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Abstract

This paper presents a new model of an arti�cial neural network solving classi�cation problems,
called Local Transfer Function Classi�er (LTF-C). Its architecture is very similar to this of the
Radial Basis Function neural network (RBF), however it utilizes an entirely di�erent learning
algorithm. This algorithm is composed of four main parts: changing positions of reception
�elds, changing their sizes, insertion of new hidden neurons and removal of unnecessary ones
during the training.

The paper presents also results of LTF-C application to three real-life tasks: handwritten
digit recognition, credit approval and cancer diagnosis. LTF-C was able to solve each of these
problems with better accuracy than most popular classi�cation systems. Moreover, LTF-C
was relatively small and fast.
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Introduction

The issue of constructing an automated classi�cation system appears in many real-life situa-
tions. Let us consider tasks such as automatic recognition of handwritten characters, speech,
web pages content, diagnosing of diseases or defects in various devices and so on. All of them
are classi�cation problems, that is problems of creating a system which can recognize � when
presented with a pattern � which prede�ned class this pattern belongs to.

Since we usually cannot �nd a complete analytical solution to a speci�ed classi�cation task,
we would like to create a system which will learn the desired solution by itself. Therefore,
application of neural networks should be considered, as they are well known to be able to learn
themselves e�ectivelly and to achieve high accuracy. This paper presents the architecture,
training algorithms and results of tests of a new RBF-like neural network solving classi�cation
problems, called Local Transfer Function Classi�er (LTF-C).

LTF-C has virtually the same architecture as the Radial Basis Function (RBF) neural
network, but it utilizes entirely di�erent learning algorithm. This algorithm is composed of
four main parts: changing positions of reception �elds, changing their sizes, insertion of new
hidden neurons and removal of unnecessary ones during the training.

Reception �elds in LTF-C have shapes of hyperellipses. Their sizes can change during the
training independently for each neuron and each axis of the coordinate system. The algorithm
for changing the position of reception �elds is similar to the Kohonen rule, however it is used
in a supervised learning and is more sophisticated. Particularly, it enables patterns to have
di�erent in�uence on the training, according to their signi�cance.

The algorithm for dynamic modi�cation of the network structure is based on evaluation
of the usefulness of every hidden neuron after each presentation of a pattern. This algorithm
is very e�ective and does not slow down the training process signi�cantly.

The paper presents also results of applying LTF-C to three real-life tasks: handwritten
digit recognition, credit approval and cancer diagnosis. LTF-C was able to solve each of these
problems with better accuracy than most popular classi�cation systems. Moreover, LTF-C
was relatively small and fast.

The algorithms presented in this paper were implemented in LTF-Cimulator [13] and
Rough Set Exploration System (RSES) [1, 12]. These programs can be used to train and
test LTF-C neural networks. They are Microsoft Windows applications, freely available for
non-commercial purposes. RSES runs also on Linux.
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Chapter 1

The network architecture

Let the training set be composed of N pairs of the form:
(
X(i), c(i)

)
, where

X(i) =
[
x

(i)
1 , x

(i)
2 , . . . , x(i)

n

]

is the i-th input pattern belonging to the c(i)-th class
(
c(i) = 1, 2, . . . , k

)
. Vectors X(i) can

be treated as points in the n-dimensional space X (we can identify vectors with points, so for
the simplicity of the notation these terms will be used interchangeably). Close neighborhood
of the point X(i) should belong to the same class as X(i), therefore the space X can be
divided into �nite number of decision regions � areas of the same value of classi�cation. The
problem resolves then to the task of modeling decision regions, which are complex �gures in
the n-dimensional space.

Putting at present aside the algorithm creating the model of such a �gure, we must consider
the way of representing this model. In the case of a 2-dimensional �gure we can remember
its rough shape by memorizing the coordinates of certain points on its border along with
their order on the circumference. Such a representation cannot be, however, generalized to
multidimensional �gures. We can also take a set of straight lines tangent to the �gure in
many di�erent points and for each of them memorize which side of it the �gure lies on. In
the n-dimensional space straight lines would turn into hyperplanes � such a representation
is used in a Multi-Layer Perceptron (MLP). Still, there might be problems with nonconvex
�gures. Furthermore, the model obtained is always sharp-edged, so it is necessary to take
many hyperplanes to model spherical shapes.

