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Abstract

Refactoring is performed to improve software quality while leaving the behaviour of the system
unchanged. In practice there are many opportunities for refactoring, however, due to conflicts and
dependencies between refactorings, only certain orders of refactorings are applicable. Selecting
and ordering an appropriate set of refactorings is a challenging task for a developer. We propose a
novel automated approach to scheduling refactorings according to their conflicts and dependencies
as well as their contribution to design quality expressed by a desired design. The desired design
is an improved version of the current program design, and is produced by the developer. Our
approach is capable of detecting conflicts and dependencies between refactorings, and uses a
sequence alignment algorithm to identify the degree of similarity between two program designs
expressed as sequence of characters, thereby measuring the contribution of a refactoring to achiev-
ing the desired design. We evaluated our approach on several sample programs and one non-trivial
open source application. Our results demonstrate the ability of the approach to order the input
refactorings so as to achieve the desired design even in the presence of intense inter-refactoring
conflict and dependency, and when applied to a medium-sized, real-world application.
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1. Introduction

Refactoring is performed to improve the qual-
ity of the software in some way. It may involve
floss refactoring, where minor improvements are
applied frequently, typically several times a day,
or it may involve remedial refactoring1 where a
more significant design overhaul takes place [1].
In this paper we are concerned with automated
refactoring support for the remedial refactoring
scenario. A developer performing remedial refac-
toring typically has a notion of a desired design
that they are refactoring the program towards.
This desired design may come about by way of

an interactive design process, as in the work of
Simons et al. [3, 4] or it may be created by the
intellectual effort of the developer [5, 6]. Either
way, the challenge the developer faces is that of
refactoring the program from its current design
to its new, desired design.

In earlier work, we presented an approach
to refactor a program based both on its desired
design and on its source code [5]. In this work,
a new UML-based desired design is first created
by the developer based on the current software
design and their understanding of how it may be
required to evolve. The resulting design is then
compared with the original one using a differenc-

1 Termed ‘root canal’ refactoring by Murphy-Hill et al. [1] and ‘batch mode’ refactoring by Liu et al. [2]. Liu et
al. [2] provide strong evidence of the practical importance of this type of refactoring.
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ing algorithm [7], and the detected differences
are expressed as refactoring instances. The origi-
nal source code is then refactored using a heuris-
tic approach based on the detected refactorings
to conform more closely to the desired design [5].
Overall, the process of refactoring the program
to comply with its desired design involves three
distinct steps as follows:
1. The developer must decide what refactorings

are required to bring the program from its
current design to its desired design.

2. They must decide in what order the refac-
torings should be applied.

3. The refactorings must then be applied to the
program in this sequence.
As mentioned, recent work has sought to au-

tomate this refactoring process. For example,
UMLDiff [7, 8] is a tool that addresses step (1)
by detecting what refactorings are required to
bring a program design from its current state to
a new desired design. Step (3) is supported by
a broad range of refactoring tools that apply in-
dividual refactorings, such as the Eclipse Refac-
toring Tools, and also by more sophisticated re-
search prototypes, such as Code-Imp, that can
apply a series of refactorings guided by a fitness
function [9]. The focus of this paper however, is
step (2), the ordering of the refactorings into a
valid sequence.

Given a set of refactorings, finding a valid
sequence in which they may be applied is
a non-trivial problem. A refactoring is charac-
terised by a precondition and a postcondition.
The precondition determines if the refactoring
may be applied, and the postcondition states
what the result of applying the refactoring is,
assuming its precondition was true when it was
applied. A refactoring may be applicable to the
initial program, but if it is not applied then, an-
other refactoring in the sequence may render it
inapplicable. Conversely, a refactoring may be
inapplicable to the initial program, but another
refactoring in the sequence may render it ap-
plicable later on. These observations have led
to the notions of conflict and dependency in
a refactoring sequences [10,11]. Two refactorings
are in conflict if they cannot both be applied to
the program, e.g. a method cannot be moved

to a deleted class. A dependency exists between
two refactorings if they can only be applied in
a particular order, e.g. a refactoring that creates
a new class must be executed before a refac-
toring that moves a method to that new class.
Precise definitions of these terms are provided
in Section 3.2.

The question addressed in this paper then
is as follows. Given a set of proposed refactor-
ings that are to be applied to a program so as
to bring its design to a desired state, how can
the refactorings be ordered such that they can
be applied to the program while respecting the
constraints imposed by the conflicts and depen-
dencies that may exist between the refactorings
in the set? To answer this question, we propose
an automated refactoring scheduling approach
that finds a valid order of the refactorings in
the set, according to their conflict and depen-
dency relationships as well as their contribution
to achieving the desired design. The main con-
tribution of this paper is two-fold:
– We extend the refactoring scheduling algo-

rithm proposed by Liu et al. [10] by con-
sidering not just conflicts between refactor-
ings but also dependencies. Furthermore, we
take into account a type of refactoring con-
flict not handled in the work of Liu at al.,
where the application of one refactoring vi-
olates the precondition of another. We refer
to this algorithm as REDaCT (REfactoring
Dependency and ConflicT).

– We develop the idea of refactoring to a de-
sired design, introduced by the authors in
earlier work [5], and show how it can be used
to guide the refactoring process more effec-
tively. In particular we measure not only the
effect of a refactoring in terms of its direct
contribution to achieving the desired design,
but also its indirect contribution in terms of
the refactorings it enables and disables. This
extension to the REDaCT algorithm is re-
ferred to as REDaCT+.
The remainder of this paper is structured as

follows. Section 2 presents a motivating example
to illustrate the necessity of scheduling refactor-
ings. In Section 3 we deal with preliminaries by
providing a brief description of the software tool
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(a) The initial design (b) The desired design

Figure 1: UML class diagrams of an Event application

upon which our approach is based, Design-Imp,
and defining precisely our notions of conflict and
dependency. The proposed scheduling approach
to find a valid order between the set of refactor-
ings according to their conflict and dependency
relationships, REDaCT, is explained in Section
4, while in Section 5 the REDaCT+ algorithm is
presented which extends REDaCT by consider-
ing the direct and indirect contribution of each
refactoring to achieving the desired design. In
Section 6 the REDaCT and REDaCT+ algo-
rithms are evaluated on a number of examples.
A survey of related work is presented in Sec-
tion 7, while in Section 8 we conclude the paper
and provide some suggestions for future work.

