
e-Informatica Software Engineering Journal, Volume 9, Issue 1, 2015, pages: 9–19, DOI 10.5277/e-Inf150101

Dataflow approach to testing Java programs
supported with DFC

Ilona Bluemke∗, Artur Rembiszewski∗
∗Institute of Computer Science, Warsaw University of Technology

I.Bluemke@ii.pw.edu.pl, a.rembiszewski@gmail.com

Abstract
Code based (“white box”) approach to testing can be divided into two main types: control
flow coverage and data flow coverage methods. Dataflow testing was introduced for structural
programming languages and later adopted for object languages. Among many tools supporting
code based testing of object programs, only JaBUTi and DFC (Data Flow Coverage) support
dataflow testing of Java programs. DFC is a tool implemented at the Institute of Computer Science
Warsaw University of Technology as an Eclipse plug-in. The objective of this paper is to present
dataflow coverage testing of Java programs supported by DFC. DFC finds all definition-uses pairs
in tested unit and provides also the definition-uses graph for methods. After the execution of test
information which def-uses pairs were covered is shown. An example of data flow testing of Java
program is also presented.

1. Introduction

One of the key issues in developing software
systems is effective testing. Popular approaches
to testing include “black box” and “white box”.
Black-box and white-box testing are complemen-
tary to each other in the sense that they are likely
to uncover different classes of faults. Black-box
testing focuses on the functional requirements of
the software. It aims at faults related to incorrect
or missing functions, interface errors, behavior
or performance errors and initialization and ter-
mination errors. White-box testing focuses on
the internal structure of the program, to guar-
antee that all independent paths within a code
have been executed at least once, exercise all
logical decisions on their true and false sides,
execute all loops at their boundaries and within
their operational bounds and exercise internal
data structures. White box approach can be di-
vided into two main types: data flow coverage
methods and control flow coverage. Control flow
coverage methods were studied e.g. by Wood-

ward and Hennell (2006) [1], Malevris and Yates
(2006) [2].

The idea of data flow testing has been pro-
posed in the seventies by Herman (1976) [3]. In
this testing relationships between data are used
to select the test cases.

Although experiments conducted in 1999 by
Mei-Hwa Chen, Kao H.M. [4] show, that dataflow
testing applied to object programs can be very
effective this approach is not widely used for
object programs. Among many tools support-
ing code based testing of object programs, only
JaBUTi [5] supports dataflow testing of Java
programs. At the Institute of Computer Science,
Warsaw University of Technology, a tool, called
DFC (Data Flow Coverage), for dataflow test-
ing of Java program was implemented. DFC is
implemented as an Eclipse plug-in so can be
used with other testing tools available in eclipse
environment.

The objective of this paper is to present
dataflow coverage testing of Java programs
supported by DFC. Introduction to dataflow

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_9/eInformatica2015Art1.pdf

10 Ilona Bluemke, Artur Rembiszewski

approach and related work is given in sec-
tion 2. DFC, presented in section 3, finds all
definition-uses pairs in tested unit (section 2) and
provides also the definition-uses graph for meth-
ods. After the execution of the test, the tester is
provided with information which def-uses pairs
were covered so she/he can add new tests for not
covered pairs. The tester decides which methods
are changing the state of an object. Such ap-
proach is novel and not available in other testing
tools. In section 4 an example of Java program
is used to explain the data flow coverage testing.
Advantages and disadvantages of data flow test-
ing of Java programs are also discussed. Section
5 contains some remarks.

2. Dataflow testing

In structural testing, also called “white box” test-
ing, the tests are derived from the source code.
Structural testing methods can be divided into
two categories: code coverage and data flow cov-
erage. Each of these techniques includes several
criteria that define specific requirements that
should be satisfied by the test set. Requirements
determined by a testing criterion may be used
either for the test set evaluation or the test set
generation. In code coverage methods the test
data may be chosen e.g. to execute all statements
in the code (statement coverage), or to traverse
all branches (branch coverage). Both control-flow
and data-flow based testing criteria were origi-
nally defined to test procedural programs, they
were also extended to object oriented programs.
The adequacy of the testing activity is related
to the determination of the effectiveness of a
test criterion. Test effectiveness is related to the
task of creating the smallest test set for which
the output indicates the largest set of failures.
The idea of data flow testing has been intro-
duced by Herman (1976) [3]. Later, it was also
studied by Laski and Korel (1983) [6]. Rapps
and Weyuker (1985) [7] showed how to select
test data using data flow information. Ostrand
and Weyuker (1991) [8] were analyzing the test
adequacy in data flow testing. Further research
in data flow testing was also made by e.g. Har-

