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Abstract
The limitation of time and budget usually prohibits exhaustive testing of interactions between
components in a component based software system. Combinatorial testing is a software testing
technique that can be used to detect faults in a component based software system caused by the
interactions of components in an effective and efficient way. Most of the research in the field of
combinatorial testing till now has focused on the construction of optimal covering array (CA) of
fixed strength t which covers all t-way interactions among components. The size of CA increases
with the increase in strength of testing t, which further increases the cost of testing. However, not
all components require higher strength interaction testing. Hence, in a system with k components
a technique is required to construct CA of fixed strength t which covers all t-way interactions
among k components and all ti-way (where ti > t) interactions between a subset of k components.
This is achieved using the variable strength covering array (VSCA). In this paper we propose
a greedy based genetic algorithm (GA) to generate optimal VSCA. Experiments are conducted on
several benchmark configurations to evaluate the effectiveness of the proposed approach.

Keywords: combinatorial testing, variable strength covering array, genetic algorithm,
greedy approach

1. Introduction

The increasing dependence on software systems
in every field, such as medicine, agriculture, com-
munication systems has increased the need to per-
form software testing in an effective and efficient
manner so as to ensure the delivery of reliable
and quality software. In the case of a component
based software system, interactions among com-
ponents are often complex and they may cause
interaction errors. It is therefore important to
check all the possible interactions among various
components to uncover faults caused by their in-
teractions. As each component may have multiple
configurations, testing all possible combinations

of components is practically impossible due to
time and cost constraints. Furthermore, the num-
ber of test cases increases exponentially with the
increase in number of components. A sampling
strategy is therefore required to select a subset of
configurations to be tested from the large inter-
action space. Combinatorial testing is a testing
technique that samples the set of configurations
in such a way that it covers all t-way (t denotes
the strength of testing) interactions of compo-
nents [1].

Covering arrays (CAs) and mixed covering
arrays (MCAs) are combinatorial structures that
have enjoyed a wide range of application in the
field of software and hardware testing [2]. Due to
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the importance of CAs, significant research has
been carried out to construct CAs of optimal size
by the researchers in the past. ACAconstructed to
perform t-way (2-way, 3-way, etc.) testing checks
only all t-way interactions of components. Em-
pirical studies show that a test set covering all
possible 2-way combinations of input parameter
values is effective for software systems [1, 3–5].
Dalal et al. [6] showed that testing all pair-wise
interactions in a software system finds a large
percentage of the existing faults. Kuhn et al. [7]
examined fault reports for many software systems
and concluded that more than 70% of the faults
are triggered by a 2-way interaction of the input
parameters. Faults can also be caused by the inter-
action of more than two parameters. In order to
uncover faults caused by the interaction of more
than two components, it is required to test higher
strength interactions of components. Empirical
studies in Kuhn et al. [7] and Kuhn and Reilly [8]
show that most of the faults are triggered by
a relatively low degree of interactions and suggest
the need to perform testing up to t = 6.

Consider a Graphical User Interface (GUI)
based on a windowing system which has five
components, each with three possible values as
shown in Table 1. For exhaustively testing the
components’ interactions in this system, 243 test
cases are required whereas only 11 test cases
for 2-way testing and 37 test cases for 3-way
testing are required respectively. Evidently, the
increase in strength of testing leads to the in-
crease in number of test cases. However, it is
quite often the case that certain components
have stronger interactions while others may have
few or none [9]. Hence, it is not desirable to
perform higher strength interaction testing of all
the components. A better way to test the system
is to identify the subsets of components which
are involved in stronger interactions and apply
higher strength interaction testing only on these
subsets to uncover the faults caused by their
interactions. This is achieved using the variable
strength covering array (VSCA), which is a CA
or MCA of fixed strength t and also contains a set
of disjoint CAs or MCAs of strength greater than
t. As mentioned above, the example shown in
Table 1 requires 11 test cases for 2-way testing.

Assume, first four components have stronger in-
teractions compared to the fifth component. So
it is feasible to perform 3-way testing only on
the first four components, which additionally re-
quires 16 test cases as illustrated in Figure 1 and
Figure 2. Consequently, a total of 27 test cases are
required for variable strength testing against 37
test cases required for a complete 3-way testing.
We can see that VSCA achieves higher strength
interaction coverage with the reduced number
of test cases. So it is advantageous to find an
effective technique to construct optimal VSCA
to perform testing of a component based system
efficiently.

Kernel DS WM DSCP GI
FreeBSD Weston Awesome Wayland KDE Plasma
FreeBSD X.Org Compiz X11 Aqua
XNU X.Org OpenBox Wayland KDE Plasma
XNU KWin Awesome X11 KDE Plasma
XNU Weston Compiz X11 Gnome Shell
Linux KWin Compiz Wayland Aqua
XNU Weston Awesome Quartz Aqua
Linux X.Org Compiz Wayland KDE Plasma
Linux X.Org Awesome Wayland Gnome Shell
FreeBSD KWin OpenBox Quartz Gnome Shell
Linux Weston OpenBox X11 Aqua

Figure 1. CA (11, 2, 35)

Kernel DS WM DSCP GI
FreeBsd X.Org Compiz Quartz Aqua
XNU Kwin Awesome Quartz KDE Plasma
FreeBsd Weston Compiz Wayland KDE Plasma
Linux Weston Compiz X11 Gnome Shell
Linux Kwin OpenBox Wayland KDE Plasma
FreeBsd X.Org Awesome X11 Aqua
FreeBsd Kwin Compiz X11 KDE Plasma
XNU X.Org OpenBox Quartz Gnome Shell
FreeBsd Weston Awesome Quartz Gnome Shell
FreeBsd Kwin Awesome Wayland Gnome Shell
XNU Weston Awesome X11 Gnome Shell
FreeBsd X.Org OpenBox Wayland Gnome Shell
Linux X.Org OpenBox X11 KDE Plasma
XNU Weston OpenBox Wayland Aqua
XNU Weston Compiz Quartz Gnome Shell
Linux Kwin Awesome X11 Aqua
Linux Weston Awesome Wayland KDE Plasma
XNU X.Org Awesome Wayland Gnome Shell
Linux X.Org Compiz Wayland Gnome Shell
XNU X.Org Compiz X11 Gnome Shell
XNU Kwin OpenBox X11 Aqua
Linux Weston OpenBox Quartz Aqua
XNU Kwin Compiz Wayland Gnome Shell
Linux X.Org Awesome Quartz Gnome Shell
FreeBsd Weston OpenBox X11 Gnome Shell
FreeBsd Kwin OpenBox Quartz Aqua
Linux Kwin Compiz Quartz KDE Plasma

Figure 2. VSCA (27; 2, 35, (3, 34))
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Table 1. GUI based on a windowing system having five components, each with three values

Kernel Display Server (DS) Window Manager (WM)
Display Server
Communication
Protocol (DSCP)

Graphical Interface (GI)

Linux Weston Awesome X11 KDE Plasma
FreeBSD KWin Compiz Wayland Aqua
XNU X.Org OpenBox Quartz Gnome Shell

The problem of constructing an optimal
VSCA is NP-complete [10,11]. Although many
algebraic and computational construction meth-
ods have been proposed by the researchers to
construct optimal CA/MCA, fewer strategies
(greedy and meta-heuristic) exist to construct op-
timal VSCA. The amount of work that has been
done to construct VSCA using meta-heuristic
techniques such as Simulated Annealing (SA),
Particle Swarm Optimization (PSO), Harmony
Search (HS) and their impressive results has mo-
tivated us to explore GA to construct optimal
VSCA.