We can model, however, not the border of the region, but its interior � by �lling it as tight
as possible with basic �gures of versatile shapes. This idea lays in the basis of the proposed
neural network.

The network is composed of two layers of neurons (Fig. 1.1). The �rst one retains the
information about basic �gures �lling the decision regions. Each �gure is represented by a
neuron (constitutes its reception �eld): the neuron weights de�ne the position of the �gure
centre, and the radii � its size. The neuron output belongs to the range of [0, 1]. It de�nes
how �much� the presented pattern lies in the interior of the �gure (analogically to fuzzy rules
we can use not only binary values for the neuron output). Formally, the response yi of the
i-th neuron on the input pattern X can be formulated as follows:

yi = f




√√√√√
n∑

j=1

(
wij − xj

rij

)2

 , (1.1)
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Figure 1.1: The architecture of the LTF-C neural network. Bolded symbols denote: signals
�owing through the corresponding bolded connections (xj , yi, y′l) and adaptive parameters
(weights wij , w′il, radius rij) attached to these connections

where Wi = [wi1, wi2, . . . , win] � weights of the i-th neuron, Ri = [ri1, ri2, . . . , rin] � radii of
the i-th neuron, f � an output function.

Reception �elds of neurons have to �ll some � usually bounded � region, therefore they
also ought to be bounded �gures. Hence, the output function should satisfy the following
condition:

lim
d→∞

df(d) = 0 , (1.2)

which guarantees the locality of the transfer function � neuron responses will vanish for points
X lying far from Wi.

The Gaussian function is used in all experiments:

f(d) = e−d2
, (1.3)

which yields the following form of the neuron response:

yi = exp


−

n∑

j=1

(
wij − xj

rij

)2

 . (1.4)

With such a transfer function reception �elds have shapes of hyperellipses with axes parallel
to the axes of the coordinate system. Substituting the Euclidean norm in (1.1) with the
Minkowsky's norm with the exponent both greater and smaller than 2 did not improve the
results of the network. However, it does not necessarily mean that the Gaussian function is
the best � the point is mainly to obtain reception �elds of the most varied shapes [4].

Each hidden neuron must remember what is the class of the decision region it �lls. To this
end, it uses weights of connections with output neurons. If the i-th hidden neuron belongs to
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the c-th class (�lls the decision region of the c-th class) the weight w′il of its connection with
the l-th output neuron equals:

w′il =

{
0, for l 6= c
1, for l = c

. (1.5)

These weights are set while a hidden neuron is created and do not change during the training.
The output layer is composed of k neurons (k � the number of classes) � if the l-th neuron

is the one most activated after the presentation of the pattern X, it means that the network
has classi�ed X to the l-th class. This layer just aggregates the information coming from the
hidden one. It is composed of simple linear units:

y′l =
m∑

i=1

w′ilyi , (1.6)

where y′l is the response of the l-th output neuron and m is the number of hidden neurons.
As we can see, LTF-C has virtually the same architecture as the RBF neural network. The

only di�erence is that the output layer in LTF-C has binary weights and does not undergo
training.

One can also �nd a di�erence in the genesis of these systems. In the case of RBF the
feature of the nonlinear projection of patterns onto a higher-dimensional space by the hidden
layer is pointed out [10] (after such a projection the classi�cation problem is more likely to be
linearly separable, the Cover's theorem [2]), while the basis of LTF-C is an idea of modeling
decision regions by �lling their interiors.
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Chapter 2

The neural network training process

2.1. Changing position of reception �elds
The goal of the hidden neuron belonging to the c-th class is to position its reception �eld
in such a way that it contains as many points from the c-th class and as few points from
other classes as possible. For that reason, during the training phase the neuron should move
its weights W towards points from the c-th class and move away from the ones belonging to
other classes. Moreover, the higher the neuron response on the presented pattern, the greater
the in�uence of that pattern on modi�cation of the neuron weights should be. It leads to a
conclusion that a new value of weights of the i-th hidden neuron, belonging to the ci-th class,
after presentation of a pattern X from the c-th class, should be a weighted average of their
previous value and X:

