
e-Informatica Software Engineering Journal, Volume 15, Issue 1, 2021, pages: 133–162, DOI 10.37190/e-Inf210107

A Systematic Reuse Process for Automated
Acceptance Tests:

Construction and Elementary Evaluation

Mohsin Irshad∗, Kai Petersen∗∗

∗Ericsson Sweden AB, Karlskrona, Sweden
∗∗Blekinge Institute of Technology, Karlskrona, Sweden and University of Applied Sciences Flensburg,

Germany
mohsin.irshad@bth.se, Kai.Petersen@bth.se

Abstract
Context: Automated acceptance testing validates a product’s functionality from the customer’s
perspective. Text-based automated acceptance tests (AATs) have gained popularity because they
link requirements and testing.
Objective: To propose and evaluate a cost-effective systematic reuse process for automated
acceptance tests.
Method: A systematic approach, method engineering, is used to construct a systematic reuse
process for automated acceptance tests. The techniques to support searching, assessing, adapting the
reusable tests are proposed and evaluated. The constructed process is evaluated using (i) qualitative
feedback from software practitioners and (ii) a demonstration of the process in an industry setting.
The process was evaluated for three constraints: performance expectancy, effort expectancy, and
facilitating conditions.
Results: The process consists of eleven activities that support development for reuse, development
with reuse, and assessment of the costs and benefits of reuse. During the evaluation, practitioners
found the process a useful method to support reuse. In the industrial demonstration, it was noted
that the activities in the solution helped in developing an automated acceptance test with reuse
faster than creating a test from scratch i.e., searching, assessment and adaptation parts.
Conclusion: The process is found to be useful and relevant to the industry during the preliminary
investigation.

Keywords: Software components and reuse, software testing, analysis and verification,
agile software development methodologies and practices, software quality

1. Introduction

Software testing provides information on the
quality of the software product [1]. An essential
aspect of software testing is to verify that newly
developed features of a product work according
to the agreed requirements, and existing func-
tionality is still working correctly (i.e., regression
testing) [2]. With the advent of new technologies
and processes, software testing’s importance has
increased as well. Existing testing approaches,
such as unit testing and test-driven development,

verify that software is working and developed
according to the requirements. However, these
approaches do not take into account the test-
ing of business requirements. Acceptance testing
verifies the business-critical aspects of software
product [3]. The business requirements of a prod-
uct and the user needs are the focus of acceptance
testing [4]. The objective is to validate these busi-
ness requirements before accepting the software
product [3]. These business requirements, in the
form of acceptance tests, are automated so that
these are tested repeatedly and frequently similar

Submitted: 01 February 2021; Revised: 07 August 2021; Accepted: 09 August 2021; Available online: 25 October 2021

https://www.e-informatyka.pl/wiki/e-Informatica
https://www.e-informatyka.pl/attach/e-Informatica_-_Volume_15/eInformatica2021Art07.pdf


134 Mohsin Irshad, Kai Petersen

to unit tests [5]. Such automated tests are called
automated acceptance tests (AATs) [5]. Studies
in AAT have identified that AATs are responsi-
ble for high development and maintenance costs
when the product is still changing frequently [5].

In agile development methodologies (such as
Extreme Programming), the acceptance tests
are scripted (using any programming language
source code) by the development teams to get
continuous feedback on the product’s quality, and
completeness [6]. Such scripted testing is referred
to as “automated acceptance testing”, and the
tests are known as “automated acceptance tests”
(abbreviated as AAT in this study). In agile de-
velopment methodologies development of AATs
starts much early and these AATs are executed
frequently [6]. Empirical studies on AATs have
established that AATs facilitate the organiza-
tion’s knowledge transfer by describing business
requirements as test cases [7].

Software reuse improves productivity and
quality during software development [8]. Stud-
ies have suggested that software reuse is most
beneficial when organizations have a “system-
atic reuse process” [9]. In a systematic reuse
process, the reusable artifacts are developed to
support “development for reuse” [10], and these
reusable artifacts are easy to find and adapt for
reuse purposes [9]. The new development uti-
lizes these reusable artifacts, and this is called
“development with reuse” in which the identi-
fication, evaluation, and adaptation effort and
costs are considerably reduced [10, 11]. A reuse
process starts with “reuse assessment”, which is
a two-step activity, i.e., identification and evalu-
ation of software components for reuse [12]. The
evaluation of components for reuse involves the
evaluation of the technical aspects (i.e., how to
reuse) and the economic aspects (cost of reuse
vs. benefits of reuse) of the component [12].

Almeida et al. suggested that the systematic
reuse process’s decisions should be financially jus-
tified (i.e., costs vs. benefits of reuse) before the
actual reuse takes place [13]. Studies in literature
have suggested that in “development for reuse”,
the costs of developing the reusable artifacts are
high because the artifact should have high qual-
ity and artifact reused easily [9]. However, after

multiple reuse instances, the benefits become
more than the costs [14]. To calculate the reuse
costs and reuse benefits, several cost models and
metrics exist in the literature. However, many of
these metrics and models only capture the costs
and benefits of artifacts consisting of source code
[15].

In scientific literature, solutions/processes
that are constructed to solve a specific business
problem can be developed using various existing
practices [16]. An integrated solution (or a pro-
cess) combines multiple activities that were not
previously related to each other to address a criti-
cal business problem, e.g., finding a defect, fixing
the defective code, and verifying the new code
change [17]. Method engineering is a discipline
of engineering that helps construct new solu-
tions/processes from existing methods [18]. In
this study, we have utilized method engineering
to support the systematic reuse process of AATs.

This idea of a systematic reuse process can
be applied to AATs to address the high develop-
ment and maintenance costs of AATs. Reusable
AATs can be developed to support the develop-
ment of several new AATs, thus reducing the
time to develop, increasing maintainability (by
decreasing redundancy) and increasing quality of
the automated acceptance tests [19]. Reusability
(what to reuse, how to reuse, how to calculate
reuse costs, and when to reuse) of AATs is a new
area, and very few studies have addressed the
reuse in AATs. To the best of our knowledge,
there is a lack of suitable methods that support
the reusability of AATs. The contribution of this
investigation are:
– to provide a systematic reuse process that

supports economically justified “development
with reuse” and “development for reuse” of
text-based AATs.

– to evaluate the proposed systematic reuse pro-
cess for AATs with the help of experienced
practitioners.

– to evaluate the proposed process using an
industrial scale example.
Section 2 describes the background and re-

lated work, Section 3 contains research approach
and the results are described in Section 4. Sec-
tion 5 contains a discussion on the results of this



Systematic Reuse Process for Automated Acceptance Tests . . . 135

investigation and Section 6 describes threats to
the validity of this study. Important conclusions
are described in Section 7.

2. Background and related work

This section describes the background and re-
lated work on AATs.

2.1. Automated acceptance tests (AATs)

An acceptance test is used to verify that the
requirements are developed according to the con-
tract/agreed specification [20][21]. The accep-
tance tests are derived from the customer re-
quirements, and their focus is to verify the com-
pleteness of the implementation of requirements
[22]. It was proposed that customers specify these
acceptance tests, and these tests can be used as
a form of requirements [7]. In a literature review
[5], Haugset and Hanssen found the following
benefits associated with AATs:
– AATs improve the understanding of the do-

main and product.
– AATs improve the communication with the

customer by involving the customer in the
test documentation process.

– AATs improve the system’s quality by making
it safe to make a code change in the product.
Several AAT formats (to write AATs) ex-

ist in literature such as source code, text-based
domain-specific languages (DSL) and FIT tables
[19, 23, 24]. From the existing literature, we have
identified four types of AAT formats used by
practitioners and researchers. These four formats
are described below:

GUI-based formats. GUI-based acceptance
tests are written to verify the functionality of
GUI-based applications such as websites and mo-
bile applications [25]. These tests emulate the
user’s actions (e.g., clicks, inputs) and validate
the GUI-based application’s output. These GUI
actions are based on the scenarios described by
the software requirements [25].

Code-based format. In the code-based
AATs, programming language (e.g., Java, Python)
is utilized to develop test execution logic. The test
code implements and executes the scenarios in
a programming language. The code-based AAT
is triggered by a test framework such as JUnit1.
These types of acceptance tests can be written
using the existing practices and tools used for
product development [26]. However, a drawback
with this format is the difficulty for a customer to
be part of the development of the acceptance test
process [7].

Data-driven formats. In the data-driven
formats, the acceptance tests are written so that
input and output values are written in tabu-
lar form [27]. These input and corresponding
output values are used with the same test ex-
ecution logic. FitNesse2 is the most commonly
used framework for data-driven acceptance test-
ing. A literature review on AATs identified that
most of the studies present in literature are on
the FitNesse (21 out of 26 identified studies) [7].
The data-driven formats are also useful when
performing regression testing on systems with
varying input and output values [28].

Text-based formats. Software practitioners
prefer to write requirements in natural language
text [29] and the text-based AAT frameworks
(such as Cucumber3, Robot Framework4) support
the use of these requirements as the test-cases
for software products, i.e., acceptance tests. Be-
havior-driven format, Keyword-driven format,
Scenario by example, are popular text-based for-
mats. The text-based AATs are gaining popular-
ity because they help to promote a common un-
derstanding of requirements in the organization
and increase collaboration among practitioners
[30]. An experiment on comparing text-based
AATs and FIT tables revealed that text-based
AATs are easier to understand. These tests are
developed in shorter duration as compared to
FIT tables [31].

In behavior-driven format, the tests are writ-
ten in template of Given, When and Then parts.
Each behavior-driven test case validates a busi-

1https://junit.org
2http://fitnesse.org/
3https://cucumber.io/
4https://robotframework.org

https://junit.org
http://fitnesse.org/
https://cucumber.io/
https://robotframework.org


136 Mohsin Irshad, Kai Petersen

ness requirement described by the customer [32].
Keyword-driven acceptance tests describe an exe-
cutable requirement written using domain-specific
keywords [33]. In specification by example, exam-
ple scenarios are described in natural language
by the stakeholders. These example scenarios
are used to execute automated acceptance tests
[34]. Each of these formats requires different tools
and development frameworks. These formats
allow the developers to write the tests in various
styles and do not enforce any control over the
vocabulary used in the AATs. Each statement of
AAT (e.g., “the mobile is sent to customer” in the
Scenario 1 below) is connected with a method in
code called fixture/glue-code/hook that perform
the actions associated with each statement. This
method is written in any programming language
(Python, Java, etc.) or a library publishes it (e.g.,
Selenium5).

Existing studies on AATs have discussed code-
-based and FIT tables (as an AAT format); little
work is done on the text-based automated ac-
ceptance tests [7]. An example of a text-based
automated acceptance test (a customer buying
a mobile phone) is shown below using behav-
ior-driven development format:
Scenario 1: A customer buys a mobile phone.

Given the customer accesses the web shop
And he enters his name and id-card num-

ber
When he selects a mobile phone
And customer pays the money using debit

card
Then the mobile is sent to customers ad-

dress
Another automated acceptance test in key-

word-driven format is shown below verifying a use
case of a customer buying a mobile phone.
Scenario 2: A customer buys a mobile phone.

Open Browser To Page example.com/shop
Input name Sam
Input id 939393
Submit information
Click button Buy to purchase mobile
Close Browser

Existing literature has described several ap-
proaches to generate automated test cases from

manual acceptance tests automatically. Paiva et
al. proposed a process where requirements are
transformed into manual acceptance tests using
a domain-specific language called Requirements
Specification Language (RSL) [35]. Later, these
RSL-based test cases are transformed into an
automated test-scripts executable using Robot
Framework. Later, their proposed process is eval-
uated using an example application. Soeken et
al. provided a semi-automated approach to gen-
erate automated acceptance tests from natural
language requirements [36]. The phrases from
requirements are used to extract stubs executing
the test scenarios. Later, the proposed approach
was evaluated using an example case. Research
studies have also utilized IDE-plugins and tools
to generate automated acceptance tests from the
use cases such as Fitclipse by Deng et al. [37] and
Test-Duo by Hsieh et al. [38]. Such tools are often
limited to a specific framework or acceptance test
formats.

2.2. Systematic software reuse

Software reuse describes the practice of reusing
existing software artifacts for developing a new
product or maintaining an old product [39]. The
field has been the subject of research for several
years, and different aspects of software reuse
such as costs, testing, artifacts, the level of reuse,
stakeholders, and reuse processes have been in-
vestigated thoroughly by the researchers [40–44].
Software reuse can take place at any time during
a project’s life-cycle, starting from the require-
ments analysis phase to the maintenance phase
[43, 45].

