

Editors

Zbigniew Huzar (Zbigniew.Huzar@pwr.wroc.pl)
Lech Madeyski (Lech.Madeyski@pwr.wroc.pl, http://madeyski.e-informatyka.pl/)

Wroc law University of Technology
Institute of Applied Informatics
Wroc law University of Technology, 50-370 Wroc law, Poland

Graphics by Micha l Stanek and Piotr Przyby l
Computer typesetting by Piotr Przyby l

e-Informatica Software Engineering Journal
http://www.e-informatyka.pl/e-Informatica/

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, transmitted in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publishers.

Printed in a camera ready form

c© Copyright by Oficyna Wydawnicza Politechniki Wroc lawskiej, Wroc law, 2007

OFICYNA WYDAWNICZA POLITECHNIKI WROC LAWSKIEJ
Wybrzeże Wyspiańskiego 27, 50-370 Wroc law

ISBN 987-83-7493-305-6

Drukarnia Oficyny Wydawniczej Politechniki Wroc lawskiej. Order No. 130/2007.

Editorial Board

Editor-in-Chief

Zbigniew Huzar (Wroc law University of Technology, Poland)

Editorial Board Members

Pekka Abrahamsson (VTT Technical Research Centre, Finland)
Sami Beydeda (ZIVIT, Germany)
Joaquim Filipe (Polytechnic Institute of Setúbal/INSTICC, Portugal)
Thomas Flohr (University of Hannover, Germany)
Félix Garćıa (University of Castilla-La Mancha, Spain)
Janusz Górski (Gdańsk University of Technology, Poland)
Andreas Jedlitschka (Fraunhofer IESE, Germany)
Pericles Loucopoulos (The University of Manchester, UK)
Kalle Lyytinen (Case Western Reserve University, USA)
Leszek A. Maciaszek (Macqarie University Sydney, Australia)
Lech Madeyski (Wroc law University of Technology, Poland)
Jan Magott (Wroc law University of Technology, Poland)
Zygmunt Mazur (Wroc law University of Technology, Poland)
Bertrand Meyer (ETH Zurich, Switzerland)
Matthias Müller (Karlsruhe University, Germany)
Jürgen Münch (Fraunhofer IESE, Germany)
Jerzy Nawrocki (Poznań Technical University, Poland)
Krzysztof Sacha (Warsaw University of Technology, Poland)
Rini van Solingen (Drenthe University, The Netherlands)
Miroslaw Staron (IT University of Göteborg, Sweden)
Tomasz Szmuc (AGH University of Science and Technology Kraków, Poland)
Iwan Tabakow (Wroc law University of Technology, Poland)
Rainer Unland (University of Duisburg-Essen, Germany)
Sira Vegas (Polytechnic University of Madrit, Spain)
Corrado Aaron Visaggio (University of Sannio, Italy)
Bartosz Walter (Poznań Technical University, Poland)
Jaroslav Zendulka (Brno University of Technology, The Czech Republic)
Krzysztof Zieliński (AGH University of Science and Technology Kraków, Poland)

Contents

Editorial
Empirical Evaluation of Novel Approaches to Software Engineering

Zbigniew Huzar, Lech Madeyski . 7

Papers
Agile Methods and CMMI: Compatibility or Conflict?

Martin Fritzsche, Patrick Keil . 9
An Empirical Evaluation of Refactoring

Dirk Wilking, Umar Farooq Khan, Stefan Kowalewski 27
Programming in the eXtreme: Critical Characteristics of Agile Implementations

Gerald DeHondt II, Alan Brandyberry . 43
A User-Centered Approach to Modeling BPEL Business Processes Using

SUCD Use Cases
Mohamed El-Attar, James Miller . 59

Program Verifications, Object Interdependencies, and Object Types
Cong-Cong Xing . 77

Announcements
Informatics Europe . 99
The Short Story of SDC Wroc law – Two Software Development Centers

at the Oder River . 100

Empirical Evaluation of Novel Approaches

to Software Engineering

It is a pleasure to present to our readers the first issue of the e-Informatica Software
Engineering Journal (ISEJ).

The idea to establish the e-Informatica Software Engineering Journal as a new scientific
journal has been considered by Polish academic environment for several years. Finally,
it appeared that we are able to start the international software engineering journal with
strong support from many recognized researchers and practitioners in Europe who agreed
to join the Editorial Board. We would like to express our gratitude to all those involved
in many international software engineering conferences, e.g. International Conference on
Product Focused Software Process Improvement (PROFES), International Conference on
eXtreme Programming and Agile Processes in Software Engineering (XP) or International
Conference on Evaluation of Novel Approaches to Software Engineering (ENASE). We
also want to thank SIEMENS (http://www.siemens.pl/) for sponsoring the journal and
many outstanding students involved in e-Informatyka project.

The mission of the e-Informatica Software Engineering Journal is to be a prime in-
ternational journal to publish research findings and IT industry experiences related to
theory, practice and experimentation in software engineering. The scope of e-Informatica
Software Engineering Journal includes methodologies, practices, architectures, technolo-
gies and tools used in processes along the software development lifecycle, but particular
stress is laid on empirical evaluation.

There is evidence that software engineering researchers undertake relatively little em-
pirical validation of their research [1, 2, 3]. Therefore the aim of the journal is to put
a strong emphasis on empirical evaluation of novel approaches to software engineering.
The journal’s emphasis is in line with the ENASE series of conferences started by Leszek
Maciaszek and Lech Madeyski (members of the editorial board) and Zbigniew Huzar
(Editor-In-Chief) in 2006.

The first issue of the e-Informatica Software Engineering Journal includes five papers
carefully reviewed by Editorial Board members, as well as by external reviewers, and then
selected by the editors. Addressing the raised empirical validation issue, the first of the
papers includes an empirical evaluation of refactoring technique. The second article ex-
plores some of the basic tenets of eXtreme Programming (XP) and agile methodologies
and presents an analysis of an interview with two of the proponents and early participants
in the “Agile revolution”, Chet Hendrickson and Ron Jeffries. The third paper analyses
to what extent the CMMI process areas can be covered by XP, and where adjustments of
XP have to be made. The last two papers do not fall into an agile track. The forth paper
identifies a program verification problem which is caused by the loose conventional object
typing/subtyping, introduces object type graphs in which object component interdepen-
dencies are integrated into object types, and shows how the problem existing in conven-
tional object type systems can be easily resolved. The last paper presents a user-centered

8 Editorial

approach to modelling business processes applying structured use case descriptions. You
can download the abstracts and entire articles from the journal web site.

We look forward to receiving quality contributions from researchers in software engi-
neering for the next issue of the journal.

Editors
Zbigniew Huzar
Lech Madeyski

References

[1] R. L. Glass, I. Vessey, and V. Ramesh. Research in software engineering: an analysis of the
literature. Information & Software Technology, 44(8):491–506, 2002.

[2] D. I. K. Sjøberg, J. E. Hannay, O. Hansen, V. B. Kampenes, A. Karahasanovic, N.-K. Liborg,
and A. C. Rekdal. A survey of controlled experiments in software engineering. IEEE Trans.
Software Eng., 31(9):733–753, 2005.

[3] M. V. Zelkowitz and D. Wallace. Experimental validation in software engineering. Information
& Software Technology, 39(11):735–743, 1997.

e-Informatica Software Engineering Journal, Volume 1, Issue 1, 2007

Agile Methods and CMMI:

Compatibility or Conflict?

Martin Fritzsche∗, Patrick Keil∗

∗Technische Universität München

fritzscm@in.tum.de, keilp@in.tum.de

Abstract
During the last years, agile methods like eXtreme Programming have become increasingly
popular. Parallel to this, more and more organizations rely on process maturity models to
assess and improve their own processes or those of suppliers, since it has been getting clear
that most project failures can be imputed to inconsistent, undisciplined processes. Many
organizations demand CMMI compliance of projects where agile methods are employed.
In this situation it is necessary to analyze the interrelations and mutual restrictions
between agile methods and approaches for software process analysis and improvement.
This paper analyzes to what extent the CMMI process areas can be covered by XP and
where adjustments of XP have to be made. Based on this, we describe the limitations
of CMMI in an agile environment and show that level 4 or 5 are not feasible under the
current specifications of CMMI and XP.

1 Introduction

Organizational maturity indicators like CMMI levels, SPICE ratings or specific ISO stan-
dards have become increasingly important for software development.

Customers or organizations that set up a distributed project often rely on them when
selecting suppliers, since the results of these assessments and audits can serve as a ‘signal’
for their process maturity [8, 19].

In large organizations there are policies which enforce that all parts of the organization
have to achieve certain maturity levels.

At the same time, agile methods continue to gain currency. This has also been true
for larger projects, e.g. Cockburn and Highsmith cite successful agile projects with up to
250 people [6] and even for outsourcing and offshoring projects [10, 24, 26].

This leads to the challenge that, on the one hand, organizations often rely on CMMI
as an indicator for process maturity (which is supposed to translate into product quality),
on the other hand agile methodologies like XP [3], Scrum [25], Lean Development [23] or
the Crystal methods [3] get more prominent.

It has been shown that projects that use agile methods with certain adjustments can
achieve CMMI level 2 or even 3 [2, 17]. But from the various reports of successful agile
projects it doesn’t become clear how agile methods contribute to the fulfillment of process
areas, where they have to be adjusted and where they are in conflict with CMMI goals.

10 Martin Fritzsche, Patrick Keil

Research should be conducted on how agile methods can be adapted to reach certain
CMMI levels. This paper is meant as a starting point which reveals where adjustments
have to be made.

Therefore, this paper takes a qualitative approach to analyze in how far agile methods
support or conflict with CMMI process areas, where adjustments have to be made and if
organizations employing agile methods can reach conformity with certain CMMI levels.
After analyzing XP, we derive general statements and theses about the comparability and
compatibility of CMMI and agile methods.

1.1 Related Work

Several authors have discussed the compatibility of CMMI and agile methods. Paulk [21]
analyzes how XP can help organizations to reach the SW-CMM goals. While his work gives
good insights into the interrelations between XP and CMM, the use of the now outdated
SW-CMM limits the results. Our approach extends his work since we do explicitly show
which process areas are in conflict with agile methods.

Kane and Ornburn [18] analyze which CMMI process areas are covered by XP and
Scrum. Especially those areas related with process management are not considered by
these two methods. Therefore, the authors propose tailoring of XP and Scrum to satisfy
these goals. Unfortunately, most of the findings are not clearly derived. In addition, it is
not discussed whether certain process areas are not addressed by agile methods or whether
they are in conflict.

Finally, Turner and Jain [27, 28] show how CMMI can help to successfully implement
agile methods. The difference to our approach is that we want to analyze how agile
methods support CMMI and not vice versa.

2 Agile Methods

As an answer to the challenges of modern software development which in many cases
cannot be tackled by ‘traditional’ processes, different ‘lightweight’ approaches have been
established since the mid 1990ies that can be subsumed under the brand ‘Agile Methods’
[3, 6]. They ‘ “allow for creativity and responsiveness to changing conditions” [8] by em-
phasizing customer participation, quick reaction to requirements’ changes and continuous
releases [7, 14]. Some of them are rather a collection of techniques and activities than
complete process models with precise definitions of roles, products, activities etc. But
there are some methods, e.g. eXtreme Programming (XP) [3] or SCRUM [25], which are
widely employed in projects of various sizes. Some concepts and ideas from the agile space
have even been introduced into ‘heavyweight’ process models [1].

The characteristics of agile methods are elaborately defined in the twelve principles
behind the agile manifesto [4, 5, 9]:

• Our highest priority is to satisfy the customer through early and continuous delivery
of valuable software.

Agile Methods and CMMI: Compatibility or Conflict? 11

• Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.

• Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

• Business people and developers must work together daily throughout the project.

• Build projects around motivated individuals. Give them the environment and sup-
port they need, and trust them to get the job done.

• The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

• Working software is the primary measure of progress.

• Agile processes promote sustainable develop-ment. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely.

• Continuous attention to technical excellence and good design enhances agility.

• Simplicity - the art of maximizing the amount of work not done – is essential.

• The best architectures, requirements, and designs emerge from self-organizing teams.

• At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.

These principles specify the four agile values [9] and provide a good summary of the
intentions and ideas of agile methods.

3 Compatibility of Agile Methods with
CMMI Requirements

3.1 CMMI – an Overview

The Capability Maturity Model for Software (CMM) [22, 15] developed by the Software
Engineering Institute (SEI) has had a major influence on software process and quality im-
provement around the world [20]. Based on the first version released 1991, the Capability
Maturity Model – Integrated (CMMI) has been presented in 2000, integrating CMM for
Software (SW-CMM), the Capability Model for Systems Development (EIA/IS 731) and
the CMM for Integrated Product Development (IPD-CMM).

Software Process Improvement (SPI) assumes that a well-managed organization with
a defined engineering process is more likely to produce software that consistently meets
the users’ requirements within schedule and budget than a poorly managed organization
with no such engineering process. “In other words, the project failure is usually a process
failure” [8]. CMMI – as SPI’s “de facto method” [29] – describes managerial processes to
attack software development difficulties at five maturity levels:

12 Martin Fritzsche, Patrick Keil

1. initial

2. managed

3. defined

4. quantitatively managed

5. optimizing

It is important to note that the CMMI process models do not contain prescriptive
processes that can be used right out of the box. Instead, CMMI provides a way to assess
the state of an organization’s ability to build software in a repeatable, predictable way [8].

Applying CMMI as a means to increase process capabilities is an organization-wide
challenge. Herbsleb et.al. show that the average time for an organization to move up
one level is between 21 and 37 months [13]. Over three quarters of the organizations
reported that implementing any key SPI activity took longer than expected. But the
effort pays off since “software process management maturity is positively associated with
project performance” [16].

In order to reach a certain level, an organization has to fulfill all process areas of that
level as well as those of lower levels. A process area is a summary of all requirements for
a certain topic, e.g. project management, organizational training or causal analysis and
resolution. To satisfy a process area all of its associated goals – specific ones and generic
ones – have to be met. Specific goals apply to a process area and address the unique
characteristics that describe what has to be implemented to satisfy the process area. To
meet a specific goal CMMI suggests a set of specific practices. A specific practice is an
activity that is considered important in achieving the associated specific goal. Generic
goals are called “generic” because the same goal statement appears in multiple process
areas. In the staged representation, each process area has only one generic goal. To
meet a generic goal, CMMI suggests a set of generic practices. Generic practices provide
institutionalization to ensure that the processes associated with the process area will be
effective, repeatable, and lasting [15].

3.2 An Approach to Analyze the Coverage of Process Areas by
Agile Methodologies

Our goal is to determine which of the CMMI process areas are supported by agile methods,
where adjustments need to be made and which process areas are in conflict. In order to
do so we analyzed every process area and all of its specific goals in detail [11]. The specific
practices are only expected model components, meaning that their use is recommended
but not necessary. CMMI states that they can be replaced by alternative practices. In
fact, agile methods often employ different approaches than those suggested by CMMI.
Therefore we concentrate on the analysis of the goals, using the practices only as guidelines
and always looking for possible alternative ways of implementing the goals.

We also analyze the two generic goals (“institutionalize a managed process” and “in-
stitutionalize a defined process”) and the generic practices, but only in general terms and

Agile Methods and CMMI: Compatibility or Conflict? 13

not in conjunction with particular process areas. The reason for this omission is that
agile methods do not directly address institutionalization practices. Institutionalization
is a topic which has to be considered on the organizational level while agile methods only
regard project level. Results in a detailed analysis of generic practices would be very
limited.

For the coverage of specific goals, process areas and generic practices, a rating system
is applied:

• Conflicting (–)

• Not addressed (0)

• Partially supported (+)

• Supported (++)

• Largely supported (+++)

“Largely supported” means that the agile method’s practices, if employed correctly,
satisfy the major part of the respective model component. “Supported” and “partially
supported” describe a restricted coverage and “not addressed” reflects that there is no
coverage at all. These ratings do not imply that the respective CMMI goals cannot be
attained. They merely point out that additional practices have to be introduced to fully
satisfy the CMMI requirements. “Conflicting” on the other hand indicates that the respec-
tive CMMI goal cannot be reached with the agile method being used. This rating is given
if there are no possible extensions that do not interfere with the method’s basic practices
or the agile principles. To differentiate between “not addressed” and “conflicting”, we
therefore always had to check whether the agile method could be extended to reach the
CMMI goal without interfering with the method’s basic practices or contradicting to the
principles stated in the agile manifesto.

3.3 Applying the Approach to eXtreme Programming

In this chapter we apply our approach to XP and show the interrelations and conflicts
between XP and the CMMI process areas and all of their associated specific goals. To
not go beyond the scope of this paper we will condense the analysis. [11] provides a more
detailed presentation and a discussion of Scrum.

3.3.1 Analysis of Process Areas and Their Specific Goals

Requirements management – Manage requirements (+++)

Understanding of the requirements is obtained through the integration of the customer
into the team and the resulting intensive communication with the customer. The project
participants’ commitment to the requirements is obtained in the planning phase. Changes

14 Martin Fritzsche, Patrick Keil

of requirements are quickly exchanged and discussed. Even if traceability of requirements
is not an explicit goal of XP, it is supported by stories, tasks, functional tests that detect
inconsistencies between project work and requirements, and by unit tests. XP’s practice of
throwing away story cards that already have been realized can prove to be problematic. To
better implement this process area story cards should be kept. Thus, traceability can be
extended by keeping record of previous story cards and old versions of the documentation.

Project planning (+++)

Establish estimates (+++)

Estimates for stories and tasks are established and can be corrected during the project.
The estimates’ precision is increased through a short planning horizon due to short itera-
tions.

Develop a project plan (+++)

The project plan is established through XP’s release and iteration plans that evolve
throughout the project. Therefore long term plans remain vague and only short term plans
are detailed. Risks are identified, training needs are planned and the involvement of all
relevant stakeholders is assured if XP is applied correctly.

Obtain commitment to the plan (+++)

Commitment to the release and iteration plans is obtained through the high involve-
ment and responsibility of all team members.

Project monitoring and control (+++)

Monitor project against plan (+++)

Schedule and estimates are monitored by the tracker. Information on the project’s
progress is gathered by the use of measures. The intensive communication among the
team members and with the customer helps to convey that information. Milestones are
checked against the schedule by functional tests. The strict system of short iterations and
the regular commitments to the plan make it easier to monitor the project against the
baseline.

Manage corrective action to closure (+++)

Issues that demand corrective actions are informally collected and analyzed. Correc-
tive actions can be adjustments of the method and also of the functionality that will be
realized. In addition new iterations always offer good opportunities to make adjustments.

Agile Methods and CMMI: Compatibility or Conflict? 15

Supplier agreement management (0)

This process area is not addressed by XP. We believe that the method can be extended
to fulfill the goals of this process area. However, involving suppliers could be problematic
for agility if it hinders iterative development. There are cases where supplied components
are needed to obtain functioning software at the end of an iteration. It can pose a critical
problem if they are not available at that point.
Measurement and analysis (+)

Align measurement and analysis activities (+)

The only measurement objective is progress control. Measurements and analysis pro-
cedures are defined by the tracker. XP provides no specific guidelines for these tasks.

Provide measurement results (++)

The measurement data is obtained through intensive communication within the team.
The tracker analyzes the data and conveys the results to the team using wall charts. The
data is usually not permanently stored. However, there are many tools available for effort
estimation and tracking for agile teams. By using these tools the measurement data and
results can be stored permanently without too much effort.

Process and product quality assurance (+)

Objectively evaluate processes and work products (+)

XP doesn’t demand an explicit evaluation of processes, work products and services
against the applicable process descriptions. The only instrument of controlling that the
method is applied in the right way is the coach who guides the team in the use of XP.

Provide objective insight (+)

Quality issues can be easily communicated in an XP team. The work of the coach
supports this specific goal. However, there are no strict guidelines for the resolution of
noncompliance issues and the establishing of records of quality assurance activities.

Configuration management (+++)

Establish baselines (+++)

Configuration items are code, design, tests and requirements. The use of a configu-
ration management system is recommended since continuous integration relies heavily on
it. Baselines are established regularly through functional tests. In addition, baselines are
created at the end of each iteration.

16 Martin Fritzsche, Patrick Keil

Track and control changes (+++)

Changes are controlled and tracked through various practices like pair programming,
tests, customer collaboration, etc.

Establish integrity (+++)

XP enforces continuous integration. Code is easy to read because of coding stan-
dards and therefore its own description. Audits are informally performed through pair
programming, customer involvement and testing.

Requirements development (++)

Develop customer requirements (++)

The customer elicits requirements and specifies them in story cards and functional
tests. The developers often support him in these tasks. The requirements specification
however remains quite vague. Details have to be discussed directly with the customer
during development.

Develop product requirements (++)

Customer requirements are refined into product requirements. These are specified
using task cards. They remain relatively vague too.

Analyze and validate requirements (++)

An analysis of requirements is carried out in a well-defined way. The programmers con-
sult the customer during requirements elicitation. In addition, the acceptance of changing
requirements and the use of iterations allow constant analysis and validation of require-
ments. Operational concepts and scenarios are established using functional tests. However
there is no in depth requirements analysis up front.

Technical solution (+++)

Select product-component solutions (+++)

Alternative solutions are explored at the beginning of the project through prototypes
and later on through refactoring and iterative development.

Develop the design (+++)

A design as simple as possible is developed. Code is used as a design document. Design
is carried out iteratively.

Agile Methods and CMMI: Compatibility or Conflict? 17

Implement the product design (+++)

XP employs a variety of implementation practices, e.g. refactoring, coding standards,
pair programming. A product support documentation is developed if it is requested by
the customer.

Product integration (+++)

Prepare for product integration (+++)

XP employs continuous integration and since integration steps are performed very
often, a thorough preparation is critical.

Ensure interface compatibility (+++)

Interface compatibility is ensured by running all tests at each integration step.

Assemble product components and deliver the product (+++)

Component assembly and delivery is carried out. The use of continuous integration
and direct customer involvement further helps to achieve this goal.

Verification (+++)

Prepare for verification (+++)

Verification is carried out through intensive testing. The preparation is therefore con-
centrated on this topic. A test framework should be used and hence according preparation
activities executed. Furthermore XP employs a test-first approach. All tests have to be
written before the code.

Perform peer reviews (+++)

Peer reviews are implicitly always part of XP. Pair programming, refactoring and the
principle of collective code ownership imply constant peer reviews.

Verify selected work products (+++)

Methods for verification are mainly peer reviews and testing, which both are performed
constantly.

18 Martin Fritzsche, Patrick Keil

Validation (+++)

Prepare for validation (+++)

Validation is performed in XP projects through customer participation and frequent
releases. The main criterion for validation is acceptance by the customer.

Validate product or product components (+++)

The customer constantly validates the work done by the team. This is possible because
he is integrated into the team. In addition he validates the deliveries at the end of each
iteration. This may result in additional or changed requirements specified by the customer.
The enormous influence of the customer improves the chances that the product is suitable
for use in its intended operating environment.

Organizational process focus (–)

This process area isn’t addressed because it applies to the organization while XP only
applies to a project. It even is in conflict with XP: like in other agile methods, adjustments
are often done during a project. These improvements, however, are limited to the current
project since they shall not be documented. Knowledge about improvements is linked to
people. Other projects can benefit if people are moved between projects. But the problem
is that in big organizations there are too many projects. In that case such a practice cannot
let all of them benefit from a particular project’s experience. In addition the information
is not permanent since people can retire or change organization. The conflict can be eased
by establishing organization-wide repositories storing best practices of previous projects
or by institutionalizing the exchange of lessons learnt between projects.

