shown in the following paragraphs, when these
threats to legitimacy are taken into account, the
outcomes become more satisfactory and precise.

We conducted a systematic mapping study
and every stage was explicitly defined. The other
investigators were permitted to reprise the map-
ping study, since each step was shown explic-
itly. However, it is probable that certain articles
that were omitted would be counted in, and vice
versa, as a result of choosing articles which have
been conducted by diverse investigators, because
the decision about the exclusion or inclusion of

Model Driven Web Engineering: A Systematic Mapping Study 125

Table 10. Research and Contribution Types Presented by 56 Papers on Modeling and Notations

Contribution Type Research Type
Process Method Model Tool Metric

Evaluation Research [259] – – [259,275] [238]

Experience Papers [14,239,244,285] [254,260,287] [244, 255, 266,
284]

[14,243,249,254,
256,260,287]

–

Opinion Papers – [241,277] [1, 267,270] [270] –
Philosophical Paper [236,257] [250,252,257] [250,252] – –

Solution Proposal [273] [248,258,268,
269,276]

[235,247,268,
269,278,279,
281,286]

[263,279] –

Validation Research
[234,237,246,
265,274,280,
282,283]

[240,242,251,
253,262,271,
272]

[245,246,251,
264,271,280]

[240,253,261,
262,264,282]

–

Table 11. Research and Contribution Types Presented by 17 Papers on Methodologies and Process

Contribution Type Research Type
Process Method Model Tool Metric

Evaluation Research [2] [289] – [289] –
Experience Papers [290,294] [297] [290] [291,294,302] –
Opinion Papers – [21,293,300] – – –
Philosophical Paper [292] [292] – – –
Solution Proposal [295,296] [296] [299] – –
Validation Research [298] [301] [301] [287] –

Table 12. Research and Contribution Types Presented by 12 Papers on Management

Contribution Type Research Type
Process Method Model Tool Metric

Evaluation Research [314] [310] – [309] –
Experience Papers [311] – – [311] –
Opinion Papers – – – – –
Philosophical Paper [306] [303,306,313] [313] – –
Solution Proposal [304,312] [304,305,312] [307] – –
Validation Research – [308] – [308] –

126 Karzan Wakil, Dayang N. A. Jawawi

a specific article is based on the investigators
who conducted the mapping study. Yet, it is
highly improbable that the main conclusions de-
rived from the recognized set of articles would
be altered by these diversities, based on personal
assessments, which is a general categorization of
approaches.

Acquiring a set of significant articles encom-
passing the said research subject was the tar-
get of the conducted mapping study. The out-
come set should be completed as soon as possi-
ble. Based on this motive, we derived the search
string in a systematic fashion. Because of the
number of significant articles discovered utiliz-
ing a search string, not all appropriate words
are used whilst creating a search string. For
instance, the word ‘Model-Driven’ was added
in the search string, and ‘Web Engineering’
was not included in the papers which have
model-driven in software engineering only, in-
cluding model-driven in web engineering. More-
over, some terms, for instance ‘Web Applica-
tion’, are used incongruously in literature. At
times, MDWE is not the only factor in ‘Web Ap-
plication’. In conclusion, a diverse set of final ar-
ticles might have been the outcome of diverse or
added terms utilized in the search string, but this
would only pose a negligible effect on the general
classification obtained, and added articles could
be easily categorized based on the given classifi-
cation.

6.2. General Findings

MDWE, as the main target in modern software
development, is endorsed by results of the sys-
tematic mapping study, as there are many pub-
lications on this subject. As was proven by the
number of new publications, the topic has re-
ceived greater attention in recent years.

The advent of several suggestions, as a result
of recent suggestions in the sphere of MDWE
has focused mainly on the development of web
applications. Nevertheless, there is still a rele-
vant task to be undertaken if we look at the
overall issues related to amalgamating MDWE
into an MDE setting. Models are the main aim
for envisaging an operable outlook of the system

in an MDE framework, and essentially acquiring
working software systemically, in an automated
manner. Therefore, the scope of modeling precise
and comprehensive behaviors of factors requires
more care, along with resolutions to identifica-
tion models so as to amalgamate factors into
this broader context. Up till now, minimal tasks
have been described in the literature (e.g. [21])
that have highlighted methodologies substanti-
ation, but even these substantiation methods
pose a restricted infrastructure to substantiating
methodologies, through execution only. Notwith-
standing the fact that a systematic substantia-
tion system cannot be replaced via verification
undertaken in this manner, it can cause other
issues. For example, it necessitates designers to
be aware of the exact details of advice transfor-
mations, hence leading to usability issues.

6.3. Limitations of Review

It has to be mentioned that this review has cer-
tain restrictions. These restrictions are compara-
ble to those of other systematic reviews. There
is some probability that certain significant ma-
terials were not added to the review, for exam-
ple dissertations, related books or white papers,
and some significant papers might not have been
discovered in the digital databases, by means
of our search and selection protocol. The lat-
ter is more of an issue regarding how investi-
gators write their abridgments, and how digital
databases categorize and locate published work.
The former is a restriction of our review, and
could be highlighted the following works. There
is actually no reason why a keyword search
would not return the entire published significant
material, if abridgments were prudently written
and keywords were inserted. Sometimes, cate-
gorization schemes in the literature are already
present, which can preferably be used again
or enhanced. Nevertheless this seldom happens,
and worst still, a sound categorization scheme
may often not be the case. On top of that, for
the currently published material, a thoroughly
planned categorization scheme might not be the
best option. Slowly developing the categoriza-
tion scheme when running through the abridg-

Model Driven Web Engineering: A Systematic Mapping Study 127

ments of all the papers was the approach taken in
this review. One direct issue with this strategy
is that it might fall short of discovering some
breaks in the field. For instance, in a certain
categorization scheme there could be a missing
category. Had the category been inserted, the
significant breaks would clearly be noticed. In-
vestigators are encouraged to be very conversant
with the scope under assessment, creating the
categorization schemes that diminish the threat
of legitimacy from this restriction.

7. Conclusion and Future Work

A relevant progression in the development of web
software systems that are more maintainable, ex-
tensible and reusable is an outcome of the inves-
tigation in the area of MDWE. We demarcated
some research questions and launched a system-
atic mapping study, in order to acquire an overall
view of the present investigation in this field. To
satisfy the goals of the study, we discovered 289
publications that retained highest significance.

The chosen papers appeared between 2000
and 2014. The findings of this study show that
MDWE is a somewhat underdeveloped area. In
2001, the preliminary relevant contributions to
this area were shown (i.e. [63]). Most papers
come out in workshops and meetings, while some
have come out in journals.

As far as the answer to our first research
question is concerned, the main research topics
identified are: (1) Web Applicability, (2) Service
and Oriented, (3) Modeling and Notation, (4)
Requirements and Design, (5) Testing and qual-
ity, (6) methodologies and process, (7) manage-
ment, and (8) Economics of MDWE. To respond
to our second research question, we have deter-
mined that most research has appeared at con-
ferences (63%) and workshops (32%). Relatively
fewer publications (9%) have appeared in jour-
nals so far. As far as an answer to our third ques-
tion is concerned, most of the research (24%) is
validation research, while 7% are opinion papers,
20% of publications focus on solution proposal,
and 19% of papers are philosophical. 17% of the

papers are experience papers, and 13% are eval-
uation papers.

Finally, the result shows that MDWE is
a wide, new and active area for publication. Also,
some fields need to be improved, and this is
a good area for publication. This paper helps the
web engineering researcher to find weaknesses
and strengths in this area, and to understand
which point or which side of this area needs to
be enhanced. With regards to future work based
on resulting maps in systematic mapping, re-
searchers can make systematic mapping one of
the research focuses, for example modeling and
notation in MDWE, web management, web ap-
plicability, requirements, designs and web ser-
vices in MDWE. Furthermore, the researcher can
utilize the subtopics, including Semantic Web in
MDWE, CMS, social web, and SOA in MDWE.
These can be potential areas for future work.
Furthermore, some ideas in the web domain have
not appeared, or there can be be articles not yet
published, such as those related to Crawling in
MDWE. Also researchers can look for new web
domains to be added to MDWE. There is also
a need for better empirical research, like the use
of application/validation methods used for eval-
uation and validation research. Solutions pro-
posed within the solution proposal need to be
empirically validated, in order to strengthen the
empirical research. Furthermore, researchers can
use another method for classification and evalu-
ation in order to find the best result, for instance
for heuristic evaluations.

References

[1] A. Kraus, A. Knapp, and N. Koch,
“Model-driven generation of web applica-
tions in UWE,” 3rd International Worshop on
Model Drevin Web Engineering (MDWE07,
CEUR-WS), Vol. 261, 2007.

[2] G. Aragón, M.J. Escalona, M. Lang, and J.R.
Hilera, “An analysis of model-driven web en-
gineering methodologies,” International Jour-
nal of Innovative Computing, Information and
Control, 2013.

[3] G. Aragón, M. Escalona, J.R. Hilera,
L. Fernandez-Sanz, and S. Misra, “Applying
model-driven paradigm for the improvement

128 Karzan Wakil, Dayang N. A. Jawawi

of web requirement validation,” Acta Poly-
technica Hungarica, Vol. 9, No. 6, 2012, pp.
211–232.

[4] A. Kraus, “Model driven software engineer-
ing for web applications,” Ph.D. dissertation,
München,Germany, 2007.

[5] M.J. Escalona, J.J. Gutierrez, M. Perez-
Perez, A. Molina, E. Dominguez-Mayo, and
F. Dominguez-Mayo, “Measuring the quality of
model-driven projects with NDT-Quality,” in
Information Systems Development. Springer,
2011, pp. 307–317.

[6] F. Garzotto, P. Paolini, and D. Schwabe,
“HDM-a model-based approach to hypertext
application design,” ACM Transactions on In-
formation Systems (TOIS), Vol. 11, No. 1,
1993, pp. 1–26.

[7] G. Rossi, O. Pastor, D. Schwabe, and
L. Olsina, Web engineering: modelling and im-
plementing web applications. Springer Science
& Business Media, 2007.

[8] M. Lang and C. Barry, “A survey of multimedia
and web development techniques and method-
ology usage,” IEEE Multimedia, Special Issue
on Web Engineering, 2001, pp. 52–60.

[9] M.J. Escalona and N. Koch, “Requirements en-
gineering for web applications-a comparative
study,” J. Web Eng., Vol. 2, No. 3, 2004, pp.
193–212.

[10] M. Escalona, J. Torres, M. Mejías, J. Gutiér-
rez, and D. Villadiego, “The treatment of nav-
igation in web engineering,” Advances in En-
gineering Software, Vol. 38, No. 4, 2007, pp.
267–282.

