
e-Informatica Software Engineering Journal
Volume 19, Issue 1, pages: 1–37
DOI: 10.37190/e-Inf250104 BibTEX

Emotion Classification on Software
Engineering Q&A Websites

Didi Awovi Ahavi-Tete* , Sangeeta Sangeeta*
*Corresponding authors: didi.ahavitete@gmail.com, s.sangeeta@keele.ac.uk

Article info

Dataset link: https:
//drive.google.com/drive/fol
ders/1qXyLx9OhpHVcXL
MTsTYdjhxhV-t6G54j

Keywords:
empirical and experimental
studies in software
engineering
data mining in software
engineering
prediction models in
software engineering
AI and knowledge based
software engineering

Submitted: 20 Nov. 2023
Revised: 2 Oct. 2024
Accepted: 6 Oct. 2024
Available online: 19 Nov. 2024

Abstract

Background. With the rapid proliferation of question-and-answer web-
sites for software developers like Stack Overflow, there is an increasing need
to discern developers’ emotions from their posts to assess the influence of
these emotions on their productivity such as efficiency in bug fixing.
Aim. We aimed to develop a reliable emotion classification tool capable
of accurately categorizing emotions in Software Engineering (SE) websites
using data augmentation techniques to address the data scarcity problem
because previous research has shown that tools trained on other domains
can perform poorly when applied to SE domain directly.
Method. We utilized four machine learning techniques, namely BERT,
CodeBERT, RFC (Random Forest Classifier), and LSTM. Taking an inno-
vative approach to dataset augmentation, we employed word substitution,
back translation, and easy data augmentation methods. Using these we
developed sixteen unique emotion classification models: EmoClassBERT-
-Original, EmoClassRFC-Original, EmoClassLSTMOriginal, EmoClass-
CodeBERT-Original, EmoClassLSTM-Substitution, EmoClassBERT-Sub-
stitution, EmoClassRFC-Substitution, EmoClassCodeBERT-Substitution,
EmoClassBERT-Translation, EmoClassLSTM-Translation, EmoClassRFC
Translation, EmoClassCodeBERT-Translation, EmoClassBERT-EDA, Emo
ClassLSTM-EDA, EmoClassCodeBERT-EDA, and EmoClassRFC-EDA.
We compared the performance of this model on a gold standard state-of-
the-art database and techniques (Multi-label SO BERT and EmoTxt).
Results. An initial investigation of models trained on the augmented
datasets demonstrated superior performance to those trained on the origi-
nal dataset. EmoClassLSTM-Substitution, EmoClassBERT-Substitution,
EmoClassCodeBERT-Substitution, and EmoClassRFC-Substitution mod-
els show improvements of 13%, 5%, 5%, and 10% as compared to EmoClass-
LSTM-Original, EmoClassBERT-Original, EmoClassCodeBERT-Original,
and EmoClassRFC-Original, respectively, in average F1-score. The Emo-
ClassCodeBERT-Substitution performed the best and outperformed the
Multi-label SO BERT and Emotxt by 2.37% and 21.17%, respectively, in
average F1-score. A detailed investigation of the models on 100 runs of
the dataset shows that BERT-based and CodeBERT-based models gave
the best performance. This detailed investigation reveals no significant
differences in the performance of models trained on augmented datasets
and the original dataset on multiple runs of the dataset.
Conclusion. This research not only underlines the strengths and weak-
nesses of each architecture but also highlights the pivotal role of data
augmentation in refining model performance, especially in the software
engineering domain.

© 2025 The Authors. Published by Wrocław University of Science and Technology Publishing House.
This is an open access article under the CC BY license international.

1

https://www.e-informatyka.pl/
https://www.e-informatyka.pl/index.php/einformatica/volumes/volume-2024/
https://www.e-informatyka.pl/EISEJ/papers/2025/1/4
https://www.e-informatyka.pl/wp-content/plugins/wp-publications/eInformatica2025Art04.bib
https://orcid.org/0009-0001-7348-2763
https://orcid.org/0000-0002-3734-7871
mailto:didi.ahavitete@gmail.com
mailto:s.sangeeta@keele.ac.uk
https://drive.google.com/drive/folders/1qXyLx9OhpHVcXLMTsTYdjhxhV-t6G54j
https://drive.google.com/drive/folders/1qXyLx9OhpHVcXLMTsTYdjhxhV-t6G54j
https://drive.google.com/drive/folders/1qXyLx9OhpHVcXLMTsTYdjhxhV-t6G54j
https://drive.google.com/drive/folders/1qXyLx9OhpHVcXLMTsTYdjhxhV-t6G54j
http://creativecommons.org/licenses/by/4.0/


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

1. Introduction

Software engineering (SE) is a domain that, while inherently technical, is deeply influenced
by human factors such as emotions, cognitive biases, and decision-making processes. These
human-centric aspects play a crucial role in shaping the dynamics of software development,
from team collaborations to the end product’s quality [1]. The emotional undertones evident
in various communication channels, whether in code comments, pull requests, or interactive
developer forums, can provide insights into the effect of developers [2]. They can highlight
potential misunderstandings, pinpoint areas that spark contention, or even forecast the
emergence of software bugs and vulnerabilities [3, 4]. Such insights, if harnessed correctly,
can be instrumental in anticipating issues and enhancing overall software development
efficiency.

Previous research shows that emotion can greatly impact various software development
activities. For example, positive emotion can improve job satisfaction and productivity [5].
Experiments by Girardi et al. [6] show that positive emotions occur when developers work
on implementing new features. However, their results also show that negative emotions
are triggered in developers when they encounter unexpected code behavior and missing
documentation. It can also be caused by time pressure or being stuck with the task. A study
by Graziotin et al. [7] shows possible consequences of positive and negative emotions. For
example, their study shows that positive emotion leads to several positive consequences
like high code quality, high motivation, higher creativity, etc., whereas negative emotion
causes various negative consequences like low productivity, low participation, and work
withdrawal. A study by Novielli et al. [8], shows that negative emotion can also lead to
difficulty in learning new programming languages. All of the above examples indicate the
importance of correctly recognizing the emotions of software developers.

The above research shows that emotion recognition is important for various software
development tasks. However, it is found to be very challenging because of data scarcity
issues. In the software engineering domain, there is limited availability of the ground truth
or manually annotated data because manual annotation is resource resource-intensive task
[9] [10]. Also, there are researches that show that emotion classification models trained
on a dataset of other domains do not perform well when used in the software engineering
domain [11]. Advancements in natural language processing (NLP) have unveiled powerful
models like BERT, CodeBERT, LSTM networks, and ensemble methods like RFC. These
models have demonstrated state-of-the-art results in various NLP tasks [12, 13], prompting
exploration into their potential for emotion classification within the SE realm [14, 15]. Yet,
one perennial challenge in machine learning (ML) and NLP tasks is the need for extensive
and diverse training datasets [2]. Hence, there is a need to address this data scarcity issue.
In this paper, we focus on improving the performance of emotion classification in the SE
domain using the data augmentation technique.

Data augmentation, a technique of artificially enhancing the dataset size and variability,
has shown promising results in improving model robustness and generalization [16]. Among
various data augmentation techniques, word substitution and back translation have garnered
attention for their ability to retain semantic integrity while introducing syntactic variability
[2, 16, 17]. Additionally, Kufakou et al. [18] show that the easy data augmentation approach
gave the best results in their experiment. This study aims to investigate the efficacy of
data augmentation techniques with machine learning algorithms in the context of emotion
classification in the SE domain. In this research, we utilized four machine learning techniques,
namely Bidirectional Encoder Representations from Transformers (BERT), CodeBERT, Long 2

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

Short-Term Memory (LSTM) neural network, and the Random Forest Classifier (RFC) model.
We used three data argumentation techniques: word substitution, back translation, and Easy
Data Augmentation (EDA). Using these we developed sixteen unique emotion classification
models: EmoClassBERTOriginal, EmoClassCodeBERT-Original, EmoClassRFC-Original,
EmoClassLSTM-Original, EmoClassLSTM-Substitution, EmoClassBERT-Substitution, Emo
ClassCodeBERT-Substitution, EmoClassRFC-Substitution, EmoClassBERT-Translation,
EmoClassCodeBERT-Translation, EmoClassLSTM-Translation, EmoClassRFC-Translation,
EmoClassBERT-EDA, EmoClassCodeBERT-EDA, EmoClassLSTM-EDA, and EmoClass
RFC-EDA. We evaluated the performance of the proposed model(s) on a gold-standard
state-of-the-art database [19]. We compared its performance with state-of-art techniques
Multi-label SO BERT and EmoTxt [14]. Specifically, we answer the following research
questions in this study:
– RQ1: Which classification model performs better between LSTM, BERT,

CodeBERT, and RFC? Experimental results show that the BERT and codeBERT
model outperformed LSTM and RFC in emotion classification.

– RQ2: An initial investigation: Can data augmentation improve the model’s
performance? Experimental results show that models trained on the augmented
datasets demonstrated superior performance to those trained on the original dataset.
EmoClassLSTM-Substitution, EmoClassBERT-Substitution, EmoClassCodeBERT-Sub-
stitution, and EmoClassRFC-Substitution models show improvements of 13%, 5%,
and 10% as compared to EmoClassLSTM-Original, EmoClassBERT-Original, and
EmoClassRFC-Original, respectively, in average F1-score.

– RQ3: How do EmoClassLSTM, EmoClassBERT, EmoClassCodeBERT, and
EmoClassRFC compare to existing tools? The EmoClassCodeBERT-Substitution
performed best and outperformed the Multi-label SO BERT and Emotxt by 2.37% and
21.17%, respectively, in average F1-score.

– RQ4: How does algorithm randomness affect the performance of the proposed
models? The BERT-based and CodeBERT models perform best for emotion classification.
There is no significant difference in the performance of models trained on augmented
and non-augmented data.
By bridging the advanced NLP techniques with the unique challenges and intricacies of

SE texts, this research hopes to contribute a robust methodology for emotion recognition
in this vital domain.

2. Background

In today’s interconnected world, a vast number of individuals across the globe are uti-
lizing various online platforms like blogs, forums, and social media sites to express their
thoughts and share opinions. In the SE domain, online communities and channels have
become prominent platforms for individuals to express their views and share experiences.
SE communities, which include forums, chat groups, and dedicated platforms like GitHub1
and Stack Overflow2, serve as virtual gathering spaces for developers, programmers, and
information technology project managers. These channels have emerged as valuable hubs
of knowledge, where professionals discuss coding practices and issues [20]. Consequently,

1https://github.com/
2https://stackoverflow.com/ 3

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4
https://github.com/
https://stackoverflow.com/


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

a substantial amount of valuable data is generated within these communities, forming
a rich source of insights into the thoughts, opinions, and challenges software engineers
worldwide face.

Liu [21] describes sentiment analysis, also known as opinion mining, as a discipline
intersecting natural language processing, text mining, and computational linguistics. It
evaluates the emotional tone of texts from diverse sources like social media, e-commerce sites,
and blogs. This analysis aids organizations in discerning public sentiment, understanding
product perceptions, and detecting emerging trends [22]. Emotion classification, also known
as affective computing, is a subfield of sentiment analysis that focuses on identifying,
understanding, and interpreting human emotions [23]. While sentiment analysis classifies
the feelings expressed in a text into three categories: positive, negative, and neutral, emotion
classification goes further to recognize a wide range of human emotions, including Joy,
Anger, Sadness, Surprise, Disgust, and Fear [24].

The SE field is not only technical but also deeply human, involving collaboration,
creativity, and problem-solving [25]. Emotions, like Sadness, Anger, and Joy, play a pivotal
role in influencing productivity, team dynamics, and decision-making in SE [1, 26]. SE
researchers have been employing sentiment analysis techniques as discussed in several
applications [9, 15, 27]. For example, Murgia et al. [28] observed that issue reports carry
emotions. Ortu et al. [3] reported that emotions could influence team communication,
decision-making, and problem-solving strategies, thereby significantly affecting the software
development process. They showed there is a correlation between emotion expressed in issue
comments and bug-fixing productivity. They mined emotions from 560 000 Jira comments,
revealing that expressions of Joy and Love correlated with faster issue resolutions, while
Sadness was linked to longer delays. Understanding and addressing these emotions is
essential for fostering a positive and productive work environment. Uddin et al. [29] mined
the Application Programming Interface (API) discussion from StackOverflow and reported
that sentiments can be used to predict pros and cons related to the adoption of APIs.
Several studies use sentiment to detect issues in applications’ reviews [30]. Gu et al. [31]
analyzed sentiment in user reviews. They proposed the SUR-Miner model which helps
classify user reviews into one of the predefined classes like aspect evaluation, bug reports,
feature requests, praise, and others. SUR-Miner’s ability to discern and categorize user
feedback into predefined classes significantly enhances the analysis and interpretation of
user sentiments when evaluating applications. Panichella et al. [32], used sentiment analysis
techniques combined with natural language processing and text analysis to classify user
reviews into the following classes: Information Giving, Information Seeking, Feature Request,
and Problem Discovery. Their approach proves valuable for pinpointing problem areas in
the software and directing efforts towards resolving those identified bugs. Furthermore,
this method helps to quickly spot areas requiring improvement, empowering developers
to swiftly address these issues and deploy new functionalities that align with end users’
preferences and needs. Rahman et al. [33] used opinion mining to recommend insightful
comments from source code on StackOverflow.

Despite the progress made in the field, Imran et al. [2], reported the unsuitability of
state-of-the-art emotion categorization tools on SE data. The research also highlighted how
the tool’s accuracy decreases when trained on one communication channel and assessed on
another. Hence, from this, we can say that emotion classification on SE Q&A websites is
still a developing field of study. This research aims to develop an emotion classification
algorithm capable of effectively identifying the emotions of software developers on SE
communication channels to investigate and implement techniques for improving the accuracy 4

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

and generalization of the prediction model. We use the gold standard (manually) annotated
dataset3 extracted from Stack Overflow extracted by Novielli et al. [19] for this research.
By leveraging NLP, the preprocessing tasks were performed followed by the implementation
of data augmentation techniques. We developed three emotion classification algorithms
using the LSTM, the BERT, and the RFC model. The models were evaluated against the
Multi-label Stack Overflow BERT model and EmoTxt presented in [14].