Organizational process definition (0)

Organizational training (++)

Establish an organizational training capability (++)

Training is carried out by XP during the exploration phase. Therefore an XP project
requires organizational training capabilities. Pair programming and coaching can also be
regarded as training, so XP further enhances the organization’s training capabilities.

Provide necessary training (++)

As stated above, training is carried out explicitly during the exploration phase and
implicitly during the whole project through coaching and pair programming. Through
the latter, there are however deficiencies regarding the establishment of records and the
assessment of training effectiveness.

Agile Methods and CMMI: Compatibility or Conflict? 19

Integrated project management (++)

Use the project’s defined process (0)

Coordinate and collaborate with relevant stakeholders (+++)

XP integrates and coordinates developers, customer, testers, and management.

Use the project’s shared vision for IPPD (+++)

XP contributes a lot to the project members’ integration and their close collaboration.
This and the intensive communication within the team help to establish a shared vision.

Organize integrated teams for IPPD (0)

Risk management (+++)

Prepare for risk management (+)

XP doesn’t explicitly state how risk management is to be conducted. But XP projects
surely make some sort of preparation.

Identify and analyze risks (+++)

XP enforces the identification and analysis of risks during the planning phase.

Mitigate Risks (+++)

The flexibility gained by the use of short iterations is a potent instrument to mitigate
risks.

Integrated teaming (+++)

Establish team composition (+++)

XP establishes a self-organizing cross-functional team in which all relevant stakeholders
are integrated.

Govern team operation (+++)

Team operation is governed through a clear definition of the different roles, pair pro-
gramming, collective ownership of the code and the focus on cooperation and communi-
cation.

20 Martin Fritzsche, Patrick Keil

Integrated supplier management (0)

Decision analysis and resolution (–)

Turner [27] points out that the ability to adapt quickly to new situations is preferred
by agile methods to a formal evaluation process. XP identifies and evaluates alternatives
informally and not in the way CMMI suggests.

Organizational environment for integration (+)

The issues of this process area are addressed at project level but not at the organiza-
tional level.

Provide IPPD infrastructure (++)

XP establishes the basis for this specific goal through the introduction of tools, in-
tensive communication and cooperation. By promoting the abilities to communicate and
cooperate as well as leadership skills the method further supports this goal.

Manage people for integration (+)

Leadership mechanisms are democratic within the development team. However the
customer and the big boss have authority to decide on high level issues.

Organizational process performance (–)

XP focuses rather on individuals than on issues that are as process oriented as this
process area. Turner [28] points out that the idea of measuring a process and maintaining
baselines and models is in conflict with the agile manifesto.

Quantitative project management (–)

Statistical methods have their focus on defined processes and not on individuals since
quantitative analyses need a static baseline. Therefore, statistical methods are in conflict
with agile principles. Furthermore, they rely on the law of big numbers and on averaging
out effects in large teams. Since most agile software projects are small the use of statistics
is questionable.

Organizational innovation and deployment (–)

Process improvements and adaptations are made only within projects and not docu-
mented, so that they cannot be propagated to the whole organization. This topic relies
heavy on “organizational process focus”, a process area that is in conflict with XP.

Agile Methods and CMMI: Compatibility or Conflict? 21

Causal analysis and resolution (0)

3.3.2 Generic Practices

Establish an organizational policy (0)

Plan the process (0)

Provide resources (+)

This practice is conducted only regarding a few process areas.

Assign responsibility (+++)

The role model assigns responsibilities to certain team members. In addition the
developers take responsibility for particular tasks during the project.

Train people (+++)

Training is conducted during the exploration phase. Furthermore pair programming
and coaching is employed to train people.

Manage configurations (++)

A configuration management system is employed. The configurations of code, tests,
design and requirements are managed. For protocols of test cases, measurement data,
release and iteration plans configuration management isn’t planned.

Identify and involve relevant stakeholders (+++)

All relevant stakeholders are part of the team.

Monitor and control the process (++)

This generic practice is implemented for all project-related process areas due to XP’s
fulfillment of the process area “project monitoring and control”. To realize it for all
processes and not only for project-related processes, measures for monitoring actual per-
formance of the process have to be established.

22 Martin Fritzsche, Patrick Keil

Objectively evaluate adherence (+)

The coach is XP’s only instrument to support this generic practice. However by imple-
menting the process area “process and product quality assurance” which isn’t in conflict
with XP it would be possible to fulfill this practice for all process areas.

Review status with higher level management (++)

Frequent releases enable reviews by the management.

Establish a defined process (0)

Collect improvement information (–)

Improvements are deliberately not documented by XP and therefore this generic prac-
tice cannot be implemented. This conflict could be solved by properly documenting pro-
cess changes in a project and making them available to other projects in the organization.
In addition, process improvement information might be easily captured during iteration
planning and via postmortem analyses.

3.4 Coverage of Process Areas by Agile Methodologies

In 3.3., we showed in detail which of the CMMI process areas are supported by XP and
which are in conflict. In this section, we give a summary on the coverage of CMMI process
areas by XP and Scrum.

All of the seven process areas of CMMI level 2 are attainable by both methods. From
the fourteen process areas of level 3 only two are in conflict. Three out of the four process
areas of level 4 and 5 are also in conflict. Of the twelve generic practices only one was
rated as in conflict.

The results indicate that level 2 can be attained without major adaptations. The
same is true for level 3 with the exception of two process areas. It is however practically
impossible to reach level 4 and 5 with XP and Scrum without making changes to the
methods that contradict agility.

Mainly those process areas that deal explicitly with process improvement (“organiza-
tional process focus”, “organizational process performance”, “quantitative project man-
agement” and “organizational innovation and deployment”) are in conflict with agile meth-
ods. Also the generic practice “collect improvement information” deals explicitly with
process improvement and is in conflict. In addition “decision analysis and resolution”
interferes with Scrum and XP due to the demand of a formal evaluation process.

The major part of the process areas can be attained by agile methods. But often, the
methods have to be extended by additional practices to fully satisfy the process areas.
The coverage of all process areas and generic practices is shown in Table 1 and Table 2,
with those written in italics where XP and Scrum differ.

Agile Methods and CMMI: Compatibility or Conflict? 23

Process area XP Scrum

2.1 Requirements management +++ +++

2.2 Project planning +++ +++

2.3 Project monitoring and control +++ +++

2.4 Supplier agreement management 0 0

2.5 Measurement and analysis + +++

2.6 Process and product quality assurance + 0

2.7 Configuration management +++ 0

3.1 Requirements development ++ ++

3.2 Technical solution +++ 0

3.3 Product integration +++ 0

3.4 Verification +++ 0

3.5 Validation +++ +++

3.6 Organizational process focus - -

3.7 Organizational process definition 0 0

3.8 Organizational training ++ +

3.9 Integrated project management ++ +++

3.10 Risk management +++ +++

3.11 Integrated teaming +++ +++

3.12 Integrated supplier management 0 0

3.13 Decision analysis and resolution - -

3.14 Organizational environment for integration + +

4.1 Organizational process performance - -

4.2 Quantitative project management - -

5.1 Organizational innovation and deployment - -

5.2 Causal analysis and resolution 0 0

Table 1: Coverage of CMMI process areas by XP and Scrum

Generic practice XP Scrum

2.1 Establish an organizational policy 0 0

2.2 Plan the process 0 0

2.3 Provide resources + +++

2.4 Assign responsibility +++ +++

2.5 Train people +++ +++

2.6 Manage configurations ++ 0

2.7 Identify and involve relevant stakeholders +++ +++

2.8 Monitor and control the process ++ ++

2.9 Objectively evaluate adherence + 0

2.10 Review status with higher level management ++ +++

3.1 Establish a defined process 0 0

3.2 Collect improvement information - -

Table 2: Coverage of CMMI generic practices by XP and Scrum

There are only minor differences between the ratings of Scrum and XP. Scrum, not
addressing development activities, gets lower ratings than XP in accordant process areas
(“configuration management”, “technical solution”, “product integration” and “verifica-
tion”). On the other hand, Scrum performs slightly better in process areas dealing with

24 Martin Fritzsche, Patrick Keil

project management (“measurement and analysis” and “integrated project management
for IPPD”) and according generic practices (“provide resources” and “review status with
higher level management”).

Our analysis shows that XP and Scrum cover only project related, but not process
related process areas.

3.5 Interrelations between Agile Methods and Process Maturity Models

CMMI evaluates an organization as a whole and its development processes. In contrast, an
agile method is (a framework or sometimes only a fragment of) one individual development
process. Thus, the concepts are not comparable per se. Their focus is different, but
still they have interrelations. Paulk summarized that CMM is a method for software
management whereas agile approaches are methods for software development [21]. They
not only can coexist, but they even support each other [12].

We are convinced that CMMI is an appropriate way to improve processes also in
an agile environment. Checking an agile method’s coverage of the process areas reveals
shortcomings in the approach and thereby improvement potentials. However, process
improvement with CMMI can only be carried out up to a certain degree since there are
several process areas which are in conflict with agile principles. Some process areas of
level 3 and most of level 4 and 5 are unattainable without sacrificing some agile bedrocks.
This would weaken the agile method and eliminate several of its benefits. Also, such
actions would be contradictory to the aim of CMMI, i.e. improving the process by making
the agile method as good as possible and not turning it into a different kind of method
which isn’t agile anymore. So we conclude that the best improvement approach in an agile
environment is to stop at CMMI level 3.

Implicitly, we conclude that CMMI levels have to be judged considering the process
model employed in an organization. But also, like for every traditional process, refining
the agile processes needs to be regarded as an ongoing, success-critical task.

4 Conclusion

We analyzed in detail which CMMI process areas can be covered by Scrum and XP. We
identified process areas where the methods have to be adjusted to fulfill CMMI goals.
Some process areas were in conflict with the two methods and agile principles in general.
Most of the process areas can be fulfilled using agile methods. However some are clearly
in conflict. Through the use of CMMI, shortcomings of agile methods can be identified.
We therefore come to the conclusion that process improvement with CMMI can also be
carried out when using agile methods. However, since some process areas, mainly those
of the maturity levels 4 and 5, are in conflict with agile principles, agile methods can
be applied without any major adaptations up to level 2 and up to 3 with some minor
changes described in this paper. Extending the project focus of agile methods to an
organization-wide perspective would help to make use of the existing concepts of ongoing
process-improvement.

Agile Methods and CMMI: Compatibility or Conflict? 25

If these concepts are employed in agile environments, agile methods will further gain
acceptance. But today, an obstacle for process improvement with CMMI is the difficulty
to carry out assessments of projects which use agile methods. The specific practices
suggested by CMMI often differ from agile approaches. Assessors therefore encounter
serious problems when trying to analyze a project. To remedy this situation a catalogue
of practices and sub-practices that are typically used by agile methods to implement CMMI
goals should be developed.

Here, we only discussed XP and Scrum. To make our results more general, further agile
methods should be analyzed as well. In addition, concrete guidelines should be established
which show how agile methods can be enhanced to fully cover all the process areas that
are not in conflict. For this our work can be seen as a starting point.

References

[1] V-Modell XT Portal. http://www.v-modell-xt.de.

[2] D. J. Anderson. Stretching Agile to fit CMMI Level 3 - the story of creating MSF for CMMI
Process Improvement at Microsoft Corporation. In AGILE, pages 193–201, 2005.

[3] K. Beck and C. Andres. Extreme Programming Explained: Embrace Change. Addison-Wesley,
2nd edition, 2004.

[4] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler, J. Gren-
ning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mellor,
K. Schwaber, J. Sutherland, and D. Thomas. Manifesto for Agile Software Development,
accessed in 2006. http://AgileManifesto.org/.

[5] A. Cockburn. Agile Software Development. Addison-Wesley, 2002.

[6] A. Cockburn and J. Highsmith. Agile Software Development: The People Factor. IEEE
Computer, 34(11):131–133, 2001.

[7] D. Cohen, M. Lindvall, and P. Costa. Agile Software Development: A DACS State-of-the-Art
Report. Technical report, 2003. http://www.thedacs.com/techs/agile/agile.pdf.

[8] M. Doernhoefer. Surfing the net for software engineering notes. SIGSOFT Softw. Eng. Notes,
31(1):5–13, 2006.

[9] C. Dogs and T. Klimmer. Agile Software-Entwicklung kompakt. mitp-Verlag, 2005.

[10] M. Fowler. Using an Agile Software Process with Offshore Development, accessed in 2005.
http://www.martinfowler.com/articles/agileOffshore.html.

[11] M. Fritzsche. Agile Methoden im industriellen Umfeld. Master’s thesis, Technische Universität
München, 2005.

[12] H. Glazer. Dispelling the Process Myth: Having a Process Does Not Mean Sacrificing Agility
or Creativity. CrossTalk: The Journal on Defense Software Engineering, (14):27–30, 2001.

[13] J. D. Herbsleb, D. Zubrow, D. Goldenson, W. Hayes, and M. C. Paulk. Software Quality and
the Capability Maturity Model. Commun. ACM, 40(6):30–40, 1997.

[14] J. Highsmith. Extreme Programming: Agile Project Management Advisory Service White
Paper, accessed in 2005. http://www.cutter.com/freestuff/ead0002.pdf.

26 Martin Fritzsche, Patrick Keil

[15] S. E. Institute. Capability Maturity Model Integration (CMMI), Version 1.1 (CMMI-
SE/SW/IPPD/SS, V1.1). Technical report, Software Engineering Institute, Carnegie Mellon
University, 2002.

[16] J. J. Jiang, G. Klein, H.-G. Hwang, J. Huang, and S.-Y. Hung. An exploration of the relation-
ship between software development process maturity and project performance. Inf. Manage.,
41(3):279–288, 2004.

[17] T. Kähkönen and P. Abrahamsson. Achieving CMMI Level 2 with Enhanced Extreme Pro-
gramming Approach. In PROFES, pages 378–392, 2004.

[18] D. Kane and S. Ornburn. Agile Development: Weed or Wildflower? CrossTalk: The Journal
on Defense Software Engineering, 2002.

[19] P. Keil. Principal agent theory and its application to analyze outsourcing of software develop-
ment. In EDSER ’05: Proceedings of the seventh international workshop on Economics-driven
software engineering research, pages 1–5, New York, NY, USA, 2005. ACM Press.

[20] M. C. Paulk. Using the Software CMM With Good Judgment. ASQ Software Quality Pro-
fessional, 1(3), 1999.

[21] M. C. Paulk. Extreme Programming from a CMM Perspective. IEEE Software, 18(6):19–26,
2001.

[22] M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber. Capability Maturity Model, Version
1.1. IEEE Softw., 10(4):18–27, 1993.

[23] M. Poppendieck and T. Poppendieck. Lean Software Development: An Agile Toolkit. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[24] R. S. Sangwan and S. P. Masticola. Model-Driven Rapid Application Development: A Frame-
work for Agile Development in Outsourced Environments. Technical report, Siemens Corpo-
rate Research, 2004.

[25] K. Schwaber and M. Beedle. Agile Software Development with Scrum. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2001.

[26] M. Simons. Internationally Agile, accessed in 2005. http://www.informit.com/articles/article.
asp?p=25929.

[27] R. Turner. Agile Development: Good Process or Bad Attitude? In PROFES, pages 134–144,
2002.

[28] R. Turner and A. Jain. Agile Meets CMMI: Culture Clash or Common Cause? In XP/Agile
Universe, pages 153–165, 2002.

[29] R. van Solingen. Measuring the ROI of Software Process Improvement. IEEE Software,
21(3):32–38, 2004.

e-Informatica Software Engineering Journal, Volume 1, Issue 1, 2007

An Empirical Evaluation of Refactoring

Dirk Wilking∗, Umar Farooq Khan∗, Stefan Kowalewski∗

∗Embedded Software Laboratory, RWTH Aachen University

wilking@informatik.rwth-aachen.de, umar.khan@ixi.informatik.rwth-aachen.de,

kowalewski@informatik.rwth-aachen.de

Abstract
This paper presents a process evaluation for the agile technique of refactoring based
on the language C. The basis for this evaluation is made up by an experiment which
is targeted on the aspects of increased maintainability and modifiability. Although the
maintainability test shows a slight advantage for refactoring, results show no significant
strength here. Concerning modifiability, the overhead of applying refactoring appears to
even weaken other, positive effects. The analysis of secondary variables provides hints on
advantages of the refactoring technique like reduced resource consumption and a reduced
occurrence of complicated control structures.

1 Introduction

Maintenance of software is reported as a serious cost factor [24]. One solution proposed to
reduce maintenance effort is refactoring [8] which is a method to continuous restructure
code according to implicit micro design rules. Its new aspects are the smooth integration
into an existing development process where it is used continuously in the background.
Developers are forced to think about their code structure and to identify parts which
“smell” - which is the best description that can be given for this subjective concept. After
identification, the according code is changed based on a catalogue of change steps referring
to the problem. These steps range from renaming of variables, extraction of methods to
the extraction of complete classes from the existing code.

Refactoring is assumed to positively affect non-functional aspects, presumably extensi-
bility, modularity, reusability, complexity, maintainability, and efficiency as stated in [24].
However, additional negative aspects of refactoring are reported, too. They consist of
additional memory consumption, higher power consumption, longer execution time, and
lower suitability for safety critical applications.

Most research concerning refactoring is done on the technical side in order to apply
refactoring in a computer aided way. The general aim here is to either integrate a new
technical aspect to refactoring like languages ([15, 21]), to support refactoring by a tool
for analysis ([22, 30, 31, 35]) or to support the actual execution of refactoring ([10, 23]).
Empirical evidence of the effect of refactoring is rarely to be found. One example for an
empirical evaluation is the influence of refactoring on changeability as evaluated in [12]
reporting a lower change effort. Other empirical results provide a taxonomy for bad smells
as presented in [22].

28 Dirk Wilking, Umar Farooq Khan, Stefan Kowalewski

Experience reports show a mixed picture of refactoring. One application of refactoring
is reported to show non-satisfactory results [28]. It is reported that bad tool support
along with the size of a legacy system created the problems. A code evolution analysis
[19] investigates one of the main artifacts minimized by refactoring: copied code (code
clones). It states that not every code clone should be subject to refactoring and that for
some clones, appropriate refactorings are missing. One successful examination in terms of
an increase in program performance due to refactoring is reported in [13]. A secondary,
nonetheless interesting aspect mentioned there is the compliance to the design principle
of information hiding after the application of refactoring.

Concerning agile methods in general, a limited empirical evaluation took place so
far [2]. Most work has been done for pair programming [1] as this seems to be the most
important aspect of extreme programming. As in addition refactoring is a major technique
which can be used on its own, this report presents an experiment which intends to help
assessing agile methods and this technique more precisely.

2 Design of the Experiment

The general approach followed by this experiment consisted of a group of 12 students using
the same requirements specification to develop a program. Six students used refactoring
continuously during development while the rest was asked to continuously document each
function programmed. The assignment to a treatment group was done at random. The
later treatment is regarded as a placebo in order to omit a Hawthorne effect [29] and to
apply the same level of disturbance to this control group.

As the effects of refactoring were assumed to have an impact on non-functional aspects,
two hypothesis were of special interest. The first one was the effect of refactoring on main-
tainability. Regarding this aspect, a direct evaluation method as proposed in [17] which
is mainly based on a metric definition was not done. As in this case participants were
available, a measurement with the help of the participants was done. Maintainability was
tested by randomly inserting defects into the code and measuring the time needed to fix
them (thus classified as corrective maintainability [3]). The second hypothesis was an
improved modifiability caused by refactoring. In order to test this, small additions were
added to the specification as new requirements and the time and physical lines of code
(LOC) needed to implement them were measured.

2.1 Variables and Measurement

The independent variable of this experiment was the treatment which was a single, dichoto-
mous factor. Either a participant was assigned to the refactoring or to the documentation
treatment. In order to control the execution of the particular treatment, a simple tool was
established disturbing every participant every 20 minutes. During each disturbance, the
participant was asked to either work on a refactoring checklist or to document the last
functions he programmed. In the case of documentation, changing the code was prohibited
during this step.

An Empirical Evaluation of Refactoring 29

One dependent variable of this experiment was the LOC metric together with the time
to implement a new version based on additional features. LOC is considered to be a rough
measure for the size of the resulting product. Both were used to measure the additional
effort a developer needed to add new, unmentioned features to his code. These two thus
were regarded as an indicator for system modifiability.

For maintainability, a special test was prepared. It consisted of a time measurement
for the fixing task of randomly induced syntactical and semantical failures. These were
directly created in the participants source code by randomly removing lines of source code.
The tests consisted of a short description of the failure (in case of a semantical failure)
and the measuring consisted of the time needed to locate and fix them. The measuring
was done in seconds and supervised by a member of the chair.

A measurement of a difference in the abstract syntax tree is currently executed in
order to assess a general difference in the micro structure of the different versions (cf.
[14, 18, 20]).

2.2 Hypothesis

The main hypothesis of an improved modifiability for different versions measured by the
time t was formalized by

H0 : tmodRef
≥ tmodDoc

with tmodRef
being a version’s mean development time for the refactoring group and tmodDoc

being the according value for the documentation group. Thus, the resulting alternative
hypothesis was

H1 : tmodRef
< tmodDoc

Concerning corrective maintainability, the corresponding hypothesis was that the mea-
sured time for maintainability tmain during the maintainability test was greater for the
documentation group leading to the null hypothesis of

H0 : tmainRef
≥ tmainDoc .

The expected hypothesis thus was

H1 : tmainRef
< tmainDoc .

2.3 Procedure

The execution of the experiment started with a video introduction explaining the micro-
controller, the development environment, and the general conditions of the experiment.
Only the last video was different for each participant group as it either explained the
refactoring or documentation task. By using videos it was made sure that each partic-
ipant received the same introduction and that no treatment group was favored. After
that, an initial survey was carried out in order to assess the participant’s overall program-
ming knowledge and knowledge about refactoring. In order to avoid motivation effects
refactoring was named reorganization within the documents and videos. Additionally, the

30 Dirk Wilking, Umar Farooq Khan, Stefan Kowalewski

participants were asked to develop the software without any additional software engineer-
ing techniques to avoid interference of other factors. At last, the participants were not
told what kind of measurement was done in the end in order to avoid preparation for
requirement additions in terms of architecture.

The development started by reading the requirements document which was the same
for all participants. After that, programming started until each requirement was imple-
mented. The development task consisted of a game based on a reaction and a memorization
part. The reason for this type of application was the low domain knowledge required. In
addition, different types of hardware programming were needed in order to use the buttons
(with debounce), LCD, LEDs and interrupts.

Concerning the execution of refactoring, only a subset of applicable refactoring steps
was chosen with the addition of macro refactorings as discussed in [9] and [10]. The reason
for excluding certain refactorings is the utilization of the language C. Only non-object
oriented programming features were used during this experiment.