Organizations apply systematic software
reuse to improve the quality, and productivity
[41]. Various software development artifacts (re-
quirements, test cases, code) can be systemati-
cally reused across the entire development pro-
cess [46]. Lam et al. described a 10-step process
to support the systematic reuse of software re-
quirements [47]. The study suggested that a sys-
tematic reuse process can be successful when the
organization produces and consumes reusable
software artifacts. Research studies have identi-

5https://www.selenium.dev/

https://www.selenium.dev/


Systematic Reuse Process for Automated Acceptance Tests . . . 137

fied the following characteristics of a systematic
software reuse process [12, 48]:
– Development for reuse: reusable artifacts are

produced to support the organization’s future
software development needs.

– Development with reuse: new development
occurs using reusable artifacts whenever pos-
sible.

– Guidelines (or techniques) to produce reusable
artifacts exist and are practiced in the organi-
zation.

– Guidelines (or techniques) on reusing an arti-
fact exist and are used in the organization.

– Development teams consider the extra costs
and risks associated with the reuse of arti-
facts.

2.3. Related work: reuse in automated
acceptance tests

The concept of text-based AATs is new, and their
textual nature differentiates these tests from the
conventional code-based test-cases, thus requir-
ing a different approach for reuse.

In a study on reuse of AATs, Landhaußer and
Genaid suggested an ontology-based approach
(F-TRec) that enables reusing tests written in
natural language. They found that approach
lacked precision when retrieving test steps for
reuse [49]. Crispin and House provided a tool to
create AATs that can be reused across different
modules [50]. They suggested that before reusing
any AATs to develop a new AAT, practition-
ers should evaluate the effort spent writing and
maintaining the new AATs. They also claimed
that their proposed method could quickly create
new test cases from the existing reusable tests,
thus reducing development time and increasing
quality. Rahman and Gao recommended an archi-
tecture that enables the reuse of Behavior-driven
acceptance tests across multiple repositories [19].
They claim that their proposed approach can
reduce maintenance costs, which are considered
one of the pain points of AATs. Binamungu et al.,
in their study on the maintenance of BDD tests,
found duplication as a critical challenge facing
the practitioners [51]. Irshad et al. also found du-

plication among AATs in their study refactoring
BBD specifications [52]. This duplication can be
decreased with the help of an increase in reuse.

Liebel et al. identified costs related to writing
the automated acceptance tests as one of the major
problems of these acceptance tests [25]. In their
industrial case study, Hanssen et al. suggested
that the benefits of automated acceptance tests
should be weighed against the costs associated
with these tests [23]. They found that automated
acceptance tests verifying the graphical user
interface (GUI) are often hard to develop and
maintain. GUI-tests are unstable and require more
maintenance. Angmo and Sharma evaluated AAT
tools and proposed that cost-benefits analysis
should be done when considering a tool for au-
tomated acceptance tests [53]. Shelly and Frank
conducted a literature review on story test-driven
development. They found that cost of writing
AATs is high, and many organizations do not
have a budget to account for this high-cost [54].

Xie describes time as the measure of cost in de-
velopment and maintenance of AATs [55]. Haugset
and Stalhane claim that AAT can benefit organi-
zations in two ways (i) increasing the correctness
of requirements and (ii) automated test-ability of
requirements. Borg and Kropp described a tool
that helps maintain and refactor automated ac-
ceptance tests, reducing their maintenance costs
[56]. To support reuse and reduce costs, Schwarz
et al. introduced and evaluated a plugin (Eclipse6

IDE plugin) that rapidly develops AATs. They
claim that using this plugin can quickly develop
automated acceptance tests quickly [57].

In short, we identified the following gaps in
the literature, and our investigation attempts to
provide a solution to these research gaps.
– Lack of support to systematic reuse of

AATs: Only one study is identified that pro-
vides methods for “developing with reuse”,
and “developing for reuse”. However, the
study’s approach is limited to the use of
a specific tool provided by the authors of
the study [50].

– Lack of generic reuse practices support-
ing diverse AAT formats: There is a need
for a generic practice supporting the reuse of

6https://www.eclipse.org/



138 Mohsin Irshad, Kai Petersen

all types of AAT formats. Several formats to
write text-based AATs exist in research and
practice (BDD, keyword-drive, specification
by example).

– Lack of means to calculate benefits of
reusing AATs: AATs are costly to write
and reuse, and costs should be considered
when reusing AATs [7, 23]. An instrument to
calculate the reuse costs of AATs may help
perform cost vs. benefits analysis of reuse
instances.
This study complements the existing work by

providing a systematic reuse process that sup-
ports economically justifiable “development for
reuse”, and “development with reuse” of AATs,
independent of any particular text-based AAT
formats, independent of any particular tools and
frameworks.

3. Research approach

This section describes the research questions,
study execution, data collection, and data analy-
sis performed during this investigation.

3.1. Research questions

In order to achieve the objectives of this study,
we have devised the following research questions:
– RQ 1: How can the cost-effective systematic

reuse of text-based AATs be achieved?
This research question details the establish-
ment of a systematic reuse process for AATs
along with suitable activities and techniques
used in the process. The proposed process
incorporates the cost-benefit aspects of AATs
when evaluating reuse opportunities.

– RQ 2: How does the systematic reuse process,
from RQ 1, perform concerning performance
expectancy, effort expectancy, and facilitating
conditions in the industrial context?
RQ 2 addresses the preliminary industrial
evaluation of the systematic reuse process of
AATs with the help of industry professionals
and practical demonstration.

3.2. Study execution

The study is executed using method engineering
that is a research framework to develop new
tools and methods. Method engineering consists
of individual method fragments that can combine
to form a project-specific (or product-specific)
customized method [58]. Method engineering is
applied using the following phases (defined by
Mayer [18]):
– Document motivation: the motivation to de-

velop a new process is identified and docu-
mented.

– Search for existing methods: the existing
methods are identified that may help in the
new process.

– Tailor existing methods: the identified meth-
ods are adapted to suit the needs of the pro-
cess.

– Design method application technique: a new
process is formed using the modified existing
methods.

– Test candidate design elements: the process
(and its components) are evaluated to identify
potential shortcomings and modifications.

– Refine method design: The process is modi-
fied/refined based on the evaluation.
The first four phases help in constructing

a new process, i.e., see Figure 1. Later, the last
two phases (see Figure 1) evaluates and improve
the new process. The study approach and the
research questions are described in Figure 1. The
first step (construction of process) identifies the
motivation, requirements and develops a new
systematic reuse process for text-based AATs.
The second step (Evaluation and refining of the
process) evaluates the new process by assessing
the performance expectancy, effort expectancy,
and facilitating conditions of the process, as sug-
gested by [61]. The evaluation consists of:
– qualitative feedback on the process from ex-

perienced software practitioners (also referred
to as static validation in [62]),

– by demonstrating the usage of the proposed
process in an industrial application by an
author.



Systematic Reuse Process for Automated Acceptance Tests . . . 139

Figure 1. Research approach inspired by method engineering [18]

The sections below provide the details of the
construction of the process and its evaluation
(i.e., research method, the data collection, and
analysis). The final version of the method is re-
leased after incorporating the feedback from the
evaluation.

3.2.1. Construction of process – using method
engineering

This step is used to construct a process support-
ing “development with reuse”, and “development
for reuse” of AATs also considering the costs vs.
benefits of AATs, i.e., a systematic reuse process.
The details of the four phases of this step are
described below.
Phase 1: Document motivation. The existing
studies that report the problems related to the
reuse of AATs were identified and examined. The
authors read the literature reviews and mapping
studies on AATs to identify supporting methods
for reusing AATs. We have focused on text-based
(non-code) AATs only as the reuse of other types
of AATs (code, FIT Tables) is already discussed
in existing [7]. One of the authors conducted the
following step using Google Scholar7.
– Find and examine the literature reviews/

mapping studies on AATs. Table 1 describes
keywords and identified studies.

– Examine the reference/citations in identified
literature reviews.

– Manually analyzes the identified studies to
find issues linked with AATs.

– Manually analyze the identified studies to find
details on the reuse of AATs.
The identified literature reviews/mapping

studies on the AATs [5, 7, 54, 59, 60] do not
explicitly discuss the reuse of AATs. However, we
identified studies using citations and references
to review studies. The analysis (documented Sec-
tion 2) concludes that a supporting process is
needed that should address the three require-
ments/needs: AAT format, AAT reuse process,
and AAT reuse costs. These three requirements/
needs are described below.

AAT format: The process should be indepen-
dent of the AAT format. Different AAT frame-
works support other formats, e.g., in Cucumber,
BDD format is used, and the Robot Framework
supports keyword-driven and BDD formats. The
reuse process of AATs should be independent of
formats dictated by different AAT frameworks.

AAT reuse process: The reuse process of AAT
should support “develop for reuse” and “develop
with reuse”. The process should contain activities
to search for a reusable AAT, assessment of AAT
for reuse, and adaption for reusing AATs.

Table 1. Keywords and identified studies

Keywords Identified review studies

Automated Acceptance Testing review [5], [7]
Acceptance Testing review [5], [59]
Story-driven review [54]
BDD Review [60]

7https://scholar.google.com/

https://scholar.google.com/


140 Mohsin Irshad, Kai Petersen

AAT reuse costs: The process should incor-
porate activities for assessment of reuse costs of
an AAT. Previous research has shown the high
cost of writing and reusing AATs [53, 63].
Phase 2: Search for existing methods. In
this phase, the existing methods are identified
to match the needs/requirements of an AATs
reuse process identified in the previous phase,
i.e., AAT format, AAT reuse process, and AAT
reuse costs.

AAT format: The following AAT formats are
identified Behavior-driven tests, story-based test
format, specification by example format, and key-
word-driven tests. These formats were identified
using the existing literature reviews on AATs
([7, 23, 59, 64]).

AAT reuse process: Mili et al. [65] suggested
three stages for a reuse process: (i) finding the
reusable artifact, (ii) assessing the relevance of
reusable artifact, and (iii) adaptation of the ar-
tifact for reuse. For the first and second stage
(finding and assessing relevance), techniques suit-
able for text-based artifacts were identified that
could help in these stages. The two suggested
approaches are (i) normalized compression dis-
tance (NCD) [66], and text classification using
machine learning [67]. For the third stage (an
adaptation of AATs for reuse), no existing study
provides guidelines on adapting AATs for reuse.
Since software requirements and AATs are text-
-based artifacts; therefore, we propose that the
reuse methods used in software requirements can
support reuse of text-based AATs [68].

AAT reuse costs: Software reuse cost models
are categorized into three categories (by [14]):
1. Return-on-investment models (ROI) that

measure benefits after an organization has
invested in developing reusable artifacts.

2. Cost-benefit models that are used for making
better decisions on reuse investments.

3. Cost-avoidance models that help in calcu-
lating costs avoided through reuse of arti-
facts [14].
We believe that cost-avoidance models are

best suited for reusability assessment since these
do not assume that an upfront reuse related
investment was made, as required by ROI and
cost-benefit methods [14]. The methods provided

in the review study on cost-avoidance through
reuse were identified for capturing reuse costs of
AATs [15].
Phase 3: Tailor existing method. The identi-
fied methods from the previous phase are tailored
to address the needs of a systematic reuse process
of AATs.

AAT format: For AAT formats, no tailoring
is needed.

AAT reuse process: In the AAT reuse pro-
cess, to find and assess the AAT candidates for
reuse, two techniques (Normalized compression
distance and text classification using machine
learning) are tailored to be used for AATs. The
AATs are text-based, and the AAT content is
structured so that each line acts as a single inde-
pendent, reusable test statement (see examples in
Section 2). The two techniques were implemented
using scripts (available at [69]) to apply them on
the AAT suite. Section 4 described the working
of these two techniques.

For the AAT adaption template (to support
“develop for reuse”), four templates (Structuring,
Matching, Analogy, Parametrization) from the
identified review study [68] were selected for their
applicability over AATs. The reuse of software
requirements inspires these templates. Section 4
describes the details of these templates.

AAT reuse costs: The study on reuse cost
avoidance methods described four approaches to
calculate reuse cost-avoidance [15]. Only two of
the reuse cost methods ([70] and [15]) are appli-
cable over non-code artifacts such as text-based
AATs. These two methods and their correspond-
ing metrics do not require any tailoring for AATs.
Phase 4: Design method application
technique: In this phase, the identified activ-
ities concerning the components of the process
are assembled to form a process.

