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Abstract

Background: Early identification of software vulnerabilities is an
intrinsic step in achieving software security. In the era of artificial
intelligence, software vulnerability prediction models (VPMs) are
created using machine learning and deep learning approaches. The
effectiveness of these models aids in increasing the quality of the
software. The handling of imbalanced datasets and dimensionality
reduction are important aspects that affect the performance of VPMs.
Aim: The current study applies novel metaheuristic approaches for
feature subset selection.
Method: This paper performs a comparative analysis of forty-eight
combinations of eight machine learning techniques and six meta-
heuristic feature selection methods on four public datasets.
Results: The experimental results reveal that VPMs productivity
is upgraded after the application of the feature selection methods
for both metrics-based and text-mining-based datasets. Additionally,
the study has applied Wilcoxon signed-rank test to the results of
metrics-based and text-features-based VPMs to evaluate which out-
performed the other. Furthermore, it discovers the best-performing
feature selection algorithm based on AUC for each dataset. Finally,
this paper has performed better than the benchmark studies in terms
of F1-score.
Conclusion: The results conclude that GWO has performed
satisfactorily for all the datasets.

1. Introduction

The prediction of software vulnerabilities composes an essential step to provide software
quality and security. Vulnerability, according to ISO/IEC 27000:2018, is a flaw in a control
or asset that one or more threats could exploit. A few instances that illustrate the harm
caused by software vulnerabilities are the open-source programs Heartbleed, ShellShock,
and Apache Commons; well-known web browser plugins like Adobe Flash Player and Oracle
Java. Millions of internet users have had their security jeopardized by browser plugins, and
thousands of businesses and clients worldwide have been put in danger by open-source
software. Furthermore, 1.7 million USD in financial damages have also been reported [1]
as a result of software malfunction. Organizations had to pay 1.4 million USD in 2017
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and 1.3 million USD in 2018 to cope with cyberattacks as a result of cybercrimes [2].
The National Institute of Standards and Technology (NIST) documented an exponential
growth in software vulnerabilities since 2016 [3]. Software developers’ negligence regarding
the security facets during the initial phases of development causes security issues in later
stages. Vulnerabilities provide possibilities for attackers to perform criminal activities
and their sales at a very high price [4]. They are known to be the subgroup of faults,
as are less in number than faults [5]. A fault in the software specification, development,
or configuration is considered a vulnerability if the security policy is violated during its
execution [6]. Detection and fixing of vulnerabilities before the deployment stage aids in
reducing testing costs and maintaining their market reputation.

The vulnerability prediction models (VPMs) are devised to predict vulnerable and
non-vulnerable components and therefore, the quality of these models is essential for the
security of the software systems. Researchers and engineers are striving to build accurate
VPMs, thus ensuring the quality and security of the systems. Research studies have
previously used software assurance techniques such as static analysis, dynamic analysis,
fuzz-testing, code inspections, etc. to identify security vulnerabilities [7]. Due to the huge
time consumption and high false positive rate problems in conventional techniques, machine
learning and deep learning-based VPMs gained interest. Commonly, VPMs are executed
in the testing phase of the overall Software Development Life-Cycle (SDLC) in order to
prioritize the inspection efforts (e.g., static analysis testing, dynamic testing, etc.). The
model will identify which files are likely to have vulnerabilities if their features are collected
at the file level, while vulnerable methods may be detected if the dataset is generated at
the method level. Some studies on vulnerability prediction used text mining data, while
others used software measures similar to those used in fault prediction models [8].

Hence, VPMs can be modeled as metrics-based, text-mining-based, or a combination
of both datasets. In metrics-based VPMs, the components are determined using software
metrics, e.g., cohesion, coupling, and complexity metrics that predict the vulnerability [9].
In text-mining-based VPMs, source code is converted into tokens and these tokens or text
features predict the vulnerable components [10]. Vulnerability datasets are imbalanced
which leads to biases in the prediction models as the majority class is favored over the
minority class [11]. Most studies have used data balancing methods to handle class imbalance
problems [8,12] and hyperparameter optimization (HPO) methods for choosing the optimal
hyperparameters of classifiers [13–17].

Machine learning techniques also face the problem of the high dimensionality of the
dataset. The performance of classifiers degrades when the classification parameters are
increased. Therefore, to improve the efficacy of the model, the feature subset size should
be decreased. Dimensionality reduction is an effective method to remove redundant or
irrelevant features and thereby upgrade the performance, lowering computational complexity,
constructing generalized models, and reducing storage [18,19]. Two major approaches have
been proposed for dimensionality reduction: feature synthesis and feature selection [20].

In the case of feature synthesis, dimensional space is transformed from high to low
whereas, in feature selection, a subset of given features is chosen by removing redundant
or features with no predictive information. Feature selection methods are categorized as
a filter, wrapper, hybrid, and embedded. Further two methods exist to describe how the
features can be evaluated such as feature ranking and subset selection. In the feature
ranking method, each feature is given a score based on some criteria, and the features with
insufficient scores are removed [21]. In the subset selection method, an optimal subset is
found out of all possible subsets. If there are n initial features, the search space for the best 2
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subset comprises all feature subsets, which is equal to 2n different states. In other words,
the value of each property is evaluated independently in the property ranking algorithms,
and the relationship between characteristics is not taken into account.

Feature selection algorithms based on metaheuristics are emerging in the field of
vulnerability prediction [22–24]. These methods presume that the features are independent
of one another and that any potential relationship between the features is ignored. Although
this basic assumption decreases the computational complexity of the feature selection
approach, it may reduce its performance in many circumstances. Choosing a feature subset
is an NP-Hard task. The best subset can be identified simply by assessing all feasible subsets
using an exhaustive search approach. Although this method guarantees an optimal feature
subset, even for medium-sized datasets, finding the optimal answer is time-consuming and
even impractical. Because evaluating all feasible subsets is prohibitively expensive, a feature
subset must be searched that is acceptable in terms of both computing complexity and
suitability. Metaheuristic algorithms are one technique to solve complex optimization and
NP-Hard issues. Metaheuristic approaches are categorized as evolutionary algorithms and
swarm intelligence (SI). SI algorithms used approximate and non-deterministic strategies
to explore and exploit the search space to obtain near-optimal solutions. Swarm-based
approaches are the most prevalent type of nature-inspired metaheuristic group [22].

1.1. Motivation

Efficient VPMs are important for ensuring the security and quality of the software [8]. Their
performance is affected by the imbalanced datasets, the selection of optimal hyperparameters
for machine learning algorithms, and the dimensionality of the datasets. Recent studies
have worked on improving it by incorporating data balancing methods, HPO, reducing
the dimensionality through feature synthesis, filter-based feature ranking, and also using
metaheuristic algorithms for feature subset selection. In [23], the researchers have applied
the dual HPO, where the problem of imbalanced datasets is handled and the selection
of appropriate hyperparameters is done, to optimize VPMs. Research studies related to
feature selection or dimensionality reduction have been explored for the past few years but
metaheuristic feature selection methods have not been explored much.

To the best of our knowledge, we have come across two papers [24] and [25] that use
such techniques. So, exploring such an area could be beneficial for the researchers to
know the impact of the combination of metaheuristic feature selection and machine
learning techniques on VPMs. The research paper [24] uses the grey-wolf optimization
(GWO), particle swarm optimization (PSO), and genetic algorithm (GA) metaheuristic
feature subset selection methods, random forest (RF) machine learner, and SMOTE
resampling technique on metrics PHP dataset. In [25], Diploid Genetic algorithms with
deep learning networks (Long Short Term Memory and Gradient Recurrent Unit) on
software vulnerability prediction are applied. The deep SYMbiotic-based genetic algorithm
model (DNN-SYMbiotic GAs) is used in this suggested method to solve challenges involving
the prediction of software vulnerabilities. The current study is motivated to extend the
paper [24] where it performs a comparative analysis of the various combinations of three
other metaheuristic algorithms and seven other machine learning techniques. Moreover, it
has not only worked on metrics datasets but also on text-features-based datasets. 3
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1.2. Contributions

The contributions are as follows:
– This paper performs the experiments using two datasets; one is in PHP language

and other in JavaScript. The PHP dataset [10] consists of three projects (Drupal,
PHPMyAdmin and Moodle) and is released in two forms, i.e., software metrics and
text features. The JavaScript dataset [12,26] contains software components (methods)
from several projects and contains also both metrics and text features. Since all the
datasets are imbalanced therefore SMOTE resampling technique is applied to balance
the datasets.

– The current study performs a comparative analysis of six metaheuristic algorithms such
as PSO, GA, GWO, salp swarm algorithm (SSA), harris hawk optimization (HHO), and
whale optimization algorithm (WOA) combined with eight machine learning algorithms
namely random forest (RF), naïve bayes (NB), adaboost (AB), support vector machine
(SVM), k-nearest neighbor (KNN), decision tree (DT), logistic regression (LR), and
multilayer perceptron (MLP).
The paper has framed the following research questions:

RQ 1. Has all the metaheuristic feature selection and machine learning combinations
improved the efficacy of VPMs?
Previous studies have experimented with improving the efficiency of VPMs using optimal
hyperparameters settings [23], applying data balancing techniques and dimensionality
reduction methods [20]. The research study [24] used feature selection algorithms namely
PSO, GA, and GWO on only metrics-based PHP datasets with random forest machine
learner and SMOTE technique. Second [25] has proposed a new VPM based on the
SYMbiotic genetic algorithm and deep learning techniques on metrics-based PHP datasets.
Through this question, the current study will explain whether all metaheuristic feature
selection and machine learning combinations have improved the performance of VPMs.
RQ 2. Which one statistically performed better metrics-based or text-mining-based VPMs
in the context of feature selection?
Walden et al. [10] have mentioned in their paper that text-mining-based VPMs have
performed better than metrics-based VPMs for within-project prediction. In the case of
cross-project prediction, metrics-based VPMs performed slightly better. The motive of
this research question is to observe that on applying a metaheuristic feature selection
method which VPM (metrics and text-mining) has significantly performed better. For the
significant comparison, the paper applied Wilcoxon signed rank test.
RQ3. Which metaheuristic feature selection algorithm has performed the best?
Rhmann [24] has shown that PSO-RF has performed better than other benchmark stud-
ies. It has concluded that GA, PSO, and GWO-based RF outperformed the existing
machine-learning algorithms. The current study applied all the possible combinations of
eight machine learners with the six metaheuristic feature selection methods. The research
question aims to find out which feature selection method has performed the best to help
the researchers in improving the efficiency of VPMs.

1.3. Paper organization

The rest of the paper is structured as: Section 2 represents the research works related
to the current study, Section 3 explains the background knowledge, Section 4 provides 4
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the research methodology, Section 5 provides the results, Section 6 discusses the results,
Section 7 defines the threats to validity, and Section 8 concludes the paper. The appendix
includes the detailed results tables and metrics description of the datasets.

2. Related work

To build effective VPMs research studies have emphasized the early prediction of vulnerable
components using machine learning algorithms. Therefore, handling the factors affecting
the performance of VPMs such as optimal hyperparameters, imbalanced datasets, feature
selection, etc. is essential. In this section, we have discussed the research works that include
VPMs and feature selection techniques.

Ghaffarian and Shahriari [7] have reviewed machine learning and data-mining techniques
to curb the effect of software vulnerability. It has stated various software vulnerabilities. In
addition, it has been mentioned that the vulnerability datasets are imbalanced and affect
the efficiency of machine learning algorithms. Kaya et al. [8] show the impact of feature
types, classifiers, and data-balancing techniques on VPMs. It has covered three feature
types such as metrics, text, and a combination of metrics and text features. Experiments
are performed using seven machine classifiers and four data sampling techniques on the
PHP datasets namely Drupal, Moodle, and PHPMyAdmin. Evaluation is done through the
performance metrics precision, recall, AUC, F1-score, and specificity. The conclusion states
that for smaller datasets Drupal and PHPMyAdmin, the random forest has outperformed
other classifiers, and for larger datasets, i.e., Moodle, Rusboost has outshined.

Walden et al. [10] have created vulnerability datasets based on PHP open-source
projects as most of the vulnerabilities are observed in web applications. The datasets
include two feature types such as software metrics and text features. Random forest and
under-sampling techniques are used for classification and balancing the dataset, respectively.
The performance metrics used are recall and inspection ratio. The paper has experimented
on both software metrics-based and text mining-based VPMs. In addition, it has been
found that text-mining-based models outperformed metrics-based models. Ferenc et al. [12]
predict the vulnerabilities in JavaScript programs using static code metrics. It has proposed
the JavaScript dataset by extracting the vulnerability information from public databases
such as Node Security Project, GitHub code fixing patches, and the Snyk platform. The
paper has applied a grid search algorithm for parameter tuning, resampling techniques to
balance the data, and eight machine learning algorithms including deep learning algorithms
to find the best-performing VPMs. Finally, it concludes that the k-nearest neighbor has
performed best with an F -measure of 0.76, over-sampling has improved recall but diminishes
precision, and under-sampling increases precision and decreases recall.

Stuckman et al. [20] analyzed the impact of dimensionality reduction techniques (fea-
ture selection, principal component analysis, and confirmatory factor synthesis) on the
productivity of VPMs. It has used Smote and under-sampling techniques for balancing
the data and resulted in smote showing low recall, low inspection rate, and high f-measure
therefore it is better than the under-sampling method. In addition, dimensionality re-
duction techniques performed well for cross-project prediction rather than within-project
prediction. Chen et al. [21] have empirically analyzed the effect of feature selection methods
on machine learning. It has used filter-based ranking methods due to the high cost of
computation of other methods. The paper has applied ChiSquared, F -score, GainRatio,
InfoGain, GiniIndex, FisherScore, and ReliefF filter-based ranking methods on three PHP 5
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datasets using a random forest machine classifier. The paper has shown an increase in the
performance of VPMs.