To exploit the strength of both greedy and
meta-heuristic techniques we present a technique
that augments GA with a greedy technique to
construct optimal VSCA efficiently. Experiments
are conducted to evaluate the performance of the
proposed technique with the existing techniques.

However, the problem that exists with the
construction of VSCA is the existence of con-
straints or dependencies between components
values in terms of restrictions or compulsion
on components values that can coexist. For
instance, in the example shown in Table 1,
Quartz is a Mac technology and therefore cannot
be run on Linux or FreeBSD. This constraint
must be taken into account when generating
test cases so that Quartz and Linux/FreeBSD
do not appear in the same test case. Simi-
larly, KDE Plasma and XNU cannot appear in
the same test case as XNU does not support
KDE Plasma. If constraints and dependencies
are considered, then combinatorial testing be-
comes constrained combinatorial testing. In this
paper, we focus on combinatorial testing and
leave constrained combinatorial testing for future
work.

The remainder of this paper is organized
as follows. Section 2 gives the necessary back-

ground on combinatorial objects. Section 3 gives
an overview of GA. Section 4 presents vari-
ous methods available to construct VSCA. Sec-
tion 5 describes the proposed strategy to gen-
erate VSCA for t-way testing. Section 6 de-
scribes the implementation and presents re-
sult of experiments performed to compare
the effectiveness of the proposed approach
with other existing approaches. Section 7
presents threats to validity. Section 8 con-
cludes the paper and future plans are out-
lined.

2. Background

This section discusses the necessary background
related to combinatorial objects.

2.1. Orthogonal Array

An orthogonal array OAλ(N ; t, k, v) is an N × k
array on v symbols such that every N × t
sub-array contains all ordered subsets of size
t from v symbols exactly λ times and they have
the property λ = N/vt [12]. The use of OA in
the field of software testing is limited due to
the restrictions imposed on OA that all param-
eters have same number of values and that each
pair of values can be covered the same num-
ber of times [13]. In general, OA is difficult to
generate and its test suite is often quite large
with λ > 1. However, OA has its advantages,
such as making it relatively easy to identify
the particular combination that caused a fail-
ure [11]. If an OA with λ = 1 exists for some
value of k and v, then it is an optimal array.
To complement OA construction and to over-
come its restrictions, CA and MCA have been
introduced.
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2.2. Covering Array

Acovering array [12] denotedbyCAλ(N ; t, k, v), is
anN×k two dimensional array on v symbols such
that every N × t sub-array contains all ordered
subsets from v symbols of size t at least λ times.
If λ = 1, it means that every t-tuple needs to be
covered only once and we can use the notation
CA(N ; t, k, v). Here, k represents the number of
values of each parameter and t is the strength of
testing. An optimal CA contains a minimum num-
ber of rows to satisfy the properties of the entire
CA.Theminimumnumber of rows is known as cov-
ering array number and is denoted byCAN(t, k, v).
A CA of sizeN×k represents a test set where each
row corresponds to a test case, each column rep-
resents a component and the values in the column
represent the domain of the respective component.

2.3. Mixed Covering Array

A mixed covering array [14], denoted by MCA(N ;
t, k, (v1, v2, . . . , vk)), is an N × k two dimen-
sional array, where v1, v2, . . . , vk is a cardinal-
ity vector which indicates the values for every
column. An MCA has the following two prop-
erties: i) Each column i (1 ≤ i ≤ k) contains
only elements from a set Si with |Si| = vi and
ii) The rows of each N × t sub-array cover all
t-tuples of values from the t columns at least
once. The minimum N for which there exists an
MCA is called a mixed covering array number
and is denoted by MCAN(t, k, (v1, v2, . . . , vk)).
A shorthand notation can be used to represent
MCAs by combining equal entries in vi : 1 ≤
i ≤ k. An MCA(N ; t, k, (v1, v2, . . . , vk)) can be
represented as MCA(N ; t, k, (wq1

1 , w
q2
2 , . . . , w

qs
s )),

where k =
∑s
i=1 qi and wj |1 ≤ j ≤ s ⊆

{v1, v2, . . . , vk}. Each element wjqi in the set
{w1

q1 , w2
q2 , . . . , ws

qs} means that qi parameters
can take wj values each. A MCA of size N × k
represents a test set withN -test cases for a system
with k components, each with varying domain size.

2.4. Variable Strength Covering Array

A variable strength covering array [9], de-
noted by VSCA(N ; t, k, (v1, v2, . . . , vk), C), is

an N × k CA or MCA of strength-t contain-
ing C where, C is a set of disjoint CAs or
MCAs each of strength greater than t. Each
element of C is a subset of VSCA and they can
have variable strength of testing. For example,
aVSCA(N ; 2, 435362, {CA(3, 43),MCA(4, 5361)})
is shown in Fig. 3(a). Here, the overall array is
an MCA having three components with four
values, three with five values and two with six
values each (the values of each component are
labelled 0, 1, 2, 3, . . .). It covers all 2-way inter-
actions among components. In addition to this,
it contains two sub arrays: a CA of strength-3
that covers all 3-way interactions among first
three components with four values and an MCA
of strength-4 covering all 4-way interactions
among three components with five values and one
component with six values. The order of columns
in the sub arrays in C is important and they are
listed consecutively from left to right. If a VSCA
contains n identical sub arrays with the same t,
k and v, they can be represented as CA(t, vk)n.
For instance, VSCA(N, 2, 311, (3, 34)2) shown in
Figure 3(b) represent a CA that covers all 2-way
interactions among eleven components with three
values and contains two disjoint sub arrays, each
of which covers all 3-way interactions among four
components with three values each.