3. Related work

The recognition of the role of emotion in SE has gained substantial momentum within
the academic and industrial communities in recent years. This section aims to provide an
in-depth review of the literature relating to this topic, surveying the progression and future
trajectories of this field.

3.1. Sentiment analysis in software engineering

In their research, Jongeling et al. [34] conducted an in-depth evaluation of the performance
of two widely used sentiment analysis tools, namely SentiStrength [35] and NLTK [36].
Their analysis initially included four tools but ultimately focused on SentiStrength and
NLTK. They used seven datasets for their investigation, including issue trackers and
questions from Stack Overflow, a popular online platform for the programming community.
Their findings highlighted a significant challenge when applying these sentiment analysis
tools to SE contexts. Both SentiStrength and NLTK were initially developed for non-SE
domains, which have substantial differences in language and sentiment expression compared
to texts in the SE field. Their observations underscore the need for sentiment analysis tools
specifically designed and trained for the unique characteristics of SE texts.

Guzman et al. [27] adopted a lexical-based technique to analyze the sentiments expressed
in 60425 commit comments of 29 OSS projects. SentiStrength was used to convert emotions
expressed in commit comments into quantitative values. SentiStrength allocates specific
scores to tokens listed in a dictionary, which also encompasses common emoticons. Words
expressing negative sentiments are assigned a value ranging between [−5, −1], while those
expressing positive sentiments receive a value between [1, 5]. Words with neutral sentiment
are assigned values of 1 and −1. On the other hand, extreme sentiment expressions, words
with very positive and negative feelings, are given scores of 5 and −5, respectively. A commit
comment is considered to be positive if its overall emotion score falls within the range of
[1, 5], negative if the score is in the [−1, −5] range, and neutral if the score lies within the
[−1, 1] range. Furthermore, an analysis was conducted on the correlation between these
quantified emotions and various factors such as the programming language used, the team
distribution, and others. The researchers emphasized looking beyond the average emotion
score of the committed messages. They recommended considering both average positive and
negative scores, and the spread of positive, negative, and neutral documents for a deeper
understanding of the emotional content.

To overcome the limitations associated with SentiStrength, Islam and Zibran [37] imple-
mented SentiStrength-SE, a sentiment analysis tool built upon SentiStrength (lexical-based

3https://github.com/collab-uniba/EmotionDatasetMSR18/blob/master/Emotions_GoldSandard_and
Annotation.xlsx 5

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4
https://github.com/collab-uniba/EmotionDatasetMSR18/blob/master/Emotions_GoldSandard_andAnnotation.xlsx
https://github.com/collab-uniba/EmotionDatasetMSR18/blob/master/Emotions_GoldSandard_andAnnotation.xlsx


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

approach) and specifically tailored to the SE domain. This tool integrates an understanding
of the nuances and jargon used in the field, enabling it to interpret sentiment more
accurately than general sentiment analysis tools. SentiStrength-SE proved superior to the
original SentiStrength tool when evaluated using a substantial dataset. This dataset has
5600 issue comments from various SE projects.

The research led by Ahmed et al. [15] resulted in the creation of SentiCR, a specialized
sentiment analysis tool for SE. This development came about due to the inadequacy of the
existing tools they evaluated using their dataset of 2000 code review comments from 20 Open
Source Software projects. SentiCR was developed using the Python programming language,
incorporating the Natural Language Toolkit (NLTK) for language preprocessing tasks. Then,
the scikit-learn library was employed for the supervised learning algorithms. As part of the
data preprocessing tasks, the Term Frequency – Inverse Document Frequency (TF-IDF)
method was used for feature extraction, and then eight supervised learning algorithms were
evaluated. These include Adaptive Boosting, Decision Tree, Gradient Boosting Tree, Naive
Bayes, Random Forest, Multilayer Perceptron, Support Vector Machine with Stochastic
Gradient Descent and Linear Support Vector Machine. The researchers observed that the
Gradient Boosting Tree performed better than other models, with an accuracy of 82%.

Calefato et al. [38] introduced Senti4SD, a sentiment polarity classifier. Over 4000
manually annotated posts from Stack Overflow served as the training and testing basis for
the classifier. Senti4SD’s semantic features are derived from a distributional semantic model
(DSM) that utilizes word embedding. The DSM was established by executing Word2vec
on a corpus of more than 20 million documents sourced from Stack Overflow, thereby
generating word vectors that encapsulate the communication style of developers. Senti4SD,
trained using Support Vector Machines (SVM), overcame the problem of negative bias
prevalent in existing sentiment analysis tools by combining lexicon-based, keyword-based,
and semantic features. Negative bias refers to the phenomenon where texts that are actually
neutral in tone are incorrectly identified as expressing negative emotions. Notably, a 19%
improvement in precision for the negative class and a 25% improvement in recall for the
neutral class were observed when compared with SentiStrength.

In contrast to the aforementioned studies, our research focuses on developing an emotion
recognition model tailored to the software engineering domain, with the unique ability
to classify and differentiate between specific emotions. By doing so, we aim to provide
a nuanced and domain-specific understanding of emotional states within the context of
software development, which can have significant implications for improving the overall SE
processes and work environment.

3.2. Emotion classification in software engineering

Identifying specific emotions, rather than just general sentiment, offers a richer under-
standing of software engineers’ emotional states. This detailed perspective aids in grasping
team dynamics, decision-making, and productivity [39]. For example, spotting frustration
may indicate task challenges, while joy or satisfaction could signify successful teamwork or
development. Responding to this need, Calefato et al. [40] proposed EmoTxt, an open-source
toolkit tailored for emotion detection in text. It was trained on two key datasets: 4800
Stack Overflow posts created for the study, and 4000 Jira comments from Ortu et al. [3].
EmoTxt uses six binary classifiers to detect specific emotions: Joy, Love, Sadness, Anger,
Surprise, and Fear. Utilizing a supervised learning approach with Support Vector Machines
(SVM), it effectively identifies emotional patterns in written content. 6

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

Murgia et al. [20] developed classifiers for each emotion category (Love, Joy, Sadness,
and Neutral), with each classifier calculating the probability of a particular emotion being
present in a comment. They created five versions of each classifier using SVM, Naive Bayes
(NB), Single Layer Perceptron (SLP), K-Nearest Neighbor (KNN), and Random Forest
(RF). Using bootstrap validation on Apache Software Foundation project comments, the
SVM classifiers proved most effective for detecting love, joy, and sadness, warranting further
examination. The SVM models’ performance was later assessed on a separate test set of
comments.

Recognizing the limitations of traditional ML techniques, researchers began to explore
more advanced methods, particularly Deep Learning (DL) algorithms. DL techniques are
especially suitable for complex tasks such as emotion classification because they can handle
high-dimensional data and capture intricate patterns within the data. Bleyl and Buxton
[14] implemented BERT models for emotion recognition in Stack Overflow comments
drawing on Novielli, et al’s. [19] dataset. Due to the dataset’s imbalance, they augmented
underrepresented emotion classes. They also fine-tuned BERT for the SE context by adding
993 prevalent technical words and emoticons from Stack Overflow to BERT’s tokenizer
vocabulary. Then, leveraging Masked Language Modelling, they trained BERT on a large
dataset of unlabeled Stack Overflow comments and fine-tuned it on the Stack Overflow
annotated dataset. Their multi-label BERT model outperformed other models.

Our research builds upon previous studies by investigating various machine learning
architectures and techniques to improve the overall performance of emotion recognition
models in the context of software engineering. In this paper, we explored data augmentation
methods for enhancing the robustness and generalization capabilities of our emotion
recognition models. In this paper, we explored data augmentation methods for enhancing
the robustness and generalization capabilities of our emotion recognition models. Imran et
al. [2], proposed data augmentation-based techniques for emotion classification on the SE
dataset to address the data scarcity issue. They report an improvement of 9.3% in micro
F1-score as compared to popular SE tools. However, they explore only 3 types of data
augmentation techniques: Unconstrained, lexicon, and polarity-based. They used a stacked
approach for data augmentation. They used a stacked approach for data augmentation.
In this, we focus on using simple data augmentation techniques like “back translation” to
find out their effectiveness for emotion classification in the software engineering domain.
In addition, Imran et al. [2], use existing emotion classification models like ESEM-E,
EMTk, and SEntiEmoji whereas, in the paper, we checked the efficiency of 3 classifiers
LSTM, Radom Forest, and BERT for emotion classification on the augmented dataset.
The approach used in this paper extends the work done by Imran et al. [2] by adding one
more dimension of using data augmentation for emotion. classification

4. Methodology

Figure 1 provides an overview of the methodology for this study. We used the Stack
Overflow dataset provided by Novielli et al. [19]. This is the gold standard dataset. We use
Python programming language for implementing various machine learning libraries. We
notice that this dataset is highly imbalanced in nature. Hence, we explored the uses of data
augmentation methods for improving the accuracy of emotion detection. We developed
three main emotion classification algorithms using RF, LSTM and BERT models. We 7

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

then compare the performance of these different approaches. Finally, we evaluate how the
implemented emotion classification algorithms compare to existing tools in the SE domain.

Figure 1. Overview of the methodology

4.1. Dataset description

The dataset contains 4800 Stack Overflow entries, encompassing questions, answers, and
comments, and is a sample from the unlabeled Stack Overflow dataset of June 2008
to September 2015 [19]. Part of the Stack Exchange network of Q&A websites, Stack
Overflow is a popular Q&A site for software developers. On Stack Overflow, users can
ask questions, answer questions, vote on questions and answers, and earn reputation and
badges. As discussed by Novielli et al. [19], the dataset was annotated by a group of twelve
volunteers. Each entry received annotations from three different individuals, focusing on
the six fundamental emotions (Love, Joy, Surprise, Anger, Sadness, and Fear). Determining
the emotion for an observation relied on a majority consensus approach. If at least two of
the three evaluators identified a specific emotion for an observation, then that emotion
was assigned to the sample. Table 1 shows, an example of the dataset. However, not every
observation-emotion combination was labeled, and some observations were labeled with
more than one emotion. Approximately 56% of the comments are labeled with just one
emotion, 6% are marked with two or more emotions, and the remaining comments are
without emotion labels [14]. For this study, any post not annotated with emotion was
regarded as devoid of emotion and, therefore, classified as neutral posts. This dataset is
organized into individual worksheets for each emotion label: Love, Joy, Surprise, Anger,
Sadness, and Fear [19]. The worksheets were, therefore, merged into a single sheet and
saved as a CSV file. 8

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

Table 1. Examples from Novielli et al. dataset [19]

Text Rater 1 Rater 2 Rater 3 Gold label

SVG transform on text attribute works excellent! This
snippet, for example, will increase your text by 2× at
Y -axis.

X X LOVE

Excellent! This is exactly what I needed. Thanks! X X X LOVE

Have added a modern solution as of May 2014 in answers
below.

Have you tried removing “preload” attribute? (Afraid I
can’t be much help otherwise!)

Table 2. Emotion label distribution

Number of observations conveying the emotion
Total

Love Joy Surprise Anger Sadness Fear Neutral

1181 488 43 867 227 103 1918 4735

4.2. Data preprocessing

4.2.1. Text cleaning techniques

After merging the worksheets, some duplicates were identified in the dataset. Duplicate
entries can lead to biased or skewed results because they do not represent unique instances
of the data. The duplicated observations were removed from the experimental dataset. We
removed duplicates from the dataset using a two-step process: 1) automated text matching
and 2) manual verification. We removed a total of 65 duplicate entries (Love: 39, Joy: 3,
Surprise: 2, Anger: 15, Sadness: 3, Fear: 3). We also notice the presence of some irrelevant
attributes in the dataset such as information about the group, set, id, and raters. We
removed all these attributes from the experimental dataset. The label Neutral was assigned
to the entries not annotated in the original dataset. Table 2 shows the number of instances
for each emotion category.
Removal of non-alphabetic characters. Non-alphabetic characters were removed
as part of an essential approach designed to streamline raw textual data. This curtails
the presence of excessive symbols, punctuations, and numbers seen as noise, which can
add meaningless variability. By filtering out such characters, the resultant text not only
becomes more readable but also more concise. This makes it more compatible with the
strict requirements of computational processing and linguistic analysis, leading to a more
efficient and accurate prediction algorithm [41].
Case folding. Furthermore, the entire text corpus was converted to lowercase to ensure
the homogeneity of the dataset. This is because the words “Analysis” and “analysis”, though
semantically identical, would be processed as separate tokens due to their case difference.
Such distinctions introduce redundancies, thereby increasing the dimensionality of the data
without adding meaningful variance [42]. Using consistent casing in the dataset ensures
that the text is standardized. This standardization is vital for constructing consistent and
reproducible models that can generalize effectively to unseen data, thereby enhancing the
reliability of the prediction model. 9

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

Stop words, stemming and lemmatization. While it is usually essential to remove
stop words when handling NLP tasks, in line with previous studies [38], stop words were
not removed, as comments such as “I am happy with this output” and “I am not happy
with this output” express different emotions. Neither Stemming nor lemmatization was
performed since, according to Calefato et al., [38], a varied form might convey useful
information.

4.2.2. Tokenization

Tokenization, in NLP, is breaking down the text into smaller pieces, known as “tokens”.
While these tokens are commonly individual words, they can also be sentences, parts of
words, or even single characters [43]. The type of token selected is usually based on the
particular NLP task. As an example, tokenizing the phrase “I love coding” results in [“I”,
“love”, “coding”]. Tokenization is crucial because, before text data can be analyzed or fed
into machine learning algorithms, it often must be transformed from its raw form into
a structured format [44]. The Keras, BERT, and scikit-learn libraries were utilized to
tokenize the Stack Overflow posts. The tokenization process was handled differently for
the three models in the NLP task. For the LSTM model, the tokenizer module from the
Keras library was used to process the posts, while the BERT tokenizer was used for the
BERT model. The Term Frequency-Inverse Document Frequency (TF-IDF) was used to
extract features for the RFC model. This essential step was carried out to convert the text
into numerical form and to aid in building the vocabulary for the dataset.

4.3. Text exploratory analysis

Text Exploratory Analysis (TEA) aims to meticulously decipher the embedded structure,
recurrent patterns, and potential aberrations within the dataset [45].