Bassi and Singh [23] examine the effect of dual HPO on metrics-based VPMs. This
study proposes an approach for optimizing hyperparameters for machine learners and data
balancing strategies using the Python framework Optuna. It compared six combinations of
five machine learners and five resampling approaches using default values and optimized
hyperparameters for experimentation. The article discovered that dual HPO outperforms
HPO on learners and HPO on data balancers. Furthermore, it investigated the impact of
data complexity measures and concluded that HPO did not increase the performance of
datasets with substantial overlap.

Rhmann [24] has proposed a new technique by combining the grey-wolf metaheuristic
technique and random forest. The paper has emphasized finding the best subset of relevant
features. It has shown that metaheuristic algorithms combined with random forest performed
better than other machine learning algorithms. Particle swarm optimization with random
forest outperforms the baseline methods. Sahin et al. [25] suggest a unique deep learning
method and SYMbiotic Genetic algorithm for software vulnerability prediction. They have
applied Diploid Genetic algorithms with deep learning networks on software vulnerability
prediction. The deep SYMbiotic-based genetic algorithm model (DNN-SYMbiotic GAs) is
employed in this suggested method to solve challenges involving the prediction of software
vulnerabilities. On many benchmark datasets from the PHPMyAdmin, Moodle, and Drupal
projects, extensive experiments are carried out. According to the results, the suggested
approach (DNN-SYMbiotic GAs) improved vulnerability prediction, which implies better
software quality prediction.

Viszkok et al. [26] have worked on the dataset produced by [12] by including the process
metrics and observed that F -measure has improved by 8.4%, precision by 3.5%, and recall
by 6.3%. Kalouptsoglou et al. [27] have used three feature types of metrics, text-tokens,
and a combination of both to model the VPMs. It has proposed a text token-based dataset
of JavaScript programs used in [12] and a new metric F2-score. The paper concludes that
text-tokens-based models perform better than metrics-based models in terms of F2-score
and the combination has not made much difference in the predictive performance.

Wang and Yao [28] tackled the class imbalance problem in defect prediction models
by using under-sampling techniques, ensemble-learning techniques, and threshold moving
techniques on naive bayes and random forest classifiers. The paper concludes that balanced
random under-sampling shows a better defect prediction rate. Adaboost has performed
best in increasing the efficacy of SDP models. The overall performance is measured using
G-mean, AUC, and balance metrics. Shin et al. [29] evaluated the VPMs using code
churn, complexity, and developer activity metrics on Linux and Firefox projects. The
model has an inspection rate of less than 30% and a recall of 70%. Shin and Williams
[30] analyze whether fault prediction models also work for vulnerability prediction by
performing experiments on Mozilla Firefox which contains 21% of files with faults and 3%
of files with vulnerabilities. It concluded that fault prediction models are equally capable
as VPMs in predicting vulnerabilities. Furthermore, it suggested the models attain better
recall and low false positives.

Lagerstrom et al. [31] experimented on the Google Chromium project to inspect the
relationship that software vulnerabilities have with two types of metrics namely architecture
coupling metrics and component-level metrics. The results reveal that vulnerable files are
in correlation with both types of metrics. Zhang et al. [32] proposed a VULPREDICTOR
that works on the combination of software metrics and text features. The paper performed 6
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experiments on three PHP datasets Drupal, Moodle, and PHPMyAdmin. It has achieved
the F1-score of 0.683 and EffectivenessRatio@20% to 75%. Abunadi et al. [33] explain how
cross-project prediction techniques are useful in software vulnerability prediction. This
paper results in the high recall, precision, and F -measure of J48 and random forest but
has not applied data balancing techniques.

Khalid et al. [34] proposed NMPREDICTOR which consists of two tiers. The first tier
contains 6 classifiers that are built on the training set of labeled metrics and text features
files. In the second tier, a meta-classifier combining all 6 classifiers random forest, J48, and
naïve bayes (both metrics and text) is built. This paper has experimented on PHP datasets
and resulted in the highest F1-score of 0.848. Catal et al. [35] implemented a web service
for software vulnerability prediction. The paper uses the Azure machine learning platform
to build the web service. Several machine learning algorithms are applied to the PHP
datasets. For the performance evaluation, the Area under the ROC (AUC) metric is used.
This paper concludes that the multilayer perceptron model has produced the best results.

Li and Shao [36] surveyed the prediction of software vulnerabilities using feature
selection-based machine learning. This paper has classified the existing research works into
4 different feature types such as metrics, text mining features, graph, and taint analysis. It
has discussed the advantages and challenges of machine learning in software vulnerability
prediction. Solutions to the three main challenges namely selection of relevant features, class
imbalance, and label data high cost are illustrated and further work has been discussed
for the future. Rostami et al. [22] compares and categorizes various feature selection
methods. The paper focuses on increasing the accuracy of prediction models through
the use of metaheuristic algorithms. It has analyzed the performance of eleven swarm
intelligence-based feature selection methods on six medical datasets from the UCI repository
and three machine learning algorithms namely support vector machine, naïve bayes, and
adaboost. In addition, it has discussed the pros and cons of each metaheuristic algorithm.

Apart from the above research studies, there are deep learning methods that are less
sensitive to feature selection methods. Sonekalb et al. [37] provide an SLR which aims to do
a detailed analysis and comparison of 32 primary works on DL-based vulnerability analysis
of program code. It discovered a wide range of proposed analysis methods, code embeddings,
and network topologies. They go over these strategies and alternatives in great depth and
identify the current level of research in this field and suggest future directions by collating
commonalities and contrasts in the techniques. To facilitate a stronger benchmarking of
approaches, it also presents an overview of publicly available datasets. This SLR serves as an
overview and jumping-off point for researchers interested in performing deep vulnerability
analysis on program code.

Li et al. [38] have introduced VulDeePecker, the first deep learning-based vulnerability
detection system, to relieve human experts from the tiresome and subjective labor of
manually defining features and lowering the false negatives that are experienced by previous
vulnerability detection systems. To assess the performance of VulDeePecker and other
deep learning-based vulnerability detection systems that will be created in the future, they
have gathered and made publicly available a relevant dataset. According to experimental
findings, VulDeePecker can yield significantly fewer false negatives (with acceptable false
positives) than other methods. They also applied VulDeePecker to 3 software products
(Xen, Seamonkey, and Libav) and find 4 vulnerabilities that were “silently” patched by
the vendors when they released later versions of these products but are not listed in
the National Vulnerability Database; in contrast, these vulnerabilities are almost entirely
missed by the other vulnerability detection systems they tested. 7
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Zhou et al. [39] propose Devign, a general graph neural network-based model for
graph-level classification through learning on a rich set of code semantic representations,
which is inspired by the work on manually-defined patterns of vulnerabilities from various
code representation graphs and the most recent development in graph neural networks.
To effectively extract meaningful features from the learned rich node representations for
graph-level classification, it contains a unique Conv module. The model is trained on
manually labeled datasets constructed from four diverse, large-scale open-source C projects
that use real source code with high levels of complexity and variation rather than the
synthesis code employed in earlier efforts.

Li et al. [40] introduced a vulnerability detector, which can simultaneously achieve
a high detection capability and a high locating precision, powered by deep learning called
VulDeeLocator. The challenges while designing VulDeeLocator include how to support
accurate control flows and variable define use relations, how to achieve high locating
precision, and how to support semantic relations between the definitions of types as well
as macros and their uses across files. They overcome these challenges by utilizing two novel
concepts: (i) using intermediate code to accept more semantic information, and (ii) using
the idea of granularity refinement to identify vulnerable areas. VulDeeLocator finds 18
verified vulnerabilities (also known as true-positives) when applied to 200 files randomly
chosen from three different real-world software applications. Sixteen of these correspond
to known vulnerabilities; the other two are not documented in the National Vulnerability
Database (NVD) but have been “silently” corrected by Libav’s manufacturer when fresh
versions are released.

Kalouptsoglou et al. [41] explores if combining deep learning and software metrics
might improve cross-project vulnerability prediction. Several machine learning models,
including deep learning, are assessed and contrasted using a dataset of prominent real-world
PHP software applications. Feature selection is evaluated for its impact on cross-project
prediction. There investigation suggests that using software metrics and deep learning can
improve vulnerability prediction models’ performance across projects. The study found
that cross-project prediction models perform better when projects share similar software
metrics.

2.1. Comparisons with existing works

Table 1 compares our work with the existing works where PHP and JavaScript datasets are
used. It describes the feature selection techniques, performance metrics applied, machine
learning techniques used, whether data balancing is performed or not, features for modeling
VPMs, i.e., metrics, text features, or combination of both. The current work is highly
inspired by Rhmann et al. [24] and tried to work on different combinations of machine
learning methods and metaheuristic feature selection methods. It is observed that the
proposed work has tried to incorporate maximum performance metrics which suit the
imbalanced datasets.

Previous works have included the PHP dataset and JavaScript datasets separately
but this paper includes both to validate the work. In addition to this, it includes four
performance metrics, eight machine learning algorithms, six feature selection methods,
SMOTE resampling technique, two feature types, and finally two different language datasets
with distinct granularity levels.

8
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Table 1: Comparisons with existing works

Research papers Feature selection
techniques

Performance metrics Features Machine learning techniques
used

Resampling
techniques

Datasets used

Kaya et al. [8] NO AUC, Precision,
Recall, F1-score,
Specificity

Software Metrics,
Text Features,
Combination of
software metrics and
text features

RF, AB, Linear Discriminant,
Linear SVM, Weighted KNN,
Subspace Discriminant,
Rusboost

Smote, Adasyn,
ClusterSmote,
BLSmote

Drupal, Moodle,
PHPMyAdmin

Walden et al. [10] NO Recall, Precision Software Metrics,
Text Features

RF Under-sampling
technique used
(Weka
SpreadSubsample)

Drupal, Moodle,
PHPMyAdmin

Ferenc et al. [12] NO F -Measure Software Metrics Simple Deep Neural Network
(DNNs), Complex Deep
Neural Network (DNNc),
KNN, SVM, RF, LR, Linear
Regression, Gaussian
NB(GNB), DT

Over-sampling with
ratios (25%, 50%,
75%, 100%) and
Under-sampling
with ratios (25%,
50%, 75%, 100%)

JavaScript
Dataset

Kudjo et al. [13] NO Precision, Recall,
Accuracy

Software Metrics RF, KNN, SVM, DT No Resampling Drupal, Moodle,
PHPMyAdmin

Stuckman et al.
[20]

Feature subset selection,
Entropy Reduction,
Principal Component
Analysis (PCA), Sparse
PCA, Confirmatory
Factor Analysis (CFA)

Recall, F1-score,
Inspection Ratio

Software Metrics,
Text Features

RF Under-sampling,
Smote

Drupal, Moodle,
PHPMyAdmin

Rhmann et al.
[24]

PSO, GWO, GA Precision, Recall,
F -Measure

Software Metrics RF SMOTE Drupal, Moodle,
PHPMyAdmin

Sahin et al. [25] Symbiotic Genetic
Algorithm (I and II)

Accuracy, F1-score,
Precision

Software Metrics Artificial Neural Networks,
Long-Short-Term-Memory
(LSTM), Gated Recurrent
Unit (GRU)

No Resampling Drupal, Moodle,
PHPMyAdmin

9
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Table 1 continued

Research papers Feature selection
techniques

Performance metrics Features Machine learning techniques
used

Resampling
techniques

Datasets used

Viszkok et al.
[26]

NO Accuracy, Precision,
Recall, F -Measure

Software Metrics Simple Deep Neural Network
(DNNs), Complex Deep
Neural Network (DNNc),
KNN, SVM, RF, LR, Linear
Regression, Gaussian
NB(GNB), DT

Over-sampling with
ratios (25%, 50%,
75%, 100%) and
Under-sampling
with ratios (25%,
50%, 75%, 100%)

JavaScript
Dataset

Kalouptsoglou et
al. [27]

Point-BiSerial
Correlation (PBSC)

Accuracy, Precision,
Recall, F1-score,
F2-score

Software Metrics,
Text Features,
Combination of
software metrics and
text features

DT, RF, NB, SVM, KNN,
MLP

Random
resampling

JavaScript
Dataset

Zhang et al. [32] NO Precision, Recall,
F1-score

Combination of
software metrics and
text features

RF, NB, DT No Resampling Drupal, Moodle,
PHPMyAdmin

Abunadi et al.
[33]

NO Precision, Recall,
F -Measure

Software Metrics NB, LR, SVM, RF, DT No Resampling Drupal, Moodle,
PHPMyAdmin

Khalid et al. [34] NO Accuracy, Precision,
Recall, F1-score

Combination of
software metrics and
text features

RF, NB, DT SMOTE Drupal, Moodle,
PHPMyAdmin

Catal et al. [35] NO AUC Software Metrics Averaged Perceptron, Bayes
point machine, Boosted
Decision Tree, Decision
Forest, Decision jungle, Deep
SVM, SVM, Logistic
Regression, Multilayer
Perceptron

No Resampling Drupal, Moodle,
PHPMyAdmin

Kalouptsoglou et
al. [41]

Tree Based Elimination Recall, Inspection
Rate

Software Metrics RF, SVM, MLP, XGBoost,
Ensemble

Random
UnderSampler

Drupal, Moodle,
PHPMyAdmin

Current Work JavaScript Dataset
PSO, GA, GWO, HHO,
SSA, WOA

AUC, Precision,
Recall, F1-score

Software Metrics,
Text Features

DT, RF, NB, SVM, KNN,
LR, AB, MLP

SMOTE Drupal, Moodle,
PHPMyAdmin,
JavaScript
Dataset

10
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3. Background knowledge

This section contains a brief explanation of the machine learning techniques (Section 3.1),
resampling techniques used for balancing the datasets (Section 3.2), feature selection
algorithms (Section 3.3), and performance evaluation metrics (Section 3.4).