[11] W. Schwinger, W. Retschitzegger, A. Schauer-
huber, G. Kappel, M. Wimmer, B. Proll, C.C.
Castro, S. Casteleyn, O.D. Troyer, and P. Fra-
ternali, “A survey on web modeling approaches
for ubiquitous web applications,” International
Journal of Web Information Systems, Vol. 4,
No. 3, 2008, pp. 234–305.

[12] S. Murugesan, Y. Deshpande, S. Hansen, and
A. Ginige, “Web engineering: A new discipline
for development of web-based systems,” inWeb
Engineering. Springer, 2001, pp. 3–13.

[13] M. Lang, “Hypermedia systems development:
Do we really need new methods?” in Proceed-
ings of the Informing Science+ IT Education
Conference, Cork, Ireland. Citeseer, 2002, pp.
883–891.

[14] N. Koch, S. Meliá-Beigbeder, N. Moreno-
Vergara, V. Pelechano-Ferragud, F. Sánchez-
Figueroa, and J. Vara-Mesa, “Model-driven
web engineering,” Upgrade-Novática Journal

(English and Spanish), Council of European
Professional Informatics Societies (CEPIS)
IX, Vol. 2, 2008, pp. 40–45.

[15] N. Moreno, J.R. Romero, and A. Vallecillo,
“An overview of model-driven web engineering
and the MDA,” in Web Engineering: Modelling
and Implementing Web Applications. Springer,
2008, pp. 353–382.

[16] B. Kitchenham and S. Charters, “Guidelines
for performing systematic literature reviews
in software engineering,” EBSE, Tech. Rep.
EBSE-2007-01, 2007.

[17] J. Biolchini, P.G. Mian, A.C.N. Cruz, and G.H.
Travassos, “Systematic review in software en-
gineering,” System Engineering and Computer
Science Department COPPE/UFRJ, Technical
Report ES, Vol. 679, No. 05, 2005, p. 45.

[18] Journal of web engineering. Rinton
Press. (2014, May). [Online]. http://www.
rintonpress.com/journals/jwe/index.html

[19] International journal of web engineering.
Scientific & Academic Publishing. (2014,
May). [Online]. http://www.sapub.org/
journal/aimsandscope.aspx?journalid=1095

[20] International conference on web engineering.
Toulouse, France. (2014, May). [Online]. http:
//icwe2014.webengineering.org/

[21] H. Londoño, J. Andrés, and J.F. Duitama,
“Model-driven web engineering methods: a lit-
erature review,” Revista Facultad de Ingeniería
Universidad de Antioquia, No. 63, 2012, pp.
69–81.

[22] E. Mendes, “A systematic review of web engi-
neering research,” in International Symposium
on Empirical Software Engineering. IEEE,
2005, p. 10 pp.

[23] B. Kitchenham, “Procedures for performing
systematic reviews,” Keele, UK, Keele Univer-
sity, Joint Technical Report, 2004.

[24] J.A. Aguilar, I. Garrigos, and J.N. Mazon, “Re-
quirements in web engineering: A systematic
literature review,” Journal of Web Engineer-
ing, 2003.

[25] E. Insfran and A. Fernandez, “A systematic
review of usability evaluation in web develop-
ment,” in Web Information Systems Engineer-
ing WISE 2008 Workshops. Springer, 2008, pp.
81–91.

[26] B.P. Lamancha, M.P. Usaola, and M.P. Velth-
ius, “Software product line testing,” A System-
atic Review. ICSOFT (1), 2009, pp. 23–30.

[27] S. bin Abid, “Resolving traceability issues
of product derivation for software product

Model Driven Web Engineering: A Systematic Mapping Study 129

lines,” International Conference on Software
and Data Technologies, 2009.

[28] T. Dybå, B. Kitchenham, M. Jorgensen et al.,
“Evidence-based software engineering for prac-
titioners,” IEEE Software, Vol. 22, No. 1, 2005,
pp. 58–65.

[29] K. Petersen, R. Feldt, S. Mujtaba, and
M. Mattsson, “Systematic mapping studies in
software engineering,” in 12th International
Conference on Evaluation and Assessment in
Software Engineering, Vol. 17, 2008, p. 1.

[30] P. Bourque and R.E. Fairley, Guide to the soft-
ware engineering body of knowledge-SWEBOK.
IEEE Press, 2014.

[31] D. Pfahl. Software engineering. (2013,
Dec). [Online]. https://courses.cs.ut.ee/
MTAT.03.047/2013_fall/uploads/Main/
SoftwareEngineering.pdf

[32] F.P. Brooks, The mythical man-month: Es-
says on Software Engineering. Addison-Wesley
Reading, MA, 1995.

[33] K. Wakil, A. Safi, D.N. Jawawi et al., “En-
hancement of UWE navigation model: Home-
page development case study,” International
Journal of Software Engineering & Its Appli-
cations, Vol. 8, No. 4, 2014.

[34] P. Freudenstein, M. Nussbaumer, F. Allerding,
and M. Gaedke, “A domain-specific language
for the model-driven construction of advanced
web-based dialogs,” in Proceedings of the 17th
international conference on World Wide Web.
ACM, 2008, pp. 1069–1070.

[35] V. Torres, V. Pelechano, M. Ruiz, and
P. Valderas, “A model driven approach for the
integration of external functionality in web
applications. The travel agency system,” in
Workshop on Model-driven Web Engineering
(MDWE), 2005, pp. 1–11.

[36] N. Moreno and A. Vallecillo, “A model-based
approach for integrating third party systems
with web applications,” in Web Engineering.
Springer, 2005, pp. 441–452.

[37] R. Cheung, “A model-driven framework for
dynamic web application development,” in
Advances in Software Engineering. Springer,
2009, pp. 29–42.

[38] R. de Souza, R. de Barros Souto Maior et al.,
“A model-driven method for the development
of web applications user interaction layer,” in
TASE’08. 2nd IFIP/IEEE International Sym-
posium on Theoretical Aspects of Software En-
gineering. IEEE, 2008, pp. 91–98.

[39] P. Valdera and V. Pelechano, “A survey of re-
quirements specification in model-driven devel-

opment of web applications,” ACM Transac-
tions on the Web, Vol. 5, No. 2, 2011.

[40] D. Tian, J. Wen, Y. Liu, N. Ma, and H. Wei,
“A test-driven web application model based
on layered approach,” in IEEE International
Conference on Information Theory and Infor-
mation Security (ICITIS). IEEE, 2010, pp.
160–163.

[41] A. Fernandez, S. Abrahão, and E. Ins-
fran, “A web usability evaluation process for
model-driven web development,” in Advanced
Information Systems Engineering. Springer,
2011, pp. 108–122.

[42] V. Torres, J. Muñoz, and V. Pelechano, “A
model driven method for the integration of web
applications,” in Third Latin American Web
Congress, LA-WEB. IEEE, 2005, p. 10.

[43] M. Bernardi, G. Di Lucca, and D. Distante, “A
model-driven approach for the fast prototyping
of web applications,” in 13th IEEE Interna-
tional Symposium on Web Systems Evolution
(WSE). IEEE, 2011, pp. 65–74.

[44] A. Martin and A. Cechich, “A model-driven
reengineering approach to web site personaliza-
tion,” in LA-WEB Third Latin American Web
Congress. IEEE, 2005, p. 9 pp.

[45] S.M. Beigbeder and C.C. Castro, “An MDA
approach for the development of web applica-
tions,” in Web Engineering. Springer, 2004, pp.
300–305.

[46] J. Fons, V. Pelechano, O. Pastor, P. Valderas,
and V. Torres, “Applying the OOWS
model-driven approach for developing web
applications. The internet movie database
case study,” in Web Engineering: Modelling
and Implementing Web Applications. Springer,
2008, pp. 65–108.

[47] K. Nguyen and T. Dillon, “Atomic use case as
a concept to support the MDE approach to
web application development,” in Workshop on
Model-driven Web Engineering, 2005, p. 89.

[48] A. Cicchetti, D.D. Ruscio, R. Eramo, F. Mac-
carrone, and A. Pierantonio, beContent: A
model-driven platform for designing and main-
taining web applications. Springer, 2009.

[49] M. Vasko, E. Oberortner, and S. Dustdar, “Col-
laborative modeling of web applications for
various stakeholders,” in Proceedings of the 9th
International Conference on Web Engineering
(ICWE), San Sebastian, Spain, 2009.

[50] A. Langegger, J. Palkoska, and R. Wagner,
“Davinci – A model-driven web engineering
framework,” International Journal of Web In-

130 Karzan Wakil, Dayang N. A. Jawawi

formation Systems, Vol. 2, No. 2, 2006, pp.
119–134.

[51] V. Okanović, D. Donko, and T. Mateljan,
“Frameworks for model-driven development of
web applications,” in Proceedings of the 9th
WSEAS international conference on Data net-
works, communications, computers. World Sci-
entific and Engineering Academy and Society
(WSEAS), 2010, pp. 67–72.

[52] L.D. Marco, F. Ferrucci, C. Gravino, F. Sarro,
S. Abrahao, and J. Gomez, “Functional versus
design measures for model-driven web applica-
tions: A case study in the context of web effort
estimation,” in 3rd International Workshop on
Emerging Trends in Software Metrics (WET-
SoM). IEEE, 2012, pp. 21–27.

[53] Y. Martínez, C. Cachero, M. Matera, S. Abra-
hao, and S. Luján, “Impact of MDE approaches
on the maintainability of web applications: an
experimental evaluation,” in Conceptual Mod-
eling – ER 2011. Springer, 2011, pp. 233–246.

[54] M.L. Bernardi, M. Cimitile, G.A.D. Lucca, and
F.M. Maggi, “M3d: a tool for the model driven
development of web applications,” in Proceed-
ings of the twelfth international workshop on
Web information and data management. ACM,
2012, pp. 73–80.

[55] M. Taleb, A. Seffah, and A. Abran,
“Model-driven architecture for web appli-
cations,” in Human-Computer Interaction.
Interaction Design and Usability. Springer,
2007, pp. 1198–1205.

[56] I. Manolescu, M. Brambilla, S. Ceri, S. Co-
mai, and P. Fraternali, “Model-driven design
and deployment of service-enabled web ap-
plications,” ACM Transactions on Internet
Technology (TOIT), Vol. 5, No. 3, 2005, pp.
439–479.

[57] M. Matera, A. Maurino, S. Ceri, and P. Fra-
ternali, “Model-driven design of collaborative
web applications,” Software: Practice and Ex-
perience, Vol. 33, No. 8, 2003, pp. 701–732.

[58] M. Brambilla, S. Ceri, P. Fraternali, R. Acer-
bis, and A. Bongio, “Model-driven design of
service-enabled web applications,” in Proceed-
ings of the 2005 ACM SIGMOD international
conference on Management of data. ACM,
2005, pp. 851–856.