3. Genetic Algorithm

The basics of GA were first proposed by Hol-
land [15]. GA is a meta-heuristic search based
optimization technique originating from the Dar-
winian theory of evolution by natural selection
where fitter individuals are more likely to survive
in a competing environment [16]. It is a global
search technique characterized by evolution in
every generation, starting with a randomly gen-
erated initial population. The initial population
represents potential solutions to the given prob-
lem. Each individual in the population is associ-
ated with a fitness value that is calculated using
a fitness function. The fitness function is a func-
tion of the objective that we want to optimize
(maximize or minimize). The fitness value of an
individual apprises us of the merit of a solution
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MCA(N ; 2, 435362)︷ ︸︸ ︷
0 1 0 1 0 1 1 0
1 0 1 0 1 2 3 1
1 2 3 1 4 3 0 1
2 3 2 4 2 3 2 2
0 2 1 2 3 0 1 5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3 0 0 3 4 4 5 3
0 3 3 3 2 2 4 4︸ ︷︷ ︸ ︸ ︷︷ ︸
CA(3, 43) MCA(4, 5361)

(a)

CA(N ; 2, 311)︷ ︸︸ ︷
0 0 1 1 1 0 0 1 0 1 0
1 0 0 0 1 0 1 2 1 0 2
2 1 2 0 0 1 0 1 2 1 1
1 2 1 2 1 2 2 0 0 2 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 1 0 0 0 1 2 1 1 2 0
1 1 0 2 2 2 1 0 0 1 2︸ ︷︷ ︸ ︸ ︷︷ ︸
CA(3, 34) CA(3, 34)

(b)

Figure 3. Representation of VSCA

for the given problem. In each generation, the
population evolves towards better solutions by
means of evolutionary operators such as selec-
tion, crossover and mutation. This process con-
tinues until a satisfactory solution is found or
the maximum number of generations is reached.
As compared to other meta-heuristic techniques,
GA starts with a population of solutions instead
of a single solution that helps GA to cover the
solution search space more thoroughly and avoid
its chances of getting stuck in the local minima.
Moreover, GA is easy to understand and can be
applied to an optimization problem which can
be described with chromosome encoding. On the
contrary, the complexity of crossover and muta-
tion operations is attributed to longer run time
and, furthermore, GA cannot assure a constant
optimization response time which limits its use
in real time applications. The basic outline of
GA is shown in Figure 4.

Having described the notations, in the next
section we will briefly discuss the existing
state-of-the-art algorithms for constructing opti-
mal VSCA for pair-wise testing.

4. Related Work

In an extensive survey performed by Khalsa
and Labiche in [17], it has been found that 75
tools/algorithms exist to generate CA/MCA for
combinatorial testing but not all of them sup-

port construction of VSCA. The strategies that
support the construction of VSCA are broadly
classified into computational strategies and ar-
tificial intelligence based strategies. Computa-
tional strategies use greedy approach to con-
struct VSCA by using either one-test-at-a-time or
one-parameter-at-a-time approach. The strate-
gies based on one-test-at-a-time approach use
a greedy heuristic and try to select a test case
that covers the maximum number of uncov-
ered interactions from a pool of candidate test
cases. However, selecting such a test case it-
self is an NP-complete problem [18]. Some of
the strategies that use one-test-at-a-time ap-
proach are the Test Vector Generator (TVG)
[19], Pairwise Independent Combinatorial Test-
ing (PICT) [20], Intelligent Test Case Han-
dler1 (ITCH), Density [21], DA-RO and DA-FO
[22], and TSG [23]. The strategies that use
one-parameter-at-a-time approach are ACTS
[24,25] and ParaOrder [21].

Recently the search based software testing
(SBST) is increasingly gaining importance and
is been used to solve a wide range of problems
in software testing. Meta-heuristic techniques
are being used by the SBST community to find
an optimal solution for software testing prob-
lems. The problem of generating an optimal
CA/MCA/VSCA is also considered as a SBST
problem [26,27]. Meta-heuristic techniques start
by searching over a large set of feasible solu-
tions and can often find better solutions with

1 IBM Intelligent Test Case Handler
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generate an initial population P randomly
evaluate fitness of each individual in P using the fitness function
while ((generation ≤ maximum generation) and solution not found)

select a subset of individuals P’ from current generation for offspring production
apply crossover to P’
apply mutation to P’
replace low fitness individuals in P by offspring in P’
evaluate P

end while
return individual with highest fitness

Figure 4. Outline of basic GA

fewer computational efforts efforts as compared
to other algorithms, iterative methods or sim-
ple heuristics [28]. To the best of our knowl-
edge, only five meta-heuristic based strategies
to generate VSCA exist in the literature. Ta-
ble 2 list features of all tools/algorithms that
use meta-heuristic techniques and some selected
tools that use greedy techniques to construct
CA/MCA/VSCA.

5. The Proposed Approach for
Construction of VSCA

In this section, we present our proposed strat-
egy of VSCA-GA that aims to generate an opti-
mal VSCA to cover all (100%) t-way and ti-way
interactions between components in a compo-
nent based system. Here, t denotes the overall
strength of VSCA and ti denotes the strength
of sub arrays. VSCA-GA uses a greedy based
approach to GA to generate optimal VSCA.
Let VSCA(N ; t, k, (v1, v2, . . . , vk), C) represent
a VSCA configuration. VSCA-GA starts by cre-
ating an initial population of Psize individuals
where each individual chromosome represents
a candidate solution which is a VSCA of size
N × k. Here, N the number of rows of VSCA
corresponds to test cases and k represents the
number of components in a component based
system. At the start of the search process N is
unknown, so we use the method suggested by
Stardom [39], where we start with a large ran-
dom array and apply binary search repeatedly
until a solution is found. In case the size of N
is known in advance, i.e. best bound achieved in
the existing state-of-the-art, we can start with

the known size and try to optimize it further.
An individual chromosome in the population is
represented by VSCAf |1 ≤ f ≤ Psize and each
VSCAf in the population has a fitness associated
with it which is defined as the total number of
distinct variable strength interactions covered by
it. It is calculated as
Fitness(VSCAf ) =∑

i=t,t1,...,tn

number of distinct i -way

interactions covered by VSCAf (1)

Where, t is the overall strength of VSCA,
t1, t2, . . . , tn are the strength of sub-arrays.

After initialization, GA searches the solution
space by applying genetic operators such as se-
lection, crossover and mutation repeatedly to
find the best solution. The process continues
until a solution is found or the maximum num-
ber of iterations is reached. In case VSCA-GA
starts by taking N from the existing litera-
ture and a solution is found at this N , then
the size of VSCA is decreased by one, other-
wise the size of VSCA is increased by one and
VSCA-GA is executed again in both cases. When
VSCA-GA is re-executed, we seed the initial
population by supplying the best VSCA gener-
ated in the previous run. If the size of VSCA
in the current run is less than that in the pre-
vious run, we decrease the size of seeded VSCA
by one by removing the test case that con-
tributes least to the fitness of VSCA whereas, if
the size of VSCA in the current run is greater
than the size in the previous run, then we add
a randomly generated test case to the existing
VSCA. The various steps of VSCA-GA strat-
egy are explained below.
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Table 2. Comparison of various tools/algorithms for constructing CA/MCA/VSCA for CIT

S.
No.

Tool /
Algorithm

Variable
Strength

Maximum
Strength
Support(t)