3.1. Machine learning techniques

Machine Learning Techniques majorly are supervised and unsupervised. Supervised machine
learning algorithms work on labeled data and unsupervised works on unlabeled data. The
current paper uses eight supervised machine learning algorithms namely, random forest,
support vector machine, k-nearest neighbor, adaboost, naïve bayes, logistic regression,
decision tree, and multilayer perceptron. For comparisons with baseline methods, we are
using these algorithms.

3.1.1. Decision tree (DT)

Decision trees (DT) are non-parametric supervised machine learning algorithms [42]. This
classifier is structured as a tree where internal nodes are the features, branches depict
decision rules and each leaf node gives the outcome.

3.1.2. Random forest (RF)

The random forest (RF) algorithm gives the output by taking a majority of the votes from
numerous decision trees. RF is simple and can handle large datasets efficiently [43].

3.1.3. Naïve Bayes (NB)

Naive Bayes is the supervised machine learning algorithm based on Bayes’ theorem,
assuming that there is independence among the features of the class. NB models are of
four categories: Gaussian NB (GNB), Multinomial NB (MNB), Bernoulli NB (BNB), and
Complement NB (CNB) [44].

3.1.4. Adaboost (AB)

Adaboost, called adaptive boosting, is the boosting algorithm where weak learners are
sequentially added and trained by weighted training data to build strong classifiers. The
classification output is predicted by calculating the mean weights of the weak classifiers. It
can use different base learners to boost its performance but is affected by noisy data and
outliers [45].

3.1.5. Support Vector Machine (SVM)

SVM is used to construct the best decision boundary called a hyperplane that separates
multidimensional space into classes to place new data points in the correct class. SVM
consists of various kernel functions (linear, polynomial, radial basis function, and sigmoid)
used for the decision function. It has the overfitting issue, which arises when the number
of features is much larger than the number of samples [46]. 11
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3.1.6. K-Nearest Neighbor (KNN)

KNN classifies the data points by calculating the distance among them. New data points
are classified by comparing them with the stored data. The value of k is crucial to determine
as a smaller value may cause underfitting and a larger value may cause overfitting [47].

3.1.7. Logistic regression (LR)

Logistic regression predicts the probability of the target variable. In other words, dependent
variables are predicted through the independent variables set [48].

3.1.8. Multilayer perceptron (MLP)

Multilayer perceptron (MLP) is a feed-forward neural network that has three layers namely
the input layer, hidden layer, and output layer. The input layer receives the signal for
processing, the hidden layer acts as the computational engine and the output layer performs
the prediction and classification tasks. MPs are used for non-linearly separable problems
[49].

3.2. Resampling techniques

Resampling techniques are used to handle the class imbalance problem by balancing the
datasets. The results may favor the majority class if the datasets are imbalanced. Therefore,
to avoid biased results data balancing is important. Resampling Techniques are further
classified as Under-sampling, Over-sampling, and Hybrid Sampling.

Figure 1. SMOTE process

The current study balances the dataset using SMOTE technique because it may not
lead to loss of data and is highly used in previous studies. SMOTE [50] executes the
k-nearest neighbor algorithm for synthetic sample generation. First, the minority class
vector is found; second, the value of k is selected; third, compute the distance between
minority data points and any neighbor to plot a synthetic sample; and Lastly, the above
step is repeated until the dataset is balanced. SMOTE obviates overfitting problems and
increases the performance of the classifiers by generalizing the decision boundaries [51].
Figure 1 explains the SMOTE1 process.

1https://rikunert.com/smote_explained 12
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3.3. Feature selection algorithms

Previous studies have used feature synthesis algorithms for dimensionality reduction.
Metaheuristic algorithms are of two types: Evolutionary Algorithms (EA) and Swarm
Intelligence (SI). EA includes mechanisms based on biological evolution like mutation,
reproduction, recombination, and selection. In EA, the initial population of individual
solutions is generated randomly and a fitness function is used which is responsible for the
quality of the solutions. After multiple iterations, the initial population evolved and reaches
global optimization. Genetic algorithms are one example of evolutionary algorithms. SI is
inspired by nature where each factor takes a simple task and exhibits a global intelligent
behavior by having a factoring relationship with one another and their random reactions.
There exists a plethora of SI-based feature selection algorithms such as particle swarm
optimization (PSO), Gravitational Search Algorithm (GSA), Ant Colony Optimization
(ACO), Differential Evolution (DE), Artificial Bee Colony Optimization (ABC), Firefly
Algorithm (FA), Cuckoo Optimization Algorithm (COA), Bat Algorithm (BA), Grey Wolf
Optimization (GWO), Salp Swarm Algorithm (SSA), Whale Optimization Algorithm
(WOA), and Harris–Hawk Optimization (HHO).

This paper has incorporated 6 feature subset selection metaheuristic algorithms. It has
applied three metaheuristic algorithms GA, PSO, and GWO from the base paper [24] but
with seven other machine learning algorithms which are highly popular [2]. In addition to
this, whale optimization (fish-based), harris hawk (bird-based), and salp swarm(sea-based)
algorithms are mostly used in prediction areas like fault and defect prediction [52–55]].
Furthermore, the study used the feature selection code from GitHub2 which contained 13
metaheuristic algorithms and we tried to implement the latest and swarm-based algorithms
which were HHO, WOA, and SSA.

3.3.1. Genetic algorithms (GA)

A genetic algorithm is a population-based metaheuristic algorithm that imitates natural
evolutionary mechanisms. It involves initial population production, selection of good
solutions, fitness function definition, crossover, and mutation. Initial population generation
includes all the possible solutions to the given problem. The fitness function assigns the
fitness score to each individual and the individual with a higher fitness score has a higher
chance of being selected. The selection phase creates a region with a high probability of
producing the best solution. Reproduction has two operators: crossover and mutation.
Crossover interchanges the genetic information of two parents for reproduction. The child
population generated is the same in size as the parent population. New genetic information
is added to a new child population by changing some bits in the chromosome called
Mutation [22].

3.3.2. Particle swarm optimization (PSO)

Particle swarm optimization is inspired by the food search of a flock of birds or a school of
fish. A bird flying in search of food randomly, and sharing its discovery can help in getting
the best hunt for the entire flock. Each particle dynamically adjusts its velocity depending
on its flying experiences and others in the group. Each particle keeps a record of its best
result called pbest (personal best) and the best value of any particle called gbest (global

2https://github.com/JingweiToo/Wrapper-Feature-Selection-Toolbox-Python/tree/main/FS 13
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best). The position of every particle is modified depending on its current position and
velocity, the distance between pbest and its current position, and finally distance between
gbest and its current position [22].

3.3.3. Grey Wolf optimization (GWO)

Grey Wolf is inspired by grey wolves and mimics the hunting process of grey wolves in
nature. Grey wolves live in groups of 5–12 individuals and follow a hierarchical management
system. The social hierarchy of grey wolves consists of Alpha (α) the head of the group
and their orders are directions followed by other wolves. Beta (β) are the subordinates that
aid α in making decisions. Delta (δ) are scouts which report to α and β. Lastly, Omega (ω)
is at the bottom of the management system and is accountable for internal relationships.
Grey Wolf Hunting has three phases: chasing and approaching the prey, encircling and
harassing the prey, and attacking the prey [22].

3.3.4. Whale optimization algorithm (WOA)

A whale optimization algorithm is a metaheuristic algorithm inspired by the hunting
mechanisms of humpback whales. It is easy to implement and robust. Humpback whales
search for food in multidimensional space. The algorithm imitates the bubble-net foraging
method of searching and attacking the prey by the whales. When the whale locates its
prey, it forms a bubble-net spiral path and reaches upwards to the prey. There are three
stages to explain predation behavior: surrounding the prey, bubble net attack, and hunting
the prey [22].

3.3.5. Salp swarm algorithm (SSA)

A salp swarm algorithm is stimulated by the sea salps’ swarming behavior [55]. The salp
population is divided into leaders and followers. The salp chain is created when salps
shape the swarm in heavy oceans. The leader lies in the front of the chain and the rest are
the followers. The SSA algorithm starts with the initialization of the group of solutions
randomly. Further, the iterative improvement process tries to reach the global optimum.
Follower salps update their position based on the leader’s position. To reach the desired
solution the process is executed repeatedly [22].

3.3.6. Harris Hawk optimization (HHO)

Harris Hawk optimization algorithm is stimulated by the cooperative hunting behavior of
harris hawks. They work in groups and attack the prey from all directions to surprise it.
It has three stages which include surprise pounce, trailing the prey, and other attacking
mechanisms. The first stage is Exploration which is to find and discover the prey or best
candidate solution, second stage is the transformation from exploration to exploitation
depending on the external/escaping energy of the prey. The third and final stage is
Exploitation in which the prey is attacked hard or soft depending on the energy left with
the prey [22]. 14
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3.4. Performance measures

The efficacy of the machine learning algorithms is evaluated using performance measures.
Accuracy is measured by adding all correct predictions divided by the total predictions
made by a machine learning algorithm. Since our datasets are imbalanced therefore we tend
to use performance metrics that provide results without any biases [56]. The performance
metrics Area under ROC curve (AUC), Precision, Recall, and F1-score are highly used in
previous studies so keeping in mind the comparative analysis, the current study also used
the same metrics.

4. Research methodology

This section includes the experimental datasets, setup, performance results, statistical
comparisons, and discussions of the results. Experiments are executed to evaluate the
various combinations of metaheuristic feature selection and machine learning methods to
analyze which combination has shown the highest performance.

4.1. Datasets

This paper uses eight datasets out of which six datasets (metrics and text-features) belong
to PHP language and two datasets (metrics and text features) are based on JavaScript
language. These are publicly available labeled datasets with labeling “NO” and “YES”.
The paper focuses on binary classification hence the datasets are suitable for the purpose.
The granularity level for PHP datasets is “file” whereas, for a JavaScript dataset, it is
a method/function. This indicates whether the components for vulnerability prediction are
files or methods. The experiments are first performed on the PHP dataset then to check
the validity of the work, it is implemented on another publicly available JavaScript dataset.
– PHP Dataset3: Drupal is the content management system with 202 total files and

62 vulnerable files. Moodle is a learning management system with 2924 total files and
24 vulnerable files. PHPMyAdmin is an open-source administration for MySQL with
322 total files and 27 vulnerable files.

– JavaScript Dataset4,5: The JSVulnerability dataset is collected from the Node Security
Platform and the Snyk Vulnerability Database. It consists of 12 125 total functions and
1496 vulnerable functions.

– All the metrics-based and text-mining-based datasets are downloaded and saved in CSV
files. VPMs are trained on numerical features called software metrics, which are the
characteristics of source code. Text-mining-based VPMs are trained on text features
called tokens gathered from source code using various text mining techniques such
as Bag-of-words (BOW), Term Frequency (TF), Term Frequency-Inverse Document
Frequency (TF-IDF), etc.

– Each CSV file that contains metrics datasets shows the dependent and independent
variables. The dependent variable determines whether the file/function is vulnerable or
not, depending on the values of independent variables. PHP dataset has 13 independent

3http://seam.cs.umd.edu/webdata
4http://www.inf.u-szeged.hu/~ferenc/papers/JSVulnerabilityDataSet/
5https://sites.google.com/view/vulnerability-prediction-data/home 15
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variables and one dependent variable. The JavaScript dataset contains 35 independent
variables and one dependent variable.

– Table 2 describes the versions, no. of total files, no. of vulnerable files, no. of vulnerabil-
ities, metrics features, and text features of the datasets used for experimentation

– Table 9 (refer to Appendix) gives the metrics description of the PHP and JavaScript
datasets.

Table 2. Dataset descriptions

Dataset Version Total files Vulnerable Vulnerabilities Metrics Text
/functions files/functions features

Drupal 6.0 202 62 97 13 3811
PHPMyAdmin 3.3.0 322 27 75 13 5232
Moodle 2.0.0 2924 24 51 13 18306
JSVulnerability – 12 125 1496 – 35 12 942

4.2. Text mining

Text mining is the preprocessing of textual features and converting them into vector
form which is the input for machine learning algorithms [57, 58]. There exist a lot of
methods for performing text mining such as Bag-of-words (BOW), Term-Frequency (TF),
Term-Frequency inverse document frequency (TF-IDF), sequence of tokens, etc.

Recent studies [8, 10, 20, 32, 34]] have mainly used BOW for preprocessing PHP dataset
text features and for JavaScript datasets BOW and sequence of tokens have been used
[12,26,27]. BOW calculates the number of occurrences of each word/token in the whole
file/method. In text-mining-based VPMs, each token is considered a feature in the source
code. To obtain text features from the source code of the Drupal dataset, the study first
saved the textual dataset in Microsoft Access. There is a total of 202 files for the Drupal
dataset and each file is labeled as vulnerable or not. To convert the source code into vector
form, textual analysis is performed on the source code to remove redundant features, white
spaces, punctuation marks, arithmetic, and logical operators. Then a dictionary/vocabulary
is created which includes all the tokens associated with a key (see: Fig. 2). Each row in the
MS-Access table represents a file which is compared against the dictionary to find out the
occurrence of each token in the file. Finally, the CSV file is generated that contains the
value of each token in the file. CSV file is further processed in MS-Excel to create each
column heading indicating text-feature shown in Figure 3.

4.3. Experimental setup

In this paper, experiments are performed on four metrics and four text-features datasets. In
addition to this, six metaheuristic feature selection approaches and eight machine learning
algorithms are used. SMOTE technique is applied, keeping in view the imbalanced nature
of the datasets. The experiments are performed in Jupyter notebook python by replicating
the pseudocode mentioned in [24] with some additions mentioned in Algorithm below.