As the participants were not supposed to be accustomed to refactoring, a special, con-
trolled execution was intended. First, the frequency of refactorings was set to a rate of
20 minutes. This was done to assure continuous refactoring together with a reminder of
executing refactoring at all. The disadvantage of this approach are the occasions where a
refactoring was initiated without the actual need for it. As the execution of refactoring
steps was uncommon and the perception of bad smells was not based on participant expe-
rience, a checklist based on [8] was used in order to control both aspects. The execution
of a refactoring is regarded non problematic whereas the detection of bad smells is subject
to personal interpretation because of the nature of this term. Thus, only an informal
description of this basic concept was given.

The final code size differed between individuals and was not affected by the treatment.
The size ranged from 745 to 2214 lines of code. For each version, an acceptance test was
executed checking the basic functionality and new features which were added. In case
of an imprecise requirement definition, the implementation was accepted in the way the
participant understood the requirement.

2.4 External Conditions and Limitations

The time span for this experiment was 3 months. During this time, all participants
worked on the tasks until they finished them or the maximum of 40 hours was reached.
Each participant worked in a different room and a simple room management was done
as only three different rooms were available. The event that a participant wanted to
work and no room available could be circumvented by this. Files were separated on
network drives so that no participant could see the results of the other. The complete
development environment was accessible in each room and participants worked on their
own. Interruption sometimes occurred, but the frequency was not very high. For questions,
an instant messaging server was setup and all messages were logged which was known and
had to be accepted by the students.

An Empirical Evaluation of Refactoring 31

2.5 Participants

The experiment was carried out with twelve graduate students. All of them were students
at the RWTH Aachen University. The experiment had been advertised on the university’s
mailing list, notice boards and in the courses. Applications from 14 students had been
received of whom 12 students had been selected randomly. Their field of study was mainly
computer science, with one participant working in the field of mechanical engineering. All
participants were paid and received a forty hour student helper contract. The students had
programming knowledge of Java, whereas the language C was new to some. As mentioned
above, refactoring was new to them except for one student who had practical knowledge.

As explained in [33], this type of participants is sufficient for evaluating basic effects or
an initial hypothesis. In addition, [16] states that at least last-year software engineering
students have a comparable assessment ability compared to professional developers and in
[4] no general difference could be found for different programming expertise between these
groups.

2.6 Technical Background

The experiment used an ATMEL ATmega16 microcontroller clocked with 6MHz as de-
velopment platform. The software was written in C and developed with WINAVR 2 and
ATMEL AVR Studio 3. For the LCD programming, an additional C-header was given
to the students as this was regarded standard. Some tools were used in the background
which comprised the disturber mentioned above and a code gathering tool which copied
the code base every time a compilation was done. This last step was done in order to
study code evolution.

3 Validity

This section critically examines practices and ancillary conditions. The procedure, mea-
surements and theoretical concepts are structured as proposed in [36].

3.1 External Validity

Although in general students can be regarded as average programmers, they do not repre-
sent the often demanded professional developers. As stated above, they are regarded suffi-
cient to show an effect within an initial method evaluation [33]. Regarding the treatment,
the use of additional, unmentioned features can be regarded as in favor for refactoring.
The event of changing requirements and thus the need for new features is not regarded
artificial but normal industrial development. Regarding the environment, especially the
lack of an object oriented language might have changed the influence of refactoring. This
is not regarded as an artificial interaction because refactoring is regarded a method that
can be applied in general to improve the design of a program. Technical factors like
an exceptional good development environment or a method specific language might blur
a method’s effect and thus the lack of it is not regarded problematic.

32 Dirk Wilking, Umar Farooq Khan, Stefan Kowalewski

3.2 Internal Validity

One of the major internal threats is the application of refactoring itself consisting mainly
of a checklist and a periodical call for the application of it. This artificial treatment
was chosen because of the high control. The downside of this is that the concept of
a bad smell may require much more experience than provided by the checklist and that
the application of refactoring may require a higher degree of freedom for an individual
developer than allowed by such a list.

History and maturation are not regarded a threat as there is no repeat in the sense of
reoccurring tasks or measurements except for the maintainability test were the code knowl-
edge may have increased for each test. As an additional precaution, the main measurement
tasks (additional requirements and failure inducing) were not known to the participants
so that they could not prepare their code for this.

As some participants could not fulfill the requirements for all versions, they may have
suffered from demoralization effects. But because of the fact that each participant worked
on his own and no results where revealed to others, social threats are regarded a minor
threat.

Concerning the communication between participants, only a contract specifying the
participants duties and rights could be used as controlling device. As the development
took a few weeks per participant, the possibility of private communication could not be
eliminated.

3.3 Construct Validity

A clear theory in the sense of an abstraction of the effects is not easy to define for refac-
toring. There are several effects which are accumulated in the term refactoring. One of
the major points is the abstract design principle of “once and only once” suggested by the
inherent term “factor” [8]. Another effect might be the constant rereading and rethinking
of existing code. By this, a continuous awareness of all parts of the source code might by
achieved revealing positive effects like simpler reuse of code and faster navigation. This
might be considered a constant reviewing process, too. One last aspect is an implicit ef-
fect of refactoring with the existence of a good structure being indirectly postulated. This
effect may force developers to maintain a certain quality for every part of the code which
may not be the case for non-refactoring based development.

However, by following the combined approach of bad smell and collection of refactoring
steps, the common usage of this technique is adopted and its general influence assessed.
Consequently, an abstract construct was not used.

Concerning the outcome expected to be caused by refactoring, only the variables of
maintainability and modifiability were measured. For other non-functional aspects like
modularity, reusability, complexity, and efficiency no direct measurement construct could
be found. The quality of the actual measurement consisted only of a single variable for
maintainability, whereas multiple measurements in the form of LOC and time were done
for modifiability.

An Empirical Evaluation of Refactoring 33

The generalizability of the treatment suffers from the hard 20 minute interrupts. One
the one hand, as refactoring is executed on demand when a problem has been discovered,
this treatment is artificial. On the other hand, it is the only way of assuring a constant
execution. In addition, the reminder of looking for bad code aspects is regarded helpful
for unexperienced participants. The general idea of changing bad code continuously thus
is considered as maintained.

3.4 Conclusion Validity

Concerning the experiment’s power, the low number of participants (n = 6) is a problem-
atic point. Power is described in [5] as the probability of rejecting the null hypothesis and
thus directly describes how good the experiment can show an effect. As the importance
of that aspect may be exaggerated (compare [26] to [25]) given the quality of variables
for empirical software engineering, the value for n still is too low. As described in [7], a
bootstrap power calculation can be done by sampling (with replacement) a higher number
of participants based on the original data. Table 1 depicts the probability p of show-
ing a difference of the mean fixing time of 12 seconds or more. This can be regarded a
rough indicator, as a only point estimator is used and 12 seconds is a rather low difference
(five percents regarding the mean fixing time of 240 seconds). Regarding a refactoring
group size of 48 participants, the experiment starts to have an appropriate probability of
showing the expected effect. An interesting application of this sample size oriented power
calculation is proposed in [32] suggesting a continuous review of an experiment’s power.

N : 6 12 24 48
p(d ≥ 12) 0.68 0.74 0.83 0.91

Table 1: Power calculation of a difference in means of 12 seconds for different sample sizes N

As the hypothesis and the assumed effects of refactoring have been clearly stated, “fish-
ing for results” may only occur for secondary variables for this experiment. Nevertheless,
these variables are investigated and interpreted, as they may give ideas for other effects
caused by refactoring. Their unreliable nature (significant results cannot be regarded as
such) is emphasized in the text.

The reliability of the measures is difficult to assess. LOC is always a point of discussion,
but it nevertheless can be regarded a rough measure for system size. The measurement
of relative time (compared to the first, full version) used to assess modifiability has the
advantage that it includes the main benefit expected for refactoring: a decrease of effort
when adding features. In addition, this variable is simple to measure. The special test for
maintainability which randomly induces failures into the participant’s code simulates the
same effect as a real case of corrective maintainability: a system failure is reported, its
cause has to be found in the code and it has to be fixed. Its reliability is regarded above
average as time is used as main variable and the failure creation is based on a random
process.

34 Dirk Wilking, Umar Farooq Khan, Stefan Kowalewski

4 Analysis

4.1 Main Hypothesis

4.1.1 Maintainability

The measurement of maintainability, which consisted of a random insertion of 15 syntac-
tical and 10 non-syntactical errors, was measured in seconds. The errors were created
by removing lines of code randomly. The resulting error were divided into syntactical
and non-syntactical nature. Because of the randomization and the rather uncommon test
method, a more detailed rating of the severeness of an error was note feasible. The results
were gathered for all twelve participants and the corresponding mean error correction
times were aggregated into the box plot of figure 1. Here, a minor advantage for the
refactoring treatment can be seen, but the results were not significant when a bootstrap
test was executed for α = 0.05. The assumption of better maintainability thus cannot be
answered according to this, but the slightly lower value for the refactoring treatment lead
to the impression of only a minor effect of refactoring.

Documentation Refactoring

Treatment

150,00

200,00

250,00

300,00

350,00

M
ea

n
 fi

xi
ng

 ti
m

e
in

 s
ec

on
ds

Seite 1

Figure 1: Box plot of mean fixing time of each participant divided by treatment group,
6 data points per group

4.1.2 Modifiability

Concerning modifiability, the measurement consisted of an additional implementation of
minor, new requirements added to the main task. The effect of each addition was evaluated
by counting the lines of code that were added, changed, and deleted for a version and by
measuring the time needed to fulfill the new requirements. It must be noted that due to
the different performance of the participants only 10 results were included for version 1.1,
and only 9 participants could be included for version 1.2 and 1.3.

An Empirical Evaluation of Refactoring 35

Documentation Refactoring
Treatment

30

60

90

120

150

180

210

LO
C

 fo
r v

er
si

on
 1

.1

12

Seite 1

Documentation Refactoring
Treatment

0

50

100

150

200

LO
C

 fo
r v

er
si

on
 1

.2

8

Seite 1

Documentation Refactoring
Treatment

40

60

80

100

120

LO
C

 fo
r v

er
si

on
 1

.3

Seite 1

Figure 2: Box plots for changed LOC per version categorized by treatment,
6 data points per treatment

Figure 2 displays the change needed for each development version. Changing incorpo-
rates the actions of addition, deletion and modification of a line of source code. Concerning
the difference in LOC, it becomes obvious that the refactoring treatment contradicts the
initial assumption that refactoring has a benefit on system modifiability. The median of
the changed lines for the refactoring group is above that of the control group in two cases.

Documentation Refactoring
Treatment

0,00

0,02

0,04

0,06

0,08

0,10

R
el

at
iv

e
ef

fo
rt

 fo
r v

er
si

on
 1

.1

10

4

Seite 1

Documentation Refactoring
Treatment

0,00

0,01

0,02

0,03

0,04

0,05

0,06

0,07

R
el

at
iv

e
ef

fo
rt

 fo
r v

er
si

on
 1

.2

Seite 1

Documentation Refactoring
Treatment

0,01

0,02

0,03

0,04

0,05

0,06

R
el

at
iv

e
ef

fo
rt

 fo
r v

er
si

on
 1

.3

12

10

2

Seite 1

Figure 3: Box plots for fraction of development time compared to first version per modification
categorized by treatment, 6 data points per treatment

The observation of figure 2 from above is supported by the time measurement for each
treatment group as presented in figure 3. Although these two variables are linked together
(more lines of code will take longer to write), the overall impression of additional effort for
refactoring is strengthened. In this case, refactoring has a bad effect on all three versions.

Regarding the main hypotheses of better maintainable systems and a better overall
modifiability, these results could not show an effect in favor of these non-functional aspects,

36 Dirk Wilking, Umar Farooq Khan, Stefan Kowalewski

but rather give a hint on strong side effects of refactoring. An additional interpretation of
these main results is given in section 5.

4.2 Analysis of Secondary Variables

Regarding the execution of the experiment, additional variables were measured during
the programming procedure. One interesting aspect was the memory usage of a program
which was reported by the compiler after each compile cycle. The memory types for the
system consisted of SRAM and flash-RAM. SRAM is used for heap memory allocation, as
stack memory and for initialized and non-initialized data fields. Flash is mainly used as
program memory, meaning that the text of a program is stored here.

Simulation of mean Flash−RAM for version 1.0

Flash memory of documentation group − refactoring group

F
re

qu
en

cy

−4000 −2000 0 2000 4000

0
50

0
10

00
15

00

Observed
1.62%

Value
2278

Figure 4: Bootstrap simulation of mean memory difference

When comparing the results of both groups, the difference of the mean flash memory
usage for both groups was significantly different. While the documentation group needed
less SRAM, the usage of flash was higher as shown by the bootstrap simulation [6] for the
mean memory usage of both groups of figure 4. The simulation compares the observed
memory difference to differences created by randomized groups. It starts by randomly
dividing the observed memory values in two groups of the same size as in the original
experiment. From each of these groups, the mean value is calculated and the values
are subtracted. This is repeated 10000 times and the results are given in form of the
histogram in figure 4. The original value of 2278 is rarely observed (only 1.62%) which
can be interpreted as a non-random occuring event. Thus, memory consumption might

An Empirical Evaluation of Refactoring 37

be effected by refactoring. The implication of this observation and possible causes for this
difference are explained in section 5.

An advantage of bootstrap is that for randomization of groups, the values measured
during the experiment are taken. Thus, it reuses (bootstraps) its own data to compare
the values to a more problem specific population. Compared to t-test and u-test, assump-
tions concerning the distribution of the data are lower making it more usable for smaller
experimental groups [34].

4.3 Analysis of Refactoring Techniques

Another data source originates from the checklists of the participants. Here, each time
a student was disturbed, the refactoring techniques applied during the process had to be
checked. Based on the frequency of usage, a ranking of the importance for each refactoring
technique could be created as shown in figure 5.

Extract Method
Rename Method

Comments
Replace Magic Number with Symbolic ...

Remove Parameter
Introduce Explaining Variables

Substitute Algorithm
Replace Assignment with Initialization

Rearrange the code
Renaming a Macro

Replace Parameter with Explicit Methods
Reverse Conditional

Split Temporary Variables
Inline Function

Adding Parameters to a Function
Inline Method

Consolidate Conditional Expression
Consolidate Duplicate Conditional ...

Remove Control Flag
Add Macro Definition Replacing Values i...

Decompose Conditional
Replace Nested Conditional with Guard ...

Replace Temp with Query
Const vs Volatile Variable

0 10 20 30 40
Frequency of use

Seite 1

Figure 5: Accumulated occurrences of refactoring techniques for 6 participants

Regarding the techniques used, only some techniques may be of importance for average
programming tasks. The extract method principle of aggressively dividing code blocks
into smaller chunks appears to be by far the most important technique when refactoring
is applied. Additionally, better naming schemes for methods appear to be important
which might be understood as a change on the semantic level of the code. The addition
of code comments seems to head for the same goal by giving a better explanation for
blocks of source code. One single refactoring may have a high ranking only because of

38 Dirk Wilking, Umar Farooq Khan, Stefan Kowalewski

the C language programming: replacing a magic number with a symbolic constant. Here
again, a better explanation seems to be the aim of the refactoring technique.

This refactoring list may give hints on tool support for refactoring. One problem with
this list is that even the most important technique (extract method) will be difficult to
implement, as it requires syntactical knowledge of the source code for the according tool
in oder to do the refactoring. This is regarded non standard for most source code editors.

4.3.1 Difference in Metrics

In order to describe the structural change that is caused by refactoring, the McCabe
metric of cyclomatic complexity is used. Figure 6 shows the cyclomatic complexity plotted
against the according lines of code for each function and each treatment group. While
the midpoints of both groups do not differ, the number of functions with high cyclomatic
complexity appears to be higher for the documentation group. About 11% of the functions
created in the control group had a complexity of more than 10, while only 3% of the
functions created with active refactoring had a higher value than 10. This may be a hint
on the principle of simple design constituting one of the goals of refactoring.

0 50 100 150 200

LOC

0

10

20

30

40

cy
cl

om
. C

om
pl

ex
ity

Group: Documentation

Seite 1

0 50 100 150 200

LOC

0

10

20

30

40

cy
cl

om
. C

om
pl

ex
ity

Group: Refactoring

Seite 1

Figure 6: Cylomatic complexity versus LOC scatter plot for functions of both groups

5 Interpretation

The direct effect of an increased maintainability and a better modifiability caused by
refactoring could not be shown within this experiment. Although rigid control of the
application of refactoring techniques took place, the resulting system did not seem to have
a better structure in terms of ability to understand the structure faster for maintainability.
Modifiability, which might benefit from the idea of “once and only once”, and simplicity,
did not seem be of significantly different, either. Instead, the results rather hint to an
overhead when refactoring is applied leading to actually more effort when new requirements

An Empirical Evaluation of Refactoring 39

are added to a system. The question arising from that overhead is if the accumulated time
needed for refactoring pays off in bigger systems with more complex architectural aspects.
For short projects, the probable benefit of refactoring may reveal itself too late and the
resulting overhead may be a waste of time. For long projects, refactoring may have a more
positive effect.

Regarding other variables measured during this experiment, the aspect of lower mem-
ory usage for program memory is a positive side effect. The basic principle of “once and
only once” directly pays off as similar code is reused more often or, in other words, copied
code for similar programing tasks is omitted. As this was not part of any hypothesis, this
observation has to be regarded carefully.

The main criticism regarding this experiment is its size. The time frame of 40 hours
is more than in other experiments, but not sufficient in terms of process assessment.
The number of 12 participants is low, too, but as the modifiability results point into the
opposite direction, the length of the experiment is regarded more problematic. One other
source of criticism might be the use of refactoring without unit tests ([11, 27]). As this
can be regarded a major technique to control side effects when a refactoring is executed,
it is most often regarded a necessary addition to refactoring. It was omitted, because of
the effect this kind of testing might have on software development. Its application would
have made an evaluation of refactoring as a single factor more difficult.

One last argument against the experiment is that expert developers would constitute
a much better evaluation basis. Their knowledge concerning better system design and
areas of “smells” might increase the effect of refactoring. This argument is somewhat
misleading, as first of all the effect of refactoring should occur even in the case of average
programmers. In addition, using experts in the sense of 1% of available developers appears
as an unrealistic modification compared to normal software development.

6 Conclusions and Future Works

6.1 Future Works

Regarding the long term effect of refactoring, a more indirect approach may be beneficial
in the future. For example, instead of the execution of refactoring, the effects countered
by refactoring might be subject to investigation. The habit “of copy and paste code” may
be regarded as development laziness. If the occurrence of this behavior could be shown,
the negative effects on the system might be measured leading to an indirect justification
for refactoring. Another point closely related to the general application of agile methods
is whether the first development solution found is the optimal one in terms of simplicity,
understandability, performance, future-applicability and so on. If shortcomings in this area
can be shown, refactoring might be the technique to give an increase in these variables.
Another starting point for research is the underlying aim of refactoring: what are the
reasons to change code, when to change it and, ultimately, do these reasons accumulate
for a given code basis? This would need a formalization of the subjective term “smell”.

A rather different approach more related to code evolution or metrics as proposed in
[17] is done on an additional data source collected during the experiment. It consists of

40 Dirk Wilking, Umar Farooq Khan, Stefan Kowalewski

the complete code basis of every participant which was saved every time a compilation
was executed. The idea here is to analyze the abstract syntax tree of the code in order to
find the cause for a specific refactoring.

6.2 Conclusions

In this paper, a controlled experiment is presented assessing the effect of refactoring on
non-functional aspects. However, a general effect of refactoring on maintainability or
modifiability could not be shown. Instead, an overhead for the modifiability aspect seems
to exists as refactoring itself needs a certain amount of time for its execution. A positive
aspect of refactoring might be found in the “once and only once” design principle, as
this seems to reduce the memory requirements of a system. As an addition, the three
most important refactoring found during this experiment appear to be “extract method”,
“rename method”, and “comments” which might be a starting point for basic refactoring
support in software tools. In addition, a different approach to assess the importance of
refactoring is presented focusing on indirect assumptions of why refactoring is applied and
what problems it might solve.

References

[1] P. Abrahamsson and J. Koskela. Extreme Programming: A Survey of Empirical Data from
a Controlled Case Study. In Proceedings of the 2004 International Symposium on Empirical
Software Engineering (ISESE04), 2004.

[2] P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen. New directions on agile
methods: a comparative analysis. ICSE ’03: Proceedings of the 25th International Conference
on Software Engineering, pages 244–254, 2003.

[3] V. Basili, L. Briand, S. Condon, Y.-M. Kim, W. L. Melo, and J. D. Valett. Understanding
and Predicting the Process of Software Maintenance Releases. In Proceedings of the 18th
International Conference on Software Engineering, 1996.

[4] J.-M. Burkhardt, F. Deétienne, and S. Wiedenbeck. Object-Oriented Program Comprehen-
sion: Effect of Expertise, Task and Phase. Empirical Software Engineering, 7:115–156, 2002.

[5] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. Lawrence Erlbaum Asso-
ciates, 1988.

[6] A. C. Davison. Bootstrap Methods and their Application. Cambridge University Press, 1997.

[7] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall/CRC,
1998.

[8] M. Fowler. Refactoring. Improving the Design of Existing Code. Addison Wesley, 1999.

[9] A. Garrido and R. Johnson. Challenges of refactoring c programs. IWPSE: International
Workshop on Principles of Software Evolution, 2002.

[10] A. Garrido and R. Johnson. Refactoring c with conditional compilation. In 18th IEEE
International Conference on Automated Software Engineering (ASE 2003), Montreal, Canada,
2003.

An Empirical Evaluation of Refactoring 41

[11] B. Georgea and L. Williams. A structured experiment of test-driven development. Information
and Software Technology, 46:337–342, 2004.

[12] B. Geppert, A. Mockus, and F. Rößler. Refactoring for changeability: A way to go? In 11th
IEEE International Software Metrics Symposium (METRICS 2005).

[13] B. Geppert and F. Rosler. Effects of refactoring legacy protocol implementations: A case
study. In METRICS ’04: Proceedings of the Software Metrics, 10th International Symposium
on (METRICS’04), pages 14–25, Washington, DC, USA, 2004. IEEE Computer Society.

[14] D. M. German. An empirical study of fine-grained software modifications. In 20th IEEE
International Conference on Software Maintenance, 2004, 2004.

[15] S. Hanenberg, C. Oberschulte, and R. Unland. Refactoring of aspect-oriented software. In 4th
Annual International Conference on Object-Oriented and Internet-based Technologies, Con-
cepts, and Applications for a Networked World (Net.ObjectDays), 2004.

[16] M. Höst, B. Regnell, and C. Wohlin. Using students as subjects – a comparative study of
students and professionals in lead-time impact assessment. Empirical Software Engineering,
5:201–214, 2000.

[17] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya. A quantitative evaluation of maintainability
enhancement by refactoring. In Proceedings of the International Conference on Software
Maintenance (ICSM02), 2002.

[18] M. Kim and D. Notkin. Using a clone genealogy extractor for understanding and supporting
evolution of code clones. In MSR ’05: Proceedings of the 2005 international workshop on
Mining software repositories, pages 1–5, New York, NY, USA, 2005. ACM Press.

[19] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical study of code clone genealo-
gies. In ESEC/FSE-13: Proceedings of the 10th European software engineering conference
held jointly with 13th ACM SIGSOFT international symposium on Foundations of software
engineering, pages 187–196, New York, NY, USA, 2005. ACM Press.

[20] R. Leitch and E. Stroulia. Understanding the economics of refactoring. In The 7th Interna-
tional Workshop on Economics-Driven Software Engineering Research, 2005.