Technique Employed Test
Generation
Strategy

Constraint
Handling

1 AETG [1] 7 2

Greedy

One Test at
a Time

3

2 ITCH1 3 6 3

3 TVG [19] 3 6 3

4 PICT [20] 3 6 3

5 Density [21] 3 3 7

6 DA-RO [22] 3 3 7

7 DA-FO [22] 3 3 7

8 TSG [23] 3 3 7

9 Jenny [29] 7 8 3

10 ACTS (IPOG)
3 6 One Parameter

at a Time
3[24, 25]

11 ParaOrder [21] 3 3 7

12 SA [9] 3 3

Meta-heuristic

Simulated Annealing

One Test at
a Time

7

13 GA [30] 7 3 Genetic Algorithm 7

14 ACA [30] 7 3 Ant Colony Optimization 7

15 ACS [31] 3 3 Ant Colony Optimization 7

16 TSA [32] 7 6 Tabu Search 7

17 GAPTS [33] 7 2 Genetic Algorithm 7

18 PWiseGen [34] 7 2 Genetic Algorithm 7

19 VS-PSTG [35] 3 6 Particle Swarm Optimization 7

20 HSS [36] 3 15 Harmony Search 3

21 HSTCG [37] 3 7 Harmony Search 3

22 CASA [27] 7 3 Simulated Annealing 3

23 PSO [38] 7 2 Particle Swarm Optimization One Parameter
at a Time

7

24 PSO [38] 7 2 Particle Swarm Optimization 7

5.1. A Greedy Approach to Generate
Initial Population

When GA is used to construct VSCA, the role
of initial population on the performance of GA
cannot be ignored as it can affect the convergence
speed and quality of the final solution [40, 41].
Generally, initial population is generated ran-
domly. However, recognizing the effect of initial
population on GA performance, several popu-
lation initialization methods for GA have been
proposed in the past by the researchers [41–46].
Here, we present a greedy approach for generat-
ing a good quality initial population of VSCA,
which is achieved by focusing on the coverage of
maximum number of possible uncovered interac-
tions.

Let us consider the system under test con-
sisting of k components where a component is
represented by Cm|1 ≤ m ≤ k and each compo-
nent Cm can take values from 0 to (vm − 1) (vm

is the number of possible values of component
Cm). The jth|1 ≤ j ≤ vm value of component
Cm is represented by valmj . To generate an ini-
tial population of VSCAs, VSCA-GA starts by
computing and storing all the possible t-way and
ti-way interactions between the values of all the
components in an interaction list L, based on the
configuration of VSCA. Then, it calculates the
number of uncovered interactions of each value
valmj of every component Cm, stores it in a vari-
able Nuncovered(valmj) and assigns a probability
of selection denoted by P (valmj) to each of them.
The probability of selection assigned to a value
valmj of component Cm represents its chances
of getting selected when a test case is created.
In our case, the probability assigned to a value
vmj of component Cm depends upon the number
of uncovered interactions of valmj as well as the
total number of uncovered interactions of compo-
nent Cm. Initially all values valmj of a component
Cm are involved in an equal number of uncovered
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interactions, therefore each of them will have an
equal probability of getting selected. For instance,
if a component has four possible values then ini-
tially each one of them will have the probability
of selection equal to 0.25. VSCA-GA generates
the first test case tcf1 in VSCAf |1 ≤ f ≤ Psize
by selecting a value of each component randomly
as each one of them have an equal probability of
selection. After the generation of first test case,
VSCA-GA updates the interaction list L by elim-
inating interactions that are covered in tcf1. Let
the value valms of component Cm be selected in
tcf1 and the number of interactions covered by
valms in tcf1 is Ncovered(valms), then the number
of interactions of valms left uncovered is denoted
by N ′uncovered(valms) and is calculated as:

N ′uncovered(valms) =
Nuncovered(valms)−Ncovered(valms) (2)

Let Pold(valms) denote the probability of selec-
tion of value valms before selection, then after
selection the probability of valms becomes:

Pnew(valms) =

Pold(valms)× N ′uncovered(valms)
Nuncovered(valms) (3)

The decrease in the probability of value valms is
calculated using Equation 4 and is distributed
among the remaining values valmj |1 ≤ j ≤ vm
and j 6= s of component Cm according to Equa-
tion 5.

Pdecrement(valms) =

Pold(valms)×
(

1− N ′uncovered(valms)
Nuncovered(valms)

)
(4)

Pnew(valmj) = Pold(valmj)+(
Nuncovered(valmj)∑j 6=s

j=1 to vm
Nuncovered(valmj)

×

Pdecrement(valms)
)

(5)

Equation 5 increases the probability of the value
valmj of component Cm based on the number
of its uncovered interactions and the total num-
ber of uncovered interactions of the remaining
values (except valms) of component Cm. Hence,

the higher the number of remaining uncovered
interactions of a value, the higher will be the
increase in its probability and vice versa, thereby
getting greedy by extending a higher opportunity
of selection to the values with maximum uncov-
ered interactions. Once the probability of each
value of every component is updated, the number
of uncovered interactions of the selected value
valmj ∀m is updated by assigning the value of
N ′uncovered(valms) to Nuncovered(valms). The suc-
ceeding test cases tcfi|2 ≤ i ≤ N are generated
by selecting a value for each component based
on the probabilities that are updated after the
generation of every test case. Since each value
valmj of a component Cm may have different
probability of selection, to select a value of a com-
ponent, a random number is generated in the
range [0, 1] and based on the interval in which
the random number falls; the value valmj of the
component Cm is selected. For instance, consider
a component Cm having four possible values and
assume that at some point of time during the
test case generation process, the probability of
selection of each of the four values valm1, valm2,
valm3 and valm4 becomes 0.20, 0.35, 0.35 and
0.10 respectively. If the generated random num-
ber lies in the range [0, 0.2] then value valm1 is
selected, if it lies in the range (0.2, 0.55] then
value valm2 is selected, if it lies in the range
(0.55, 0.9] then value valm3 is selected otherwise
valm4 is selected. An example to illustrate the
greedy approach to generate initial population
is given below.

Example: Let us consider a compo-
nent based a system having configuration
(N ; 2, 2331, CA(3, 23)) as shown below:

C1 C2 C3 C4
a1 a2 a3 a4
b1 b2 b3 b4

c4

To construct a VSCA in the initial popula-
tion, VSCA-GA assigns a probability of selection
to each value of every component. Initially, each
value of a component has an equal number of
uncovered interactions; therefore each of them
will have an equal probability of selection. The
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probability of selection of each value of every
component is shown below:

C1 C2 C3 C4

P (a1)=0.5 P (a2)=0.5 P (a3)=0.5 P (a4)=0.333
P (b1)=0.5 P (b2)=0.5 P (b3)=0.5 P (b4)=0.333

P (c4)=0.333

The first test case TC1 is constructed by se-
lecting a value for each component randomly
from their respective input domain. Let TC1 be:
a1, b2, a3, b4.