rold and Rothermel (1994) [9], Harold and Soffa
(1989) [10], Vincenzi, Maldonado, Wong and De-
lamaro (2005) [11], Laski and Stanley (2009) [12].
Quite recently new methods were proposed by
Chaim and de Araujo (2013, 2014) [13,14] and
Vivanti (2014) [15].

In data flow testing the relations between
data are the basis to design test cases. Different
sub-paths from definition of a variable (assign-
ment) into its use are tested.

A definition-use pair (def-u) is an ordered
pair (d, u), where d is a statement containing
definition of a variable v, and u a statement
containing the use of v or some memory location
bound to v that can be reached from d over some
program path.

Test criteria are used to select particular
definition-use pairs. A test satisfies a def-u pair,
if executing the program with this test causes
traversal of a sub-path from the definition to the
use of this variable v without any v redefinition. A
def-u pair is feasible if there exists some program
input being able to exercise the pair.

Data-flow testing criteria proposed by Rapps
and Weyuker [7] use the def-use graph (DUG),
which is an extension of the control flow graph
(CFG) with information about the set of vari-
ables defined – def() and used – use() in each
node/edge of the CFG. An example of DUG
for code in Listing 1 is presented in Figure 1.
A program can be uniquely decomposed into a
set of disjoint blocks having the property that
if the first statement of the block is executed,
the other statements are executed in the given
order. The first statement of the block is the only
statement which may be executed directly after
the execution of a statement in another block.
The last statement is the only one which may
have a successor in the execution outside the
block. Every conditional transfer must be the
last statement of a block. The program graph
G representing a program consists of one node
i corresponding to each block bi of the program
and an edge from node j to node k, denoted (j,
k), if and only if either the last statement of bi

is not an unconditional transfer and it physi-
cally precedes the first statement of bk, or the
last statement of bi is a transfer whose target

Dataflow approach to testing Java programs supported with DFC 11

Figure 1. DUG for code given in Listing 1

is the first statement of bk. The node correspond-
ingto the block whose first statement is the start
statement of the program is the start node and
has no predecessors. A node corresponding to a
block whose final statement is a halt statement is
known as an exit node and has no successors. In
addition, a node has two successors if and only
if, the final statement of its corresponding block
is a conditional transfer. All transfer statements

should be effective, it means that two successors
are different nodes. For every pair of nodes i and
j, there is at most one edge from node i to node
j. A path can be represented as a finite sequence
of nodes.

In data flow testing the path selection cri-
teria are based on an investigation of the ways
in which values are associated with variables,
and how these associations can affect the exe-
cution of the program. This analysis focuses on
the occurrences of variables within the program.
Each variable occurrence is classified as being a
definitional (def), computation-use (c-use), or
predicate-use (p-use) occurrence.

The def/use graph (DUG) is constructed from
a program graph by associating with each node i
the set of variables for which this node i contains
a definition def(i) and the c-use(i) (the set of
variables for which node i contains a c-use). The
edge (i, j) of DUG is associated with p-use(i, j)
(the set of variables for which edge (i, j) contains
a p-use).

Many def-u criteria have been proposed
and compared. First criteria introduced by
Rapps and Weyuker contain e.g.: all-nodes,
all-edges, all-defs, all-du-paths, all-p-uses,
all-c-uses/some-p-use.

The criterion, called all-defs states, that for
each DUG node i and all variables v, v ∈ def(i)
(defined in this node) at least one path (i, j) is
covered. In node j this variable is used v ∈ use(j)
and on this path the variable v is not redefined.