[21] H. Li, C. Reinke, and S. Thompson. Tool support for refactoring functional programs. In
Haskell ’03: Proceedings of the 2003 ACM SIGPLAN workshop on Haskell, pages 27–38,
New York, NY, USA, 2003. ACM Press.

[22] M. Mäntylä, J. Vanhanen, and C. Lassenius. A taxonomy and an initial empirical study of
bad smells in code. In Proceedings of the International Conference on Software Maintenance
(ICSM03), 2003.

[23] B. McCloskey and E. Brewer. Astec: a new approach to refactoring c. In ESEC/FSE-13:
Proceedings of the 10th European software engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of software engineering, pages 21–30,
New York, NY, USA, 2005. ACM Press.

[24] T. Mens and T. Tourwé. A survey of software refactoring. IEEE Transactions on Software
Engineering, 30(2), 2004.

[25] J. Miller. Statistical significance testing – a panacea for software technology experiments?
The Journal of Systems and Software, 73:183–192, 2004.

42 Dirk Wilking, Umar Farooq Khan, Stefan Kowalewski

[26] J. Miller, J. Daly, M. Wood, M. Roper, and A. Brooks. Statistical power and its subcom-
ponents – missing and misunderstood concepts in empirical software engineering research.
Journal of Information and Software Technology, 1997.

[27] M. Müller and O. Hagner. Experiment about test-first programming. IEE Proceedings Soft-
ware, 149(5):131–136, October 2002.

[28] M. Pizka. Straightening spaghetti code with refactoring? Software Engineering Research and
Practice, 2004.

[29] L. Prechelt. Kontrollierte Experimente in der Softwaretechnik. Springer, 2001.

[30] J. Ratzinger, M. Fischer, and H. Gall. Improving evolvability through refactoring. In MSR ’05:
Proceedings of the 2005 international workshop on Mining software repositories, New York,
NY, USA, 2005. ACM Press.

[31] F. Simon, F. Steinbrückner, and C. Lewerentz. Metrics based refactoring. In Proceedings of
the Fifth European Conference on Software Maintenance and Reengineering, 2001.

[32] J. L. Simon. Resampling: The New Statistics. Resampling Stats, 1999.

[33] D. I. K. Sjøberg, B. Anda, E. Arisholm, T. Dyb̊a, M. Jørgensen, A. Karahasanović, and
M. Vokáč. Challenges and recommendations when increasing the realism of controlled software
engineering experiments. ESERNET 2001–2003, LNCS 2765, pages 24–38, 2003.

[34] J. B. Todman and P. Dugard. Single-Case and Small-N Experimental Designs: A Practical
Guide to Randomization Tests. Lawrence Erlbaum Associates, 2000.

[35] B. Walter and B. Pietrzak. Multi-criteria detection of bad smells in code with uta method.
In H. Baumeister, M. Marchesi, and M. Holcombe, editors, Extreme Programming and Agile
Processes in Software Engineering, XP 2005, Sheffield, UK, 2005. Springer.

[36] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlson, B. Regnell, and A. Wesslén. Experimentation
in Software Engineering. An Introduction. Kluwer Academic Publishers, 2000.

e-Informatica Software Engineering Journal, Volume 1, Issue 1, 2007

Programming in the eXtreme: Critical

Characteristics of Agile Implementations

Gerald DeHondt II∗, Alan Brandyberry∗

∗Management & Information Systems Department, Kent State University

gdehondt@kent.edu, abrandyb@kent.edu

Abstract
The prevalence of systems development project failures has been well documented. eX-
treme Programming (XP) is a software development methodology that seeks to eliminate
many of the shortcomings of cumbersome life cycle oriented traditional methodologies.
We explore some of the basic tenets of XP and Agile methodologies and present the
thoughts of two of the proponents and early participants in the “Agile revolution”, Chet
Hendrickson and Ron Jeffries. We analyze this interview utilizing an interpretive field
study employing a hermeneutical circle technique. Our analysis suggests some of the
characteristics of XP implementations are more critical than others. We propose a more
concrete definition of what XP represents and suggest areas for future research.

1 Introduction

Modern software development efforts often follow traditional software development method-
ologies such as the Systems Development Life Cycle (SDLC), with organizations typically
making certain adjustments to bring these traditional methodologies in line with their
organizational needs. While utilizing this method is acceptable, it often leads to cost over-
runs and longer development cycles than originally anticipated, and user requirements that
remain unmet. These types of problems can wreak havoc with corporations’ IT strategy
and planning functions, as well as have significant negative impact on the business. Re-
cently, certain “Agile” development techniques have been introduced that seek to provide
shorter development cycles, with the associated cost savings.

Specifically, eXtreme Programming (XP) is an Agile development technique which
emphasizes rapid and frequent feedback to the customers and end users, unit testing, and
continuous code reviews. By focusing on rapid iterations of simpler code, XP seeks to
identify and resolve potential pitfalls in the development process early, leading to projects
that remain focused on the ultimate goal – timely delivery of a well-designed and tested
system that meets customer requirements.

XP breaks down a project into sub-projects, each including planning, development,
integration, testing and delivery [21]. Developers work in small teams with customers as
active team members. Features are implemented iteratively during each development cycle
with joint decision making occurring between the customer and the rest of the development
team. Agile software-development methods use human- and communication-oriented rules
in conjunction with light, but sufficient, rules of project procedures and behavior [8]. They

44 Gerald DeHondt II, Alan Brandyberry

rely on planning, with the understanding that everything is uncertain, to guide the rapid
development of flexible systems of high value [20, 21]. eXtreme Programming has been
described in terms of the values that support it: communication, feedback, simplicity,
courage, and respect [4]. This methodology works by bringing the whole team together in
the presence of simple practices, with enough feedback to enable the team to see where
they are and tune the practices to their unique situation.

2 Extreme Programming Begins

The eXtreme Programming Methodology was developed and first implemented by Kent
Beck at DaimlerChrysler in 1996 as a way to accelerate development efforts, while produc-
ing better software for their Chrysler Comprehensive Compensation (C3) Project. The C3
Project had run into an impasse. Previous efforts to develop a new payroll system – one
that would support over 86,000 international employees from union represented employees
to upper management – had failed, and in early 1996 it was decided to start over from
scratch [46]. As background, the new system was to replace three separate legacy systems
that had been in place for over twenty years supporting the various payroll groups. Orig-
inally, Chrysler had purchased a payroll system from a leading industry vendor. After
many months of effort, it was determined that neither this package, nor any on the mar-
ket, could handle the complexities of the current payroll structure. At this point, it was
determined that the system would have to be designed and built from scratch. The pre-
vious implementation attempt had used a traditional software development methodology,
the “Waterfall” method. The team had found this method too complex and cumbersome
and realized they needed to approach the problem in a different way. This is consistent
with the previous research of Merisalo-Rantanen, Tuunanen, and Rossi [35] as one of the
cases they studied suggested that traditional methodologies were too restrictive and slow,
and hence evolved their corporate system development model into an XP-like framework.
Additionally, Levina and Ross [28] suggest that having stringent development methodolo-
gies might prove detrimental to the success of more creative and innovative application
development projects.

At this point, the team decided to apply the practices of eXtreme Programming to
develop the C3 System. Over about the course of a year, they were able to architect,
design, code, test and implement a system that supported the Chrysler Comprehensive
Compensation structure. This is quite a feat when considering that the previous iteration
of the project languished for a number of years before being deemed a failure and turning
to XP. Fowler [14] argues that these lightweight, or Agile, approaches are necessary due
to the high overhead and resource intensiveness of the existing and dominant methods of
software development.

There is ample room for improvements to be made in the prevailing software devel-
opment methodologies. It is well documented that systems development failures are all
too common. Although different definitions of what constitutes a failure undoubtedly
yield different rates, estimates of failure rates on systems development projects have been
purported to range from 50 percent to 75 percent [12, 16].

Programming in the eXtreme: Critical Characteristics of Agile Implementations 45

eXtreme Programming, however, is not without its detractors. As a significant de-
parture from traditional development methods, many corporations are hesitant to risk
development projects to a relatively new development technique, especially one that sig-
nificantly departs from conventional methods. Adoption of an Agile Methodology will
also likely pose several challenges for organizations steeped in the traditional systems de-
velopment methodologies, since the two software development methods are grounded in
opposing concepts [37].

3 Background

An Information Systems Development Methodology has been defined as an organized
collection of concepts, methods, beliefs, values and normative principles supported by ma-
terial resources [22]. Initial efforts at formalizing and planning systems development efforts
began with “traditional” methods such as the “Waterfall” [6, 23], which then evolved into
the Systems Development Life Cycle – a commonly used systems development methodol-
ogy. However, these traditional methods take a phased approach to systems development,
requiring that one phase be completed prior to beginning the next phase [24] and the
product is not delivered until the whole linear sequence has been completed. This effec-
tively means that the first day that functionality can be delivered to the customer is the
last day of the project (except for the ongoing system maintenance).

3.1 Satisfying Customer Requirements

Extensive upfront planning is the basis for predicting, measuring, and controlling problems
and variations during the development lifecycle. The traditional software development
approach is process-centric, guided by the belief that sources of variations are identifiable
and may be eliminated by continually measuring and refining processes [9]. The primary
focus is on realizing highly optimized and repeatable processes.

One measure of an organization’s development process maturity is the Capability Ma-
turity Model (CMM). The Capability Maturity Model is a project of the Software Engi-
neering Institute (SEI) at Carnegie Mellon University seeking to identify best practices
that may be useful in helping organizations increase the maturity of their software devel-
opment processes [43]. Organizations will achieve a designation from 1 through 5, based
on the repeatability, definition, management, and optimization of their software develop-
ment processes. This process itself though, is very cumbersome. Even stripped to the bare
essentials, the CMM comprises 52 primary goals and 18 key process areas [38]. As one
official in the CMM project at Carnegie Mellon University noted, “You can be an [highest
CMMrated] organization that produces software that might be garbage.” [31] Focusing
on the process used to develop and deliver software may not always lead to systems that
meet customer requirements.

One of the primary drivers of XP is the focus on delivering the features the customer
wants. Under traditional software development methods, planning and control accom-
plished by a command and control style of management provide the impetus for devel-
oping a software product [21]. Traditional methodologies assume that problems are fully

46 Gerald DeHondt II, Alan Brandyberry

specifiable, and that an optimal and predictable solution exists for every problem [7]. In
the instance that there is a change in design or user requirements over the course of the
project – a situation all too common in real-world corporate development environments –
the methodology begins to break down and efforts become focused on reworking previous
design and development activities. These changing requirements cause additional rework
in the project. Gopal, Mukhopadhyay, and Krishnan [17] found that clients who request
rework later in the lifecycle increase rework – and cause project delays – considerably,
with requirements volatility having an even stronger influence on rework. A methodology
not appropriately suited to changing requirements causes delays in system delivery.

Traditional methodologies are also too set and too full of inertia to be able to respond
quickly enough to a changing environment to be viable in all cases [12]. Existing heavy-
weight processes tend to be predictive and slow [45] and are unable to efficiently react
to changing circumstances. It is often suggested that these traditional methodologies are
useful in situations where requirements are well-known and unlikely to change but that
assertion is also challenged by some in the XP community. They can also be used when
significant project management overhead must be incurred, as in large, business-critical
systems built with teams in excess of 50 members [14]. Lightweight or Agile methods, on
the other hand, are seen to be more code-oriented, more people-oriented, and more adapt-
able to change suited to relatively small projects with rapidly changing requirements [19].
Others, however, find significant scalability in XP through project decomposition [4].

These evolving requirements are often viewed as an inherent problem of software de-
velopment in traditional methodologies [47]. In a sense, taking one step forward and two
steps back. On the other hand, the Agile community views requirements changes as an
opportunity to provide software that can enhance the customer’s competitiveness in a
rapidly evolving marketplace [47]. Development teams that can handle these changes will
produce software that is more useful to the customer, leading to more satisfied customers.
XP seeks to support timely and economical development of high-quality software that
meets user requirements at the time of delivery. XP utilizes an iterative approach that
is helpful in developing, modifying, and maintaining systems more quickly and more suc-
cessfully [2, 5]. It is these short iterations that provide the flexibility to accommodate the
changes requested by the customers and allows the customer to increase competitiveness
in the market [47]. In fact, XP seeks to implement the simplest design that will satisfy
current user requirements [29] without attempting to anticipate future design or user re-
quirements. The iterative nature of this methodology enables it to be tolerant of changes
in requirements [4].

3.2 Organizational Influence

As the traditional SDLC has become embedded and institutionalized in organizations
as the standardized method of systems development, any changes to a new approach will
require a shift in the organizational norms. This can be one of the most difficult obstacles to
implementing XP. Based on the team approach of XP [29], those with individual influence
under the traditional methodologies will have to acquiesce for the greater good of the team.
Organizations using heavier methodologies typically had trouble adopting the incremental

Programming in the eXtreme: Critical Characteristics of Agile Implementations 47

release approach of Agile Methodologies because of the implications of the core practices:
simple design, testing, refactoring, and continuous integration [12]. These core practices
require that everything be available. For example, a daily build means that the testing
suite must also be ready daily, which also has implications for continuous integration and
refactoring. Specifically, Project Managers have been viewed as the overall leader, with
significant authority to make decisions impacting the project. In an XP environment,
the project managers give up much of their decision-making authority to the team [35].
This “Method Adaptation” [34] is the process or capability of agents, through responsive
changes in and dynamic interplays between contests, intensions, and method fragments,
to determine a system development approach for a specific project situation.

It is generally accepted that there is no single process that will be applicable to all
projects [47]. There are a number of best practices, techniques, and experiences that
developers can use in appropriate situations. Software development teams with leaders
that understand the situations in which particular processes are applicable are more likely
to be successful within an Agile environment. Remember, Agile processes are not silver
bullets. Because these assumptions are not met in all development environments, it is
possible to extend Agile processes to address their limitations. These extensions can
involve incorporating principles and practices associated with traditional development
processes into Agile processes. Users of Agile processes need to ensure that practices
based on invalid, environmental assumptions are modified accordingly.

3.3 Values and Practices of XP

XP, at its core, rests upon the following values: communication and feedback, simplicity,
and responsibility [47]. Project success, and delivering software that meets the customer
requirements, requires frequent, face-to-face communication between developers and cus-
tomers. Not only is this explicit communication, but also delivering working code in-
crementally at frequent intervals. Ultimately, this is the best check to demonstrating
understanding of customer requirements. Simplicity is embodied by delivering only solu-
tions that meet current user needs. XP does not attempt to design or anticipate for future
needs. Ultimately, the customer is concerned with addressing current needs, and is not
interested in what may occur later. Finally, the responsibility of delivering high-quality
code rests with the developers of the system. Agile methods focus on people as the primary
drivers of development success [10]. They are those closest to the solution and should be
the most knowledgeable about how the solution will be implemented.

These values are expanded into the twelve practices of the XP Methodology: planning,
small releases, metaphors, simple design, testing, refactoring, pair programming, collective
ownership, continuous integration, on-site customers, coding standards, and 40-hour week
[3]. Similar values are embodied in the Agile Manifesto [11]:

1. Our highest priority is to satisfy the customer through early and continuous delivery
of valuable software.

2. Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.

48 Gerald DeHondt II, Alan Brandyberry

3. Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

4. Business people and developers must work together daily throughout the project.

5. Build projects around motivated individuals. Give them the environment and sup-
port they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances agility.

10. Simplicity – the art of maximizing the amount of work not done – is essential.

11. The best architectures, requirements, and designs emerge from self-organizing teams.

12. At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.

These values implement the best practices of previous Systems Development Method-
ologies representing an evolutionary process growing out of a natural and useful way to
develop software [35]. They provide a number of instances in their study where XP-like
methods simply evolved as logical ways of doing things. This evidence provided support
for their claim that XP is more of a packaging of best practices, rather than a totally new
way of doing things, formalizing habits that work in certain organizational settings for
delivering better software.

This evidence remains consistent with the core XP beliefs, especially given the flexibil-
ity that the methodology provides in adapting the values to a given situation. These be-
liefs include user involvement, simple code, iterative development, and courage. McKeen,
Guimaraes, and Wetherbe [33] argue that user participation improves the quality of the
system in several ways such as providing a more accurate and complete assessment of
requirements, expertise about the user organization the system will support, avoiding de-
velopment of unacceptable or unimportant features, and improving user understanding
of the system as it is being developed. XP engages the end users in the IS development
process.

Kent Beck [4] states that the programming strategy of XP is to keep the code easy
to modify. Iterative development requires that each developer must integrate and release
code at least once a day after passing all the unit tests or completing a smaller part of
planned functionality [25]. This continuous integration detects compatibility problems
early and ensures everyone is working with the latest version of the system.

Programming in the eXtreme: Critical Characteristics of Agile Implementations 49

Along with the iterative nature, XP incorporates rigor into the methodology. XP
stipulates that developers follow all of the practices to realize the benefits of Agile Devel-
opment [47]. McBreen [32] points out that XP requires enormous discipline to implement,
and in fact, some projects may find it difficult to adopt a true XP-compliant process.

Another of the main beliefs of eXtreme Programming is courage – for developers to
rework their code when it doesn’t perform as expected, to stick to the chosen approach
when the going gets tough, and to make the hard decisions required to deliver the software
[1]. In order for XP to work, corporations – or at least their IT departments – must be
willing to take the necessary risks to depart from conventional techniques, and have the
courage to continue along this path during the difficult times. IT departments must be
able to adapt and implement new techniques when the situation is called for, as opposed
to holding on to old methods that produce the same inadequate results. Organizations
must be willing to change and implement new techniques to develop better software.

Exhibiting the fortitude required to undertake some of these efforts will allow additional
flexibility – agility – in the development of the system that in the end will provide a better
system, more flexible to changing user requirements, and implemented in a fashion that
meets the goals of the organization.

Previous research by Merisalo-Rantanen, Tuunanen, and Rossi [35] provide anecdotal
evidence that both developers and internal and external customers were satisfied with the
results of their projects developed using eXtreme Programming. A number of other studies
and experience reports also provide claims for the successful use of eXtreme Programming
and Agile Methods [18, 30, 39, 42, 44, 46] in practice. Additionally, experimental studies
[15, 36] have focused on particular techniques used within eXtreme Programming such
as pair programming and test-driven Development (TDD). With the relative recency of
eXtreme Programming as an approach to software development, results of a survey by
Rumpe and Schroder [40] show that this methodology is still in the “hype phase”. However,
numerous opinion pieces and several surveys clearly demonstrate the growing popularity
of Agile Methodologies [37].

3.4 A Broad-based Perspective of XP Implementations

The literature on eXtreme Programming is primarily focused on review of the practices
and techniques, and how this methodology differs from traditional methodologies. In
this context, there have been a few examples of anecdotal studies of individual projects
and experience reports focusing on a small number of projects. This study reviews a
multitude of projects from the practical experiences of two of the initial implementers of
these practices. The purpose of this work is to gain insight across a number of projects
from these practitioners based on their implementation experiences. It is from this broad-
based perspective that we can learn the appropriate positioning of eXtreme Programming
within an organization’s systems development toolbox.

This interview focuses on the types of organizations that may successfully implement
XP techniques, including some methods to integrate XP into an organization focused on
rigid, top-down development methodologies, further explanation of how XP differs from

50 Gerald DeHondt II, Alan Brandyberry

traditional methodologies, and provides a means of identifying a true XP Project, including
ways to determine whether the practices are really being used.

As is commonly seen when innovations are introduced, there is some confusion as to
what is and is not XP. In casual conversations with people generally knowledgeable in
the area of systems development the perception that XP is using “no methodology” at all
is sometimes expressed. This confusion is probably due predominantly to the emphasis
on values [4] that, on the surface, appear to lack the structure that other methodologies
emphasize. What is misunderstood is that these values must be manifested in principles
and then actual practices. This allows substantial flexibility in how an organization ac-
tually implements XP. Although this is viewed as a strength by XP proponents, it also
contributes to the confusion around XP. There exists no objective test as to whether an
organization is employing XP. As the interview subjects suggest, there are cases where XP
has been identified as the development methodology that others have questioned. Obvi-
ously an organization has not truly implemented XP just by uttering the words “eXtreme
Programming”. In the interview in the following section we engage these experienced
practitioners in a general discussion of XP to attempt to discover the themes that they
express as being critical to XP implementation. We then employ a hermeneutic circle
technique to extract the critical characteristics of XP implementations.

4 Methodology

This analysis is an interpretive field study as used by Fitzgerald et al [13] and Sauer and
Lau [41] when studying the practical use of a method. This has been suggested as an
appropriate research method for explorative and descriptive types of research by Klein
and Myers [26]. It examines the experiences of two well-known eXtreme Programming
practitioners, Chet Hendrickson and Ron Jeffries. They were original team members of the
seminal XP Project at Chrysler Corporation in 1996, and have since provided consulting
and training services to Fortune 500 companies in the appropriate use and implementation
of the eXtreme Programming methodology. They have also spoken at numerous academic
and practitioner conferences expounding their knowledge of eXtreme Programming. The
question and answer discussion presented in the next section was derived from a series of
interviews and follow-up contacts. Gerald DeHondt facilitated these interactions.

4.1 Interview

DeHondt: What kind of organizational model will be most appropriate to implementation
of eXtreme Programming techniques?

Jeffries: No project is completed with traditional software development methodologies;
it is completed in spite of traditional software development methodologies. It is a com-
bination of the process and the team that leads to successful projects. If it is the wrong
combination, the organization will try to kill it.

DeHondt: In these instances, how would you get the organization to change?

Programming in the eXtreme: Critical Characteristics of Agile Implementations 51

Jeffries: A politically safe method is needed for implementing XP in organizations.
This can be accomplished by increasing user feedback to the development staff. In

this, we focus on 8–10 stories per month. At the end of the month we determine how
many we were able to successfully complete. From there we can adjust the timeline either
up or down.

There also needs to be accountability. One of the things agile methods do is provide
an API into the organization to produce clear unambiguous information.

DeHondt: Will XP work in all environments? For example, many organizations are fo-
cused on top-down, structured, rigid development methodologies. In these instances, how
would XP be adapted?

Jeffries: XP has been used in a number of rigorous environments. NASA has devel-
oped projects using agile methodologies, McKeen implemented a SmallTalk project, and
it has been used by an embedded medical equipment manufacturer for a product requiring
FDA approval.

One of the key points is whether the project is utilizing Test Driven Development
(TDD) and integrating customer acceptance testing into their development process.

We also want to make sure we are appropriately completing the tasks. For example,
if we are 90 percent complete on all of our tasks, we haven’t completed any. On the other
hand, it would have been better to spend the time to complete 90 percent of the tasks
completely.

DeHondt: How does XP differ from traditional development?

Jeffries: What we do is break up the project into smaller pieces. This way we can more
effectively monitor whether we are on task with the smaller piece. The error bars will be
smaller in this situation.

Consider driving a car. As we drive down the road, we are continuously making adjust-
ments to our direction to stay in our lane. If we made corrections at longer intervals we
would risk going off the road before changing our direction. This is the same thing with
software development. We are continuously monitoring the project progress by getting
feedback from the customer. If we are going a little off course, customer feedback will
allow us to change direction before we go off the road. We are able to respond to the
environment faster. We are able to learn faster.