2. Motivating Example

Consider as a motivating example, the simpli-
fied UML class diagrams shown in Figure 1.
The design in Fig. 1a represents the original
design while the design in Fig. 1b represents
the desired design that the developer would
like the program to have. We applied the de-
sign differencing approach proposed by the au-
thors in earlier work [5] that takes as input two
UML class diagrams and then uses a UML de-
sign differencing algorithm to find differences
between the designs and categorises these as
refactoring instances. In other words, the ap-

proach returns the refactorings that are required
to bring a program design from its current
state to a new desired design. In this exam-
ple, the desired design is achieved after apply-
ing 15 refactorings to the initial design as fol-
lows:
R1,R2: Two classes, Event and Concert, are
added to the design using Extract Hierarchy and
Extract Subclass refactorings respectively.
R3,R4: Field address and method setAddress,
both in class Entertainment, are renamed to lo-
cation and setLocation using Rename Field and
Method refactorings respectively. These refac-
torings prepare the application of refactorings
R7 and R10 described below.
R5,R6,R7: The location fields in classes Discus-
sion and Reading and the field address in the
class Entertainment are pulled up to the class
Event using three separate Pull Up Field refac-
torings.
R8,R9,R10: The setLocation methods in classes
Discussion and Reading and the method setAd-
dress in the class Entertainment are pulled up
to the class Event using three separate Pull Up
Method refactorings. Refactorings R5 to R10 re-
duce code duplication and improve readability.
R11,R12,R13: Two methods getPrice and re-
trieveDetails as well as the field conductor, all
defined in the class Entertainment, are pushed
down to the class Concert using two separate
Push Down Method refactorings and one Push
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Down Field refactoring respectively. The moti-
vation for these refactorings is to move features
that are used only in some instances of the orig-
inal class.
R14,R15: To simplify the interface and im-
prove understandability, the method retrieveDe-
tails and the field conductor are made more pri-
vate using the Decrease Method Accessibility and
Decrease Field Accessibility refactorings respec-
tively.

The aim is to find an order between the
aforementioned refactorings that, while requir-
ing the minimum effort, results in the desired
design from the initial design. However, because
of interdependencies between the refactorings,
only some specific refactoring orders are appli-
cable to the initial design. A list of interdepen-
dencies between the aforementioned refactorings
is as below:
– Refactorings R3 to R13 are directly depen-

dent on R1, or R2, i.e. a method or field can-
not be moved to a class if the target class
has not been created yet.

– The setLocation methods in the class Discus-
sion use the field location of the local class.
Therefore, Pull Up setLocation (R8) should
be applied to the design after Pull Up loca-
tion (R5). Were the method to be pulled up
before the field, it would also be necessary to
add an instance of the local class as parame-
ter to the method, resulting in a method with
two input parameters, which differs from the
corresponding method in the desired design.

– For the same reason, two Pull Up Method
refactorings, R9 and R10, should be applied
to the design only after their corresponding
Pull Up Field refactorings, R6 and R7, have
been applied.

– The refactoring Rename address (R3) can
be applied to the design before or after Pull
Up address (R5). If R3 is performed before
R5, then other two Pull Up Field refactor-
ings namely R6 and R7 can be applied be-
fore or after R3. Otherwise, R6 and R7 must
be applied to the design after R3. The sec-
ond case happens because a precondition in
Rename Field prevents the field name from
being changed if there is already a field with

the same name in the class and the fields are
used by different methods.

– The method getPrice should be pushed down
to its subclass using refactoring R11 before
moving the method retrieveDetails and the
field conductor. This is necessary as get-
Price uses both this method and field. Were
retrieveDetails or conductor to be pushed
down to the subclass (using R12 or R13) be-
fore getPrice, then they would not be ac-
cessible in getPrice. Similarly, the method
retrieveDetails should be moved before the
field conductor.

– The accessibility of the field conductor can
be reduced using R15 after the field is pushed
down to the subclass by R13. Were the ac-
cessibility of the field to be reduced before
the push down refactoring, then the field
would not be accessible in the subclass. This
would prevent the pushing down of the meth-
ods getPrice and retrieveDetails as well as
the field itself to the subclass. A similar sit-
uation arises for the Decrease Accessibility
Method refactoring (R14). The accessibility
of the method retrieveDetails should be re-
duced only after the method is pushed down
to the subclass (R12) in order for it to be
accessible in getPrice.

– The above dependencies also reveal an im-
plicit dependency between the two refactor-
ings Decrease Accessibility Method (R14) and
Decrease Accessibility Field (R15) with the
Extract Subclass refactoring (R2). Both De-
crease Accessibility refactorings can be per-
formed only after the class Concert has been
created and the corresponding methods and
fields have been moved to the newly created
class.
As the example above demonstrates, there

can be many relationships between refactorings,
and even in this simple motivating example it is
difficult to identify them all manually. As shown,
the application of one refactoring may prevent
certain other refactorings or make possible cer-
tain other refactorings. What makes the refactor-
ing process more difficult is that the effect of each
refactoring is only seen after the refactoring is ap-
plied to the design. The preconditions of a refac-
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Figure 2: Typical workflow when using Design-Imp

toring fail at its turn even though they were sat-
isfied at the start of the sequence, and vice versa.

We describe our automated scheduling ap-
proach (REDaCT and REDaCT+) that ad-
dresses these problems in Sections 4 and 5, but
we first present some preliminary information
about the software tools we use in this work, and
precise definitions of conflict and dependency.

3. Preliminaries

This section provides some necessary prelimi-
nary information about the software tool em-
ployed in our experiments (Section 3.1) and for-
mal definitions for conflict and dependency in
a refactoring sequence (Section 3.2).

3.1. Design-Imp

The investigations described in this paper make
use of a software tool named Design-Imp.
Design-Imp is an interactive refactoring frame-
work developed by the authors to facilitate ex-
perimentation in improving the design of exist-
ing programs. It refactors the software system
at a higher level of abstraction than its source
code. Figure 2 depicts a typical workflow when
using Design-Imp.

Design-Imp takes Java version 7 source
code as input, extracts design information from
the source code using the extract model pro-
cess and expresses the extracted information as
an attributed type graph [12]. This graph is

then refactored using an interactive evolution-
ary search technique to improve the program ac-
cording to a fitness function, expressed in terms
of standard software quality metrics such as
a combination of cohesion and coupling metrics.

The output comprises the refactored graph,
expressed as a UML class diagram, as well as
detailed refactoring and metrics information. As
most of the program detail, especially method
bodies, has been abstracted away, faster pre-
condition checking and refactoring execution is
possible. The result of the refactoring process is
a desired design based on the employed fitness
function and confirmed by the developer.

Design-Imp uses AGG API2 as a graph
transformation engine [13, 14] to implement
graph transformation rules. Each rule (i.e. refac-
toring) includes a pattern that is specified by
two graphs, left and right hand side, and a mor-
phism between them. Transformation rules may
specify negative and positive application condi-
tions as transformation preconditions. A nega-
tive application condition (NAC) specifies cer-
tain structures that are forbidden, while a posi-
tive application condition (PAC) expresses cer-
tain structures that are necessary to perform
a transformation. Currently, Design-Imp sup-
ports 20 refactorings shown in Table 1. In the
rest of this paper we use the term refactoring
instead of transformation rule when referring to
a transformation on the graph.