[59] A. Bozzon, M. Brambilla, and P. Fraternali,
Model-Driven Development of Audio-Visual
Web Search Applications: The PHAROS
Demonstration. Springer, 2009.

[60] G.M. Kapitsaki, D.A. Kateros, C.A. Pappas,
N.D. Tselikas, and I.S. Venieris, “Model-driven

development of composite web applications,”
in Proceedings of the 10th International
Conference on Information Integration and
Web-based Applications & Services. ACM,
2008, pp. 399–402.

[61] H. Tai, K. Mitsui, T. Nerome, M. Abe, K. Ono,
and M. Hori, “Model-driven development of
large-scale web applications,” IBM Journal of
Research and Development, Vol. 48, No. 5.6,
2004, pp. 797–809.

[62] D. Distante, P. Pedone, G. Rossi, and G. Can-
fora, “Model-driven development of web ap-
plications with UWA, MVC and JavaServer
faces,” in Web Engineering. Springer, 2007, pp.
457–472.

[63] P. Fraternali and P. Paolini, “Model-driven de-
velopment of web applications: the AutoWeb
system,” ACM Transactions on Information
Systems (TOIS), Vol. 18, No. 4, 2000, pp.
323–382.

[64] R. Quintero, L. Zepeda, and L. Vega,
“Model-driven software development of appli-
cations based on web services,” International
Journal of Web and Grid Services, Vol. 6,
No. 3, 2010, pp. 313–330.

[65] F. Bolis, A. Gargantini, M. Guarnieri, E. Ma-
gri, and L. Musto, “Model-driven testing for
web applications using abstract state ma-
chines,” in Current Trends in Web Engineer-
ing. Springer, 2012, pp. 71–78.

[66] J. Gómez, “Model-driven web development
with visualwade,” in Web Engineering.
Springer, 2004, pp. 611–612.

[67] D.A. Nunes and D. Schwabe, “Rapid prototyp-
ing of web applications combining domain spe-
cific languages and model driven design,” in
Proceedings of the 6th international conference
on Web engineering. ACM, 2006, pp. 153–160.

[68] A. Cicchetti, D.D. Ruscio, and A.D. Salle,
“Software customization in model driven de-
velopment of web applications,” in Proceedings
of the 2007 ACM symposium on Applied com-
puting. ACM, 2007, pp. 1025–1030.

[69] P. Barna, G.J. Houben, and F. Frasincar,
“Specification of adaptive behavior using a gen-
eral-purpose design methodology for dynamic
web applications,” in Adaptive Hypermedia and
Adaptive Web-Based Systems. Springer, 2004,
pp. 283–286.

[70] Y. Cho, W. Lee, and K. Chong, “The tech-
nique of business model driven analysis and
test design for development of web applica-
tions,” International Journal of Software En-

Model Driven Web Engineering: A Systematic Mapping Study 131

gineering and Knowledge Engineering, Vol. 15,
No. 4, 2005, pp. 587–605.

[71] J. Gómez, A. Bia, and A. Parraga, “Tool
support for model-driven development of
web applications,” in Web Information Sys-
tems Engineering–WISE. Springer, 2005, pp.
721–730.

[72] R. Acerbis, A. Bongio, M. Brambilla, and
S. Butti, “Webratio 5: An eclipse-based case
tool for engineering web applications,” in Web
Engineering. Springer, 2007, pp. 501–505.

[73] J.L. Herrero, P. Carmona, and F. Lucio, “To-
wards a model-driven development of web ap-
plications,” in WEBIST 2013 – Proceedings of
the 9th International Conference on Web In-
formation Systems and Technologies, 2013, pp.
71–76.

[74] R. Luo, X. Peng, Q. Lv, M. Wu, B. Peng,
S. Wang, and M. Guo, “An MDA based model-
ing and implementation for web app,” Journal
of Software, Vol. 8, No. 8, 2013, pp. 1881–1888.

[75] M.L. Bernardi, G.A. Di Lucca, D. Distante,
and M. Cimitile, “Model driven evolution of
web applications,” in 15th IEEE International
Symposium on Web Systems Evolution (WSE).
IEEE, 2013, pp. 45–50.

[76] R. Rodríguez-Echeverría, F. Macías, V.M.
Pavón, J.M. Conejero, and F. Sánchez-
Figueroa, “Model-driven generation of a REST
API from a legacy web application,” in Current
Trends in Web Engineering. Springer, 2013,
pp. 133–147.

[77] F.J. Martinez-Ruiz, J.M. Arteaga, J. Vander-
donckt, J.M. Gonzalez-Calleros, and R. Men-
doza, “A first draft of a model-driven method
for designing graphical user interfaces of rich
internet applications,” in LA-Web’06 Fourth
Latin American Web Congress. IEEE, 2006,
pp. 32–38.

[78] M. Linaje, J.C. Preciado, and F. Sánchez-
Figueroa, “A method for model based design
of rich internet application interactive user in-
terfaces,” in Web Engineering. Springer, 2007,
pp. 226–241.

[79] S. Meliá, J. Gomez, S. Perez, and O. Diaz,
“A model-driven development for GWT-based
rich internet applications with OOH4RIA,” in
ICWE’08 Eighth International Conference on
Web Engineering. IEEE, 2008, pp. 13–23.

[80] Y.C. Huang, C.C. Wu, C.P. Chu et al., “A new
approach for web engineering based on model
driven architecture,” in International Confer-
ence on Management Learning and Business
Technology Education, 2011.

[81] F. Valverde, O. Pastor, P. Valderas, and
V. Pelechano, “A model-driven engineering ap-
proach for defining rich internet applications:
a web 2.0 case study,” Handbook of research on
web, Vol. 2, No. 3.0, 2009, pp. 40–58.

[82] S. Meliá, J.J. Martínez, S. Mira, J.A. Os-
una, and J. Gómez, An Eclipse plug-in for
model-driven development of rich internet ap-
plications. Springer, 2010.

[83] J.C. Preciado, M. Linaje, R. Morales-
Chaparro, F. Sanchez-Figueroa, G. Zhang,
C. Kroiß, and N. Koch, “Designing rich
internet applications combining UWE and
RUX-method,” in Eighth International
Conference on Web Engineering, ICWE’08.
IEEE, 2008, pp. 148–154.

[84] J.M. Hermida, S. Meliá, J.J. Martínez,
A. Montoyo, and J. Gómez, “Developing se-
mantic rich internet applications with the
Sm4RIA extension for OIDE,” in Current
Trends in Web Engineering. Springer, 2012,
pp. 20–25.

[85] P. Fraternali, S. Comai, A. Bozzon, and G.T.
Carughi, “Engineering rich internet applica-
tions with a model-driven approach,” ACM
Transactions on the Web (TWEB), Vol. 4,
No. 2, 2010, p. 7.

[86] F. Valverde and O. Pastor, Facing the
technological challenges of web 2.0: A RIA
model-driven engineering approach. Springer,
2009.

[87] R. Rodríguez-Echeverría, J.M. Cone-
jero, P.J. Clemente, V.M. Pavón, and
F. Sánchez-Figueroa, “Model driven extraction
of the navigational concern of legacy web
applications,” in Current Trends in Web
Engineering. Springer, 2012, pp. 56–70.

[88] F.J. Martinez-Ruiz, J. Vanderdonckt, J.M.
Gonzalez-Calleros, and J.M. Arteaga, “Model
driven engineering of rich internet applications
equipped with zoomable user interfaces,” in
LA-WEB’09 Latin American Web Congress.
IEEE, 2009, pp. 44–51.

[89] R. Paiano, L. Mainetti, and A. Pandurino,
“Model-driven and metrics-driven user expe-
rience re-modeling for rich internet applica-
tions,” in 14th IEEE International Sympo-
sium on Web Systems Evolution (WSE). IEEE,
2012, pp. 61–65.

[90] G. Toffetti Carughi, “Modeling data-intensive
rich internet applications with server push sup-
port,” in Int. workshop Model-Driven Web En-
gineering in conjunction with ICWE, Como
(Italy), 2007.

132 Karzan Wakil, Dayang N. A. Jawawi

[91] N. Koch, M. Pigerl, G. Zhang, and T. Mo-
rozova, Patterns for the Model-based Develop-
ment of RIAs. Springer, 2009.

[92] G. Rossi, M. Urbieta, J. Ginzburg, D. Distante,
and A. Garrido, “Refactoring to rich inter-
net applications. a model-driven approach,” in
Eighth International Conference on Web Engi-
neering, ICWE’08. IEEE, 2008, pp. 1–12.

[93] J.L.H. Agustin and P.C. Del Barco, “A
model-driven approach to develop high per-
formance web applications,” Journal of Sys-
tems and Software, Vol. 86, No. 12, 2013, pp.
3013–3023.

[94] J.M. Hermida, S. Meliá, A. Montoyo, and
J. Gómez, “Applying model-driven engineer-
ing to the development of rich internet appli-
cations for business intelligence,” Information
Systems Frontiers, Vol. 15, No. 3, 2013, pp.
411–431.

[95] R. Rodríguez-Echeverría, J.M. Cone-
jero, P.J. Clemente, J.C. Preciado, and
F. Sánchez-Figueroa, “Modernization of
legacy web applications into rich internet
applications,” in Current Trends in Web
Engineering. Springer, 2012, pp. 236–250.

[96] R. Vdovjak and G.J. Houben, “A model-driven
approach for designing distributed web in-
formation systems,” in Web Engineering.
Springer, 2005, pp. 453–464.

[97] H.B. Zghal, M.A. Aufaure, and N.B.
Mustapha, “A model-driven approach of
ontological components for on-line semantic
web information retrieval,” Journal of Web
Engineering, Vol. 6, No. 4, 2007, p. 309.

[98] E. Chavarriaga and J.A. Macías, “A
model-driven approach to building modern
semantic web-based user interfaces,” Advances
in Engineering Software, Vol. 40, No. 12, 2009,
pp. 1329–1334.

[99] W. Sun, S. Li, D. Zhang, and Y. Yan, “A
model-driven reverse engineering approach for
semantic web services composition,” in WRI
World Congress on Software Engineering,
WCSE’09, Vol. 3. IEEE, 2009, pp. 101–105.

[100] M. Álvarez Álvarez, B.C.P. G-Bustelo,
O. Sanjuán-Martínez, and J.M.C. Lovelle,
“Bridging together semantic web and
model-driven engineering,” in Distributed
Computing and Artificial Intelligence.
Springer, 2010, pp. 601–604.

[101] V. Torres, V. Pelechano, and Ó. Pastor, “Build-
ing semantic web services based on a model
driven web engineering method,” in Advances
in Conceptual Modeling-Theory and Practice.
Springer, 2006, pp. 173–182.