The three identified requirements/needs (AAT
format, reuse process, and reuse costs) and their
identified methods are converted into activities
of a process. As discussed in Section 2.3, AATs
can be costly to write and maintain; therefore,
a check is introduced in the process that lets
practitioners decide when to write a new AAT
and when to reuse an existing AAT. Furthermore,
it was decided among the authors to divide the



Systematic Reuse Process for Automated Acceptance Tests . . . 141

activities into two levels, i.e., organizational level
activities and test developer-level activities. These
activities are described below:

Organizational/Team level activities and de-
cisions: The organization-level activities are de-
cided when setting up the reuse related process,
and these are rarely changed. Some examples of
these activities are the format used in the orga-
nization (e.g., BDD, keywords files), the support
for the reuse approach, and the test framework
used in the organization. The actor in these ac-
tivities is the test architect.

Test developer-level activities and decisions:
The activities performed during this level are the
primary activities relevant to developing a new
AAT. An example of such activities is selecting
an ATT for reusing purposes. Test developers
perform these activities. The activities are guided
by the choices made during the organizational
activities, e.g., which artifact to reuse, how to
modify an artifact for reuse.

The constructed systematic reuse process is
documented in Section 4.1.

3.2.2. Evaluation and refining of process

After developing a reuse process, the next step
involves the evaluation and refinement of the
process. The sections below describe the types
of evaluation and refinement steps.
Phase 5: Test candidate design elements.
After designing the process and its activities, the
next step evaluates the process for its usefulness
concerning the reuse of AATs. [62] has suggested
that validation with practitioners helps assess the
industrial usage of the process before applying
it in the industry.

Petersen and Wohlin described six context
facets for explaining the context of the evaluation
[71]. The evaluation in this study is conducted in
the context of large-scale software development.
The complexity concerning the reuse of AATs is
considered high for large-scale organizations with
a considerably large test base. The development
process is assumed to be an agile development
method where new requirements, development,
and testing are conducted in each iteration.

This survey questionnaire’s participants be-
long to two large telecommunication organiza-
tions, and the industrial demonstration is con-
ducted in one organization’s product verification
unit. The details of the evaluation are described
below.

Qualitative feedback of software practi-
tioners. In this evaluation, software practition-
ers provided feedback on the proposed systematic
reuse process.

Objective: The objective of this evaluation
was to identify generic findings on the applicabil-
ity of the process and sanity-check the process
for performance expectancy, effort expectancy
and facilitating conditions as suggested in uni-
fied theory of acceptance and use of technology
(UTAUT) by [61].

Wohlin et al. describe “exploratory surveys”
as a way to validate the proposals before a thor-
ough investigation is conducted [72]. As the first
step, the proposed systematic reuse process in
this study was evaluated using an exploratory sur-
vey to improve the process before implementing
and evaluating it in the industry, which requires
a longitudinal study. This longitudinal study is
planned as the next step after this study because
it requires resources, budget, and changes in the
organization’s current ways of working. Wohlin
et al. suggested questionnaires and interviews as
two data collection methods during the surveys.
We developed a questionnaire and asked the sub-
jects to fill the questionnaire during an online
session (for direct interaction like an interview).

Questionnaire design: In this evaluation,
a questionnaire (available at [73]) is developed
that contained four parts: (a) description of reuse
in automated acceptance testing, (b) description
of our proposed process, (c) an example of ex-
plaining the usage of our proposed process, and
(d) practitioners feedback on the proposed pro-
cess. The questionnaire’s design, as per Molléri
et al. can be classified as “self-administrated”,
i.e., online form [74]. This questionnaire is used
to execute the industrial evaluation. The details
on designing the questionnaire, selecting partic-
ipants, data collection, and data analysis are
provided below.



142 Mohsin Irshad, Kai Petersen

The following questions (under each UTAUT
construct) were part of the questionnaire.

Performance expectancy. This construct
describes “the degree to which technology will
benefit users” [61].
– Question 1: In your opinion, what are the

benefits of using the proposed process?
– Question 2: What are the drawbacks/limita-

tions of the process? How can we improve/
revise the process?
Effort expectancy. This construct describes

“the degree to which technology is easy to use” [61].
– Question 3: In your opinion, how easy is it to

use this process?
– Question 4: Do you have any recommendations

to improve the ease of use?
Facilitating Condition. This construct de-

scribes “the degree to which technology helps in
performing a task” [61].
– Question 5: Are there any other steps that

should be added to the process?
– Question 6: Are their steps that should be

removed from the process? If yes, then kindly
list those items here and also state why do
you recommend removing them?
Subjects: Initially, two academic researchers

(not authors) working on AATs were invited
to review the questionnaire and process for
sanity-check. They suggested improvement in
the questionnaire (i.e., text, process flow). After
incorporating the input of the researchers, we
conducted an industrial evaluation.

During the industrial evaluation, five industry
participants with knowledge of AATs in large-
-scale products and considerable working expe-
rience are considered. As the reuse of AATs is
a relatively new area, it is difficult to find partici-
pants with relevant experience. Five participants
evaluated the process and provided their feed-
back on the process. These participants were

selected from two large-scale organizations with
more than five years of experience with devel-
opment. The background of the participants is
provided in Table 2.

Study execution: The authors have presented
the study’s purpose, the working of the process,
and its activities to the participants in an on-
line meeting. The participating subjects asked
questions about things they do not understand
during the presentation of the process. The de-
tails were provided to the inquiring participants.
This step was conducted to overcome the sur-
vey questionnaires’ critique that subjects might
not understand the concepts and processes by
reading the questionnaire.

In the next step, the participants were pro-
vided the link to the survey questionnaire, and
they were asked to fill in the information. The
author remained online while the respondents
filled out the form to have direct interaction
and allow participants to ask follow-up questions.
These sessions lasted between 45–65 minutes, as
shown in Table 2. These online sessions helped
improve the qualitative feedback and relevance
of the feedback for the reuse of AATs.

All five participants responded to the survey
questionnaire in the presence of an author. In
the form of responses to the questionnaire, the
feedback is evaluated using the “Constant com-
parison” method [75]. This method can help in
the identification of common themes present in
the qualitative data. During the analysis, the
responses are divided into themes related to the
process’s benefits, usefulness, and completeness.
Later, the final process is improved based on
identified themes corresponding to performance
expectancy, effort expectancy, and facilitating
conditions.

Demonstrating industrial application of
the proposed process – an example. Stous-

Table 2. Background of the software practitioners (P1–P5) participating in the evaluation

Work experience Experience in AAT Role Product type Online session

P1 12 years 5+ years Developer Large-scale 60 minutes
P2 17 years 5+ years Architect Large-scale 45 minutes
P3 12 years 4 years Test developer Large-scale 55 minutes
P4 5 years 3 years Test developer Large-scale 65 minutes
P5 13 years 2 years Developer Large-scale 50 minutes



Systematic Reuse Process for Automated Acceptance Tests . . . 143

trup identified that lack of practicality or an
excessive level of complexity results in the failure
of seemingly successful research projects when
these projects are applied in the industry [76].
A demonstration is conducted in an industrial
setting using the proposed systematic reuse pro-
cess to address this concern.

Objective: The purpose of this evaluation is to
check the feasibility of implementing the process
in the context of a real software development
environment using the existing tools and knowl-
edge present in the organization (e.g., metrics to
identify reuse costs). This evaluation will help
identify lessons regarding each activity before the
process is applied and evaluated in the industry
without authors’ involvement.

The author (working in the organization) eval-
uated details related to:
– the effort to create an AAT using the pro-

posed process,

– the number of tasks performed in each activ-
ity of the proposed process,

– details of tasks performed in each activity of
the proposed process.
This demonstration took place in one of the

system verification units of an organization that
develops a large-scale product consisting of 28
micro-services. The unit of analysis is the AAT
suite used by the end-to-end verification team.
Four experienced test developers manage the
AAT test suite. The AAT suite was introduced
in the year 2016 and contained 87 system-level
AATs. Each system level AAT is based on a com-
plete use-case. The AATs are written in key-
word-driven format (text-based), with fixtures
written in Java. The AAT suite is extended when
the test developers find a stable product no longer
modified by the development teams. The AATs
are executed each night using Jenkins to build,
execute the AAT, and generate AAT reports.

Table 3. Activities in a systematic reuse process for automated acceptance tests (AATs)

Activity Input Output Actor Type

A1: Select keywords Requirements in natural
language

Keywords extracted
from requirements to
find reusable AAT

. Test
developer Manual

A2: Select AAT format

AAT formats (an organi-
zation can seek help from
literature if it does not
have a pre-decided for-
mat)

Selected AAT type, e.g.,
BDD

Test
Architect Manual

A3: Select artifact adap-
tation template

List of adaptation ap-
proaches to support “de-
velop for reuse”. See 4.1.3

Selected approach to
adapt AAT for reuse
and to help in search

Test
Architect Manual

A4: Search for reusable
AATs

Keywords from A1 and
a search technique. De-
tails in 4.1.4

The list of AATs
matching keywords

Test
developer Automated

A5: Assess relevance of
AATs

The AATs matching key-
words from output of A4

The potentially reusable
AATs

Test
developer Manual

A6: Select reuse cost
method and metrics

The available metrics,
the reuse cost calculation
method. Details in 4.1.6

A selected reuse cost
method

Test
developer Manual

A7: Calculate cost of
reuse

The value of metrics and
the reuse cost method

Evaluation if reuse is
beneficial or not

Test
developer Automated

A8: Develop new AAT by
reuse

The selected reusable
AAT and adaptation tech-
nique from activity A3

A new AAT supporting
“development for reuse”

Test
developer Manual

A9: Develop a new AAT
Software requirements,
adaptation technique
from activity A3

A new AAT supporting
“development for reuse”

Test
developer Manual

A10: Add new AAT to
repository

A new (or reused) AAT
test-case

A new AAT is added to
the repository

Test
developer Manual



144 Mohsin Irshad, Kai Petersen

IntellJ8 was used as an IDE for developing the
AAT. The AATs are stored in a Git9 repository.
The system under test (SUT) is hosted on a re-
mote server, and the development takes place on
the local machine. The AAT is executed against
SUT from the local machine, but after finalizing
the AAT, the AAT execution is automated as
part of the AAT suite that is executed frequently
using a continuous integration server.

One of the authors (who is not a developer
of the existing AATs) applied the process’s ac-
tivities to develop a new AAT with reuse. The
new AAT is to verify that a REST interface’s
performance is within limits decided by the re-
quirements engineers. The activities described
in Table 3 are followed to evaluate the proposed
process’s flow.

According to the classification provided by
Lethbridge et al. [77], third-degree data collection
was utilized in this study (i.e., historical data on
the case or using the compiled information). For
the searching and assessment activities, a script
(described in 4.1.4) is used to search in the repos-
itory and identify the relevant AATs. The search
and assessment data is available at [78]. The cost
model used in this demonstration needed histori-
cal information on the person-hours previously
spent on similar AAT [15]. This information was
extracted from the Git repository using the “git
history <AAT-File-Name>” command. The time
taken was noted for each activity by one of the
authors.

The data analysis was performed on the col-
lected quantitative and qualitative data. The
quantitative data is the time taken during activ-
ity, the number of steps performed in each activ-
ity (ease of use), and qualitative data involves
the test developer’s observations (i.e., author).
The results from the data analysis are described
in Section 4.2.2.
Phase 6: Refine method design. In this
phase, the proposed method is modified based on
the feedback from the evaluation. The identified
themes related to the method’s improvement are
considered, and the method is modified. The
feedback from the evaluation and the changes

suggested during the evaluation are described in
Section 4.2. The final version of the proposed
process is present in Section 4.3.

4. Results

This section describes the outcome of the two
research questions and the final systematic reuse
process. The first research question described
a cost-effective systematic reuse process, its activ-
ities, and techniques applicable to the activities.
The second research question describes the indus-
trial evaluation of the systematic reuse process.
Later, the final version of the systematic reuse
process is described.

4.1. Constructed solution: A systematic
reuse process for AATs

The systematic reuse process for AATs supports
activities and techniques to (i) develop for reuse,
(ii) develop with reuse, and (iii) methods and
metrics to calculate the reuse costs of AATs. Fig-
ure 2 shows the constructed process to support
systematic reuse of AATs and the details of each
activity is described in Table 3.

