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Abstract
Background: Model transformations play a key role in Model-Driven Engineering (MDE).
Testing model transformation is an important activity to ensure the quality and correctness of the
generated models. However, during the evolution and maintenance of these model transformation
programs, frequently testing them by running a large number of test cases can be costly. Regression
test selection is a form of testing, which selects tests from an existing test suite to test a modified
program.
Aim: The aim of the paper is to present a test selection approach for the regression testing of
model transformations. The selected test case suite should be smaller in size than the full test
suite, thereby reducing the testing overhead, while at the same time the fault detection capability
of the full test suite should not be compromised.
Method: approach is based on the use of a traceability mapping of test cases with their
corresponding rules to select the affected test items. The approach is complemented with a tool
that automates the proposed process.
Results: Our experiments show that the proposed approach succeeds in reducing the size of the
selected test case suite, and hence its execution time, while not compromising the fault detection
capability of the full test suite.
Conclusion: The experimental results confirm that our regression test selection approach is
cost-effective compared to a retest strategy.
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1. Introduction

Model-Driven Engineering (MDE) refers to rep-
resenting, designing, and developing a system
in the form of models [1]. A model is a core
artifact of MDE, which refers to an abstract
representation of data and behavior of a sys-
tem. Model transformations are currently used
in a variety of industrial projects [2] and ensur-
ing their correctness is important [3, 4]. Model
transformation programs are frequently changed
during the evolution and maintenance phases
of their life cycle. Several techniques for testing
model transformations have been proposed in
the literature [5, 6]. However, these techniques

generally require executing a large number of
test cases to ensure the desired coverage criteria.
This can be time-consuming and may require
days or even weeks to complete.

During the regression testing of model trans-
formations, a test suite is generally available
for reuse [7]. However, a retest-all approach in
which all tests are rerun may consume excessive
time and resources. In contrast, regression test
selection techniques aim to reduce the time re-
quired to retest a modified program by selecting
a smaller subset of the existing test suite [7, 8].

There have been many regression test se-
lection techniques proposed for conventional
software written in regular programming lan-
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guages [8]. However, only a few exist for testing
model transformation programs. For example,
the work of Alkhazi et al. [3] proposes an ap-
proach for test case selection for model transfor-
mations based on a multiobjective search. An-
other work by Shelburg et al. [9] examined the
issue of determining which test cases become
invalid when changes occur in a model transfor-
mation program. The work of Troya et al. [4]
presents an approach for fault localization for
model transformations.

In this paper, we present a framework for the
regression testing of model transformations, which
is based on the use of a metamodel that links test
cases to their corresponding test items and test
artifacts. To the best of our knowledge, this is
the first paper specifically proposing a framework
for the regression testing of model transforma-
tion programs based on traceability models. We
present a tool that can automatically create the
traceability model, given the source meta-model
and a set of input test models. The tool can also
be queried to obtain the set of selected test cases
for a changed rule.

Regression testing approaches can be classi-
fied into three main categories [8]: test suite min-
imization, test case selection, and test case pri-
oritization. Test suite minimization approaches
aim to reduce the size of a test suite by perma-
nently eliminating redundant test cases from the
test suite. Test case selection approaches aim to
select a subset of test cases that will be used to
test the changed parts of the software. Finally,
test case prioritization approaches attempt to
order test cases in a way that maximizes desir-
able properties, such as early fault detection. In
the context of model transformation testing, our
proposed approach can be classified into the test
case selection category.

The main contributions of this paper are sum-
marized as follows:
1. We present a test case metamodel that can be

exploited in the regression testing of model
transformations.

2. We present a tool that can automatically
build the required traceability models and se-
lect test cases based on the names of changed
rules.

3. We demonstrate the effectiveness of the pro-
posed framework using several experiments
which involve introducing several mutations
to the model transformation program and
being able to kill all the mutants using only
a subset of the test case set that is chosen
based on the framework. The experiments
also demonstrate the time saving benefit of
the proposed approach.
The organization of the rest of this paper is

as follows: First, we provide the necessary back-
ground and a motivating example in Section 2.
Our proposed approach for regression testing is
presented in Section 3. Section 4 discusses and
evaluates our experiments. The related literature
is discussed in Section 5. The conclusion and
future work are discussed in Section 6.

2. Study background and motivating
example

This section provides a description of the core
concepts and terms used in this research. In ad-
dition, we present a model transformation exam-
ple which motivates the regression test selection
framework presented in the paper.

2.1. Models and model transformation

Models play a central role in MDE. A model
represents a simplified or abstract representa-
tion of a part of a world (system) [10]. Models
of a system help to analyze certain properties
of the system without the need to consider its
full details. Models help designers and architects
to deal with the complexity present in systems.
The model needs to conform to a metamodel.
This means that the model needs to satisfy the
rules defined in the metamodel and it must re-
spect its semantics. A meta-modeling language is
used to specify metamodels. For example, Ecore
is a meta-modeling language used to specify
metamodels in the Eclipse Modeling Framework
(EMF) [11].

Models can be transformed into other models
allowing for several types of analysis at different
levels of abstraction. Model transformation refers
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Figure 1: Model transformations pattern [12]

(a) Class diagram before executing the push
down method transformation

(b) Class diagram after executing the push
down method transformation

Figure 2: Class diagram before and after executing the push down method transformation

to automatically creating a target model from
an existing source model by following transfor-
mation rules. A source model that conforms to
a source metamodel is transformed into a tar-
get model that conforms to a target metamodel.
A model-to-model transformation language is
used to specify the transformation rules. The
Epsilon Transformation Language (ETL), one
of the Epsilon platform [13, 14] set of languages
and tools, is a model-to-model transformation
language that can be used to transform models
specified in metamodels conforming to Ecore.
ETL builds on the Epsilon Object Language
(EOL), which is the main language in Epsilon for
providing common model management facilities
upon which several Epsilon-based languages are
based. The ATLAS Transformation Language
(ATL) is another model transformation language
developed on top of the Eclipse platform [15].