The decision of which criterion to use as a
basis for test data selection depends on several
factors, including the size of the program, time
and cost requirements and consequence of failure.
The “stronger” the selected criterion, the more
closely the program is scrutinized in an attempt
to locate program faults but a “weaker” criterion
can be fulfilled, using fewer test cases. The crite-
ria all-nodes (statement coverage) and all-edges
(branch coverage) are often used in program test-
ing despite the fact that it is well known that
they are weak criteria. Certainly they represent
necessary conditions, for if some portion of the
program has never been executed, one would not
in general feel confident about its behavior. A
similar intuition motivated Rapps and Weyuker

12 Ilona Bluemke, Artur Rembiszewski

in the definition of all-defs criterion. Even if every
statement and branch had been executed, if the
result of some computation had never been used,
one would have little evidence that the intended
computation had been performed.

The all-uses criterion requires that test data
force some path to be traversed between every
definition and each of its uses. Stronger require-
ment is that test data cause every path between
a definition and its uses to be traversed. If the
program contains loops, there may be infinitely
many such paths. Rapps andWeyuker “strongest”
criterion, all-du-paths, requires that test data
cause the traversal of every du-path between a
definition and each of its uses, thus avoiding this
problem. Rapps and Weyuker also proved inclu-
sion between the test criteria shown in Figure 2.

Figure 2. Inclusion of data flow test criteria (Rapps
and Weyuker 1985 [7])

The dataflow technique described above was
dedicated to structural programming languages
and does not consider dataflow interactions that
arise when methods are invoked in an arbitrary
order. Harold and Soffa elaborated in 1989 [10]
the inter–procedural data flow testing. They pro-
posed an algorithm, called PLR, to find def-u
pairs if the variable definition is introduced in
one procedure, and the variable usage is in called
or calling procedures. The algorithm works on
inter–procedural control flow graph built from

control flow graphs of dependent procedures.
A call site is replaced by a call and a return
node. The control flow graphs are connected
by added edges from the call node to the en-
try nodes and from exit nodes to the return
nodes to represent procedure calls in the pro-
gram. A special entry node represents the en-
try to the “main” procedure of the program.
The PLR algorithm first computes the defini-
tion and alias information for each procedure.
Then, using the dataflow framework, propagates
the local information to obtain inter–procedural
reaching definitions from which inter–procedural
def-use pairs can be calculated. This method
can be adapted to global variables, class at-
tributes and referenced method arguments in
testing object programs. The def-use pairs can
be used to test the possible interactions be-
tween methods. Data flow approach to test
classes gives opportunities to find errors in classes
that may not be uncovered by functional test-
ing.

For object programs Harrold and Rothermel
proposed in 1994 [9] three levels of dataflow test-
ing:
– Intra-method level is based on the basic

Rapps and Weyuker algorithm, is performed
on each method individually; class attributes
and methods interactions can not be taken
into account. This level of testing is equiva-
lent to unit testing in procedural language
programs.

– Inter-method tests are applied to public
method together with other methods in its
class that it calls directly or indirectly. def-u
pairs for class attributes can be found in this
approach. This level of testing is equivalent
to integration testing of procedures in proce-
dural language programs.

– Intra-class – interactions of public methods
are tested, when they are called in various
sequences. The set of possible public methods
calls sequences is infinite so only a subset of
it is tested. Since users of a class may invoke
sequences of methods in indeterminate or-
der the intra-class testing can increase the
confidence that sequences of calls interact
properly.

Dataflow approach to testing Java programs supported with DFC 13

For each of the above described testing lev-
els appropriate def-u pairs were defined by Har-
rold and Rothermel (1994) [9] i.e. intra-method,
inter-method and intra-class.

3. DFC – a tool for data flow testing

The process of testing software is extremely ex-
pensive in terms of labour, time and cost so many
tools supporting this process have been devel-
oped but we found only one – JaBUTi [5], dedi-
cated to the dataflow testing of Java programs
(when we started the research in 2008). Dataflow
testing of object programs can reveal many errors.
An experiment described by Mei-Hwa Chen and
Kao in 1999 [4], shows, that in the dataflow test-
ing of C++ programs, the number of detected
errors was four times greater, than in other code
coverage methods i.e. instructions and conditions
coverage. The results of this experiment moti-
vated us to build a tool for the dataflow testing
of Java programs.