Design-Imp defines a meta-model, expressed
as a type graph, based on the syntax of the Java
language in order to specify how a Java program

2 http://user.cs.tu-berlin.de/∼gragra/agg/

http://user.cs.tu-berlin.de/~gragra/agg/
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Table 1: A list of refactorings provided by Design-Imp

No. Class-Level Refactorings Description

1 Rename Class Changes the name of a class to a new name, and updates its references.
2 Extract Hierarchy Adds a new subclass to a non-leaf class C in an inheritance hierarchy.
3 Extract Subclass Adds a new subclass to class C and moves the relevant features to it.
4 Extract Superclass Adds a new super class to class C and moves the relevant features to it.
5 Collapse Hierarchy Removes a non-leaf class from an inheritance hierarchy.
6 Inline Class Moves all features of a class into another class and deletes it.
7 Extract Class Creates a new class and moves the relevant features from the old class

into the new one.

Method-Level Refactorings

8 Push Down Method Moves a method from a class to those subclasses that require it.
9 Pull Up Method Moves a method from some class(es) to the immediate superclass.
10 Rename Method Changes the name of a method to a new one, and updates its references.
11 Decrease Method Accessibility Decreases the accessibility of a method, i.e from protected to private.
12 Increase Method Accessibility Increases the accessibility of a method, i.e from protected to public.
13 Move Method Creates a new method with a similar body in the class it uses most.

Either turns the old method into a simple delegation, or removes it.

Field-Level Refactorings

14 Push Down Field Moves a field from a class to those subclasses that require it.
15 Pull Up Field Moves a field from some class(es) to the immediate superclass.
16 Move Field Moves a field from a class to another one which uses the field most.
17 Rename Field Changes the name of a field to a new name, and updates its references.
18 Decrease Field Accessibility Decreases the accessibility of a field, i.e from protected to private.
19 Increase Field Accessibility Increases the accessibility of a field, i.e from protected to public.
20 Encapsulate Field Creates getter and setter methods for the field and uses only those to

access the field.

should be represented as a graph. It is not pos-
sible to define all necessary Java constraints as
a type graph, e.g. cyclical inheritance is hard to
prevent, so we added some general constraints
similar to those defined by Mens [15] to our
model.

Design-Imp is also capable of detecting con-
flicts and dependencies between refactorings
through the use of a static analysis technique
provided by AGG API called critical pair anal-
ysis. Critical pair analysis computes all the po-
tential conflicts and dependencies between refac-
torings based on the notion of independence
of graph transformations [12]. Using this tech-
nique, Design-Imp can distinguish three kinds of
conflict and three kinds of dependency between
refactorings as described in Table 2. Definitions
for conflict and dependency are presented next
in Section 3.2.

3.2. Definitions of Conflict and
Dependency between Refactorings

In this section we provide precise definitions for
the concepts of conflict and dependency. These
are concerned with the relationships between
refactorings and are widely used in this paper.
Definition 1: Dependency
For two given refactorings (R1 and R2), R2 is
dependent on R1 (R2 → R1) if R2 can be ap-
plied after R1, but not before that.

In this paper, as shown in Table 2, we dis-
tinguish three types of dependency between
refactorings: produce-use, delete-forbid, and
change-use. A produce-use dependency can hap-
pen if R1 produces an element that is used by
R2. For example, in the motivating example,
refactorings R3 to R15 are dependent on one of
R1 or R2. It is a kind of produce-use dependency
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Table 2: Relationships that can be detected between refactorings using AGG [16]

No. Conflict Description

1 Delete – Use A refactoring deletes a graph object that is used by another refactoring.

2 Produce – Forbid A refactoring produces a graph structure that is forbidden by another refactoring.

3 Change – Use A refactoring changes an attribute value of a graph object in such a way that it can
no longer be used by another refactoring.

No. Dependency Description

1 Produce – Use A refactoring produces a graph object that is used by another refactoring.

2 Delete – Forbid A refactoring deletes a graph objects that is forbidden by another refactoring.

3 Change – Use A refactoring changes an attribute value of a graph object in such a way that it can
be used by another refactoring.

as a method or field can be moved to a class only
if the class has already been created.

As another example, consider a method that
uses directly a private field in its own class. To
push this method down to a subclass it is nec-
essary first to increase the accessibility of the
field to at least protected to make it accessible
to the method in the subclass. In this case, the
Push Down Method refactoring has a change-use
dependency on the Increase Field Accessibility
refactoring.
Definition 2: Asymmetrical Conflict
For two given refactorings (R1 and R2), R1 has
an asymmetrical conflict with R2 (R1 9 R2)
if R2 cannot be applied after R1.

In this paper, as shown in Table 2, we
distinguish three kinds of conflicts: delete-use,
produce-forbid, and change-use. As an exam-
ple, a delete-use conflict between R1, and R2

can happen if R1 deletes one or more elements
(classes, methods, or fields) that are used by R2.

Asymmetrical conflict is a one-way conflict.
Thus, a conflict between R1 and R2 (R1 9 R2)
does not imply that the application of R2 will
disable R1. In addition, while an asymmetrical
conflict is indeed a kind of dependency, we dis-
tinguish between them in this paper. In a con-
flict situation (R1 9 R2), both refactorings
can be run individually, but R2 cannot be run
after R1. However, in a dependency situation
(R1 → R2), R2 can only be run if R1 is run first.
Definition 3: Symmetrical Conflict
For two given refactorings (R1 and R2), R1 has

a symmetrical conflict with R2 (R1 = R2)
if and only if they cannot both be performed on
the design in any order, i.e. (R1 9 R2 ∧R2 9
R1 ⇒ R1 = R2).

As an example of a symmetrical conflict, con-
sider a case where a method is moved from
the same original class to two different tar-
get classes using two separate Move Method
refactorings. While both refactorings are ap-
plicable, only one of them can be performed
on the design. The other refactoring will fail
subsequently as the method is no longer in
its original class and so cannot be moved
from there.
Definition 4: Uninjurious Refactoring
A refactoring with no symmetrical or asym-
metrical conflict with any other refactoring is
termed an uninjurious refactoring, in the termi-
nology of Liu et al. [10]. This type of refactoring
is of interest as it can be added to a refactoring
sequence at any stage with no deleterious effect
in terms of disabling other refactorings.