Figure 1, taken from [12], depicts the general
pattern of model transformations. M1 in Figure 1
represents the models, which are instances of the
metamodels represented by M2. Transformation
rules are specified to transform the model ele-
ments of the source model to the model elements
of the target model. The transformations are
performed by a transformation engine, which
reads a source model conforming to a source
metamodel and produces a target model that
conforms to a target metamodel.

Figure 2 shows an example of a model trans-
formation where a push-down method transfor-
mation has been applied to a class diagram. The
transformation pushed one of the methods from
the super class to a child class while implement-
ing better cohesiveness. Figure 2 (a) shows the
source model and Figure 2 (b) shows the tar-
get model. The automatic model transformation
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saves time and energy compared to the manual
conversion and brings in the consistency of the
information provided the model transformation
is correctly defined.

In this paper, we used several languages and
tools from Epsilon. Epsilon [13, 14] is a family of
languages and tools for automating model man-
agement tasks, such as model transformation
and model testing. Epsilon is built on top of
the Eclipse platform and supports EMF-based
model management tasks. One of the languages
of Epsilon is the Epsilon Unit Testing Frame-
work (EUnit)’s language. EUnit [16, 17] is a unit
testing framework, specifically designed to test
model transformations. It is based on EOL and
Ant’s workflow task description. EUnit provides
a language for comparing models. Test cases can
be defined, reused, and automatically run on
different sets of models. The results of the test
cases can be viewed, and the differences between
the expected and the actual models are graphi-
cally visualized. EUnit uses EMF Compare as the
comparison engine [18]. For example, if the value
of an attribute of an element in the source model
is not equal to the value of the same element
in the target model, then the two models are
considered not equivalent. In this case, EUnit
reports the test case as a failed one.

2.2. Motivation example

In this example, we consider a model transfor-
mation example that uses ETL to transform
a model that conforms to an Object-Oriented
(OO) metamodel to a model that conforms to
a Database (DB) metamodel. The code of the
example was obtained from [19] and is presented
in the Appendix. Model transformation from
OO to DB models is a classic example which has
been used by several authors in the literature to
evaluate new techniques and approaches [20–22].

Figure 3 shows the OO metamodel. We only
include the metamodel elements that are involved
in the ETL transformation. The names of ab-
stract classes are shown in italics. There are four
concrete classes in the OO metamodel: Class, At-
tribute, Reference, and Package. In an OO model,
a package can be composed of other packages and
classes. A class can have features: attributes and
references. A feature can have a type: a DataType
in the case of an attribute and a Class in the case
of a reference. A class may extend another class.
In this case, the class will inherit all features of
the parent class.

Figure 4 shows the DB metamodel. We only
include the metamodel elements that are involved
in the ETL transformation. The names of ab-

OO

Class

isAbstract: Boolean

extends

0..1

0..*

extendedBy

Classifier

PackagableElement

NamedElement

name: String

Attribute

Feature

StructuredFeature

isMany: Boolean

owner
0..1

0..*
features

0..1
type

Reference

Package

package contents
0..*

DataType

Figure 3: The OO metamodel
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DB

Database

DatabaseElement

NamedElement

name: String

0..*

contents
database

Column

type: String

ForeignKey

isMany: Boolean

Table 0..*

table columns

0..*
primaryKeys 0..10..1

parentchild

Figure 4: The DB metamodel

stract classes are shown in italics. There are four
concrete classes in the DB metamodel: Table, Col-
umn, ForeignKey, and Database. In a DB model,
a database is composed of database elements:
tables, columns, and foreign keys. A table is
composed of zero or more columns. For a table,
a set of columns represent the primary keys for
the table. A foreign key is associated with two
columns: a child column and a parent column
that could be in different tables. The table has
a name attribute. Columns and foreign keys have
name and type attributes.

The ETL code for the OO to DB model trans-
formation consists of four rules: Class2Table,
SingleValuedAttribute2Column, MultiValuedAt-
tribute2Table, and Reference2ForeignKey. A brief
description of each rule is provided in the com-
ments. In ETL, each rule has a unique name
and also specifies one source element and at
least one target element. A rule can optionally
define a guard which is a Boolean expression
specifying a condition that must be met by the
source element in order to apply the rule on
that element. The body of a rule contains the
logic specifying how to populate the values of
the features of the target model elements. Some
of the rules invoke one or more of the three
user-defined EOL operations listed at the end
of the code: primaryKeyName(), valuesTable-
Name(), and toDbType(). The operation prima-
ryKeyName() returns a string that represents the
name of the primary key of the new table. The

operation valuesTableName() returns a string
that represents the name of the new table corre-
sponding to a multivalued attribute in the OO
model. The operation toDbType() returns a string
that represents a type in the DB model.

ownertype

demo:Package

Student:Class

isAbstract=false

Class:Class

isAbstract=false

students:Reference

isMany=true

Figure 5: A sample source test model

During the testing of the model transforma-
tion program, a tester typically creates a large
number of test cases. In each test case, the tester
defines two test models: the first one is the source
test model and the second one is the target test
model. The source test model conforms to the
source metamodel, while the target test model
conforms to the target metamodel. The assump-
tion is that in order for the test case to pass, the
model generated by the model transformation
program when the input is the source model
must be equivalent to the target model. Figure 5
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:Database

Student:Table Class:Table

students:ForeignKey

studentID:Column

type="INT"

studentsId:Column

type="INT"

classId:Column

type="INT"

parentchild

primaryKeys

primaryKeys

Figure 6: The target model corresponding to the source model in Figure 5

shows a sample source test model. It is an OO
model containing two Classes: Student and Class
contained in the Package named demo. Both
Classes are not abstract (the value of isAbstract
is false in both Classes). There is a Reference
named students whose owner is Class and type
is Student. The target DB model obtained when
executing the model transformation is shown in
Figure 6. As expected, the Database contains
two Tables: Student and Class. The primary key
columns, classID and studentID, are created by
the rule Class2Table. The ForeignKey named
students and the foreign key column studentsId
are created by the rule Reference2ForeignKey.
The parent and child references of the students
ForeignKey are also set by the same rule to clas-
sId and studentsId, respectively.