The new pseudocode presented in Table 3, includes eight datasets and four evaluation
metrics (precision, recall, AUC, F1-score). Every metaheuristic and machine learning
algorithm uses this pseudocode to get the desired results. The number of generations and
Population size is set to 100 and 10, respectively. The hyperparameters of machine learning, 16
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Figure 2. Conversion of source code into vector form

Figure 3. Working methodology

17
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Table 3. Algorithm

Input: Dataset (D)
Output: Optimized cross-validated results (precision, recall, AUC, F1-score)
1. Initialize the initial population of metaheuristic as: {a1, a2, a3, . . . , an} where ai = [0, 1], 0 means

feature is not selected, 1 means feature is selected and n is the number of features in the dataset
2. Take the fitness function as F1-score of ML on the subset of D.
3. Repeat step 1 and 2 until the desired number of iterations or we get maximum F -measure = 1.

Pseudo-code of Metaheuristics-ML

Input: Vulnerability Dataset = D{Drupalm, Drupalt, Moodlem, Moodlet, PHPMyAdminm, PHPMyAdmint,
JavaScriptm, JavaScriptt}
Output: Optimal values of precision, recall, AUC, F1-score
1. Initialize the values: Number of dimension = independent features of dataset, Number of genera-

tion = n, population size = N , Take initial candidate solution as {a1, a2, a3, . . . , an} where ai = [0, 1]
n is the number of features in the dataset

2. For each iteration:
– Selection features set D′ from D
– Divide D′ into 80:20 ratio {Dtr, Dte}
– Preprocess and standardize the dataset D′

– Train a ML with Dtr
– Evaluate the ML with 10-fold cross validation.
– Return fitness = F1-score
After n generation or F1-score = 1
Best F1-score, precision, recall, AUC on 10-cross validation.

End

data balancing, and metaheuristic feature selection techniques are set to default. The main
focus of this study is to compare the different combinations of ML and metaheuristic
techniques hence the optimized hyperparameters are to be considered in the future. Figure
3 represents the working methodology of the VPMs. 80% of the dataset is split to train
the machine learning classifier, and the classifier’s performance is measured using 10-cross
validation. The obtained F -measure serves as a fitness function for metaheuristic algorithms.
The metaheuristic algorithm selects the best features based on the optimized AUC, precision,
recall, and F -measures.

5. Results

The results are gathered after performing experiments and are represented in Tables
A2–A9 of the Appendix. Tables A2–A5 show metrics-based results and Tables A6–A9
show text-mining-based results. Each table gives the evaluation metrics (AUC, Precision,
Recall, F1-score) values of each combination of machine learning algorithms and feature
selection methods. Furthermore, there lies a column named “N_features” that depicts the
count of features selected for every combination. In addition to this, for metrics-based
datasets, the index of features selected is also mentioned but for text-features-based datasets,
describing the index would be cumbersome. The bold values indicate the highest value of
each performance metric among each machine learning algorithm and the yellow shaded
+ bold values indicates the highest value of each performance metric across all machine
learning algorithm per dataset. Tables 4 and 5 represent the best-performing metaheuristic
technique for each machine learning algorithm in each dataset. 18
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Table 4. Best AUC values of metaheuristic feature selection for metrics-based VPMs
in all machine learning algorithms

Dataset Machine learning Best performing AUCtechnique metaheuristic technique

Drupal

RF SSA 0.9643
SVM SSA 0.8928
KNN HHO 0.9658
DT SSA 0.9652
AB GWO 0.9656
NB GWO 0.8939
LR GA 0.9286

MLP WOA 0.8927

Moodle

RF SSA 0.9573
SVM GWO 0.8659
KNN PSO 0.9616
DT SSA 0.9968
AB GWO 0.9745
NB GA 0.8031
LR WOA 0.8756

MLP GA 0.9439

PHPMyAdmin

RF HHO 0.9661
SVM GA 0.8306
KNN GWO 0.9161
DT GWO 0.9833
AB SSA 0.9609
NB SSA 0.7638
LR SSA 0.8649

MLP GWO 0.9149

JavaScript

RF GA 0.9705
SVM GA 0.8035
KNN SSA 0.9322
DT PSO 0.9605
AB PSO 0.8923
NB PSO 0.6929
LR GA 0.7362

MLP HHO 0.8745

5.1. Results for metrics-based VPMs

Table 4 describes the best-performing metaheuristic feature selection algorithm for each
machine learning technique in the metrics-based VPMs:
– for Drupal, KNN-HHO has performed highest with AUC 0.9658,
– for Moodle, DT-SSA has performed highest with AUC 0.9968,
– for PHPMyAdmin, DT-GWO performed highest with AUC 0.9833,
– for JavaScript, RF-GA performed best with AUC 0.9705.

5.2. Results for text-features-based VPMs

Table 5 describes the best-performing metaheuristic feature selection algorithm for each
machine learning technique in the text-features-based VPMs:
– for Drupal, MLP-GWO has performed highest with AUC 0.9986,
– for Moodle, DT-GWO has performed highest with AUC 0.9561,
– for PHPMyAdmin, AB-GWO performed highest with AUC 0.9879, 19
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– for JavaScript, NB-HHO performed best with AUC 0.9998.

Table 5. Best AUC values of metaheuristic feature selection for text-feature-based VPMs in all
machine learning algorithms

Dataset Machine learning Best performing AUCtechnique metaheuristic technique

Drupal

RF GWO 0.9666
SVM GA 0.9289
KNN GWO 0.9929
DT GA 0.9648
AB GA 0.9648
NB PSO 0.9289
LR GWO 0.9982

MLP GWO 0.9986

Moodle

RF HHO 0.9469
SVM SSA 0.8031
KNN PSO 0.9421
DT GWO 0.9561
AB GWO 0.9315
NB GA 0.8631
LR HHO 0.9144

MLP GWO 0.9144

PHPMyAdmin

RF GWO 0.9833
SVM GWO 0.9152
KNN GA 0.9833
DT GWO 0.9859
AB GWO 0.9879
NB SSA 0.8474
LR PSO 0.9666

MLP GWO 0.9878

JavaScript

RF WOA 0.9995
SVM HHO 0.9788
KNN WOA 0.9896
DT WOA 0.9994
AB GWO 0.9995
NB HHO 0.9998
LR GWO 0.9912

MLP WOA 0.9995

The findings show that different machine learning algorithms have different best-performing
metaheuristic feature selection techniques. The No-Free-Lunch (NFL) theorem states that
no optimization or machine learning algorithm is good enough to solve all issues [59]. As
a result, there is no guarantee that a single metaheuristic will uncover the best set of
characteristics across all problem domains. Given these considerations, there is always the
possibility of generating superior results with novel feature selection metaheuristics.

5.3. Statistical tests and results

Tables 6–9 show whether the feature selection methods have improved the performance of
VPMs by comparing the values of each performance metric for both software metrics and
text features-based datasets. The highest value of performance metrics is considered among
different feature selection algorithms. Furthermore, the Wilcoxon signed rank statistical 20
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test [60] is applied to identify whether text-mining-based VPMs perform better than
metrics-based VPMs. The authors have performed hundred iterations of machine learning
algorithm on different (metrics and text mining) datasets without feature selection and
with feature selection. Considering Tables 6–9, for instance, hundred performance values
(X-Samples) of RF(metrics) is compared with X-Samples of RF(text) in the without feature
selection case. Similarly, the ML+FS combination with highest performance values are
selected and their iterative values (X-Samples) are compared using Wilcoxon signed rank
test. The significant p-value is considered to be 0.05.

The hypothesis is as follows:
H0: Text-mining-based VPMs are better than metrics-based VPMs.
If the p-value is less than 0.05 then accept H0, otherwise reject H0. Accepting the hypothesis
indicates that text-mining-based VPMs are better than metrics-based VPMs and rejecting
the hypothesis indicates that metrics-based VPMs are better than text-mining-based VPMs.
Tables 6–9, highlight the cases where the p-value is less than 0.05, therefore null hypothesis
is accepted in them indicating text-mining-based VPMs are better than metrics-based
VPMs.

6. Discussion

Imbalanced datasets, hyperparameter settings, and dimensionality of the dataset have
degraded the performance of VPMs. This study is performed to find whether the com-
bination of multiple metaheuristic feature selection and machine learning algorithms
increases the efficacy of VPMs. In addition to this, the performance of text-features-based
and metrics-based VPMs are compared. Furthermore, the focus is on finding the best
metaheuristic technique and if not stating the reason behind it, also which technique has
performed satisfactorily for all the datasets. These are illustrated through the answers to
the research questions mentioned below.

6.1. Illustration of research questions

RQ 1. Has all the metaheuristics feature selection and machine learning combinations
improved the efficacy of VPMs?

The comparison of various machine learning methods based on the usage of feature
selection methods for each dataset is shown in Tables 6–9. The findings have shown
that the feature selection method has improved the efficacy for both metrics-based and
text-features-based VPMs with maximum performance metrics (AUC, Precision, Recall,
and F1-score) values of 0.9833, 0.9962, 0.9974, 0.9962 and 0.9986, 0.9994, 0.9996, 0.9997,
respectively.

Table 6 shows the results for the Drupal dataset.
– It has been observed that for metrics-based VPMs AUC, Precision, Recall, and F1-score

have improved by 15.9%, 34.92%, 25.58%, and 34.98%, respectively.
– For text-mining-based VPMs AUC, Precision, Recall, and F1-score have improved by

13.06%, 34.6%, 25.69%, and 31.94%, respectively.
Table 7 shows the results for Moodle dataset.

– For metrics-based VPMs, the performance metrics AUC, Precision, Recall, and F1-score
have improved by 14.37%, 96.56 %, 42.47%, and 93.69%, respectively. 21
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Table 6. Comparison of various machine learning methods based on the usage of feature selection
methods for the Drupal dataset

Machine learning Without feature selection With feature selection
techniques AUC Precision Recall F1-score AUC Precision Recall F1-score

RF(metrics) 0.8122 0.5993 0.6751 0.6341 0.9643 0.991 0.9912 0.9587
RF(text) 0.8681 0.6225 0.7422 0.6771 0.9666 0.9587 0.9289 0.9435
p-value 0.0014 0.0015 0.0051 0.0052 0.2541 – – –

SVM(metrics) 0.8006 0.5332 0.6316 0.5782 0.8928 0.9166 0.9925 0.9001
SVM(text) 0.8745 0.6397 0.6859 0.6619 0.9289 0.9145 0.9286 0.8848

p-value 0.0014 0.0001 0.0026 0.0001 0.0022 – – –

KNN(metrics) 0.7693 0.5327 0.7099 0.6086 0.9658 0.9941 0.9947 0.9753
KNN(text) 0.7732 0.6951 0.7215 0.7080 0.9929 0.9912 0.9899 0.9903

p-value 0.3321 0.0001 0.0018 0.0001 0.0009 – – 0.0

DT(metrics) 0.6726 0.5196 0.5567 0.5091 0.9652 0.9898 0.9925 0.9582
DT(text) 0.6939 0.5301 0.5741 0.5196 0.9648 0.9333 0.9485 0.9608
p-value 0.0045 0.0042 0.0452 0.0412 – – – 0.0456

AB(metrics) 0.7747 0.5393 0.6661 0.5961 0.9656 0.9337 0.9957 0.9634
AB(text) 0.7915 0.6482 0.7011 0.6736 0.9648 0.9745 0.9486 0.9614
p-value 0.0014 0.0013 0.0036 0.0001 – 0.0035 – –

NB(metrics) 0.7773 0.6475 0.4214 0.4952 0.8939 0.9948 0.8571 0.8888
NB(text) 0.8765 0.7088 0.7286 0.7185 0.9289 0.9231 0.8788 0.8888
p-value 0.0001 0.0036 0.0001 0.0001 0.0013 – 0.0012 –

LR(metrics) 0.6386 0.4941 0.5811 0.5341 0.9286 0.9915 0.9974 0.9194
LR(text) 0.7154 0.5715 0.6215 0.5954 0.9982 0.9911 0.9988 0.9949
p-value 0.0004 0.0001 0.0004 0.0051 0.0042 – 0.3156 0.0015

MLP(metrics) 0.7094 0.4274 0.5283 0.4725 0.8927 0.9090 0.9286 0.8965
MLP(text) 0.7615 0.5668 0.5507 0.5586 0.9986 0.9901 0.9928 0.9914

p-value 0.0026 0.0001 0.0365 0.0016 0.0001 0.0015 0.0015 0.0001

Figure 4. AUC Performance results for Drupal (metrics) dataset

Figure 5. AUC Performance results for Drupal (text) dataset 22
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Table 7. Comparison of various machine learning methods based on the usage of feature selection
methods for the Moodle dataset

Machine learning Without feature selection With feature selection
techniques AUC Precision Recall F1-score AUC Precision Recall F1-score

RF(metrics) 0.7453 0.0207 0.0732 0.0294 0.9573 0.9406 0.9966 0.9581
RF(text) 0.6502 0.0159 0.1903 0.0295 0.9469 0.9364 0.9794 0.9475
p-value – – 0.0001 0.4851 – – – –

SVM(metrics) 0.7833 0.0218 0.4708 0.0417 0.8659 0.8977 0.8459 0.8611
SVM(text) 0.8245 0.0358 0.5891 0.0676 0.8031 0.9941 0.6198 0.7589

p-value 0.0052 0.0152 0.0001 0.0152 – 0.0001 – –

KNN(metrics) 0.6983 0.0229 0.3801 0.0432 0.9616 0.9269 0.9968 0.9605
KNN(text) 0.7035 0.0343 0.4014 0.0632 0.9421 0.9126 0.9829 0.9394

p-value 0.0452 0.0452 0.0452 0.0452 – – – –

DT(metrics) 0.5292 0.0147 0.0784 0.0289 0.9968 0.9962 0.9966 0.9962
DT(text) 0.5708 0.0178 0.2423 0.0331 0.9561 0.9302 0.9623 0.9443
p-value 0.0052 0.0452 0.0001 0.0452 – – – –