4. The REDaCT algorithm: Handling
Conflict and Dependency
in Software Refactoring Scheduling

In this section we describe one of the key contri-
butions of this paper: the creation of a refac-
toring scheduling algorithm that can handle
the conflicts and dependencies described in Sec-
tion 3.2.
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To find a valid refactoring sequence, we ex-
tend the conflict-aware scheduling approach pro-
posed by Liu et al. [10]. They propose a heuris-
tic algorithm to improve refactoring activities by
arranging an application sequence for the avail-
able conflicting refactorings. Their approach
computes symmetrical and asymmetrical con-
flicts between refactorings, where, in a conflict
situation, the refactoring that has more effect
on software quality, as defined by the QMOOD
metric suite [17], has a higher priority than the
other one. The solution we present here improves
on the approach of Liu et al. in the following
regards:
– The approach of Liu et al. only supports

delete-use and change-use conflicts, and
does not support produce-forbid conflicts, al-
though they do propose this idea as future
work. A produce-forbid conflict occurs when
a refactoring produces an element or struc-
ture that is prohibited by the precondition of
another refactoring [18]. Our approach han-
dles all the conflict types in Table 2.

– The approach of Liu et al. does not sup-
port any kind of dependency between refac-
torings. In contrast, our approach is capa-
ble of detecting all inter-refactoring depen-
dency types as shown in Table 2. By con-
sidering dependencies between refactorings,
our scheduling algorithm is able to take into
account the effect of a refactoring in terms
of the other refactorings that it enables,
whereas Liu et al. only consider cases where
a refactoring disables other refactorings.

In Section 4.1 we describe how our refactoring
scheduling algorithm, REDaCT, handles conflict
and dependency relationships between refactor-
ings. In Section 4.2 we discuss the strengths
and weaknesses of this approach to refactoring
scheduling.

4.1. The REDaCT Scheduling Algorithm

Our proposed scheduling algorithm, REDaCT
is presented as pseudocode in Fig. 3. As illus-
trated, the algorithm takes as input the set of
refactorings to be scheduled as well as a square
matrix, called RMatrix, that contains informa-

tion about how the input refactorings are related
to each other. It is assumed that the refactorings
are all beneficial, so a perfect solution is where
all the refactorings can be applied. REDaCT is
a heuristic that attempts to find the longest pos-
sible valid sequence of refactorings that can be
applied to the initial design.

RMatrix is computed by Design-Imp and
contains information about conflicts and de-
pendencies between refactorings. A character
‘C’ in (rowi, columnj) of the matrix means an
asymmetrical conflict exists between refactor-
ings Ri and Rj , so applying Ri will prevent
Rj from running. A symmetrical conflict will
exist if (rowi, columnj) also contains a charac-
ter ‘C’. On the other hand, a character ‘D’ in
(rowi, columnj) means that Rj is dependent on
Ri, so Rj is only applicable if Ri has already
been applied to the design. Note that a sym-
metrical dependency is an impossibility.

The REDaCT scheduling algorithm is de-
picted in Fig. 3. Five critical steps in the algo-
rithm are highlighted and are elucidated in the
paragraphs below:
Step 1: In the first step, it is necessary to
find refactorings that are not dependent on any
refactorings as well as having no conflict with
other refactorings. A refactoring with no sym-
metrical or asymmetrical conflict with other
refactorings is selected in order to prevent it
from being disabled by other refactorings that
might have an asymmetrical conflict with it [10].
However, such an uninjurious refactoring (see
Section 3.2) is only selected if it is also not
dependent on any refactorings except those al-
ready added to the refactoring sequence. This
step guarantees that, where possible, all refac-
torings upon which a candidate refactoring is
dependent are added to the refactoring sequence
early in the process.

After a refactoring is added to the refactor-
ing sequence, its corresponding row and column
is removed from RMatrix as well. The algorithm
may terminate at the end of first step if all refac-
torings have been added to the refactoring se-
quence. This only happens if there is no symmet-
rical conflict between any pair of refactorings in
the set.
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Step 2: In the second step, assuming that RMa-
trix is not empty, the score for each applicable
refactoring Rc is computed using the following
formula:

score(Rc) = directEffect(Rc)+

positiveEffect(Rc)−
negativeEffect(Rc)

(1)

It is assumed that each refactoring in the
refactoring set has a positive effect, i.e. that
the developer has selected only refactorings
that have a positive effect on the design of
the program. Therefore, the maximum qual-
ity improvement is obtained if all refactorings
in the refactoring set are applied to the ini-
tial design. Hence, we set the directEffect of
each refactoring to 1, meaning that the ap-
plication of each refactoring leads the refac-
toring process one step closer to the maxi-
mum achievable quality improvement. (Later,
in Section 5, we will use a more sophisticated
approach for computing the direct effect of
a refactoring.)

The application of a refactoring Rc enables
refactorings that are dependent on Rc to be run,
assuming that they are not dependent on other
available refactorings (see Section 3.2). In this
paper, we count all these effects as the positive-
Effect of the candidate refactoring Rc. So the
positive effect of a candidate refactoring is the
total number of refactorings that are enabled
by it.

When a candidate refactoring Rc is applied
to the design, it also disables other refactorings,
Ro, with which it has an asymmetrical conflict
[10]. In addition, if Ro is disabled, its dependent
refactorings are disabled as well. In this paper,
we count all these effects as the negativeEffect
of the candidate refactoring, Rc. So the nega-
tive effect of a candidate refactoring is the total
number of refactorings that are disabled by it.
Step 3: In the third step, the refactoring with
the highest score is selected and added to the
refactoring sequence. Since the score is based on
the number of refactorings that will be disabled
or enabled by the refactoring, the selection of
a high-scoring refactoring promotes refactorings

that increase the number of refactorings that can
be selected in subsequent iterations.
Step 4: After the best refactoring is added to
the refactoring sequence, it is necessary to up-
date the scoring of refactorings that have been
positively affected by the application of this
refactoring. This includes refactorings that have
an asymmetrical conflict with the selected refac-
toring [10], as well as refactorings that are de-
pendent on the selected refactoring. The score
for these positively affected refactorings is up-
dated using Eq. 2 below. As shown, the merit of
the selected refactoring is added to its affected
ones in order to increase their chance of being
selected in subsequent iterations.

score(Raffected) = score(Raffected)+

score(Rselected)
(2)

As shown in Figure 3, after the best refac-
toring is added to the refactoring sequence, all
newly disabled refactorings are also removed
from RMatrix to prevent them from being need-
lessly selected in subsequent iterations.

Step 5: In this step, refactorings that are
neither dependent on, nor in conflict with, any
remaining refactorings are added to the refactor-
ing sequence. They can be safely applied at this
stage, and doing so immediately prevents such
a refactoring from being subsequently disabled
by a refactoring with a better score that has an
asymmetrical conflict with it.

At the end of the algorithm, refactoringSeq
will contain the longest sequence of refactorings
found that can be applied to the initial design.