Now, VSCA-GA changes the probability of
selection of each value of every component based
on the number of their uncovered interactions
using Equations 2–5. The new probabilities be-
come:

C1 C2 C3 C4

P (a1)=0.32 P (a2)=0.68 P (a3)=0.32 P (a4)=0.166
P (b1)=0.68 P (b2)=0.32 P (b3)=0.68 P (b4)=0.417

P (c4)=0.417

Subsequently, for generating the next test
case TC2, VSCA-GA generates random num-
bers. Let the random numbers generated be 0.2,
0.5, 0.2 and 0.3 for each component respectively.
Therefore, TC2 will be: a1, a2, a3, b4.

Now, VSCA-GA again changes the probabil-
ity of selection of each value of every component
based on the number of their uncovered interac-
tions using Equations 2–5. The new probabilities
become:

C1 C2 C3 C4

P (a1)=0.18 P (a2)=0.43 P (a3)=0.18 P (a4)=0.235
P (b1)=0.82 P (b2)=0.57 P (b3)=0.82 P (b4)=0.209

P (c4)=0.556

The same procedure is repeated to construct
the remaining (N − 2)-test cases. Once a VSCA
is generated, the same procedure is repeated to
generate all the remaining VSCAs in the initial
population. Notably, every time a new VSCA is
generated, the interaction list L is reinitialized
to store all the possible t-way and ti-way interac-
tions between the values of all the components
based on the configuration of VSCA.

5.2. A Greedy Approach to Perform
Crossover

The next step after initialization is the appli-
cation of selection, crossover and mutation op-
erators repeatedly to generate optimal VSCA
that covers all possible t-way and ti-way in-
teractions. The crossover operator combines
the genes of two or more parents to gen-
erate an offspring. It is based on the idea
that the exchange of information between good
chromosomes will generate even better off-
spring [47]. There are many variations of the
crossover method, namely single-point crossover,
two-point crossover, multi-point crossover, uni-
form crossover, etc. The number of crossover
points determines how many segments are ex-
changed between the parents. The length (num-
ber of genes) of each segment may vary and
it depends on the position of crossover points.
VSCA-GA performs a crossover at the bound-
aries of test cases and the length of a segment
is always equal to one (i.e. one test case). When
a crossover is performed, it is quite possible that
during the exchange of information between par-
ents, some good features of a parent may get
lost. In our case, based on the configuration of
VSCA each test case tcfi|1 ≤ i ≤ N in VSCAf

covers some fixed number of t-way and ti-way
interactions, out of which some interactions are
distinctly covered by tcfi only. When a random
crossover is performed, it may happen that dur-
ing the exchange of information between two
parent VSCAs say VSCA1 and VSCA2, the best
test case tc1i covering maximum number of dis-
tinct interactions in VSCA1 may get exchanged
with the test case tc2i of VSCA2. This may result
in the gain of new interactions as well as loss of
existing distinct interactions covered by tc1i in
VSCA1 thereby, reducing the net gain in fitness
after the crossover. The net gain in fitness is
calculated using Equation 6.

Net gain in fitness(VSCAf ) =
Number of new interactions gained −

Number of existing distinct interactions lost (6)
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In order to minimize the loss of existing dis-
tinct interactions and to maximize the net gain
in fitness during a crossover, VSCA-GA uses
a greedy approach to perform a crossover. It
takes the number of test cases which are to be
exchanged during the crossover as input (NTC)
instead of the number of crossover points, which
helps it in selecting the test cases greedily for
crossover. VSCA-GA starts by selecting VSCAs
using roulette wheel selection to become parents
during the crossover. In the roulette wheel se-
lection, a probability is being assigned to each
individual in the population. This probability
is calculated on the basis of the fitness of the
individual and thus the individuals with higher
fitness have better chances of getting selected for
reproduction. Out of the two parents selected
using roulette wheel for crossover, VSCA-GA
chooses a parent with higher fitness. Let the
higher fitness parent be parent1 then VSCA-GA
calculates the number of distinct t-way and ti-way
interactions covered by each test case of parent1.
Subsequently, it checks whether the number of
test cases to be exchanged (NTC) is equal to the
number of test cases covering least number of
distinct interactions. There are three possibilities:
1. The number of test cases covering the least

number of distinct interactions is equal to
NTC – In this case VSCA-GA performs
crossover by exchanging the test cases that
cover the least number of distinct interac-
tions in parent1 by the respective test cases
of parent2. For instance, consider a system
A having configuration (N ; 2, 35, CA(3, 34))
(the value of each component is labelled 0,
1, 2) and let N be 7 which means that
the VSCA will consist of 7 test cases repre-
sented by TC1,TC2, . . . ,TC7. Each test case
TCi|1 ≤ i ≤ 7 contains a value 0/1/2 corre-
sponding to each component. Let NTC be
2. After calculating the number of distinct
interactions covered by each of the 7 test cases
in parent1, it has been found that two test
cases TC2 and TC5 cover the least number of
distinct interactions (i.e. 4) in parent1. Hence,
the number of test cases covering the least
number of distinct interactions in parent1 is
equal to NTC. Accordingly, a crossover is

performed by exchanging TC2 and TC5 in
parent1 with the respective test cases TC2
and TC5 of parent 2 as shown in Figure 5(a).

2. NTC is greater than the number of test cases
covering least number of distinct interactions.
Here VSCA-GA selects first NTC test cases
in parent1 when sorted in the ascending order
by the number of distinct interactions cov-
ered by them and applies a crossover at these
positions. For instance, in the aforementioned
system A, let NTC be 3. Here, NTC is greater
than the number of test cases covering the
least number of interactions, so the crossover
is performed by exchanging TC2, TC5 and
TC4 (which covers next least number of in-
teractions i.e. 7 after TC2 and TC5) with the
respective test cases of parent2 as shown in
Figure 5(b).

3. The number of test cases covering the least
number of distinct interactions is greater than
NTC: Here VSCA-GA calculates all the t-way
and ti-way interactions covered by the re-
spective test cases of parent2 and performs
crossover by exchanging test cases that cover
the maximum number of interactions not cov-
ered by parent1. Again, for the aforemen-
tioned system A, two test cases TC2 and TC5
in parent1 cover the least number of distinct
interactions (i.e., 4). Let NTC be 1, which is
less than the number of test cases covering
the least number of distinct interactions in
parent1. In this case, VSCA-GA calculates
the number of interactions covered by the
respective test cases of parent2, in our case
TC2 and TC5. It is clear from Figure 5(c),
that TC5 covers 5 interactions as compared to
TC2 which covers only 1 interaction, not cov-
ered in parent1. Hence, our strategy performs
a crossover by exchanging test cases TC5 in
parent1 and parent2. By choosing the test
case in parent1 that covers the least number
of distinct interactions and exchanging it with
a test case of parent2 that covers maximum
number of interactions not covered by parent1,
we ensure that the resulting offspring is of bet-
ter quality than its parent by minimizing the
loss of existing interactions and maximizing
the gain.
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(a)

(b)

(c)