4.3.1. Sentiment polarity

Sentiment polarity in text analysis evaluates the overall sentiment or tone of a piece of
writing. It categorizes the sentiment as positive, negative, or neutral, allowing for a quick
assessment of the general mood of the expressed thoughts [46]. For instance, a statement
such as “Excellent, I’m glad that worked for you!” would likely be categorized as possessing
a positive polarity, whereas “This is one of the shortcomings of DGV that I absolutely
hate and why I almost always bind to an IEnumerable of an anonymous type.” would
be attributed a negative polarity. A statement such as, “I understand that server-side
validation is an absolute must to prevent malicious users (or simply users who choose to
disable javascript) from bypassing client-side validation” might be considered neutral. We
used TextBlob to obtain a brief overview of the sentiment polarity within the dataset.
TextBlob, a Python library rooted in NLTK and Pattern, offers lexicon-based sentiment
analysis by producing polarity and subjectivity scores. Polarity scores range from −1
(negative) to 1 (positive), with 0 being neutral. Subjectivity scores span from 0 (factual)
to 1 (opinion-based).

Figure 2 showcases the sentiment polarity distribution in the dataset, detailing percent-
ages of positive, negative, and neutral sentiments for an overall mood assessment. However,
sentiment polarity provides a generalized perspective, missing the detailed layers of emotion 10

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

Figure 2. Sentiment polarity in the dataset

detection. Unlike broad labels of positive, negative, or neutral, emotion detection identifies
specific feelings like Joy, Anger, Love, Fear, Sadness and Surprise.

4.3.2. Distribution of emotion categories

This was performed to understand the distribution, quality, and structure of the emotion-
labeled dataset. Understanding the distribution of emotions in the dataset is crucial since
class imbalance can introduce biases into the ML models [47]. By visualizing the distribution,
one can take necessary measures to augment the data for under-represented categories
or use techniques to address imbalances during model training. The graph presented in
Figure 3 provides a visualization of the distribution of various emotion categories in the
dataset. The bar chart shows the count of instances for each emotion category, while the pie

Figure 3. Overview of emotion category distribution
11

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

chart illustrates the proportion of each class. A quick analysis of this visualization reveals
a pronounced imbalance among the different types of emotions. The dataset does not
adequately represent certain emotion categories, namely Joy, Sadness, Fear, and Surprise.

4.4. Addressing the data imbalance

In ML, data imbalance pertains to the uneven distribution of classes within a dataset. It is
a prevalent challenge, especially in classification tasks, where certain classes are significantly
underrepresented compared to others. This skewed representation often leads to suboptimal
model performance, as the algorithms tend to exhibit a bias towards the majority class,
consequently neglecting the minority class [47]. To address this imbalance in our dataset,
we considered various strategies and opted for under-sampling the majority class and apply
text augmentation for the minority classes.

4.4.1. Under-sampling the majority class

Under-sampling involves decreasing the number of observations from the predominant
class to achieve a more balanced class representation [48]. Specifically, we randomly
selected 950 samples from the Neutral emotion category. We selected this number through
experimentation. We notice that the algorithm is giving better results when the data points
in the neutral category have a similar number of points as in the other categories. After
the neutral category, the second highest number of data points were present in the “love”
category, i.e., 945. Hence, we selected 950 samples for “neutral” category.

4.4.2. Text augmentation using a contextual word embedding with BERT

Another approach adopted in this study to balance the dataset is data augmentation.
This involves creating new data by slightly altering existing samples, thereby artificially
enlarging the dataset. Especially, text augmentation with word substitution was performed
on the minority classes. Word substitution, an effective technique to augment textual data,
refers to the process of replacing words in a text with other words while aiming to retain the
overall meaning or intent of the original text [20]. Before the text augmentation, the dataset
was split into training, validation, and testing sets in a stratified ratio of 80–10–10 using
the scikit-learn library. Only the training dataset was enhanced through augmentation,
ensuring that the validation and testing sets reflect real-world situations.

Leveraging the ContextualWordEmbsAug class from the nlpaug library, 94% of the
Surprise, 44% of the Sadness and 91% of the Fear emotion category samples were randomly
chosen and augmented using the bert-base-uncased model. To have a relatively balanced
dataset and to avoid introducing noise in the dataset, each sample from the Surprise,
Sadness, and Fear categories were augmented four, one and two times, respectively. This
was performed to introduce variety in the increased dataset while still preserving the
original meaning.

For each sample, randomly selected words were replaced by the nearest words derived
from the embedding space provided by the BERT model. Unlike traditional word em-
beddings, which give every word a fixed vector representation regardless of its context in
a sentence, contextual embeddings adjust word representations based on the surrounding
words in a given sentence, making it suitable for text augmentation [49]. Tables 3, 4, and 5
show the distribution of the categories in the augmented training dataset, test dataset, and 12

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

Table 3. Distribution of the emotion categories in the training set, test set,
and validation set for word substitution

Emotion category

Love Anger Joy Sadness Fear Surprise Neutral

Number of samples (Training set) 945 694 390 262 232 162 760
Number of samples (Test set) 118 87 49 23 10 4 95
Number of samples (Validation set) 118 86 49 22 11 5 95

Table 4. Distribution of the emotion categories in the training set, test set,
and validation set using back translation

Emotion category

Love Anger Joy Sadness Fear Surprise Neutral

Number of samples (Training set) 945 694 390 262 157 66 760
Number of samples (Test set) 118 87 49 23 10 4 95
Number of samples (Validation set) 118 86 49 22 11 5 95

Table 5. Distribution of the emotion categories in the training set, test set,
and validation set using easy data augmentation approach

Emotion category

Love Anger Joy Sadness Fear Surprise Neutral

Number of samples (Training set) 945 694 390 262 232 162 760
Number of samples (Test set) 118 87 49 23 10 4 95
Number of samples (Validation set) 118 86 49 22 11 5 95

validation dataset using word substitution, back translation, and easy data augmentation
technique, respectively. For the Word substitution and EDA methods, the selected samples
in the Surprise, Fear, and Sadness categories were augmented 4, 2, and 1 times, respectively.
However, the actual number of samples in the EDA-augmented training set may be lower
for certain folders. This discrepancy occurred because the code used was unable to process
some rows. For the Back translation approach, the selected samples were augmented only
once to prevent duplicates in the augmented training set.

4.5. Emotion classification algorithms

We employed RF, LSTM, and BERT to develop the emotion classification algorithms. The
section below presents the description and architecture of the three models.

4.5.1. LSTM

We chose LSTM for this emotion classification task because it is particularly adept at
processing sequence data and learning long-term dependencies, which is often inherent
in language-based tasks. Moreover, LSTM excels at detecting complex patterns within
natural language (NL), patterns that other models might not [50], and has proved reliable
for NL understanding tasks like text classification [51, 52] and sentiment analysis [53].
LSTM, a type of Recurrent Neural Network (RNN), was introduced [54] to overcome the
vanishing and exploding gradients problem that RNNs suffer from. LSTM networks have 13

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

four main components: the input gate, forget gate, output gate, and memory cell. The
memory cell holds relevant information, with the gates managing data intake, retention,
and output [54]. This architecture enables LSTMs to manage long sequences efficiently,
making them particularly effective for text classification and capturing intricate human
emotions in text [55].

4.5.2. BERT transformer model

Researchers have started exploring the use of transformer models for sentiment analysis
and emotion classification tasks [14, 56]. Thanks to their architecture and pre-training on
extensive corpora, they are adept at detecting subtle nuances in textual data. Developed
by researchers at Google in 2018 [57], BERT represents a significant advancement in the
NLP domain known for its bidirectional understanding of language and has paved the way
for models RoBERTa, FlauBERT. The transformer architecture, presented by Vaswani
et al. [58], utilizes self-attention mechanisms for contextual understanding, processing
words concurrently for efficiency. BERT, building on this, discerns context by masking and
predicting certain input tokens, thereby enhancing linguistic representations. BERT employs
token, segment, and positional embeddings for input representation. It uses WordPiece
tokenization to manage out-of-vocabulary words and maintains input data sequence by
integrating these embeddings [57]. Initially, BERT was offered in two versions:
– BERT-BASE with 12 layers, 768 hidden sizes, 12 attention heads, and 110 million

parameters.
– BERT-LARGE with 24 layers, 1024 hidden sizes, 16 attention heads, and 340 million

parameters.
BERT’s pre-training involved the Masked Language Model (MLM) and Next Sentence
Prediction (NSP) tasks. In MLM, BERT predicts concealed input tokens, while in NSP, it
identifies sentence sequences, aiding question-answering tasks [57].

4.5.3. Random Forest Classifier

Many researchers have used RFC for text classification tasks [59]. Specifically, studies like
the one by [15] have shown that Random Forest is one of the reliable models for detecting
sentiment in posts on Q&A websites for software developers. Furthermore, we selected RFC
because of its capability to train on small datasets, as is the case in this study. Introduced
adequately by Breiman in [60], RFC is an ensemble learning method that creates numerous
decision trees during its training phase and merges their results for more accurate and
reliable predictions [60]. Each tree makes its own classification decision based on the input
data. The final class determination for a given input is achieved by taking a majority vote
from the classifications of all individual trees.

5. Evaluation metrics

After developing a machine learning model, it is essential to use evaluation metrics to
determine its performance on previously unseen test data. We selected popular metrics
used for the classification task. 14

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

5.1. Precision, recall, and F -score

While the balanced accuracy score can provide an overview of the model performance, it
does not show the performance of each class in the dataset. Precision provides insight into
a model’s correct predictions for each class. For class i, precision is:

Precisioni = TPi

TPi + FPi

where TPi is the number of correctly predicted instances of class i, and FPi is instances
wrongly predicted as class i. Recall evaluates the model’s ability to identify all possible
positive instances within the dataset [61]. It is determined by the following formula, where
FN i denotes instances of class i wrongly predicted as another class.

Recall i = TPi

TPi + FN i

F1-score provides a harmonic mean of the two metrics, and is computed as follows:

F1 -scorei = 2 ∗ Precisioni ∗ Recall i

Precisioni + Recall i

6. Results

This section provides an overview of the results from various experiments conducted on
the Stack Overflow dataset. The investigation comprises three primary research queries
addressed in the paragraphs below. We made all the dataset and source code publicly
available for replication: https://drive.google.com/drive/folders/1qXyLx9OhpHVcXLMT
sTYdjhxhV-t6G54j.

6.1. RQ1: Which classification model performs best among LSTM, BERT,
CodeBERT, and RFC?

Motivation. With the rapid advancements in ML and NLP, many models have been pro-
posed to solve classification problems in text data. Among these, the RFC, Support Vector
Machines (SVM) have been commonly employed. These algorithms have demonstrated
their capacity to yield reliable classification results across diverse contexts. In recent years,
researchers have used more sophisticated tools, such as LSTM [52], BERT [56], CodeBERT
[62], and RFC [59]. In this RQ, we compare the performance of LSTM, BERT, CodeBERT,
and RFC in classifying emotions within the Stack Overflow dataset.
Approach. In this part, we give a detailed description of the parameters used for all the
algorithms.
LSTM. After the preprocessing techniques, the LSTM model was implemented using the
keras and tensorflow libraries. Textual data was tokenized and normalized to sequences
of integers with a uniform length of 195 and the labels were one-hot encoded. The LSTM
model includes an embedding layer converting input to a 128-dimensional vector and
a two-layered LSTM: the first layer with 128 neurons (and 0.2 dropout rate) and the second
with 64 neurons. The dropout parameter helps to prevent overfitting, whereas the 2-layered 15

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4
https://drive.google.com/drive/folders/1qXyLx9OhpHVcXLMTsTYdjhxhV-t6G54j
https://drive.google.com/drive/folders/1qXyLx9OhpHVcXLMTsTYdjhxhV-t6G54j


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

LSTM structure allows the model to capture more complex patterns. The model’s output
layer has 7 units with softmax activation for multi-class classification. It is compiled using
the categorical_crossentropy loss function with the adam optimizer. The model is set to
train for a maximum of 20 epochs using a batch size of 64 and the class_weight parameter
which handles the class imbalance. However, the early stopping criteria could terminate it
prematurely. Regularization techniques like EarlyStopping and ModelCheckpoint were
used to monitor the validation loss and ensure the model stops training if there is no
improvement after 7 epochs. Several optimization strategies were employed to enhance the
model’s performance and prevent overfitting. We explored a variety of hyperparameters
(dropout rate, number of neurons in the layers, number of epochs) to fine-tune the model.
Different hyperparameter combinations were tested to determine which gave the highest
results.
BERT. The emotion classification model, built with BERT, utilized the same augmented
training, validation, and testing datasets as the LSTM neural network. It was developed
using the bert-base-uncased pre-trained model and the datasets, scikit-learn, torch,
and transformers libraries; and trained on a Graphics Processing Unit (GPU). The model
was trained for 4 epochs – to avoid overfitting while still allowing it to detect the emotion
contained in the comment – and enhanced with the Adam with Weight Decay (adamw_torch)
optimizer, which is a renowned gradient descent optimization algorithm for transformers
models. Before the tokenization, the data frames are converted to HuggingFace’s Dataset
format, and subsequently mapped to a DatasetDict (Dataset dictionary) object. Each
text entry is tokenized, padded, and truncated using the AutoTokenizer function of the
bert-base-uncased model. Tokenization is crucial as it converts the input data into a format
the model can understand. Meanwhile, padding and truncating ensure that all input
sequences have the same length, a requirement for batch processing in neural networks.
Training parameters such as the number of epochs (4), learning rate (2 × 10−5), batch
size (16), optimizer (adamw_torch), and others are set using the TrainingArguments class.
These parameters play a pivotal role in guiding the model’s learning behavior. The number
of epochs dictates how many times the model reviews the entire dataset, the learning rate
determines the step size when updating weights, and the batch size indicates the number of
data points processed simultaneously. The Trainer class from the Transformers library is
used to train the model on the training dataset while validating it on the validation dataset.
The HuggingFace Trainer class simplifies the process of training machine learning models
by encapsulating the necessary training tasks, making it both efficient and user-friendly.
CodeBERT. It is a bimodal pre-trained model developed using transformer-based neural
architecture. It is designed for NL-PL applications such as natural language code search and
documentation generation. The model is trained using the hybrid objective function. This
uses both bimodal and uni-modal data for model training. The bimodal data provides the
input token and the uni-modal data is used for learning better generators. As recommended
by the authors in [62]4, we used the RobertaTokenizer for tokenizing our input data.
Then, we fine-tuned the microsoft/codebert-base model on our dataset utilizing the
same training parameters as those used for the BERT model we previously developed.
This approach was taken to enable a direct performance comparison between the two
transformer-based models. By keeping the parameters consistent, we ensured that any
differences in performance could be attributed to the models themselves, rather than
variations in the training process.