DeHondt: There have been some cases where XP methods have not worked, and the
projects have failed. Are there any common reasons why an XP project would fail?

Jeffries: In the instances where whatever you did didn’t work, maybe these projects
weren’t using XP, only saying they were. If a project says they are using XP, but not
any of the practices, then it is not XP.

52 Gerald DeHondt II, Alan Brandyberry

In order for projects to be using XP, they need to be able to ship code at any time.
In the Chrysler project, at any time, we could provide the customer with the latest build
for installation and testing. This is XP.

You also want to get negative work as close to zero as possible. We don’t want to
have rework when customer requirements aren’t properly implemented. By having the
customer work closely with us, we are able to monitor and ensure that their requirements
are being implemented as expected.

Hendrickson: With project status reporting, we are able to more closely monitor work
completed and provide this information to the customer. Do you want to hear the truth
about the project, or do you want to hear what you want?

When companies look at project completion measures, there are a number of measures
that can be used to gauge project completion. These could include percent of time spent,
percent of money expended, or other criteria. XP will look at percent of deliverables
satisfied and are we are building what the customer asked for.

We want to minimize the process overhead not related to writing code.

Jeffries: The project needs to have a good communication feedback loop with the cus-
tomer, be able to test quickly – this may even include an automated test cycle – simple
design, code to support the test cases, small chunks of code, and integrated code.

One of the problems encountered is that teams don’t know how to ship code regularly.
They should be able to provide the latest build of the system at any time.

Hendrickson: Using traditional software development methodologies, a company may
spend three months on the analysis phase and three months on the design phase. At
this point, the project has been silent for six months. At that point the determination is
made if they are on track.

Jeffries: In XP, the architecture and design grow along the way. XP seeks to ensure
that the software is working as intended along the way, and the design is good. This will
allow the software to change if the customer requirements change.

DeHondt: Now let’s shift gears a little to team attributes. The literature has looked
at XP and proposed that it is successful because it is staffed with highly qualified people.
In this type of an environment, it may be the people that cause projects to succeed, not
necessarily the process. What type of attributes does a team require to be successful at
an XP project?

Jeffries: A good XP team will have people who are thoughtful about what they did,
with good coaching, and determination. The customer has to know what they want in
the software. There also needs to be support from the highest levels of the organization.
Ultimately, they need to be good people, who are good programmers.

XP succeeds because of commitment from the company, team, management, and the
customer. The team needs to embrace and execute the practices of XP, monitor and

Programming in the eXtreme: Critical Characteristics of Agile Implementations 53

adjust. There needs to be codification of best practices and feature by feature analysis.
The development process needs to be molded to the situation with the agile development
bias towards simplicity and action.

Companies that deliver software on time and on budget do not outsource.

Hendrickson: Agile focuses on people and delivering code to implement features. It breaks
down a project into smaller iterations focused on delivering working functionality or re-
quirements. It places emphasis on communication with the customer to determine if the
code developed meets the customer’s requirements.

Agile is also good at handling evolving requirements, whereas the traditional software
development methodologies specify everything up front.

Jeffries: XP also requires everything to be available – the development environment, test
environment, everything that will be needed to quickly move through the process and
develop working code that meets customer requirements.

Hendrickson: Some XP projects will fail; it is just that these projects will fail sooner
with XP. In traditional approaches, it may take longer to realize that the project is not
viable. At that point, more time and resources have been expended.

5 Analysis and Discussion

We employ a meaning categorization and hermeneutical interpretation form of analysis as
described by Kvale [27]. In the review of the literature in the first section of this research
we identified the values, principles, and practices that have been commonly associated
with XP implementations. We begin our analysis by viewing each of these as a general
theme and shared symbolic vocabulary. We then iteratively explore the interview for the
apparent level of importance of each theme by determining the frequency and context
in which each theme appeared. In the tradition of hermeneutical circles we iteratively
interpreted the meaning of the whole and the meaning of the parts or themes with the
goal of deepening our understanding of the meaning within (a circulus fructuosis) [27]. We
will discuss these identified dominant themes in the derived order of importance (based
on number of occurrences and implied criticality) to the overall meaning.

5.1 Continuous Delivery of Working Software

This theme was repeated often and in different ways during the interview. They emphasize
completing tasks rather than having many tasks partially completed. They state that
projects using XP “need to be able to ship code at any time”. Another related concept
introduced is measuring percent of deliverables satisfied as the primary metric of project
completion. A clear sentiment on this issue is their articulation that “teams don’t know
how to ship code regularly. They should be able to provide the latest build of the system at
any time”. Similarly, they state, “Agile focuses on people and delivering code to implement
features. It breaks down a project into smaller iterations focused on delivering working

54 Gerald DeHondt II, Alan Brandyberry

functionality or requirements”. There is a clear message throughout the discussion that
delivering working software continuously is critical to utilizing XP.

5.2 Customer-driven Process

The concept that the customer must be involved and must, in fact, drive the XP process
is expressed several times during the interaction. This is exemplified by statements such
as “The customer has to know what they want in the software” and “XP succeeds because
of commitment from the company, team, management, and the customer”.

5.3 Communication

“Do you want to hear the truth about the project, or do you want to hear what you
want?” This statement underscores the importance of good communication in XP imple-
mentations. Other statements such as the “project needs to have a good communication
feedback loop with the customer” and their reference to “increasing user feedback to the
development staff” also demonstrate the importance of this concept.

5.4 Incremental Design and Acceptance of Changing Requirements

These are two related themes that are referenced by the subjects in several instances. We
view them as related since the reason incremental design is important is that requirements
do often change. Their analogy to driving a car (needing constant adjustment) is related to
this theme. They also refer to breaking up projects into smaller pieces, implying separate
design cycles for these functions. This theme may be well summated in the statement,
“Agile is also good at handling evolving requirements, whereas the traditional software
development methodologies specify everything up front”.

5.5 Continuous Testing

The subjects specify that “One of the key points is whether the project is utilizing Test
Driven Development (TDD) and integrating customer acceptance testing into their devel-
opment process”. They also make reference to being able to test quickly as well as utilizing
automated testing.

5.6 Other themes

There were several other themes that were identified by this process. Both the number
of occurrences of the theme and the implied criticality lead us to believe that these are
less critical (though not necessarily unimportant) themes when trying to conceptualize
those few important characteristics that would generally be considered essential. These
themes include: the incremental implementation of XP, use of “stories”, XP is lightweight,
team-talent, all-constituents need to sign on, and that XP may fail but fail sooner.

Programming in the eXtreme: Critical Characteristics of Agile Implementations 55

5.7 Hermeneutical Interpretation of “the whole”

Each of the identified themes appears to have its own individual importance and, at least
to these practitioners, certain themes seem to be more critical to the process than others.
Additionally, their interaction with each other and less critical XP themes is also signif-
icant. For instance, continuous testing is critical if you are going to be able to ship the
latest build of a software project at any time. An attempt to synthesize these critical
themes into a single defining statement yields the following result:

XP is fundamentally the continuous delivery of incremental working software that is custo-
mer-driven and dependent on communication, incremental design, acceptance of changing
requirements, and continuous testing.

Although this definition may be incomplete in some ways since XP is possibly more phi-
losophy than methodology, it may serve as a useful starting point in bridging the gap
of understanding in what is meant by the term eXtreme Programming. Certainly, it
adds a way of expressing the XP concept in the more concrete terminologies that many
methodologists prefer.

6 Conclusion

The views of these participants in the Agile revolution hold that eXtreme Programming
has substantial benefits when applied appropriately and they report many experiences
that support this view. There also needs to be consideration given to whether the project
actually implemented XP processes and practices. Investigations of failed “XP” projects
indicate that these projects were not, in fact, implementing the values and principles, but
simply stating that they were an XP project.

As a relatively new methodology there is need for substantial research into the con-
cept and its implementation. We have attempted to focus the discussion of “what is XP?”
on several critical themes. However, this work has been based on the perspective of two
individuals. No matter how experienced and well-versed they may be, studies that syn-
thesize a broader array of viewpoints will also be important. Critical questions include:
Are there project or environmental characteristics that make other XP themes more (or
less) critical? Are there certain “brands” of XP where common sets of themes are utilized
together? Are failures due to incomplete implementation of XP concepts, project charac-
teristics independent of methodology, or other factors? The authors suggest performing
follow-up work on comparable paired projects – based on application requirements, project
size, or project type – that use eXtreme Programming and traditional methodologies as
their development approach. This could allow comparability of the methods to similar sit-
uations and help determine factors in each methodology or particular project interaction
that highlight strengths and weaknesses of each approach.

Many XP proponents seem to imply that XP would be the best choice for all devel-
opment projects. Proponents of other methodologies seem more willing to say that there
are certain project types that a particular methodology is better suited for than others.

56 Gerald DeHondt II, Alan Brandyberry

An important question that needs to be answered is whether there are project character-
istics that make XP more or less likely to succeed. Are there characteristics that would
make a particular project unsuitable for implementation using XP?

Some people believe XP succeeds because of the above-average skill level of the team.
This study reveals placing the overall attitude of the team as a more salient feature to
project success than the aptitude of the team.

References

[1] S. Ambler. The Extreme Programming Software Process Explained. Computing Canada,
26:24, March 2000.

[2] V. Basili and A. Turner. Iterative Enhancement: A Practical Technique for Software Devel-
opment. IEEE Transactions on Software Engineering, 1(4):390–396, December 1975.

[3] K. Beck. Extreme Programming Explained. Addison-Wesley, Boston, 2000.

[4] K. Beck and C. Andres. Extreme Programming Explained: Embrace Change 2nd Ed. Addison-
Wesley, Boston, 2004.

[5] B. Boehm. A Spiral Model of Software Development and Enhancement. ACM SIGSOFT
Software Engineering Notes, 11(4):22–42, 1988.

[6] F. Brooks. The Mythical Man Month: Essays on Software Engineering. Addison-Wesley,
Reading, MA, 2003.

[7] S. Cavaleri and K. Obloj. Management Systems: A Global Perspective. Wadsworth Publishing
Copany, California, 1993.

[8] A. Cockburn. Agile Software Development. Addison-Wesley, Boston, 2002.

[9] A. Cockburn and J. Highsmith. Agile Software Development: The Business of Innovation.
IEEE Computer, pages 120–122, September 2001.

[10] B. Conrad. Taking Programming to the Extreme. Infoworld, page 24, July 2001. July 21,
2000. available online at http://www.infoworld.com/articles/mt/xml/00/07/24/
000724mtextreme.html.

[11] W. Cunningham. Manifesto for Agile Software Development. [WWW document]. URL
http://www.agilemanifesto.org/principles.html, n.d./2006.

[12] J. Erickson, K. Lyytinen, and K. Siau. Agile Modeling, Agile Software Development, and
Extreme Programming: The State of Research. Journal of Database Management, 16:88–100,
October–December 2005.

[13] B. Fitzgerald, N. Russo, and T. OKane. An Empirical Study of System Development Method
Tailoring in Practice. Proceedings of the Eighth International Conference on Information
Systems, pages 187–194, 2000.

[14] M. Fowler. The New Methodology. [WWW document]. URL http://www.martinfowler.com/
articles/newMethodology.html, December 2005.

[15] B. George and L. Williams. A Structured Experiment of Test-Driven Development. Informa-
tion and Software Technology, 46(5):337–342, April 2004.

Programming in the eXtreme: Critical Characteristics of Agile Implementations 57

[16] E. Germain and P. Robillard. Engineering-Based Processes and Agile Methodologies for
Software Development: A Comparative Case Study. Journal of Systems and Software, 75:17–
27, 2005.

[17] A. Gopal, T. Mukhopadhyay, and M. Krishnan. The Role of Software Process and Commu-
nication in OffShore Software Development. Communications of the ACM, 45(4):193–200,
March 2002.

[18] J. Grenning. Launching Extreme Programming at a Process Intensive Company. IEEE
Software, 18(6):27–33, November–December 2001.

[19] B. Henderson-Sellers and M. K. Serour. Creating a Dual-Agility Method: The Value of Method
Engineering. Journal of Database Management, 16(4):1–23, October–December 2005.

[20] J. Highsmith. Agile Software Development Ecosystems. Addison-Wesley, Boston, MA, 2002.

[21] J. Highsmith. Cutter Consortium Reports: Agile Project Management: Principles and Tools,
volume 4(2). Cutter Consortium, Arlington, MA, 2003.

[22] R. Hirschheim, H. Klein, and K. Lyytinen. Information Systems Development and Data
Modeling. Cambridge University Press, New York, 1995.

[23] R. Hirschheim, H. Klein, and K. Lyytinen. Information Systems Development and Data
Modeling: Conceptual and Philosophical Foundations. Cambridge University Press, Boston,
MA, 2003.

[24] J. Hoffer, J. George, and J. Valacich. Modern Systems Analysis and Design. Addison-Wesley,
Boston, MA, 1998.

[25] S. Joosten and S. Purao. A Rigorous Approach for Mapping Workflows to Object-Oriented
IS Models. Journal of Database Management, 13(4):1–19, October–December 2002.

[26] H. Klein and M. Myers. A Set of Principles for Conducting and Evaluating Interpretive Field
Studies in Information Systems. MIS Quarterly, 23(1):67–93, March 1999.

[27] S. Kvale. Interviews: An Introduction to Qualitative Research Interviewing. Sage Publications,
Thousand Oaks, 1996.

[28] N. Levina and J. Ross. IT From the Vendors Perspective: Exploring the Value Proposition
in Information Technology Outsourcing. MIS Quarterly, 27(3):331–364, September 2003.

[29] L. Lindstrom and R. Jeffries. Extreme Programming and Agile Development Methodologies.
Information Systems Management, 21(3):41–52, 2004.

[30] P. Manhart and K. Schneider. Breaking the Ice for Agile Development of Embedded Software:
An Industry Experience Report. Proceedings of the 26th International Conference on Software
Engineering, pages 378–386, 2004.

[31] N. Matloff. Globalization and the American IT Worker. Communications of the ACM,
47(1):27–29, November 2004.

[32] P. McBreen. Questioning Extreme Programming. Addison-Wesley, Thousand Oaks, 2003.

[33] J. McKeen, T. Guimaraes, and J. Wetherbe. The Relationship Between User Participation and
User Satisfaction: An Investigation of Four Contingency Factors. MIS Quarterly, 18(4):427–
451, 1994.

58 Gerald DeHondt II, Alan Brandyberry

[34] A. Mehmet, F. Harmsen, K. van Slooten, and R. Stegwee. On the Adaptation of an Agile
Information Systems Development Method. Journal of Database Management, 16(4):24–40,
October–December 2000.

[35] H. Merisalo-Rantanen, T. Tuunanen, and M. Rossi. Is XP Just Old Wine in New Bottles.
Journal of Database Management, 16(4):41–61, October–December 2000.

[36] M. Mller. Preliminary Study on the Impact of a Pair Design Phase on Pair Programming
and Solo Programming. Information and Software Technology, 48(5):335–344, May 2006.

[37] S. Nerur, R. Mahapatra, and G. Mangalaraj. Challenges of Migrating to Agile Methodologies.
Communications of the ACM, 48(5):73–78, May 2005.

[38] M. Paulk. Extreme Programming from a CMM Perspective. IEEE Software, 18(6):19–26,
November–December 2001.

[39] C. Poole and J. W. Huisman. Using Extreme Programming in a Maintenance Environment.
IEEE Software, 18(6):42–50, November–December 2001.

[40] B. Rumpe and A. Schroder. Quantitative Survey on Extreme Programming Projects. Proceed-
ings of the Third International Conference on Extreme Programming and Flexible Processes
in Software Engineering (XP2002), Alghero, Italy, May 26-30, pages 95–100, 2002.

[41] C. Sauer and C. Lau. Trying to Adopt Systems Development Methodologies: A Case Based
Exploration of Business Users Interests. Information Systems Journal, 7(4):255–275, October
1997.

[42] P. Schuh. Recovery, Redemption, and Extreme Programming. IEEE Software, 18(6):33–40,
November–December 2001.

[43] Software Engineering Institute. Capability Maturity Model for Software. [WWW document].
URL http://www.sei.cmu.edu/cmm/, January 2006.

[44] W. Strigel. Reports from the Field: Using Extreme Programming and Other Experiences.
IEEE Software, 18(6):17–18, November–December 2001.

[45] T. Chau and F. Maurer and G. Melnik. Knowledge sharing: Agile methods vs. tayloristic
methods. Proceedings of the 12th IEEE International Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE 03), pages 302–307, 2003.

[46] C. Team. Chrysler Goes to “Extremes”. Distributed Computing, pages 24–28, October 1998.

[47] D. Turk, R. France, and B. Rumpe. Assumptions Underlying Agile Software-Development
Processes. Journal of Database Management, 16(4):62–87, October–December 2005.

e-Informatica Software Engineering Journal, Volume 1, Issue 1, 2007

A User-Centered Approach to Modeling BPEL

Business Processes Using SUCD Use Cases

Mohamed El-Attar∗, James Miller∗

∗STEAM Laboratory � Electrical and Computer Engineering Deparment, University of Alberta

melattar@ece.ualberta.ca, jm@ece.ualberta.ca

Abstract

BPEL is being widely used to specify business processes through the orchestration, com-
position and coordination of web services. It is now common practice to begin the
process of modeling the �work�ows� within a set of BPEL business processes using UML
Activity Diagrams since they can be automatically mapped down onto BPEL code. How-
ever activity diagrams were not intended to explicitly model user goals and interactions
with external systems o�ering web services. However, since the chief purpose of BPEL
business processes is to �rst and foremost provide services to their users, using activity
diagram modeling alone will not allow an E-commerce analyst to explicitly capture and
model the users' goals. In this paper we propose an approach to solve this issue; initially
model BPEL business processes using Use Cases to capture users' perspective, and to
systematically develop activity diagrams from Use Case models. A Travel Agency system
case study is presented illustrates the feasibility of the proposed approach.

1 Introduction

Web services o�er their users an e�cient means to solicit and research publicly available
services. A user maybe interested in acquiring the best deal on a particular service or
a product from a number of competitors that o�er that service or product. For example,
a customer interested in purchasing a particular book will be interested in obtaining the
best price from a number of book vendors. Alternatively, users can be interested in the
collaboration of a number of web services to attain a higher level goal. For example, a user
can be interested in a set of web services provided by couriers that can interact with each
other to provide tracking and history details of a current shipment. BPEL processes can
be created to specify the invocation order of web services to achieve the desired goal.
Using BPEL, a great deal of interaction information between web services and the BPEL
process user can be speci�ed, commonly known as de�ning a business process. Every BPEL
business process has a purpose to achieve; this purpose is usually to provide a service to
the process's user. It is not necessary that the user must be human; the user of a business
process can be another system. In any case, it is the responsibility of an E-commerce
analyst to de�ne BPEL business processes that provide the services that are in demand.

BPEL provides support to specify complex business processes that contain sequences,
loops, conditions, exception handling, variable declarations and data editing. In essence,

60 Mohamed El-Attar, James Miller

a BPEL business process de�nes a work�ow. Therefore, it is common practice to model
these work�ows using the Uni�ed Modeling Language (UML) activity diagrams, since it
can be mapped directly onto BPEL code. In this paper, an activity diagram that represents
a BPEL business process will be referred to as BPEL activity diagram. A BPEL activity
diagram needs to posses a great deal of quality. A high quality BPEL activity diagram
can be de�ned as one that accurately represents the work�ow required to satisfy a business
requirement. In the analysis phase, an E-commerce analyst will develop BPEL activity
diagrams directly from a set of business requirements. This might be problematic for the
following reasons:

• Activity diagrams are not geared towards capturing the user-centric perspective of
business work�ows. It is important to model such a perspective since the user is
the principle bene�ciary of the BPEL business process. Therefore, it is crucial to
understand the means by which the user(s) will interact with the host system(s)
during the execution of a BPEL business

• Activity diagrams do not capture the intricacies of interactions occurring between
web services (external systems) and the host system that runs the BPEL business
process process.

• It is common to de�ne a set of related services using a set of BPEL business processes.
This concept is illustrated through the Travel Agency System case study presented
in Section 4. Activity diagrams are not designed to provide a mechanism to discover
common activities, interactions and sub-services provided by a set of related BPEL
services. Not being able to discover and factor out such commonalities might re-
sult in unnecessary e�ort required for implementing redundant functionalities at the
end system; and since BPEL processes potentially have highly extended execution
periods, these redundancies can be signi�cant.

Therefore, in addition to knowing what the goals are, it is essential to know how the user
will utilize the BPEL business process. It can be argued that understanding the user's
participation in the business process will actually yield to creating higher quality activity
diagrams, in the sense that the activity diagrams created will more accurately represent
the user's involvement in the business process and the involvement of the available web
services. To combat the issues presented above, we propose using Use Cases to model the
user's perspective. Whereby, consequent activity diagrams can be developed based upon
the Use Case models. Use Case modeling has become the de-facto technique for modeling
user-centric systems. A Use Case model will detail the intricacies of interactions that
occur between the BPEL business process users and the web services provided by external
systems. Use Case modeling prompts E-commerce analysts to consider common behavior
and sub-services allowing the development of simpler and more modular systems.

There are two main requirements to develop high quality BPEL activity diagrams.
Firstly, it is crucial to develop a high quality Use Case model. It is intuitive that if one
artifact is developed based on another artifact, the quality of the source artifact will ex-
tensively in�uence the quality of the resultant artifact. Utilizing the Structured Use Case

A User-Centered Approach to Modeling BPEL Business Processes Using SUCD Use Cases 61

Descriptions (SUCD) form to develop Use Case descriptions can help achieve this goal. Use
Cases described in the SUCD form will be referred to as SUCD Use Cases. Secondly, an
equally important requirement is to provide a systematic transition between the Use Case
model and the corresponding set of BPEL activity diagrams. This can be achieved by us-
ing the AGADUC (Automated Generation of Activity Diagrams from Use Cases) process.
AGADUC is a systematic approach to transform Use Case models into UCADs (Use Case
Activity Diagrams). UCAD is a notation introduced in [9] that represents the work�ows
embedded in SUCD Use Cases. The UCADs produced can be considered as BPEL activity
diagrams upon which the implementation of the BPEL processes will be based. A principle
advantage of using AGADUC is that it is supported by the tool AREUCD (Automated
Reverse Engineering of UC Diagrams). Automating the transformation process reduces
the time and e�ort required to develop BPEL activity diagrams. Therefore, E-commerce
analysts can further focus on the development of high quality Use Case models. Further-
more, automating the transformation process will ensure consistency between Use Case
models and activity diagrams by eliminating errors injected by analysts, and eliminate
�inspection-like� e�ort required to ensure such consistency. An overview of the AGADUC
process is shown in Figure 1.

Figure 1: An overview of the AGADUC process

Activity diagrams are traditionally used to model BPEL processes since activity dia-
grams are designed to support the speci�cation of work�ows. Work�ows that may contain
loops, branches and conditions, and concurrent �ows, and can be easily visualized using
activity diagrams. E-commerce analysts have avoided adopting Use Cases to model their
BPEL process, since Use Case models are not intended for expressing work�ows, but rather
actor-system interactions. It is rather cumbersome to express work�ow features using Use
Cases in a concise and understandable manner. Traditional Use Cases are described us-
ing unstructured natural language that makes it impossible to automatically extract and
represent their embedded work�ows using activity diagrams. SUCD helps overcome the
limitations endured when using Use Cases to model work�ows. As will be discussed in
great detail in Section 3, SUCD contains enough structure to support the concise model-
ing of work�ows. There will be no additional e�ort in creating the corresponding activity
diagrams, since AREUCD automatically performs this operation. Therefore, SUCD allows

62 Mohamed El-Attar, James Miller

E-commerce analysts to utilize the user-centered approach to modeling their BPEL pro-
cesses without sacri�cing the bene�ts of visualizing their BPEL processes using activity
diagrams!