Figure 5. Multipoint crossover VSCA(N ; 2, 35, CA(3, 34))

5.3. A Greedy Approach to Perform
Mutation

Mutation has a significant effect on the perfor-
mance of GA as the mutation operator randomly
modifies, with a given probability, one or more
genes of a chromosome, thus increasing the diver-
sity of the population and avoids getting stuck
in the local minima. In traditional GA, every
individual has an equal probability of getting
mutated irrespective of their fitness [48]. Thus
the probability of an individual with the highest
fitness to be disrupted by a mutation is equal
compared to the one with the lowest fitness.
Hence a mutation strategy is needed to mutate
an individual to maximize improvement in fitness
by minimizing fitness loss due to the mutation.
Here, we present a greedy mutation strategy to
perform a mutation. First, we select an individ-

ual VSCAf for a mutation and list all the t-way
and ti-way interactions left uncovered by the
selected individual. Subsequently starting from
the highest strength (th) uncovered interaction,
we check interactions of strength th that occurs
multiple times in VSCAf and replace one of its
occurrences with the uncovered th interaction in
an attempt to increase its overall fitness. How-
ever, when an existing interaction is replaced
with an uncovered interaction, then in addition
to the gain of new interactions some old distinct
interactions may get lost. Hence, to maximize
the net gain after mutation, we calculate the
number of distinct interactions covered by the
multiple occurring interactions in the respective
test cases and replaces the one which covers the
least number of distinct interactions. In case
more than one test case covers the least num-
ber of distinct interactions we replace the one
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Figure 6. Greedy Mutation VSCA(N ; 2, 2432,MCA(3, 2232))

which covers the least number of higher strength
interactions. For instance, consider a system hav-
ing configuration (N ; 2, 2432,MCA(3, 2232)) as
shown in Figure 6. It is evident from Figure 6
that the VSCA selected for mutation does not
cover the triplet ‘b3 b4 a6’. When examining
the VSCA, it is found that the triplet ‘b3 a4 b6’
is covered by both TC5 and TC6. Hence, one
occurrence of ‘b3 a4 b6’ can be replaced by ‘b3
b4 a6’. To replace an occurrence of ‘b3 a4 b6’
by ‘b3 b4 a6’, the proposed greedy approach to
mutation calculates the total number of distinct
interactions of strength-2 and strength-3 covered
by b3, a4 and b6 in TC5 and TC6. In our case
both TC5 and TC6 cover an equal number of
distinct interactions, so the proposed approach
replaces ‘b3 a4 b6’ in TC5 which covers a smaller
number of distinct interactions of higher strength
‘3’ by the uncovered triplet ‘b3 b4 a6’.

The overall VSCA-GA strategy can be found
in Appendix.

6. Experimental Results

To assess the effectiveness of VSCA-GA strat-
egy, we implemented the proposed strategy by
extending an open-source tool PWiseGen [49]. It
is an open-source tool written in Java to generate
pair-wise (2-way) test set using GA. It does not
provide support for the construction of CA of
strength t > 2 as well as VSCA construction.
We have extended PWiseGen by adding the ca-
pability to generate VSCA of strength up to 6

using the greedy strategies proposed in Section 5
to generate the initial population, crossover and
mutation. We call it PWiseGen-VSCA.

To compare the performance of PWiseGen-
VSCA with the existing greedy based strate-
gies such as IPOG, PICT, ITCH, TVG, DA-RO,
DA-FO, ParaOrder, TSG and AI based strategies
such as SA, ACS, VS-PSTG, HSS and HSTCG
based on VSCA size, we performed experiments
on a set of four benchmark problems taken from
Cohen et al. [9], Ahmed et al. [35] and Alsewari
and Zamli [36]. As the VSCA size is not depen-
dent on the execution environment, we compare
our result directly with the results published
in literature [9, 21–23,31,35,36] with respect to
VSCA size.

The results of experiments conducted to com-
pare VSCA size on four VSCA configurations
with various sub-configuration settings are shown
in Table 3, Table 4, Table 5 and Table 6 respec-
tively. Cells marked NA (not available) in the
table signify that the results are not available
in the publications and the cells marked ‘–’ sig-
nify that the tool/algorithm does not support
the specified strength. As VSCA-GA produces
non-deterministic results, we ran each configura-
tion 30 times on PWiseGen-VSCA and reported
the best VSCA size obtained over 30 runs. It
can be observed from Table 3, Table 4, Table 5
and Table 6 that AI-based strategies generally
perform better than their greedy counterparts.

When AI-based strategies are compared to
each other, we can see that SA and ACS sup-
port construction of VSCA of strength t ≤ 3
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Table 3. VSCA Size for VSCA configuration VSCA(N ; 2, 315, C)

{C} No. of PICT ITCH DA-RO DA-FO Para TVG TSG IPOG SA ACS VS-PSTG HSS PWiseGen-VSCA
interactions Order Best Average

φ 945 35 31 21 20 33 22 20 21 16 19 19 20 16 16.33
CA(3, 33) 972 81 48 28 29 27 27 27 27 27 27 27 27 27 27
CA(3, 33)2 999 729 59 28 29 33 30 27 28 27 27 27 27 27 27
CA(3, 33)3 1026 785 69 28 30 33 30 28 29 27 27 27 27 27 27
CA(3, 34) 1053 105 59 32 34 27 35 33 38 27 27 30 27 27 27.9
CA(3, 35) 1215 131 62 40 42 45 41 40 41 33 38 38 38 33 34.13
CA(3, 36) 1485 146 61 46 46 49 48 48 48 34 45 45 45 40 42.13
CA(3, 37) 1890 154 68 53 53 54 54 51 51 41 48 49 51 47 48.2
CA(3, 39) 3213 177 94 60 60 62 62 59 63 50 57 57 60 57 57.33
CA(3, 315) 13230 83 132 70 78 82 81 82 83 67 76 74 77 74 75.8
CA(3, 34),

1863 1376 114 46 46 44 53 48 48 34 40 45 45 40 41.5CA(3, 35),
CA(3, 36)
CA(4, 34) 1026 245 103 – – – 81 – 81 – – 81 81 81 81
CA(4, 35) 1350 301 118 – – – 103 – 100 – – 97 94 91 91
CA(4, 37) 3780 505 189 – – – 168 – 165 – – 158 159 158 158.3
CA(5, 35) 1188 730 261 – – – 243 – 243 – – 243 243 243 243
CA(5, 37) 6048 1356 481 – – – 462 – 461 – – 441 441 441 441
CA(6, 36) 1674 2187 745 – – – 729 – 729 – – 729 729 729 729

Table 4. VSCA Size for VSCA configuration VSCA(N ; 2, 320102, C)

{C} No. of PICT ITCH DA-RO DA-FO Para TVG TSG IPOG SA ACS VS-PSTG HSS PWiseGen-VSCA
interactions Order Best Average