AB(metrics) 0.7419 0.0171 0.2553 0.0343 0.9745 0.9823 0.9863 0.9742
AB(text) 0.7689 0.0382 0.3641 0.0692 0.9315 0.8937 0.9897 0.9346
p-value 0.0098 0.0121 0.0001 0.0121 – – 0.2465 –

NB(metrics) 0.8344 0.0342 0.3882 0.0628 0.8031 0.8969 0.7329 0.7882
NB(text) 0.8437 0.0487 0.3961 0.0867 0.8631 0.7849 0.9966 0.8707
p-value 0.0452 0.0016 0.0451 0.0021 0.0052 – 0.0001 0.0001

LR(metrics) 0.6501 0.0209 0.5734 0.0402 0.8756 0.8292 0.9589 0.8837
LR(text) 0.7276 0.0313 0.6166 0.0596 0.9144 0.8601 0.9978 0.9204
p-value 0.0004 0.0452 0.0098 0.0452 0.0041 0.0012 0.0013 0.0056

MLP(metrics) 0.6253 0.0237 0.3269 0.0442 0.9439 0.9218 0.9863 0.9449
MLP(text) 0.7121 0.0323 0.4256 0.0611 0.9144 0.8965 0.9966 0.9186

p-value 0.0001 0.0098 0.0001 0.0098 – – 0.0425 –

Figure 6. AUC Performance results for Moodle (metrics) dataset

Figure 7. AUC Performance results for Moodle (text) dataset 23
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Table 8. Comparison of various machine learning methods based on the usage of feature selection
methods for the PHPMyAdmin dataset

Machine learning Without feature selection With feature selection
techniques AUC Precision Recall F1-score AUC Precision Recall F1-score

RF(metrics) 0.7536 0.2377 0.3562 0.2852 0.9661 0.9655 0.9489 0.9658
RF(text) 0.7651 0.3936 0.4253 0.4088 0.9833 0.9677 0.9945 0.9791
p-value 0.0251 0.0001 0.0001 0.0001 0.0026 0.3512 0.0045 0.0026

SVM(metrics) 0.7312 0.1949 0.54 0.2864 0.8306 0.8276 0.8279 0.8277
SVM(text) 0.7917 0.2559 0.5523 0.3497 0.9152 0.9311 0.90 0.9152

p-value 0.0098 0.0001 0.0251 0.0001 0.0001 0.0001 0.0004 0.0001

KNN(metrics) 0.6705 0.1332 0.5208 0.1988 0.9161 0.875 0.9655 0.9181
KNN(text) 0.6735 0.1588 0.5563 0.2971 0.9833 0.9666 0.9778 0.9722

p-value 0.3512 0.0251 0.0452 0.0001 0.0014 0.0001 0.0026 0.0056

DT(metrics) 0.6726 0.5196 0.5567 0.5375 0.9833 0.9777 0.9897 0.9831
DT(text) 0.7416 0.6441 0.6602 0.6521 0.9859 0.9677 0.9789 0.9736
p-value 0.0001 0.0001 0.0001 0.0001 0.3516 – – –

AB(metrics) 0.6092 0.1398 0.3027 0.1913 0.9609 0.9666 0.9782 0.9665
AB(text) 0.6916 0.2854 0.3798 0.3259 0.9879 0.9667 0.9789 0.9727
p-value 0.0098 0.0001 0.0098 0.0001 0.0452 0.5462 0.5462 0.0452

NB(metrics) 0.7009 0.2165 0.3268 0.2605 0.7638 0.8184 0.8666 0.7762
NB(text) 0.7284 0.3514 0.4432 0.3919 0.8474 0.7631 0.8355 0.7976
p-value 0.0125 0.0001 0.0001 0.0001 0.0004 – – 0.0452

LR(metrics) 0.6379 0.1661 0.2535 0.2007 0.8649 0.8846 0.90 0.8709
LR(text) 0.7782 0.2626 0.3101 0.2844 0.9666 0.9917 0.9333 0.9616
p-value 0.0001 0.0002 0.0041 0.0041 0.0001 0.0001 0.0452 0.0004

MLP(metrics) 0.6678 0.1532 0.4383 0.2271 0.9149 0.9285 0.90 0.9122
MLP(text) 0.6878 0.2733 0.5581 0.3669 0.9878 0.9756 0.9721 0.9693

p-value 0.0042 0.0452 0.0001 0.0001 0.0056 0.0056 0.0056 0.0065

Figure 8. AUC Performance results for PHPMyAdmin (metrics) dataset

Figure 9. AUC Performance results for PHPMyAdmin (text) dataset
24
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Table 9. Comparison of various machine learning methods based on the usage of feature selection
methods for the JavaScript dataset

Machine learning Without feature selection With feature selection
techniques AUC Precision Recall F1-score AUC Precision Recall F1-score

RF(metrics) 0.9437 0.7261 0.7655 0.7458 0.9705 0.9798 0.9689 0.9701
RF(text) 0.9591 0.8792 0.8272 0.8523 0.9995 0.9994 0.9991 0.9995
p-value 0.0452 0.0001 0.0015 0.0001 0.0452 0.0452 0.0452 0.0452

SVM(metrics) 0.6024 0.5255 0.2404 0.3297 0.8035 0.8721 0.9322 0.7872
SVM(text) 0.7878 0.5335 0.2871 0.3733 0.9788 0.9593 0.9991 0.9793

p-value 0.0001 0.0551 0.0452 0.0245 0.0001 0.0001 0.0245 0.0001

KNN(metrics) 0.8742 0.5054 0.7406 0.5995 0.9322 0.9105 0.9671 0.9345
KNN(text) 0.9248 0.4897 0.8386 0.6201 0.9896 0.9869 0.9944 0.9897

p-value 0.0045 – 0.0004 0.0056 0.0023 0.0016 0.0056 0.0045

DT(metrics) 0.8611 0.6146 0.7713 0.6868 0.9605 0.9595 0.9633 0.9606
DT(text) 0.9598 0.8894 0.8474 0.8678 0.9994 0.9988 0.9978 0.9972
p-value 0.0001 0.0001 0.0035 0.0001 0.0045 0.0045 0.0045 0.0045

AB(metrics) 0.8777 0.4565 0.7149 0.5572 0.8923 0.9273 0.8561 0.8877
AB(text) 0.9003 0.5664 0.7689 0.6552 0.9995 0.9981 0.9958 0.9964
p-value 0.0452 0.0004 0.0452 0.0001 0.0001 0.0023 0.0001 0.0001

NB(metrics) 0.7772 0.6475 0.4214 0.4952 0.6929 0.6414 0.8749 0.7401
NB(text) 0.9435 0.9526 0.8985 0.9194 0.9998 0.9994 0.9992 0.9996
p-value 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

LR(metrics) 0.6772 0.2803 0.5371 0.3646 0.7362 0.7307 0.8118 0.7462
LR(text) 0.7231 0.3002 0.5518 0.3888 0.9912 0.9879 0.9884 0.9881
p-value 0.0343 0.0452 0.0452 0.0452 0.0001 0.0001 0.0001 0.0001

MLP(metrics) 0.7913 0.3856 0.7449 0.5051 0.8745 0.8916 0.8758 0.8526
MLP(text) 0.8124 0.4152 0.7664 0.5386 0.9995 0.9995 0.9996 0.9997

p-value 0.0452 0.0452 0.0452 0.0452 0.0001 0.0001 0.0001 0.0001

Figure 10. AUC Performance results for JavaScript (metrics) dataset

Figure 11. AUC Performance results for JavaScript(text) dataset 25
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– For text-mining-based VPMs AUC, Precision, Recall, and F1-score have improved by
11.75%, 42.47%, 38.21%, and 92.69%, respectively.
Table 8 shows the results for the PHPMyAdmin dataset.

– For metrics-based VPMs, the performance metrics AUC, Precision, Recall, and F1-score
have improved by 23.3%, 46.85%, 43.75%, and 66.5%, respectively.

– For text-mining-based VPMs, the performance metrics AUC, Precision, Recall, and
F1-score have improved by 25.58%, 82.52%, 44.06%, and 79.37%.
Table 9 shows the results for the JavaScript dataset,

– For metrics-based VPMs, the performance metrics AUC, Precision, Recall, and F1-score
have improved by 2.7%, 25.89%, 21.06%, and 23.12%, respectively.

– For text-mining-based VPMs, the performance metrics AUC, Precision, Recall, and
F1-score have improved by 4.04%, 4.68%, 10.11%, and 8.03%, respectively.

Figures 4–11 clearly show that after applying feature selection there is an improvement in
the productivity of VPMs.

RQ 2. Which one statistically performed better, metrics-based or text-mining-based VPMs
in the context of feature selection?
Tables 6–9 describe the statistical difference between metrics-based and text-mining-based
VPMs after applying Wilcoxon signed rank test. For Drupal, without feature selection in all
the cases text-mining-based VPMs have performed statistically better than metrics-based
VPMs. After applying feature selection, in 13 out of 32 cases text-mining performed
statistically better. For Moodle, without feature selection in 29 cases and with feature
selection in 9 out of 32 cases text-mining-based VPMs performed better than metrics-based
VPMs. For PHPMyAdmin, without feature selection, in 31 cases and with feature selection
in 24 out of cases text-mining-based VPMs performed better than metrics-based VPMs.
For JavaScript, without feature selection in 30 cases and with feature selection in all the
cases text-mining-based VPMs performed better than metrics-based VPMs. Therefore, it
is evident that text-mining-based VPMs statistically performed better than metrics-based
VPMs in 60.9% of the cases in the context of feature selection.

RQ 3. Which metaheuristic feature selection algorithm has performed the best?
Different machine learning algorithms have different feature-selection methods that are
performing best for each dataset. The No-Free-Lunch (NFL) theorem states that no
optimization or machine learning algorithm is good enough to solve all issues [59]. As
a result, there is no guarantee that a single metaheuristic will uncover the best set of
characteristics across all problem domains. Given these considerations, there is always the
possibility of generating superior results with novel feature selection metaheuristics. AUC
performance metric is considered for describing the best-performing metaheuristic feature
selection algorithm depicted in Figures 4–11. Figures 4, 6, 8, and 10 show results about
metrics-based and Figures 5, 7, 9, and 11 text-features-based datasets.

For metrics-based VPMs, in the case of Drupal SSA, Moodle SSA, GWO, GA, PH-
PMyAdmin SSA, GWO, JavaScript GA, PSO has performed maximum for all machine
learning algorithms (refer to Table 4). For text-features-based VPMs, in the case of
Drupal GWO, Moodle GWO, PHPMyAdmin GWO, and JavaScript WOA have performed
maximum times (refer to Table 5). Overall, it can be noticed that GWO has performed
satisfactorily for all the datasets. 26
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6.2. Comparison with benchmark studies

Figures 12 and 13 show the comparison of the proposed work with the existing benchmark
studies for the PHP and JavaScript datasets, respectively. The paper has considered the
F1-score metric as the comparison criterion since it is preferably used in previous research
studies. Figure 12 shows that Drupal and Moodle have the highest F1-score for the proposed
work whereas F1-score for PHPMyAdmin is slightly less than Sahin et al. [25]. Sahin et al.
[25] has not applied any data balancing technique which may produce biased results. Figure
13 shows that the proposed work’s F1-score has outperformed the benchmark studies.

Figure 12. F1-score performance comparison with existing studies for PHP dataset

Figure 13. F1-score performance comparison with existing studies for JavaScript dataset 27
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6.3. Summary

Our study has unveiled the role of metaheuristic feature selection algorithms on the efficacy
of VPMs. It has considered a wide variety of datasets, features, and machine-learning
techniques and achieved high-performing VPMs with a maximum AUC of 0.9968 for metrics-
-based and 0.9998 for text-mining-based VPMs. Researchers can further use optimized
hyperparameters and consider time and cost complexity issues for VPMs in the future.

7. Threats to validity

The current study covers the following threats to validity:
– Internal Validity: The selection of eight machine learning methods for the current study

is based on previous research studies. Under-sampling techniques are not used due
to loss of information. The paper has restricted its work to SMOTE data balancing
techniques. Hybrid data balancing techniques are left for future scope.

– Construct Validity: This paper uses PHP-based open-source and JavaScript projects.
The current study has included metrics-based datasets and text-mining-based datasets.
The combination of the metrics and text-mining features is left for future scope. In
addition to this, only default hyperparameters were considered and Bag of words was
used for text mining. The authors are aware of the fact that optimized hyperparameters
increase the performance of machine learning models [17] but are unaware about how
would the combination of metaheuristic feature selection and optimized hyperparameters
would perform thereby keeping it as a future aspect to be considered.

– Conclusion Validity: This paper uses AUC, precision, recall, and F1-score for evaluating
the performance of the prediction models. We have not used accuracy as they give
biased results for imbalanced datasets. Also, considering the readability and clarity of
the paper MCC and G-mean metrics are left for future scope.

– External Validity: The paper tries to perform the methodology on the PHP dataset and
validate it be executing experiments on JavaScript. In addition, the granularity levels
are also different, i.e., file for PHP and function for JavaScript. The work is confined to
only two programming languages. In the future, more programming languages can be
used and the results may vary.