Wi ← (1− ηyi)Wi + ηyiX , (2.1)
or equivalently:

Wi ← Wi + ηyi(X −Wi) , (2.2)

η =

{
η+, for ci = c
−η−, for ci 6= c

, (2.3)

where η+ and η− are learning parameters satisfying: 0 < η+ ≤ η− ≤ 1.
An interesting property of the learning process arises from the above formula. If ∆Wi is

the increment of weights of the i-th neuron in a speci�ed learning step, its expected value
E(∆Wi) equals:

E(∆Wi) =
1
N

N∑

p=1

m
(p)
i (X(p) −Wi)

=
∑

m
(p)
i

N

(∑
m

(p)
i X(p)

∑
m

(p)
i

−Wi

)
,

(2.4)

where N is the number of samples in the training set and m
(p)
i = ηy

(p)
i is the weight of the

component X(p) − Wi in (2.2). If we interpret the p-th pattern as a particle with X(p) as

its position vector and m
(p)
i as its mass, Mi =

∑
m

(p)
i X(p)

∑
m

(p)
i

will be the centre of mass of

all particles represented by training patterns, and actually � by points lying in a reception
�eld of the i-th neuron (only m

(p)
i of such points is signi�cantly nonzero). Since the vector

E(∆Wi) is � as it arises from the above equality � parallel to the vector Mi − Wi, weights
of the neuron will move during the training towards the centre of mass of points lying in its
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reception �eld. This, in turn, guarantees the stability of the learning process and makes it
possible to understand what exactly happens during the training.

It should be added that masses m
(p)
i can be negative, which occurs when a speci�ed

training pattern belongs to a di�erent class than the neuron. Nonetheless, thanks to the
locality of the neuron transfer function, eq. (1.2), this does not lessen the stability of the
training.

It is also worth noticing that the rule (2.1) is similar to some well-known ones, such as
Kohonen's, Hebbian or Hebbian with modi�cations (see [10, 6, 5]).

Learning according to (2.1) has some disadvantages. Hidden neurons are trained entirely
independently, therefore they will gather after training in several regions of the input space,
where the concentration of points X from the training set is the largest. In other regions
of the input space there will not be any neurons. Another disadvantage of this formula is
that di�erences in the di�culty of classi�cation in various parts of the input space are not
taken into account, while more neurons are needed in regions of a more complicated decision
border. To solve these problems the term of the attractiveness of the learning pattern was
introduced. It de�nes how big in�uence on the modi�cation of weights a speci�ed learning
pattern should have. The worse (less correct) the network response on the pattern X, the
bigger the attractiveness of this pattern should be.

Before giving the de�nition of the attractiveness we must de�ne what we mean by less or
more correct response. Correctness ∆ of the network response on the pattern X from the c-th
class is de�ned as follows:

∆ = y′c −max
{

y′l : l 6= c
}

. (2.5)

With such a de�nition the sign of ∆ says whether the network answer has been correct and
its absolute value says how sure the network has been while giving that response. Certainly,
the greater ∆ the more correct the answer of the network is.

The attractiveness function A(∆) must satisfy the following conditions:

1. A(∆) ∈ [0, 1] � For the learning process to be stable.

2. lim
∆→+∞

A(∆) = 0 � So that well classi�ed patterns do not in�uence learning.

3. lim
∆→−∞

A(∆) = 0 � This condition ensures that patterns which were, for instance, mis-
classi�ed during the data acquisition, will not have signi�cant in�uence on the training.
We can notice a similar property in the way people acquire knowledge � if the human
gets information completely un�tting his current knowledge, he does not believe in it,
e.g., by presuming he has misheard. Only if the same information comes to him several
times, he might adjust his opinion.