4https://github.com/microsoft/CodeBERT 16

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4
https://github.com/microsoft/CodeBERT


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

Table 6. Performance of the models

EmoClassLSTM-Original EmoClassBERT-Original EmoClassCodeBERT-Original EmoClassRFC-Original

Emotion Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
Love 0.72 0.70 0.71 0.76 0.84 0.80 0.81 0.79 0.80 0.72 0.78 0.75
Joy 0.35 0.39 0.37 0.50 0.45 0.47 0.54 0.65 0.59 0.53 0.35 0.42

Surprise 0.07 0.50 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Anger 0.63 0.22 0.32 0.75 0.75 0.75 0.75 0.68 0.71 0.72 0.72 0.72

Sadness 0.38 0.13 0.19 0.68 0.65 0.67 0.59 0.70 0.64 0.68 0.57 0.62
Fear 0.18 0.20 0.19 0.58 0.70 0.64 0.70 0.70 0.70 0.00 0.00 0.00

Neutral 0.40 0.58 0.47 0.79 0.75 0.77 0.76 0.77 0.76 0.59 0.73 0.65

RFC. The scikit-learn library was used to implement the RFC model using the same
training, validation, and testing sets as the previous models. The training set was uti-
lized for training the model, while the validation set was employed for fine-tuning the
hyperparameters and determining the best combination for the model. Finally, the test-
ing set was used to evaluate the model’s performance. For feature extraction, the code
uses the TF-IDF method to convert the text data into numerical features. While the
Term Frequency computes the frequency of words in a document, the Inverse Document
Frequency calculates the importance of a word. Together, the TF-IDF method captures
words’ significance in the dataset while diminishing the weight of frequently occurring but
potentially uninformative words [63]. Subsequently, the RFC is instantiated and trained on
the TF-IDF processed training data using 300 trees (n_estimators=300). The decision
to utilize 300 trees was made to strike a harmonious balance. With too few trees, the
model might not capture all the nuances in the data. Conversely, an excessive number
could lead to computational inefficiencies without significantly improving performance.
Furthermore, we used the GridSearchCV technique to obtain the optimal set of parameters
for the vectorizer and RFC model. Finally, the performance of the model is evaluated on
the test set.

Using the above parameters we created the following models:
– EmoClassLSTM-Original. an LSTM model trained with the parameters described

above.
– EmoClassBERT-Original. a BERT model trained with the parameters described

above.
– EmoClassCodeBERT-Original. a CodeBERT model trained with the parameters

described above.
– EmoClassRFC-Original. an RFC model trained with the parameters described

above.
Results. To gain a more comprehensive insight into the model’s performance, precision,
recall, and the F1-score were computed for each emotion category. These metrics offer
a nuanced understanding of how well the model identifies and classifies each emotion.
Table 6 details the results of each model in identifying a specific emotion category. For
example, for emotion category Joy, EmoClassBERT-Original achieved an F1-score of 59%,
while EmoClassBERT-Original, EmoClassLSTM-Original, and EmoClassRFC-Original
gave an F1-score of 47%, 37%, and 42%, respectively. Based on the obtained results, BERT
outperformed the other models in detecting most emotion categories, while EmoClassLSTM-
Original and EmoClassCodeERT-Original achieved better performance for Surprise and
Fear, respectively. BERT’s superior performance can be attributed to its bidirectional
architecture, which enables it to grasp both past and future context, and its extensive 17

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

pre-training on vast text corpora allows it to understand language nuances deeply. On
the other hand, while the LSTM produced significant results compared to other emotion
detection tools in the SE domain, as detailed in [2], its unidirectional processing of sequences
and the limited dataset, could be factors contributing to its average inferior performance
compared to BERT and RFC.

Given these results, BERT emerges as a more optimal choice for tasks that require
a profound understanding of context, especially in complex datasets like Stack
Overflow comments. Nevertheless, the low score for the Surprise from all the models
could be due to insufficient samples and the complexity in detecting the Surprise
emotion, as noted by [14].

6.2. RQ2: An initial investigation: Can data augmentation
improve the model’s performance?

Motivation. Training machine learning models to decipher the complex world of human
emotions requires vast amounts of data, particularly labelled data that indicates which
emotion is present in a given comment. In the context of Stack Overflow, this becomes
even more intricate given the specific lexicon used. Given these challenges, procuring an
adequately representative dataset for emotion classification on Stack Overflow is not just
resource intensive but also requires extensive domain-specific knowledge to annotate the
data accurately. This complexity, combined with the need for large-scale data to train
robust models, leads to an intriguing proposition: Could data augmentation be utilized to
synthetically expand and diversify the dataset, instead of solely relying on manual data
collection and annotation?

The choice to explore Random Forest Classifier (RFC) and Long Short-Term Memory
(LSTM) models alongside BERT and CodeBERT was driven by a desire to evaluate
various approaches and assess their performance comprehensively. While BERT indeed
demonstrated superior performance, considering alternative models allowed us to provide
a more nuanced understanding of the dataset and its characteristics. The motivation for
incorporating RFC and LSTM models aimed to explore how these models would handle
the enriched dataset. This approach provides a broader perspective on the robustness and
adaptability of different models to variations in data volume and complexity. Hence, we
tested 16 combinations of various classifiers for exhaustive testing.

Table 7. Examples of data augmented using back translation from the dataset

S No. Approach Comment

1. Original million unique visitors per hour? Wow! Is this Experts Exchange or some pr n
site

Translation millions of unique visitors per hour wow is this exchange of experts or another
site pr n

2 Original wow would have expected a quick answer on this well found my own answer ….
Translation wow would have waited for a quick answer on this property found my own

answer…

Approach. Data augmentation techniques were employed to increase the diversity of
the dataset. Data augmentation is an established strategy in machine learning, which 18

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

Table 8. Examples of data augmented using word substituted from the dataset

S No. Approach Comment

1. Original a unit test should do the same thing every time that it runs otherwise you may
run into a situation where the unit test only fails occasionally…

Substitution a unit test should do the same then every time that it runs otherwise you may
run into another situation where the unit test still fails occasionally…

2. Original I m very sorry about my horrible English only for this example I use radio
button…

Substitution we m very sorry concerning my short english only at this example I use one
button ..

can significantly enhance the quality and versatility of datasets without the need for
additional data collection [2]. The dataset was divided into training, validation, and testing
sets using a ratio of 80–10–10. To ensure that the validation and testing sets mirrored
real-world applications, only the training set was augmented. The text augmentation
methods evaluated and implemented for the underrepresented categories include:
– Back Translation. The BackTranslationAug class was employed for the translation.

This technique involves translating a text into a secondary language (in our case, French
was chosen due to its rich linguistic structure) and then reverting it to its original
language, English. This often results in texts that maintain their core sentiment but
are structurally or lexically varied. Table 7 shows some examples of the original and
augmented datasets.

– Word substitution. To introduce lexical diversity, words were replaced with their
closest synonyms in the contextual embedding space. While the overall sentiment
remains intact, this technique ensures that the model is not biased towards specific
wordings. The ContextualWordEmbsAug class was employed with the substitute action
parameter for this augmentation process. Table 8 shows some examples of the original
and augmented datasets.

– Easy data augmentation. Easy data augmentation for a given sentence performs one
of the four operations randomly, i.e., synonym replacement, random insertion, swap,
and random deletion.
Leveraging the nlpaug library, 94% of the Surprise, 44% of the Sadness and 91% of

the Fear emotion category samples were randomly chosen and augmented. For the word
substitution augmentation technique, each sample from the Surprise, Sadness and Fear
categories was augmented four, one, and two times, respectively. This augmentation was
done to prevent the introduction of duplicate entries in the training data and to maintain
a balanced distribution across the various emotion categories. Through trial runs, we
observed that excessively augmenting the dataset did not contribute to increased diversity.
For the back translation approach, samples were translated only once to prevent introducing
duplicates in the augmented data. These strategies were adopted to introduce variety in
the augmented data while still preserving the original meaning.

For every augmentation method employed, the enhanced dataset was merged with the
original training data. Once combined, this consolidated data was then provided to the
machine learning model for training. Three different versions of LSTM, BERT, CodeBERT,
and RFC models were developed utilizing the original and augmented training sets. To
ensure consistency and optimal learning, each LSTM model was trained for a duration
of 20 epochs using a batch size of 64 with regularization techniques. On the other hand,
each BERT model was trained for 4 epochs with a batch size of 16 and a learning rate set 19

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

Table 9. Details of the emotion classification models implemented

Model Augmentation technique Reference

LSTM

Word Substitution EmoClassLSTM-Substitution (EmoClassLSTM-S )
Back Translation EmoClassLSTM-Translation (EmoClassLSTM-T )
Easy data augmentation EmoClassLSTM-EDA (EmoClassLSTM-E )
None EmoClassLSTM-Original (EmoClassLSTM-O)

BERT

Word Substitution EmoClassBERT-Substitution (EmoClassBERT-S)
Back Translation EmoClassBERT-Translation (EmoClassBERT-T )
Easy data augmentation EmoClassBERT-EDA (EmoClassBERT-E)
None EmoClassBERT-Original (EmoClassBERT-O)

CodeBERT

Word Substitution EmoClassCodeBERT-Substitution (EmoClassCodeBERT-S)
Back Translation EmoClassCodeBERT-Translation (EmoClassCodeBERT-T )
Easy data augmentation EmoClassCodeBERT-EDA (EmoClassCodeBERT-E)
None EmoClassCodeBERT-Original (EmoClassCodeBERT-O)

RFC

Word Substitution EmoClassRFC-Substitution (EmoClassRFC-S)
Back Translation EmoClassRFC-Translation(EmoClassRFC-T)
Easy data augmentation EmoClassRFC-EDA (EmoClassRFC-E )
None EmoClassRFC-Original (EmoClassRFC-O)

at 2 × 10−5, striking a balance between speed and prediction performance, and each RFC
model utilized the same hyperparameters as described earlier. Table 9 provides a summary
of the models implemented.
Results. The performance of emotion detection tools for each specific emotion is outlined
in Table 10 and Table 11. Table 10 shows the performance of all the models with and
without augmentation whereas Table 11 shows the average F1-score for all the models.
Specifically, for the BERT models, there is not much difference between precision and recall,
suggesting that these models are equally adept at identifying true positive cases (precision)
as they are at capturing the total positive instances (recall). This balance is crucial in
emotion detection, as it means that the model is accurate in its predictions and minimizes
the risk of missing out on instances where a specific emotion is present. For the CodeBERT
model, the models trained on the augmented dataset outperformed the models trained on
the original dataset in most cases. However, the results for the LSTM model emphasize
the importance of having sufficient training data or training it on a more balanced dataset.
In most cases, the RFC models performed better than the LSTM models, indicating that
RFC is more suitable for smaller datasets. The highest F1-scores, highlighted in bold, show
that:
– EmoClassBERT-Substitution performed best for Love;
– EmoClassCodeBERT-Original performed best for Joy;
– EmoClassBERT-Translation and EmoClassCodeBERT-Translation performed best for

Anger ;
– EmoClassBERT-Original performed best for Sadness;
– EmoClassBERT-Translation, EmoClassRFC-Substitution, and EmoClassRFC-EDA

performed best for Surprise;
– EmoClassCodeBERT-Translation give the best F1-score for (Neutral).

From these findings, several implications can be derived. The efficacy of word sub-
stitution in introducing variance through word substitution makes it suitable for a wide
range of emotions. Table 11 shows that substitution-based models outperformed the other
models. EmoClassBERT-substitution gives the highest F1-score of 63%. The substitution 20

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

method shows a considerable improvement as compared to the original models, for example,
EmoClassLSTM-Substitution, EmoClassBERT-Substitution, EmoClassCodeBERT-Subs-
titution, and EmoClassRFC-Substitution models show improvements of 13%, 5%, 5%, and
10% as compared to EmoClassLSTM-Original, EmoClassBERT-Original, and EmoClass-
RFC-Original, respectively, in average F1-score. On the other hand, the nuanced linguistic
changes introduced by back translation make it effective for emotions like Surprise and
Anger, as was demonstrated. The reduced F1-score for the Surprise category might be due
to its smaller sample size. Additionally, the nature of Surprise as an emotion is inherently
ambiguous [9], often intertwining with both positive and negative emotions, further compli-
cating its classification [14]. Nevertheless, EmoClassRFC-Substitution, EmoClassRFC-EDA,
and EmoClassBERT-Translation outperformed other models in detecting the Surprise
category with an F1-score of 0.33. While data augmentation techniques showed effectiveness
in various emotional categories, they did not consistently outperform the original model.
Interestingly, the model performed best at detecting the emotion Joy when trained on
non-augmented data. However, models trained on the original dataset on average under-
performed compared to models trained on the augmented dataset, except the CodeBERT
models (refer to Table 11). This underscores that augmentation’s effectiveness can vary
depending on the particular emotion under study.