The problem that this paper aims to tackle
can be summarized as follows. Suppose that
a tester has created a large number of test cases,
each with its corresponding source and target
models. During the maintenance and evolution
of the model transformation program, several
changes can be made to the program. A change
usually involves one or more of the transforma-
tion program’s rules. When a change is made
to the program, a tester needs to rerun the test
cases to ensure the correctness of the program.
However, instead of rerunning the whole test case
suite, this paper proposes a new framework that

selects a subset of the test cases in a way that
does not reduce the fault detection capability of
the original suite. The framework exploits the
traceability links between the rules in the trans-
formation program and the source and target
models of the related test cases. By applying this
regression test selection framework, the tester
benefits from the overhead and execution time
that are saved when using a smaller subset of
test cases for testing.

3. Approach

The proposed framework for regression test selec-
tion for model transformation relies on the use
of a metamodel that links test cases with their
corresponding test items and test artifacts. A test
item represents an item under test. In the context
of model transformation, a test item corresponds
to a rule (or a statement block within the rule).
A test case has a name that is used as an identifier
for the test case. The test artifacts identify the
test models related to the test item, including
the source (input) and target (expected) models.

A metamodel that meets such requirements
is shown in Figure 7. The metamodel is named as
TestCasesMM. A test case set consists of zero or
more test cases. Each test case is associated with
a test item which corresponds to the rule being
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TestCasesMM

TestCase

name: String

TestCaseSet

0..*testCases

SourceModel

name: String

TargetModel

name: String

sourceModel

0..1

targetModel

0..1

Rule

name: String
rule testCases
0..1 0..*

Figure 7: The test cases metamodel

tested by the test case. In cases where a test case
is related to more than one rule, the metamodel
definition allows to have repeated instances of
the TestCase meta-class, with the same name,
where each one is linked to an instance of the
Rule meta-class. In addition, a test case has two
test artifacts: a source model and a target model.
When a rule is changed, the model of the test
case set which conforms to TestCasesMM can
be used to identify the test cases that need to be
reexecuted. In addition, the model can be used
to identify the source and target models required
by each test case.

The traceability links in a test case model
can also be used to provide information on the
adequacy of the test cases. One example is check-
ing that every rule is linked to at least one test
case. If a rule is not linked to any test case, this
could indicate that this rule is not covered by
the test case set. In this case, a tester would
need to reexamine the test case set and add new
test cases to improve its coverage. In the Object
Constraint Language (OCL) [23] which is the
common standard to express constraints on mod-
els specified using object-oriented metamodeling
technologies, the constraint that every rule is
linked to at least one test case can be stated as
follows:

context Rule
inv RuleLinkedToAtLeastOneTestCase :
s e l f . t e s tCases −>notEmpty ( )

Here, for a test case model to be valid, this con-
straint requires that the collection of test cases
linked to any rule is not empty. The keyword
context is used to specify the model element
to which the statement of the constraint applies.
This statement is a Boolean expression referred
to as invariant. The keyword inv is used to spec-
ify the invariant: first the name of the invariant is
provided, followed by a colon, which is followed
by the Boolean expression. In the expression,
self refers to the model element on which the
constraint is evaluated (i.e., whose name follows
the keyword context). Note that this example is
just one possible option for describing constraints
on test case models and that our approach does
not require it.

We have developed a tool to automate the
regression test selection process. The main objec-
tive of the tool is to automatically create the test
case model which conforms to the metamodel
shown in Figure 7. The project files are available
on GitHub at https://github.com/ialazzon/Re
gressionTestSelectionTool. The tool is a Java
program that does the following. First, it parses
the model transformation program and the EUnit
file containing the test case definitions. It also
reads all source test model files that are used by
the test cases defined in the EUnit file. Then,
it automatically creates the test case model, as
specified by our approach. Finally, when a tester
enters the name of a modified rule in the model

https://github.com/ialazzon/RegressionTestSelectionTool
https://github.com/ialazzon/RegressionTestSelectionTool
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transformation program, the tool shows the con-
tents of a new EUnit file defining the test cases
selected by our approach. The tester can run
this EUnit file to execute the selected test cases,
rather than rerunning the original EUnit file con-
taining the full set of test cases. The tool was used
in all experiments conducted when validating the
approach (see Section 4).

4. Validation

To evaluate our approach, we conducted several
experiments using four different model transfor-
mation programs. This section starts with a list
of two research questions that the experiments
attempt to address. This is followed by a dis-
cussion of the experimental setup and results.
Finally, a discussion on the threats to validity is
provided.

4.1. Research questions

We defined two research questions as follows:
– RQ1: How does our approach of regression

test selection compare with a re-test-all strat-
egy? Investigating this question serves as
a sanity check step. If the results of our exper-
iments show no benefit of using our approach,
then we can conclude that our approach is
not needed and hence a tester would be better
off rerunning all test cases in a test suite.

– RQ2: How cost-effective is our approach?
We want to ensure that the fault detection
capability when rerunning a selected set of
test cases is not compromised, while at the
same time there is a significant saving in the
overhead involved when running these test
cases.

4.2. Experimental setup
and results discussion

To evaluate these research questions, we applied
our approach using the automated tool discussed
in Section 3 on four different transformation
programs. The first one is the OO2DB trans-
formation which has been presented as a moti-

vating example in Section 2.2. The second one
is the QN2QPN transformation which trans-
forms queueing networks into queueing Petri
nets. The QN2QPN transformation is written in
ATL [15]. It was developed by one of the authors
and is presented in [24]. The third one is the
BibTeX2DocBook transformation which trans-
forms a BibTeX model to a DocBook composed
document [25]. The fourth one is the CPL2SPL
transformation which transforms a CPL model
to an SPL model [26]. CPL and SPL are two
domain-specific languages used in telephony sys-
tems. Both BibTeX2DocBook and CPL2SPL
transformations are written in ATL and available
in the ATL Zoo [27].