4.2. Summary

To summarise this section, we have presented
the REDaCT algorithm, which is our novel ap-
proach to refactoring scheduling that extends
the state of the art [10] by handling a more
extensive range of conflicts and dependencies.
This algorithm is evaluated later in Section 6.
REDaCT ignores the effect the refactorings have
in terms of how close they bring the program to
its desired design. In the next section we address
this issue.
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Input: refactoringSet: set of refactorings to be scheduled.
Input: RMatrix: square matrix contains relationships between refactorings.
Output: refactoringSeq: contains a valid order of refactorings.

procedure Scheduling Algorithm(refactoringSet, RMatrix )
refactoringSeq = null

while (hasUninjuriousRefactoring()) do . Step 1
refactoringSeq.add(pickUninjuriousRefactoring()
updateRMatrix ()

end while
if (!RMatrix.isEmpty()) then

measureScore() . Step 2
repeat

refactoringSeq.add(pickBestRefactoring())) . Step 3
updateScores() . Step 4
updateRMatrix ()
while (hasUninjuriousRefactoring()) do . Step 5

refactoringSeq.add(pickUninjuriousRefactoring())
updateRMatrix ()

end while
until (RMatrix.isEmpty())

end if
return refactoringSeq

end procedure

The functions used are defined as follows:
hasUninjuriousRefactoring(): Returns true if RMatrix contains at least one independent and unin-
jurious refactoring. Otherwise, returns false.
pickUninjuriousRefactoring(): Returns the first independent and uninjurious refactoring.
pickBestRefactoring(): Returns the refactoring with the highest score.
updateRMatrix(): The selected refactoring is removed from RMatrix(). The refactorings with which
the selected refactoring has a conflict are removed from RMatrix () as well.
measureScore(): Computes the score for all remaining refactorings using equation 1.
updateScores(): Updates the score for the affected refactorings using equation 2.

Figure 3: The REDaCT algorithm. It orders the input refactorings to create the longest possible
applicable refactoring sequence, in the presence of conflict and dependency between the refactorings.

5. The REDaCT+ algorithm:
Improving Refactoring Scheduling
by Estimating the Contribution of
Refactorings to Achieving the
Desired Design

The approach proposed by Liu et al. uses
the QMOOD metric suite [17] to measure
the effect of refactorings on software qual-
ity. However, applying refactorings to the de-
sign and measuring their effect requires con-
siderable effort. In addition, as no depen-
dency between refactorings is detected by
Liu et al., the impact of each refactoring is

measured individually, and that cannot cap-
ture the real effect of a sequence of refac-
torings. In Section 5.1 below we describe
a known, string-based approach to compar-
ing software designs and put this to novel
use in Section 5.2 to introduce a novel,
lightweight approach to measuring the ef-
fect of a refactoring without actually apply-
ing the refactoring to the design. Finally,
in Section 5.3, this approach to measuring
refactoring effect is included in the schedul-
ing algorithm to improve the accuracy of the
scheduling approach; we term this extension
REDaCT+.
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5.1. Measuring Similarity between
Software Designs

In this paper, an improvement in quality means
an improvement in the similarity between the
initial and desired designs. Therefore, during the
refactoring process, a refactoring that improves
the similarity between the initial and desired de-
signs has priority over other refactorings.

To measure the degree of similarity between
two designs, REDaCT+ uses a sequence align-
ment algorithm called Fast Optimal Global Se-
quence Alignment Algorithm (FOGSAA) de-
veloped by Chakraborty and Bandyopadhyay
[19]. This algorithm is capable of finding the
best alignment between two input strings with
a lower computational complexity than other
global alignment approaches. Full details of
this algorithm are presented in the paper cited
above.

To use the FOGSAA alignment algorithm in
REDaCT+, the first step is to represent pro-
gram’s features such as classes, methods, fields
etc. as a sequence of characters. In this paper, we
use the approach proposed by Kessentini et al.
[20] as a method to represent program elements
as a string. Each element in the input Java pro-
gram is represented using a specific character
as follows: Class (C), generalization relationship
(G), realization relationship3 (I), attribute (A),
method (M), method parameter (P), and a cou-
pling between two classes (R). As an example,
the representation of class B shown in Fig. 4a is
CGMMPR. This sequence shows that the class
inherits from another class, has a coupling rela-
tionship with one other class in the program and
contains two methods, where the second method
has a parameter.

However, our representation differs from that
of Kessentini et al. [20] in two significant ways.
Firstly, in their work each character includes
more detailed information such as name, type,
accessibility etc. depending on the program el-
ement it represents. However, in our approach
the element name is the only information that
is included with each character. Secondly, in
Kessentini et al. [20] every method invocation

or field reference is represented by one R charac-
ter. Therefore, if a class invokes a method in an-
other class n times, n R characters are added to
the resulting string. However, the number of ac-
cesses to fields and methods in a class is usually
far greater than the number of fields and meth-
ods in the class, so this approach overempha-
sises the importance of R relationships over the
other types when measuring similarity. To im-
prove the efficiency of the alignment algorithm,
we use a single R character to denote a coupling
from the original class to another class without
counting the number of connections between the
two classes.

5.2. Expressing Refactoring Effect on the
String Representation of a Program

Expressing the program as a sequence of charac-
ters and using an alignment algorithm to mea-
sure similarity between strings helps in measur-
ing the effect of refactorings without actually
applying them to the design. However, in or-
der to do this it is necessary to determine first
how the resulting string should be changed when
a refactoring is applied to it.

Figure 4 illustrates an example of how the
Move Method refactoring changes the software
design and the related string representation.
In this example, method b2(c) is moved from
its original class, named B, to a related tar-
get class named C. Figures 4a, and 4b show
the UML design and the related string before
and after refactoring respectively. Because the
classes are related through the method param-
eter, after refactoring the input parameter is
removed from the method signature. As illus-
trated, the sequence that shows class A (the
first part in each sequence indicated by CA)
is not changed as the refactoring has no ef-
fect on that. However, both sequences related
to class B, and C (the second and third parts
in each sequence) are changed because of the
refactoring.

For each of the refactoring types in Ta-
ble 1, its effect on the string representation
of a program design is defined in a similar

3 Realization in Java is the relationship between a class and an interface that it implements.
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(a) The initial design: CA (class A) CGMMPR
(class B) CGAMR (class C)

(b) The refactored design: CA (class A)
CGMR (class B) CGAMMRR (class C)

Figure 4: How refactoring effect is expressed on the string representation of a design.

way as described for the Move Method refac-
toring. This enables us to estimate quickly
the approximate effect of a refactoring with-
out having to operate on source code parse
trees. Note that the effect of a refactoring is
only measurable when all refactorings upon
which it depends have been applied to the de-
sign, e.g. the effect of a Move Method refac-
toring is only measurable if the target class
has already been created. We use a topologi-
cal sort to create a linear ordering of the refac-
torings based on their dependency to ensure
that all refactorings upon which a refactoring
depends precede it in the ordering. Note that
the refactoring sequence produced by the topo-
logical sort algorithm does not show the op-
timal ordering between refactorings as it does
not take conflicts between refactorings into ac-
count.