[102] K. Musumbu, M. Diouf, and S. Maabout,
“Business rules generation methods by merging
model driven architecture and web semantics,”
in IEEE International Conference on Software
Engineering and Service Sciences (ICSESS).
IEEE, 2010, pp. 33–36.

[103] J. Cañadas, J. Palma, and S. Túnez, “Defin-
ing the semantics of rule-based web applica-
tions through model-driven development,” In-
ternational Journal of Applied Mathematics
and Computer Science, Vol. 21, No. 1, 2011,
pp. 41–55.

[104] D. Amar Bensaber and M. Malki, “Develop-
ment of semantic web services: model driven
approach,” in Proceedings of the 8th Interna-
tional Conference on New Technologies in Dis-
tributed Systems. ACM, 2008, p. 40.

[105] J. Cañadas, J. Palma, and S. Túnez,
InSCo-Gen: A MDD tool for Web rule-based
applications. Springer, 2009.

[106] J. Lee, “Model-driven business transformation
and the semantic web,” Communications of the
ACM, Vol. 48, No. 12, 2005, pp. 75–77.

[107] M. Brambilla, S. Ceri, F.M. Facca, I. Celino,
D. Cerizza, and E.D. Valle, “Model-driven de-
sign and development of semantic web service
applications,” ACM Transactions on Internet
Technology (TOIT), Vol. 8, No. 1, 2007, p. 3.

[108] C. Hahn, S. Nesbigall, S. Warwas, I. Zinnikus,
M. Klusch, and K. Fischer, “Model-driven ap-
proach to the integration of multiagent sys-
tems and semantic web services,” in 12th En-
terprise Distributed Object Computing Confer-
ence Workshops. IEEE, 2008, pp. 317–324.

[109] R. Grønmo and M.C. Jaeger, “Model-driven
semantic web service composition,” in 12th
Asia-Pacific Software Engineering Conference,
APSEC’05. IEEE, 2005, p. 8.

[110] M. Belchior, D. Schwabe, and F.S. Parreiras,
“Role-based access control for model-driven
web applications,” in Web Engineering.
Springer, 2012, pp. 106–120.

[111] A. Staikopoulos, O. Cliffe, R. Popescu,
J. Padget, and S. Clarke, “Template-based
adaptation of semantic web services with
model-driven engineering,” IEEE Transactions
on Services Computing, Vol. 3, No. 2, 2010, pp.
116–130.

[112] N.A. Tavares and S. Vale, “A model driven ap-
proach for the development of semantic REST-
ful web services,” in Proceedings of Interna-
tional Conference on Information Integration
and Web-based Applications & Services. ACM,
2013, p. 290.

Model Driven Web Engineering: A Systematic Mapping Study 133

[113] H. Jinkui, W. Jiancheng, and Y. Yongtang, “A
semantics-reconstruction based model-driven
development approach for web information
systems,” in Chinese Control Conference.
IEEE, 2007, pp. 344–348.

[114] W. El Kaim, P. Studer, and P.A. Muller,
“Model driven architecture for agile
web information system engineering,”
in Object-Oriented Information Systems.
Springer, 2003, pp. 299–303.

[115] C. Batini, D. Bolchini, S. Ceri, M. Matera,
A. Maurino, and P. Paolini, “The UM-MAIS
methodology for multi-channel adaptive web
information systems,” World Wide Web,
Vol. 10, No. 4, 2007, pp. 349–385.

[116] A. Bozzon, T. Iofciu, W. Nejdl, and S. Tönnies,
“Integrating databases, search engines and web
applications: a model-driven approach,” inWeb
Engineering. Springer, 2007, pp. 210–225.

[117] I. Celino, E. Della Valle, D. Cerizza, and A. Tu-
rati, “Squiggle: an experience in model-driven
development of real-world semantic search en-
gines,” inWeb Engineering. Springer, 2007, pp.
485–490.

[118] R. Kumar, J. Bopaiah, P. Jain, N. Nalini,
and K.C. Sekaran, “Model driven approach for
developing cloud application,” International
Journal of Scientific & Technology Research,
Vol. 2, No. 10, 2013.

[119] P. Díaz, I. Aedo, D. Sanz, and A. Malizia, “A
model-driven approach for the visual specifica-
tion of role-based access control policies in web
systems,” in VL/HCC 2008, IEEE Symposium
onVisual Languages and Human-Centric Com-
puting. IEEE, 2008, pp. 203–210.

[120] P. Xiong and L. Peyton, “A model-driven
penetration test framework for web applica-
tions,” in Eighth Annual International Con-
ference on Privacy Security and Trust (PST).
IEEE, 2010, pp. 173–180.

[121] M. Jensen and S. Feja, “A security modeling
approach for web-service-based business pro-
cesses,” in 16th Annual IEEE International
Conference and Workshop on the Engineering
of Computer Based Systems. IEEE, 2009, pp.
340–347.

[122] B. Hoisl and S. Sobernig, “Integrity and confi-
dentiality annotations for service interfaces in
SoaML models,” in Sixth International Con-
ference on Availability, Reliability and Security
(ARES). IEEE, 2011, pp. 673–679.

[123] Y. Nakamura, M. Tatsubori, T. Imamura, and
K. Ono, “Model-driven security based on a web
services security architecture,” in IEEE Inter-

national Conference on Services Computing,
Vol. 1. IEEE, 2005, pp. 7–15.

[124] Z. Ma, C. Wagner, and T. Bleier,
“Model-driven security for web services in
e-government system: Ideal and real,” in
2011 7th International Conference on Next
Generation Web Services Practices (NWeSP).
IEEE, 2011, pp. 221–226.

[125] P. Patil and S. Pawar, “Remote agent based au-
tomated framework for threat modelling, vul-
nerability testing of SOA solutions and web
services,” in 2012 World Congress on Internet
Security (WorldCIS). IEEE, 2012, pp. 127–131.

[126] M. Busch, N. Koch, M. Masi, R. Pugliese,
and F. Tiezzi, “Towards model-driven devel-
opment of access control policies for web ap-
plications,” in Proceedings of the Workshop on
Model-Driven Security. ACM, 2012, p. 4.

[127] E. Oberortner, M. Vasko, and S. Dustdar, “To-
wards modeling role-based pageflow definitions
within web applications,” in Proc. of the 4th
International Workshop on Model-Driven Web
Engineering (MDWE 2008), Vol. 389, 2008,
pp. 1–15.

[128] S. Kent, “Model driven engineering,” in In-
tegrated formal methods. Springer, 2002, pp.
286–298.

[129] Z. Ma, C. Wagner, R. Woitsch, F. Skopik, and
T. Bleier, “Model-driven security: from the-
ory to application,” International Journal of
Computer Information Systems and Industrial
Management Applications, Vol. 5, 2013, pp.
151–158.

[130] F. Domínguez-Mayo, M. Escalona, M. Mejias,
and A. Torres, “A quality model in a qual-
ity evaluation framework for mdwe methodolo-
gies,” in 2010 Fourth International Conference
on Research Challenges in Information Science
(RCIS). IEEE, 2010, pp. 495–506.

[131] R. Grønmo and M.C. Jaeger, “Model-driven
methodology for building QoS-optimised web
service compositions,” in Distributed Appli-
cations and Interoperable Systems. Springer,
2005, pp. 68–82.

[132] P. Fraternali, P.L. Lanzi, M. Matera, and
A. Maurino, “Model-driven web usage analysis
for the evaluation of web application quality,”
J. Web Eng., Vol. 3, No. 2, 2004, pp. 124–152.

[133] G. Ortiz and B. Bordbar, “Model-driven
quality of service for web services: an
aspect-oriented approach,” in ICWS’08. IEEE
International Conference on Web Services.
IEEE, 2008, pp. 748–751.

134 Karzan Wakil, Dayang N. A. Jawawi

[134] F. Domínguez-Mayo, M.J. Escalona,
M. Mejías, M. Ross, and G. Staples, “Quality
evaluation for model-driven web engineering
methodologies,” Information and Software
Technology, Vol. 54, No. 11, 2012, pp.
1265–1282.

[135] F. Domínguez-Mayo, M. Escalona, and
M. Mejías, “Quality issues on model-driven
web engineering methodologies,” in Informa-
tion Systems Development. Springer, 2011, pp.
295–306.

[136] F. Domínguez-Mayo, M.J. Escalona, and
M. Mejías, QuEF (quality evaluation frame-
work) for model-driven web methodologies.
Springer, 2010.

[137] N. Li, Q.q. Ma, J. Wu, M.z. Jin, and C. Liu,
“A framework of model-driven web application
testing,” in COMPSAC ’06. 30th Annual Inter-
national Computer Software and Applications
Conference, Vol. 2. IEEE, 2006, pp. 157–162.

[138] S. Haustein and J. Pleumann, “A model-driven
runtime environment for web applications,”
Software & Systems Modeling, Vol. 4, No. 4,
2005, pp. 443–458.

[139] E.R. Luna, J. Grigera, and G. Rossi, Bridging
test and model-driven approaches in web engi-
neering. Springer, 2009.

[140] E. Escott, P. Strooper, J. Steel, and
P. King, “Integrating model-based testing
in model-driven web engineering,” in 18th
Asia–Pacific Software Engineering Conference
(APSEC). IEEE, 2011, pp. 187–194.

[141] P. Strooper, “A model-driven approach to de-
veloping and testing web applications,” in
2014 International Conference on Informa-
tion, Communication Technology and System
(ICTS). IEEE, 2014, pp. 3–4.

[142] A. Safi, D.N. Jawawi, K. Wakil et al., “Web
services composition with redundancy consid-
eration,” in IEEE Conference on Open Systems
(ICOS). IEEE, 2013, pp. 112–117.

[143] G. Ortiz and J. Hernandez, “A case study
on integrating extra-functional properties in
web service model-driven development,” in
ICIW’07, Second International Conference on
Internet and Web Applications and Services.
IEEE, 2007, pp. 35–35.

[144] M.B. Blake, “A lightweight software de-
sign process for web services workflows,” in
ICWS’06, International Conference on Web
Services. IEEE, 2006, pp. 411–418.

[145] D. Kateros, G.M. Kapitsaki, N.D. Tselikas,
I.S. Venieris et al., “A methodology for
model-driven web application composition,” in

SCC’08, IEEE International Conference on
Services Computing, Vol. 2. IEEE, 2008, pp.
489–492.

[146] V. Torres, J. Muñoz, and V. Pelechano, “A
model driven method for the integration of web
applications,” in Third Latin American Web
Congress (LA-WEB). IEEE, 2005, pp. 10–pp.

[147] R. Kulesza, S.R. Meira, T.P. Ferreira, E.S.
Alexandre, L. Guido Filho, M.C.M. Neto, and
C.A. San, “A model-driven approach for in-
tegration of interactive applications and web
services: A case study in interactive digital
TV platform,” in IEEE International Con-
ference on Multimedia and Expo Workshops
(ICMEW). IEEE, 2012, pp. 266–271.