Taking into account above conditions, A(∆) was de�ned as follows (see Fig. 2.1):

A(∆) =





exp
(
−2

( ∆−∆0
∆max −∆0

)2
)

, for ∆ ≥ ∆0

exp
(
−2

( ∆−∆0
∆min −∆0

)2
)

, for ∆ < ∆0

, (2.6)

where ∆0, ∆min, ∆max are constants satisfying: ∆min < ∆0 ≤ 0 < ∆max.
And after including the attractiveness the formula (2.2) for the weights modi�cation turns

into:
Wi ← Wi + ηA(∆)yi(X −Wi) . (2.7)
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Figure 2.1: A graph of the attractiveness function

2.2. Changing size of reception �elds
A size of the neuron reception �eld is de�ned by the vector of radii Ri (eq. (1.1)), indepen-
dently along each axis of the coordinate system. One of the reasons for adjusting it adaptively
is that regions of di�erent sizes and di�culty of classi�cation can exist in the input space si-
multaneously. There can exist, for instance, vast areas of univocal classi�cation, very easy
to model with only one huge reception �eld, and regions adjacent to decision borders, re-
quiring high precision and, therefore, small reception �elds. Another reason is that di�erent
attributes can be of unequal importance for classi�cation � some of them can be insigni�cant,
corresponding radii should be then large, while others can play the vital role in classi�cation
� corresponding radii ought to be quite short.

Change of the j-th radius of the i-th neuron after presentation of the sample (X, c) should
depend on:

1. the response yi of the neuron � in order to allow only patterns in the reception �eld to
in�uence the training,

2. the attractiveness of the pattern � to enable di�cult patterns to have bigger in�uence
on the training (see sect. 2.1)

3. the distance dij along the j-th axis between the pattern and the centre of the reception
�eld:

dij =

∣∣∣∣∣
xj − wij

rij

∣∣∣∣∣ . (2.8)

The following formula satisfying given assumptions was devised:

rij ← rij exp (ηgA(∆)yidij) , (2.9)

where

ηg =

{
η+
g , for ci = c

−η−g , for ci 6= c
, (2.10)

ci is the number of a class which the i-th neuron belongs to, η+
g and η−g are training parameters

(0 < η+
g ≤ η−g ).
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2.3. Inserting hidden neurons
Before starting training neurons, �rst they have to be created, with weights and radii properly
initialized. It is not that easy � when adaptive parameters are initialized randomly, nearly all
reception �elds land in regions with no training points, while regions full of learning patterns
stay empty. Initializing �eld centers with points from the training set is not good, as well.
In this case most of the neurons land in regions where many points lie, not where di�cult
classi�cation requires more units. The best solution � applied in LTF-C � is to add neurons
during the training in regions where network responses are unsatisfactory.

After presentation of the sample (X, c) a neuron is inserted to the hidden layer with
probability P , depending on A(∆) (eq. (2.6)), i.e. on how incorrect the network response has
been:

P = pA(∆) , (2.11)

where p is a positive constant. Weights of the inserted neuron are initialized as follows (m �
the number of hidden neurons existing till now):

Wm+1 = X , (2.12)

w′(m+1)l =

{
0, for l 6= c
1, for l = c

, (2.13)

where w′(m+1)l is the weight of the connection with the l-th output neuron.
Initializing radii is more di�cult. They should be rather long, as even one excessively

small radius may result in excluding all the training points from the reception �eld. They
should not be too large either, since a single presentation of a pattern just after the neuron
creation could move the reception �eld to an entirely di�erent region of the input space. The
new neuron could also disturb too much the training process of other units. The following
formula satis�es above conditions quite well:

r(m+1)j = rmin + ρ(rmax − rmin) , (2.14)

where:
rmin = min Z , (2.15)

rmax = maxZ , (2.16)

Z = { rij : 1 ≤ i ≤ m, 1 ≤ j ≤ n } ∪
{√

n

5

}
, (2.17)

ρ � a random variable of uniform distribution on [0, 1]. The value of
√

n
5 was picked out under

the assumption that the dispersion of values of attributes xj is normalized, e.g. the attributes
have unit variance.