Dataflow testing can’t be applied in isolation
so we decided to implement a tool supporting
this approach, DFC – Data Flow Coverage (Fig-
ure 3), as an Eclipse plug-in. In Eclipse Java
programming environment and testing tools e.g.
JUnit are available. DFC finds all def-u pairs in
testing Java code and after the test provides the
tester information which def-u pairs were cov-
ered. Based on this information tester can decide
which coverage criteria should be used and add
appropriate test cases (shown in section 4). In
preparing the test cases the tester can also use
def-use graph (DUG) for a method provided by
DFC.

Figure 3. DFC menu

In object languages the dataflow testing ideas
proposed for structural languages must be modi-
fied. One of the main problems which must be
solved is the identification which method is able

to modify the object state and which one is us-
ing it only. In DFC def-u pairs are intra-method.
Definitions of class attributes are located in the
first node of DUG graph of tested method. The
first node of DUG also contains definitions of
arguments of the tested method.

Definitions of variable x are e.g.:
1. int x; Object x; x = 5; x = y; x = new Object();

x=get_object(param);
2. x is an object and a state modifying method

is called in its context:
x.method1();

3. x is an object and one of its attributes is
modified:
x.a = 5;
An instruction uses a variable x e.g.:

1. its value is assigned:
w = 2*x; x++;

2. x is an object and a reference is used in an
instruction:
w=x; method1(x); if (x == null)

3. x is an object and a method using state of
this object is called in its context:
x.method1();

4. x is an object and one of its attributes is used
in an instruction:
w = 2*x.a;

In DFC the tester can decide which method is
defining and which one is using the object state.

In Figure 4 the main parts of DFC and its
collaboration with Eclipse environment are pre-
sented. The modules of DFC are denoted by bold
lines.

The input for DFC is the Java source code
(SRC in Figure 4). DFC user has to identify
which file will be tested and indicate it to DFC.
Module Knowledge base analyses the source code
and generates the list of classes and methods. On
this list tester may mark methods as modifying or
using object state. The module Instrumentation
instruments source code i.e. adds extra instruc-
tions needed for finding dataflow coverage and
builds def-use graph (DUG). DUG (example for
source code from Listing 1 is shown in Figure 1)
contains information concerning the control flow,
variable definitions and usage in its nodes. DUG
is the input for module Visualization, drawing
the graph, and Requirements – finding all def-u

14 Ilona Bluemke, Artur Rembiszewski

Table 1. Test cases for method doShopping

Method Test Cases

Name 1 2 3 4 5 6 7

addVat false true false false true false false
minSumForDiscount 200 200 20 200 20 200 200
vatPercent 20 20 20 20 20 20 20
customer. item1, item1, item1, item1, item1, item1,
needItems item5 item5 item5 item5 item5 item5
customer. 10 10 10 10 10 10 10
getDiscountPercent ()
customer. 100 100 100 100 100 50 100
getMoneyAmount()
customer.isSpecial() false false true true true false false

Figure 4. The idea of testing with DFC

pairs. The constructed DUG graph is presented
after pressing Show DUG button in the DFC menu
(Figure 3). Instrumented code should be com-
piled and run in the Eclipse environment and for
these activities the programmer is responsible.
During the test execution, extra code added by
Instrumentation module sends data concerning
the coverage to DFC. Module Analyzing is locat-

ing covered and not covered def-u pairs. More
details on DFC implementation and its usage
were described by Rembiszewski (2009) [16] and
by Bluemke, Rembiszewski (2012) [17].

4. Example

In this section the dataflow testing of Java code
is presented in a small example. In Listing 1
the source code of the method doShopping from
class Shop is shown. This method was tested
with the DFC tool. The DUG for this method
is shown in Figure 1. The all-defs coverage cri-
terion was used. In Table 1 the test cases are
listed. Column “Name” contains the name of vari-
able or method returning the private attribute.
Following columns contain the values used in
test cases. In objects of class Item the method
getPrice returns 10 for variable item1 and 50
for item5. Testing of code, shown in Listing 1,
was performed in two phases. In the first phase
the def-use chains were covered. In DFC all meth-
ods were initially identified as not modifying
the state of object and using it (similarly as in
JaBUTi [5]).