[148] A. Charfi, S.H. Turki, A. Cha? bane, H. Wit-
teborg, and R. Bouaziz, “A model-driven ap-
proach to developing web service compositions
based on BPMN4SOA,” International Journal
of Reasoning-Based Intelligent Systems, Vol. 3,
No. 3-4, 2011, pp. 194–204.

[149] G. Botterweck, “A model-driven approach to
the engineering of multiple user interfaces,”
in Models in Software Engineering. Springer,
2007, pp. 106–115.

[150] X. Yu, Y. Zhang, T. Zhang, L. Wang, J. Hu,
J. Zhao, and X. Li, “A model-driven develop-
ment framework for enterprise web services,”
Information Systems Frontiers, Vol. 9, No. 4,
2007, pp. 391–409.

[151] A. Achilleos, G.M. Kapitsaki, and G.A.
Papadopoulos, “A model-driven framework
for developing web service oriented applica-
tions,” in Current Trends in Web Engineering.
Springer, 2012, pp. 181–195.

[152] S. Comai and D. Mazza, “A model-driven
methodology to the content layout problem in
web applications,” ACM Transactions on the
Web (TWEB), Vol. 6, No. 3, 2012, p. 10.

[153] A. Achilleos, N. Paspallis, G. Papadopou-
los et al., “Automating the development of
device-aware web services: A model-driven
approach,” in IEEE 35th Annual Com-
puter Software and Applications Conference
(COMPSAC). IEEE, 2011, pp. 535–540.

[154] X. Qafmolla and V.C. Nguyen, “Automation of
web services development using model driven
techniques,” in The 2nd International Confer-
ence on Computer and Automation Engineer-
ing (ICCAE), Vol. 3. IEEE, 2010, pp. 190–194.

[155] K. Pfadenhauer, S. Dustdar, and B. Kittl,
“Challenges and solutions for model driven
web service composition,” in 14th IEEE In-
ternational Workshops on Enabling Technolo-

Model Driven Web Engineering: A Systematic Mapping Study 135

gies: Infrastructure for Collaborative Enter-
prise. IEEE, 2005, pp. 126–131.

[156] K. Pfadenhauer, S. Dustdar, and B. Kittl,
“Comparison of two distinctive model driven
web service orchestration proposals,” in
Seventh IEEE International Conference on
E-Commerce Technology Workshops. IEEE,
2005, pp. 29–36.

[157] F. Valverde and O. Pastor, “Dealing with
REST services in model-driven web engineer-
ing methods,” V Jornadas Científico-Técnicas
en Servicios Web y SOA, JSWEB, 2009.

[158] M. Ruiz, V. Pelechano, and Ó. Pastor,
“Designing web services for supporting user
tasks: A model driven approach,” in Advances
in Conceptual Modeling-Theory and Practice.
Springer, 2006, pp. 193–202.

[159] N. Blum, T. Magedanz, J. Kleessen, and
T. Margaria, “Enabling extreme model driven
design of Parlay X-based communications ser-
vices for end-to-end multiplatform service or-
chestrations,” in 14th IEEE International Con-
ference on Engineering of Complex Computer
Systems. IEEE, 2009, pp. 240–247.

[160] B. Bauer and J.P. Müller, “MDA applied:
From sequence diagrams to web service chore-
ography,” in Web Engineering. Springer, 2004,
pp. 132–136.

[161] L. Zhu, I. Gorton, Y. Liu, and N.B. Bui,
“Model driven benchmark generation for web
services,” in Proceedings of the 2006 interna-
tional workshop on Service-oriented software
engineering. ACM, 2006, pp. 33–39.

[162] R. Barrett and C. Pahl, “Model driven design
of distribution patterns forweb service compo-
sitions,” in ICWS’06. International Conference
on Web Services. IEEE, 2006, pp. 887–888.

[163] R. Barrett, L.M. Patcas, C. Pahl, and J. Mur-
phy, “Model driven distribution pattern design
for dynamic web service compositions,” in Pro-
ceedings of the 6th international conference on
Web engineering. ACM, 2006, pp. 129–136.

[164] M. Ruiz and V. Pelechano, “Model driven de-
sign of web service operations using web engi-
neering practices,” in Emerging Web Services
Technology. Springer, 2007, pp. 83–100.

[165] V. De Castro, J.M. Vara, and E. Marcos,
“Model transformation for service-oriented web
applications development,” in MDWE, 2007.

[166] G. Ortiz, J. Hernández, and F. Sánchez,
“Model driven extra-functional properties for
web services,” in IEEE Services Computing
Workshops, SCW’06. IEEE, 2006, pp. 113–120.

[167] S. Lohmann, J.W. Kaltz, and J. Ziegler,
“Model-driven dynamic generation of

context-adaptive web user interfaces,” in
Models in Software Engineering. Springer,
2007, pp. 116–125.

[168] C. Dumez, J. Gaber, and M. Wack,
“Model-driven engineering of composite web
services using UML-S,” in Proceedings of the
10th International Conference on Information
Integration and Web-based Applications &
Services. ACM, 2008, pp. 395–398.

[169] M. Ribarić, D. Gašević, M. Milanović,
A. Giurca, S. Lukichev, and G. Wagner,
“Model-driven engineering of rules for web
services,” in Generative and Transforma-
tional Techniques in Software Engineering II.
Springer, 2008, pp. 377–395.

[170] T. Dirgahayu, “Model-driven engineering of
web service compositions: A transformation
from ISDL to BPEL,” Master’s thesis, Univer-
sity of Twente, 2005.

[171] R. Grønmo, D. Skogan, I. Solheim, and
J. Oldevik, “Model-driven web services devel-
opment,” in IEEE International Conference
on e-Technology, e-Commerce and e-Service,
EEE’04. IEEE, 2004, pp. 42–45.

[172] B. Li, Y. Zhou, and J. Pang, “Model-driven
automatic generation of verified bpel code
for web service composition,” in Asia-Pacific
Software Engineering Conference, APSEC’09.
IEEE, 2009, pp. 355–362.

[173] H. Zhang, J. Liu, L. Zheng, and J. Wang,
“Modeling of web service development pro-
cess based on MDA and procedure blueprint,”
in IEEE/ACIS 11th International Conference
on Computer and Information Science (ICIS).
IEEE, 2012, pp. 422–427.

[174] K. Nguyen, T.S. Dillon, and E. Danielsen,
“The concept of web event and a practical
model-driven approach to web information sys-
tem development,” International Journal of
Web Information Systems, Vol. 2, No. 1, 2006,
pp. 19–36.

[175] P. Hrastnik and W. Winiwarter, “Using ad-
vanced transaction meta-models for creating
transaction-aware web service environments,”
International Journal of Web Information Sys-
tems, Vol. 1, No. 2, 2005, pp. 89–100.

[176] N. Glombitza, D. Pfisterer, and S. Fischer, “Us-
ing state machines for a model driven develop-
ment of web service-based sensor network ap-
plications,” in Proceedings of the 2010 ICSE
Workshop on Software Engineering for Sensor
Network Applications. ACM, 2010, pp. 2–7.

[177] Y. Taher, J. Boubeta-Puig, W.J. van den
Heuvel, G. Ortiz, and I. Medina-Bulo, “A
model-driven approach for web service adap-

136 Karzan Wakil, Dayang N. A. Jawawi

tation using complex event processing,” in Ad-
vances in Service-Oriented and Cloud Comput-
ing. Springer, 2013, pp. 346–359.

[178] R. Maraoui, E. Cariou, and B. Ayeb, “A
model-driven engineering approach for the for-
mal verification of composite web services,”
in IEEE 22nd International Workshop on En-
abling Technologies: Infrastructure for Collab-
orative Enterprises (WETICE). IEEE, 2013,
pp. 266–271.

[179] W. Li, Y. Badr, and F. Biennier, “Improv-
ing web service composition with user require-
ment transformation and capability model,” in
On the Move to Meaningful Internet Systems:
OTM 2013 Conferences. Springer, 2013, pp.
300–307.

[180] C. Dumez, M. Bakhouya, J. Gaber, M. Wack,
and P. Lorenz, “Model-driven approach sup-
porting formal verification for web service com-
position protocols,” Journal of network and
computer applications, Vol. 36, No. 4, 2013, pp.
1102–1115.

[181] A. Kalantari, S. Ibrahim, S.G.H. Tabatabaei,
and H. Taherdoot, “A categorization of
model-driven approaches for developing se-
mantic web service,” in 3rd International Con-
ference on Data Mining and Intelligent In-
formation Technology Applications (ICMiA).
IEEE, 2011, pp. 92–97.

[182] S. Chung, S. Davalos, C. Niiyama, D. Won,
S.H. Baeg, and S. Park, “A uml model-driven
business process development methodology for
a virtual enterprise using SOA & ESB,” in
IEEE Asia-Pacific Services Computing Con-
ference, APSCC. IEEE, 2009, pp. 246–253.

[183] M. Ruiz, P. Valderas, V. Torres, and
V. Pelechano, “A model driven approach to
design web services in a web engineering
method,” in CAiSE Short Paper Proceedings,
2005.

[184] C. Zhao, Z. Duan, and M. Zhang, “A
model-driven approach for dynamic web ser-
vice composition,” in WRI World Congress on
Software Engineering, WCSE’09, Vol. 4. IEEE,
2009, pp. 273–277.

[185] C. Momm, M. Gebhart, and S. Abeck, “A
model-driven approach for monitoring business
performance in web service compositions,” in
Fourth International Conference on Internet
and Web Applications and Services ICIW’09.
IEEE, 2009, pp. 343–350.

[186] Y.H. Liu, J.S. Yih, F. Pinel, and T. Chieu,
“A model-driven SOA implementation of
multi-channel websphere commerce gift cen-

ter,” in IEEE International Conference on
e-Business Engineering, ICEBE’08. IEEE,
2008, pp. 29–34.

[187] K. Dahman, F. Charoy, and C. Godart, “Gen-
eration of component based architecture from
business processes: model driven engineering
for SOA,” in 8th European Conference on Web
Services (ECOWS). IEEE, 2010, pp. 155–162.

[188] N. Zhou, L.J. Zhang, Y.M. Chee, and L. Chen,
“Legacy asset analysis and integration in
model-driven SOA solution,” in International
Conference on Services Computing (SCC).
IEEE, 2010, pp. 554–561.

[189] M. Bajohr and T. Margaria, “Model-driven
self-reconfiguration for highly available SOAs,”
in Sixth IEEE Conference and Workshops on
Engineering of Autonomic and Autonomous
Systems, EASe. IEEE, 2009, pp. 13–22.