2.4. Removing hidden neurons
Despite a sophisticated algorithm for creating neurons, many of them land in regions where
they are useless or even harmful. For instance, many new neurons with very small reception
�elds, containing no points from the training set can be created near decision borders. They
decrease not only the network speed, but also its accuracy (by lowering generalization). That
is why an algorithm for removing unnecessary hidden neurons is needed.
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The algorithm used in LTF-C evaluates after each presentation of a pattern so called global
usefulness ui of each hidden neuron. For that purpose it utilizes instantaneous usefulnesses
vi, saying how important the existence of the i-th neuron has been for reckoning a correct
network response on the pattern X. The instantaneous usefulness is computed only on the
ground of the last presented sample (X, c), according to the formula:

vi = A(∆i)−A(∆) , (2.18)

where A is the attractiveness function (eq. (2.6)), ∆ � the correctness of the last response
of the network (eq. (2.5)), and ∆i says how correct the response would have been if the i-th
neuron had not existed (compare eq. (2.5) and (1.6)):

∆i = y(i)
c −max

{
y

(i)
l : l 6= c

}
, (2.19)

y
(i)
l = y′l − w′ilyi . (2.20)

The instantaneous usefulness vi is positive if the i-th neuron has had bene�cial contribution
to reckoning the network response, and negative if the response would have been better after
removing this neuron. Evaluating vi for all neurons is not very expensive � the complexity of
this operation is proportional to the number of weights of the output layer, so it is lower than
the complexity of computing the network response.

The global usefulness ui of the i-th neuron should be an average of values vi computed for
di�erent training patterns. Arithmetic average of vi for all samples would be the best, but
due to computational complexity it is not feasible to test the network on the whole training
set after each learning cycle. Therefore, exponential mean was applied � only last values of ui

and vi are necessary to calculate it. One has only to remember that learning patterns must
be presented in each epoch in a di�erent order, since this sequence in�uences the value of the
usefulness.

Suitable formula for the modi�cation of ui after the presentation of a pattern has the
form:

ui ← (1− ηu)ui + ηuvi . (2.21)
The i-th neuron is removed when

ui < U . (2.22)
Constants ηu and U belong to the range of [0, 1].

Choosing a proper value of ηu can be troublesome, as it is not known precisely how many
recent values vi have signi�cant in�uence on the ui. The goal is to obtain an exponential
average with the parameter ηu, which has similar properties as the arithmetic mean of N
components (N � the number of training patterns). Suppose we want to make variances of
the both averages equal:

VA = V

(
1
N

N∑

i=1

Xi

)
, (2.23)

VE = V

(
ηu

∞∑

i=1

(1− ηu)i−1Xi

)
, (2.24)

where X1, X2, . . . , XN , . . . are independent random variables of the same distribution as vi

(so V (X1) = V (X2) = . . .). Then

VA =
1

N2

N∑

i=1

V (Xi) =
1
N

V (X1) , (2.25)
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VE = η2
u

∞∑

i=1

(1− ηu)2(i−1)V (Xi)

=
η2
uV (X1)

1− (1− ηu)2
=

ηu

2− ηu
V (X1) .

(2.26)

Thus, for VA = VE must hold:

1
N

V (X1) =
ηu

2− ηu
V (X1) , (2.27)

whence
ηu =

2
N + 1

≈ 2
N

. (2.28)

There is yet the problem of initializing the usefulness ui. Its initial value should not be
too small, since a new neuron must have a chance to adapt to the surroundings before it
is removed. It should not be also too big, as the algorithm for neuron removal would be
ine�cient.

Let us denote the initial value of ui by u0 . To estimate an appropriate value of u0 we can
imagine what should happen with a neuron which does not have any training points in its
reception �eld, i.e. for which vi is always 0. Such a neuron should be removed after N steps
of the training, so if u

(N)
i is its usefulness after N steps (v(t)

i = 0 � instantaneous usefulness
in the t-th step):

u
(N)
i = (1− ηu)Nu0 + ηu

N∑

t=1

(1− ηu)t−1v
(t)
i

=
(

1− 2
N

)N

u0 ≈ e−2u0 ,

(2.29)

the following condition should be satis�ed:

u
(N)
i = U , (2.30)

whence:

e−2u0 ≈ U , (2.31)
u0 ≈ 8U . (2.32)