Listing 1 Method doShopping from class
Shop
25) public Bill doShopping(Customer customer) {
26) Bill bill = new Bill();
27)
28) for (int i=0; i<items.size(); i++) {
29) Item item = items.get(i);
30) if (customer.need(item))

Dataflow approach to testing Java programs supported with DFC 15

31) bill.add(item.getPrice());
32) }
33)
34) double vatAmount = (vatPercent/100) *

bill.getTotalSum();
35) double discountAmount = bill.getTotalSum() *

(customer.getDiscountPercent()/100);
36)
37) if (addVat) {
38) bill.add(vatAmount);
39) }
40)
41) if (customer.isSpecial()) {
42) if (bill.getTotalSum() > minSumForDiscount) {
43) bill.subtract(discountAmount);
44) }
45) }
46)
47) bill.close();
48)
49) if (bill.getTotalSum() <= customer.getMoneyAmount()) {
50) bill.pay();
51) customer.getFromAcount(bill.getTotalSum());
52) } else {
53) bill.cancel();
54) }
55)
56) return bill;
57) }

When the full coverage of all-defs pairs was
achieved, DFC was reconfigured; the methods
modifying state of object and using it were
marked as shown in Figure 5 (such functionality
is not available in JaBUTi [5]). The DUG graph
after this modification is presented in Figure 6.

After the re–execution of tests new test cases,
for not covered def-use pairs were added. The
test results are given in Table 2.

Column “Definition” shows the name and
line number containing the definition. If a line
contains two definitions (e.g. line 28) of the same
variable, after comma the column of definition
is given. Definitions 1–11 were found in the first
phase, while definitions 12–18 in the second one.
It can be noticed, that definitions found in the
first phase are the subset of definitions found in
the second phase. Column “Test cases” n, contain

Figure 6. DUG for code in Listing 1 after the
indication of methods changing object state

16 Ilona Bluemke, Artur Rembiszewski

Table 2. The results of tests for method doShopping

Definition Test Cases
Name Line 1 2 3 4 5 6

1 items 13 Y(29) Y(29) Y(29) Y(29) Y(29) Y(29)
2 addVat 14 N Y(37) Y(37) Y(37) Y(37) Y(37)
3 minSumForDiscount 15 N N N Y(42) Y(42) Y(42)
4 vatPercent 16 Y(34) Y(34) Y(34) Y(34) Y(34) Y(34)
5 customer 25 Y(30) Y(30) Y(30) Y(30) Y(30) Y(30)
6 bill 26 Y(31) Y(31) Y(31) Y(31) Y(31) Y(31)
7 i 28,11 Y(28) Y(28) Y(28) Y(28) Y(28) Y(28)
8 i 28,32 Y(28) Y(28) Y(28) Y(28) Y(28) Y(28)
9 item 29 Y(30) Y(30) Y(30) Y(30) Y(30) Y(30)
10 vatAmount 34 N Y(38) Y(38) Y(38) Y(38) Y(38)
11 discountAmount 35/39 N N Y(43) Y(43) Y(43) Y(43)

12 bill 31 Y(34) Y(34) Y(34) Y(34) Y(34) Y(34)
13 bill 38/37 N N N N Y(43) Y(43)
14 bill 43 – – – – – –
15 bill 47 N N N N N Y(49)
16 bill 50 Y(51) Y(51) Y(51) Y(51) Y(51) Y(51)
17 bill 53 N N N N N Y(56)
18 customer 51 – – – – – –

Coverage – phase 1 64% 82% 91% 100% 100% 100%
Coverage – phase 2 56% 69% 75% 81% 87% 100%

Figure 5. Configuration screen in DFC

letter Y, if this definitions is in covered def-use
pairs in test cases 1 or 2 or . . . , n. In brackets
the line number of the covered usage is given.
Letter N in column of Table 2 means, that the
covered pair does not contain this definition and
char “–” is written, if reachable usage for this
definition does not exist.

In the last two rows (Table 2) the dataflow
coverage for the two phases are calculated. This
coverage was calculated as the percentage of cov-

ered pairs to all, possible to cover pairs. The first
phase needed the first four test cases to cover all
def-use pairs. In the second phase the methods
modifying the state of object and using it were
marked manually in DFC on a screen shown in
Figure 5. The same four test cases produced the
coverage only 81% so some new test cases have
to be constructed. The test case number 5
revealed an error in doShopping method. In this
test case vat is added to the bill and the client

Dataflow approach to testing Java programs supported with DFC 17

receives also a discount. In the code (Listing 1)
the discount is calculated before the vat is added
instead of being calculated after. The modified
code is given in Listing 2. We tried not to change
the line numbering as much as possible. In Ta-
ble 2, in rows 11 and 13, the new line numbers
are following slash character. After the modi-
fication all test were re–executed and another
test case, number 6, was added to obtain the
100% coverage. In this example we showed, that
the identification which method is modifying the
object’s state forced the tester to add a test case
revealing an error.