In the first activity, the practitioner analyzes
the requirements and identifies keywords relevant
to the new AAT. Next, an AAT artifact format is
selected, e.g., BDD. After selecting the artifact,
an approach to facilitate “development for reuse”
is selected. The next two activities search and
assess the relevance of AAT artifacts for reuse. If
no suitable artifact is found, then a new AAT is
developed from scratch. If existing relevant AATs
are found, then the next activity is to calculate
the cost of reuse. If the reuse is presumed cheaper,
a new AAT is developed by adapting the existing
artifact according to the approach selected for
development for reuse. In the last activity, a new
reusable AAT is added to the repository. Table
3 provides the inputs, outputs and actor of each
activity.

In the sections below, each activity in the
process is described below with an example.

8https://www.jetbrains.com/idea/
9https://git-scm.com/

https://www.jetbrains.com/idea/
https://git-scm.com/


Systematic Reuse Process for Automated Acceptance Tests . . . 145

Figure 2. A systematic reuse process for automated acceptance tests (AATs)

4.1.1. A1: Select keywords

Software requirements are often written in nat-
ural language [29], and in this activity, relevant
keywords are selected that represent the require-
ments. These keywords will help in searching for
reusable AATs in the existing test-base. This is
a manual activity performed by a test developer.
This activity may be performed in several itera-
tions before finalizing the keywords; e.g., an ini-
tial selection of keywords may not provide good
search results; therefore, it needs several revisions
(or discussion with experts) before reaching the
concluding choices.

Example: The test developer has the require-
ments: (i) “As a user I should be able to register
my new account”, and (ii) “As a user, I am able
to view the products using my account”. In this
example, the relevant keywords selected from
the requirements are “register account”, “view
products”.

4.1.2. A2: Select AAT format

The text-based AATs are written in a variety
of formats. Each of these formats has a unique
way of writing AATs, e.g., stories, specifications,
behaviors, features. Therefore, it is necessary to
select the format in which the new AATs are
written or reused, e.g., a selection from Behav-
ior-driven tests, story-based tests, feature files,
keyword-driven tests. This activity is performed
manually.

Example: As an example, we can assume that
the organization writes AAT in a Behavior-driven
format; therefore, BDD is selected as the format
of AAT.

4.1.3. A3: Select artifact adaptation template

In this activity, a reuse adaptation template is
selected for writing a new AAT from existing
artifacts. The objective of this activity is to sup-
port “development for reuse”. The new AAT will
be modified and saved according to the artifact
adaptation template. The four templates sup-
porting development for the reuse of AATs are
structuring, matching, analogy, and parameteri-
zation as described in Table 4. This selection of
artifact adaptation template is a manual activity.
A detailed discussion on the reuse adaptation
approaches for text-based software requirements
is provided by Irshad et al. [68].

Example: In this case, “Structuring” (from
Table 4) is selected as reuse adaptation template
because BDD test cases are written in structured
format of “Given, When, and Then” [32].

4.1.4. A4: Search for reusable AATs

A vital activity of the constructed process is to
search for reusable AATs in the repository. This
search is conducted using the keywords from
activity A1. The search operation can be imple-
mented using an automated script that searches
for AATs matching the keywords.



146 Mohsin Irshad, Kai Petersen

Table 4. Templates supporting “development for reuse”. Inspired by [68]

Approach Description

Structuring Reusable AATs are saved in specific/pre-defined format to reuse, e.g., directory struc-
ture.

Matching Reusable AATs are saved in formats such AATs are retrieved using matching, e.g.,
supports search using lexical or semantic matching.

Analogy Reusable AATs can be storied in languages/formats that support retrieval using
analogy-based approaches, e.g., special languages supporting analogical matching of
AATs.

Parameterization AATs can support parameterization for reuse, e.g., the use of variables in keywords.
Many AAT frameworks (Robot, Cucumber) support this adaptation approach.

We have identified two techniques that are
useful for searching for text-based reusable AATs.
These techniques are applicable over the text con-
tent of AATs only and do not consider the fixture/
hooks/glue-code of AAT. We have provided an
automated script for each of these techniques as
part of the reuse process. These techniques are
described below.

Normalized compression distance (NCD)
With this technique, the similarity between an
AAT and keywords is calculated using a compres-
sion algorithm [79]. In this study’s context, NCD
helps calculate the pair-wise distance between
all the AATs present in the test base against
the keywords identified. Later, this compression
distance helps in the assessment of similar and
dissimilar AATs. NCD can be defined by the
following equation [79]:

NCD(s1, s2) = Z(s1s2) − min{Z(s1), Z(s2)}
max{Z(s1), Z(s2)} ,

(1)
Here, s1 is an automated acceptance test

present in the test suite, and s2 is a keyword
used to search and assess reusable automated
acceptance tests. Z represents the compressor
used for the calculation of NCD. Z(s1) represents
the compressed size of AAT s1, Z(s2) represents
the compressed size of AAT s2 and Z(s1s2) rep-
resents the compressed size of the concatenation
of s1 and s2. NCD values lie between 0 and 1,
where 0 means that the BDD specifications are
similar, while 1 represents that they are entirely
different. A script implementing NCD is provided
as part of the proposed process [69].

Text-classification using machine learning
Text-classification can help in identifying
reusable AATs by training a classifier using a su-
pervised machine-learning algorithm [67]. For
text-classification commonly used machine learn-
ing-based algorithms are Naive Bayes and Sup-
port Vector Machines [80]. A machine learn-
ing-based algorithm improves the classification
process because it considers the domain-spe-
cific language used in the AAT instead of using
Wikipedia or large-text databases present over
the internet [67]. The existing AAT suite is used
to train the text classifier using each AATs title
as a category. Later, this text classifier helps in
suggesting the closest matching reusable AAT
cases to the selected keywords. The following
sequence of steps is followed when using ma-
chine-learning based text classification to search
for and assess a reusable AAT.
Step 1: Place each AAT in a separate file

where each file’s name is unique. This is
needed to allow ML-algorithm to assign a cat-
egory to each AAT in the training set.

Step 2: Load the training AAT files into mem-
ory.

Step 3: Extract features from AAT files using
Bag of Words.

Step 4: Train a classifier from these features.
Step 5: Use the search keywords to query the

classifier to identify the reusable AAT.
It is important to note that Step 1 to Step 5

are executed only if new changes are introduced
in the AAT suite. A script providing the imple-
mentation from Step 1 to Step 5 is provided as
part of this proposed process (available at [69]).



Systematic Reuse Process for Automated Acceptance Tests . . . 147

Table 5. NCD values generated by the automated-script

Selected keyword Scenario 1 NCD value Scenario 2 NCD value

view products 0.620 0.290
register account 0.720 0.850

Example: For the sake of simplicity, we as-
sume that there are only two AAT scenarios
in the repository and a test-developer wants to
use the keywords (from A1) to search for the
closest matching scenario to the keywords. The
test-developer uses the automated-script (See
[69]) to perform this activity.
Scenario 1: A user deletes a product in the

system
Given A product is configured in the system
When User sends a Delete request to delete

the products
Then User is able to delete the product
Scenario 2: A user view a product in the sys-

tem
Given A product is configured in the system
When User sends a Get request to fetch the

products
Then User is able to view the product

The distance measures (such as NCD) repre-
sent a mathematical concept of similarity [81, 82].
The similarity is high when the distance between
objects (in comparison) is low, i.e., a value closer
to “0”. An advantage of distance measure is that
they can classify the similarity and dissimilar-
ity of two objects on a numerical rating scale
by suggesting how closely similar or how dif-
ferent objects are from each other, i.e., 0.90
means very dissimilar, 0.75 means dissimilar,
0.248 means similar, 0.05 means very similar.
The text-classification approaches often classify
in the binary format, i.e., two objects are alike
or different.

The test developer selects “Normalized
Compression Distance (NCD)” to retrieve the
reusable AATs with help of keywords “register
account”, “view products”. The search activ-
ity is performed using the script implementing
NCD, and a pairwise comparison of each keyword
and scenario is conducted. For each comparison,
a value between “0” and “1” is produced. The
values are shown in Table 5 e.g., Scenario 2 and
keyword “view product” has lower NCD value

(0.290), showing higher similarity because key-
words “view”, “products” are found in Scenario 2
but not in Scenario 1.

4.1.5. A5: Assess relevance of AATs

In this activity, an assessment is made on the rel-
evance of the identified reusable AATs from the
searching activity. This assessment involves how
closely the identified AATs are related to the re-
quirements. This activity requires domain knowl-
edge and understanding of the existing AATs;
therefore, it is a manual activity, e.g., if several
closely matching reusable AATs are identified,
a manual assessment to select the most suitable
reusable AAT.

Example: The search results of activity A4 (in
Table 5) contains results from the search opera-
tion. Table 5 shows that the NCD values between
the keywords and two scenarios. As stated earlier,
an NCD value closer to 0 means higher similarity,
and a value closer to 1 means lower similarity.
Scenario 2 and keyword “view product” has value
0.290, showing higher similarity and relevance as
a candidate for reuse.

4.1.6. A6: Select reuse cost method and metrics

In this activity, a method is selected to calculate
and compare costs of developing a new AAT
by reusing an existing AAT and costs of cre-
ating a new AAT from scratch. The metrics
required to apply the method are selected in
this activity. This activity is necessary because
the development of text-based AATs is known
for higher costs, and in some cases developing
a new AAT from scratch can provide more sav-
ings than reusing an AAT. The reuse cost calcula-
tion methods and metrics used in the code-based
artifacts are not applicable over the text-based
AATs because they use “lines of source code” (or
indirect metrics such as complexity and function
points) as an essential metric to calculate the



148 Mohsin Irshad, Kai Petersen

cost. The selection of the cost model depends on
the following factors:
1. Maturity of the existing reuse process in the

organization, i.e., ad-hoc or systematic reuse.
2. Easiness to collect the required metrics:

Each model uses various metrics to calculate
reuse-related costs. Therefore, a key consider-
ation when selecting a model is the availabil-
ity of the required metrics in the organization.
Manual estimation can be used if the needed

metrics are not available or time-consuming to
collect these metrics. The manual estimate can be
based on (i) the size of a similar task completed
previously, (ii) the complexity of the task, and
(iii) the experience level of the software practi-
tioners.

We identified two methods and their metrics
that could help in calculating the reuse related
costs of AATs. These methods are described be-
low.

Amar and Coffey’s reuse cost calculation
method [70] Amar and Coffey attempted to pro-
vide a unified unit of measure capable of cal-
culating the costs that occurred during a reuse
instance [70]. They claim that the reuse-related
expenses are directly related to the time spent
on reuse activities. They claim that the time
spent during each of these activities should be
considered. The method and metrics proposed
by Amar and Coffey are described below.

% of reuse cost avoided per AAT =

=

S − (T + U) ×

N

i
B

− S × M

B

 × 100 (2)

where S is the search hit rate (i.e., the number
of attempted searches yielding a reuse instance
is divided by the number of total searches), T
is time to locate a reusable AAT, U is time to
understand the AAT, N is a number of AATs
analyzed, i is a number of reuse instances of
AAT, M is time to integrate (reuse) the (e.g.,
after adapting a reusable artifact), and B is time
to develop an AAT from scratch. Further details
on the working and evaluation of this method
are found in study [70].

Irshad et al.’s reuse cost calculation method
[15] According to Irshad et al., their proposed
metric can calculate cost avoidance by reusing
any software artifact [15]. Their provided instru-
ment considers the effort spent reusing an artifact
vs. effort spent on developing it from scratch. The
basic formula is described below in the context
of this study.

Reuse Costs = (O − I) × H (3)

where O is the personnel hours when an AAT is
developed from scratch, I is the personnel hours
spent on the adaptation of reusable AAT (i.e.,
changing an artifact to match the needs) and, H
is the cost of one personnel hour. According to
Irshad et al., historical data or expert opinion
can estimate the personal hours when AAT is
developed from scratch. Further details on the
instrument and its evaluation can be found in
the study [15].

Example: For the sake of this example, we
can assume that the test developer selects a reuse
cost model [15] i.e., Equation 3.

4.1.7. A7: Calculate cost of reuse

In this activity, the selected cost-avoidance
method and its metrics are applied to calculate
the cost of reusing the identified AATs. The reuse
costs are only calculated for the artifact that is
deemed relevant. The activity can help in de-
cisions like should a new test be developed or
existing ones are modified. This activity can be
performed with the help of automated scripts or
manually.