Consider the OO2DB transformation. For
regression testing, we adopt the test case meta-
model, TestCasesMM, shown in Figure 7. Fig-
ure 8 shows part of the test case set model cre-
ated by our tool. It shows three test cases: TC1,
TC2, and TC3, with their associated rules and
test artifacts. For example, the test case TC1 is
designed to test the rule Reference2ForeignKey.
For this test case, the source model is OO1 and
the target model is DBExpected1. Note that the
model OO1 is the model shown in Figure 5 and
the model DBExpected1 is the model shown in
Figure 6.

We manually created a total of 15 test cases
using EUnit [17]. Five of the test cases were
designed to achieve full line coverage. These test
cases apply a white-box approach for testing the
model transformation code. For example, test
case TC1 whose input model is shown in Fig-
ure 5 covers the rule Reference2Foreign. Also,
two test cases TC3 and TC5 are needed to cover
the rule Class2Table since it has a Boolean con-
dition: one for the case where a class extends
some other class and one for the case where no
such class exists. The remaining test cases were
designed to achieve full partition coverage for all
classes, attributes, and associations in the OO
metamodel. This test design applies the coverage
adequacy criteria as defined by the black-box
model transformation testing approach in [28].
For example, in the OO metamodel (see Fig-
ure 3) a Class can have zero or more features.
Following the approach in [28], if a property
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TC1:TestCase

:TestCaseSet

OO1:SourceModel

DBExpected1:TargetModel

sourceModel

targetModel

Reference2ForeignKey:Rule

TC2:TestCase
OO2:SourceModel

DBExpected2:TargetModel

sourceModel

targetModel

SingleValuedAttribute2Column:Rule

TC3:TestCase
OO3:SourceModel

DBExpected3:TargetModel

sourceModel

targetModel

Class2Table:Rule

Figure 8: A partial model of the test case set

Table 1: The list of mutants

Mutant Line Original Code Modified Code
Number Number

1 102 fkCol.type=”INT”; fkCol.type=”INTX”;
2 54 c.name=a.name; c.name=”name”;
3 86 fkCol.type=”INT”; fkCol.type=”INTX”;
4 19 t .columns.add(pk); Line removed
5 36 childFkCol.type=”INT”; childFkCol.type=”INTX”;

Table 2: The test cases corresponding to the mutants in Table 1 and their results

Mutant Affected Selected Test No. of Coverage No. of
Number Rule Cases Selected Failed

Test Cases Test Cases
1 Reference2ForeignKey TC1, TC9 2 13.33% 2
2 SingleValuedAttribute2Column TC2, TC6–8 4 26.67% 3
3 MultiValuedAttribute2Table TC4 1 6.67% 1
4 Class2Table TC3, TC5-15 12 80.00% 12
5 Class2Table TC3, TC5-15 12 80.00% 3
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has a multiplicity of 0..*, a partition such as
{{0}, {1}, {x}}, with x ≥ 2, is defined to ensure
that the test model contains instances where this
property holds with zero, one and more than one
object. Test cases TC6, TC7, and TC8 include
a Class which has zero, one, and two attributes,
respectively.

We introduced several mutations to model
transformation. For each mutant, our tool builds
the model of the test case set to trace the affected
rules to the test cases that need to be rerun. Ta-
ble 1 shows a list of the five mutants used in the
experiments. For each mutant, Table 2 shows the
set of test cases selected by our tool in addition to
their total number and coverage and the test case
results. Here, coverage refers to the proportion
of the number of selected test cases out of the
total number of available test cases. The results
show that our tool was successful in reducing
coverage in every case. It can also be observed
that at least one test case failed for each mutant.
This indicates that using the traceability links
in the test case model was effective in identify-
ing a subset of test cases that need to be rerun
and that are able to kill the mutants without
requiring to rerun the complete set of test cases.
In other words, the reduction in coverage of the
selected test cases did not compromise the fault
detection capability of our tool.

Consider the QN2QPN model transforma-
tion. This transformation consists of 10 rules. Ta-
ble 3 shows the information and results concern-

ing ten experiments using the QN2QPN trans-
formation. We created a mutation on a single
rule in every experiment. For each experiment,
the table shows which rule was mutated and the
type of mutation that was applied. The experi-
ments covered the four main types of mutation
operators on ATL transformations presented by
Troya et al. [29]. These mutation operators were
introduced by previous researchers to resemble
common semantic faults that programmers make
in model transformations [4]. Our experiments
were designed to have a good coverage of all
mutation operators proposed in literature. For
each experiment, the table shows the number of
test cases that were run and the execution time
in milliseconds (ms) when rerunning all the test
cases and when rerunning only the test cases se-
lected by our tool. The percentages shown in red
are the reductions (savings) that were achieved
when rerunning the selected test cases only vs.
rerunning all test cases. Larger values for the
reductions represent higher savings.

To report the execution times, we conducted
the experiments on a desktop with 4-core CPU
running at 2.7 GHz and 8 GBs of RAM. Every
measurement was repeated 10 times and the
average values are presented here. Before each
repetition, a warm-up session was conducted to
eliminate the overhead caused by initialization
processes in EUnit. The execution time of run-
ning a test suite was reported by EUnit as the
wallclock time of executing the whole test suite.