[190] M. Leotta, G. Reggio, F. Ricca, and E. Aste-
siano, “Towards a lightweight model driven
method for developing SOA systems using ex-
isting assets,” in 14th IEEE International Sym-
posium on Web Systems Evolution (WSE).
IEEE, 2012, pp. 51–60.

[191] M. Fritzsche, W. Gilani, I. Spence, T.J. Brown,
P. Kilpatrick, and R. Bashroush, “Towards per-
formance related decision support for model
driven engineering of enterprise SOA appli-
cations,” in 15th Annual IEEE International
Conference and Workshop on the Engineer-
ing of Computer Based Systems, ECBS. IEEE,
2008, pp. 57–65.

[192] E. Sosa, P.J. Clemente, J.M. Conejero, and
R. Rodriguez-Echeverria, “A model-driven pro-
cess to modernize legacy web applications
based on service oriented architectures,” in
15th IEEE International Symposium on Web
Systems Evolution (WSE). IEEE, 2013, pp.
61–70.

[193] M. Wagner, D. Zöbel, and A. Meroth,
“Model-driven development of SOA-based
driver assistance systems,” ACM SIGBED Re-
view, Vol. 10, No. 1, 2013, pp. 37–42.

[194] M.J. Escalona, C. Parra, F. Martín, J. Nieto,
A. Llergo, and F. Pérez, “A practical example
for model-driven web requirements,” in Infor-
mation Systems Development. Springer, 2009,
pp. 157–168.

[195] H. Wada, J. Suzuki, and K. Oba, “A
model-driven development framework for
non-functional aspects in service oriented
architecture,” Web Services Research for
Emerging Applications: Discoveries and
Trends: Discoveries and Trends, 2010, p. 358.

Model Driven Web Engineering: A Systematic Mapping Study 137

[196] J.A. Aguilar, I. Garrigós, J.N. Mazón,
and J. Trujillo, “An MDA approach for
goal-oriented requirement analysis in web engi-
neering,” Journal of Universal Computer Sci-
ence, Vol. 16, No. 17, 2010, pp. 2475–2494.

[197] J.A. Aguilar, I. Garrigós, J.N. Mazón, and
A. Zaldívar, “Dealing with dependencies
among functional and non-functional require-
ments for impact analysis in web engi-
neering,” in Computational Science and Its
Applications–ICCSA 2012. Springer, 2012, pp.
116–131.

[198] A. Fernandez, S. Abrahão, E. Insfran, and
M. Matera, “Further analysis on the vali-
dation of a usability inspection method for
model-driven web development,” in Proceed-
ings of the ACM-IEEE international sympo-
sium on Empirical software engineering and
measurement. ACM, 2012, pp. 153–156.

[199] E.R. Luna, J.I. Panach, J.I. Grigera, G. Rossi,
and O. Pastor, “Incorporating usability re-
quirements in a test/model-driven web engi-
neering approach,” J. Web Eng., Vol. 9, No. 2,
2010, pp. 132–156.

[200] A. Fernandez, E. Insfran, and S.M.
Abrahão, “Integrating a usability model into
model-driven web development processes,” in
WISE. Springer, 2009, pp. 497–510.

[201] F. Molina and A. Toval, “Integrating usability
requirements that can be evaluated in design
time into model driven engineering of web in-
formation systems,” Advances in Engineering
Software, Vol. 40, No. 12, 2009, pp. 1306–1317.

[202] P. Valderas and V. Pelechano, “Introduc-
ing requirements traceability support in
model-driven development of web applica-
tions,” Information and Software Technology,
Vol. 51, No. 4, 2009, pp. 749–768.

[203] J.C. Castrejón, R. López-Landa, and
R. Lozano, “Model2Roo: a model driven
approach for web application development
based on the eclipse modeling framework and
spring roo,” in Electrical Communications and
Computers (CONIELECOMP), 2011 21st
International Conference on. IEEE, 2011, pp.
82–87.

[204] M.J. Escalona and G. Aragón, “NDT.
A model-driven approach for web require-
ments,” IEEE Transactions on Software En-
gineering, Vol. 34, No. 3, 2008, pp. 377–390.

[205] N. Koch and S. Kozuruba, “Requirements mod-
els as first class entities in model-driven web
engineering,” in Current Trends in Web Engi-
neering. Springer, 2012, pp. 158–169.

[206] A. Fernandez, S. Abrahão, and E. Insfran, “To-
wards to the validation of a usability evalu-
ation method for model-driven web develop-
ment,” in Proceedings of the 2010 ACM-IEEE
International Symposium on Empirical Soft-
ware Engineering and Measurement. ACM,
2010, p. 54.

[207] T.J. Bittar, R.P. Fortes, L.L. Lobato, and
W.M. Watanabe, “Web communication and in-
teraction modeling using model-driven devel-
opment,” in Proceedings of the 27th ACM in-
ternational conference on Design of communi-
cation. ACM, 2009, pp. 193–198.

[208] Y. Martínez, C. Cachero, and S. Meliá,
“Empirical study on the maintainability of
web applications: Model-driven engineering vs
code-centric,” Empirical Software Engineering,
Vol. 19, No. 6, 2014, pp. 1887–1920.

[209] A. Fernandez, S. Abrahão, and E. Insfran,
“Empirical validation of a usability inspection
method for model-driven web development,”
Journal of Systems and Software, Vol. 86,
No. 1, 2013, pp. 161–186.

[210] A. Fernandez, S. Abrahão, E. Insfran,
and M. Matera, “Usability inspection in
model-driven web development: Empirical val-
idation in webml,” in Model-Driven Engineer-
ing Languages and Systems. Springer, 2013,
pp. 740–756.

[211] F.J. Domínguez-Mayo, M.J. Escalona,
M. Mejías, and J. Torres, “Studying maintain-
ability on model-driven web methodologies,” in
Information Systems Development. Springer,
2011, pp. 195–206.

[212] S. Abrahão, J. Gomez, and E.M.E. Insfran,
“A model-driven measurement procedure for
sizing web applications,” in Conference on
Model-Driven Engineering Languages and Sys-
tems (MODELS 2007), Nashville, TN, USA,
September, 2007.

[213] S. Meliá and J. Gómez, “Applying WebSA to
a case study: A travel agency system,” inWork-
shop on Model-driven Web Engineering. Cite-
seer, 2005, p. 30.

[214] E. Escott, P. Strooper, J.G. Suß, and P. King,
“Architecture-centric model-driven web engi-
neering,” in 18th Asia–Pacific Software Engi-
neering Conference (APSEC). IEEE, 2011, pp.
106–113.

[215] J. Pu, H. Yang, B. Xu, L. Xu, and W.C.C.
Chu, “Combining MDE and UML to reverse
engineer web-based legacy systems,” in An-
nual IEEE International Computer Software

138 Karzan Wakil, Dayang N. A. Jawawi

and Applications Conference. IEEE, 2008, pp.
718–725.

[216] L. Tambour, V. Houles, L. Cohen-Jonathan,
V. Auffray, P. Escande, and E. Jallas, “Design
of a model-driven web decision support system
in agriculture: Scientific models to the final
software,” Advances in Modeling Agricultural
Systems, Vol. 25, 2009, p. 67.

[217] M.M. Urbieta, G. Rossi, S. Gordillo,
W. Schwinger, W. Retschitzegger, and M.J.
Escalona, “Identifying and modelling complex
workflow requirements in web applications,” in
Current Trends in Web Engineering. Springer,
2012, pp. 146–157.

[218] P. Freudenstein, J. Buck, M. Nussbaumer,
and M. Gaedke, “Model-driven construc-
tion of workflow-based web applications with
domain-specific languages,” in MDWE, 2007.

[219] P. Dolog, “Model-driven navigation design
for semantic web applications with the
UML-Guide,” in ICWE Workshops, 2004, pp.
75–86.

[220] E. Escott, P. Strooper, P. King, and I.J. Hayes,
“Model-driven web form validation with UML
and OCL,” in Current Trends in Web Engi-
neering. Springer, 2012, pp. 223–235.

[221] S. Jeschke, O. Pfeiffer, and H. Vieritz, “Us-
ing web accessibility patterns for web ap-
plication development,” in Proceedings of the
2009 ACM symposium on Applied Computing.
ACM, 2009, pp. 129–135.

[222] A.R. Guzmán, V. López, F. Valverde, and J.I.
Panach, “Web 2.0 patterns: A model-driven
engineering approach,” in Sixth International
Conference on Research Challenges in Infor-
mation Science (RCIS). IEEE, 2012, pp. 1–2.

[223] C. Dumez, J. Gaber, and M. Wack, “Web
services composition using UML-S: a case
study,” in IEEE GLOBECOM Workshops.
IEEE, 2008, pp. 1–6.

[224] R. Popp, H. Kaindl, and D. Raneburger, “Con-
necting interaction models and application
logic for model-driven generation of web-based
graphical user interfaces,” in 20th Asia-Pacific
Software Engineering Conference (APSEC),
Vol. 1. IEEE, 2013, pp. 215–222.

[225] I.C. Hsu, “Visual modeling for web 2.0 ap-
plications using model driven architecture ap-
proach,” Simulation Modelling Practice and
Theory, Vol. 31, 2013, pp. 63–76.

[226] R. Acerbis, A. Bongio, M. Brambilla, M. Tisi,
S. Ceri, and E. Tosetti, “Developing ebusi-
ness solutions with a model driven approach:
the case of acer EMEA,” in Web Engineering.
Springer, 2007, pp. 539–544.

[227] G. Zhuang and J. Du, “Mda-based model-
ing and implementation of e-commerce web
applications in WebML,” in Second Interna-
tional Workshop on Computer Science and En-
gineering, WCSE’09, Vol. 2. IEEE, 2009, pp.
507–510.

[228] Y. Li, J. Shen, J. Shi, W. Shen, Y. Huang,
and Y. Xu, “Multi-model driven collabora-
tive development platform for service-oriented
e-business systems,” Advanced Engineering In-
formatics, Vol. 22, No. 3, 2008, pp. 328–339.

[229] P. Hernández, O. Glorio, I. Garrigós, and J.N.
Mazón, “Towards a model-driven framework
for web usage warehouse development,” in Ad-
vances in Conceptual Modeling. Recent Devel-
opments and New Directions. Springer, 2011,
pp. 336–337.

[230] J. Martinez, C. Lopez, E. Ulacia, and M. del
Hierro, “Towards a model-driven product line
for web systems,” in 5th Model-Driven Web En-
gineering Workshop, MDWE, 2009, pp. 1–15.

[231] P. Lachenmaier, F. Ott, A. Immerz, and
A. Richter, “Community mashup a flexible
social mashup based on a model-driven-ap-
proach,” in IEEE International Conference
on Information Reuse and Integration (IRI).
IEEE, 2011, pp. 48–51.