8. Conclusions and future scope

The need for efficient VPMs has always been crucial and to achieve that, previous stud-
ies have done immense work, from balancing classes and appropriate hyperparameters
selection to reducing the dimensionality through feature synthesis and feature selection
methods. The present paper has worked on feature selection using nature-inspired and
swarm intelligence-based algorithms. It has performed the empirical analysis on various
combinations of eight machine learning techniques and six metaheuristic feature selection
approaches on PHP and JavaScript datasets. The experiments are evaluated using six
performance metrics, keeping the imbalanced nature of the datasets in mind. It has been
used on metrics-based and text-token-based datasets. Further, the statistical comparison
of metrics-based and text-mining-based VPMs is implemented by Wilcoxon signed rank
test in the context of feature selection. The comparative analysis concludes that: 28
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Metaheuristics feature selection methods improve the performance of VPMs (metrics
and text-mining) in the range of 2.7%–25.58% in terms of AUC, 4.68%–96.56% in
terms of precision, 10.11%–44.06% in terms of recall, and 8.03%–93.69% in terms of
F1-score.

The Wilcoxon signed rank test showed that overall 200 p-values are found significant
out of 256 among all performance metrics. Therefore, overall it can be said that
text-features-based VPMs are significantly better than metrics-based VPMs in 78.12%
of the cases. But in the context of feature selection, 78 out of 128 cases performed sig-
nificantly showing that text-features-based VPMs performed better than metrics-based
VPMs for 60.9% of the instances when feature selection is applied.

The highest AUC values were obtained in metrics-based VPMs by KNN-HHO for
Drupal, DT-SSA for Moodle, DT-GWO for PHPMyAdmin, and RF-GA for JavaScript.
For text-mining based VPMs, the highest AUC values were obtained by MLP-GWO in
Drupal, DT-GWO in Moodle, AB-GWO in PHPMyAdmin, and NB-HHO in JavaScript.
The paper compares AUC values to find out the maximum-performing feature selection
techniques for all machine learning algorithms. For metrics-based datasets, Drupal SSA;
Moodle SSA, GWO, GA; PHPMyAdmin GWO; and JavaScript GA have performed the
maximum times for all machine learning algorithms. For text-mining datasets, Drupal
GWO, Moodle GWO, PHPMyAdmin GWO, and JavaScript WOA have performed
maximum times. Overall, GWO has performed the maximum number of times.
Furthermore, the present paper has outperformed the benchmark studies in terms of
F1-score.

In the Future, more deep learning methods like LSTM, GRU, etc., can be applied.
Moreover, we have involved only default hyperparameters and in the future, analysis can be
done using optimized hyperparameters. More metaheuristic algorithms can be applied and
a combination of both metrics and text tokens can be used. Further, other programming
languages can also be applied.
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Appendix A

Table A1. Static source code metrics

Dataset Metrics Description

PHP Dataset

nonecholoc Non-HTML lines of code
loc Total lines of code in a PHP file
nmethods No. of functions in a file
ccomdeep, ccom Cyclomatic complexity
nest Maximum depth of nested loops
hvol Halstead’s volume
nIncomingCalls Fan-in
nIncomingCallsUniq Internal functions Called
nOutgoingInternCalls Fan-out
nOutgoingExternFlsCalled Total external calls
nOutgoingExternFlsCalledUniq External methods called
nOutgoingExternCalls External calls to methods

JavaScript Dataset

CC Clone Coverage
CCL Clone Classes
CCO Clone Complexity
CI Clone Instances
CLC Clone Line Coverage
LDC Lines of Duplicated Code
McCC, CCYL Cyclomatic Complexity
NL Nesting Level
NLE Nesting Level without else-if
CD, TCD Comment Density
CLOC, TCLOC Comment Lines of Code
DLOC Documentation Lines of Code
LLOC, TLLOC Logical Lines of Code
LOC, TLOC Lines of Code
NOS, TNOS Number of Statements
NUMPAR, PARAMS Number of Parameters
HOR_D No. of Distinct Halstead Operators
HOR_T No. of Total Halstead Operators
HON_D No. of Distinct Halstead Operands
HON_T No. of Total Halstead Operands
HLEN Halstead Length
HVOC Halstead Vocabulary Size
HDIFF Halstead Difficulty
HVOL Halstead Volume
HEFF Halstead Effort
HBUGS Halstead Bugs
HTIME Halstead Time
CYCL DENS Cyclomatic Density
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Table A2. Performance results of metrics-based Drupal dataset

Machine Feature
AUC Precision Recall F1-score N_FeaturesLearning Selection

Algorithms Techniques

RF

PSO 0.8214 0.9090 0.7143 0.80 5 [0, 2, 3, 5, 12]
SSA 0.9643 0.991 0.9285 0.9587 5 [1, 4, 6, 10, 11]
GA 0.8928 0.8666 0.9286 0.8966 3 [3, 5, 6]

GWO 0.9286 0.875 0.9912 0.9295 3 [2, 4, 9]
HHO 0.8929 0.8235 0.9911 0.8995 6 [2, 3, 7, 9, 11]
WOA 0.8571 0.7777 0.9910 0.8714 5 [4, 6, 8, 10, 11]

SVM

PSO 0.8215 0.7647 0.9286 0.8387 2 [2, 8]
SSA 0.8928 0.8235 0.9925 0.9001 3 [4, 6, 11]
GA 0.8215 0.8462 0.7857 0.8148 5 [ 4, 6, 7, 9, 11]

GWO 0.8571 0.9166 0.7857 0.8461 1 [4]
HHO 0.8219 0.7647 0.9285 0.8387 1 [3]
WOA 0.8215 0.80 0.8571 0.8276 2 [6, 8]

KNN

PSO 0.8254 0.7368 0.9947 0.8465 3 [1, 4, 6]
SSA 0.8576 0.7777 0.9911 0.8715 4 [2, 3, 8, 10]
GA 0.9286 0.875 0.9915 0.9296 3 [2, 7, 10]

GWO 0.8936 0.8666 0.9285 0.8965 2 [1, 10]
HHO 0.9658 0.9941 0.9572 0.9753 4 [1, 3, 7, 9]
WOA 0.8926 0.8235 0.9912 0.8996 9 [1, 2, 4, 5, 7, 8, 9, 10, 11]

DT

PSO 0.9286 0.875 0.9925 0.9301 6 [5, 6, 7, 8, 9, 10]
SSA 0.9652 0.9898 0.9286 0.9582 7 [1, 3, 4, 5, 8, 10, 11]
GA 0.8925 0.9231 0.8572 0.8889 4 [1, 3, 5, 7]

GWO 0.8965 0.8235 0.9924 0.9001 4 [1, 6, 7, 9]
HHO 0.8573 0.9166 0.7857 0.8461 6 [4, 5, 6, 7, 10, 12]
WOA 0.8254 0.80 0.8571 0.8276 5 [0, 2, 5, 6, 7]

AB

PSO 0.8589 0.8125 0.9286 0.8666 6 [2, 3, 5, 6, 9, 11]
SSA 0.8962 0.8666 0.9285 0.8965 5 [3, 5, 6, 8, 9]
GA 0.9286 0.875 0.9942 0.9307 7 [2, 4, 5, 6, 8, 10, 12]

GWO 0.9656 0.9333 0.9957 0.9634 5 [1, 4, 8, 9, 11]
HHO 0.8225 0.80 0.8571 0.8275 2 [1, 5]
WOA 0.8572 0.7777 0.9854 0.8693 6 [3, 5, 8, 9, 10, 11]

NB

PSO 0.8929 0.9948 0.7857 0.8779 3 [1, 10, 11]
SSA 0.8254 0.9090 0.7142 0.7999 2 [1, 5]
GA 0.8216 0.8461 0.7857 0.8148 1 [11]

GWO 0.8939 0.9231 0.8571 0.8888 2 [2, 5]
HHO 0.8214 0.9789 0.6428 0.7761 1 [11]
WOA 0.8575 0.9788 0.7142 0.8258 1 [11]

LR

PSO 0.8926 0.8235 0.9974 0.9021 7 [0, 3, 5, 6, 8, 11, 12]
SSA 0.8936 0.8666 0.9286 0.8965 5 [2, 3, 6, 8, 9]
GA 0.9286 0.9915 0.8571 0.9194 4 [0, 1, 5, 11]

GWO 0.8956 0.9231 0.8571 0.8888 2 [2, 5]
HHO 0.8965 0.9231 0.7857 0.8752 10 [0, 1, 2, 3, 4, 5, 7, 9, 10, 12]
WOA 0.8573 0.8125 0.9286 0.8666 3 [1, 5, 11]

MLP

PSO 0.76 0.8181 0.6428 0.7199 7 [1, 3, 4, 6, 8, 11, 12]
SSA 0.76 0.7059 0.8571 0.7742 5 [3, 5, 7, 8, 9]
GA 0.8571 0.8125 0.9285 0.8666 6 [2, 3, 4, 5, 8, 9]

GWO 0.8215 0.9090 0.7143 0.7999 4 [2, 5, 8, 9]
HHO 0.7858 0.75 0.8571 0.7998 7 [1, 2, 3, 4, 5, 11, 12]
WOA 0.8927 0.8666 0.9286 0.8965 8 [0, 1, 3, 5, 6, 8, 10, 12]
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Table A3. Performance results of metrics-based Moodle dataset

Machine Feature
AUC Precision Recall F1-score N_FeaturesLearning Selection

Algorithms Techniques

RF

PSO 0.9452 0.9090 0.7143 0.80 5 [0, 2, 3, 5, 12]
SSA 0.9573 0.9406 0.9761 0.9581 5 [1, 5, 6, 9, 11]
GA 0.9407 0.9028 0.9863 0.9427 6 [2, 3, 5, 6, 10, 11]

GWO 0.9366 0.8899 0.9966 0.9402 5 [2, 4, 5, 8, 10]
HHO 0.9435 0.9085 0.9863 0.9458 7 [0, 1, 3, 5, 6, 8, 11]
WOA 0.9212 0.8639 0.9847 0.9203 8 [0, 1, 2, 4, 5, 8, 10, 12]

SVM

PSO 0.8239 0.8593 0.7739 0.8144 7 [1, 2, 3, 5, 8, 10, 11]
SSA 0.8596 0.8977 0.8116 0.8525 6 [2, 4, 8, 10, 11, 12]
GA 0.8496 0.8592 0.8356 0.8472 8 [1, 2, 5, 7, 8, 10, 11, 12]

GWO 0.8659 0.8844 0.8391 0.8611 7 [1, 3, 5, 8, 10, 11, 12]
HHO 0.8425 0.8401 0.8459 0.8429 3 [2, 3, 8]
WOA 0.8335 0.8679 0.7876 0.8258 8 [0, 2, 3, 6, 8, 9, 11, 12]

KNN

PSO 0.9616 0.9269 0.9968 0.9605 7 [1, 2, 3, 4, 8, 10, 12]
SSA 0.9539 0.9179 0.9965 0.9556 8 [0, 1, 3, 5, 8, 9, 11, 12]
GA 0.9558 0.9235 0.9931 0.9571 6 [0, 4, 8, 9, 11, 12]

GWO 0.9572 0.9265 0.9848 0.9547 7 [0, 2, 3, 7, 9, 11, 12]
HHO 0.9588 0.9241 0.9878 0.9549 8 [0, 3, 4, 5, 7, 8, 10, 11]
WOA 0.9578 0.9238 0.9966 0.9588 7 [0, 3, 4, 5, 7, 8, 11]

DT

PSO 0.9865 0.9765 0.9965 0.9864 6 [0, 3, 5, 6, 10, 11]
SSA 0.9968 0.9962 0.9963 0.9962 5 [0, 4, 5, 6, 10]
GA 0.9949 0.9932 0.9966 0.9948 5 [0, 4, 5, 7, 10]

GWO 0.9869 0.9797 0.9932 0.9864 5 [2, 3, 6, 8, 11]
HHO 0.9897 0.9831 0.9965 0.9897 7 [1, 2, 3, 4, 5, 6, 10]
WOA 0.9885 0.9863 0.9897 0.9881 7 [0, 3, 5, 8, 9, 10, 12]

AB

PSO 0.9708 0.9661 0.9762 0.9711 7 [2, 5, 6, 8, 10, 11, 12]
SSA 0.9674 0.9823 0.9521 0.9669 4 [5, 8, 9, 12]
GA 0.9556 0.9291 0.9863 0.9568 5 [1, 3, 5, 9, 11]

GWO 0.9745 0.9792 0.9692 0.9742 7 [1, 2, 4, 5, 6, 10, 11]
HHO 0.9578 0.9435 0.9726 0.9578 13 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
WOA 0.9591 0.9437 0.9761 0.9595 7 [1, 2, 5, 6, 8, 9, 11]

NB

PSO 0.7398 0.8017 0.6369 0.7099 2 [5, 12]
SSA 0.7448 0.8235 0.6233 0.7095 4 [1, 4, 5, 12]
GA 0.8031 0.8525 0.7329 0.7882 3 [5, 10, 12]

GWO 0.7456 0.7582 0.7089 0.7327 3 [5, 11, 12]
HHO 0.7486 0.8169 0.6404 0.7179 2 [5, 12]
WOA 0.7696 0.8969 0.5959 0.7161 1 [5]

LR

PSO 0.8356 0.7734 0.9589 0.8563 9 [1, 3, 5, 6, 7, 8, 9, 11, 12]
SSA 0.8589 0.8046 0.9452 0.8691 9 [0, 1, 3, 5, 6, 7, 8, 9, 11]
GA 0.8169 0.7621 0.9212 0.8341 7 [4, 6, 7, 8, 9, 10, 12]

GWO 0.8659 0.8292 0.9143 0.8697 7 [1, 4, 5, 6, 7, 9, 10]
HHO 0.8069 0.7687 0.8767 0.8192 9 [1, 2, 3, 4, 6, 7, 9, 11, 12]
WOA 0.8756 0.8073 0.976 0.8837 11 [0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 12]

MLP

PSO 0.7828 0.8113 0.7363 0.7719 7 [1, 3, 4, 5, 8, 9, 10]
SSA 0.9297 0.9114 0.9521 0.9313 10 [1, 2, 4, 3, 5, 8, 9, 10, 11, 12]
GA 0.9439 0.9218 0.9692 0.9449 9 [0, 2, 3, 4, 5, 8, 10, 11, 12]