φ 3010 100 NA 100 100 100 101 100 102 100 100 102 106 100 100.33
CA(3, 320) 33790 940 NA 100 105 103 103 100 102 100 100 105 109 100 100
MCA(3, 320102) 73990 423 NA 401 409 442 423 411 442 304 396 481 450 440 446
CA(4, 33101) 3280 810 NA – – – 270 – 270 – – 270 270 270 274.53
MCA(5, 33102) 5710 2430 NA – – – 2700 – 2700 – – 2700 2700 2700 2700
MCA(6, 34102) 11110 7290 NA – – – 8100 – 8100 – – 8100 8100 8100 8100

Table 5. VSCA Size for VSCA configuration VSCA(N ; 2, 435362, C)

{C} No. of in-
teractions PICT ITCHDA-RODA-FO Para

Order TVGTSG IPOG SA ACSVS-PSTGHST-CG HSS PWiseGen-VSCA
Best Average

φ 663 43 48 41 40 49 44 39 40 36 41 42 43 42 37 38.93
CA(3, 43) 727 384 97 64 64 64 67 64 67 64 64 64 64 64 64 64
MCA(3, 4352) 1507 781 164 131 132 141 132 125 132 100 104 124 120 116 120 121.3
CA(3, 53) 788 750 145 125 125 126 125 125 126 125 125 125 125 125 125 125
MCA(4, 4351) 983 1920 354 – – – 320 – 320 – – 320 320 320 320 320
CA(3, 43), 852 8000 194 125 125 129 125 125 126 125 125 125 NA 125 125 125CA(3, 53)
MCA(4, 4351), 1883 288000 1220 – – – 900 – 900 – – 900 NA 900 900 900MCA(4, 5262)
CA(3, 43), 1477 48000 819 – – – 750 – 750 – – 750 NA 750 750 750MCA(4, 5361)
MCA(4, 4352) 2503 2874 510 – – – 496 – 479 – – 472 454 453 458 459.23
MCA(3, 435361) 4290 1266 254 207 211 247 237 197 215 171 201 206 NA 212 204 206.76
MCA(3, 5162) 843 900 188 180 180 180 180 180 180 180 180 180 180 180 180 180
MCA(3, 435362) 7080 261 312 256 261 307 302 239 263 214 255 260 264 263 260 260.33
MCA(5, 4352) 2263 9600 1639 – – – 1600 – 1600 – – 1600 NA 1600 1600 1600
MCA(5, 4353) 11463 15048 2520 – – – 2583 – 2487 – – 2430 2430 2430 2434 2436.53
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Table 6. VSCA Size for VSCA configuration VSCA(N ; 2, 1019181716151413121, C)

{C} No. of PICT ITCH Density Para TVG IPOG SA ACS VS-PSTG HSS PWiseGen-VSCA
interactions Order Best Average

φ 1266 102 119 NA NA 99 90 NA NA 97 94 92 93.96
MCA(3, 1019181) 1986 31256 765 NA NA 720 720 NA NA 720 720 720 720
MCA(3, 716151) 1476 19515 301 NA NA 210 211 NA NA 210 210 210 210
MCA(3, 413121) 1290 2397 140 NA NA 99 90 NA NA 97 94 92 92.6
MCA(3, 101918171) 3680 22878 806 NA NA 784 772 NA NA 742 740 740 745.03
MCA(3, 1019181),
MCA(3, 716151) 2196 NA 947 NA NA 720 720 NA NA 720 720 720 720

MCA(3, 1019181),
MCA(3, 716151),
MCA(3, 413121)

2220 NA 968 NA NA 720 720 NA NA 720 720 720 720

MCA(4, 51413121) 1386 1200 237 – – 123 142 – – 120 120 120 120
MCA(5, 10191413121) 3426 124157 2276 – – 2160 2160 – – 2160 2160 2160 2160
MCA(6, 716151413121) 6306 NA 5157 – – 5040 5043 – – 5040 5040 5040 5040

Table 7. VSCA generation time (in seconds)
for VSCA configuration VSCA(N ; 2, 315, C)

{C} IPOG TVG PWiseGen-VSCA

φ 0.077 0.056 2.976
CA(3, 33) 0.009 0.071 1.32
CA(3, 33)2 0.025 0.062 13.5
CA(3, 33)3 0.023 0.076 5.424
CA(3, 34) 0.012 0.088 60.042
CA(3, 35) 0.03 0.098 11.4
CA(3, 36) 0.013 0.141 48.06
CA(3, 37) 0.023 0.161 57.6
CA(3, 39) 0.019 0.304 97.8
CA(3, 315) 0.048 2.008 211.08
CA(3, 34), CA(3, 35), CA(3, 36) 0.008 0.302 30.78
CA(4,34) 0.025 0.108 11.4
CA(4, 35) 0.011 0.189 5431.8
CA(4,37) 0.013 0.862 9003.6
CA(5,35) 0.015 0.499 6.6
CA(5,37) 0.046 3.853 12035.4
CA(6,36) 0.093 1.388 19.44
CA(6, 37) 0.078 11.685 21183.6

Table 8. VSCA generation time
(in seconds) for VSCA configuration

VSCA(N ; 2, 320102, C)

{C} IPOG TVG PWiseGen-VSCA

φ 0.012 0.636 8.9544
CA(3, 320) 0.039 5.972 915
MCA(3, 320102) 0.085 13.559 3813.84
CA(4, 33101) 0.061 1.491 1546.8
VSCA(5, 33102) 0.343 27.409 274.8
VSCA(6, 34102) 1.684 208.681 378

Table 9. VSCA generation time (in seconds) for VSCA
configuration VSCA(N ; 2, 435362, C)

{C} IPOG TVG PWiseGen-VSCA

φ 0.002 0.035 2.37
CA(3, 43) 0.002 0.041 2.106
MCA(3, 4352) 0.002 0.156 433.8
CA(3, 53) 0.005 0.077 0.39
MCA(4, 4351) 0.016 0.189 18.4704
CA(3,43), CA(3,53) 0.001 0.082 0.5772
MCA(4,4351), MCA (4,5262) 0.047 1.136 52.6344
CA(3,43), MCA(4, 5361) 0.032 0.699 35.9112
MCA(4,4352) 0.023 0.917 6992.4
MCA(3, 435361) 0.015 0.733 1173.6
MCA(3,5162) 0.003 0.089 0.45
MCA(3,435362) 0.011 1.621 1579.2
MCA (5, 4352) 0.11 2.84 30.6
MCA (5, 4353) 0.296 26.193 7485.6

Table 10. VSCA generation time
(in seconds) for VSCA configuration
VSCA(N ; 2, 1019181716151413121, C)

{C} IPOG TVG PWiseGen-VSCA

φ 0.003 0.414 7.8
MCA(3, 1019181) 0.003 0.865 5.148
MCA(3, 716151) 0.007 0.241 6.72
MCA(3, 413121) 0.002 0.131 37.518
MCA(3, 101918171) 0.044 2.169 2586.24
MCA(3, 1019181),
MCA(3, 716151) 0.031 0.893 6.0684