Table 3: Results for the QN2QPN model transformation example

ID Rule Affected Type of Change Rerun All Rerun Selected Only
# of test Execution # of test Execution

cases time (ms) cases time (ms)
1 Main Binding – Value Change 34 13064 34 (0%) 13255 (−1%)
2 Server Filter – Addition 34 13762 23 (32%) 9015 (34%)
3 SourceNode Binding – Deletion 34 12982 17 (50%) 6804 (48%)
4 SinkNode In Pattern Element – Class Change 34 11890 7 (79%) 2937 (75%)
5 NonServerNode Binding – Deletion 34 13375 13 (62%) 5442 (59%)
6 ThinkDevice Matched Rule – Deletion 34 12256 13 (62%) 5157 (58%)
7 Arc Out Pattern Element – Addition 34 13446 23 (32%) 8982 (33%)
8 ServiceRequest Binding – Deletion 34 13277 22 (35%) 8263 (38%)
9 WorkloadRouting Binding – Value Change 34 12898 22 (35%) 8474 (34%)

10 Workload Out Pattern Element – Addition and
Deletion

34 12013 30 (12%) 10462 (13%)
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Table 4: Results for the BibTeX2DocBook model transformation example

ID Rule affected Type of change Rerun all Rerun selected only
# of tests Execution # of tests Execution

cases time (ms) cases time (ms)
1 Author Binding – Value Change 25 7038 24 (4%) 6710 (4.66%)
2 TitledEntry Title NoArticle Binding – Deletion 25 6765 9 (64%) 2813 (58.42%)
3 Article Title Journal Binding – Deletion 25 7007 19 (24%) 5269 (24.80%)
4 Article Title Journal Matched Rule

– Deletion
25 6737 19 (24%) 5157 (20.26%)

5 Main Out Pattern Element
– Addition

25 6690 25 (0%) 6690 (0%)

6 UntitledEntry Binding – Deletion 25 5844 25 (0%) 5844 (0%)
7 TitledEntry Title NoArticle Binding – Value Change 25 6648 9 (64%) 2666 (59.90%)

The results in Table 3 show good reduction
in terms of the number of selected cases and the
execution time. The exception is in the first rule,
Main, where there is no reduction in the number
of selected test cases. This is because this rule is
executed by the transformation on every input
model, and hence any input test model will be
automatically selected by our tool. The reduc-
tions reached more than 75% in Experiment 4.
It is also important to mention that in each ex-
periment at least one of the test cases failed the
test (as reported by the EUnit tool) in both the
Rerun all and Rerun Selected-only cases. This
indicates that the fault detection capability was
not diminished when rerunning the selected test
cases. At the same time, a good savings in terms
of the testing execution time were materialized.

Table 5 presents the results concerning the
BibTeX2DocBook transformation. Note that this
transformation consists of nine rules. In our
experiments, we randomly selected a total of
25 test cases out of the 100 test cases available
in the test suite taken from a previous work on
spectrum-based fault detection in model transfor-
mations [4]. The test cases in the test suite were
semi-automatically created using model genera-
tion scripts. We obtained the test suite from [30].
These 25 test cases represent the full test suite
that is input to our tool for test case selection.
The table shows good reductions in the size of the
selected test cases and the execution time as well.
However, there is little or no reduction in cases 1,
5, and 6. For case 1, the Author rule applies on
Author elements which appear in almost all of

the test cases. Hence, our tool selects all of these
test cases resulting in a very small reduction in
the size of the selected test cases. For cases 5
and 6, the Main and UntitledEntry rules apply
on source meta-classes whose instances appear
in all of the test cases. For example, the Main
rule which applies on BibTeXFile elements is ex-
ecuted on every input model since every BibTex
model has a root element of type BibTeXFile.
Also, the UntitledEntry rule applies on elements
of the BibTeXEntry source meta-class which is
a superclass for many of the source meta-classes.
Note that in each of the cases in Table 5 at least
one of the test cases failed when running the
selected test cases.

Table 6 presents the results concerning the
CPL2SPL transformation. This transforma-
tion consists of 19 rules. Similar to the Bib-
Tex2DocBook transformation case, we randomly
selected a total of 35 test cases from the test suite
taken from [30]. In all cases, the table shows good
reductions in the size of the selected test cases
and the execution time as well. In addition, in
all cases, rerunning the test cases selected by
our tool resulted in at least one test case failure,
indicating that the test suites selected by our
tool were able to discover the mutants.

Table 7 shows the execution time results for
the four case studies. For each case study, the
table shows the time it took our tool to generate
the test case model. The table shows the confi-
dence intervals on a 95% confidence level. These
intervals were obtained using the one-sample
t-test [31] which is valid to be used in our case
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Table 5: Results for the BibTeX2DocBook model transformation example

ID Rule affected Type of change Rerun all Rerun selected only
# of tests Execution # of tests Execution

cases time (ms) cases time (ms)
1 Author Binding – Value Change 25 7038 24 (4%) 6710 (4.66%)
2 TitledEntry Title NoArticle Binding – Deletion 25 6765 9 (64%) 2813 (58.42%)
3 Article Title Journal Binding – Deletion 25 7007 19 (24%) 5269 (24.80%)
4 Article Title Journal Matched Rule

– Deletion
25 6737 19 (24%) 5157 (20.26%)

5 Main Out Pattern Element
– Addition

25 6690 25 (0%) 6690 (0%)

6 UntitledEntry Binding – Deletion 25 5844 25 (0%) 5844 (0%)
7 TitledEntry Title NoArticle Binding – Value Change 25 6648 9 (64%) 2666 (59.90%)

Table 6: Results for the CPL2SPL model transformation example

ID Rule affected Type of change Rerun all Rerun selected only
# of test Execution # of test Execution

cases time (ms) cases time (ms)
1 NoAnswer2SelectCase Binding – Value

Change
35 12656 2 (94.29%) 1118 (91.17%)

2 Busy2SelectCase Filter – Addition 35 14130 3 (91.43%) 1419 (89.96%)
3 NoAnswer2SelectCase Binding – Deletion 35 14459 2 (94.29%) 1131 (92.18%)
4 StringSwitch2SelectStat In Pattern Element

– Class Change
35 13224 11 (68.57%) 4458 (66.29%)