Example: Using the metrics and method, the
test developer calculates that the new develop-
ment cost is 40 person-hours, and the cost of
Reusing by Adaptation Scenario 2 is 30 per-
son-hours. Therefore, it makes sense to reuse
Scenario 2 to develop a new AAT as it saves ten
person-hours.

4.1.8. A8: Develop new AAT by reuse

In this activity, a new AAT is developed by
reusing the reusable AAT. This activity takes
place if the reuse is deemed as cost-effective in



Systematic Reuse Process for Automated Acceptance Tests . . . 149

activity A7. During this activity, one of the adap-
tation templates is applied to develop the new
AAT that supports future reuse opportunities
(present in Section 4.1.3).

Test developer performs this activity manu-
ally. When developing a new AAT by reuse (using
the proposed process), the following pre-requi-
sites are needed:
– The format in which the new AAT will be

written so that it becomes a reusable asset
for the future.

– The cost-efficient reusable test case(or test
cases) which will be used to develop a new
AAT (or parts of a new AAT).
Example: When the reuse is considered ben-

eficial, we assume that the test developer uses
“Structuring” as a reuse approach to developing
a new AAT scenario that test registration of
a user account and viewing products below. The
grey colored lines show the reuse from the exist-
ing scenario (Scenario 2 described in activity A4).
Scenario 3: As a user I should be able to create

account and view product
Given A product is configured in the sys-

tem
AND A login system is present for the product
AND A user is able to access the GUI Regis-

tration system
When User Registration is successful
AND User sends a Get request to fetch

the products
Then User is able to view the product
AND a new user account is created

4.1.9. A9: Develop a new AAT

In this activity, the development of a new AAT
from scratch takes place. This activity happens
if the reuse from existing AATs is not possible,
i.e., no relevant reusable AAT or reuse has unfa-
vorable cost vs. benefits. While developing the
new AATs, the vocabulary and existing rules of
writing an AAT are considered. An adaptation
templates is selected to develop the new AAT
that supports future reuse opportunities (present
in Section 4.1.3). A test developer performs this
activity manually.

The example from activity A8 (Scenario 3)
shows a new AAT if developed from scratch.

4.1.10. A10: Add new AAT to repository

The final activity is to add the newly developed
(or reused) AAT into the existing test repository.
These steps help in improving and developing
test-base. This activity is performed manually.

An example of the repository is a Git reposi-
tory10, which is used by the majority of the soft-
ware development organization to version-control
the software artifacts.

4.2. Evaluation and refining
of systematic reuse process

We first evaluated the proposed process with
experienced practitioners who have first-hand ex-
perience working with AATs. Later, the authors
assessed the process using it in an AAT suite
from a large-scale software product.

4.2.1. Qualitative feedback
of software practitioners

The industrial evaluation with five participants
is conducted with the help of a questionnaire.
The results from each section, based on UTAUT
[61], are described below:
Performance expectancy: According to prac-
titioner one, combining the reuse process and the
reuse cost is very beneficial. Other participants
also found this solution beneficial for the reuse
of AATs. The quotes below describe the specific
statements from the respondent of the survey
questionnaire.

“It guides a systematic approach, and it will
help in optimizing the AAT process. Provided
if it does not involve additional execution cost
and the process is automated.” (P1)
“The possible benefit of the process is the
reduction in the effort to write the new test
case.” (P2)
“In my point of view, this process will really
help the software practitioner to select the
test cases and use it for automated acceptance

10https://git-scm.com/

https://git-scm.com/


150 Mohsin Irshad, Kai Petersen

tests. The use of this process can be cost ef-
fective in sense of saving time by selecting the
test cases with respect to the score of each
test.” (P3)
“In case of low assess relevance and less cost
of reuse, it will improve the quality of the
tests by having already reliable tests. Also,
it’ll reduce the time to test a functionality
that is closer to already existing and selected
TC.” (P3)

Effort expectancy. The participants, overall,
seems happy with respect to the effort expectancy
of the proposed process. They suggested that ac-
tivities in the process are easy to follow. However,
they posed a few interesting questions (in quotes
below) that we have attempted to resolve in the
final design of the proposed process. Some of the
quotes from the practitioners are given below:

“The process seems to be simple and easy to
use, provided if process tasks are automated.”
(P3)
“The only thing I have found its hard to
implement this process in the existing project
because it takes time to change the process
and this process has involved many steps but
this one time cost of implementation can save
a lot in future.” (P4)
“The relevance and cost estimation should
be automated. The increasing number of
reusable artifacts will affect the efficiency of
search. So some mechanisms should be intro-
duced to speed up the search, e.g indexing
etc.” (P3)
When asked about ease of use, four practi-

tioners marked the process as easy or very easy
to use. One practitioner suggested it as “Normal”
to use. The results are shown in Table 6.
Facilitating Condition. The participants
stated that the solution is right to have, but
the organization-level activities should be recon-

sidered because they add an over-head in the
process. The respondents of the survey suggested
the following improvements with respect to facil-
itating conditions.

“Organizational level activities should not be
the part of the process, rather these should
be the pre-requisites of the process.” (P1)
“Steps A2 and A3 can cause possible delay, so
they should be a pre-requisite to the process,
and not a part of the process.” (P3)
“Reassessment after cost evaluation with
other closely related test cases.” (P4)
From the evaluation, we found that:

– The systematic reuse process saves the time
to write new AATs.

– The organizational level activities are
one-time activities, and test developers
should skip these activities.

– There can be more reuse candidates than one.
A new AAT can use parts of multiple existing
reusable AAT.

– The scripts implementing search and assess-
ment activities should be part of the system-
atic reuse process. In the future, the focus
should be to automate many of these activi-
ties.

4.2.2. Demonstrating industrial application
of the proposed process

An industrial AAT was implemented using the
activities of the proposed process. A summary of
quantitative data captured during the evaluation
is shown in Table 7 and qualitative information
mentioned in the sections below. The context
and details of the industrial demonstration are
discussed in the research approach (Section 3.2.2
Phase 5: Test candidate design elements).
Details of tasks in each activity. Each activ-
ity inside the proposed process consists of one

Table 6. How easy it is to use the process

Participant Very Easy Easy Normal Difficult Very difficult

Participant 1 ✓
Participant 2 ✓
Participant 3 ✓
Participant 4 ✓
Participant 5 ✓



Systematic Reuse Process for Automated Acceptance Tests . . . 151

or more tasks that are performed in the activity.
The tasks performed in each activity are assessed,
and important lessons are documented. It was
noted that A4, A5, A6, and A8 activities take
more time and contain multiple tasks per activity.
The tasks under each activity are described in
Table 7 and in the sub-sections below:

A1: Select Keywords: The test developer (au-
thor) selected 3 keywords (a) REST (b) <In-
terface Name> (c) a description of performance
requirement.

Select AAT format: From the available
choices (BDD or keyword-driven), the test devel-
oper selected keyword-driven as AAT format.
The existing AATs were also written in key-
word-driven format.

Select artifact adaptation template: “Param-
etrization” is selected as artifact adaptation tem-
plate because parameterization is by default sup-
ported by the keyword-driven frameworks, and ex-
isting AAT is also based on keyword-driven tests.

Search for reusable AATs: The searching of
AATs was executed using the script provided
as part of the proposed process (See [69]). Be-
fore the search is executed, libraries required
for the script are installed. The existing AATs
are checked-out from the repository. Three files,
each containing one keyword, are created in the
same directory. The NCD script is executed to
identify the AATs closely matching the keywords.
The first search did not yield AATs that were
closely matching with keywords. Later, keywords
were changed (mentioned in the activity “select
keywords” above) that produced better results.
The output of this activity is available online [78].

Assess Relevance of AATs: The output of
search activity is sorted in ascending order. The
output of the five pairs with lowest NCD val-
ues (i.e., similar) is shown in Table 8. The pairs
with the lowest NCD values are selected for the
analysis. After manually analyzing the content of
selected AATs (from pairs with the lowest NCD),
two AATs (testcase27, testcase26) are selected
for reuse purposes.

Select reuse cost method and metrics: The ver-
ification team keeps track of tasks in a ticketing
system. The time spent on each task in each phase
(in backlog, in development, in Done) is present

in the system. Therefore, it was decided to use
a person-hour based metric and model. The reuse
cost calculation method proposed by Irshad et al.
[15] was selected to calculate reuse costs.

Calculate cost of reuse: The development
time of testcase27 and testcase26 was four weeks
for each test case. We estimated that by reusing
(without change) some parts of the testcase26
(related to SUT configuration and test data gen-
eration and cleaning), we could save three weeks
of development effort. Other parts of testcase27
(related to validation) support parametrization.
These parametrization supporting parts were also
reused using different values for the parameters.
An example of parametrization is found on a link
here [83].

Develop new AAT by reuse: The new AAT
was developed using the parameterization ap-
proach (See example of parametrization [83]. The
reusable lines from the testcase27 already sup-
ported parametrization. Seven out of twenty-five
new AAT lines were reused (by using different
parameter values) from the testcase27.

Add new AAT to repository: Once the AAT
is ready and approved by the reviewers, the AAT
is pushed to the central repository. This task
triggers the build on the build server, executing
the AAT.
Number of tasks performed in each activity.
The number of tasks in an activity may show the
effort required to perform the activity. An activity
with a large number of tasks may require more
effort from the practitioners. The test developer
(one of the authors) kept a record of the number
of tasks performed in each activity, e.g., searching,
changing code. The tasks varied from 1 task to 3
tasks in activity. The number of tasks performed
in each activity is described in Table 7.
Effort to create an AAT. To capture this
construct, we measured the time taken during
each activity. The time taken by each activity is
shown in Table 7. The development (writing, test-
ing, refactoring) of the AAT took the most time
(1 week). Other activities in the process took less
than 30 minutes each. The practitioner tracked
the time spent on the task, and the practitioner
used minutes to track the precise time. In the
work management tool used by the organization,



152 Mohsin Irshad, Kai Petersen

Table 7. Evaluation: Time spent, no of tasks, the tasks performed during each activity of the process,
description of the tasks and comparison with existing (manual) activity.

Activity Time
spent

No. of
tasks Description of tasks in the activity

Comparison with
existing (manual)
activity

A1: Select
Keywords

5 minutes 2 (a) Reading requirements description. (b)
Deciding suitable keyword.

Not needed in man-
ual process

A2: Select AAT
format*

1 minute 1 Selecting “Keyword-driven” as AAT for-
mat.

No such activity ex-
ists, a practitioner
decides the format
he has previous ex-
perience with.

A3: Select
artifact
adaptation
template

1 minute 1 Selecting “Parametrization” as adapta-
tion template to support develop with
reuse.

No such activity ex-
ists.

A4: Search
reusable AATs*

27 minutes 3 (a) Configuring libraries for NCD script,
a one-time task (20 minutes). (b) Writing
keywords from activity A1 in separate
files (5 minutes). (c) Executing script in
the repository (takes 2 minutes).

A practitioner uses
his/her experience
from test suite.

A5: Assess
relevance of
AATs*

30 minutes 3 (a) Sort and analyse the output of NCD
script (excel file) 10 minutes. (b) Select
top relevant AATs and analyse for rele-
vance (10 minutes). (c) Select one AAT
most suitable for a new AAT (10 min-
utes).

A practitioner uses
his/her experience
of domain.

A6: Select reuse
cost method and
metrics

11 minutes 2 (a) Analysis of the metric present in the
organization/unit (10 minutes). (b) Select
suitable cost model (1 minute).

No such activity ex-
ists.

A7: Calculate
cost of reuse

15 minutes 1 Apply cost model to AAT (15 minutes). No such activity ex-
ists.

A8: Develop new
AAT by reuse*

1 week 4 (a) Selecting reusable parts of AAT from
task “C” in activity A5 (20 minutes). (b)
Adapting reusable parts to fit the newly
developed AAT (24 hours). (c) Testing
the new AAT (10 hour). (d) Refactoring
the new AAT (6 hours).

A test case by reuse
is developed using
activities, A1–A7.

A9: Develop
a new AAT*

0 0 Not performed. A test case from
scratch is developed
using activities, A2
and A3.

A10: Add new
AAT to
repository*

1 minute 3 Using commands: git add <filename>
and git commit -m “<Message>” andgit
push

Similar to manual
process.

* shows activity exists in manual and automated process.

the development of the new AAT took nearly
5-working days.