MCA(3, 1019181),
MCA(3, 716151),
MCA(3, 413121)

0.028 0.894 7.7376

MCA(4, 51413121) 0.003 0.021 635.22
MCA (5, 10191413121) 0.234 7.504 85.8
MCA (6, 716151413121) 0.733 38.548 484.02
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only whereas VS-PSTG supports construction
of VSCA of strength up to 6. The published
results [36] show that unlike other greedy and
AI-based strategies , HSS support construction
of VSCA of strength up to 15 but nothing is
mentioned about the efficiency of HSS in terms
of VSCA generation time. From Table 3, we
can infer that PWiseGen-VSCA outperforms
ACS whereas the results in Table 4 and Table 5
are comparable. Although PWiseGen-VSCA sup-
ports construction of higher interaction strength
VSCA however, VSCA generation time increases
with the increase in interaction strength which
makes it infeasible to generate higher strength
VSCAs. It is evident from Tables 3-6 that
PWiseGen-VSCA generates better results as
compared to VS-PSTG, HSTCG and HSS. From
Tables 3–6, it is clear that SA outperforms ex-
isting state-of-the-art strategies for lower inter-
action strength (t ≤ 3), however, the results
generated by PWiseGen-VSCA are equal or close
to SA.

Finally from Tables 3–6, we can conclude that
PWiseGen-VSCA generates optimal VSCA most
of the time as compared to other greedy and
meta-heuristic techniques for strength ≤ 6.

It is difficult to compare PWiseGen-VSCA
with the existing state-of-the-art algorithms in
terms of VSCA generation time, as the gener-
ation time is dependent on the running envi-
ronment and most of the algorithm implemen-
tations are not publicly available. To perform
a fair comparison, we restrict the comparison of
VSCA generation time against publicly available
algorithm implementation: ACTS (IPOG) and
TVG. These tools are run on Windows using an
INTEL Pentium Dual Core 1.73 GHZ processor
with 1.00 GB of memory The results of com-
parison made on the dataset of Tables 3–6 with
respect to VSCA generation time (in seconds) are
shown in Tables 7–10 respectively. It is evident
from Tables 7–10 that PWiseGen-VSCA requires
more time to construct VSCA as compared to
ACTS (IPOG) and TVG, however, the extra
time consumed by PWiseGen-VSCA allowed the
construction of VSCAs of smaller size.

7. Threats to Validity

One important threat to validity of the ef-
fectiveness of our approach is that we could
not use any sophisticated statistical hypothe-
sis tests such as Welch’s t-test to assess and
compare PWiseGen-VSCA with the existing
meta-heuristic techniques for constructing VSCA
as we do not have access to the source code of
any of them. Also, we could not compare the
efficiency of PWiseGen-VSCA in terms of VSCA
generation time with the existing meta-heuristic
techniques because of the above mentioned rea-
son.

8. Conclusion and Future Work

In this paper we have presented and evaluated
VSCA-GA, a strategy based on GA to con-
struct optimal VSCA for t-way testing. The strat-
egy is implemented in PWiseGen-VSCA. Our
strategy exploits the strength of both greedy
and meta-heuristic techniques by integrating
greedy technique with GA. The experiments con-
ducted on a set of benchmark problems show
that PWiseGen-VSCA outperforms the existing
state-of-the-art algorithms except SA in terms of
VSCA sizes. However, our results are comparable
to SA which generates VSCA for strength t up
to 3 whereas VSCA-GA constructs VSCA for
strength t up to 6.

In future, we plan to construct VSCA to
handle feature constraints and try to improve
the efficiency of PWiseGen-VSCA to construct
higher strength VSCA.
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Appendix

Input: VSCA configuration: (t, k, (v1, v2, . . . , vk), C), VSCA size: N , Population Size: Psize, Maxi-
mum Number of Generations: NOG, Number of Reproductions: NOR, Number of Test Cases for
Crossover: NTC
Output: Optimal VSCA
Algorithm 1. VSCA-GA

1: procedure VSCA-GA
2: Initialize G := 0 . generation number
3: . Generate initial population pop1
4: for each VSCAf in pop1 do . 1 ≤ f ≤ Psize

5: Create an interaction list L of all t-way and ti-way interactions between all components Cm . 1 ≤ m ≤ k
6: for m = 1 to k do
7: for j = 1 to vm do
8: Store the number of uncovered interactions of value valmj of component Cm in Nuncovered(valmj)
9: end for

10: end for
11: for each component Cm do
12: Assign each value valmj an equal probability of selection P (valmj)
13: end for
14: . Generate first test case
15: Create the first test case tcf1 by selecting a value for each component Cm randomly
16: Let valms is the selected value of component Cm

17: . Generate remaining (N − 1) test cases
18: Initialize i := 2
19: for i = 2 to N do
20: for m = 1 to k do
21: Update interaction list L by eliminating the interactions covered by valms in test case tcf(i−1)
22: Store the number of remaining interactions of valms in N ′uncovered(valms)
23: Decrease probability of selection of value valms of Cm selected in test case tcf(i−1)

according to equation 3
24: Update probability of remaining values of Cm according to equation 5.
25: end for
26: for each component Cm do
27: Generate a random number between 1 to 100
28: Create test case tcfi by selecting a value of Cm based on the interval in which the

random number falls
29: end for
30: end for
31: end for
32: Calculate fitness of each VSCAf in pop1 using equation 1
33: G← G + 1
34: while solution not found and G ≤ NOG do
35: . Perform Crossover
36: Initialize counter := 1
37: while counter ≤ NOR do
38: Select two parent VSCA from population popG−1 using Roulette Wheel Selection
39: Let parent1 is the parent VSCA having higher fitness among the two parents
40: Calculate the number of distinct pairs covered by each test case of parent1
41: if NT C < number of test cases covering least number of distinct interactions then
42: Calculate the number of interactions covered by respective test cases of parent2
43: Select NTC test cases of parent2 that cover maximum number of interactions not

covered by parent1
44: else if NT C > number of test cases covering least number of distinct interactions then
45: Select NTC test cases in parent1 when sorted in ascending order by the number of

distinct interactions covered by them
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46: else
47: Select NT C test cases that covers least number of distinct interactions in parent1
48: end if
49: Perform crossover between parent1 and parent2 by exchanging selected test cases to

generate offsprings os1, os2

50: . Perform Mutation
51: Apply greedy mutation on os1 and os2 as discussed in Section 5.3
52: Replace weaker VSCA in popG−1 by os1, os2 to form new population popG

53: counter ← counter + 1
54: end while
55: Calculate fitness of each V SCAf in the popG using equation 1
56: if solution found then
57: break
58: else
59: G← G + 1
60: end if
61: end while
62: if generations > NOG then
63: return (solution not found)
64: else
65: return V SCAf . VSCA with 100% fitness
66: end if
67: end procedure
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