5 SwitchedAddress2SelectCase Binding – Deletion 35 13039 1 (97.14%) 739 (94.33%)
6 Outgoing2Method Matched Rule

– Deletion
35 13191 2 (94.29%) 1087 (91.76%)

7 SubAction2Function Out Pattern Element
– Addition

35 13529 4 (88.57%) 1858 (86.27%)

8 StringSwitch2SelectStat Binding – Deletion 35 14792 11 (68.57%) 5052 (65.85%)
9 Incoming2Method Binding – Value

Change
35 12716 4 (88.57%) 1889 (85.14%)

10 Proxy2Select Out Pattern Element
– Addition and
Deletion

35 14064 5 (85.71%) 1251 (91.10%)

Table 7: The execution times for test case model generation

Case Study Mean (ms) The 95% Confidence Interval
OO2DB2 29.73 (25.46, 34.00)
QN2QPN 62.17 (54.62, 69.72)

BibTeX2DocBook 54.63 (48.73, 60.54)
CPL2SPL 75.13 (65.25, 85.01)

since the same size is small (30 execution time
results in each case study) and the normality
check provides good support for the assumption
that the population is normally distributed. It is
of interest to note that these observed execution

times are very small compared with the test case
execution time results noted in the previous ta-
bles in this section. In addition, our tool was able
to automatically generate the test case models
with no considerable cost on part of the tester.
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4.3. Threats to validity

There are four basic types of validity threats that
can affect the validity of the conclusions of our
experiments [32]:
1. Conclusion Validity: Threats to the conclu-

sion validity are concerned with factors that
affect the ability to draw the correct conclu-
sions based on the observed data. To address
this threat, we used confidence intervals based
on a 95% confidence level. These intervals
were obtained using the one-sample t-test
after passing the normality check. Also, we
used the wallclock times reported by the EU-
nit tool for all test case suite execution time
results reported in the paper. We have also
used a variety of mutation operators in the
experiments.

2. Construct Validity: This validity is concerned
with the relationship between theory and ob-
servation. To address this threat, we used
standard performance measures and metrics,
including rule coverage and execution time.
These metrics have been used in other similar
work on regression testing for model transfor-
mations, such as [3, 4].

3. Internal Validity: This validity is concerned
with establishing a causal relationship be-
tween the treatment (in this case, the appli-
cation of our approach) and the results of our
evaluation. Threats to this validity include
any disturbing factor that might influence the
results. As our experiments demonstrated,
the execution time of a test case suite is di-
rectly proportional to its size. Therefore, the
observed reductions in execution time can be
justified by the selection of a smaller num-
ber of test cases by applying our approach.
In addition, in every experiment we made
a mutation to a single rule only. Every mu-
tation applied one of the mutation operators
proposed in literature [29, 33]. If a rule is
mutated, then this would affect any input
test model that includes an element on which
the rule is applied. Hence, our tool would
automatically select the corresponding test
case for rerun. Hence, the fault detection ca-
pability of the original test case suite is not

compromised by the suite of the test cases
selected by our tool.

4. External Validity: This validity is concerned
with generalization. The evaluation applied
our approach on two model transformations
written in two languages: ETL and ATL. We
applied different types of mutation opera-
tors, and the test models were of different
sizes. The test cases were created manually
to achieve a variety of coverage criteria. Yet,
we cannot make a firm conclusion that our
results can be generalized for all model trans-
formations. More experiments are needed in
the future to confirm our findings on a wider
scope of model transformations, including dif-
ferent languages, coverage criteria, types of
mutations and faults, and input test models.

5. Related work

Alkhazi et al. [3] propose an approach for test
case selection for model transformation based
on multiobjective search. The approach enables
a tester to find the best tradeoff between two con-
flicting objectives: maximizing rule coverage and
minimizing the execution time of the selected test
cases. A multiobjective algorithm (NSGA-II) is
used to find the Pareto-optimal solutions for this
problem. The approach was validated using differ-
ent transformation programs written in ATL. In
comparison to their approach, our approach aims
to be a safe test case selection technique. A test
selection technique is said to be safe if it selects
all modification-revealing tests [7]. Our proposed
technique will select any test case for rerun when
its input model contains an element that could
be affected by a change in one of the model trans-
formation rules. Our approach does not consider
the trade-off between rule coverage and execu-
tion time. However, our experiments show good
saving in test execution time when applying our
approach while not compromising the fault de-
tection capability of the full test case suite.

In [20], model transformation traceability is
used to enhance the automation of qualifying
and improving a set of test models in the mu-
tation analysis of model transformation. The
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approach relies on a representation of different
mutation operators and a traceability mecha-
nism to establish links between the input and
output models of each transformation. Patterns
are used to identify cases where an input test
model lets a given mutant alive. Subsequently,
heuristics provide recommendations to generate
new test models that are able to kill the mutant.
Several aspects of the approach are independent
from the transformation language being used,
including the traceability and the mutation op-
erator representation. Our approach focuses on
regression testing of model transformation rather
than mutation analysis. Hence, our approach uses
a traceability model linking test cases to the rules
in a given model transformation. When a rule
is changed, the traceability model can be used
to identify the test cases that need to be rerun.
Our traceability model differs from that in [20]
which maintains links between elements of the
input and output models for each mutant. This
is a more detailed model suitable for mutation
analysis of model transformation.

A multiobjective optimization algorithm is
employed in [9] to generate test models for the
regression testing of model transformations. The
proposed approach assumes that the changes
occur in the input metamodel only. In this case,
a test model may become invalid when it does
not conform to the updated input metamodel.
The optimization algorithm has three objectives
that define the characteristics of a good solution:
maximize coverage of the updated metamodel,
minimize the number of input model elements
that do not conform to the updated metamodel,
and minimize the number of refactorings used to
refactor the existing test models. In our approach,
we assume that the input and output metamod-
els are fixed and only the model transformation
program may change. While the approach in [9]
is useful to determine and update the test models
that become invalid due to a change in the input
metamodel, our approach utilizes traceability
links to determine the test cases that need to be
rerun due to an update in the model transforma-
tion program.