In the code given in Listing 1, for defini-
tion of bill in line 43 and customer in line 51
no reachable usage exist. According to dataflow
coverage rules applied to structural languages
such situation can be seen as anomalies in the
code. In object programs such situation is not
an indicator of code anomalies. The bill is also
defined in line 47. For simple variable two suc-
cessive assignments are incorrect, the second
one, erases the first one. For an object vari-
able successive assignments e.g. changing ob-
ject’s state, may be reasonable. The customer,
defined in line 51 is not used in the method.
This is not an indicator of code anomalies
because customer is referenced argument of
doShopping method and can be used outside
this method.

The success of testing (phase 2) strongly de-
pends on the correct identification of methods
defining and using the object’s state. The test
cases 1–6 from Table 1 are not testing program
execution if bill is empty. This is tested in
test case 7. This test case would be executed
if the method adds in class Bill is marked as
modifying object but not using it. To cover the
definition of bill in line 26 (Listing 1 and Table
2) instruction in line 34 should be executed but
the redefinition in line 31 should be skipped. In
this example the simple coverage criteria all-defs
was used. Other coverage criteria e.g. all-uses
can reveal the error in the method doShopping
without manually setting which method is modi-
fying, and which one is only using the state of
object.

Listing 2 Modified method doShopping
25) public Bill doShopping(Customer customer) {
26) Bill bill = new Bill();
27)
28) for (int i=0; i<items.size(); i++) {
29) Item item = items.get(i);
30) if (customer.need(item))
31) bill.add(item.getPrice());
32) }
33)
34) double vatAmount = (vatPercent/100) *

bill.getTotalSum();
35)
36) if (addVat) {
37) bill.add(vatAmount);
38) }
39) double discountAmount = bill.getTotalSum() *

(customer.getDiscountPercent()/100);
40)
41) if (customer.isSpecial()) {
42) if (bill.getTotalSum() > minSumForDiscount) {
43) bill.subtract(discountAmount);
44) }
45) }
46)
47) bill.close();
48)
49) if (bill.getTotalSum() <=

customer.getMoneyAmount()) {
50) bill.pay();
51) customer.getFromAcount(bill.getTotalSum());
52) } else {
53) bill.cancel();
54) }
55)
56) return bill;
57) }

4.1. DFC and JaBUTi

In JaBUTi [5] every call of a method in the
context of an object variable is treated as using
object state. In DFC a method call is treated
as using the object state if the state of object
variable is not changed. Let’s look at a small
example given in Listing 3.

18 Ilona Bluemke, Artur Rembiszewski

Listing 3 Simple example
1) a = new Object();
2) if(....)
3) a.setState(...);
4) a.m();

JaBUTi will not notice the coverage of def-use
pair in lines (3,4). In DFC it is possible, if the
setState method is correctly indicated as modi-
fying the object state. This simple example shows,
that DFC is able to treat more instructions as
defining, thus is able to show the coverage of
greater number of def-use pairs and more errors
can possibly be detected.

5. Conclusions

Many authors e.g. Beizer [18] suggest that effec-
tive testing can be achieved if different testing
approaches e.g. functional and structural are used.
In the development of software systems thorough
testing can be the crucial issue. In this paper we
presented DFC, an Eclipse plug-in, designed and
implemented at the Institute of Computer Sci-
enceWarsawUniversity ofTechnology, supporting
dataflow testing of Java methods. By supporting
dataflow testing of Java classes we provide oppor-
tunities to find error that may not be uncovered by
black box testing. InEclipse environment there are
other tools available for testing Java programs us-
ing different techniques e.g. JUnit [19], EclEmma
[20] or TPTP [21]. EclEmma provides information
about instruction coverage. In DFC tester can de-
sign tests to achieve e.g. def-uses or all-uses cover-
age criteria which also guarantee instruction cover-
age (as proved by Rapps andWeyuker in 1985 [7]).