[232] M. Brambilla and A. Mauri, “Model-driven de-
velopment of social network enabled applica-
tions with WebML and social primitives,” in
Current Trends in Web Engineering. Springer,
2012, pp. 41–55.

[233] F. Chen, H. Yang, H. Zhou, B. Qiao, and
H. Deng, “Web-based system evolution in
model driven architecture,” in 10th Inter-
national Symposium on Web Site Evolution,
WSE. IEEE, 2008, pp. 69–72.

[234] N.V. Cuong and X. Qafmolla, “Model trans-
formation in web engineering and auto-
mated model driven development,” Interna-
tional Journal of Modeling and Optimization,
Vol. 1, No. 1, 2011, pp. 7–12.

[235] M. Brambilla, P. Fraternali, and M. Tisi, “A
metamodel transformation framework for the
migration of WebML models to MDA,” in
MDWE, CEUR Workshop Proceedings, Vol.
389, 2008, pp. 91–105.

[236] N. Moreno, S. Meliá, N. Koch, and
A. Vallecillo, “Addressing new concerns in
model-driven web engineering approaches,” in
Web Information Systems Engineering-WISE
2008. Springer, 2008, pp. 426–442.

[237] S. Meliá and J. Gómez, Applying transforma-
tions to model driven development of web ap-
plications. Springer, 2005.

Model Driven Web Engineering: A Systematic Mapping Study 139

[238] N. Koch, A. Knapp, and S. Kozuruba, “Assess-
ment of effort reduction due to model-to-model
transformations in the web domain,” in Web
Engineering. Springer, 2012, pp. 215–222.

[239] P. Giner, V. Torres, and V. Pelechano, “Bridg-
ing the gap between BPMN and WS-BPEL.
M2M transformations in practice,” MDWE,
Vol. 261, 2007.

[240] P. Valderas, J. Fons, and V. Pelechano, “From
web requirements to navigational design –
A transformational approach,” in Web Engi-
neering. Springer, 2005, pp. 506–511.

[241] G.J. Houben, N. Koch, G. Rossi, and A. Valle-
cillo, “Guest editorial to the theme section on
model-driven web engineering,” Software and
Systems Modeling, 2013, pp. 1–3.

[242] M. Brambilla and P. Fraternali, “Implementing
the semantics of BPMN through model-driven
web application generation,” in Business Pro-
cess Model and Notation. Springer, 2011, pp.
124–129.

[243] M. Brambilla and P. Fraternali, “Large-scale
model-driven engineering of web user interac-
tion: The WebML and webratio experience,”
Science of Computer Programming, Vol. 89,
2014, pp. 71–87.

[244] S. Meliá, A. Kraus, and N. Koch, “MDA trans-
formations applied to web application develop-
ment,” inWeb Engineering. Springer, 2005, pp.
465–471.

[245] H.A. Schmid, “Model driven architecture with
OOHDM,” in International Conference on
Web Engineering (ICWE) Workshops, 2004,
pp. 12–25.

[246] D. Di Ruscio and A. Pierantonio, “Model
transformations in the development of
data-intensive web applications,” in Advanced
Information Systems Engineering. Springer,
2005, pp. 475–490.

[247] P. Hernández, I. Garrigós, and J.N. Mazón,
“Model-driven development of multidimen-
sional models from web log files,” in Ad-
vances in Conceptual Modeling–Applications
and Challenges. Springer, 2010, pp. 170–179.

[248] P. Fraternali and M. Tisi, Multi-level tests for
model driven web applications. International
Conference on Web Engineering, 2010.

[249] H.A. Schmid and O. Donnerhak, “OOHDMDA
– an MDA approach for OOHDM,” in Web En-
gineering. Springer, 2005, pp. 569–574.

[250] M.A.O. Mukhtar, M.F.B. Hassan, and J.B.
Jaafar, “Optimizing method to provide model
transformation of model-driven architecture as
web-based services,” in International Confer-

ence on Computer & Information Science (IC-
CIS), Vol. 2. IEEE, 2012, pp. 874–879.

[251] M. Wimmer, N. Moreno, and A. Vallecillo,
“Systematic evolution of WebML models by
coupled transformations,” in Web Engineering.
Springer, 2012, pp. 185–199.

[252] R. Akkiraju, T. Mitra, N. Ghosh, D. Saha,
U. Thulasiram, and S. Chakraborthy, “Toward
the development of cross-platform business ap-
plications via model-driven transformations,”
in World Conference on Services. IEEE, 2009,
pp. 585–592.

[253] A. Fatolahi, S.S. Somé, and T.C. Lethbridge,
“Towards a semi-automated model-driven
method for the generation of web-based appli-
cations from use cases,” in 4th Model Driven
Web Engineering Workshop, 2008, p. 31.

[254] H. Heitkoetter, “Transforming PICTURE to
BPMN 2.0 as part of the model-driven devel-
opment of electronic government systems,” in
44th Hawaii International Conference on Sys-
tem Sciences (HICSS). IEEE, 2011, pp. 1–10.

[255] P. Valderas, J. Fons, and V. Pelechano, “Trans-
forming web requirements into navigational
models: AN MDA based approach,” in Con-
ceptual Modeling–ER 2005. Springer, 2005, pp.
320–336.

[256] S. Meliá, J. Gómez, and J.L. Serrano, “WebTE:
MDA transformation engine for web applica-
tions,” in Web Engineering. Springer, 2007, pp.
491–495.

[257] M.A.O. Mukhtar, M.F.B. Hassan, J. Bin Jaa-
far, and L.A. Rahim, “Enhanced approach
for developing web applications using model
driven architecture,” in International Confer-
ence on Research and Innovation in Infor-
mation Systems (ICRIIS). IEEE, 2013, pp.
145–150.

[258] A. Fatolahi, S.S. Somé, and T.C. Lethbridge,
“A meta-model for model-driven web develop-
ment,” International Journal of Software and
Informatics, Vol. 6, No. 2, 2012, pp. 125–162.

[259] M.J. Escalona, J.J. Gutiérrez, F. Morero,
C. Parra, J. Nieto, F. Pérez, F. Martín, and
A. Llergo, “A practical environment to ap-
ply model-driven web engineering,” in Infor-
mation Systems Development. Springer, 2010,
pp. 249–258.

[260] L.A. Ricci and D. Schwabe, “An authoring en-
vironment for model-driven web applications,”
in Proceedings of the 12th Brazilian Symposium
on Multimedia and the web. ACM, 2006, pp.
11–19.

140 Karzan Wakil, Dayang N. A. Jawawi

[261] A. Schauerhuber, M. Wimmer, and E. Kap-
sammer, “Bridging existing web modeling lan-
guages to model-driven engineering: a meta-
model for WebML,” in Workshop proceedings
of the sixth international conference on Web
engineering. ACM, 2006, p. 5.

[262] A. Schauerhuber, M. Wimmer, E. Kapsammer,
W. Schwinger, and W. Retschitzegger, “Bridg-
ing webml to model-driven engineering: from
document type definitions to meta object fa-
cility,” Software, IET, Vol. 1, No. 3, 2007, pp.
81–97.

[263] J.M. Rivero, G. Rossi, J. Grigera, J. Burella,
E.R. Luna, and S. Gordillo, From mockups
to user interface models: an extensible model
driven approach. Springer, 2010.

[264] B. De Silva and A. Ginige, “Meta-model to sup-
port end-user development of web based busi-
ness information systems,” in Web Engineer-
ing. Springer, 2007, pp. 248–253.

[265] D. Karagiannis, V. Hrgovcic, and R. Woitsch,
“Model driven design for e-applications: The
meta model approach,” in Proceedings of the
13th International Conference on Information
Integration and Web-based Applications and
Services. ACM, 2011, pp. 451–454.

[266] S. Ceri, M. Brambilla, and P. Fraternali, “The
history of webml lessons learned from 10 years
of model-driven development of web applica-
tions,” in Conceptual Modeling: Foundations
and Applications. Springer, 2009, pp. 273–292.

[267] G. Jomier, G. Dodinet, and M. Zam, “The
United States of a meta-model build with My-
Draft an agile model-driven cloud-based plat-
form for data-oriented rich web applications,”
2012.

[268] N. Koch and A. Kraus, “Towards a common
metamodel for the development of web appli-
cations,” in Web Engineering. Springer, 2003,
pp. 497–506.

[269] C.C. Castro, S. Meliá, M. Genero, G. Poels,
and C. Calero, “Towards improving the nav-
igability of web applications: a model-driven
approach,” European Journal of Information
Systems, Vol. 16, No. 4, 2007, pp. 420–447.

[270] D. Ruiz-González, N. Koch, C. Kroiss, J.R.
Romero, and A. Vallecillo, “Viewpoint synchro-
nization of UWE models,” in Proc. 5th Inter-
national Workshop on Model-Driven Web En-
gineering, 2009, pp. 46–60.

[271] R. Cheung, “XFlash–a web application design
framework with model-driven methodology,”
International Journal of U- and E-service, Sci-
ence and Technology, Vol. 1, No. 1, 2008, pp.
47–54.

[272] X. Qafmolla and N.V. Cuong, “A two-way
meta-modeling approach in web engineering,”
Global Journal on Technology, Vol. 3, 2013.

[273] T. Jiang, J. Ying, M. Wu, and C. Jin, “A
method for model-driven development of adap-
tive web applications,” in 12th International
Conference on Computer Supported Coopera-
tive Work in Design, CSCWD. IEEE, 2008, pp.
386–391.

[274] G. Grossmann, M. Schrefl, and M. Stumpt-
ner, “A model-driven framework for runtime
adaptation of web service compositions,” in
Proceedings of the 6th International Sympo-
sium on Software Engineering for Adaptive
and Self-Managing Systems. ACM, 2011, pp.
184–189.

[275] C. Dorn and R.N. Taylor, “Architecture-driven
modeling of adaptive collaboration structures
in large-scale social web applications,” in Web
Information Systems Engineering-WISE 2012.
Springer, 2012, pp. 143–156.

[276] I. Kurtev and K. van den Berg, “Building
adaptable and reusable XML applications with
model transformations,” in Proceedings of the
14th international conference on World Wide
Web. ACM, 2005, pp. 160–169.

[277] S. Ceri, P. Dolog, M. Matera, and W. Nejdl,
“Model-driven design of web applications with
client-side adaptation,” in Web Engineering.
Springer, 2004, pp. 201–214.

[278] G.M. Kapitsaki, D.A. Kateros, G.N. Prezer-
akos, and I.S. Venieris, “Model-driven devel-
opment of composite context-aware web appli-
cations,” Information and Software technology,
Vol. 51, No. 8, 2009, pp. 1244–1260.