The quality improvement achieved by
a refactoring is thus measured by the FOGSAA
string alignment algorithm. It expresses the dif-
ference in similarity between the current and
desired designs before and after the applied
refactoring. Using this approach, we can deter-
mine, for any refactoring under consideration,
to what extent it contributes to achieving the
desired design. In the next section we include
this measure in the refactoring scheduling ap-
proach.

5.3. Including Refactoring Effect in the
Scheduling Algorithm

The REDaCT scheduling algorithm described
earlier in Section 4 tries to order the refactorings
so that the maximum number of refactorings can
be applied to the design. However, finding the
longest sequence of refactorings is not always
the best option to order refactorings, especially
if there are symmetrical conflicts between refac-
torings, and different refactorings make different
contributions to achieving the desired design.

To improve the scheduling algorithm, we ex-
tend it to include the contribution of the refac-
toring to achieving the desired design. We term
this contribution the refactoringEffect, and it is
measured as described in Section 5.2. Thus, the
scoring function defined by Eq. 1 in Section 4 is
changed as below. As shown, the default value
for directEffect used in Eq. 1 is changed from
1 to the contribution of the refactoring on the
similarity between designs:

score(Rc) =refactoringEffect(Rc)+

positiveEffect(Rc)−
negativeEffect(Rc)

(3)

All components of this summation are equally
weighted. Thus the decision on whether to ac-
cept a refactoring depends equally on the con-
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tribution the refactoring makes to the desired
design, the effect of refactorings it enables and
the effect of refactorings it disables. In Section
6 this new approach, REDaCT+, is evaluated
and it is compared with the vanilla REDaCT
algorithm.

6. Evaluation

We have presented an algorithm for refactoring
scheduling in the presence of conflict and depen-
dency (REDaCT) and augmented this algorithm
to exploit a desired design, if one is available
(REDaCT+). In this section we evaluate these
algorithms by applying them to a number of ex-
amples and assessing the results.

This section is structured as follows. In Sec-
tion 6.1 we test the correctness of the REDaCT
algorithm by applying it to the Event system
described in the motivating example of Section
2. In Section 6.2 we demonstrate the necessity
for the REDaCT+ algorithm, and evaluate this
algorithm. In Section 6.3 we evaluate the ability
of the REDaCT+ algorithm to schedule a ‘noisy’
refactoring sequence to achieve a desired design,
while in Section 6.4 we evaluate the REDaCT+
algorithm on a medium-sized open source appli-
cation. In Section 6.5 we summarise the results
of our experiments.

6.1. Testing the correctness of the
REDaCT algorithm

To test that the scheduling algorithm operates
correctly, we applied it to the Event system that
was used as a motivating example in Section
2. The aim is to determine if our refactoring
scheduling algorithm can order the refactorings
in such a way as to generate the desired design
shown in Fig. 1b from its initial one depicted
in Fig. 1a. The refactorings in question are R1

to R15 as defined in Section 2. As detailed in
that section, a considerable amount of conflict
and dependency exists between these refactor-
ings and it is not immediately clear if they can
all be applied to the initial design or not, so this
forms a robust test for the REDaCT algorithm.

Applying REDaCT to the refactoring set
shown in Section 2 yielded an ordering that en-
abled all 15 refactorings to be applied to the
design as follows: R1, R3, R5, R8, R4, R2, R6,
R7, R10, R9, R11, R12, R13, R14, R15. The result-
ing design was identical to the refactored design,
meaning that the refactorings were indeed per-
formed in the correct order. As no symmetrical
conflict was detected between the input refac-
torings, all 15 refactorings could be applied to
the design.

The example used here is small, but the con-
flicts and dependencies between the refactorings
are more complicated than would usually be en-
countered in a real-world system. In a larger sys-
tem, typically only a few refactorings are applied
to a class and its immediate relatives, so the level
of conflict and dependency tends to be lower and
sparser than in the example we use here. Nev-
ertheless, when such conflicts and dependencies
occur, they have to be addressed.

The result we obtain above demonstrates the
ability of the REDaCT algorithm to handle the
conflicts and dependencies between refactorings
and hence to find an effective application order
for the given refactorings.

6.2. Contrasting the REDaCT and
REDaCT+ algorithms

The example we use here is a simplistic Au-
tomatic Teller Machine (ATM) simulation ap-
plication [21]. It was developed by an inexperi-
enced Java programmer, and so we expect that
its design is not optimum and is easy to im-
prove. Using Design-Imp, this ATM application
was refactored using a fitness function defined as
a combination of the two software metrics SCC
(Similarity-based Class Cohesion) [22] and DCC
(Direct Class Coupling) [17]. Table 3 depicts the
refactoring sequence R1 . . . R10 that led to the
design for the ATM system depicted in Fig 5.

When REDaCT was applied to the origi-
nal ATM design and the set of refactorings, it
produced the refactoring sequence R8, R5, R1,
R2, R4, R3, R6, R9, R7, R10. This refactoring se-
quence is correct in that it yields the de-
sired design when applied to the original ATM
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Figure 5: UML class diagram of an ATM application after refactoring

program design. However it is apparent that
during the refactoring process the methods
printReceipt() and displayBalance() are need-
lessly moved around various classes before being
placed in their final target class.

To test if REDaCT is capable of find-
ing a better sequence, we added two new
Move Method refactorings, R11 and R12, to the
refactoring set. These new refactorings directly
move the methods printReceipt() and display-
Balance() from their original class to their cor-
rect target class. These refactorings are high-
lighted in grey in Table 3. The addition of the
new refactorings created two symmetrical con-
flicts as follows: R1 = R12, and R3 = R11, and,
because of the dependencies among the refactor-
ings, three new symmetrical conflicts as follows:
R2 = R12, R6 = R11 and R9 = R11.

In this new situation, an optimal schedul-
ing algorithm should select both new Move
Method refactorings instead of other refactorings
(R1, R2, R3, R6 and R9), as the newly added
Move Method refactorings move the methods di-
rectly to their target class, which is the clear-
est and most comprehensible solution. However,
the REDaCT algorithm still selects the same
sequence as it did before, without including
R11 and R12 in the sequence. This happens be-

cause the REDaCT algorithm favours refactor-
ings that in turn increase the number of refactor-
ings that can be selected in subsequent iterations
of the algorithm.