It has been shown that the data flow is an effec-
tive testing technique (e.g. in 1994 Hutchins et.al.
[22]), very useful to fault localization (e.g. in
2009 Santelices et.al. [23]) but it is not used in
industry. This phenomenon can be explained by
the fact, that tools supporting data flow testing
are not scalable for large systems due to the costs
associated with tracking def-u associations at
the run time. Recently (2013), Chaim and de
Araujo [13] proposed a novel algorithm, called Bit-
wise Algorithm (BA) to tackle this problem. The

new algorithm utilizes efficient bitwise operations
and data structures to track the intra procedural
def-u. They also showed, that BA is at least as
good as the most efficient data flow instrumen-
tation techniques, and that it can be up to 100%
more efficient. In 2014 de Araujo and Chaim [14]
presented the BA implementation for programs
compiled into byte codes. Maybe theirs results
will encourage vendors to consider including data
flow testing in commercial testing tools.

In 2011 Bluemke and Kulesza [24] compared
the dataflow and the mutation testing of several
Java programs. Experiments were conducted in
the Eclipse environment. DFC plugin was used to
support the dataflow testing while MuClipse [25]
and Jumble [26] pluginswere used for themutation
testing. The results of testing six Java programs us-
ing data flow andmutation techniques shown, that
the effectiveness of mutation testing is higher than
the effectiveness of dataflow testing. Mutation
technique appeared also to bemore expensive than
the data flow one, if time and effort are considered.

Finally, we outline the direction for the fu-
ture research. An interesting and important study
would be to applyDFC to industry projects to eval-
uate the cost andbenefits of dataflowbased criteria
in testing Java programs. Unfortunately during
several years we are not able to find interest on this
subject in software industry (the tool is available
for free and only three researchers from university
downloaded it, none from industry). One of the
reasons may by the effort needed in this approach.
In DFC tester manually identifies defining and
using methods (Figure 4). However this process
is time consuming, we are not going to make it
automatically. To identify, if a method is defining
or using object state, the analysis of the source
codemust be performed. In complex, industry pro-
grams, many libraries are used so the access to the
source code is limited.Decompilation of the library
code preceding the analysis process, or the compar-
ison of the value returned by hashCode() before
and after the method call (this approach needs
additional code instrumentation and re–execution
of test cases)might be the solution. Comparing the
effort needed with the possible results obtained,
we think it is not worthy to implement these
approaches. In JaBUTi [5], other tool supporting

Dataflow approach to testing Java programs supported with DFC 19

dataflow testing of Java program, every call of
amethod is treated as using object state. In section
4 we have demonstrated by example, that for some
programs the identification of methods defining
object’s state enables to find more errors.

References

[1] M. R. Woodward and M. A. Hennell, “On the
relationship between two control-flow coverage
criteria: all jj-paths and mcdc,” Information and
Software Technology, Vol. 48, No. 7, 2006, pp.
433–440.

[2] N. Malevris and D. F. Yates, “The collateral cov-
erage of data flow criteria when branch testing,”
Information and Software Technology, Vol. 48,
No. 8, 2006, pp. 676–686.

[3] P. Herman, “A data flow analysis approach to
program testing,” Australian Computer Journal,
Vol. 8, No. 3, 1976, pp. 92–96.

[4] M.-H. Chen and H. M. Kao, “Testing
object-oriented programs-an integrated ap-
proach,” in Software Reliability Engineering,
1999. Proceedings. 10th International Symposium
on. IEEE, 1999, pp. 73–82.

[5] Jabuti homepage. (Accessed 12.2007). [Online].
http://jabuti.incubadora.fapesp.br/

[6] J. W. Laski and B. Korel, “A data flow oriented
program testing strategy,” Software Engineering,
IEEE Transactions on, No. 3, 1983, pp. 347–354.

[7] S. Rapps and E. J. Weyuker, “Selecting software
test data using data flow information,” Software
Engineering, IEEE Transactions on, No. 4, 1985,
pp. 367–375.