[279] S. Ceri, F. Daniel, M. Matera, and F.M. Facca,
“Model-driven development of context-aware
web applications,” ACM Transactions on In-
ternet Technology (TOIT), Vol. 7, No. 1, 2007,
p. 2.

[280] G.M. Kapitsaki and I.S. Venieris,
“Model-driven development of context-aware
web applications based on a web service
context management architecture,” in Models
in Software Engineering. Springer, 2009, pp.
343–355.

[281] N.M. Vergara, J.M.T. Linero, and A.V.
Moreno, “Model-driven component adaptation
in the context of web engineering,” European
Journal of Information Systems, Vol. 16, No. 4,
2007, pp. 448–459.

[282] N. Koch, “Classification of model transforma-
tion techniques used in UML-based web engi-
neering,” IET software, Vol. 1, No. 3, 2007, pp.
98–111.

Model Driven Web Engineering: A Systematic Mapping Study 141

[283] M.L. Bernardi, M. Cimitile, G.D. Lucca,
and F.M. Maggi, “Development of flexible
process-centric web applications: An inte-
grated model driven approach,” in 14th IEEE
International Symposium on Web Systems
Evolution (WSE). IEEE, 2012, pp. 67–71.

[284] M. Lenk, A. Vitzthum, and B. Jung,
“Model-driven iterative development of 3D
web-applications using SSIML, X3D and
JavaScript,” in Proceedings of the 17th Inter-
national Conference on 3D Web Technology.
ACM, 2012, pp. 161–169.

[285] L. Baresi, P. Fraternali, M. Tisi, and
S. Morasca, “Towards model-driven testing of a
web application generator,” in Web Engineer-
ing. Springer, 2005, pp. 75–86.

[286] R. Gitzel, A. Korthaus, and M. Schader, “Us-
ing established web engineering knowledge in
model-driven approaches,” Science of Com-
puter Programming, Vol. 66, No. 2, 2007, pp.
105–124.

[287] C. Kroiss, N. Koch, and A. Knapp,
“UWE4JSF: A model-driven generation
approach for web applications,” in ICWE, Vol.
5648. Springer, 2009, pp. 493–496.

[288] D. Clowes, D. Kolovos, C. Holmes, L. Rose,
R. Paige, J. Johnson, R. Dawson, and S. Pro-
bets, “A reflective approach to model-driven
web engineering,” in Modelling Foundations
and Applications. Springer, 2010, pp. 62–73.

[289] Y. Martínez, C. Cachero, and S. Meliá, “Eval-
uating the impact of a model-driven web engi-
neering approach on the productivity and the
satisfaction of software development teams,” in
Web Engineering. Springer, 2012, pp. 223–237.

[290] A. Vallecillo, N. Koch, C. Cachero Castro,
S. Comai, P. Fraternali, I. Garrigós Fernán-
dez, J. Gómez Ortega, G. Kappel, A. Knapp,
M. Matera et al., “MDWEnet: A practi-
cal approach to achieving interoperability of
model-driven web engineering methods,” 2007.

[291] S. Meliá and J. Gomez, “The webSA ap-
proach: Applying model driven engineering to
web applications,” Journal of Web Engineer-
ing, Vol. 5, No. 2, 2006, pp. 121–149.

[292] A.G. Cuesta and R.V. Granja, Juan Carlos
nd OConnor, “A model driven architecture
approach to web development,” in Software
and Data Technologies. Springer, 2009, pp.
101–113.

[293] A.J. Berre, “An agile model-based framework
for service innovation for the future inter-
net,” in Current Trends in Web Engineering.
Springer, 2012, pp. 1–4.

[294] X. Liang, I. Marmaridis, and A. Ginige, “Fa-
cilitating agile model driven development and
end-user development for EvolvingWeb-based
workflow applications,” in IEEE Interna-
tional Conference on e-Business Engineering,
ICEBE. IEEE, 2007, pp. 231–238.

[295] J. Grigera, J.M. Rivero, E.R. Luna, F. Giacosa,
and G. Rossi, “From requirements to web appli-
cations in an agile model-driven approach,” in
Web Engineering. Springer, 2012, pp. 200–214.

[296] J.M. Rivero, J. Grigera, G. Rossi, E.R.
Luna, and N. Koch, “Improving agility in
model-driven web engineering,” in CAiSE Fo-
rum, Vol. 734, 2011, pp. 163–170.

[297] J.M. Rivero, J. Grigera, G. Rossi, E.R. Luna,
and N. Koch, “Towards agile model-driven web
engineering,” in IS Olympics: Information Sys-
tems in a Diverse World. Springer, 2012, pp.
142–155.

[298] J.M. Rivero and G. Rossi, “MockupDD: Fa-
cilitating agile support for model-driven web
engineering,” in Current Trends in Web Engi-
neering. Springer, 2013, pp. 325–329.

[299] M.A. Bochicchio and E.A. Longo, “Integrating
web systems design and business process mod-
eling,” in Workshop on Model-driven Web En-
gineering, 2005, p. 60.

[300] M.D. Jacyntho and D. Schwabe, Models and
meta models for transactions in web applica-
tions. Springer, 2010.

[301] A. Ruokonen, L. Pajunen, and T. Systa, “On
model-driven development of mobile business
processes,” in Sixth International Conference
on Software Engineering Research, Manage-
ment and Applications, SERA’08. IEEE, 2008,
pp. 59–66.

[302] M. Brambilla, S. Butti, and P. Fraternali, We-
bratio bpm: a tool for designing and deploying
business processes on the web. Springer, 2010.

[303] F. Trias, “Building CMS-based web applica-
tions using a model-driven approach,” in Sixth
International Conference on Research Chal-
lenges in Information Science (RCIS). IEEE,
2012, pp. 1–6.

[304] J. de Sousa Saraiva and A.R. da Silva,
“CMS-based web-application development us-
ing model-driven languages,” in Fourth Inter-
national Conference on Software Engineering
Advances, ICSEA’09. IEEE, 2009, pp. 21–26.

[305] L. Luinenburg, S. Jansen, J. Souer, I. Van
De Weerd, and S. Brinkkemper, “Design-
ing web content management systems using
the method association approach,” in Pro-
ceedings of the 4th International Workshop

142 Karzan Wakil, Dayang N. A. Jawawi

on Model-Driven Web Engineering (MDWE
2008), 2008, pp. 106–120.

[306] J.d.S. Saraiva and A.R.d. Silva, “Develop-
ment of CMS-based web-applications using a
model-driven approach,” in Proceedings of the
2009 Fourth International Conference on Soft-
ware Engineering Advances. IEEE Computer
Society, 2009, pp. 500–505.

[307] K. Vlaanderen, F. Valverde, and O. Pastor,
“Model-driven web engineering in the CMS do-
main: A preliminary research applying SME,”
in Enterprise Information Systems. Springer,
2009, pp. 226–237.

[308] J. Souer, T. Kupers, R. Helms, and
S. Brinkkemper, Model-driven web engineering
for the automated configuration of web content
management systems. Springer, 2009.

[309] J. Souer and T. Kupers, “Towards a pragmatic
model driven engineering approach for the de-
velopment of CMS-based web applications,”
in Proceedings of the 5th Model Driven Web
Engineering Workshop (MDWE09), 2009, pp.
31–45.

[310] S. Martínez, J. Garcia-Alfaro, F. Cuppens,
N. Cuppens-Boulahia, and J. Cabot, “Towards

an access-control metamodel for web content
management systems,” in Current Trends in
Web Engineering. Springer, 2013, pp. 148–155.

[311] F. Trias, V. de Castro, M. López-Sanz, and
E. Marcos, “Reverse engineering applied to
CMS-based web applications coded in PHP: A
proposal of migration,” in Evaluation of Novel
Approaches to Software Engineering. Springer,
2013, pp. 241–256.

[312] A. Adamkó and L. Kollár, “Interoperability of
model-driven web engineering approaches,” 8th
International Conference on Applied Informat-
ics, Vol. 2, January 2010, pp. 295–303.

[313] J.M. Vara, M.V. De Castro, M. Didonet
Del Fabro, and E. Marcos, “Using weaving
models to automate model-driven web engi-
neering proposals,” International Journal of
Computer Applications in Technology, Vol. 39,
No. 4, 2010, pp. 245–252.

[314] A. Cicchetti, D. Di Ruscio, L. Iovino,
and A. Pierantonio, “Managing the evolu-
tion of data-intensive web applications by
model-driven techniques,” Software & Systems
Modeling, Vol. 12, No. 1, 2013, pp. 53–83.

e-Informatica Software Engineering Journal (EISEJ) is an international, open access, peer-reviewed journal
that concerns theoretical and practical issues pertaining development of software systems. Our aim is to focus on
experimentation and data mining in software engineering.

The purpose of e-Informatica Software Engineering Journal is to publish original and significant results in
all areas of software engineering research.

The scope of e-Informatica Software Engineering Journal includes methodologies, practices, architectures,
technologies and tools used in processes along the software development lifecycle, but particular stress is laid on
empirical evaluation.

e-Informatica Software Engineering Journal is published online and in hard copy form. The online version
(which is our primary version) is open access, which means it is available at no charge to the public.

Topics of interest include, but are not restricted to:

— Software requirements engineering and modeling
— Software architectures and design
— Software components and reuse
— Software testing, analysis and verification
— Agile software development methodologies and practices
— Model driven development
— Software quality
— Software measurement and metrics
— Reverse engineering and software maintenance
— Empirical and experimental studies in software engineering (incl. replications)
— Evidence based software engineering
— Systematic reviews and mapping studies
— Meta-analyses
— Object-oriented software development
— Aspect-oriented software development
— Software tools, containers, frameworks and development environments
— Formal methods in software engineering.
— Internet software systems development
— Dependability of software systems
— Human-computer interaction
— AI and knowledge based software engineering
— Data mining in software engineering
— Prediction models in software engineering
— Tools for software researchers or practitioners
— Project management
— Software products and process improvement and measurement programs
— Process maturity models
— Search-based software engineering

Papers can be rejected administratively without undergoing review for a variety reasons, such as being out of
scope, being badly presented to such an extent as to prevent review, missing some fundamental components of
research such as the articulation of a research problem, a clear statement of the contribution and research methods
via structured abstract or the evaluation of the proposed solution (empirical evaluation is strongly suggested).

The submissions will be accepted for publication on the base of positive reviews done by international Editorial
Board and external reviewers.

English is the only accepted publication language. To submit an article please enter our online paper submission
site.

Subsequent issues of the journal will appear continuously according to the reviewed and accepted submissions.

http://www.e-informatyka.pl/wiki/e-Informatica_-_Editorial_Board
http://www.e-informatyka.pl/wiki/e-Informatica_-_Editorial_Board
https://mc.manuscriptcentral.com/e-InformaticaSEJ
https://mc.manuscriptcentral.com/e-InformaticaSEJ