The time spent on a similar existing AAT
was identified from the organization’s archived
data (using Git history, we found the develop-

ment task and determined the time spent in the
task development phase). A similar AAT was
developed in four weeks, as per the development
phase of the task. This difference is because, in
the newly developed AAT, the test data setup,



Systematic Reuse Process for Automated Acceptance Tests . . . 153

Table 8. NCD values of comparison between Keywords and existing AATs

AAT 1 Keywords NCD value

testcase27 keywords.txt 0.169
testcase26 keywords.txt 0.174
testcase84 keywords.txt 0.294
testcase25 keywords.txt 0.299
testcase83 keywords.txt 0.307

the SUTs state configuration, and the test data
deletion parts were reused from an existing AAT.
Magnitude of reused statement. Utilizing
the reuse cost calculation activity is essential to
recognize benefits before reusing any AATs. The
cost savings through AAT’s reuse depends on
(i) the number of reusable AAT statements and
(ii) the functionality corresponding to the reused
statement. For example, only seven out of 25
lines were reused in the demonstration. However,
these seven reused lines perform functionality
that is time-consuming to develop, so the cost
savings were almost 75% (1 week when reusing
vs. 4-weeks of development time from scratch).
Another example can be a case where many state-
ments are reused, but these statements require
a small amount of development time when de-
veloping from scratch; in that case, cost savings
may not be a lot.

The evaluation from the industrial assessment
identified the following lessons:
– Finding suitable keywords may require multi-

ple iterations before finding the most useful
reusable AAT.

– There were more than one AATs identified
as reusable during the assessment of reusable
AAT. There should be a guideline on how to
select the best out of the possible reusable
artifacts.

– The automated scripts provide a mechanism
to search and assess the existing AATs.

4.3. Final version of systematic
reuse process

Following changes were introduced in the pro-
posed process, based on the feedback from prac-
titioners and application in an industrial setting:
– A condition is introduced to skip organiza-

tional-level activities if these are already de-
fined, as per the participants’ suggestions.

– A condition is modified to select multiple can-
didates and perform reuse cost calculations
on each of these candidates.

– A new activity is introduced to evaluate the
most suitable candidate from a list of candi-
dates having lower costs and requiring fewer
changes. The activity takes input on a list of

Figure 3. Final Version: A systematic reuse process for automated acceptance tests (AATs)



154 Mohsin Irshad, Kai Petersen

AATs with high relevance and low costs and
lists the most feasible reusable AAT.

– A new activity, Associate Keywords with
AAT, is introduced that stores the selected
keywords when storing the new test case in
the repository. These keywords help in catego-
rizing the test cases and optimize the search
functionality.

– The activities that can be automated with
a script’s help are mentioned in Table 3.
The final version of the process is shown in

Figure 3.

5. Discussion

This section provides a discussion on the analysis
of the evaluation, characteristics and benefits of
the proposed process.

5.1. Analysis of industrial evaluation

This section describes the findings and analysis
of industrial evaluation.
Analysis on performance expectancy. Per-
formance expectancy has implications on using
the proposed reuse process if the process is ad-
vantageous for the software practitioners [12]. If
the process is perceived as advantageous, then it
is likely that other software practitioners and the
software industry embrace the proposed process.
In the evaluation, practitioners provided positive
feedback with regards to performance expectancy.
The practitioners listed the following advantages
regarding performance expectancy of the process:
– A systematic process to support reuse of au-

tomated acceptance tests.
– The activities of searching and assessment of

a reusable test case can help software practi-
tioners.

– New tests can be developed with less effort.
This feedback was re-confirmed during the

industrial demonstration of the process where the
test developer (an author) followed the activities
and techniques proposed in the systematic reuse
process and successfully developed the test case.
Analysis on effort expectancy. Effort ex-
pectancy identifies the level of ease to use the

proposed reuse process. The easiness of using the
process has direct implications on the adaptabil-
ity of the process in the industry. Software prac-
titioners found the process easy to use. However,
to increase the effort expectancy, practitioners
suggested that the majority of the process ac-
tivities should be automated with the help of
scripts. Practitioners also suggested that there
are many activities involved in the process, and
implementing these activities in their existing
process can be challenging. They suggested au-
tomating these activities to reduce the impact of
a large number of activities.

During the industrial demonstration, it was
noted that the time spent on the activities of the
process and the number of tasks in each activity
are low in numbers. The activity with the highest
number of tasks (4) and time is taken (1 week) is
developing the new AAT. Overall the activities in
the process were easy to use for the test developer
well familiar with the process (an author).

Analysis on facilitating conditions. The
process’s impact on the development of AATs
is evaluated using the facilitating condition con-
struct. The practitioners, during the evaluation,
suggested changes that can help improve the
construct of facilitating conditions. Practitioners
believed that the proposed process could become
better by:
– making few activities pre-requisite to execute

(only once) when the process is applied in any
organization,

– allowing assessment of more than one
reusable AATs before selecting the final
reusable AAT.

The tool support and the competence needed to
use the process was evaluated in the industrial
demonstration. It was noted that tools and li-
braries need to be installed before running the
provided scripts for searching and assessment.
The calculation of reuse cost required metrics
that were already available in the organization,
i.e., better-facilitating conditions.

5.2. Guidelines for AATs reuse

The activities of proposed process act as guide-
lines for reusing the AAT. In the existing litera-



Systematic Reuse Process for Automated Acceptance Tests . . . 155

ture, limited studies have discussed the reuse of
AAT, and this study provides step-by-step guid-
ance for developing with reuse and developing for
reuse. The input, the output, the actor and tech-
niques relevant for each activity are described
in Table 3 and Section 4. Practitioners and re-
searchers can use this information as guidelines
for supporting the reuse of AATs.

5.3. Compare reuse opportunities

The two activities (i.e., assess the relevance of
AAT and reuse cost analysis) in the process can
help the practitioners evaluate a reuse oppor-
tunity’s effectiveness. With these two activities,
the practitioners have an instrument to evaluate
and compare the value of reusing different AATs.
Based on their comparison, they can select the
AAT, which is more suitable for their purpose.

5.4. Flexible techniques

Section 4 provides different techniques that apply
to the activities of reuse process. The implemen-
tation of some of these techniques is also provided
to support the practitioners. However, an orga-
nization can add its own techniques to search,
assess, or calculate reuse costs if it wants to use
customized techniques. The reuse process is not
bound to fix a set of searching and calculation
techniques.

5.5. Support for automation

Several steps in the proposed process are either
automated already or have the potential (e.g.,
selecting keywords) to be automated. This can
result in cost savings for the practitioners by (i)
reducing time to develop an AAT and (ii) re-
ducing the time to analyze, search, and assess
the AATs. In future work, we want to provide
automated scripts for activities A1, A6, and A7
from Table 3.

5.6. Verdict on the diversity of AAT-suite

The activities of the process can also be used
to assess the diversity in an organization’s AAT

suite. A higher diversity means that the test
suite has more test coverage. The search and
assessment using NCD provides pair-wise com-
parison values of all the AATs. These values
can be a good indicator of diversity in the AAT
suite. A suite with low diversity could have many
pairs with low NCD values (i.e., very similar
to each other), indicating that refactoring is
needed to diversify the AATs or remove the
duplicates.

5.7. Tool support for reuse of AATs:

AATs are text-based artifacts different from tra-
ditional code-based test cases. IDE features often
support the code-based reuse process to detect
duplicates, detect similar usage, provide modu-
larization of code snippets, etc. These basic reuse
features are not yet mature enough for non-code
artifacts. Therefore, we have provided easy to
use techniques and scripts that can be applied
to support the reuse of text-based AATs.

5.8. Increased coupling

Existing research literature has described the is-
sue with decreased maintainability among AATs
[7]. A key concern when developing by reusing
parts of different reusable AATs is an increase in
coupling (dependency between test cases) in the
test base [84]. This increase in coupling decreases
the maintainability of the test cases. Therefore,
during the activity A5 (Assessing the relevance
of reusable AATs), it is vital to consider the
increase in coupling between the reused and
reusable AATs.

5.9. Comparison with existing literature

Park and Maurer proposed three strategies that
can be used to develop reusable assets in soft-
ware product lines [85]. These three strategies are
(i) proactive mode in which organization makes
upfront investment in developing reusable assets,
(ii) reactive mode in which reusable assets are de-
veloped when needed, and (iii) extractive mode
in which existing product is reused [85]. Our
proposed process can be classified as a reactive



156 Mohsin Irshad, Kai Petersen

model, in which we develop new reusable assets
when there is a need for writing a new test.

In their study on variability management
in software product lines, Kiani et al. proposed
a method in which reusable assets are developed on
demand when the need arises [86]. This is similar
to our proposed approach in which reusable AATs
are created when there is a need to write a new test,
i.e., no upfront costs are required. In addition, de
Silva proposed a software product line approach
that uses automated acceptance tests to link
scoping of requirements, implementation, and
testing [87]. Our proposed process compliments
this SPL-based study by suggesting a reuse-based
approach to derive the reusable AATs along with
requirements, implementation, and testing.

In a study by Mink et al., software practition-
ers suggested that specifying the granular details
of automated acceptance tests, i.e., format and
details of AATs is cumbersome and requires more
time from them [3]. In another study, Mink et
al. investigated executable acceptance testing.
They found that AATs help in (i) preserving the
domain knowledge and (ii) improve the commu-
nication among the developers [3]. Our study
identified similar findings during the evaluation
of the proposed process using experienced soft-
ware practitioners. Thus, our approach may help
the software practitioner specify the details of
the automated acceptance tests by providing
a specific AAT format and suggesting existing
reusable AATs.

5.10. Scalability of Approach

Searching for reusable software artifacts is known
as a time-consuming process (with high costs)
during software reuse [43]. The cost of searching
and retrieving a reusable software artifact grows
when new artifacts are added to the repository
[43]. Therefore, the scalability of the searching
techniques is a vital characteristic to support fu-
ture reuse opportunities. We evaluated performed
an evaluation of the search approach. In an exam-
ination (by the authors) with a specification base
of 500 AATs, reusable candidates were identified
in less than 5 minutes using the scripts provided
as part of the proposed process (See script [69].)

6. Threats to validity

Runeson et al. [88] classified the validity threats
into four types (reliability, construct validity,
internal validity, and external validity). These
threats to the study’s validity and the measures
to address these validity threats are discussed in
this section.

Internal validity deals with the case when
the factors studied by the researchers are affected
by any other factors unknown to the researchers.
This threat applies to the design and develop-
ment of the questionnaire for industrial evalua-
tion. The questionnaire design can be classified
as “self-administrated,” i.e., online form. As the
proposed process is developed for software orga-
nization, we evaluated the process using the con-
structs suggested by the unified theory of accep-
tance and technology use (UTAUT) [61]. These
three constructs (performance expectancy, effort
expectancy, and facilitating condition) help the
authors to develop evaluation questions related
to the proposed process systematically. Each
question in the questionnaire is mapped to a con-
struct that it addresses. The details are provided
in Section 3. We believe that we have addressed
this threat to this investigation’s internal validity
by following a systematic method to design and
develop the questionnaire.

External validity concerns with the gen-
eralization of results. The proposed process de-
veloped in this study is considered useful for
large-scale software organizations. Hence, we eval-
uated the proposed process using an industrial
use-case for large-scale systems. During the evalu-
ation, the process’s completeness and usability for
large-scale product organizations are evaluated.
Furthermore, we involved five experienced practi-
tioners from two large-scale organizations to eval-
uate the proposed process and provide feedback.

The experienced practitioners involved in this
study worked in different roles in large-scale or-
ganizations. They were selected because they
have a prior understanding of automated accep-
tance testing and reuse. As reuse of AATs is still
a new area, it is difficult to find practitioners
who understand these concepts. Furthermore,
we involved practitioners from two large-scale



Systematic Reuse Process for Automated Acceptance Tests . . . 157

organizations to improve the generalizability of
the proposed process. However, the authors be-
lieve that a reuse process should be applied and
evaluated in the industry before the results of
this study are considered generalizable, which is
part of our future work.