GWO 0.8956 0.8434 0.9589 0.8974 5 [3, 5, 8, 9, 11]
HHO 0.9023 0.8983 0.9075 0.9029 8 [0, 3, 5, 8, 9, 10, 11, 12]
WOA 0.9356 0.8944 0.9863 0.9381 5 [3, 4, 5, 8, 9]
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Table A4. Performance results of metrics-based PHPMyAdmin dataset

Machine Feature
AUC Precision Recall F1-score N_FeaturesLearning Selection

Algorithms Techniques

RF

PSO 0.8965 0.8333 0.8856 0.8586 3 [3, 9, 11]
SSA 0.9327 0.9643 0.90 0.9310 6 [1, 3, 4, 6, 8, 9]
GA 0.8643 0.8621 0.8625 0.8623 4 [3, 7, 10, 11]

GWO 0.8994 0.9615 0.8333 0.8929 3 [2, 10, 12]
HHO 0.9661 0.9655 0.9489 0.9658 5 [1, 5, 8, 9, 12]
WOA 0.8304 0.8333 0.8453 0.8392 6 [2, 4, 5, 8, 10, 12]

SVM

PSO 0.7802 0.8148 0.7333 0.7719 3 [0, 3, 10]
SSA 0.7799 0.7666 0.7931 0.7797 3 [3, 5, 10]
GA 0.8306 0.8276 0.8279 0.8277 4 [1, 2, 8, 10]

GWO 0.7629 0.7666 0.7698 0.7688 5 [1, 4, 5, 7, 10]
HHO 0.7965 0.80 0.8154 0.8076 3 [3, 8, 9]
WOA 0.7305 0.7916 0.6333 0.7037 1 [9]

KNN

PSO 0.85 0.7631 0.8496 0.8041 6 [2, 3, 4, 5, 8, 12]
SSA 0.8666 0.7838 0.8989 0.8374 6 [3, 5, 7, 8, 11, 12]
GA 0.8655 0.8181 0.9310 0.8709 4 [3, 7, 10, 12]

GWO 0.9161 0.875 0.9655 0.9181 3 [2, 11, 12]
HHO 0.8811 0.8709 0.90 0.8852 4 [2, 4, 5, 10]
WOA 0.8626 0.8055 0.8655 0.8344 8 [2, 4, 5, 6, 7, 9, 10, 12]

DT

PSO 0.9488 0.9643 0.9311 0.9473 4 [1, 3, 5, 10]
SSA 0.9327 0.9032 0.9655 0.9333 8 [1, 3, 5, 7, 9, 10, 11, 12]
GA 0.9827 0.9777 0.9655 0.9715 6 [3, 4, 6, 8, 10, 12]

GWO 0.9833 0.9666 0.9897 0.9831 4 [1, 3, 6, 9]
HHO 0.9494 0.9655 0.9333 0.9491 9 [2, 3, 4, 5, 6, 8, 9, 10, 12]
WOA 0.9488 0.9643 0.9310 0.9474 3 [1, 3, 5]

AB

PSO 0.95 0.9063 0.9782 0.9408 8 [1, 2, 5, 6, 8, 9, 10, 12]
SSA 0.9609 0.9666 0.9665 0.9665 6 [1, 4, 5, 7, 9, 11]
GA 0.9494 0.9333 0.9655 0.9492 6 [0, 2, 4, 5, 9, 11]

GWO 0.9488 0.9355 0.9666 0.9507 5 [5, 6, 8, 10, 11]
HHO 0.9321 0.9333 0.9215 0.9273 10 [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12]
WOA 0.9327 0.9032 0.9655 0.9333 7 [0, 5, 6, 7, 9, 10, 11]

NB

PSO 0.7437 0.7027 0.8666 0.7762 6 [0, 1, 5, 9, 10, 11]
SSA 0.7638 0.7272 0.8276 0.7742 5 [1, 4, 5, 10, 11]
GA 0.7626 0.7666 0.7661 0.7665 6 [0, 1, 5, 6, 9, 11]

GWO 0.7438 0.8181 0.6208 0.7059 3 [5, 10, 11]
HHO 0.7311 0.8184 0.60 0.6923 5 [0, 1, 5, 8, 11]
WOA 0.7454 0.75 0.7241 0.7368 2 [0, 8]

LR

PSO 0.8638 0.8437 0.90 0.8709 6 [1, 2, 3, 5, 7, 9]
SSA 0.8649 0.8387 0.8966 0.8666 7 [0, 2, 3, 9, 10, 11, 12]
GA 0.8465 0.8846 0.7931 0.8363 7 [2, 4, 6, 8, 9, 10, 12]

GWO 0.8298 0.8519 0.7933 0.8214 5 [1, 2, 7, 8, 9]
HHO 0.7971 0.8214 0.7666 0.7931 8 [1, 2, 4, 5, 7, 8, 9, 12]
WOA 0.7609 0.8261 0.6552 0.7308 6 [1, 2, 4, 6, 9, 10]

MLP

PSO 0.7477 0.8261 0.6333 0.7169 6 [0, 2, 5, 7, 9, 12]
SSA 0.7465 0.7187 0.7931 0.7541 9 [0, 2, 3, 5, 8, 9, 10, 12]
GA 0.8393 0.88 0.7586 0.8148 6 [2, 4, 5, 8, 10, 12]

GWO 0.9149 0.9285 0.8965 0.9122 5 [1, 5, 8, 10, 12]
HHO 0.8649 0.8387 0.8966 0.8666 10 [1, 2, 4, 5, 7, 8, 9, 10, 11, 12]
WOA 0.8293 0.7941 0.90 0.8437 9 [0, 2, 3, 5, 7, 8, 10, 11, 12]
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Table A5: Performance results of metrics-based JavaScript dataset

Machine Feature
AUC Precision Recall F1-score N_Featureslearning selection

algorithms techniques

RF

PSO 0.9544 0.96 0.9583 0.9592 18 [1, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17,
20, 22, 23, 27, 34]

SSA 0.9653 0.9732 0.9567 0.9649 12 [1, 5, 6, 7, 9, 15, 20, 22, 24, 25, 27, 30]
GA 0.9705 0.9798 0.9605 0.9701 13 [1, 3, 4, 5, 6, 11, 13, 15, 16, 19, 23, 28,

30]
GWO 0.9699 0.9708 0.9689 0.9698 10 [1, 2, 4, 7, 8, 13, 25, 29, 30, 34]
HHO 0.9578 0.9673 0.9473 0.9572 23 [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 14, 15, 18,

20, 21, 22, 24, 26, 29, 30, 31, 33]
WOA 0.9563 0.9691 0.9426 0.9557 13 [1, 2, 3, 5, 7, 8, 9, 16, 17, 21, 22, 24]

SVM

PSO 0.7423 0.7826 0.6707 0.7223 7 [0, 1, 2, 4, 8, 20, 26]
SSA 0.7456 0.8707 0.5766 0.6938 18 [1, 4, 5, 6, 9, 12, 14, 15, 16, 17, 19, 20,

22, 25, 27, 30, 32, 34]
GA 0.8035 0.8554 0.7291 0.7872 13 [2, 4, 6, 7, 8, 10, 15, 16, 20, 21, 26, 27,

32]
GWO 0.7569 0.7845 0.7055 0.7429 12 [2, 7, 8, 9, 10, 11, 14, 15, 16, 20, 26, 33]
HHO 0.5652 0.5374 0.9322 0.6818 4 [7, 14, 18, 20]
WOA 0.7516 0.8721 0.5898 0.7037 12 [0, 2, 4, 7, 9, 11, 13, 17, 24, 26, 30, 33]

KNN

PSO 0.9318 0.9105 0.9577 0.9335 15 [1, 2, 6, 9, 12, 14, 15, 16, 20, 21, 22, 24,
31, 33, 34]

SSA 0.9322 0.9041 0.9671 0.9345 16 [4, 5, 7, 11, 12, 13, 14, 15, 19, 20, 21, 23,
24, 25, 26, 31]

GA 0.9203 0.9011 0.9435 0.9218 15 [2, 4, 5, 6, 7, 10, 11, 13, 15, 18, 19, 25,
27, 31, 34]

GWO 0.9312 0.9032 0.9661 0.9336 13 [1, 7, 11, 14, 15, 17, 20, 24, 25, 27, 31,
33, 34]

HHO 0.9186 0.8952 0.9483 0.9209 16 [1, 2, 5, 7, 10, 11, 13, 15, 16, 18, 21, 28,
29, 31, 32, 34]

WOA 0.9295 0.9043 0.9604 0.9316 23 [2, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 21, 22, 23, 25, 27, 30, 31, 32]

DT

PSO 0.9605 0.9579 0.9633 0.9606 16 [3, 5, 6, 7, 8, 11, 12, 15, 16, 17, 22, 28,
29, 31, 32, 34]

SSA 0.9532 0.9538 0.9529 0.9534 11 [4, 7, 9, 10, 11, 14, 15, 20, 22, 23, 33]
GA 0.9592 0.9595 0.9586 0.9591 13 [3, 6, 8, 9, 13, 14, 16, 18, 20, 23, 25, 27,

32]
GWO 0.9551 0.9523 0.9586 0.9554 11 [9, 10, 11, 15, 17, 20, 22, 25, 28, 29, 32]
HHO 0.9584 0.9479 0.9595 0.9537 13 [0, 8, 9, 11, 13, 16, 17, 18, 19, 22„26, 31,

34]
WOA 0.9567 0.9525 0.9614 0.9569 11 [6, 7, 13, 14, 15, 19, 21, 23, 24, 25, 30]

AB

PSO 0.8923 0.9273 0.8513 0.8877 20 [0, 2, 5, 8, 9, 11, 12, 13, 15, 17, 18, 19,
21, 23, 24, 25, 27, 30, 32, 33]

SSA 0.8749 0.9037 0.8392 0.8702 21 [1, 3, 4, 5, 6, 8, 10, 12, 15, 17, 20, 21, 23,
24, 25, 26, 28, 30, 31, 32, 34]

GA 0.8797 0.9147 0.8373 0.8743 12 [4, 7, 8, 9, 12, 15, 17, 18, 20, 21, 25, 33]
GWO 0.8892 0.9183 0.8561 0.8861 8 [8, 12, 13, 15, 17, 18, 21, 22]
HHO 0.8858 0.9108 0.8551 0.8821 19 [1, 3, 4, 5, 6, 7, 9, 10, 12, 13, 17, 20, 22,

25, 28, 30, 31, 33, 34]
WOA 0.8721 0.9211 0.8137 0.8641 13 [3, 4, 6, 10, 11, 13, 16, 17, 19, 21, 26, 27,

31]

NB PSO 0.6929 0.6414 0.8749 0.7401 13 [1, 2, 3, 4, 8, 14, 15, 18, 21, 24, 25, 30,
34]
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Table A5 continued
Machine Feature

AUC Precision Recall F1-score N_Featureslearning selection
algorithms techniques

NB

SSA 0.6036 0.5802 0.7488 0.6538 22 [1, 2, 3, 4, 6, 8, 9, 10, 11, 13, 15, 16, 17,
19, 21, 23, 26, 27, 29, 31, 33, 34]

GA 0.6553 0.6071 0.7796 0.6826 8 [8, 9, 14, 16, 21, 27, 29, 30]
GWO 0.6396 0.5975 0.8561 0.7038 8 [5, 10, 12, 14, 15, 17, 26, 33]
HHO 0.6271 0.5978 0.7761 0.6754 17 [3, 4, 5, 6, 7, 8, 9, 12, 16, 17, 19, 21, 23,

26, 29, 31, 34]
WOA 0.5654 0.5363 0.5671 0.5513 6 [2, 10, 17, 25, 31, 33]

LR

PSO 0.7226 0.7095 0.7535 0.7308 13 [4, 6, 8, 9, 11, 12, 14, 15, 18, 20, 23, 24,
25, 30]

SSA 0.6965 0.6618 0.8043 0.7261 15 [5, 7, 8, 10, 11, 13, 19, 20, 22, 23, 24, 25,
28, 32, 33]

GA 0.7362 0.7307 0.7478 0.7392 15 [8, 12, 13, 18, 19, 20, 21, 22, 23, 25, 27,
28, 29, 31, 33]

GWO 0.7238 0.6904 0.8118 0.7462 16 [0, 1, 3, 6, 11, 12, 14, 16, 19, 24, 25, 28,
29, 30, 31, 33]

HHO 0.6942 0.6648 0.7855 0.7203 24 [1, 2, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 18,
19, 20, 22, 23, 24, 25, 26, 29, 31, 32, 33]

WOA 0.7063 0.6931 0.7394 0.7155 27 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
18, 19, 20, 23, 24, 25, 26, 27, 28, 29, 30]

MLP

PSO 0.6603 0.7143 0.5551 0.6247 22 [2, 3, 4, 5, 7, 8, 9, 10, 13, 14, 15, 16, 17,
18, 22, 24, 26, 28, 30, 32, 33, 34]

SSA 0.8573 0.8916 0.8127 0.8504 18 [1, 2, 3, 6, 7, 11, 12, 13, 15, 16, 22, 23,
24, 26, 30, 32, 33, 34]

GA 0.8546 0.8632 0.8429 0.8526 21 [0, 1, 2, 3, 4, 5, 6, 7, 11, 13, 15, 16, 17,
19, 20, 21, 23, 24, 27, 33]

GWO 0.8345 0.8099 0.8739 0.8407 16 [2, 3, 4, 8, 9, 16, 18, 21, 22, 23, 26, 27,
30, 32, 33, 34]

HHO 0.8745 0.8783 0.8692 0.8737 19 [0, 2, 45, 6, 8, 9, 10, 11, 12, 13, 14, 16,
21, 22, 25, 26, 27, 33]