It is worth mentioning that the algorithm of weights and radii modi�cation (eq. (2.7)
and (2.9)), combined with dynamical modi�cation of the network structure, displays some
similarities with phenomena known from the evolution theory. Carrying out experiments on
data with two-element input vectors (thus easy to visualize) the author noticed some kind of
a competition between neurons with neighboring reception �elds. It was favouring neurons
with larger �elds and forcing smaller ones to move to regions of the input space too narrow for
bigger ones in order not to be removed. This phenomenon is similar to rivalry between species,
which eliminate worse-adapted individuals or force them to �nd a free ecological niche. In the
case of LTF-C this competition is still rather weak. However, this rivalry is probably worth
strengthening, as applying evolutionary rules to computations has given excellent results so
far.
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2.5. Reducing training parameters during learning
Parameters de�ning the velocity of the training: η+, η−, η+

g and η−g should be large at the
beginning � for the learning to proceed quickly, and small at the end � for neurons to �t well
to training data. For that reason they ought to be decreasing as the time goes by, preferably
independently for each neuron � so that even lately created neurons are able to learn and
older ones, taught quite well by then, are less mobile than younger ones. Thus, a parameter
τ

(t)
i was introduced, which determine the ratio of values of parameters of the i-th neuron in
the t-th training step to their initial values:

τ
(t)
i = 1− t− ti

T − ti
, (2.33)

where ti � the number of a learning step when the i-th neuron was created, T � the total
number of learning steps to carry out. At the moment of neuron creation τi equals 1 and is
decreasing linearly as the time goes by, reaching 0 in the last step of the training.

Modi�ed formulae (2.7) and (2.9) have the form:

Wi ← Wi + ητ
(t)
i A(∆)yi(X −Wi) , (2.34)

rij ← rij exp
(
ηgτ

(t)
i A(∆)yidij

)
. (2.35)

Another parameter must also be decreasing during the training � the one determining
the probability of creating a new neuron, p (eq. (2.11)). Inserting a new unit cause violent
momentary perturbations in the training of existing neurons, making impossible for them to
�t well to the data. For that reason a parameter τ

(t)
ins was introduced, which says how intensive

the process of creating new neurons should be in the t-th learning step:

τ
(t)
ins =





1− t

0.9T
, for t < 0.9T

0, for t ≥ 0.9T
. (2.36)

In the last 10% of time τ
(t)
ins = 0, because neurons created just before the end would not have

enough time to learn.
Modi�ed eq. (2.11) has the form:

P = τ
(t)
inspA(∆) . (2.37)

2.6. Choosing training parameters
The presented training algorithm is relatively complex. An unavoidable consequence of this
complexity is the large number of training parameters which must be set by the experimenter
before the start of the training. Fortunately, some general rules for �nding the proper values
can be devised:

• η+ = η− = η−g = 1.0; eq. (2.1) and (2.9).

• η+
g = max(0.1,min(0.9, 2∗ (1.0−α))); eq. (2.9). Here, α denotes the fraction of training
patterns belonging to the most frequent class. η+

g depends linearly on α, but cannot be
lower than 0.1 nor bigger than 0.9.
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• ∆0 = −0.5, ∆min = −1.0, ∆max = 0.5; eq. (2.6).

• p = 0.05; eq. (2.11).

• ηu = 2
N ; eq. (2.21). Here, N is the size of the training set. Finding the proper value of

ηu is the most troublesome task, since the rule given here is not always valid. Namely,
when the network after training contains only few hidden neurons and its accuracy is
very poor, this indicates that ηu should be decreased signi�cantly (even by the factor of
10).

• U = ηu; eq. (2.22).

• The number of training epochs: 20.

The above rules are used by LTF-Cimulator [13] and RSES [1, 12] for choosing default
values of training parameters. They were also used in the tests described in the next section.
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Chapter 3

Applications and results of tests

The presented neural network was tested in solving three problems of practical importance.
These were handwritten digit recognition, credit approval and cancer diagnosis. Results were
compared with these of other systems, tested by other scientists. It is worth emphasizing
that each task was of a di�erent type and required di�erent features of a classi�cation system
(tab. 3.1).