The remainder of this paper is structured as follows: Section 2 discusses previous
work related to modeling BPEL processes. Section 3 introduces the SUCD structure and
the AGADUC process and how it can be utilized to describe BPEL business processes and
automatically generate BPEL activity diagrams. In Section 4, a Travel Agency System case
study is presented to illustrate feasibility of our proposed approach, and to demonstrate
the application of the AREUCD tool. Section 5 concludes and discusses future work.

2 Related Work

Schader et el. [3] and Aagedel et al. [13] have shown through a number of case stud-
ies the limitations of using activity diagrams for business process modeling. Dumas et
al. [4] extended this work by examining the expressiveness and adequacy of UML Activ-
ity Diagrams with respect to specify work�ows in particular. The result of their study
shows that activity diagrams possess features that allow for capturing situations arising in
practice that usually cannot be captured by most Work�ow Management Systems. How-
ever, their study also revealed that activity diagrams su�er from limitations inherited from
statecharts, which stem from the fact that activity diagrams are a special type of state
machines.

Korherr et al. [5] presented an extension to the UML Activity Diagram. The extension
allows for modeling process goals and performance measures in a visual manner by the
de�nition of a UML pro�le. The pro�le allows the extended activity diagrams to be
mapped onto BPEL. Mantell also created a UML pro�le that supports the systematic
transformation of activity diagrams to BPEL code [8]. Mantell's work featured tool support
that automates the transformation process and generates skeletons of BPEL code.

In 1997, it was argued by Keung et al. that there was little contribution made to make
goals explicit during the modeling of business processes [7]. Today, a large number of
business modeling languages have been introduced such as the Business Process Modeling
Language [6], the Event-driven Process Chain [11] and UML Activity Diagrams [10], how-
ever none of them provide means to model business process goals [1]. Towards achieving
this objective, this paper proposes a use-centered approach to modeling BPEL business
process using Use Cases.

3 The Structural Elements of SUCD

SUCD is in large based on the structure presented by [2]. Use Cases described using the
SUCD structure contain �ve structured main sections, these are: (a) Use Case Name, (b)
Basic Flow, (c) Alternative Flows, (d) Sub�ows and (e) Extension Points. Meanwhile,
other sections in a Use Case description that do not require structure are described using
natural language. There have many templates presented in the literature for describing
Use Cases. This section will provide details about the SUCD structural elements that

A User-Centered Approach to Modeling BPEL Business Processes Using SUCD Use Cases 63

are relative to supporting the speci�cation of work�ows. A complete description of the
SUCD structure and a mini-tutorial can be located at [12]. The systematic mapping of the
SUCD structural elements to activity diagram notation and the underlying transformation
algorithm is also presented in this section. The formalized mapping rules also serves as
a mechanism to ensure inter-diagrammatic consistency between the Use Case model and
the activity diagrams.

The following list outlines the structural elements of SUCD that support the speci�ca-
tion of work�ows which will be described in detail in the subsequent sections:

• Headers and Actions

� Transforming Headers and Actions

� Swimlanes

� Nested Activity Diagrams

• Concurrency and Loop Support using the `RESUME' and `AFTER' Statements

• Condition Evaluation and Branching Support using `AT' and `IF' Statements

3.1 Headers and Actions

The basic building block comprising all structured components is headers. A header con-
tains a number of actions that carryout certain behavior. The name of the header indicates
the behavior that is carried out by its actions. A header is comprised by a pair of match-
ing tags. An `opening' tag is comprised of curly brackets that contain the header's name
<header> pre�xed with the keyword `BEGIN'. Its corresponding `closing' tag must con-
tain the same header name and is pre�xed with the keyword `END'. A header's enclosed
actions are normally listed in bullet form. For example, in a library system, a header may
represent the actions required to enter information regarding how a new library member:

{BEGIN enter member information}
- Librarian → enters member’s name
- Librarian → enters member’s address
- Librarian → enters member’s phone number
{END enter member information}

This header Enter Member Information contains three actions. In this paper, perform-
ing a header indicates that all of its enclosed actions are performed. Each header inside
a Use Case must have a unique name. It can be easily deduced that the purpose behind
performing the three actions shown above is to enter a member's information into the sys-
tem. Moreover, all three actions must be performed to carryout the underlying purpose of
the header. A header groups together a set of actions that must all be performed in order
to carryout complete and meaningful behavior.

A header may contain other lower-level headers that comprise parts of the behavior
required to carryout the main behavior represented by the higher-level header. Therefore,

64 Mohamed El-Attar, James Miller

a Use Case description will contain a virtual tree of headers, whereby actions become
the roots (see Fig. 2). A high-level header may have actions of its own. Performing a
higher-level header forces the all of its lower-level headers in addition to its own actions to
be performed. When a lower-level header is completely performed, its higher-level header
resumes performance. Actions listed under a header represent the actual behavioral details

Figure 2: Headers in a Use Case descriptions form a virtual tree structure

of a Use Case. Actions must be listed in bullet form and described using natural language.
Listing actions in bullet form will allow analysts and designers to trace back design artifacts
and decisions to individual actions in a Use Case description. Only one actor may perform
an action, unless the action is performed by the system itself. The name of the actor that
performs a given action is pre�xed to that action. For the Enter Member Information
header shown above, the Librarian actor performs all three actions shown. Actions that
are performed by the system itself are pre�xed with the keyword `SYSTEM'.

3.1.1 Transforming Headers

Since headers are the basic building blocks for the three types of �ows, it is only appropriate
to start with the transformation of headers to activity diagram elements. Each action
enclosed in a header is directly represented by an activity in an activity diagram. The
Enter Member Information header presented in section 3.1 is translated into the following
activities as shown in Fig. 3.

3.1.2 Swimlanes

Swimlanes are used to associate each activity with an actor. This assigns the responsibilities
of each actor. In SUCD Use Cases, each action is designated an actor, unless it is performed
by the system (where the keyword `SYSTEM' is used). Hence, assigning each action to
the appropriate swimlane is straightforward (see Fig. 3).

A User-Centered Approach to Modeling BPEL Business Processes Using SUCD Use Cases 65

Figure 3: Headers and Swimlanes

3.1.3 Nested Activity Diagrams

Each activity diagram maybe nested. Nesting in activity diagrams is used to model a hier-
archy between the activities and to manage the complexity of the activity diagram. Nesting
activity diagrams do not change the semantics behind the activity diagrams. Therefore,
whether the activity diagrams were nested or not, should not change the underlying con-
cepts and work�ows presented by the diagrams. Hence, there is no `hard and fast' rule as
to what sections in an activity diagram should be nested. Nesting sections of an activity
diagram is a judgment call made by the E-commerce analysts and designers. The proposed
Use Case description structure only provides guidelines to what can be nested.

SUCD uses headers only to show what can be nested, as supposed to what should
be nested. A set of actions can be abstracted to show their corresponding header as an
activity. Lower-level headers can be abstracted to show corresponding higher-level header
as an activity. Assuming a header named Enroll New Member that is composed of three
lower-level headers; Enter Member Information, Enter Record into Library Database and
Produce Library Card For New Member. As shown in �gure 4, the lower-level headers
can be abstracted to show the higher-level header as an activity. The Enter Member
Information header presented in Section 3.1 is composed of actions. The actions can be
abstracted to show its header as an activity (see Fig. 4).

3.2 Concurrency and Loop Support

Activity diagrams have features such as forking and joining to support activity synchro-
nization. As already discussed, forking and joining execution �ows in activity diagrams
are modeled using the `RESUME' and `AFTER' statements in the Use Case descriptions.

66 Mohamed El-Attar, James Miller

Figure 4: Di�erent nesting levels for presentation purposes

A header can explicitly state the header(s) to be performed next. This can be achieved
using the `RESUME' statement. The `RESUME' statement consists of the keyword `RE-
SUME' followed by a list of header(s) that will follow. This is used to model the concept
of �ow forking. Finally, a header may explicitly state the headers that must be completed
before it can commence. This is achieved using the `AFTER' statement. Similarly, the
`AFTER' statement consists of the keyword `AFTER' followed by a list of headers that
need to be completed �rst (see Fig. 5):

Figure 5: Forking and joining using SUCD

3.3 Supporting Condition Evaluation and Branching

Work�ows may contain decision points where a condition is evaluated. Decision points
are indicated using the `AT' statement. The `AT' statement consists of the keyword `AT'
followed by a header where the stated conditions are evaluated. By default, the conditions
are evaluated for each action within the speci�ed header. Alternatively, the conditions

A User-Centered Approach to Modeling BPEL Business Processes Using SUCD Use Cases 67

can be evaluated only at certain actions within the speci�ed header. This is achieved by
specifying these actions after the `AT' statement.

Conditions evaluated at each `AT' statement are indicated using `IF' statements. An
`IF' statement consists of the keyword `IF', followed by a condition described in natural
language.

An `AT' statement will cause the creation of a decision diamond following the activ-
ity(s) that represent the header(s) listed in the `AT' statement. An `IF' condition will
be displayed as an activity diagram condition at the corresponding decision diamond (see
Fig. 6). A `RESUME' statement is used afterwards to specify the action where the �ow
will be heading towards.

Figure 6: Modeling conditions and braches

3.4 Formalizing the SUCD Structure

It is essential for the grammar and constructs of the SUCD structure to be formalized.
Formalizing the SUCD structure will provide a strict guideline to Use Case authors in
composing Use Case descriptions, so that there is no disagreement or ambiguity as to
what is allowed and what is not. The grammar of the SUCD structure is de�ned below
in E-BNF (see Table 1). Due to space restrictions, only the grammar of SUCD's higher
structural constructs are shown below, while the grammar of minor structural constructs
are excluded. However, the entire E-BNF is located at [12].

3.5 The AGADUC Process Mapping Rules

In order for the AGADUC process to be tool supported, the mapping rules for transforming
SUCD Use Cases in activity diagrams must be formalized. A complete speci�cation of the
implementation of the mapping rules will require many pages in length. A summarized
pseudo code version of the mapping rules are presented below (see Fig. 7).

The mapping process is carried out by four main algorithms [12]. The �rst algorithm is
responsible for scanning through the headers and actions of a SUCD Use Case and creating
a hierarchy of activities that represent this hierarchy. Algorithm 1 will also assign activi-
ties representing actions to their corresponding swimlanes. Finally, the �rst algorithm will
set control �ow link between the actions of a header, and save any information regard-
ing RESUME and AFTER statements detected. The second algorithm is responsible for
building and maintaining a list of swimlanes detected from the actions. The third algo-
rithm is responsible for creating synchronization bars and creating control �ow links that
connect activities with the synchronization bars. The execution of this algorithm depends

68 Mohamed El-Attar, James Miller

S ::= UseCaseDescrption+ Actor+

Actor ::= Abstract? ActorName Implements? Specializes?

UseCaseDescrption ::= NameSection BasicFlowSection?
AlternativeFlowSection? Sub�owsSection? ExtensionPointsSection?

NameSection ::= `Use Case Name:' Abstract? UseCaseName
Implements? Specializes?

Abstract ::= `ABSTRACT'

Implements ::= `IMPLEMENTS' UseCaseName

Specializes ::= `SPECIALIZES' UseCaseName

BasicFlowSection ::= `Basic Flow:'
`BEGIN Use Case'
Header*
`END Use Case'

Header ::= `BEGIN' HeaderName `'
AfterStatement?
Contents*
ResumeStatement?
`END' HeaderName `'

AlternativeFlowsSections ::= `Alternative Flows:' AF*

AF ::= AtStatement IfStatement AFHeader

Table 1: E-BNF grammar for the SUCD structure

on the information saved earlier regarding the RESUME and AFTER statements. The
third algorithm requires that Algorithm 1 must be executed �rst. Finally, the fourth algo-
rithm is responsible for creating the decision diamonds and conditions according to the AT
and IF statements. The fourth algorithm requires that Algorithm 1 and Algorithm 3 are
executed �rst. Due to space restricitions, only Algorithm 1 is shown below; the remaining
Algorithms can be found at [12].

4 Business Traveler Case Study

The following case study is used to demonstrate how SUCD Use Cases can be used to by
the AGADUC process to generate UCADs. The case study is about a simpli�ed Business
Traveler System that allows employees of a certain company to travel using the best o�ers
for plane ticket(s) and travel insurance. The system provides three BPEL business pro-
cesses. The �rst business process allows an employee to retrieve the best plane ticket o�er
from two web services provided by American Airlines and Delta Airlines. The second busi-
ness process allows an employee to receive the best travel insurance o�er for an upcoming
trip from two web services provided by Northern Insurance and Paci�c Insurance. When
searching for the best plane ticket o�er or the best travel insurance o�er, the employee's
travel status must be checked. The travel status of an employee allows the company to

A User-Centered Approach to Modeling BPEL Business Processes Using SUCD Use Cases 69

Figure 7: Algorithm 1. Detecting activities and creating main �ow links

70 Mohamed El-Attar, James Miller

determine which class that employee can use to travel, such as: business, �rst or economy
class. The travel status also allows the company to determine the corresponding travel
insurance package that the employee is entitled to receive. The travel status checking pro-
cess is performed by the third BPEL process called �Check Employee Travel Status�. The
Use Case diagram of the system is presented below in Figure 8.

Figure 8: The Travel Agency System Use Case Diagram

As discussed in Section 3, BPEL business processes represent services that are o�ered
by a system to its user(s). Therefore, the BPEL business processes are represented as Use
Cases. The web services and the user of the BPEL processes interact with the �Use Cases�
to attain their services. Therefore the web services and users are modeled as actors.

This case study is an expansion of the BPEL business process example presented in
[14]. In [14], only one BPEL business process was discussed which combined the �Acquire
Best Plane Ticket O�er� and �Check Employee Travel Status� BPEL processes shown
below. The reason the �Check Employee Travel Status� BPEL process was created in our
case study is to allow the �Acquire Best Travel Insurance O�er� to use its o�ered service.
Therefore, using a Use Case driven approach, it was possible to identify and factor out
common behavior, which will help avoid the implementation of any redundant functionality
and save development costs.

The BPEL activity diagram for the �Acquire Best Travel Insurance O�er� BPEL pro-
cess is presented in Fig. 9. The BPEL business process was then implemented. Therefore,
in this case study we will shed the light on the �Acquire Best Travel Insurance O�er� BPEL
process since it was discussed in [14], to show that using a Use Case driven approach can

A User-Centered Approach to Modeling BPEL Business Processes Using SUCD Use Cases 71

produce the same BPEL activity diagram. Moreover, this case study will show how using
Use Cases can overcome the limitations su�ered by using the traditional development ap-
proach presented earlier in Section 1. Once again due to space resatrictions, the Use Case
descriptions for the �Acquire Best Plane Ticket O�er� BPEL process is presented below
using the SUCD structure, while the Use Case description of the �Check Employee Travel
Status� BPEL process can be located at [12].

Use Case Name:
Acquire Best Plane Ticket O�er

Brief Description:
This Use Case describes a simple business process that selects the best airline �ight ticket
o�er. The business process is carried out as a web service. Currently, there are two com-
peting Airline companies that have subscribed to this web service, namely (a) American
Airlines, and (b) Delta Airlines.

Preconditions:
The Employee must have approval to travel.

Basic Flow:
{BEGIN Use Case}

{BEGIN Receive the initial request}
- Employee→ requests to search for the best plane ticket offer
- Employee→ specifies his/her name
- Employee→ specifies the destination
- Employee→ specifies the departure date
- Employee→ specifies the return date
{END Receive the initial request}

{BEGIN Prepare the input for the Employee web service}
- SYSTEM→ retrieves the information inputted by the Employee and prepares for the Employee Travel Sta-
tus Web Service
{END Prepare the input for the Employee web service}

{BEGIN Retrieve the employee travel status}
- SYSTEM → sends the Employee Travel Status Web Service the Employee information to check for the
Employee’s travel status
- INCLUDE Check Employee Travel Status
{END Retrieve the employee travel status}

{BEGIN Prepare the input for both Airline web services}
- SYSTEM → uses information provided by the Employee and the Employee Travel Status Web Service to
prepare inquiry requests for both Airlines

72 Mohamed El-Attar, James Miller

RESUME {Acquire plane ticket offer from American Airlines} {Acquire plane ticket offer from Delta Airlines}
{END Prepare the input for both Airline web services}

{BEGIN Acquire plane ticket offer from American Airlines}
- American Airlines: Airlines Web Service→ retrieves information about the requested plane ticket(s)
- American Airlines: Airlines Web Service→ checks for tickets availability
- American Airlines: Airlines Web Service → if the requested ticket(s) are available the web service sends
back an offer for the ticket(s). Otherwise, if the tickets were unavailable, the web service sends back a re-
sponse indicating that
{END Acquire plane ticket offer from American Airlines}

{BEGIN Wait for a callback from American Airlines}
- SYSTEM → waits for a response from the American Airlines Web Service {END Wait for a callback from
American Airlines}

{BEGIN Acquire plane ticket offer from Delta Airlines}
- Delta Airlines: Airlines Web Service→ retrieves information about the requested plane ticket(s)
- Delta Airlines: Airlines Web Service→ checks for tickets availability
- Delta Airlines: Airlines Web Service→ if the requested ticket(s) are available the web service sends back
an offer for the ticket(s). Otherwise, if the tickets were unavailable, the web service sends back a response
indicating that
{END Acquire plane ticket offer from Delta Airlines}

{BEGIN Wait for a callback from Delta Airlines}
- SYSTEM→ waits for a response from the Delta Airlines Web Service
{END Wait for a callback from Delta Airlines}

{BEGIN Select the best offer}
AFTER {Wait for a callback from American Airlines} {Wait for a callback from Delta Airlines}

- SYSTEM→after receiving a response from both Airlines web services, the SYSTEM selects the best offer
{END Select the best offer}

{BEGIN Return the offer}
- SYSTEM→ returns to the Employee a response indicating the best offer for the requested plane tickets
{END Return the offer}

{END Use Case}

Postconditions:
A response must be provided to the Employee with the best o�er for the requested plane
tickets. If no tickets were available, a response must be provided to the Employee indicat-
ing that.

A User-Centered Approach to Modeling BPEL Business Processes Using SUCD Use Cases 73

Special Requirements:
An internet connection must be available for the BPEL process to operate.

Upon inputting the SUCD Use Cases (all three of them) into the tool AREUCD,
the AGADUC process will be performed and the UCADs for the SUCD Use Cases are
generated. Due to space limitations, only the UCADs of the �Acquire Best Plane Ticket
O�er� and �Check Employee Travel Status� BPEL processes are shown below (see Fig. 9
and Fig. 10).

In contrast with using the activity diagram for the �Acquire Best Plane Ticket O�er�
business process, it can be deduced that describing the business process using a SUCD
Use Case have provided an explicit representation of the user goals and have also provided
much more details about the interactions between the BPEL process and the user and
other web services.

Figure 9: The resulting BPEL activity diagram for the �Acquire Best Plane Ticket O�er� BPEL
business process

74 Mohamed El-Attar, James Miller

Figure 10: The resulting BPEL activity diagram for the �Check Employee Travel Status� BPEL
business process

5 Conclusion

In this paper we presented proposed a user-centered approach to modeling BPEL business
processes. The approach is based on using Use Cases to explicitly model the services of-
fered to the business processes' users. Traditionally, BPEL business processes are modeled
using UML activity diagrams only, which did not support the explicit modeling of user
goals. Another advantage of using Use Cases is that the interaction intricacies between
the business processes and the web services o�ered by other systems can be captured. Use
Case modeling provides a high level overview of the services that are provided by a set
of related BPEL business processes. This will allows E-commerce analysts to discover
common services and functionality which in turn will save time and e�ort by avoiding the
implementation of redundant functionality.

Modeling BPEL business processes using activity diagrams appeals to E-commerce an-
alysts since activity diagrams is an excellent technique to model and visual work�ows.
Moreover, it can be directly mapped to BPEL code to kick start the implementation
phase. Traditional Use Cases are described using unstructured natural language. Describ-
ing work�ows concisely using unstructured natural language is di�cult since work�ows
contain features such as loops, conditions and branches and concurrent �ows. In this pa-
per, we utilize the SUCD structure to describe Use Cases. The SUCD structure features
structural elements that allow E-commerce analysts to describe the BPEL work�ows con-
cisely and accurately. Using the AGADUC process, which is implemented by the AREUCD
tool, E-commerce analysts will be able to e�ortlessly generate activity diagrams that ac-
curately represent the work�ows described by SUCD Use Cases. This allows E-commerce
analysts to utilize a user-centered approach to model their BPEL processes without losing
the advantages of activity diagrams.

Future work can be directed towards developing a Use Case driven approach to sys-
tematically generate test suites that will check the validity of the BPEL processes.

A User-Centered Approach to Modeling BPEL Business Processes Using SUCD Use Cases 75

References

[1] A-W Scheer. ARIS � Business Process Modeling. Springer Verlag, 1999.

[2] J. Aagedal and Z. Milosevic. ODP enterprise language: An UML perspective. In In Proc. of
The 3rd International Conference on Enterprise Distributed Object Computing. IEEE Press,
1999.

[3] K. Bittner and I. Spence. UC Modeling. Addison-Wesley, 2002.

[4] M. Dumas and A. ter Hofstede. UML Activity Diagrams as aWork�ow Speci�cation Language.
In Proc. of the UML 2001 Conference, 2001.

[5] B. P. M. Initiative. BPMI: Business Process Modelling Notation � Speci�cation v1.0, Novem-
ber 2004.

[6] B. Korherr and B. List. Extending the UML 2 Activity Diagram with Business Process Goals
and Performance Measures and the Mapping to BPEL. In 2nd International Workshop on
Best Practices of UML (BP-UML'06). Spinger Verlag, Lecture Notes in Computer Science,
November 2006.

[7] P. Kueng and P. Kawalek. Goal-based business process models: creation and evaluation.
Business Process Management Journal, Volume 3(1):17�38, 1997. MCB Press.

[8] B. List and B. Korherr. An Evaluation of Conceptual Business Process Modelling Languages.
In Proceedings of the 21st ACM Symposium on Applied Computing (SAC'06). ACM Press,
April 2006.

[9] M. B. M. B. Juric and P. Sarang. Business Process Execution Language for Web Services.
Second Edition. PACKT Publishing, 2006.

[10] J. M. M. El-Attar. AGADUC: Towards a More Precise Presentation of Functional Require-
ments in Use Case Models. In 4th ACIS International Conference on Software Engineering,
Research, Management and Applications, 2006.

[11] K. Mantell. From UML to BPEL � http://www-106.ibm.com/developerworks/webservices/
library/ws-uml2bpel, September 2003.

[12] I. Object Management Group. UML 2.0 Superstructure, http://www.omg.org/cgi-bin/apps/
doc?formal/05-07-04.pdf, November 2006.

[13] M. Schader and A. Korthaus. Modeling business processes as part of the BOOSTER approach
to business object-oriented systems development based on UML. In Proc. of The Second
International Enterprise Distributed Object Computing Workshop. IEEE Press, 1998.