Table 10. Performance of all variants of LSTM, BERT, CodeBERT and RFC

Emotion Base model Model Precision Recall F1-score

EmoClassLSTM-S 0.79 0.55 0.65
EmoClassLSTM-T 0.84 0.39 0.53
EmoClassLSTM-E 0.75 0.70 0.73LSTM

EmoClassLSTM-O 0.72 0.70 0.71

EmoClassBERT-S 0.81 0.81 0.81
EmoClassBERT-T 0.82 0.77 0.79
EmoClassBERT-E 0.81 0.85 0.83BERT

EmoClassBERT-O 0.76 0.84 0.80

EmoClassCodeBERT-S 0.79 0.85 0.82
EmoClassCodeBERT-T 0.79 0.78 0.79
EmoClassCodeBERT-E 0.82 0.79 0.80CodeBERT

EmoClassCodeBERT-O 0.81 0.79 0.80

EmoClassRFC-S 0.75 0.80 0.77
EmoClassRFC-T 0.72 0.79 0.75
EmoClassRFC-E 0.74 0.80 0.77

Love

RFC

EmoClassRFC-O 0.72 0.78 0.75

Joy

EmoClassLSTM-S 0.30 0.55 0.39
EmoClassLSTM-T 0.24 0.39 0.31
EmoClassLSTM-E 0.42 0.41 0.41LSTM

EmoClassLSTM-O 0.35 0.39 0.37

EmoClassBERT-S 0.50 0.49 0.49
EmoClassBERT-T 0.43 0.53 0.47
EmoClassBERT-E 0.52 0.49 0.51BERT

EmoClassBERT-O 0.50 0.45 0.47

EmoClassCodeBERT-S 0.57 0.49 0.53
EmoClassCodeBERT-T 0.49 0.55 0.52
EmoClassCodeBERT-E 0.49 0.59 0.54CodeBERT

EmoClassCodeBERT-O 0.54 0.65 0.59
21

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

Table 10 continued
Emotion Base model Model Precision Recall F1-score

EmoClassRFC-S 0.53 0.33 0.41
EmoClassRFC-T 0.55 0.37 0.44
EmoClassRFC-E 0.51 0.39 0.44Joy RFC

EmoClassRFC-O 0.53 0.35 0.42

EmoClassLSTM-S 0.20 0.25 0.22
EmoClassLSTM-T 0.20 0.43 0.22
EmoClassLSTM-E 0.00 0.00 0.00LSTM

EmoClassLSTM-O 0.07 0.50 0.12

EmoClassBERT-S 0.33 0.25 0.29
EmoClassBERT-T 0.50 0.25 0.33
EmoClasBERT-E 0.00 0.00 0.00BERT

EmoClassBERT-O 0.00 0.00 0.00

EmoClassCodeBERT-S 0.33 0.25 0.29
EmoClassCodeBERT-T 0.00 0.00 0.00
EmoClassCodeBERT-E 0.00 0.00 0.00CodeBERT

EmoClassCodeBERT-O 0.00 0.00 0.00

EmoClassRFC-S 0.50 0.25 0.33
EmoClassRFC-T 0.00 0.00 0.00
EmoClassRFC-E 0.50 0.25 0.33

Surprise

RFC

EmoClassRFC-O 0.00 0.00 0.00

EmoClassLSTM-S 0.57 0.63 0.60
EmoClassLSTM-T 0.69 0.51 0.58
EmoClassLSTM-E 0.66 0.54 0.59LSTM

EmoClassLSTM-O 0.63 0.22 0.32

EmoClassBERT-S 0.73 0.76 0.75
EmoClassBERT-T 0.74 0.78 0.76
EmoClassBERT-E 0.73 0.74 0.73BERT

EmoClassBERT-O 0.75 0.75 0.75

EmoClassCodeBERT-S 0.71 0.74 0.72
EmoClassCodeBERT-T 0.76 0.76 0.76
EmoClassCodeBERT-E 0.74 0.75 0.74CodeBERT

EmoClassCodeBERT-O 0.75 0.68 0.71

EmoClassRFC-S 0.72 0.71 0.72
EmoClassRFC-T 0.76 0.74 0.75
EmoClassRFC-E 0.73 0.72 0.73

Anger

RFC

EmoClassRFC-O 0.72 0.72 0.72

Sadness

EmoClassLSTM-S 0.52 0.52 0.52
EmoClassLSTM-T 0.27 0.43 0.33
EmoClassLSTM-E 0.57 0.0.57 0.57LSTM

EmoClassLSTM-O 0.38 0.13 0.19

EmoClassBERT-S 0.72 0.57 0.63
EmoClassBERT-T 0.67 0.52 0.59
EmoClassBERT-E 0.64 0.61 0.62BERT

EmoClassBERT-O 0.68 0.65 0.67

EmoClassCodeBERT-S 0.68 0.65 0.67
EmoClassCodeBERT-T 0.67 0.61 0.64
EmoClassCodeBERT-E 0.67 0.61 0.64CodeBERT

EmoClassCodeBERT-O 0.59 0.70 0.64

22

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

Table 10 continued
Emotion Base model Model Precision Recall F1-score

EmoClassRFC-S 0.67 0.52 0.59
EmoClassRFC-T 0.65 0.57 0.60
EmoClassRFC-E 0.71 0.65 0.68Sadness RFC

EmoClassRFC-O 0.68 0.57 0.62

EmoClassLSTM-S 0.50 0.40 0.44
EmoClassLSTM-T 0.40 0.20 0.27
EmoClassLSTM-E 0.17 0.30 0.21LSTM

EmoClassLSTM-O 0.18 0.20 0.19

EmoClassBERT-S 0.70 0.70 0.70
EmoClassBERT-T 0.54 0.70 0.61
EmoClassBERT-E 0.67 0.80 0.73BERT

EmoClassBERT-O 0.58 0.70 0.64

EmoClassCodeBERT-S 0.73 0.80 0.76
EmoClassCodeBERT-T 0.53 0.80 0.64
EmoClassCodeBERT-E 0.64 0.70 0.67CodeBERT

EmoClassCodeBERT-O 0.70 0.70 0.70

EmoClassRFC-S 0.33 0.40 0.36
EmoClassRFC-T 0.10 0.10 0.10
EmoClassRFC-E 0.00 0.00 0.00

Fear

RFC

EmoClassRFC-O 0.00 0.00 0.00

EmoClassLSTM-S 0.67 0.57 0.61
EmoClassLSTM-T 0.50 0.69 0.58
EmoClassLSTM-E 0.58 0.67 0.62LSTM

EmoClassLSTM-O 0.40 0.58 0.47

EmoClassBERT-S 0.72 0.75 0.74
EmoClassBERT-T 0.80 0.75 0.77
EmoClassBERT-E 0.74 0.72 0.73BERT

EmoClassBERT-O 0.79 0.75 0.77

EmoClassCodeBERT-S 0.78 0.75 0.76
EmoClassCodeBERT-T 0.80 0.76 0.78
EmoClassCodeBERT-E 0.78 0.73 0.75CodeBERT

EmoClassCodeBERT-O 0.76 0.77 0.76

EmoClassRFC-S 0.62 0.74 0.68
EmoClassRFC-T 0.60 0.68 0.64
EmoClassRFC-E 0.62 0.73 0.67

Neutral

RFC

EmoClassRFC-O 0.59 0.73 0.65

In summary, a nuanced understanding of the role of data augmentation in emotion
classification was provided by this study. Significant enhancements in model perfor-
mance can be achieved through tailored data augmentation. However, the importance
of a judicious evaluation based on the emotion in focus and the augmentation tech-
nique being employed was emphasized. On average, the substitution method gives
the highest F1-score. While word substitution performed best on average, none of
the augmentation methods was identified as a one-size-fits-all solution.

23

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

Table 11. Average performance of EmoClass classifiers

Model name Avg. F1-score
Avg improvement (in %)

as compared
to the original models

EmoClassLSTM-Original 0.36 –
EmoClassLSTM-Translation 0.39 3%
EmoClassLSTM-Substitution 0.49 13 %
EmoClassLSTM-EDA 0.44 8%

EmoClassBERT-Original 0.58 –
EmoClassBERT-Translation 0.62 4%
EmoClassBERT-Substitution 0.63 5%
EmoClassBERT-EDA 0.59 1%

EmoClassCodeBERT-Original 0.6 –
EmoClassCodeBERT-Translation 0.59 −1%
EmoClassCodeBERT-Substitution 0.65 5%
EmoClassCodeBERT-EDA 0.59 −1%

EmoClassRFC-Original 0.45 –
EmoClassRFC-Translation 0.47 2%
EmoClassRFC-Substitution 0.55 10%
EmoClassRFC-EDA 0.51 6%

6.3. RQ3: How do EmoClassLSTM, EmoClassBERT, EmoClassCodeBERT,
and EmoClassRFC compare to existing tools?

Motivation. Researchers have harnessed ML algorithms for sentiment analysis or emotion
classification tasks. Techniques such as SVM (as discussed by Calefato et al. [40] ) and
RFC (highlighted by Murgia et al. [20] have been widely employed. The prevalent strategy
involves developing One-vs-All emotion classifiers. This approach involves developing
distinct binary classifiers, each dedicated to one of the six basic emotions. However, the
efficacy of this approach has been challenged. Bleyl and Buxton, in their [14] study,
underscored the superior effectiveness of multi-label classification tools when juxtaposed
against the One-vs-All methodology. Their findings suggest that the multi-label tool
provides a better performance. The current research endeavors to delve deeper into this
domain by examining the proficiency of the three tools: EmoClassLSTM, EmoClassBERT,
and EmoClassRFC. The objective is to critically assess their performance against existing
emotion classification tools developed for the SE domain.
Approach. In our endeavor to benchmark the performance of our models against existing
tools, a pivotal step was the selection of a consistent dataset for a fair evaluation. Conse-
quently, the dataset employed in the studies of Bleyl and Buxton [14] and Calefato et al.
[40] was selected. We compare our results with the Multi-label BERT model and EmoTxt
detailed in [14]. EmoTxt is an emotion classification tool implemented in a supervised
learning method using the Support Vector Machines One-vs-All approach, where a binary
classifier was developed for each emotion category. Multi-label SO BERT is a fine-tuned
version of the BERT model, created by incorporating technical texts into its tokenizer
and utilizing augmented data during the model training process. We compare the state-
of-the-art methods with our EmoClassLSTM-Substitution, EmoClassBERT-Substitution,
EmoClassCodeBERT-Substitution, and EmoClassRFC-Substitution models (as they gave
the best results, refer to RQ2 in Section 6.2 for more details). 24

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

Table 12. EmoClassLSTM, EmoClassBERT, EmoClassCodeBERT and EmoClassRFC
vs. existing tools built on the same dataset

Emotion EmoClassLSTM
-Substitution F1

EmoClassBERT
-Substitution F1

EmoClassCodeBERT
-Substitution F1

EmoClassRFC
-Substitution F1

Multi-label SO
BERT F1

EmoTxt F1

Love 68% 81% 82% 77% 84% 69%
Joy 31% 49% 53% 41% 56% 38%

Surprise 15% 29% 29% 33% 26% 23%
Anger 59% 75% 72% 72% 80% 68%

Sadness 43% 63% 67% 59% 60% 52%
Fear 12% 70% 76% 36% 59% 6%

Average 38.00% 61.17% 63.17% 53.00% 60.80% 42.00%

Results. Table 12 presents the performance of EmoClassLSTM-Substitution, EmoClass-
BERT-Substitution, EmoClassCodeBERT-Substitution, and EmoClassRFC-Substitution
against that of the multi-label BERT model and EmoTxt reported in [14]. In Table 12,
the best-performing model for each specific emotion is shown in bold. Among the models
compared, Multi-label SO BERT demonstrates notable proficiency, especially in identifying
the emotions of Love, Joy, and Anger. On the other hand, EmoClassCodeBERT-Substitution
stands out when it comes to categorizing the emotions of Sadness and Fear, while
EmoClassRFC-Substitution outperformed other models in detecting Surprise emotions
in the text. On average EmoClassCdeoBERT-Substitution performed the best and gave
the highest F1-score of 63.17%. This model outperformed the Multi-label SO BERT and
Emotxt by 2.37% and 21.17%, respectively.

This distinction in performance across different emotions emphasizes the impor-
tance of selecting the right model based on the specific needs of an emotion analy-
sis task. The lower F1-score of the Surprise emotion could be attributed to its
low sample size and the difficulty in detecting it as reported in [14]. Overall,
EmoClassCodeBERT-Substitution emerged as the top-performing emotion clas-
sification tool built with the dataset with an average of 63.17%.

6.4. RQ 4: How does algorithm randomness affect the performance
of the proposed models?

Motivation. Performance evaluation of a model on only one dataset does not provide
a clear indication of whether the results obtained are statistically significant or not. Hence,
to address this issue, in this RQ, we performed an in-depth evaluation of the various models
proposed in this paper.
Approach. We run the various data augmentation techniques for 100 iterations and
generate 100 training, testing, and validation datasets [64]. We evaluated each model on
these 100 datasets and reported the median values of the performance metric (i.e., F1-score).
We computed the Wilcoxon signed-rank test to compare the performances of different
models. Additionally, we computed Cliff’s delta [65] to quantify the difference between the
two distributions.

25

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

Table 13. Median F1-score

Emotion Base model Model Median F1-score

EmoClassLSTM-S 0.70
EmoClassLSTM-T 0.70
EmoClassLSTM-E 0.69LSTM

EmoClassLSTM-O 0.69

EmoClassBERT-S 0.95
EmoClassBERT-T 0.95
EmoClassBERT-E 0.95BERT

EmoClassBERT-O 0.95

EmoClassCodeBERT-S 0.94
EmoClassCodeBERT-T 0.94
EmoClassCodeBERT-E 0.95CodeBERT

EmoClassCodeBERT-O 0.95

EmoClassRFC-S 0.76
EmoClassRFC-T 0.76
EmoClassRFC-E 0.76

Love

RFC

EmoClassRFC-O 0.76
EmoClassLSTM-S 0.35
EmoClassLSTM-T 0.35
EmoClassLSTM-E 0.36LSTM