3.1. Handwritten digit recognition
In this experiment the MNIST database of handwritten digits was used, which was downloaded
from Yann Le Cun's homepage [7]. It is composed of two datasets: the training one, containing
60000 characters from 250 writers, and the test one, containing 10000 patterns. Digits from
each set were written by di�erent people. The database consists of 28x28-pixel images of
scanned handwritten digits containing grey levels [7, 8]. Exemplary images from the test set
are shown in �g. 3.1.

The only preprocessing performed on the data from the MNIST database (as well as from
databases decribed in the next sections) was normalization of input values, being originally
integers from 0 to 255, to the range of [0, 1]. This was necessary in order to make the algorithm
of initializing neuron radii work properly (see the remark by the formula (2.15)).

The best LTF-C neural network achieved 2.6% error rate on the test set and 1.5% on the
training set. It contained 424 hidden neurons. It took 7 hours to train this network on a PC
with AMD Duron 700 MHz CPU and 128 MB RAM.

The results of LTF-C are very good compared with these of systems tested by Le Cun
(�g. 3.2). In particular, LTF-C performed much better than the most popular classi�cation

Figure 3.1: Exemplary characters from the MNIST test set
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Table 3.1: Characteristic of the databases used to test LTF-C

MNIST Australian Credit Wisconsin Breast Cancer
size of the training set huge small small
the number of classes large small small
distribution of patterns
among classes

uniform uniform irregular

the number of attributes large small small
continuous attributes + + �
categorical attributes with
small number of values

� + �

categorical attributes with
large number of values

� + +

missing values � + +

systems: MLP, RBF and k-Nearest Neighbor (k-NN) algorithm, when rough (neither deskewed
nor distorted) training images were used. There were indeed systems which achieved much
better accuracy than LTF-C, but all of them had also some serious drawbacks:

1. MLP and k-NN were able to achieve good results only when data preprocessing such as
deskewing or adding distortions [7, 8] was applied. The error rate of k-NN decreased from
5.0% to 2.4% after deskewing; the error rate of 2-layer MLP with 300 neurons decreased
from 4.7% to 3.6% after adding distortions or to 1.6% after deskewing. Such an immense
decrease in error rates suggests that the accuracy of LTF-C would also improve after
deskewing, which simpli�es the problem, or after adding distortions, which arti�cially
augments the training set and enables a system to �t better to the training data without
decreasing generalization.

2. Soft Margin Classi�er, Tangent Distance Classi�er and k-NN require huge amount of
memory and very long time for computing a response on a presented pattern [8] (of the
order of the number of training patterns), which excludes them from most of applications
(also character recognition).

3. Tangent Distance Classi�er and LeNets are designed speci�cally for recognizing charac-
ters and utilize information speci�c only for this task. They achieved indeed the best
results, however they are the least versatile. Moreover, training time of LeNets is very
long [8].

LTF-C was trained on neither deskewed nor distorted images. This network is also free of
drawbacks mentioned above.

3.2. Credit approval
In this experiment, LTF-C was tested on the Australian Credit Approval database from the
UCI repository [9]. The task was to assess applications for credit cards and decide whether
to give a card or not. The database consisted of 690 patterns containing 14 components
(6 continous and 8 categorical). There were two classes with 45% and 55% of patterns
respectively. Missing values in 5% of patterns were replaced by medians or means.
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2.6%LTF-C

4.5%MLP 2-layer, 1000 hidden neurons

3.05%MLP 3-layer, 300 + 100 hidden neurons

2.95%MLP 3-layer, 500 + 150 hidden neurons

3.6%RBF 1000 neurons, k-means algorithm

4.7%MLP 2-layer, 300 hidden neurons

3.3%PCA (40 components) + quadratic classifier

5.0%k-Nearest Neighbour, Euclidean metric

1.1%Tangent Distance Classifier

1.1%Soft Margin Classifier, 4th degree polynomial

2.4%k-NN [deskewing*]

3.6%MLP 2-layer, 300 hidden neurons [distortions**]

1.6%MLP 2-layer, 300 hidden neurons [deskewing*]

0.7%Boosted LeNet-4 [distortions**]

1.1%LeNet-4

0.8%LeNet-5 [distortions**]

Figure 3.2: Error rates of systems tested on the MNIST database. Deskewing � all images
were deskewed, so as to make them vertical; distortions � the training set was augmented
with arti�cially distorted versions of the original training patterns
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Results were obtained by 10-fold cross validation repeated 10 times. The average error
rate of LTF-C in a single cross validation experiment varied between 12.8% and 14.2% (13.6%
on average) with average number of neurons between 12 and 15. It took very short time to
perform a 10-fold cross validation: only 5 seconds on AMD Duron 700 MHz.