Reliability deals with how the data collec-
tion and analysis are dependent on the researcher.
The researcher independently conducted the first
evaluation to validate a process in the industry
setting. This practice is called lab validation by
Gorscheck et al. [62]. Since this evaluation was
conducted by a software practitioner (an author),
the threat to the validity of data collection and
analysis exists. To mitigate this threat to the
evaluation’s validity, in the second part of the
evaluation (using experienced practitioners), the
data collection was done in an online form with-
out the author’s active involvement in filling the
form. A critical threat to the reliability of the
study is related to the response bias of survey re-
spondents. The responses from the practitioners
reflect the belief of those practitioners, and these
beliefs may be contrary to real-world contexts.
We believe that this threat is relevant to this
study, and in future evaluations of the proposed
process, work is needed to address this concern.
The usage of online form reduces the chance of
losing any valuable feedback from practitioners.
For data analysis, we used a systematic method
called constant comparison to interpret the on-
line questionnaire’s feedback.

Construct validity deals with how well the
study captures the intended constructs. During
the evaluation, each subject involved presented
the motivation, background, and walk-through
of the proposed process during online sessions.
The subjects asked questions about the study,
the process, and the questionnaire during these
presentations. Furthermore, one of the study au-
thors has considerable experience working in the
same domain and industry. Hence, he was able
to explain the concepts in the language/terms
understood by the subjects. This step helps in
reducing confusion or ambiguities related to the
reuse process.

Furthermore, the questionnaire (available at
[73]) provides a detailed description of concepts,

the activities used in the process, techniques used
in these activities, and a working example of the
proposed process. These details were provided to
the respondents to make sure the study captures
the intended constructs.

7. Conclusion

The reuse of automated acceptance tests help
develop new tests cheaply, quickly, and with high
quality. However, the textual nature of these tests
makes the reuse of these tests different from
code-based tests. In this investigation, we de-
scribe a systematic reuse process for text-based
automated acceptance tests. We constructed this
reuse process using the method engineering and
performed an initial evaluation of the reuse pro-
cess before applying it to the industry.

RQ 1: How can the cost-effective systematic
reuse of text-based AATs be achieved? The con-
struction of systematic reuse process starts with
the identification of the motivation and require-
ments of the new process. The identified require-
ments are (i) the process should consider devel-
opment with reuse and development for reuse,
(ii) the process should be independent of several
text-based formats (e.g., BDD, keywords) and
frameworks of automated acceptance tests (e.g.,
Cucumber, Robot Framework), and (iii) the cost
of reuse should be calculated before developing
a new test by reusing existing tests. For these
three requirements, we identified and tailored
existing methods present in the literature. The
final outcome is a systematic reuse process that
supports the reuse of various types of text-based
automated acceptance tests. The process activi-
ties are divided into two types, i.e., organizational
level activities and test developer-level activities.
We provided expected input, expected output, ac-
tor, examples, and techniques (automated using
scripts) suitable for the process’s activities.

RQ 2: How does the systematic reuse process,
from RQ 1, perform concerning performance ex-
pectancy, effort expectancy, and facilitating con-
ditions in the industrial context? After construct-
ing the process, an elementary industrial evalua-
tion assesses the performance expectancy, effort



158 Mohsin Irshad, Kai Petersen

expectancy, and facilitating conditions concern-
ing the process. This evaluation is performed
to sanity-check and improves the process before
it is ready for a long and detailed industrial
evaluation. Initially, five participants with con-
siderable experience in automated acceptance
testing provided qualitative feedback on the sys-
tematic reuse process. They found that the pro-
cess can save time and reduce the effort to write
and maintain automated acceptance tests. The
practitioners suggested that activities are easy
to use, and the reuse cost metrics are easy to
find and apply using the proposed techniques.
They suggested changes in the process, and these
changes were incorporated in the final version
of the process. This evaluation shows promising
results concerning the processes’ performance
expectancy, effort expectancy, and facilitating
conditions.

Later an illustration of the usage of a process
in the industry is conducted. During the evalu-
ation, a new test case is developed by reusing
existing automated acceptance tests. This evalu-
ation’s objective was to identify and sanity-check
the tasks in the process’s activities and evaluate
their complexity. One of the authors, from the
same organization, conducted this demonstration.
The evaluation helped identify several different
granular tasks required to perform in each activ-
ity of the process. The number of tasks varies
from 1 to 4 between different activities. These
identified tasks can act as guidelines when using
the process in the industry. The evaluation also
recorded the time spent in each activity. It was
noted that most of the time is spent developing
the new test by reusing existing automated ac-
ceptance tests. The development time with the
reuse process was 4-times quicker than develop-
ing a new artifact from scratch.

In the future, we want to have a longitudi-
nal investigation on the process’s transfer and
usage in the industry, as application and evalu-
ation of the process may take a long duration
and resources. The current study enables the
researchers to sanity-check the process before
evaluating it in industrial settings. Secondly, in
the next study, we want to automate most of
the proposed process activities and evaluate the

process using automated activities. Furthermore,
we want to evaluate the precision and recall of
the search and assessment functionality proposed
in this process.

References
[1] M.J. Harrold, “Testing: A roadmap,” in Proceed-

ings of the Conference on the Future of Software
Engineering, 2000, pp. 61–72.

[2] W.E. Wong, J.R. Horgan, S. London, and
H. Agrawal, “A study of effective regression
testing in practice,” in Proceedings., The Eighth
International Symposium on Software Reliability
Engineering. IEEE, 1997, pp. 264–274.

[3] G. Melnik and F. Maurer, “Multiple perspectives
on executable acceptance test-driven develop-
ment,” in International Conference on Extreme
Programming and Agile Processes in Software
Engineering. Springer, 2007, pp. 245–249.

[4] “Standard glossary of terms used in software test-
ing,” International Software Testing Qualifica-
tions Board, Standard 3.5, 2020. [Online]. https:
//www.istqb.org/downloads/glossary.html

[5] B. Haugset and G.K. Hanssen, “Automated ac-
ceptance testing: A literature review and an in-
dustrial case study,” in Agile Conference. IEEE,
2008, pp. 27–38.

[6] M. Huo, J. Verner, L. Zhu, and M.A. Babar,
“Software quality and agile methods,” in Proceed-
ings of the 28th Annual International Computer
Software and Applications Conference, 2004.
COMPSAC 2004. IEEE, 2004, pp. 520–525.

[7] J. Weiss, A. Schill, I. Richter, and P. Mandl,
“Literature review of empirical research studies
within the domain of acceptance testing,” in 42th
Euromicro Conference on Software Engineering
and Advanced Applications (SEAA). IEEE, 2016,
pp. 181–188.

[8] W.B. Frakes and K. Kang, “Software reuse re-
search: Status and future,” IEEE Transactions
on Software Engineering, Vol. 31, No. 7, 2005,
pp. 529–536.

[9] R. Capilla, B. Gallina, C. Cetina, and J. Favaro,
“Opportunities for software reuse in an uncertain
world: From past to emerging trends,” Journal of
Software: Evolution and Process, Vol. 31, No. 8,
2019, p. e2217.

[10] W.B. Frakes and S. Isoda, “Success factors of
systematic reuse,” IEEE software, Vol. 11, No. 5,
1994, pp. 14–19.

[11] D. Rombach, “Integrated software process and
product lines,” in Software Process Workshop.
Springer, 2005, pp. 83–90.

https://www.istqb.org/downloads/glossary.html
https://www.istqb.org/downloads/glossary.html


Systematic Reuse Process for Automated Acceptance Tests . . . 159

[12] M. Ramachandran, “Software re-use assessment
for quality,” WIT Transactions on Information
and Communication Technologies, Vol. 9, 1970.

[13] E.S. de Almeida, A. Alvaro, D. Lucrédio,
V.C. Garcia, and S.R. de Lemos Meira, “Rise
project: Towards a robust framework for software
reuse,” in Proceedings of the International Con-
ference on Information Reuse and Integration.
IEEE, 2004, pp. 48–53.

[14] J.S. Poulin, Measuring software reuse: principles,
practices, and economic models. Addison-Wesley
Reading, MA, 1997.

[15] M. Irshad, R. Torkar, K. Petersen, and W. Afzal,
“Capturing cost avoidance through reuse: system-
atic literature review and industrial evaluation,”
in Proceedings of the 20th International Confer-
ence on Evaluation and Assessment in Software
Engineering. ACM, 2016, p. 35.

[16] A. Davies, T. Brady, and M. Hobday, “Charting
a path toward integrated solutions,” MIT Sloan
management review, Vol. 47, No. 3, 2006, p. 39.

[17] W.E. Wong, “An integrated solution for creat-
ing dependable software,” in Proceedings 24th
Annual International Computer Software and
Applications Conference. COMPSAC2000. IEEE,
2000, pp. 269–270.

[18] R.J. Mayer, J.W. Crump, R. Fernandes, A. Keen,
and M.K. Painter, “Information integration for
concurrent engineering (IICE) compendium of
methods report,” Knowledge Based Systems Inc.,
Tech. Rep., 1995.

[19] M. Rahman and J. Gao, “A reusable automated
acceptance testing architecture for microservices
in behavior-driven development,” in Symposium
on Service-Oriented System Engineering (SOSE).
IEEE, 2015, pp. 321–325.

[20] G. Meszaros, “Agile regression testing using
record and playback,” in Companion of the
18th Annual ACM SIGPLAN Conference on Ob-
ject-Oriented Programming, Systems, Languages,
and Applications. ACM, 2003, pp. 353–360.

[21] A.K. Onoma, W.T. Tsai, M. Poonawala, and
H. Suganuma, “Regression testing in an in-
dustrial environment,” Communications of the
ACM, Vol. 41, No. 5, 1998, pp. 81–86.

[22] P. Hsia, D. Kung, and C. Sell, “Software re-
quirements and acceptance testing,” Annals
of Software Engineering, Vol. 3, No. 1, 1997,
pp. 291–317.

[23] G.K. Hanssen and B. Haugset, “Automated ac-
ceptance testing using fit,” in 42nd Hawaii Inter-
national Conference on System Sciences. IEEE,
2009, pp. 1–8.

[24] E. Pyshkin, M. Mozgovoy, and M. Glukhikh, “On
requirements for acceptance testing automation
tools in behavior driven software development,”
in Proceedings of the 8th Software Engineering
Conference in Russia (CEE-SECR), 2012.

[25] G. Liebel, E. Alégroth, and R. Feldt, “State-of-
-practice in GUI-based system and acceptance
testing: An industrial multiple-case study,” in
39th EUROMICRO Conference on Software En-
gineering and Advanced Applications (SEAA).
IEEE, 2013, pp. 17–24.

[26] H. Munir and P. Runeson, “Software testing
in open innovation: An exploratory case study
of the acceptance test harness for Jenkins,” in
Proceedings of the International Conference on
Software and System Process, 2015, pp. 187–191.

[27] G. Melnik and F. Maurer, “The practice of spec-
ifying requirements using executable acceptance
tests in computer science courses,” in Companion
to the 20th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Lan-
guages, and Applications, 2005, pp. 365–370.

[28] M. Hayek, P. Farhat, Y. Yamout, C. Ghorra,
and R.A. Haraty, “Web 2.0 testing tools: A com-
pendium,” in International Conference on In-
novation and Intelligence for Informatics, Com-
puting, and Technologies (3ICT). IEEE, 2019,
pp. 1–6.

[29] P. Gandhi, N.C. Haugen, M. Hill, and R. Watt,
“Creating a living specification using FIT doc-
uments,” in Agile Development Conference
(ADC’05). IEEE, 2005, pp. 253–258.

[30] D. North, “Introducing behaviour driven devel-
opment,” Better Software Magazine, 2006.

[31] E.C. dos Santos and P. Vilain, “Automated
acceptance tests as software requirements: An
experiment to compare the applicability of
fit tables and gherkin language,” in Interna-
tional Conference on Agile Software Develop-
ment. Springer, 2018, pp. 104–119.

[32] C. Solis and X. Wang, “A study of the charac-
teristics of behaviour driven development,” in
37th EUROMICRO Conference on Software En-
gineering and Advanced Applications (SEAA).
IEEE, 2011, pp. 383–387.

[33] R. Hametner, D. Winkler, and A. Zoitl, “Ag-
ile testing concepts based on keyword-driven
testing for industrial automation systems,”
in IECON 2012-38th Annual Conference on
IEEE Industrial Electronics Society. IEEE, 2012,
pp. 3727–3732.

[34] E. Bache and G. Bache, “Specification by ex-
ample with gui tests-how could that work?” in



160 Mohsin Irshad, Kai Petersen

International Conference on Agile Software De-
velopment. Springer, 2014, pp. 320–326.

[35] A.C. Paiva, D. Maciel, and A.R. da Silva, “From
requirements to automated acceptance tests with
the RSL language,” in International Conference
on Evaluation of Novel Approaches to Software
Engineering. Springer, 2019, pp. 39–57.