[8] T. J. Ostrand and E. J. Weyuker, “Data
flow-based test adequacy analysis for languages
with pointers,” in Proceedings of the sympo-
sium on Testing, analysis, and verification. ACM,
1991, pp. 74–86.

[9] M. J. Harrold and G. Rothermel, “Performing
data flow testing on classes,” in ACM SIGSOFT
Software Engineering Notes, Vol. 19, No. 5. ACM,
1994, pp. 154–163.

[10] M. J. Harrold and M. L. Soffa, “Interprocedual
data flow testing,” in ACM SIGSOFT Software
Engineering Notes, Vol. 14, No. 8. ACM, 1989,
pp. 158–167.

[11] A. M. R. Vincenzi, J. C. Maldonado, W. E.
Wong, and M. E. Delamaro, “Coverage testing
of java programs and components,” Science of
Computer Programming, Vol. 56, No. 1, 2005, pp.
211–230.

[12] J. Laski and W. Stanley, Software verification
and analysis: An integrated, hands-on approach.
Springer Science & Business Media, 2009.

[13] M. L. Chaim and R. P. A. De Araujo, “An
efficient bitwise algorithm for intra-procedural
data-flow testing coverage,” Information Process-
ing Letters, Vol. 113, No. 8, 2013, pp. 293–300.

[14] R. P. A. d. Araujo and M. L. Chaim, “Data-flow
testing in the large,” in Software Testing, Verifi-
cation and Validation (ICST), 2014 IEEE Sev-
enth International Conference on. IEEE, 2014,
pp. 81–90.

[15] M. Vivanti, “Dynamic data-flow testing,” in
Companion Proceedings of the 36th International
Conference on Software Engineering. ACM, 2014,
pp. 682–685.

[16] A. Rembiszewski, “Data flow coverage of object
programs,” Master’s thesis, Institute of Com-
puter Science, Warsaw University of Technology,
2009, (in Polish).

[17] I. Bluemke and A. Rembiszewski, “Dataflow
testing of java programs with dfc,” in Advances
in Software Engineering Techniques, ser. Lec-
ture Notes in Computer Science, T. Szmuc,
M. Szpyrka, and J. Zendulka, Eds. Springer
Berlin Heidelberg, 2012, Vol. 7054, pp. 215–228.
[Online]. http://dx.doi.org/10.1007/978-3-642-
28038-2_17

[18] B. Beizer, Software system testing and quality
assurance. Van Nostrand Reinhold Co., 1984.

[19] Junit homepage. (Accessed 12.2008). [Online].
http://www.junit.org/

[20] Eclemma 1.2.0. (Accessed 04.2008). [Online].
http://www.eclemma.org/

[21] Tptp: Eclipse test & performance tools
platform project. (Accessed 2008). [Online].
http://www.eclipse.org/tptp/

[22] M. Hutchins, H. Foster, T. Goradia, and T. Os-
trand, “Experiments of the effectiveness of
dataflow-and controlflow-based test adequacy
criteria,” in Proceedings of the 16th international
conference on Software engineering. IEEE Com-
puter Society Press, 1994, pp. 191–200.

[23] R. Santelices, J. A. Jones, Y. Yu, and M. J.
Harrold, “Lightweight fault-localization using
multiple coverage types,” in Software Engineer-
ing, 2009. ICSE 2009. IEEE 31st International
Conference on. IEEE, 2009, pp. 56–66.

[24] I. Bluemke and K. Kulesza, “A comparison of
dataflow and mutation testing of java methods,”
in Dependable Computer Systems. Springer, 2011,
pp. 17–30.

[25] Muclipse homepage. (Accessed 01.2011). [On-
line]. http://muclipse.sourceforge.net/index.php

[26] Jumble homepage. (Accessed 12.2008). [Online].
http://jumble.sourceforge.net/index.ht

http://jabuti.incubadora.fapesp.br/
http://dx.doi.org/10.1007/978-3-642-28038-2_17
http://dx.doi.org/10.1007/978-3-642-28038-2_17
http://www.junit.org/
http://www.eclemma.org/
http://www.eclipse.org/tptp/
http://muclipse.sourceforge.net/index.php
http://jumble.sourceforge.net/index.ht

	Introduction
	Dataflow testing
	DFC – a tool for data flow testing
	Example
	DFC and JaBUTi

	Conclusions
	References