EmoClassLSTM-O 0.35

EmoClassBERT-S 0.87
EmoClassBERT-T 0.88
EmoClassBERT-E 0.89BERT

EmoClassBERT-O 0.88

EmoClassCodeBERT-S 0.86
EmoClassCodeBERT-T 0.87
EmoClassCodeBERT-E 0.89CodeBERT

EmoClassCodeBERT-O 0.88

EmoClassRFC-S 0.34
EmoClassRFC-T 0.35
EmoClassRFC-E 0.35

Joy

RFC

EmoClassRFC-O 0.34

EmoClassLSTM-S 0.13
EmoClassLSTM-T 0.16
EmoClassLSTM-E 0.10LSTM

EmoClassLSTM-O 0.12

EmoClassBERT-S 0.73
EmoClassBERT-T 0.75
EmoClassBERT-E 0.75BERT

EmoClassBERT-O 0.75

EmoClassCodeBERT-S 0.73
EmoClassCodeBERT-T 0.73
EmoClassCodeBERT-E 0.75CodeBERT

EmoClassCodeBERT-O 0.75

EmoClassRFC-S 0.00
EmoClassRFC-T 0.00
EmoClassRFC-E 0.00

Surprise

RFC

EmoClassRFC-O 0.00

26

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

Table 13 continued
Emotion Base model Model Median F1-score

EmoClassLSTM-S 0.56
EmoClassLSTM-T 0.56
EmoClassLSTM-E 0.56LSTM

EmoClassLSTM-O 0.57

EmoClassBERT-S 0.97
EmoClassBERT-T 0.97
EmoClassBERT-E 0.97BERT

EmoClassBERT-O 0.97

EmoClassCodeBERT-S 0.97
EmoClassCodeBERT-T 0.97
EmoClassCodeBERT-E 0.97CodeBERT

EmoClassCodeBERT-O 0.97

EmoClassRFC-S 0.72
EmoClassRFC-T 0.71
EmoClassRFC-E 0.71

Anger

RFC

EmoClassRFC-O 0.72

EmoClassLSTM-S 0.29
EmoClassLSTM-T 0.29
EmoClassLSTM-E 0.28LSTM

EmoClassLSTM-O 0.30

EmoClassBERT-S 0.88
EmoClassBERT-T 0.89
EmoClassBERT-E 0.90BERT

EmoClassBERT-O 0.89

EmoClassCodeBERT-S 0.87
EmoClassCodeBERT-T 0.88
EmoClassCodeBERT-E 0.89CodeBERT

EmoClassCodeBERT-O 0.90

EmoClassRFC-S 0.42
EmoClassRFC-T 0.43
EmoClassRFC-E 0.45

Sadness

RFC

EmoClassRFC-O 0.46

EmoClassLSTM-S 0.14
EmoClassLSTM-T 0.17
EmoClassLSTM-E 0.15LSTM

EmoClassLSTM-O 0.16

EmoClassBERT-S 0.89
EmoClassBERT-T 0.90
EmoClassBERT-E 0.90BERT

EmoClassBERT-O 0.90

EmoClassCodeBERT-S 0.88
EmoClassCodeBERT-T 0.90
EmoClassCodeBERT-E 0.90CodeBERT

EmoClassCodeBERT-O 0.90

EmoClassRFC-S 0.25
EmoClassRFC-E 0.14
EmoClassRFC-T 0.23

Fear

RFC

EmoClassRFC-O 0.14

27

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

Table 13 continued
Emotion Base model Model Median F1-score

EmoClassLSTM-S 0.53
EmoClassLSTM-T 0.53
EmoClassLSTM-E 0.53LSTM

EmoClassLSTM-O 0.55

EmoClassBERT-S 1.00
EmoClassBERT-T 1.00
EmoClassBERT-E 1.00BERT

EmoClassBERT-O 1.00

EmoClassCodeBERT-S 1.00
EmoClassCodeBERT-T 1.00
EmoClassCodeBERT-E 1.00CodeBERT

EmoClassCodeBERT-O 1.00

EmoClassRFC-S 0.64
EmoClassRFC-T 0.65
EmoClassRFC-E 0.66

Neutral

RFC

EmoClassRFC-O 0.67

Table 14. Results of Wilcoxon Rank Test and Cliff’s Delta: Value: V , Practical Difference: PD,
value marked as bold* for Wilcoxon Rank test p-value indicate that p-value > 0.5.

Comparison between Wilcoxon result Cliff’s Delta
Statistic p-value Value PD

EmoClassBERT-S EmoClassBERT-T 16 051.5 1.18212 × 10−24−0.06769 negligible
EmoClassBERT-S EmoClassBERT-E 12 605.0 4.27656 × 10−34−0.09323 negligible
EmoClassBERT-S EmoClassBERT-O 32 752.0 1.21951 × 10−12−0.06890 negligible
EmoClassBERT-S EmoClassLSTM-S 32 752.0 1.21951 × 10−12−0.06890 negligible
EmoClassBERT-S EmoClassLSTM-T 0.0 4.17153 × 10−116 0.96236 large
EmoClassBERT-S EmoClassLSTM-E 0.0 4.17161 × 10−116 0.96305 large
EmoClassBERT-S EmoClassLSTM-O 3.0 2.90243 × 10−116 0.96131 large
EmoClassBERT-S EmoClassRFC-S 339.0 1.15648 × 10−115 0.92741 large
EmoClassBERT-S EmoClassRFC-T 300.0 9.29481 × 10−116 0.92580 large
EmoClassBERT-S EmoClassRFC-E 376.0 1.37104 × 10−115 0.92513 large
EmoClassBERT-S EmoClassRFC-O 349.0 1.09128 × 10−115 0.92444 large
EmoClassBERT-S EmoClassCodeBERT-S 21 084.5 1.87545 × 10−18 0.07175 negligible
EmoClassBERT-S EmoClassCodeBERT-T 28 534.5 1.38822 × 10−3 0.01398 negligible
EmoClassBERT-S EmoClassCodeBERT-E 14 393.0 6.22144 × 10−27−0.06830 negligible
EmoClassBERT-S EmoClassCodeBERT-O 11 412.0 2.17045 × 10−36−0.08747 negligible
EmoClassBERT-T EmoClassBERT-E 21 473.0 9.12036 × 10−5 −0.02774 negligible
EmoClassBERT-T EmoClassBERT-O 38 388.0 5.11859 × 10−1 *−0.00416 negligible
EmoClassBERT-T EmoClassLSTM-S 0.0 4.17150 × 10−116 0.97394 large
EmoClassBERT-T EmoClassLSTM-T 3.0 2.90203 × 10−116 0.97416 large
EmoClassBERT-T EmoClassLSTM-E 1.0 2.87717 × 10−116 0.97453 large
EmoClassBERT-T EmoClassLSTM-O 0.0 2.86518 × 10−116 0.97328 large
EmoClassBERT-T EmoClassRFC-S 6.0 2.76076 × 10−116 0.94493 large
EmoClassBERT-T EmoClassRFC-T 10.0 2.64816 × 10−116 0.94356 large
EmoClassBERT-T EmoClassRFC-E 7.0 2.79445 × 10−116 0.94290 large
EmoClassBERT-T EmoClassRFC-O 6.0 2.46871 × 10−116 0.94235 large
EmoClassBERT-T EmoClassCodeBERT-S 12 402.5 5.43028 × 10−46 0.13961 negligible
EmoClassBERT-T EmoClassCodeBERT-T 10 832.5 1.23414 × 10−33 0.08178 negligible
EmoClassBERT-T EmoClassCodeBERT-E 27 205.5 6.64069 × 10−1 *−0.00096 negligible
EmoClassBERT-T EmoClassCodeBERT-O 22 043.0 3.59604 × 10−5 −0.02094 negligible
EmoClassBERT-E EmoClassBERT-O 24 588.0 2.74271 × 10−3 0.02283 negligible 28

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

Table 14 continued

Comparison between Wilcoxon result Cliff’s Delta
Statistic p-value Value PD

EmoClassBERT-E EmoClassLSTM-S 0.0 4.17134 × 10−116 0.97392 large
EmoClassBERT-E EmoClassLSTM-T 0.0 4.17135 × 10−116 0.97416 large
EmoClassBERT-E EmoClassLSTM-E 0.0 2.86496 × 10−116 0.97437 large
EmoClassBERT-E EmoClassLSTM-O 0.0 2.86523 × 10−116 0.97334 large
EmoClassBERT-E EmoClassRFC-S 3.0 2.71017 × 10−116 0.94491 large
EmoClassBERT-E EmoClassRFC-T 5.0 2.56950 × 10−116 0.94353 large
EmoClassBERT-E EmoClassRFC-E 4.0 2.75170 × 10−116 0.94254 large
EmoClassBERT-E EmoClassRFC-O 4.0 2.43425 × 10−116 0.94192 large
EmoClassBERT-E EmoClassCodeBERT-S 11 183.5 1.40559 × 10−50 0.16362 small
EmoClassBERT-E EmoClassCodeBERT-T 13 700.0 8.50572 × 10−38 0.10781 negligible
EmoClassBERT-E EmoClassCodeBERT-E 19 343.0 1.79090 × 10−4 0.02713 negligible
EmoClassBERT-E EmoClassCodeBERT-O 26 083.0 7.38967 × 10−1 * 0.00699 negligible
EmoClassBERT-O EmoClassLSTM-S 204.0 1.00153 × 10−115 0.96252 large
EmoClassBERT-O EmoClassLSTM-T 19.0 3.10836 × 10−116 0.96268 large
EmoClassBERT-O EmoClassLSTM-E 6.0 2.93978 × 10−116 0.96326 large
EmoClassBERT-O EmoClassLSTM-O 363.5 1.35996 × 10−115 0.96135 large
EmoClassBERT-O EmoClassRFC-S 775.0 7.46804 × 10−115 0.93024 large
EmoClassBERT-O EmoClassRFC-T 776.0 7.16232 × 10−115 0.92869 large
EmoClassBERT-O EmoClassRFC-E 743.0 6.56139 × 10−115 0.92785 large
EmoClassBERT-O EmoClassRFC-O 774.0 6.77701 × 10−115 0.92725 large
EmoClassBERT-O EmoClassCodeBERT-S 28 564.5 1.34261 × 10−26 0.13898 negligible
EmoClassBERT-O EmoClassCodeBERT-T 30 526.5 1.31764 × 10−15 0.08349 negligible
EmoClassBERT-O EmoClassCodeBERT-E 36 832.5 6.83737 × 10−1 * 0.00298 negligible
EmoClassBERT-O EmoClassCodeBERT-O 21 531.0 1.15393 × 10−3 −0.01634 negligible
EmoClassLSTM-S EmoClassLSTM-T 108 055.5 1.88391 × 10−1 −0.02240 negligible
EmoClassLSTM-S EmoClassLSTM-E 109 302.0 2.06887 × 10−1 0.02461 negligible
EmoClassLSTM-S EmoClassLSTM-O 106 642.0 1.11156 × 10−1 −0.01544 negligible
EmoClassLSTM-S EmoClassRFC-S 76 989.5 2.08736 × 10−17−0.21437 small
EmoClassLSTM-S EmoClassRFC-T 83 650.5 4.43458 × 10−13−0.19516 small
EmoClassLSTM-S EmoClassRFC-E 83 893.5 6.19643 × 10−13−0.20649 small
EmoClassLSTM-S EmoClassRFC-O 91 179.5 7.52484 × 10−9 −0.17538 small
EmoClassLSTM-S EmoClassCodeBERT-S 215.0 7.20206 × 10−116−0.94840 large
EmoClassLSTM-S EmoClassCodeBERT-T 119.0 4.77297 × 10−116−0.95625 large
EmoClassLSTM-S EmoClassCodeBERT-E 0.0 4.17157 × 10−116−0.97449 large
EmoClassLSTM-S EmoClassCodeBERT-O 0.0 4.17135 × 10−116−0.97679 large
EmoClassLSTM-T EmoClassLSTM-E 99 377.0 2.07059 × 10−3 0.04728 negligible
EmoClassLSTM-T EmoClassLSTM-O 116 046.5 9.90057 × 10−1 * 0.00678 negligible
EmoClassLSTM-T EmoClassRFC-S 80 052.0 3.63798 × 10−1 −0.19956 small
EmoClassLSTM-T EmoClassRFC-T 86 731.0 2.65058 × 10−11−0.18003 small
EmoClassLSTM-T EmoClassRFC-E 86 810.5 2.93300 × 10−11−0.19122 small
EmoClassLSTM-T EmoClassRFC-O 94 476.0 1.37314 × 10−7 −0.16183 small
EmoClassLSTM-T EmoClassCodeBERT-S 40.0 4.95359 × 10−11−0.94836 large
EmoClassLSTM-T EmoClassCodeBERT-T 0.0 4.17170 × 10−116−0.95633 large
EmoClassLSTM-T EmoClassCodeBERT-E 0.0 2.86477 × 10−116−0.97482 large
EmoClassLSTM-T EmoClassCodeBERT-O 0.0 2.86491 × 10−116−0.97707 large
EmoClassLSTM-E EmoClassLSTM-O 104 530.0 2.05498 × 10−2 −0.04039 negligible
EmoClassLSTM-E EmoClassRFC-S 75 175.0 2.43168 × 10−18−0.23016 small
EmoClassLSTM-E EmoClassRFC-T 81 695.5 4.08018 × 10−14−0.20997 small
EmoClassLSTM-E EmoClassRFC-E 81 649.5 2.61120 × 10−14−0.22027 small
EmoClassLSTM-E EmoClassRFC-O 89 755.5 1.48505 × 10−9 −0.18798 small
EmoClassLSTM-E EmoClassCodeBERT-S 157.0 8.18665 × 10−116−0.94948 large
EmoClassLSTM-E EmoClassCodeBERT-T 0.0 4.17173 × 10−116−0.95734 large
EmoClassLSTM-E EmoClassCodeBERT-E 0.0 2.86496 × 10−116−0.97492 large
EmoClassLSTM-E EmoClassCodeBERT-O 0.0 2.86489 × 10−116−0.97727 large
EmoClassLSTM-O EmoClassRFC-S 78 856.0 2.67139 × 10−16−0.20616 small 29