Over 20 other classi�cation systems were tested on the Australian Credit database in the
StatLog project [10]. Their error rates in 10-fold cross validation were between 13.1% and
20.7%, e.g., the error rate of MLP was 15.4%, RBF � 14.5% and k-NN � 18.1% (�g. 3.3).

3.3. Cancer diagnosis
The last experiment was carried out with the use of the Wisconsin Breast Cancer database
from the UCI repository [9]. Originally this database consisted 699 patterns belonging to one
of two classes: benign (65.5%) or malignant (34.5%). However, 16 patterns which contained
missing values were removed, so the database used in the experiment was composed of 683
patterns. Input vectors contained 9 attributes describing some characteristics of examined
tissue. The attributes took integer values from 1 to 10.

In 10-fold cross validation repeated 10 times LTF-C obtained error rate between 2.5%
and 3.5% (2.95% on average). In 5-fold cross validation repeated 10 times the error rate was
between 2.6% and 3.1% (2.85% on average). The network was composed of 6 � 7 neurons. It
took less than 5 seconds to perform a 10-fold cross validation on AMD Duron 700 MHz.

The results of LTF-C can be compared with error rates of other systems, given in [3].
Only 4 systems out of 37 obtained error rate below 3.0%. The error of the best one was 2.5%.
And the worst systems had error rates of 6.6%, 13.3% and even 65.5%.
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LTF-C 12.8%-14.2%

Cal5 13.1%

Quadisc 20.7%

ITrule 13.7%

Logdisc 14.1%

Discrim 14.1%

SMART 15.8%

CART 14.5%

ALLOC80 20.1%

RBF 14.5%

CASTLE 14.8%

NaiveBay 15.1%

IndCART 15.2%

MLP 15.4%

NewID 18.1%

C4.5 15.5%

AC
2

18.1%

k-NN 18.1%

Baytree 17.1%

LVQ 19.7%

CN2 20.4%

DIPOL92 14.1%

Figure 3.3: Error rates of systems tested on the Australian Credit Approval database
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Chapter 4

Concluding remarks

New model of an RBF-like neural network solving classi�cation problems � Local Transfer
Function Classi�er � was presented in this paper. Not only the architecture and training
algorithms of this model were described, but also results of tests were presented.

These results show that LTF-C can compete with the best classi�cation systems, like the
Multi-Layer Perceptron or the Radial Basis Function network. Along with very high accuracy,
e�ectiveness and versatility LTF-C has many advantages characteristic for neural networks,
such as natural possibility of implementing it as a parallel system, or resistance on the damage
of some part of units. Furthermore, thanks to utilizing local transfer functions, it is free of a
serious weakness of the most popular neural networks � MLPs � the problem of local minima.

However, there are still many elements of this model that can be improved. The most
promising directions of further research are given below.

• Weights of output neurons must equal either 0 or 1. This condition could be relaxed, so
that a non-zero output weight could be any positive real number. Such a modi�cation
would require a simple extension of the training algorithm, so that proper values of the
output weights could be found. The tests performed so far show that this modi�cation
allows to create much smaller networks (even by 50%) with the same accuracy.

• Reception �elds in LTF-C have shapes of ellipses with axes parallel to the axes of the
coordinate system. The possibility of utilizing rotated ellipses is worth investigating, as
this would allow the network to �t much better to the training data. The main problem
is that a simple algorithm for performing rotations has quadratic complexity in respect
to the size of the input vector.

• Large number of training parameters is a serious drawback of LTF-C. The existing rules
for choosing their values not always give the best results. Perhaps, better rules could
be found with an evolutionary algorithm.

Apart from the issues listed above, the author is working also on creating a neural network
similar to LTF-C, but able to approximate every given function.
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