We tested if the REDaCT+ algorithm could
find the optimum refactoring sequence for the
example described above, where the vanilla
REDaCT algorithm failed, and found that the
improved REDaCT+ algorithm did indeed find
the equally good, but shorter, order among
the 12 input refactorings shown in Table 3.
REDaCT+ moved the two methods printRe-
ceipt, and displayBalance directly to their tar-
get class using the two added Move Method
refactorings R11 and R12, and rejected the
now-superfluous refactorings R1, R2, R3, R6 and
R9. REDaCT+ succeeded as it does not simply
apply the maximum number of refactorings as
REDaCT does, but it uses its knowledge of the
design desired to select refactorings that moved
the program design towards this desired design,
as detailed in Section 5.

6.3. Evaluating REDaCT+ on a ‘noisy’
refactoring sequence

To test how REDaCT+ would deal with a larger
application, we applied it to the Design-Imp
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Table 3: Sequence of refactorings applied to the ATM application. R1 to R10 represent the sequence
produced by Design-Imp in creating the design of Fig. 5. R11 and R12 were both added by hand
to test the REDaCT+ algorithm.

No. Refactoring Feature Source class Target class

R1 Move Method displayBalance() Transaction CustomerInfo
R2 Move Method displayBalance() CustomerInfo ATM
R3 PullUp Method printReceipt() ATM Account
R4 Encapsulate Field customers Account
R5 PushDown Method print() CustomerInfo Account
R6 PullUp Method printReceipt() Account CustomerInfo
R7 Decrease Method Accessibility displayBalance() ATM
R8 Encapsulate Field holderName CustomerInfo
R9 Move Method printReceipt() CustomerInfo Transaction
R10 Decrease Method Accessibility printReceipt() Transaction

R11 Move Method printReceipt() ATM Transaction
R12 Move Method displayBalance() Transaction ATM

software itself. Design-Imp contains 65 classes
that include 227 attributes and 600 methods,
and so is larger than the earlier examples. In
this experiment we also wanted to test how well
REDaCT+ could deal with a ‘noisy’ refactor-
ing set, one that contains redundant refactorings
and so is a superset of the set of refactorings re-
quired to bring the initial program to its desired
design.

The ‘noisy’ refactoring set was created as fol-
lows. First we use Design-Imp to automatically
refactor the Design-Imp software twice in or-
der to create two separate desired designs. As
described in Section 3.1, the search-based algo-
rithm used by Design-Imp is a stochastic one
so each refactoring process yields a different set
of refactorings but with the possibility of some
commonality between the two refactoring sets.
Fig 6 shows a breakdown of the combined set of
refactorings produced by both refactoring pro-
cesses. The ‘noisy’ refactoring set then is the
union of these two sets. Duplicates were not re-
moved, so this set (technically a multiset) con-
tained 60 refactorings in total. In fact only one
refactoring appeared in both refactoring sets, so
the combined set contained 59 unique refactor-
ings. A total of 3 conflicts and 298 dependencies
were found to exist in this combined refactor-
ing set.

We then selected one of these resulting
designs as the final desired design and used

REDaCT+ to try to refactor the initial de-
sign towards the selected final desired design.
This is a robust challenge, where both the
conflict and dependency aspects of the base
REDaCT algorithm have to combine with the
‘desired design’ aspects of the REDaCT+ al-
gorithm in order to filter out the unnecessary
refactorings and attempt to produce a refactor-
ing sequence that yields the given desired de-
sign.

REDaCT+ was able to find a refactoring se-
quence that was 93% correct and brought the
program design to one close to the given desired
design. In two cases the algorithm categorised
two correct Move Field refactorings as detrimen-
tal even though both refactorings were critical to
achieving the desired design. This problem oc-
curred as Design-Imp incorrectly detected a spu-
rious dependency between these two refactorings
and another truly detrimental refactoring.

To sum up, this example shows the ability of
the REDaCT+ algorithm to filter out refactor-
ings that do not help in achieving the desired de-
sign. It also reveals how invalid inter-refactoring
dependencies detected by Design-Imp can affect
the accuracy of the REDaCT+ algorithm, lead-
ing to two correct refactorings being ignored.
From this we see that the ability of REDaCT+
to correctly order a refactoring set is dependent
on the accuracy of the detected conflicts and de-
pendencies between the refactorings.
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Figure 6: Breakdown of the 60 refactorings included in the refactoring set

6.4. Evaluating REDaCT+ on an open
source example

To investigate how REDaCT+ works with
a non-trivial open source application, we used
JGraphX 4 as an application to investigate.
JGraphX is a medium-sized Java library that is
used to display interactive diagrams and graphs
and comprises 188 classes, 1356 attributes and
2908 methods.

In this experiment, we used Design-Imp to
automatically refactor the design of the origi-
nal JGraphX application to create a desired de-
sign to use in our experiments. We then used
Design Imp to generate a refactoring set from
the differences between the two designs, which
yielded a refactoring set containing 50 refactor-
ings.

To test the REDaCT+ algorithm, we ap-
plied it to the initial and desired designs of
the JGraphX application as well as the gen-
erated refactoring set. The challenge here is
that this is an open source application that the
experimenters have no a priori knowledge of,
and the refactoring set is non-trivial in size.
However, REDaCT+ produced a refactoring se-
quence that transformed the initial design to
the desired design with 100% success and with
no spurious refactorings appearing in the se-
quence.

Note that in a large software system there are
many possibilities for refactoring, and the size of
the system tends to lead to less dependency and
conflict between applied refactorings. However,
as mentioned, the aim of this experiment was
to show the proposed approach can be used for
larger applications as well.

6.5. Evaluation Conclusion

The goal of this evaluation section was to pro-
vide an overall assessment of how the REDaCT
and REDaCT+ algorithms perform when faced
with a variety of challenges.

We demonstrated the basic correctness of the
REDaCT algorithm in Section 6.1 by showing
that it able to correctly sequence a heavily con-
flicted and interdependent set of refactorings.
While the refactoring set was small in size, the
intensity of the conflict and dependency was far
greater than that found in our tests with an open
source example in Section 6.4.

In Section 6.2 we demonstrated that, when
several options exist, REDaCT fails to find
the shortest refactoring sequence but that
REDaCT+ is able to succeed by using its extra
knowledge of the desired design that the refac-
toring sequence is trying to achieve. This estab-
lished the case for the the REDaCT+ algorithm
and this is the algorithm that we evaluate fur-
ther.

In Section 6.3 we demonstrated that
the REDaCT+ algorithm can schedule
a ‘noisy’ refactoring sequence that has many
optically-relevant but useless refactorings. A
perfect solution was not achieved, but the 93%
success rate is very satisfactory. In effect this
means that a design very close to the desired
design is achieved, and it is left to the developer
to perform the final refactoring steps by hand.