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

Table 14 continued

Comparison between Wilcoxon result Cliff’s Delta
Statistic p-value Value PD

EmoClassLSTM-O EmoClassRFC-T 85 162.0 2.39909 × 10−12−0.18758 small
EmoClassLSTM-O EmoClassRFC-E 85 894.0 6.31752 × 10−12−0.19880 small
EmoClassLSTM-O EmoClassRFC-O 93 549.5 5.27101 × 10−8 −0.16845 small
EmoClassLSTM-O EmoClassCodeBERT-S 14.0 3.04265 × 10−116−0.94738 large
EmoClassLSTM-O EmoClassCodeBERT-T 5.0 2.92716 × 10−116−0.95528 large
EmoClassLSTM-O EmoClassCodeBERT-E 0.0 2.86508 × 10−116−0.97385 large
EmoClassLSTM-O EmoClassCodeBERT-O 0.0 2.86511 × 10−116−0.97637 large
EmoClassRFC-S EmoClassRFC-T 86 325.0 9.50083 × 10−1 * 0.01028 negligible
EmoClassRFC-S EmoClassRFC-E 88 114.5 3.04052 × 10−1 0.00134 negligible
EmoClassRFC-S EmoClassRFC-O 84 969.5 5.94841 × 10−1 * 0.01800 negligible
EmoClassRFC-S EmoClassCodeBERT-S 1204.0 4.72830 × 10−114−0.90868 large
EmoClassRFC-S EmoClassCodeBERT-T 379.0 1.38250 × 10−115−0.92185 large
EmoClassRFC-S EmoClassCodeBERT-E 0.0 2.67542 × 10−116−0.94549 large
EmoClassRFC-S EmoClassCodeBERT-O 0.0 2.67547 × 10−116−0.94745 large
EmoClassRFC-T EmoClassRFC-E 80 746.0 3.49193 × 10−1 −0.00890 negligible
EmoClassRFC-T EmoClassRFC-O 77 657.0 8.74585 × 10−1 * 0.00859 negligible
EmoClassRFC-T EmoClassCodeBERT-S 1099.0 2.92091 × 10−114−0.90710 large
EmoClassRFC-T EmoClassCodeBERT-T 346.0 1.14477 × 10−115−0.92034 large
EmoClassRFC-T EmoClassCodeBERT-E 0.0 2.51494 × 10−116−0.94391 large
EmoClassRFC-T EmoClassCodeBERT-O 0.0 2.51493 × 10−116−0.94602 large
EmoClassRFC-E EmoClassRFC-O 59 421.0 3.21570 × 10−1 0.01738 negligible
EmoClassRFC-E EmoClassCodeBERT-S 1226.0 5.21858 × 10−114−0.90604 large
EmoClassRFC-E EmoClassCodeBERT-T 425.0 1.70137 × 10−115−0.91955 large
EmoClassRFC-E EmoClassCodeBERT-E 0.0 2.70487 × 10−116−0.94291 large
EmoClassRFC-E EmoClassCodeBERT-O 0.0 2.70488 × 10−116−0.94533 large
EmoClassRFC-O EmoClassCodeBERT-S 1172.0 3.83828 × 10−114−0.90525 large
EmoClassRFC-O EmoClassCodeBERT-T 417.0 1.48150 × 10−115−0.91886 large
EmoClassRFC-O EmoClassCodeBERT-E 0.0 2.37949 × 10−116−0.94224 large
EmoClassRFC-O EmoClassCodeBERT-O 0.0 2.37952 × 10−116−0.94465 large
EmoClassCodeBERT-S EmoClassCodeBERT-T 29 327.0 4.90961 × 10−9 −0.05782 negligible
EmoClassCodeBERT-S EmoClassCodeBERT-E 10 957.0 3.83547 × 10−48−0.14031 negligible
EmoClassCodeBERT-S EmoClassCodeBERT-O 8776.5 4.37258 × 10−57−0.15875 small
EmoClassCodeBERT-T EmoClassCodeBERT-E 13 447.0 3.84252 × 10−31−0.08313 negligible
EmoClassCodeBERT-T EmoClassCodeBERT-O 10 694.0 9.68241 × 10−42−0.10171 negligible
EmoClassCodeBERT-E EmoClassCodeBERT-O 17 422.5 1.90539 × 10−6 −0.02017 negligible

Results. Table 13 shows that the BERT-based and CodeBERT-based models performed for
all emotion categories. We also notice that there is not much difference in the performance
of models on augmented datasets and non-augmented datasets. These results show an
interesting insight that data augmentation techniques need to be adapted using SE-specific
vocabulary. In the future, we work on improving these data augmentation techniques using
SE-specific data. Table 14 shows the results of Wilcoxon signed-rank and Cliff’s delta.
These results indicate that in most of the cases, the p-value obtained is lower than 0.05
and hence, the null hypothesis is rejected, which shows that the model performance is
significantly different.

The BERT-based and CodeBERT-baed models perform best for emotion classifi-
cation. There is no significant difference in the performance of models trained on
augmented data and non-augmented data.

30

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

7. Threats to validity

This section delves into possible factors that could impact the credibility of this research.
These factors are categorized into internal, external, and construct validity [66].

7.1. Internal validity

Internal validity relates to the potential design elements of a study that could affect its
outcomes. One of those is overfitting, which emerges when a model, in its attempt to
minimize loss, starts to memorize the training data rather than understand the underlying
patterns [67] leading it to excel on the training dataset but underperform on unseen data.
To prevent overfitting, the training process of all three models was monitored closely. Early
stopping techniques and dropout were adopted for the LSTM model. Experiments were
conducted with the BERT model to identify the most appropriate BERT pre-trained model
and set of hyperparameters for our task. For the RFC model, the GridSearchCV function
was used to obtain the best combination of parameters.

Data augmentation techniques, like word substitution and back translation, were em-
ployed to enrich our limited dataset. However, they pose challenges. Word substitution can
change emotional nuances, and back translation might alter original sentiments, potentially
misleading the model during training. To address these, we employed contextual word sub-
stitution and reviewed a subset of the augmented data for accuracy. For the back translation
approach, the samples were increased once to avoid introducing duplicates. Furthermore,
only a portion of the minority classes was increased using the augmentation methods.
Additionally, labeling Stack Overflow posts can introduce interpretation variances. We
countered this by using the gold label, determined by a majority vote system as noted by [19].

7.2. External validity

This section outlines potential limitations that might affect the broader applicability of the
results from this study. This research utilized an annotated dataset extracted from Stack
Overflow, a prominent Q&A platform for software developers. Although Stack Overflow is
a major hub for developer discussions, it is worth noting that there are other platforms, such
as GitHub, where developers also engage in conversations. Since the models implemented
in this study were trained on a dataset extracted from Stack Overflow, the results might
differ if evaluated on the dataset from another platform. Furthermore, factors such as
differences in the domain, annotator biases, and varying annotation guidelines can impact
performance as observed by [68]. Nonetheless, for a more comprehensive generalization,
future research could incorporate posts and comments from other Q&A platforms.

7.3. Construct validity

Construct validity examines how well theoretical concepts are translated into actual
observations. It evaluates whether the methods used in research truly capture the abstract
ideas they intend to measure. Concerns about construct validity arise from the appropriate-
ness of our evaluation metrics, and the reliability of the manually annotated dataset used.
Evaluation metrics, including precision, recall, and the F1-score, are the benchmarks against
which the efficacy of sentiment analysis or emotion classification solutions are gauged, as
supported by [2, 14, 40, 56]. These metrics serve as the foundation for understanding our 31

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

solutions’ true performance and reliability. However, a significant aspect to consider is the
source of our data. By using publicly available datasets utilized in prior works, we are not
just leveraging the data but also inheriting any potential inaccuracies or biases inherent
in the dataset. As a result, it is essential to recognize this inherited vulnerability when
interpreting our findings and drawing conclusions.

8. Conclusion and future work

Detecting software engineers’ emotions has become increasingly important in understanding
team dynamics, improving collaboration, and enhancing overall productivity in software
development projects. In this study, we implemented four different ML architectures
– BERT, CodeBERT, RFC, and LSTM – for the emotion classification task. To improve
the performance and robustness of the models, three techniques, word substitution, back
translation, and Easy Data Augmentation, were used to augment the training data. Four
variations of each architecture were implemented: one using data augmented through word
substitution, the second using back-translated data, the third using easy data augmentation,
and the fourth using the original data.

EmoClassBERT-substitution gives the highest F1-score of 63%. The substitution method
shows a considerable improvement as compared to the original models, for example,
EmoClassLSTM-Substitution, EmoClassBERT-Substitution, EmoClassCodeBERT-Substi-
tution, and EmoClassRFC-Substitution models show improvements of 13%, 5%, 5%, and
10% as compared to EmoClassLSTM-Original. Overall, the BERT-based and CodeBERT-
based models perform best for emotion classification. The results reveal no significant
difference in the performance of models trained on augmented data and non-augmented data.

This underscores the ability of transformer-based models to capture semantic and
contextual relationships, making them particularly suited for tasks involving complex
textual data such as emotion classification. In comparison, the LSTM models demonstrated
inferior performance, likely due to limited data as they need abundant data for training.
Despite being the simplest of the three models, the RFC provided better results than
the LSTM model, highlighting the potential for traditional ML techniques in emotion
classification tasks when combined with robust feature extraction and data augmentation.
In summary, BERT mostly outperformed both RFC and LSTM in terms of the F1-score.
Furthermore, the augmentation techniques played a pivotal role in refining our models.
Specifically, word substitution showcased a more pronounced improvement in the model’s
performance than back translation. Moreover, EmoClassBERT-Substitution demonstrated
a reliable performance when compared to existing tools.

From the findings obtained, several interesting future directions are possible. For
example, In the future, we plan to explore additional data augmentation techniques, such
as Generative Adversarial Networks (GANs), and combine the strengths of various models
to form an ensemble model. We plan to do an exhaustive comparison of various data
augmentation techniques for emotion classification on the SE dataset as well as using
a stack of data augmentation as proposed by [2]. We also plan to use LLM like RoBERT,
and ALBERT to analyze their performance for emotion classification in the software
engineering domain. Furthermore, deeper hyperparameter tuning could be performed. The
dataset could also be expanded to encompass various sources, such as combining data
from Stack Overflow and GitHub. Additionally, we will work on improving these data
augmentation techniques using SE-specific data. 32

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

CRediT authorship contribution statement

Author 1: Methodology, software, investigation, writing – original draft, writing – review
and editing, visualization.
Author 2: Conceptualization, software, writing – original draft, writing – review and editing,
supervision, project administration.

Declaration of competing interest

No competing interest.

Funding

This research was conducted without any external funding.

References

[1] D. Girardi, F. Lanubile, N. Novielli, and A. Serebrenik, “Emotions and perceived productivity
of software developers at the workplace,” IEEE Transactions on Software Engineering, Vol. 48,
No. 9, 2021, pp. 3326–3341.

[2] M.M. Imran, Y. Jain, P. Chatterjee, and K. Damevski, “Data augmentation for improving
emotion recognition in software engineering communication,” in Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering, 2022, pp. 1–13.

[3] M. Ortu, B. Adams, G. Destefanis, P. Tourani, M. Marchesi et al., “Are bullies more productive?
Empirical study of affectiveness vs. issue fixing time,” in 12th Working Conference on Mining
Software Repositories. IEEE, 2015, pp. 303–313.

[4] S. Cagnoni, L. Cozzini, G. Lombardo, M. Mordonini, A. Poggi et al., “Emotion-based analysis
of programming languages on Stack Overflow,” ICT Express, Vol. 6, No. 3, 2020, pp. 238–242.

[5] N. Forsgren, M.A. Storey, C. Maddila, T. Zimmermann, B. Houck et al., “The space of developer
productivity: There’s more to it than you think.” Queue, Vol. 19, No. 1, 2021, pp. 20–48.

[6] D. Girardi, N. Novielli, D. Fucci, and F. Lanubile, “Recognizing developers’ emotions while
programming,” in Proceedings of the ACM/IEEE 42nd international conference on software
engineering, 2020, pp. 666–677.

[7] D. Graziotin, F. Fagerholm, X. Wang, and P. Abrahamsson, “What happens when software
developers are (un) happy,” Journal of Systems and Software, Vol. 140, 2018, pp. 32–47.

[8] N. Novielli and A. Serebrenik, “Sentiment and emotion in software engineering,” IEEE Software,
Vol. 36, No. 5, 2019, pp. 6–23.

[9] B. Lin, N. Cassee, A. Serebrenik, G. Bavota, N. Novielli et al., “Opinion mining for software
development: A systematic literature review,” ACM Transactions on Software Engineering
and Methodology (TOSEM), Vol. 31, No. 3, 2022, pp. 1–41.

[10] N. Imtiaz, J. Middleton, P. Girouard, and E. Murphy-Hill, “Sentiment and politeness analysis
tools on developer discussions are unreliable, but so are people,” in Proceedings of the 3rd
International Workshop on Emotion Awareness in Software Engineering, 2018, pp. 55–61.

[11] F. Calefato, F. Lanubile, F. Maiorano, and N. Novielli, “Sentiment polarity detection for
software development,” in Proceedings of the 40th International Conference on Software
Engineering, 2018, p. 128.

[12] L. Yao and Y. Guan, “An improved LSTM structure for natural language processing,” in
International Conference of Safety Produce Informatization (IICSPI). IEEE, 2018, pp. 565–569. 33

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

[13] J. Antony Vijay, H. Anwar Basha, and J. Arun Nehru, “A dynamic approach for detecting
the fake news using random forest classifier and NLP,” in Computational Methods and Data
Engineering. Springer, 2020, pp. 331–341.

[14] D. Bleyl and E.K. Buxton, “Emotion recognition on Stack Overflow posts using BERT,” in
International Conference on Big Data (Big Data). IEEE, 2022, pp. 5881–5885.

[15] T. Ahmed, A. Bosu, A. Iqbal, and S. Rahimi, “SentiCR: A customized sentiment analysis tool
for code review interactions,” in 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE). IEEE, 2017, pp. 106–111.

[16] V. Kumar, A. Choudhary, and E. Cho, “Data augmentation using pre-trained transformer
models,” arXiv preprint arXiv:2003.02245, 2020.

[17] S. Shleifer, “Low resource text classification with ulmfit and backtranslation,” CoRR,
Vol. abs/1903.09244, 2019. [Online]. http://arxiv.org/abs/1903.09244

[18] A. Koufakou, D. Grisales, O. Fox et al., “Data augmentation for emotion detection in small
imbalanced text data,” arXiv preprint arXiv:2310.17015, 2023.

[19] N. Novielli, F. Calefato, and F. Lanubile, “A gold standard for emotion annotation in stack
overflow,” in Proceedings of the 15th International Conference on Mining Software Repositories,
MSR ’18. New York, NY, USA: Association for Computing Machinery, 2018, pp. 14–17. [Online].
https://doi.org/10.1145/3196398.3196453

[20] A. Murgia, M. Ortu, P. Tourani, B. Adams, and S. Demeyer, “An exploratory qualitative and
quantitative analysis of emotions in issue report comments of open source systems,” Empirical
Software Engineering, Vol. 23, 2017, pp. 521–564.

[21] B. Liu, Sentiment analysis and opinion mining. Springer Nature, 2022.
[22] P. Sudhir and V.D. Suresh, “Comparative study of various approaches, applications and classi-

fiers for sentiment analysis,” Global Transitions Proceedings, Vol. 2, No. 2, 2021, pp. 205–211.
[23] O. Bruna, H. Avetisyan, and J. Holub, “Emotion models for textual emotion classification,”

Journal of Physics: Conference Series, Vol. 772, No. 1, 2016, p. 012063. [Online]. https:
//dx.doi.org/10.1088/1742-6596/772/1/012063

[24] Z. Teng, F. Ren, and S. Kuroiwa, “Retracted: recognition of emotion with svms,” in Com-
putational Intelligence: International Conference on Intelligent Computing. Springer, 2006,
pp. 701–710.