[36] M. Soeken, R. Wille, and R. Drechsler, “Assisted
behavior driven development using natural lan-
guage processing,” in International Conference
on Modelling Techniques and Tools for Com-
puter Performance Evaluation. Springer, 2012,
pp. 269–287.

[37] C. Deng, P. Wilson, and F. Maurer, “Fitclipse:
A fit-based eclipse plug-in for executable accep-
tance test driven development,” in International
Conference on Extreme Programming and Ag-
ile Processes in Software Engineering. Springer,
2007, pp. 93–100.

[38] C.Y. Hsieh, C.H. Tsai, and Y.C. Cheng, “Test-
-Duo: A framework for generating and executing
automated acceptance tests from use cases,” in
8th International Workshop on Automation of
Software Test (AST). IEEE, 2013, pp. 89–92.

[39] C.W. Krueger, “Software reuse,” ACM Com-
puting Surveys (CSUR), Vol. 24, No. 2, 1992,
pp. 131–183.

[40] D.M. Rafi, K.R.K. Moses, K. Petersen, and
M.V. Mäntylä, “Benefits and limitations of auto-
mated software testing: Systematic literature re-
view and practitioner survey,” in Proceedings of
the 7th International Workshop on Automation
of Software Test. IEEE Press, 2012, pp. 36–42.

[41] W. Frakes and C. Terry, “Software reuse: metrics
and models,” ACM Computing Surveys (CSUR),
Vol. 28, No. 2, 1996, pp. 415–435.

[42] W. Tracz, “Where does reuse start?” ACM
SIGSOFT Software Engineering Notes, Vol. 15,
No. 2, 1990, pp. 42–46.

[43] T. Ravichandran and M.A. Rothenberger, “Soft-
ware reuse strategies and component markets,”
Communications of the ACM, Vol. 46, No. 8,
2003, pp. 109–114.

[44] P. Mohagheghi and R. Conradi, “Quality, pro-
ductivity and economic benefits of software
reuse: A review of industrial studies,” Empir-
ical Software Engineering, Vol. 12, No. 5, 2007,
pp. 471–516.

[45] V. Karakostas, “Requirements for CASE tools
in early software reuse,” ACM SIGSOFT Soft-
ware Engineering Notes, Vol. 14, No. 2, 1989,
pp. 39–41.

[46] J.L. Cybulski, “Introduction to software reuse,”
Department of Information Systems, The Univer-

sity of Melbourne, Parkville, Australia, Vol. 11,
1996, p. 12.

[47] W. Lam, J.A. McDermid, and A. Vickers, “Ten
steps towards systematic requirements reuse,”
Requirements Engineering, Vol. 2, No. 2, 1997,
pp. 102–113.

[48] R.G. Fichman and C.F. Kemerer, “Incentive
compatibility and systematic software reuse,”
Journal of Systems and Software, Vol. 57, No. 1,
2001, pp. 45–60.

[49] A. Genaid et al., “Connecting user stories and
code for test development,” in Third Interna-
tional Workshop on Recommendation Systems
for Software Engineering (RSSE). IEEE, 2012,
pp. 33–37.

[50] L. Crispin and T. House, “Testing in the fast
lane: Automating acceptance testing in an ex-
treme programming environment,” in XP Uni-
verse Conference. Citeseer, 2001.

[51] L.P. Binamungu, S.M. Embury, and N. Kon-
stantinou, “Maintaining behaviour driven de-
velopment specifications: Challenges and oppor-
tunities,” in 25th International Conference on
Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2018, pp. 175–184.

[52] M. Irshad, J. Börster, and K. Petersen, “Support-
ing refactoring of BDD specifications – An em-
pirical study,” Information and Software Tech-
nology, 2022.

[53] R. Angmo and M. Sharma, “Performance eval-
uation of web based automation testing tools,”
in 5th International Conference – Confluence
The Next Generation Information Technology
Summit (Confluence). IEEE, 2014, pp. 731–735.

[54] S. Park and F. Maurer, “A literature review
on story test driven development,” in Interna-
tional Conference on Agile Software Develop-
ment. Springer, 2010, pp. 208–213.

[55] Q. Xie, “Developing cost-effective model-based
techniques for GUI testing,” in Proceedings of
the 28th International Conference on Software
Engineering. ACM, 2006, pp. 997–1000.

[56] R. Borg and M. Kropp, “Automated acceptance
test refactoring,” in Proceedings of the 4th Work-
shop on Refactoring Tools. ACM, 2011, pp. 15–21.

[57] C. Schwarz, S.K. Skytteren, and T.M. Ovste-
tun, “AutAT: An eclipse plugin for automatic
acceptance testing of web applications,” in Com-
panion to the 20th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Sys-
tems, Languages, and Applications. ACM, 2005,
pp. 182–183.

[58] B. Fitzgerald, N.L. Russo, and T. O’Kane, “Soft-
ware development method tailoring at motorola,”



Systematic Reuse Process for Automated Acceptance Tests . . . 161

Communications of the ACM, Vol. 46, No. 4,
2003, pp. 64–70.

[59] P. Raulamo-Jurvanen, M. Mäntylä, and
V. Garousi, “Choosing the right test automation
tool: a grey literature review of practitioner
sources,” in Proceedings of the 21st International
Conference on Evaluation and Assessment in
Software Engineering, 2017, pp. 21–30.

[60] A. Egbreghts, “A literature review of behavior
driven development using grounded theory,” in
27th Twente Student Conference on IT., 2017.

[61] V. Venkatesh, J.Y. Thong, and X. Xu, “Con-
sumer acceptance and use of information tech-
nology: Extending the Unified Theory of Accep-
tance and Use of Technology,” MIS quarterly,
2012, pp. 157–178.

[62] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin,
“A model for technology transfer in practice,”
IEEE software, Vol. 23, No. 6, 2006, pp. 88–95.

[63] M. Finsterwalder, “Automating acceptance tests
for GUI applications in an extreme programming
environment,” in Proceedings of the 2nd Inter-
national Conference on eXtreme Programming
and Flexible Processes in Software Engineering.
Addison-Wesley Boston MA, 2001, pp. 114–117.

[64] S. Park and F. Maurer, “An extended review
on story test driven development,” University of
Calgary, Tech. Rep., 2010.

[65] H. Mili, F. Mili, and A. Mili, “Reusing software:
Issues and research directions,” IEEE Transac-
tions on Software Engineering, Vol. 21, No. 6,
1995, pp. 528–562.

[66] R. Feldt, S. Poulding, D. Clark, and S. Yoo,
“Test set diameter: Quantifying the diversity of
sets of test cases,” in International Conference
on Software Testing, Verification and Validation
(ICST). IEEE, 2016, pp. 223–233.

[67] W.H. Gomaa, A.A. Fahmy et al., “A survey of
text similarity approaches,” International Jour-
nal of Computer Applications, Vol. 68, No. 13,
2013, pp. 13–18.

[68] M. Irshad, K. Petersen, and S. Poulding, “A sys-
tematic literature review of software require-
ments reuse approaches,” Information and Soft-
ware Technology, Vol. 93, 2018, pp. 223–245.

[69] M. Irshad, Source Code for Scripts, 2021.
[Online]. https://zenodo.org/record/4765079

[70] L. Amar and J. Coffey, “Measuring the benefits
of software reuse-examining three different ap-
proaches to software reuse,” Dr Dobbs Journal,
Vol. 30, No. 6, 2005, pp. 73–76.

[71] K. Petersen and C. Wohlin, “Context in in-
dustrial software engineering research,” in 3rd
International Symposium on Empirical Soft-

ware Engineering and Measurement. IEEE, 2009,
pp. 401–404.

[72] C. Wohlin, M. Höst, and K. Henningsson, “Em-
pirical research methods in software engineering,”
in Empirical methods and studies in software
engineering. Springer, 2003, pp. 7–23.

[73] M. Irshad, “Questionnaire: The reusability of
automated acceptance tests,” 2021. [Online].
https://zenodo.org/record/4765102

[74] J.S. Molléri, K. Petersen, and E. Mendes, “An
empirically evaluated checklist for surveys in
software engineering,” Information and Software
Technology, Vol. 119, 2020, p. 106240.

[75] B.G. Glaser, A.L. Strauss, and E. Strutzel, “The
discovery of grounded theory; strategies for quali-
tative research,” Nursing research, Vol. 17, No. 4,
1968, p. 364.

[76] J. Stoustrup, “Successful industry/academia co-
operation: From simple via complex to lucid
solutions,” European Journal of Control, Vol. 19,
No. 5, 2013, pp. 358–368.

[77] T.C. Lethbridge, S.E. Sim, and J. Singer, “Study-
ing software engineers: Data collection tech-
niques for software field studies,” Empirical
software engineering, Vol. 10, No. 3, 2005,
pp. 311–341.

[78] M. Irshad, “Search and assessment data,” 01
2021. [Online]. http://shorturl.at/juIZ6

[79] P.M. Vitányi, F.J. Balbach, R.L. Cilibrasi,
and M. Li, “Normalized information distance,”
in Information theory and statistical learning.
Springer, 2009, pp. 45–82.

[80] B.Y. Pratama and R. Sarno, “Personality classi-
fication based on Twitter text using Naive Bayes,
KNN and SVM,” in Proceedings of the Interna-
tional Conference on Data and Software Engi-
neering, 2015, pp. 170–174.

[81] J.C. Corrales, Behavioral matchmaking for ser-
vice retrieval, Ph.D. dissertation, Université de
Versailles-Saint Quentin en Yvelines, 2008.

[82] S.S. Choi, S.H. Cha, and C.C. Tappert, “A sur-
vey of binary similarity and distance measures,”
Journal of Systemics, Cybernetics and Informat-
ics, Vol. 8, No. 1, 2010, pp. 43–48.

[83] “Parameterize BDD tests,” 2021. [Online].
https://support.smartbear.com/testcomplete
/docs/bdd/parameterize.html

[84] G. Gui and P.D. Scott, “Coupling and cohesion
measures for evaluation of component reusabil-
ity,” in Proceedings of the 2006 International
Workshop on Mining Software Repositories, 2006,
pp. 18–21.

[85] S. Park and F. Maurer, “Communicating domain
knowledge in executable acceptance test driven

https://zenodo.org/record/4765079
https://zenodo.org/record/4765102
http://shorturl.at/juIZ6
https://support.smartbear.com/testcomplete/docs/bdd/parameterize.html
https://support.smartbear.com/testcomplete/docs/bdd/parameterize.html


162 Mohsin Irshad, Kai Petersen

development,” in International Conference on
Agile Processes and Extreme Programming in
Software Engineering. Springer, 2009, pp. 23–32.

[86] A.A. Kiani, Y. Hafeez, M. Imran, and S. Ali,
“A dynamic variability management approach
working with agile product line engineering prac-
tices for reusing features,” The Journal of Su-
percomputing, 2021, pp. 1–42.

[87] I.F. Da Silva, “An agile approach for soft-
ware product lines scoping,” in Proceedings of
the 16th International Software Product Line
Conference-Volume 2, 2012, pp. 225–228.

[88] P. Runeson, M. Host, A. Rainer, and B. Reg-
nell, Case study research in software engineering:
Guidelines and examples. John Wiley and Sons,
2012.


	Introduction
	Background and related work
	Automated acceptance tests (AATs)
	Systematic software reuse
	Related work: reuse in automated acceptance tests

	Research approach
	Research questions
	Study execution
	Construction of process – using method engineering
	Evaluation and refining of process


	Results
	Constructed solution: A systematic reuse process for AATs
	A1: Select keywords
	A2: Select AAT format
	A3: Select artifact adaptation template
	A4: Search for reusable AATs
	A5: Assess relevance of AATs
	A6: Select reuse cost method and metrics
	A7: Calculate cost of reuse
	A8: Develop new AAT by reuse
	A9: Develop a new AAT
	A10: Add new AAT to repository

	Evaluation and refining of systematic reuse process 
	Qualitative feedback of software practitioners
	Demonstrating industrial application of the proposed process

	Final version of systematic reuse process

	Discussion
	Analysis of industrial evaluation
	Guidelines for AATs reuse
	Compare reuse opportunities
	Flexible techniques
	Support for automation
	Verdict on the diversity of AAT-suite
	Tool support for reuse of AATs:
	Increased coupling
	Comparison with existing literature
	Scalability of Approach

	Threats to validity
	Conclusion
	References