In our final evaluation in Section 6.4 we
demonstrated that the REDaCT+ algorithm
can find a correct refactoring sequence when
trying to schedule a non-trivial refactoring set
(50 refactorings) on a medium-sized open source

4 http://www.jgraph.com/jgraphdownload.html

http://www.jgraph.com/jgraphdownload.html
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application. This demonstrates that REDaCT+
can perform well in a more realistic context.

We found that the size of program under in-
vestigation has only a minor effect on the speed
of the REDaCT+ scheduling algorithm. The
only time-consuming part is the algorithm used
to identify conflicts and dependencies between
refactorings. The number of comparisons to find
conflict and dependency between refactorings is
equal to n ∗ (n− 1)/2, where n is the number of
refactorings included in the refactoring set.

7. Related Work

The work related to this paper can be di-
vided into three research areas: ranking refac-
toring opportunities, search-based refactoring
and scheduling refactoring. These topics are dis-
cussed below.

Ranking refactoring opportunities involves
sorting refactoring opportunities according to
one or more criteria such as their impact on the
overall design quality. Tsantalis and Chatzige-
orgiou [23] propose a semi-automatic approach
to identifying refactoring opportunities related
to code smells based on system history and find
that a refactoring opportunity involving a highly
changeable code fragment is most likely to be
improved through refactorings in the future, and
therefore such refactorings should have a higher
priority than others. In other work they pro-
pose an approach for detecting Move Method
refactoring opportunities based on code smells
[24] and also propose an approach to finding
refactoring opportunities that introduce poly-
morphism as an alternative to state checking
[25]. In these approaches, detected refactoring
opportunities are ranked based on their impact
on the overall design quality. However, the effect
of refactorings is measured individually, with-
out considering impact of refactorings on one
another, and so it cannot guarantee to find the
best sequence in which to apply the proposed
refactorings.

In contrast to the aforementioned
semi-automatic approaches, other research
works aim to automate the whole process by

using search based refactoring to find and apply
a sequence of refactorings to a program [26].
In this approach, the process of refactoring is
guided by a fitness function and a refactor-
ing is accepted only if it improves the merit
of the design based on metrics included in the
fitness function. This approach has been used
for several purposes: software quality improve-
ment [27,28], to fix code smells [20,29] and to ap-
ply design patterns [30]. Although search-based
refactoring techniques help to automatically find
a close-to-optimal sequence of refactorings based
on the employed fitness function, they do not
usually generate the most effective refactoring
order.

In the remainder of this section we examine
closely related research that also aims to detect
dependencies and conflicts between refactorings
in order to sort refactorings into an optimum or-
der for application. Mens et al. [11] use parallel
and sequential dependency analysis to detect re-
lationships among a set of input refactorings. Like
our approach, the program and refactoring activ-
ities are considered as a graph and graph-based
rules respectively. However, they only focus
on specifying relationship between refactorings
without introducing a practical algorithm on how
the refactorings should be arranged. Further, in
their work, sequential dependencies are only de-
tected after a candidate refactoring is applied to
the design and then find out which refactorings
become applicable or inapplicable. Thus, the ap-
proach cannot detect existing sequential depen-
dencies between refactorings at once without ap-
plying refactorings to the source code.

Zibran and Roy [31] introduce a schedul-
ing approach based on three factors: maximised
quality gain measured based on standard soft-
ware quality metrics, minimised refactoring ef-
fort estimated by a proposed refactoring effort
model and satisfaction of higher priorities de-
fined manually by the developer. They formu-
late the scheduling of code clone refactorings as
a constraint satisfaction optimisation problem,
and use constraint programming to implement
the proposed model.

Estimation of clone refactoring effort using
an effort model has also been investigated by
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Bouktif et al. [32]. They use a simple genetic
algorithm to schedule clone refactoring activi-
ties in order to achieve the greatest quality im-
provement with minimum resource consumption
while satisfying priority constraints. However,
they ignore conflicts between clone refactorings
and assume that duplicated codes can be refac-
tored independently, which is not a correct as-
sumption.

Among the research works focused on
scheduling code smell refactoring, the work of
Liu et al. [10] is most closely related to ours.
They propose a heuristic algorithm to schedule
code smell refactorings. We extend their refac-
toring scheduling algorithm by considering not
just conflicts between refactorings but also de-
pendencies. Furthermore, we take into account
a type of refactoring conflict not handled in their
work, where the application of one refactoring
violates the precondition of another. We also in-
troduce the idea of a desired design and show
how it can be included in the scheduling al-
gorithm to guide the refactoring process more
effectively. We measure not only the effect of
a refactoring in terms of its direct contribution
to achieving the desired design, but also its indi-
rect contribution in terms of the refactorings it
enables and disables. Later work by Liu at al. [2]
looks at the related problem of scheduling code
smell detection and resolution when a software
system is radically refactored in ‘batch’ mode.
They show that the order in which code smells
are addressed is significant due to the overlap
between smells, and show that refactoring effort
can be reduced significantly (by up to 20%) by
appropriate scheduling.

Lee et al. [33] also take into account that
a refactoring can also enable other refactorings.
They use a genetic algorithm to identify an ap-
propriate refactoring schedule for code clones.
To support both cases, the original refactor-
ing set is updated according to changes ap-
plied in the program after the refactoring is per-
formed. The effect of each refactoring sequence
expressed as a chromosome is measured using
the QMOOD quality model [17]. However, the
fitness evaluation is expensive due to the fact
that each chromosome must be individually ap-

plied to the system and then its effect on qual-
ity measured. It is different from our approach,
where refactorings are applied to a sequence of
characters (representing the source code) and
each refactoring is simulated only once and its
effect on the quality is measured at that time.

8. Conclusions and Future Work

In this paper we presented the REDaCT algo-
rithm, our approach to refactoring scheduling
in the presence of inter-refactoring conflicts and
dependencies that extends the state of the art [10]
by handling a more extensive range of conflicts
and dependencies. We also developed an exten-
sion to this algorithm, REDaCT+, that also takes
into account the contribution of each refactoring
towards achieving a given desired design for the
software. To validate our proposed scheduling
approach, we carried out evaluations on four
examples: two small constructed examples, a
software tool developed by the authors and a
medium-sized open source software system. The
results obtained demonstrated that REDaCT can
order a refactoring sequence in the presence of
conflicts and dependencies, that REDaCT+ can
outperform REDaCT and that REDaCT+ works
well even when many irrelevant refactorings are
included in the refactoring set.

In future work we plan to explore further the
process of creating the desired design, using an
interactive process similar to that proposed by
Simons et al. [3, 4]. This paves the way for the
REDaCT+ refactoring algorithm to form part
of a larger, interactive framework that helps the
developer to create a desired design, and then
refactors the code to comply with this design, a
notion described in our earlier work [5]. In this
context, more extensive evaluation with larger
software systems and with software developers
will be necessary.
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