Honfi et al. [34] presented a method on how
model-based regression testing can be achieved in

the context of autonomous robots. The method
uses optimization for selecting the minimal sub-
set of tests that have a maximum test cover-
age of the changed components. Although the
method is presented in the context of robots,
it is applicable to other domains which employ
Model-Driven Development (MDD) paradigm.
In MDD, models are adopted as the main devel-
opment artifacts. These models are commonly
created using domain specific languages (DSLs).
When a model is changed, this can impact the
system functions and properties and hence the
influenced parts of the system need to be retested.
A prototype tool that implements the method
using the Eclipse framework [35] and its modeling
platform EMF [11] is presented. The tool sup-
ports model checkpointing and automatic change
detection. Our approach is similar to [34] in terms
of employing a metamodel to represent the rela-
tionship between the test items and the test cases.
However, our approach is focused on applying
regression testing to a model transformation. We
consider the issues specific to a model transfor-
mation which can be more useful to a tester of
model transformation programs.

A survey of model transformation testing ap-
proaches is provided in [6] and [36]. Gonzálex
and Cabot [37] developed a tool, called ATLTest,
to generate test input models for ATL transfor-
mations. The tool applies a white-box approach
for model transformation testing. In the work of
Fleurey et al. [28], model fragments are used as
a test adequacy criterion which forms the basis
of the black-box approach proposed by the au-
thors. Other approaches rely on formal methods
to verify the transformation and its associated
properties [38–40]. The problem with these ap-
proaches is their computational complexity which
becomes cumbersome with the scale of the model
transformation program.

Zech et al. proposed a model-based regres-
sion testing method based on OCL [41]. The
method derives test cases for a given system
under test (SUT) based on the availability of
a class diagram that captures its system design.
The approach is based on a Model Versioning
and Evolution (MoVE) framework and uses UML
testing profile (UTP) to model test cases. The
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method calculates a delta from a base model
(the initial development model) and the working
model (the current development model). The
resulting change set (delta) then contains the dif-
ferences between the two versions of the model.
There are three main differences between the
method by Zech et al. and our method. First, our
method presents a regression testing approach for
model transformation while the method by Zech
et al. presents a regression testing approach of
a software system using its design model. Second,
Our approach requires a metamodel of the test
case set while the method by Zech et al. does
not need any metamodel, but rather uses the
facilities provided in an MoVE framework. The
last difference is that our approach exploits trace-
ability links between models while the method
by Zech et al. does not use any traceability link.
A similar model-based regression testing for soft-
ware systems that works with sequence diagrams
is presented in [42]. In [43], Al-Refai at al. pro-
vide a framework for model-based regression test
selection supporting modifications to UML class
and activity diagrams. Using mutation testing,
their experimental results demonstrate that the
selected test cases achieve the same fault detec-
tion capability as that achieved by the complete
set of test sets.

The work of Troya et al. [44] proposes an ap-
proach for automatically inferring metamorphic
relations for testing ATL model transformations.
The inferred metamorphic relations can be used
to detect faults in model transformations in sev-
eral application scenarios including regression
testing. The metamorphic relations are inferred
by exploiting the trace model produced when
a transformation is executed. The trace model
is composed of traces. When a rule is executed,
a trace can be automatically obtained by using
tools such as TraceAdder [45]. For the executed
rule, a trace links the name of the rule with the
elements instantiating the classes of its source
metamodel and the new elements that are cre-
ated by the rule and hence instantiate classes
in the target metamodel. The authors used
mutation-based testing, similar to what is done in
this paper, to evaluate how effective the approach
is in detecting faults in regression testing.

In [4], Troya et al. presented an approach for
debugging and fault localization for model trans-
formations by applying spectrum-based fault lo-
calization techniques. The approach is based on
the use of a trace model that can be obtained
when the test cases are executed. When a test
case fails, the approach ranks the transforma-
tion rules according to how much they are sus-
pected of having the fault causing its failure.
Mutation-based testing is applied to validate the
effectiveness of their approach in fault localiza-
tion.

In [46], Naslavsky et al. presented an ap-
proach for selective regression testing that is
model-based. In this approach, test cases are
selected for retesting based on modifications to
the model, rather than to the source code. The
approach uses traceability links between model el-
ements and test cases that traverse such elements.
As a modeling perspective, the approach adopts
UML class and sequence diagrams. While their
presented approach is designed for testing gen-
eral software programs, our work is designed for
testing model-to-model transformation programs.
In our approach, we exploit the traceability links
between test cases and model transformation
program elements such as rules.

Our approach for regression testing of model
transformation utilizes traceability links between
test cases and test artifacts. Traceability has
been studied by researchers in the areas of re-
quirements engineering and model-driven devel-
opment (MDD) for a long time. Winkler and
Pilgrim [47] provide an extensive literature sur-
vey on traceability in both areas.

Due to the continuous increase in the size and
complexity of software, model-based engineering
is gaining a lot of interest from the industry and
research community [48]. Model-based testing,
which is an important part of model-based engi-
neering tests the consistency of information and
behavior of source models by applying transfor-
mation mechanisms. The automatic nature of
model-based testing makes it a more adoptable
approach for detecting software defects fast and
effectively [49, 50]. Regression testing is a quite
a tedious work which is repeated with every
sizeable refactoring of the model. Model-based
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approaches can make this process easier by au-
tomating, managing, and documenting efficiently.
Yoo et.al [8] suggest, based on their extensive
survey, that model-based regression testing tech-
niques increase the effectiveness and scalability
of the overall testing of the system. Model-based
regression testing approaches have several ad-
vantages over code-based testing [51, 52]. The
effort could be estimated at a very early stage
and the tools are largely language independent.
The models are mostly abstract, which makes
the size of the testable data considerably smaller
than the code.