WOA 0.8467 0.8275 0.8758 0.8509 23 [0, 1, 2, 3, 4, 6, 7, 8, 9, 13, 14, 15, 16, 19,
20, 21, 23, 24, 25, 27, 32, 33, 34]
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Table A6. Performance results of text-features-based Drupal dataset

Machine learning Feature selection AUC Precision Recall F1-score N_Featuresalgorithms sechniques

RF

PSO 0.8929 0.8235 0.8878 0.8544 1740
SSA 0.9289 0.875 0.9156 0.8948 1814
GA 0.9658 0.9356 0.9286 0.9321 1614

GWO 0.9666 0.9587 0.9289 0.9435 442
HHO 0.8928 0.8666 0.9286 0.8965 956

WOA 0 0.9289 0.9283 0.9254 0.9268 177

SVM

PSO 0.8929 0.9231 0.8571 0.8888 1800
SSA 0.8578 0.8125 0.9286 0.8666 1862
GA 0.9289 0.9145 0.8571 0.8848 1519

GWO 0.8573 0.9166 0.7857 0.8461 513
HHO 0.8571 0.7898 0.7143 0.7501 158
WOA 0.8215 0.8462 0.7857 0.8148 362

KNN

PSO 0.8929 0.8666 0.9286 0.8965 1739
SSA 0.9641 0.9333 0.9789 0.9555 1855
GA 0.9642 0.9845 0.9285 0.9556 1576

GWO 0.9929 0.9912 0.9899 0.9903 597
HHO 0.8954 0.8235 0.9087 0.8641 804
WOA 0.9643 0.9356 0.9286 0.9321 122

DT

PSO 0.8216 0.7647 0.9286 0.8387 1808
SSA 0.8928 0.8235 0.8812 0.8513 1876
GA 0.9648 0.9333 0.9485 0.9608 1736

GWO 0.9285 0.875 0.9148 0.8945 528
HHO 0.8573 0.7777 0.8821 0.8266 1836
WOA 0.8929 0.9974 0.7857 0.8799 1834

AB

PSO 0.8929 0.8666 0.9113 0.8883 1831
SSA 0.9286 0.875 0.9142 0.8942 1825
GA 0.9648 0.9745 0.9486 0.9614 1614

GWO 0.9285 0.875 0.9227 0.8982 1181
HHO 0.9642 0.9333 0.9318 0.9325 1509
WOA 0.8931 0.8235 0.8988 0.8595 1921

NB

PSO 0.9289 0.8847 0.8572 0.8707 1738
SSA 0.8572 0.8452 0.7143 0.7743 1899
GA 0.8929 0.8235 0.8788 0.8506 1532

GWO 0.8927 0.8154 0.7857 0.8003 302
HHO 0.8214 0.9090 0.7143 0.7999 1313
WOA 0.8927 0.9231 0.8571 0.8888 1499

LR

PSO 0.9642 0.9333 0.9415 0.9374 1805
SSA 0.9288 0.875 0.9012 0.8879 1870
GA 0.9542 0.9233 0.9892 0.9552 1584

GWO 0.9982 0.9911 0.9988 0.9949 365
HHO 0.9641 0.9312 0.9325 0.9318 2007
WOA 0.9682 0.9433 0.9512 0.9472 360

MLP

PSO 0.8929 0.8666 0.9286 0.8966 1798
SSA 0.8234 0.7647 0.9287 0.8387 1915
GA 0.9613 0.9224 0.9825 0.9515 1514

GWO 0.9986 0.9901 0.9928 0.9914 642
HHO 0.9642 0.9333 0.9242 0.9246 815
WOA 0.9788 0.9333 0.9415 0.9378 1813
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Table A7. Performance results of text-features-based Moodle dataset

Machine learning Feature selection AUC Precision Recall F1-score N_Featuresalgorithms techniques

RF

PSO 0.9263 0.9029 0.9554 0.9284 7938
SSA 0.9434 0.9164 0.9761 0.9453 8097
GA 0.9383 0.9324 0.9452 0.9387 7836

GWO 0.9315 0.8937 0.9794 0.9346 3508
HHO 0.9469 0.9364 0.9589 0.9475 4898
WOA 0.9263 0.9055 0.9521 0.9282 4468

SVM

PSO 0.7842 0.9415 0.6062 0.7375 7843
SSA 0.8031 0.9784 0.6198 0.7589 8048
GA 0.7774 0.9133 0.6131 0.7336 8148

GWO 0.7723 0.9035 0.6096 0.7281 7081
HHO 0.7739 0.9348 0.5891 0.7227 8110
WOA 0.7825 0.9941 0.5684 0.7233 5425

KNN

PSO 0.9421 0.8997 0.9829 0.9394 8049
SSA 0.9001 0.8498 0.9692 0.9056 8146
GA 0.9221 0.8742 0.9761 0.9223 8165

GWO 0.9224 0.9126 0.9657 0.9384 5653
HHO 0.9386 0.8816 0.9692 0.9233 8273
WOA 0.9365 0.8974 0.9589 0.9272 9683

DT

PSO 0.9232 0.8782 0.9623 0.9183 8032
SSA 0.9359 0.8984 0.9384 0.9179 8182
GA 0.9212 0.8907 0.9486 0.9187 7777

GWO 0.9561 0.9302 0.9589 0.9443 4126
HHO 0.9242 0.8846 0.9452 0.9139 7445
WOA 0.9221 0.9085 0.9178 0.9131 13546

AB

PSO 0.8921 0.8225 0.9758 0.9026 8105
SSA 0.9195 0.8769 0.9761 0.9238 8139
GA 0.9161 0.8627 0.9897 0.9218 7558

GWO 0.9315 0.8937 0.9795 0.9346 5260
HHO 0.9195 0.8816 0.9692 0.9233 8304
WOA 0.9092 0.8699 0.9623 0.9138 8374

NB

PSO 0.8442 0.7638 0.9966 0.8648 8060
SSA 0.8168 0.7318 0.9818 0.8385 8229
GA 0.8631 00.7849 0.9778 0.8707 7596

GWO 0.8356 0.7526 0.9818 0.8521 3992
HHO 0.8185 0.7337 0.9878 0.8419 11754
WOA 0.8322 0.7487 0.9888 0.8521 14599

LR

PSO 0.8938 0.8267 0.9966 0.9037 8056
SSA 0.9024 0.8366 0.9978 0.9111 8259
GA 0.9041 0.8391 0.9918 0.9091 7583

GWO 0.8904 0.8202 0.9789 0.8925 3107
HHO 0.9144 0.8601 0.9897 0.9204 7383
WOA 0.8989 0.8319 0.9978 0.9082 7005

MLP

PSO 0.9023 0.8366 0.9789 0.9021 7847
SSA 0.8938 0.8965 0.8904 0.8934 8247
GA 0.8767 0.8437 0.9246 0.8822 8111

GWO 0.9144 0.8757 0.9657 0.9186 7920
HHO 0.8972 0.8295 0.9856 0.9008 6583
WOA 0.8904 0.8221 0.9966 0.9009 9036
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Table A8. Performance results of text-features-based PHPMyAdmin dataset

Machine learning Feature selection AUC Precision Recall F1-score N_Featuresalgorithms techniques

RF

PSO 0.9831 0.9677 0.9712 0.9694 2268
SSA 0.9661 0.9375 0.9145 0.9258 2421
GA 0.9789 0.9442 0.9645 0.9542 2118

GWO 0.9833 0.9666 0.9918 0.9791 822
HHO 0.9742 0.9555 0.9945 0.9656 1237
WOA 0.8983 0.8965 0.8978 0.8972 1721

SVM

PSO 0.8644 0.92 0.7931 0.8518 2388
SSA 0.8475 0.8166 0.7586 0.7865 2519
GA 0.8478 0.8565 0.7333 0.7903 2041

GWO 0.9152 0.9311 0.90 0.9152 560
HHO 0.7626 0.90 0.60 0.72 2021
WOA 0.8644 0.8541 0.7333 0.7891 462

KNN

PSO 0.9322 0.8824 0.8978 0.8903 2381
SSA 0.9661 0.9375 0.9415 0.9395 2500
GA 0.9833 0.9666 0.9778 0.9722 2390

GWO 0.9662 0.9465 0.9558 0.9511 894
HHO 0.8983 0.8333 0.8812 0.8566 1353
WOA 0.9322 0.8787 0.9015 0.8899 2736

DT

PSO 0.9831 0.9345 0.9289 0.9317 2330
SSA 0.9661 0.9476 0.9554 0.9516 2465
GA 0.9492 0.9063 0.9331 0.9196 2349

GWO 0.9859 0.9677 0.9789 0.9736 738
HHO 0.8983 0.8286 0.8844 0.8555 1859
WOA 0.8827 0.8235 0.9655 0.8888 2856

AB

PSO 0.9827 0.9544 0.9614 0.9578 2410
SSA 0.9877 0.9456 0.9541 0.9498 2378
GA 0.9661 0.9375 0.9542 0.9457 2197

GWO 0.9879 0.9667 0.9789 0.9727 1540
HHO 0.9152 0.9286 0.8965 0.9123 2195
WOA 0.9616 0.9412 0.9433 0.9422 3200

NB

PSO 0.8305 0.75 0.8245 0.7855 2375
SSA 0.8474 0.7631 0.8355 0.7976 2463
GA 0.7966 0.7073 0.7889 0.7458 2080

GWO 0.7627 0.6905 0.7088 0.6995 647
HHO 0.7333 0.6444 0.7225 0.6813 2271
WOA 0.8135 0.7317 0.8145 0.7708 3206

LR

PSO 0.9666 0.9917 0.9333 0.9616 2335
SSA 0.9491 0.9121 0.8965 0.9042 2539
GA 0.9322 0.9643 0.90 0.9311 2081

GWO 0.9661 0.9356 0.9123 0.9238 624
HHO 0.9155 0.9311 0.90 0.9153 2678
WOA 0.9492 0.9655 0.9331 0.9492 1143

MLP

PSO 0.9316 0.9629 0.8965 0.9286 2360
SSA 0.9655 0.9375 0.9412 0.9393 2478
GA 0.9778 0.9485 0.9389 0.9437 2203

GWO 0.9878 0.9756 0.9614 0.9684 685
HHO 0.9831 0.9666 0.9721 0.9693 2624
WOA 0.9491 0.9333 0.9655 0.9492 2073
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Table A9. Performance results of text-features-based JavaScript dataset

Machine learning Feature selection AUC Precision Recall F1-score N_Featuresalgorithms techniques

RF

PSO 0.9985 0.9981 0.9929 0.9985 3172
SSA 0.9972 0.9984 0.9945 0.9972 3282
GA 0.9995 0.9878 0.9981 0.9978 3159

GWO 0.9981 0.9991 0.9972 0.9981 2727
HHO 0.9946 0.9978 0.9758 0.9882 5729
WOA 0.9995 0.9994 0.9991 0.9995 6552

SVM

PSO 0.9609 0.9321 0.9943 0.9622 3272
SSA 0.9665 0.9404 0.9962 0.9675 3300
GA 0.9665 0.9435 0.9925 0.9674 3267

GWO 0.9586 0.9333 0.9878 0.9597 1462
HHO 0.9788 0.9593 0.9991 0.9793 1625
WOA 0.9519 0.9255 0.9831 0.9534 5687

KNN

PSO 0.9741 0.9623 0.9868 0.9744 3221
SSA 0.9675 0.9437 0.9944 0.9684 3216
GA 0.9788 0.9652 0.9934 0.9792 3304

GWO 0.9755 0.9676 0.9839 0.9757 2829
HHO 0.9892 0.9859 0.9925 0.9892 7920
WOA 0.9896 0.9869 0.9928 0.9897 9766

DT

PSO 0.9915 0.9887 0.9789 0.9837 3099
SSA 0.9978 0.9784 0.9578 0.9679 3176
GA 0.9847 0.9812 0.9846 0.9828 2901

GWO 0.9914 0.9963 0.9978 0.9972 1204
HHO 0.9745 0.9625 0.9562 0.9593 3168
WOA 0.9994 0.9988 0.9921 0.9954 3433

AB

PSO 0.9947 0.9978 0.9952 0.9964 3043
SSA 0.9985 0.9956 0.9958 0.9916 3250
GA 0.9942 0.9924 0.9845 0.9884 3133

GWO 0.9995 0.9981 0.9854 0.9917 7719
HHO 0.9932 0.9954 0.9876 0.9914 8188
WOA 0.9914 0.9911 0.9863 0.9886 8197

NB

PSO 0.9985 0.9991 0.9981 0.9986 3100
SSA 0.9957 0.9953 0.9963 0.9957 3208
GA 0.9995 0.9991 0.9990 0.9996 2817

GWO 0.9995 0.9994 0.9992 0.9993 6659
HHO 0.9998 0.9945 0.9946 0.9942 4856
WOA 0.9978 0.9947 0.9952 0.9949 4522

LR

PSO 0.9912 0.9445 0.9685 0.9563 3051
SSA 0.9818 0.9525 0.9669 0.9596 3210
GA 0.9771 0.9859 0.9554 0.9704 2770

GWO 0.9912 0.9879 0.9715 0.9795 4643
HHO 0.9698 0.9781 0.9772 0.9776 5757
WOA 0.9745 0.9878 0.9884 0.9881 6319

MLP

PSO 0.9976 0.9972 0.9981 0.9974 3019
SSA 0.9991 0.9992 0.9989 0.9989 4195
GA 0.9945 0.9965 0.9978 0.9984 3212

GWO 0.9995 0.9981 0.9925 0.9991 3094
HHO 0.9964 0.9995 0.9987 0.9994 5880
WOA 0.9915 0.9991 0.9996 0.9997 2289
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