[25] E. Guzman and B. Bruegge, “Towards emotional awareness in software development teams,” in
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2013. New York, NY, USA: Association for Computing Machinery, 2013, pp. 671–674. [Online].
https://doi.org/10.1145/2491411.2494578

[26] A. Fontão, O.M. Ekwoge, R. Santos, and A.C. Dias-Neto, “Facing up the primary emotions in
mobile software ecosystems from developer experience,” in Proceedings of the 2nd Workshop
on Social, Human, and Economic Aspects of Software, WASHES ’17. New York, NY, USA:
Association for Computing Machinery, 2017, pp. 5–11. [Online]. https://doi.org/10.1145/3098
322.3098325

[27] E. Guzman, D. Azócar, and Y. Li, “Sentiment analysis of commit comments in github:
An empirical study,” in Proceedings of the 11th Working Conference on Mining Software
Repositories, MSR 2014. New York, NY, USA: Association for Computing Machinery, 2014,
pp. 352–355. [Online]. https://doi.org/10.1145/2597073.2597118

[28] A. Murgia, P. Tourani, B. Adams, and M. Ortu, “Do developers feel emotions? an exploratory
analysis of emotions in software artifacts,” in Proceedings of the 11th Working Conference on
Mining Software Repositories, MSR 2014. New York, NY, USA: Association for Computing
Machinery, 2014, pp. 262–271. [Online]. https://doi.org/10.1145/2597073.2597086

[29] G. Uddin and F. Khomh, “Automatic mining of opinions expressed about apis in stack overflow,”
IEEE Transactions on Software Engineering, Vol. 47, No. 3, 2019, pp. 522–559.

[30] A. Ciurumelea, A. Schaufelbühl, S. Panichella, and H.C. Gall, “Analyzing reviews and code
of mobile apps for better release planning,” in 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 2017, pp. 91–102.

[31] X. Gu and S. Kim, “” what parts of your apps are loved by users?”(t),” in 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 2015, pp. 760–770. 34

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4
http://arxiv.org/abs/1903.09244
https://doi.org/10.1145/3196398.3196453
https://dx.doi.org/10.1088/1742-6596/772/1/012063
https://dx.doi.org/10.1088/1742-6596/772/1/012063
https://doi.org/10.1145/2491411.2494578
https://doi.org/10.1145/3098322.3098325
https://doi.org/10.1145/3098322.3098325
https://doi.org/10.1145/2597073.2597118
https://doi.org/10.1145/2597073.2597086


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

[32] S. Panichella, A. Di Sorbo, E. Guzman, C.A. Visaggio, G. Canfora et al., “How can i im-
prove my app? classifying user reviews for software maintenance and evolution,” in 2015
IEEE international conference on software maintenance and evolution (ICSME). IEEE, 2015,
pp. 281–290.

[33] M.M. Rahman, C.K. Roy, and I. Keivanloo, “Recommending insightful comments for source
code using crowdsourced knowledge,” in 2015 IEEE 15th International Working Conference
on Source Code Analysis and Manipulation (SCAM). IEEE, 2015, pp. 81–90.

[34] R. Jongeling, S. Datta, and A. Serebrenik, “Choosing your weapons: On sentiment analysis
tools for software engineering research,” in 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2015, pp. 531–535.

[35] M. Thelwall, K. Buckley, G. Paltoglou, A. Kappas, and D. Cai, “Sentiment strength detection in
short informal text,” Journal of the American Society for Information Science and Technology,
2010.

[36] E. Loper and S. Bird, “Nltk: The natural language toolkit,” in Proceedings of the ACL-02
Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and
Computational Linguistics, ETMTNLP ’02, Vol. 1. Association for Computational Linguistics,
2002, pp. 63–70. [Online]. https://doi.org/10.3115/1118108.1118117

[37] M.R. Islam and M.F. Zibran, “Leveraging automated sentiment analysis in software engineer-
ing,” in 2017 IEEE/ACM 14th International Conference on Mining Software Repositories
(MSR), 2017, pp. 203–214.

[38] F. Calefato, F. Lanubile, F. Maiorano, and N. Novielli, “Sentiment polarity detection for
software development,” Empirical Software Engineering, Vol. 23, No. 3, 2017, pp. 1352–1382.

[39] D. Graziotin, X. Wang, and P. Abrahamsson, “Do feelings matter? on the correlation of affects
and the self-assessed productivity in software engineering,” Journal of Software: Evolution and
Process, Vol. 27, No. 7, 2015, pp. 467–487. [Online]. https://onlinelibrary.wiley.com/doi/abs/
10.1002/smr.1673

[40] F. Calefato, F. Lanubile, and N. Novielli, “Emotxt: A toolkit for emotion recognition from
text,” CoRR, Vol. abs/1708.03892, 2017. [Online]. http://arxiv.org/abs/1708.03892

[41] N. Boucher, I. Shumailov, R.J. Anderson, and N. Papernot, “Bad characters: Imperceptible
NLP attacks,” CoRR, Vol. abs/2106.09898, 2021. [Online]. https://arxiv.org/abs/2106.09898

[42] Y. HaCohen-Kerner, D. Miller, and Y. Yigal, “The influence of preprocessing on text classifi-
cation using a bag-of-words representation.” PloS one, Vol. 15, 2020, p. e0232525.

[43] J.J. Webster and C. Kit, “Tokenization as the initial phase in NLP,” in The 14th international
conference on computational linguistics, 1992.

[44] N. Rahimi, F. Eassa, and L. Elrefaei, “An ensemble machine learning technique for functional
requirement classification,” symmetry, Vol. 12, No. 10, 2020, p. 1601.

[45] A. Humphreys and R.J.H. Wang, “Automated text analysis for consumer research,” Journal
of Consumer Research, Vol. 44, 2018, pp. 1274–1306. [Online]. https://api.semanticscholar.or
g/CorpusID:168854843

[46] L. Tian, C. Lai, and J.D. Moore, “Polarity and intensity: The two aspects of sentiment analysis,”
arXiv preprint arXiv:1807.01466, 2018.

[47] A. Ali, S.M. Shamsuddin, and A.L. Ralescu, “Classification with class imbalance problem,”
Int. J. Advance Soft Compu. Appl, Vol. 5, No. 3, 2013, pp. 176–204.

[48] X.Y. Liu, J. Wu, and Z.H. Zhou, “Exploratory undersampling for class-imbalance learning,”
IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 39, No. 2,
2009, pp. 539–550.

[49] Q. Liu, M.J. Kusner, and P. Blunsom, “A survey on contextual embeddings,” 2020.
[50] P. Bahad, P. Saxena, and R. Kamal, “Fake news detection using bi-directional lstm-recurrent

neural network,” Procedia Computer Science, Vol. 165, 2019, pp. 74–82, 2nd International
Conference on Recent Trends in Advanced Computing DISRUP-TIV INNOVATION. [Online].
https://www.sciencedirect.com/science/article/pii/S1877050920300806

[51] C. Zhou, C. Sun, Z. Liu, and F.C.M. Lau, “A C-LSTM neural network for text classification,”
CoRR, Vol. abs/1511.08630, 2015. [Online]. http://arxiv.org/abs/1511.08630

35

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4
https://doi.org/10.3115/1118108.1118117
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1673
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.1673
http://arxiv.org/abs/1708.03892
https://arxiv.org/abs/2106.09898
https://api.semanticscholar.org/CorpusID:168854843
https://api.semanticscholar.org/CorpusID:168854843
https://www.sciencedirect.com/science/article/pii/S1877050920300806
http://arxiv.org/abs/1511.08630


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

[52] Y. Zhang, “Research on text classification method based on lstm neural network model,” in
2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC),
2021, pp. 1019–1022.

[53] R. Adarsh, A. Patil, S. Rayar, and K. Veena, “Comparison of VADER and LSTM for sentiment
analysis,” International Journal of Recent Technology and Engineering, Vol. 7, No. 6, Mar.
2019, pp. 540–543.

[54] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, Vol. 9,
No. 8, 11 1997, pp. 1735–1780. [Online]. https://doi.org/10.1162/neco.1997.9.8.1735

[55] B. Lindemann, T. Müller, H. Vietz, N. Jazdi, and M. Weyrich, “A survey on long short-term
memory networks for time series prediction,” Procedia CIRP, Vol. 99, 2021, pp. 650–655, 14th
CIRP Conference on Intelligent Computation in Manufacturing Engineering, 15–17 July 2020.
[Online]. https://www.sciencedirect.com/science/article/pii/S2212827121003796

[56] H. Batra, N.S. Punn, S.K. Sonbhadra, and S. Agarwal, “BERT-based sentiment analysis:
A software engineering perspective,” in Database and Expert Systems Applications. Springer
International Publishing, 2021, pp. 138–148.

[57] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional
transformers for language understanding,” CoRR, Vol. abs/1810.04805, 2018. [Online]. http:
//arxiv.org/abs/1810.04805

[58] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones et al., “Attention is all you need,”
CoRR, Vol. abs/1706.03762, 2017. [Online]. http://arxiv.org/abs/1706.03762

[59] Y. Al Amrani, M. Lazaar, and K.E. El Kadiri, “Random Forest and Support Vector Machine
based hybrid approach to sentiment analysis,” Procedia Computer Science, Vol. 127, 2018,
pp. 511–520, proceedings of the first International Conference On Intelligent Computing in
Data Sciences, ICDS2017. [Online]. https://www.sciencedirect.com/science/article/pii/S18770
50918301625

[60] L. Breiman, “Random forests,” Machine Learning, Vol. 45, No. 1, 2001, pp. 5–32. [Online].
https://doi.org/10.1023/A:1010933404324

[61] M. Wu, Y. Yang, H. Wang, and Y. Xu, “A deep learning method to more accurately recall
known lysine acetylation sites,” BMC Bioinformatics, Vol. 20, No. 1, 2019, p. 49. [Online].
https://doi.org/10.1186/s12859-019-2632-9

[62] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng et al., “Codebert: A pre-trained model for
programming and natural languages,” arXiv preprint arXiv:2002.08155, 2020.

[63] J. Ramos et al., “Using tf-idf to determine word relevance in document queries,” in Proceedings
of the first instructional conference on machine learning. Citeseer, 2003, pp. 29–48.

[64] C. Tantithamthavorn, S. McIntosh, A.E. Hassan, and K. Matsumoto, “An empirical comparison
of model validation techniques for defect prediction models,” IEEE Transactions on Software
Engineering, Vol. 43, No. 1, 2016, pp. 1–18.

[65] J. Romano, J.D. Kromrey, J. Coraggio, and J. Skowronek, “Appropriate statistics for ordinal
level data: Should we really be using t-test and cohen’sd for evaluatng group differences on the
nsse and other surveys,” in annual meeting of the Florida Association of Institutional Research,
Vol. 177, 2006, p. 34.

[66] L. Baldwin, “Internal and external validity and threats to validity,” in Research concepts for
the practitioner of educational leadership. Brill, 2018, pp. 31–36.

[67] X. Ying, “An overview of overfitting and its solutions,” Journal of Physics: Conference
Series, Vol. 1168, No. 2, feb 2019, p. 022022. [Online]. https://dx.doi.org/10.1088/1742-
6596/1168/2/022022

[68] L.A. Cabrera-Diego, N. Bessis, and I. Korkontzelos, “Classifying emotions in Stack Overflow
and JIRA using a multi-label approach,” Knowledge-Based Systems, Vol. 195, 2020, p. 105633.
[Online]. https://www.sciencedirect.com/science/article/pii/S0950705120300939

36

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4
https://doi.org/10.1162/neco.1997.9.8.1735
https://www.sciencedirect.com/science/article/pii/S2212827121003796
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1706.03762
https://www.sciencedirect.com/science/article/pii/S1877050918301625
https://www.sciencedirect.com/science/article/pii/S1877050918301625
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1186/s12859-019-2632-9
https://dx.doi.org/10.1088/1742-6596/1168/2/022022
https://dx.doi.org/10.1088/1742-6596/1168/2/022022
https://www.sciencedirect.com/science/article/pii/S0950705120300939


D. Awovi Ahavi-Tete, S. Sangeeta e-Informatica Software Engineering Journal, 19 (2025), 250104

Authors and affiliations

Didi Awovi Ahavi-Tete
e-mail: didi.ahavitete@gmail.com
ORCID: https://orcid.org/0009-0001-7348-2763
School of Computer Science and Mathematics,
Keele University, United Kingdom

Sangeeta Sangeeta
e-mail: s.sangeeta@keele.ac.uk
ORCID: https://orcid.org/0000-0002-3734-7871
School of Computer Science and Mathematics,
Keele University, United Kingdom

37

https://www.e-informatyka.pl/EISEJ/papers/2025/1/4
mailto:didi.ahavitete@gmail.com
https://orcid.org/0009-0001-7348-2763
mailto:s.sangeeta@keele.ac.uk
https://orcid.org/0000-0002-3734-7871

	Emotion Classification on Software Engineering Q&A Websites
	Introduction
	Background
	Related work
	Sentiment analysis in software engineering
	Emotion classification in software engineering

	Methodology
	Dataset description
	Data preprocessing
	Text cleaning techniques
	Tokenization

	Text exploratory analysis
	Sentiment polarity
	Distribution of emotion categories

	Addressing the data imbalance
	Under-sampling the majority class
	Text augmentation using a contextual word embedding with BERT

	Emotion classification algorithms
	LSTM
	BERT transformer model
	Random Forest Classifier


	Evaluation metrics
	Precision, recall, and F-score

	Results
	RQ1: Which classification model performs best among LSTM, BERT, CodeBERT, and RFC?
	RQ2: An initial investigation: Can data augmentation improve the model's performance?
	RQ3: How do EmoClassLSTM, EmoClassBERT, EmoClassCodeBERT, and EmoClassRFC compare to existing tools?
	RQ 4: How does algorithm randomness affect the performance of the proposed models?

	Threats to validity
	Internal validity
	External validity
	Construct validity

	Conclusion and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Funding
	References
	Authors and aﬃliations