The majority of model-based regression test-
ing approaches exploit UML models for devel-
oping test suites for regression testing. UML
class models have been used for this purpose
along with state machines, sequence diagram
and activity diagrams [51–53]. Farooq et al. [52]
use state machines to represent changes in the
tested parts of the system. The method is also
automated using an Eclipse-based tool. Briand et
al. [51, 54] presented a sequence diagram-based
technique to classify and analyze regression test
suites. The approach is complemented with a tool
to evaluate the presented models. Finite State
Machines (FSMs) have also been used to gener-
ate regression test suites. Chen et al. [55] have
deployed extended FSMs to model the effects of
changes and generate test suites for the modified
parts of the system. Korel et al [56] have used
a similar approach and have exploited extended
FSMs to reduce the size of an existing regression
test suite. In both approaches, modifications (up-
dates, additions and deletions) are represented
as transitions of extended FSMs. In one study,
Vaysburg et al. [57] used extended FSMs for the
dependency analysis of the system that represent
various interactions between components for the
regression test selection process. In another study,
Almasri et al [58] conducted an impact analysis
using extended FSMs to identify the parts of
the system that are affected the most. Feldere et
al. [59, 60] also used FSMs to represent all model
elements of the system. They proposed a process
to identify model elements which trigger change
events. The identified models are then changed
to make the system consistent.

6. Conclusion and future work

In this paper, we have presented a framework for
the regression test selection for model transfor-
mation programs. The framework exploits the
traceability links in a test case model. In the
evaluation, we applied the framework to several
model transformation examples and showed the
effectiveness and time-saving benefit of the frame-
work. The experiments were performed in the
context of the Epsilon platform of integrated
tools and languages for model management. We
also presented a tool that can automatically build
the test case model and thus facilitate the imple-
mentation of our proposed framework.

Following this work, there are several av-
enues for future research. First, the proposed
framework needs to be integrated with exist-
ing model transformation tools and technologies.
For instance, when a designer makes a change
to the model transformation code, the relevant
test cases identified by our framework can be
automatically rerun by the integrated tools. In
this case, the designer does not need to manually
rerun the test cases. Second, it is recommended
to apply the proposed framework to industrial
case studies involving larger models and more
complex model transformation logic.
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Appendix: ETL OO2DB code

pre {
2 ”Running ETL”.println();

var db : new DB!Database;
4 }

6 // Transforms a class into a table and
// a primary key column

8 rule Class2Table
transform c : OO!Class

10 to t : DB!Table, pk : DB!Column {

12 t .name = c.name;
t .database = db;

14
// Fill the details of the primary key

16 // of the table
pk.name = t.primaryKeyName();

18 pk.type = ”INT”;
t .columns.add(pk);

20 t .primaryKeys.add(pk);

22 // If the class extends some other class
// create a foreign key pointing towards

24 // the primary key of the parent class
if (c .‘ extends‘. isDefined()){

26
var fk : new DB!ForeignKey;

28 var childFkCol : new DB!Column;
var parentFkCol : DB!Column;

30 var parentTable : DB!Table;

32 parentTable ::= c .‘ extends‘;
parentFkCol = parentTable.primaryKeys.first();

34
childFkCol.name = parentFkCol.name;

36 childFkCol.type = ”INT”;
childFkCol.table = t;

38
fk .database = db;

40 fk .parent = parentFkCol;
fk . child = childFkCol;

42 fk .name = c.name + ”Extends” + c.‘extends‘.name;
}

44 }

46 // Transforms a single−valued attribute
// to a column

48 rule SingleValuedAttribute2Column
transform a : OO!Attribute

50 to c : DB!Column {

52 guard : not a.isMany

54 c.name = a.name;
c. table ::= a.owner;

56 c.type = a.type.name.toDbType();
}

58
// Transforms a multi−valued attribute

60 // to a table where its values are stored
// and a foreign key

62 rule MultiValuedAttribute2Table
transform a : OO!Attribute

64 to t : DB!Table, pkCol : DB!Column, valueCol :
DB!Column, fkCol : DB!Column,

66 fk : DB!ForeignKey {

68 guard : a.isMany

70 // The table that stores the values
// has an ”id” column and a ”value” column

72 t .name = a.valuesTableName();
t .database = db;

74
pkCol.name = ”id”;

76 pkCol.table = t;
pkCol.type = ”INT”;

78 valueCol.name = ”value”;
valueCol.table = t;

80 valueCol.type = a.type.name.toDbType();

82 // Another column is added into the table
// to link with the ”id” column of the

84 // values table
fkCol.name = a.name + ”Id”;

86 fkCol.table ::= a.owner;
fkCol.type = ”INT”;

88
// The foreign key that connects

90 // the two columns is defined
fk .parent = pkCol;

92 fk . child = fkCol;
fk .database = db;

94 }

96 // Transforms a referecne into a foreign key
rule Reference2ForeignKey

98 transform r : OO!Reference
to fk : DB!ForeignKey, fkCol : DB!Column {

100
fkCol.table ::= r .type;

102 fkCol.name = r.name + ”Id”;
fkCol.type = ”INT”;

104 fk .database = db;
fk .parent = r.owner.equivalent().primaryKeys.first ();

106 fk . child = fkCol;
fk .name = r.name;

108
}

110
operation DB!Table primaryKeyName() : String {

112 return self .name.firstToLowerCase() + ”Id”;
}

114
operation OO!Attribute valuesTableName() : String {

116 return self .owner.name + ” ” +
self .name.firstToUpperCase() + ”Values”;

118 }

120 operation Any toDbType() : String {
var mapping : OO2DB!TypeMapping;

122 mapping = OO2DB!TypeMapping.allInstances().
select (tm|tm.source = self). first ;

124 if (not mapping.isDefined()){
(”Cannot find DB type for OO type ” + self +

126 ”. Setting the default .”). println ();
return OO2DB!TypeMap.allInstances().first().

128 ‘ default ‘. target ;
}

130 else {
return mapping.target;

132 }
}
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