[14] STEAM laboratory website at the University of Alberta. http://www.steam.ualberta.ca/main/
research_areas/Requirements_Capture.htm, Dec 2006.

76

e-Informatia Software Engineering Journal, Volume 1, Issue 1, 2007Program Veri�ations, Objet Interdependenies,and Objet TypesCong-Cong Xing∗
∗Department of Mathematis and Computer Siene, Niholls State Universitymps-x�niholls.eduAbstratObjet types are abstrat spei�ations of objet behaviors; objet behaviors are ab-stratly indiated by objet omponent interdependenies; and program veri�ationsare based on objet behaviors. In onventional objet type systems, objet omponentinterdependenies are not taken into aount. As a result, distint behaviors of ob-jets are onfused in onventional objet type systems, whih an lead to fundamentaltyping/subtyping loopholes and program veri�ation troubles. In this paper, we �rstidentify a program veri�ation problem whih is aused by the loose onventional ob-jet typing/subtyping whih is in turn aused by the overlooking of objet omponentinterdependenies. Then, as a new objet typing sheme, we introdue objet type graphs(OTG) in whih objet omponent interdependenies are integrated into objet types.Finally, we show how the problem existing in onventional objet type systems an beeasily resolved under OTG.1 Introdution and Related WorkAlthough muh of the reent year's work on objet-oriented programming (OOP) has fo-used on large entities suh as omponents, environments, and tools, investigations onissues related to objet-oriented languages themselves are still an on-going researh andmany new improvements an be expeted. In partiular, typing and program veri�ationare still a ritial issue and a problem-prone area in the formal study of objet-orientedlanguages, espeially when type-related subjets, suh as subtyping and inheritane, areonsidered. In the ontexts of OOP theory researh, there are three major lines: Abadi-Cardelli's ς-alulus [2℄, Fisher-Mithell's lambda alulus of objets [14, 19, 18, 4℄, andBrue's PolyTOIL [7, 6℄. The type systems of all these aluli are onventional in thefollowing sense: the major behavior indiator of objets � objet omponent interdepen-denies � is not re�eted in objet types.The result of not having suh omponent interdependeny information represented inobjet types is that two behaviorally distint objets whih deserve to be typed di�erently,may have the same type. For example, let objets a and b be de�ned, using the ς-alulus [2℄notation, as follows: a

def
= [l1 = 1, l2 = 1], b

def
= [l1 = 1, l2 = ς(s : Self)s.l1] where s is theself variable and Self is the type of s. The behavioral di�erene between a and b an berevealed by the following omputations: Suppose we would like to update l1 in a to 2.

78 Cong-Cong XingIt is easy to see that before and after this updating operation, the �status� of l2 in aremains the same, namely, a.l2 = 1 and (a.l1⇐ 2).l2 = [l1 = 2, l2 = 1].l2 = 11. However,when the same operation (updating l1 to 2) is applied to b, the �status� of l2 in b wouldbe hanged after the operation, namely, b.l2 = 1 but (b.l1⇐ 2).l2 = [l1 = 2, l2 = ς(s :
Self)s.l1].l2 = 2 due to the fat that l2 �depends on� l1 (l2 alls l1) in b. In onventionaltype systems, this behavioral di�erene between a and b is not aptured in their types;
a and b are of the same type: [l1 : int, l2 : int]. As a result, elusive programming errorsand program veri�ation problems will inevitably our when subtyping is onsidered (asshown in the next setion).In this paper, we introdue, as a new way to represent objet types, objet type graphs(OTG) in whih objet omponent interdependeny information is abstratly revealed, andshow that OTG provides an e�etive support for program veri�ations. Setion 2 presentsa program veri�ation problem aused by objet typing. Setion 3 de�nes a formal objet-oriented language TOOL in whih objet omponent interdependenies are to be studied.Setions 4 and 5 de�ne OTG and typing/subtyping under OTG respetively. Setion 6demonstrates how the program veri�ation problem shown in Setion 2 an be resolvedunder OTG. Setion 7 onludes this paper.There are some researh work in the literature that are (somehow) related to our work.Behavioral subtyping is introdued in [20℄. Although objet behavior and subtyping arethe ommon interests in both [20℄ and our paper, our typing approah is fundamentallydi�erent from that in [20℄ where objet interdependenies are not onsidered. Labeled typesand width subtyping are proposed in [3, 4, 19℄, where the type of a method is labeled bya set of methods that it uses. While the idea of labeled types is somewhat related to ouridea of objet interdependeny, they di�er substantially in quality and in quantity. Forexample, the notion of objet interdependeny is preisely de�ned in our work whereas theissue of method usages is not formally addressed in labeled types. Furthermore, in ourwork, objet interdependenies fully partiipate and deisively reshape objet subtypingwhereas in labeled types the method usages information is barely used in objet subtyping.The notion of objet state typing an be found in, for example, [9, 21℄. Just like [20℄ (asopposed to our work), this approah deals with the issue of objet behavior and subtypingin a fundamentally di�erent way from ours, whih makes it orthogonal and omplementalto our approah.2 The Problem and MotivationPoints with additional attributes (e.g., olor points [5, 8, 15℄, movable points [2, 4, 15℄) havebeen an interesting study-ase in the fundamental researh of objet-oriented languages.Here, we observe a new problem that is assoiated with movable points. We �rst presentthis problem on a theoretial basis and then demonstrate it using Java.1a.l1⇐2 means that �eld/method l1 in a is updated to 2.

Program Veri�ations, Objet Interdependenies, and Objet Types 792.1 ς-alulus Desription of the ProblemWe stipulate that a point is olored (or non-olored, respetively), if this point (objet) hasa (or has no, respetively) olor attribute. Let us onsider non-negative movable points2.For 1-d movable points, we assume that all points greater than 1 are olored points andall other points are non-olored points (Figure 1). For 2-d movable points, similarly, weassume that all points with a distane from the origin greater than 1 are olored points andall other points are non-olored points (Figure 2). This assumption an be easily extendedfor higher-dimensional points.
10

pts w/o color pts w/ color

xFigure 1: 1-d Colored and non-olored points
1

1

0

y

x

pts w/ color

pts w/o
color

Figure 2: 2-d Colored and non-olored pointsFor instane, using the ς-alulus (seond-order) notation [2℄, we an de�ne a 1-d non-olored movable point and a 1-d olored movable point as follows:
p1n

def
=

x = 0.5
mvx = ς(s :Self)λ(i :real)(s.x⇐s.x + i)
dist = ς(s :Self)s.x

 ,

p1c
def
=

x = 2.0
mvx = ς(s :Self)λ(i :real)(s.x⇐s.x + i)
dist = ς(s :Self)s.x
clr = blue

,where mvx moves the point to a new position on the x-axis and dist returns the dis-2For the sake of simpliity, we only onsider non-negative points here. The ase for negative points anbe easily dupliated with slight hanges.

80 Cong-Cong Xingtane from the origin to the urrent position of the point. The⇐ is the method updat-ing/overriding operation in ς-alulus. The intentions of �elds x and clr are obvious.To haraterize the behaviors of 1-d movable points, we de�ne the following types:
P

def
= ς(Self)

x : real

mvx : real → Self

dist : real

 ,

CP
def
= ς(Self)

x : real

mvx : real → Self

dist : real

clr : color

,

NCP
def
= P,where P is the type of all 1-d movable points, CP is the type of 1-d olored points, and

NCP is the type of 1-d non-olored points. Given the objets and types de�ned as theabove, it is easy to hek that in onventional objet type systems, we have p1n : NCP ,
p1c : CP , CP <: P , and NCP <: P .Now, suppose we would like to write a program, ms (�move and see�), whih takes a 1-dpoint and moves it along the x-axis. Due to the o-existene of olored and non-oloredpoints on the x-axis, the movement annot be arbitrary. We speify the behavior of ms asfollows: (a) ms moves the argument point to its right a ertain amount of distane if theargument point is olored (so that it will not mix with non-olored points). (b) ms movesthe argument point to its left half of the distane from the origin to the urrent position ofthe argument point if the argument point is non-olored (so that it will not mix with oloredpoints). () Let p′ be the newly resulted point in ases (a) and (b). In ase (a), ms uses theproperty p′.dist > 1 of p′ to arry out the omputation arcsin(1/p′.dist); in ase (b), msuses the property p′.dist ≤ 1 of p′ to arry out the omputation arcsin(p′.dist). Beauseof subtyping and subsumption, inevitably, ms will take higher dimensional points as itsarguments. To ensure that ms works �ne with higher dimensional points, we require that,in suh ases, the higher dimensional point be moved (right or left) along the x-axis, andthe amount of distane to be moved follows the same guideline stated above. For example,given a 2-d point p with oordinates (x, y), if p is olored (whih means √

x2 + y2 > 1), wemove it to the right along the x-axis over a distane δ > 0. The distane from the origin tothe new position of the point then would be √

(x + δ)2 + y2 >
√

x2 + y2 > 1, indiatingthat the point is still in the olored point area on the x-y plane. If p is non-olored (whihmeans √

x2 + y2 ≤ 1), we move it to the left along the x-axis half of x. The distane fromthe origin to the new position of the point then would be √

(1
2x)2 + y2 <

√

x2 + y2 ≤ 1,indiating that the point is still in the non-olored point area. Thus the spei�ation ofthe program ms is sound and feasible.

Program Veri�ations, Objet Interdependenies, and Objet Types 81With little e�ort, we an write ms as follows:
ms

def
= λ(p : P)if (p.dist > 1) // p is olored

sin-1 (1/(p.mvx (δ)).dist) // δ > 0else // p is non-olored
sin-1 ((p.mvx (−1

2p.x)).dist)endif Figure 3: The funtion msNow, the question we have is: does ms perform to its spei�ation with all permissiblearguments? Or simply, is ms reliable? Can we verify its orretness?It is easy to hek that ms works as expeted with p1n and p1c. We now de�ne oneolored 2-d point and two non-olored 2-d points as follows:
p2c

def
=

x = 2.0
y = 2.0
mvx = ς(s :Self)λ(i :real)(s.x⇐s.x + i)
mvy = ς(s :Self)λ(i :real)(s.y⇐s.y + i)

dist = ς(s :Self)
√

(s.x)2 + (s.y)2

clr = blue

,

p2n
def
=

x = 0.5
y = 0.3
mvx = ς(s :Self)λ(i :real)(s.x⇐s.x + i)
mvy = ς(s :Self)λ(i :real)(s.y⇐s.y + i)

dist = ς(s :Self)
√

(s.x)2 + (s.y)2

,

p′2n
def
=

x = 0.5
y = ς(s :Self) 1

4(s.x)

mvx = ς(s :Self)λ(i :real)(s.x⇐s.x + i)
mvy = ς(s :Self)λ(i :real)(s.y⇐s.y + i)

dist = ς(s :Self)
√

(s.x)2 + (s.y)2

.

Note that p2c and p2n an be regarded as �free� 2-d points sine their x and y �elds areindependent eah other, whereas p′2n an be regarded as a �onstrained� 2-d point sine its
y oordinate depends on its x oordinate. Also note that p′2n is a legitimate non-oloredpoint sine its oordinate is (0.5, 0.5) whih shows that the distane from the origin tothis point is less than 1. Moreover, note that although p2c, p2n, and p′2n are de�ned fromsrath, they ould have been de�ned through inheritane from (the lasses of) p1c or p1nin lass-based objet-oriented languages (as shown in the next subsetion).

82 Cong-Cong XingUnder onventional objet type systems, p2c and p2n have types
CP2

def
= ς(Self)

x : real

y : real

mvx : real → Self

mvy : real → Self

dist : real

clr : color

and
NCP2

def
= ς(Self)

x : real

y : real

mvx : real → Self

mvy : real → Self

dist : real

respetively, and p′2n has the same type as p2n. That is, p′2n : NCP2. Furthermore,
CP2 <: P and NCP2 <: P , so ms(p2c), ms(p2n) and ms(p′2n) all type-hek.It is easy to hek that ms(p2c) and ms(p2n) work just �ne. What about ms(p′2n)?It is supposed to return the degree of an angle. Unfortunately, the exeution of ms(p′2n)produes a run-time error, as outlined below: The urrent position of p′2n is (0.5, 0.5) with
p′2n.dist =

√
0.52 + 0.52 < 1. So it is moved to the left 0.5

2 = 0.25 units of distane resultingin another point, say, p′′2n. The position of p′′2n is (0.25, 1
4×0.25) = (0.25, 1) and the distanefrom the origin to p′′2n is p′′2n.dist =

√
0.252 + 12 > 1. The exeution sin-1 (p′′

2n
.dist) thusrashes beause sin−1 is unde�ned for argument greater than 1.What goes wrong is lear: when the x-oordinate of p′2n is moved (dereased), its

y-oordinate is impliitly moved too (inreased) due to the interdependeny between xand y (y = 1
4(s.x)). The ombination of these two movements makes p′2n (a non-oloredpoint) go into the olored point area of the x-y plane, resulting in a point with distanegreater than 1 and reating semantis onfusions. The importane of objet omponentinterdependenies to objet behaviors an be seen learly here. Coneptually, for ms tosafely ful�ll its spei�ations, it should not take an arbitrary point as its argument. Anypoints in whih some methods depend on x and a�et dist at the same time, for example

p′2n, will potentially make the behavior of ms unpreditable and endanger the exeution of
ms when they are submitted to ms . Thus, allowing points like p′2n to be submitted to msis a �wrong idea�, in the sense that ms(p′2n) does not work as spei�ed and therefore ms isunreliable.How an we �x this problem? Is the funtion ms omposed inorretly? Is there away to rewrite ms so that we an prove that ms works as spei�ed for all permissiblearguments? It seems unlikely. Note that ms is written with P as the type of its argument.
ms annot foresee what kind of extra methods there are in its atual arguments. When p′2nis submitted to ms , p′2n's y-oordinate is invisible to ms . ms does not know the existene

Program Veri�ations, Objet Interdependenies, and Objet Types 83of the y-oordinate, and of ourse, has no way of knowing the interdependenies between
y and other methods and the ensuing behavior of p′2n. This is espeially the ase if p′2nis onstruted via inheritane from p1c or p1n. This situation auses the behavior of ms(with various permissible arguments) unpreditable, and is inevitable in OOP supportedby onventional objet type systems.2.2 Java Version of the ProblemTo show that the problem exists not only in objet-based languages, but in lassed-basedlanguages as well, we present a Java version of the problem with two running sripts inFigure 4.Classes P, CP, CP2, and NCP2 orrespond to types P (and NCP), CP , CP2, and NCP2respetively. Similarly, objets p1n, p1, p2n, p2 and p2na orrespond to points p1n, p1c,
p2n, p2c, and p′2n respetively. MPP and MPP1 are two appliations that use these points.Due to the �lass-serves-as-type� feature of Java, the Java version of the problem is twisteda bit: The types of p2n and p2na are NCP2 and NCP2a respetively. These two types arenot the same but enjoy a subtyping relationship NCP2a <: NCP2. This is di�erent from
ς-alulus where p2n and p′2n have the same type, but does not a�et the illustration of theproblem.Note that in lass NCP2a of Figure 4, in order to faithfully implement the desired fatthat �y-oordinate depends on x-oordinate�, we need to use the ombination of the �eldy and the method y() to simulate it. This is due to the imperative feature of Java. Fieldy, as an instane variable, one aquires a value, will evaluate to the same value eah timeit is evaluated. So �eld y does not �depend on� anyone in this sense. Then how an weode �y-oordinate depends on x-oordinate�? The use of an auxiliary method y() whihdepends on x (as desired) omes into help.From the exeution sript of MPP, we an learly see that submitting the �onstrained�point p2na to the funtion ms auses a run-time bug, whih demonstrates that the typeNCP2a of p2na should not be regarded as a subtype of the type P although NCP2a is inherited(indiretly) from P. Considering that all ms(p1), ms(p2), ms(p2n) work �ne and all thelasses (types) of the three objets p1, p2, p2n are inherited (indiretly) from P too, weneed to distinguish (all) inheritanes in Java so that some inheritanes (e.g., those as CP,CP2, and NCP2) may imply subtyping and others (e.g., those as NCP2a) do not. This anbe done by using objet interdependeny as a measurement. Unfortunately, Java thinks�all inheritane is subtyping�. What is more interesting is that due to the way in whihJava handles NaN (Any arithmeti operation involving NaN and other operands produes aNaN, but any relational operation involving NaN and other operands produes either trueor false3.), this run-time bug an beome hidden and di�ult to �nd if the relevant ex-pression is (deeply) involved with other omputations. MPP1 is suh an example; by justexamining the exeution sript of MPP1, it is hard to tell that ms(p2na) has atually auseda run-time bug.3There are other means in Java to make the �illegal value� NaN legal, e.g., (int)(Math.asin(2)) evaluates to 0,whih ould also help to oneal the NaN run-time bugs.

84 Cong-Cong Xing// lass P. Note that this is also lass// NCP sine NCP is defined as P.publi lass P {proteted double x = 0.5;publi double getx(){ return x; }publi void mvx(double i){ x = x+i; }publi double dist(){ return getx();}}// lass CP, inherited from Ppubli lass CP extends P { String lr = "blue";publi CP(){ x = 2.0;}}// lass CP2, inherited from CPpubli lass CP2 extends CP {proteted double y;publi CP2(){ y = 2.0;}publi double gety(){ return y; }publi void mvy(double i){ y = y+i; }publi double dist(){ return Math.sqrt(getx()*getx() + gety()*gety());}}// lass NCP2, inherited from Ppubli lass NCP2 extends P {proteted double y;publi NCP2(){ y = 0.3;}publi double gety(){ return y; }publi void mvy(double i){ y = y+i; }publi double dist(){ return Math.sqrt(getx()*getx() + gety()*gety());}}// lass NCP2a, inherited from NCP2. Need the ombination// of y and y() to simulate "y depends on x". Note that// "y depends on x" is what we want to do, without the use// of y(), fields x and y would be independentpubli lass NCP2a extends NCP2{ publi NCP2a(){ y = y(); } // alling y() to get// value for ypubli double y() // implementation of{ return 1/(4*x);} // "y depends on x"publi double gety(){ y = y(); // alling y() to getreturn y; // value for y}}

// Appliation that uses P, CP, CP2, NCP2, and NCP2apubli lass MPP {publi stati void ms(P p){ if (p.dist() > 1){System.out.println(" This is a olored point");p.mvx(1); // move p as speifiedSystem.out.println(" The result is: "+Math.asin(1/p.dist()));}else{System.out.println(" This is a non-olored point");p.mvx(-0.5*p.getx()); // move p as speifiedSystem.out.println(" The result is: "+Math.asin(p.dist()));}}publi stati void main(String args[℄){ P p1n = new P();CP p1 = new CP();CP2 p2 = new CP2();NCP2 p2n = new NCP2();NCP2a p2na = new NCP2a();System.out.println("making all ms(p1n)..."); ms(p1n);System.out.println("making all ms(p1)..."); ms(p1);System.out.println("making all ms(p2n)..."); ms(p2n);System.out.println("making all ms(p2)..."); ms(p2);System.out.println("making all ms(p2na)..."); ms(p2na);}}// Appliation that uses P, CP, CP2, NCP2, and NCP2apubli lass MPP1 {publi stati void ms(P p){ System.out.print(" Chek to see if the result > PI/4:");if (p.dist() > 1){ p.mvx(1); // move p as speifiedif (Math.asin(1/p.dist()) > (Math.PI)/4)System.out.println (" yes");elseSystem.out.println (" no");}else{ p.mvx(-0.5*p.getx()); // move p as speifiedif (Math.asin(p.dist()) > (Math.PI)/4)System.out.println (" yes");elseSystem.out.println (" no");}}publi stati void main(String args[℄){ // omitted, same as the part in MPP }}C:\MyJavaPrograms\Point\movable pt problem>java MPP making all ms(p1n)...This is a non-olored pointThe result is: 0.25268025514207865making all ms(p1)...This is a olored pointThe result is: 0.3398369094541219making all ms(p2n)...This is a non-olored pointThe result is: 0.40118821299725976making all ms(p2)...This is a olored pointThe result is: 0.2810349015028136making all ms(p2na)...This is a non-olored pointThe result is: NaNC:\MyJavaPrograms\Point\movable pt problem>java MPP1 making all ms(p1n)...Chek to see if the result > PI/4: nomaking all ms(p1)...Chek to see if the result > PI/4: nomaking all ms(p2n)...Chek to see if the result > PI/4: nomaking all ms(p2)...Chek to see if the result > PI/4: nomaking all ms(p2na)...Chek to see if the result > PI/4: noFigure 4: Java Code of the Movable Point Problem

Program Veri�ations, Objet Interdependenies, and Objet Types 85Summarizing what is desribed in this setion, we an state the problem as follows:
• In OOP supported by onventional objet type systems, there is no way to implementprograms like ms reliably and verify its orretness.Motivated by this problem, we propose, in the subsequent setions, a new typing shemefor objets.3 A Simple Typed Objet-Oriented LanguageTo illustrate our approah, we de�ne a simple typed objet-oriented language (TOOL) inthis setion.3.1 SyntaxThe terms and types of TOOL are de�ned as follows.

M ::= x | λ(x :σ).M | M1M2 | M.l | M.l⇐ ς(x :S(A))M ′

| [li = ς(x :S(A))Mi]
n
i=1

σ ::= κ | t | σ1 → σ2 | µ(t)σ | A | S(A)
A ::= ι(t)[li(Li) :σi]

n
i=1 Li ⊆ {l1, . . . , ln} for eah iTerms in TOOL are standard λ-terms and ς-terms [2℄. In partiular, [li = ς(x :

S(A))Mi]
n
i=1 represents an objet, M.l represents method invoation, and M.l⇐ ς(x :

S(A))M ′ represents method updating.Types in TOOL are standard ground type, funtion type, reursive type, and thenewly proposed objet type. In objet type ι(t)[li(Li) :σi]
n
i=1, ι is the self-type binder, eahmethod li has type σi, and Li is the set of links of li (de�ned in the next subsetion). S(A)denotes the self type indued by the objet type A. A = ι(t)[li(Li) :σi(t)]

n
i=1 if and only if

A = [li(Li) :σi(S(A))]ni=1.We provide a simple example to illustrate the syntax of types and terms. Let
A

def
= ι(t)

l1({l2, l3}) : t
l2(∅) : int

l3({l2}) : int → int

 .It spei�es that l1, l2, and l3 are of self type (assoiated with A), int , and int → intrespetively. The sets of links for l1 and l3 are {l2, l3} and {l2}. l2 has no links. An objetof type A ould be
a

def
=

l1 = ς(s :S(A))s
l2 = 1
l3 = ς(s :S(A))λ(x : int)(x + s.l2)

 .

86 Cong-Cong Xing3.2 De�nition of LinksLinks are used to signify the struture of omponent dependeny of objets. Informally,in objet type ι(t)[li(Li) : σi]
n
i=1, lj ∈ Li means that the value of method li depends(partially) on the value of method lj. The link mehanism makes the types of objets inTOOL substantially di�erent from that in onventional objet type systems.De�nition 1 (Link) Given an objet a = [li = ς(s : S(A))Mi]

n
i=1, (1) li is said to bedependent on lj(i 6= j) if there exists a M suh that a.li and (a.lj ⇐ ς(s : S (A))M).lievaluate to di�erent values; (2) li is said to be diretly dependent on lj(i 6= j) if (a) liis dependent on lj, and (b) if all suh lk(i 6= k, j 6= k) where li is dependent on lk and lkis dependent on lj , are removed from a, li is still dependent on lj; (3) The set of links of

li (or equivalently, of Mi with respet to objet a), denoted by L(li) (or equivalently, by
La(Mi)), ontains exatly all suh lj on whih li is diretly dependent.Example 1 Take the objet a and its type A de�ned at the end of setion 3.1, by thede�nition of links, we see that the links of the methods in a are:

L(l1) = La(s) = {l2, l3}
L(l2) = La(1) = ∅
L(l3) = La(λ(x : int)(x + s.l2)) = {l2}whih math the orresponding link spei�ations in type A.4 Objet Type Graphs4.1 De�nitionsTo reveal the struture of objet omponent interdependenies more learly and failitatethe study of objet subtyping and behaviors, we introdue a graphial representation ofobjet types � objet type graphs. We de�ne direted olored graphs �rst.De�nition 2 (Direted Colored Graph) A direted olored graph G is a 6-tuple

(GN , GA, C, sr, tg, c) onsisting of: (1) a set of nodes GN , and a set of ars GA; (2)a olor alphabet C; (3) a soure map sr : GA → GN , and a target map tg : GA → GN ,whih return the soure node and target node of an ar, respetively; and (4) a olor map
c : GN ∪ GA → C, whih returns the olor of a node or an ar.De�nition 3 (Ground Type Graph) A ground type graph is a single-node olored di-reted graph whih is olored by a ground type.De�nition 4 (Funtion Type Graph) A funtion type graph (s,G1, G2)(GN ,GA,C,sr,tg,c)is a direted olored graph onsisting exatly of a starting node s ∈ GN , and two typegraphs G1 and G2, suh that, (1) c(s) =→; (2) there are two ars assoiated with thestarting node s, left ar l ∈ GA and right ar r ∈ GA, suh that c(l) = in, c(r) = out;

Program Veri�ations, Objet Interdependenies, and Objet Types 87
l onnets G1 to s by sr(l) = sG1

, tg(l) = s, and r onnets s to G2 by sr(r) = s,
tg(r) = sG2

, where sG1
and sG2

are the starting nodes of G1 and G2, respetively; (3)
G1 and G2 are disjoint; (4) if there is an ar a ∈ GA with c(a) = rec, then sr(a) = sGi

,
tg(a) = s, c(sGi

) =→, i = 1, 2.De�nition 5 (Objet Type Graph) An objet type graph (s,A,R,L, S)(GN ,GA,C,sr,tg,c)is a direted olored graph onsisting exatly of a starting node s ∈ GN , a set of methodars A ⊆ GA, a set of re-olored ars R ⊆ GA, a set of link ars L ⊆ GA, and a set oftype graphs S, suh that (1) c(s) = self. (2) ∀a ∈ A, sr(a) = s, tg(a) = sF for some typegraph F ∈ S, and c(a) = m for some method label m; c(a) 6= c(b) for a, b ∈ A, a 6= b. (3)
∀r ∈ R, c(r) = rec, tg(r) = s, sr(r) = sF for some F ∈ S, and c(sF) = self. (4) ∀l ∈ L,
sr(l) = sF , tg(l) = sG for some F,G ∈ S, and c(l) = bym for some method label m.Remarks: Direted olored graph is the foundation of graph grammar theory [10, 11,12, 13, 22℄. Objet type graphs are adapted from direted olored graphs. Ground typegraphs are trivial. Funtion type graphs are straightforward. They need to be de�nedbeause an objet type graph may inlude them as subgraphs. An objet type graph isformed by a starting node s and a set S of type graphs with eah F ∈ S being onnetedto s by a method ar that goes from s to F . The starting node s is olored by self and isused to denote the self type. The method interdependenies are spei�ed by ars in L. If
L(m) is the set of links of method m, then for eah l ∈ L(m) there is an ar (olored bybyl) that goes from l to m. Reursive objet types are speially indiated by re-oloredars in R.For the sake of brevity, we drop the subsripts in (s,G1, G2)(GN ,GA,C,sr,tg,c) and
(s,A,R,L, S)(GN ,GA,C,sr,tg,c) whenever possible throughout the paper.4.2 Examples of Objet Type GraphsWe now provide some examples to illustrate the de�nition of objet type graphs.Example 2 In Figure 5, A, B, and C are the type graphs for ground types int, real, and
bool respetively. D is the type graph for funtion type int → int and E is the type graphfor (int → real) → (real → int).

int int

in
out

in
out

in out in out

int real intrealint real bool

A B C D EFigure 5: Examples of Ground Type Graphs and Funtion Type Graphs

88 Cong-Cong XingExample 3 In Figure 6, graph A denotes the objet type [x : int, y : int], where methods xand y are independent of eah other. Graph B denotes the type [x : int, y({x}) : int] where
y depends on x. Note that the diretion of the link ar in B is from x to y, (not from y to
x), signifying the fat that hanges made to method x will a�et method y.

x y

self
s

intint

x y

self
s

intint
byx

A BFigure 6: Examples of Objet Type GraphsExample 4 In Figure 7, graph C represents the objet type µ(t)ι(s)[a : int, b : t, c : s].Method a is of type int; method b is of reursive objet type C. Method c is of the selftype indued by the objet type C. Note the strutural di�erene between the type of band the type of c revealed in the type graph4. Graph D represents the type of a simpli�ed1-d movable point [x = 1,mvx = ς(s :S(D))λ(i : int)(s.x⇐ s.x + i)]. The fats that mvxdepends on x and returns a modi�ed self are indiated by the byx-olored ar and theout-olored ar in D.
a

b

self

selfint

x mvx

self
s

int
byx

A B

c

rec

int
in

out

Figure 7: Examples of Objet Type GraphsExample 5 Two more objet type graphs are shown in Figure 8. They are the types ofsome variations of point objets. Graph A is the type of the objet

x = 1,
m1 = ς(s :S(A))λ(i : int)p
m2 = ς(s :S(A))λ(i : int)s

4This strutural setting, potentially, will allow the type of c to remain as self type and the type of b tobe hanged after some operations on graph C are performed.

Program Veri�ations, Objet Interdependenies, and Objet Types 89where p is some point objet of type A. Graph B is the type of the objet

x = 1
y = 2
d = ς(s :S(B))(s.x + s.y)/2
e1 = ς(s :S(B))λ(p :B)(p.x = s.x ∧ p.y = s.y)
e2 = ς(s :S(B))λ(p :S(B))(p.x = s.x ∧ p.y = s.y)

.

m1 m2

self

A

x

rec

selfint int

int

in
out in

out

byx

self

B

rec

real

intint

inout

in

out
bool boolself

x y

d

e1 e2

byx

byx

byx byy

byy

byy

bym1

Figure 8: Examples of Objet Type Graphs5 Objet Typing/Subtyping Under OTGWe now investigate the issue of typing/subtyping under OTG. We �rst de�ne objet sub-typing through a series of de�nitions and then present the typing/subtyping rules with abrief disussion. Note that OTG is just another way (a graphial way, spei�ally) to rep-resent objet types. There is a natural 1-1 orrespondene between OTG and the normaltextual representations of objet types in TOOL. So the typing rules presented in thissetion naturally apply to objet type graphs. What makes OTG signi�ant is its failita-tion of the formulation of objet subtyping with the presene of links in objet types (asaddressed below).De�nition 6 (Type Graph Premorphism) Let Φ be the set of ground types. Given twotype graphs G = (GN , GA, C, sr, tg, c) and G′ = (G′

N , G′

A, C ′, sr′, tg′, c′), a type graphpremorphism f : G → G′ is a pair of maps (fN : GN → G′

N , fA : GA → G′

A), suh that(1) ∀a ∈ GA, fN (sr(a)) = sr′(fA(a)), fN(tg(a)) = tg′(fA(a)), and c(a) = c′(fA(a)); (2)
∀v ∈ GN , if c(v) ∈ Φ, then c′(fN (v)) ∈ Φ; otherwise c(v) = c′(fN (v)).De�nition 7 (Base, Subbase) Given an objet type graph G = (s,A,R,L, S). The baseof G, denoted by Ba(G), is the graph (s,A, t(A), L), where t(A) = {tg(a) | a ∈ A}.A subbase of G is a subgraph (s,A′, t(A′), L′) of Ba(G), where A′ ⊆ A, L′ ⊆ L, t(A′) =
{tg(a) | a ∈ A′}, and for eah l ∈ L′ there exist a1, a2 ∈ A′ suh that sr(l) = tg(a1) and
tg(l) = tg(a2).

90 Cong-Cong Xing
self

x

y

zu

int

intselfint

int

real

real

in

out

m

n

byx

byz

byy

self

u x

int

self

u
x

int
byx

y

byxbyy

(a) G

byx
self

x

y

zu

int

intself

byx

byz

byybyx

self

(b) Ba(G) (c) D (d) Cl(D)Figure 9: (a) An objet type graph G; (b) The base Ba(G) of G;() A subbase D of G; (d) The losure Cl(D)De�nition 8 (Closure, Closed) The losure of a subbase D = (s,A′, t(A′), L′) of anobjet type graph G = (s,A,R,L, S), denoted by Cl(D), is the union D∪E1∪E2, where (1)
E1 = {l ∈ L | ∃a1, a2 ∈ A′ with tg(a1) = sr(l), tg(a2) = tg(l)}, and (2) E2 = {l, h, a, t(l) |
l, h ∈ L, a ∈ A, a 6∈ A′, tg(l) = sr(h) = tg(a), and ∃a1, a2 ∈ A′ suh that tg(a1) =
sr(l), tg(a2) = tg(h)}. A subbase D is said to be losed if D = Cl(D).De�nition 9 (Covariant, Invariant) Given an objet type graph (s,A,R,L, S). Let t(A) =
{tg(a) | a ∈ A}. For eah v ∈ t(A), if v is not inident with any links, or if v is the targetnode of some links but not the soure node of any links, then v is said to be ovariant;otherwise, v is said to be invariant.De�nition 10 (Objet Subtyping) Given two objet type graphs G = (sG, AG, ∅, LG, SG)and F = (sF , AF , ∅, LF , SF). F <: G if and only if the following onditions are satis�ed: (1)There exists a premorphism f from Ba(G) to Ba(F) suh that f(Ba(G)) = Cl(f(Ba(G))).That is, f(Ba(G)) is losed. (2) For eah node v in f(Ba(G)), let u be its preimage in
Ba(G) under f , Fv ∈ SF be the type graph with v as its starting node, and Gu ∈ SG bethe type graph with u as its starting node. (i) If v is invariant, then Fv

∼= Gu. (ii) If v isovariant, then Fv <: Gu.Remarks: Type graph premorphism is adapted from graph morphism whih is afundamental onept in algebrai graph grammars [13, 10, 22, 11, 12℄. It preserves thediretions and olors of ars and the olors of nodes up to ground types. The base of anobjet type graph singles the method interdependeny information out of the entire objettype graph so that the struture of the method interdependenies an be better studied.The losure of a subbase aptures the omplete behavior of the subbase by inluding, inaddition to all methods and links in the subbase, a set E2 of methods (and assoiatedlinks) outside of the subbase in the following way: for any method l in E2, (1) l dependson some methods inside the subbase, and (2) there exist some methods inside the subbasethat depend on l. An example of base, subbase, and losure is shown in Figure 9. Objetsubtyping is de�ned using the ideas of type graph premorphism, base, subbase, losure, andvariane property. It �rst ensures that the behavior of a subobjet (indiated by methodinterdependenies) is the same as that of a superobjet through the losure requirement.

Program Veri�ations, Objet Interdependenies, and Objet Types 91Then, it uses the variane information of eah method to hek the subtyping feasibility ofeah method type (graph) in a subobjet with its ounterpart in a superobjet5. Note thatin the de�nition of objet subtyping, we only onsider the ase R = ∅ (i.e., no reursiveobjet types). The ase R 6= ∅ requires ompliated graph grammar operations and isbeyond the sope of this paper.The typing/subtyping rules of TOOL are shown in Table 1. The rules that are a�etedby links are (TObj) and (TUpd). Note that in these rules, the set of links omputed fromterms are heked against the set of links spei�ed in types.
∅ � ⋄

(TC∅) Γ � σ x 6∈ dom(Γ)

Γ, x :σ � ⋄
(TCVar) Γ � M : σ x 6∈ dom(Γ)

Γ, x :τ � M : σ
(Tx)

Γ � ⋄

Γ � κ
(TyCons) Γ � σ Γ � τ

Γ � σ → τ
(TyFun)

Γ � σi ∀i ∈ {1, . . . , n}

Γ � ι(t)[li(Li) :σi(t)]ni=1

(TyObj, Li ⊆ {l1, . . . , ln} for eah i)

Γ � ⋄ x :σ ∈ Γ

Γ � x :σ
(TVar) Γ, x :σ � M :τ

Γ � λ(x :σ).M : σ → τ
(TAbs) Γ � M :σ → τ Γ � N :σ

Γ � MN : τ
(TApp)

Γ, s :S(A) � Mi :σi Li = La(Mi) ∀i ∈ {1, . . . , n}

Γ � a : A
(TObj, a = [li = ς(s :S(A))Mi]

n
i=1

A = ι(t)[li(Li) :σi(t)]
n
i=1

)

Γ � M : A j ∈ {1, . . . , n}

Γ � M.lj : σj(A)
(TInv1, A = ι(t)[li(Li) :σi(t)]

n
i=1 = [li(Li) :σi(S(A))]ni=1)

Γ � s : S(A) j ∈ {1, . . . , n}

Γ � s.lj : σj(A)
(TInv2, A = ι(t)[li(Li) :σi(t)]

n
i=1 = [li(Li) :σi(S(A))]ni=1)

Γ � N :A Γ, s :S(A) � M :σi Li = LN (M) i ∈ {1, . . . , n}

Γ � N.li⇐ ς(s :S(A))M : A
(TUpd, A = ι(t)[li(Li) :σi(t)]

n
i=1)

Γ � σ

Γ � σ <: σ
(SRe�) Γ � σ <: τ Γ � τ <: δ

Γ � σ <: δ
(STran) Γ � a :A Γ � A <: B

Γ � a :B
(SSump)

Γ � σ′ <: σ Γ � τ <: τ ′

Γ � σ → τ <: σ′ → τ ′
(SFun)

Γ � GA <: GB

Γ � A <: B
(SObj, GA and GB are the OTGs of A and B respetively

A = ι(t)[li(Li) :σi(t)]
n
i=1, B = ι(t)[l′i(L

′

i) :σ′

i(t)]
n′

i=1

)Table 1: Typing and Subtyping Rules for TOOLWe would like to emphasize that the purpose of objet type graphs is to failitatethe formulation and reasoning of objet subtyping when method interdependenies areonsidered in objet types. This an be seen in the objet subtyping rule (SObj) wherethe determination of A <: B for objet types A and B depends on whether their objettype graphs GA and GB have a subtyping relationship whih, in turn, an be deided by5Ground subtyping and funtion subtyping whih are involved in objet subtyping are standard as inthe literature.

92 Cong-Cong Xingthe De�nition 10. (De�nition 10 suggests an immediate algorithm for how to ompute
GA <: GB .)6 Veri�ation of the Program ms under OTGWe have shown, in setion 2, that under onventional objet type systems, there is no wayto ode the funtion ms satisfatorily in the sense that we are unable to prove that msperforms to its spei�ation for all permissible arguments. In this setion, we show thatthis problem an be easily resolved under OTG typing/subtyping. That is, we show that
ms an be oded reliably under OTG typing/subtyping and prove that it performs to itsspei�ation in all situations.Given the ode of ms in Figure 3 and under the OTG notation, the type of the point
p1n (whih is also the type of the parameter in the funtion ms) and the type of the point
p′2n are depited as P and Q′

2n in Figure 106. Let f be the premorphism from base Ba(P)to base Ba(Q′

2n), f(Ba(P)) and its losure Cl(f(Ba(P))) are also shown in Figure 10. Bythe OTG objet subtyping de�nition (De�nition 10), we an see that Q′

2n 6<: P beause
f(Ba(P)) 6= Cl(f(Ba(P))) (i.e., f(Ba(P)) is not losed). Hene, p′2n annot be viewedas having type P and ms(p′2n) does not type-hek. The run-time error of ms(p′2n) istherefore prevented by type heking at ompile-time. Hene, the ode of ms in Figure 3is safe under the OTG typing/subtyping.

self

real

real

x
mvx

byx

byx

in

real

out

dist

dist

x y

mvx mvy

byx byy

real

real realself

real real

byx byy

in

out

in

out

byx

P 2nQ’

dist

x

mvx

byx

real

real self

dist

x y

mvx

byx byy

real

real realself

byx

byx

f(Ba(P)) Cl(f(Ba(P)))Figure 10: Resolution of the Movable Point Problem in OTGTo fully revisit of the movable point problem in the ontext of OTG, the type graphsof p1c, p2c, and p2n are depited in Figure 11 as Q1c, Q2c, and Q2n, respetively. We aneasily hek, using De�nition 10, that Q1c <: P , Q2c <: P , and Q2n <: P all hold. Thisshows that the desired exeutions ms(p1c), ms(p2c), and ms(p2n) are all supported byOTG typing/subtyping sheme.From Figure 10 and Figure 11, we see that the type of p′2n and the type of p2n aredi�erent under OTG (as opposed to the same in onventional type systems). The fat thatmethod y depends on method x in p′2n and method y does not depend on method x in
p2n (i.e., p2n and p′2n have di�erent behaviors) is faithfully aptured in their type graphs6For the sake of oniseness, some unimportant links that do not a�et the result of illustration, suhas the link from method dist to method mvx, are not shown in Figure 10.

Program Veri�ations, Objet Interdependenies, and Objet Types 93
self

real

real

x
mvx

byx

byx

in

real

out

dist

dist

x y

mvx mvy

byx byy

real

real realself

real real

byx byy

in
out

in out

dist

x y

mvx mvy

byx byy

real

real realself

real real

byx byy

in

out

in

out

byx

Q Q
1c 2n2c Q

clr

color

color

clr

Figure 11: Types of p1c, p2c, and p2n in OTGas the presene/absene of a link from method x to method y. Indeed, this distintionis neessary in order to prevent run-time errors suh as those aused by ms(p′2n). Thisobservation leads to the following proposition.Proposition 1 Let A be the type of an objet a in whih there is a link between method
x and method y. Let B be the type of an objet b whih is modi�ed from a by deleting thelink between method x and method y. Then A 6= B.Also note that in Figure 10 and Figure 11, we have Q′

2n 6<: Q2n (we an easily verifythis by De�nition 10). This disallowane of subtyping is also neessary in order to statiallyprevent similar run-time errors aused by ms(p′2n). Thus,Proposition 2 Let A and B be as spei�ed in Proposition 1. Then A 6<: B.We now show the orretness of ms in Figure 3 under the OTG typing sheme. Weassume that all arguments (1-d points, 2-d points, . . .) submitted to ms are �orretly�oded. In partiular, if p is an n-dimensional point with oordinates x1, . . . , xn, thenits method dist must have √

x2
1 + · · · + x2

n as the body; and its method mvx must have
λ(i :real)s.x⇐(s.x + i) as the body; how other methods in p are oded is irrelevant to theproof. This is a reasonable assumption, for if p is oded �inorretly� or arbitrarily (say,
p's dist body is √

x2
1 + 4x2

2 + · · · + n2x2
n), then there would be no way to expet what kindof behavior ms an have with p as its argument.To failitate the proof, we rewrite the funtional program ms in Figure 3 equivalentlyinto an imperative one in Figure 12, where a holds the omputation result. We would liketo prove, under the framework of Hoare logi (e.g. [16, 17℄), that the two Hoare triples

(|p.dist > 1 ∧ p :P |)ms(p)(|p.dist > 1 ∧ p :P |)
(|p.dist ≤ 1 ∧ p :P |)ms(p)(|p.dist ≤ 1 ∧ p :P |)are valid for any point p of type P in Figure 10. The �rst triple spei�es that ms keepsa olored point in the olored point area after moving it. The seond triple spei�es that

ms keeps a non-olored point in the non-olored point area after moving it. Before provingthe validity of the triples, we prove a lemma �rst. Let olored points and non-oloredpoints be de�ned as in setion 2, we an show that

94 Cong-Cong Xing
ms

def
= fun(p : P) {
real a;if (p.dist > 1){

p.mvx(δ); // δ > 0
a = sin-1 (1/p.dist);}else {
p.mvx(−1

2p.x);
a = sin-1 (p.dist);}}Figure 12: The Imperative Version of the Program ms.Lemma 1 Given an n-dimensional point p, if p is a non-olored point and is of type Pin Figure 10, then after being moved, along the x-axis and towards the origin, half of theprojetion of the distane from the origin to p's urrent position over the x-axis, p is stillin the non-olored point area in the spae.Proof: Without loss of generality, we assume that the oordinates of p are x1, x2, . . . , xn(n > 1) with x1 being the x-oordinate, x2 being the y-oordinate, Sine p is a non-olored point, we have √

x2
1 + · · · + x2

n ≤ 1. After p is moved as spei�ed, its x-oordinatewould be hanged to 1
2x1. Sine p is n-dimensional and n > 1, the atual type of p mustbe a subtype of P . By the de�nition of OTG subtyping (De�nition 10), we know that the

x-oordinate hange of p will not a�et any other oordinates x2, · · · , xn of p beause all
x2, · · · , xn our in the method dist of p and dist appears in type P 7. Thus, x2, . . . , xn allretain their old values after p's move. Therefore, the distane from the origin to the newposition of p is √

(1
2x1)2 + x2

2 + · · · + x2
n <

√

x2
1 + x2

2 + · · · + x2
n ≤ 1, indiating the p isstill in the non-olored point area. 2The validity of the seond Hoare triple is given in Theorem 1 below. The proof of the�rst Hoare triple is similar and omitted.Theorem 1 Given the program ms in Figure 12, the Hoare triple

(|p.dist ≤ 1 ∧ p :P |)ms(p)(|p.dist ≤ 1 ∧ p :P |)is valid.Proof: The proof, shown in Figure 13, is an appliation of the standard imperative programveri�ation rules (see e.g. [17℄). In Figure 13, p.d and p.m stand for p.dist and p.mvx , and
A, B, C, D, E, F , G stand for the following triples respetively:7Here is a subtle point indiated by the OTG objet subtyping: if any of the oordinates x2, . . . , xn,say xi, does not our in method dist (or in any other method inluded in type P), then we allow xi bea�eted by the hanges of x1 while requiring that the type of p is a subtype of type P .

Program Veri�ations, Objet Interdependenies, and Objet Types 95
(|p.d ≤ 1 ∧ p : P |){p.m(−1

2p.x)}(|p.d ≤ 1 ∧ p : P |),
(|p.d ≤ 1 ∧ p : P |){a = sin-1 (p.d)}(|p.d ≤ 1 ∧ p : P |),
(| ⊥ |){p.m(δ); a = sin-1 (1/p.d)}(|p.d ≤ 1 ∧ p : P |),
(|p.d ≤ 1 ∧ p : P |){p.m(−1

2p.x); a = sin-1 (p.d)}(|p.d ≤ 1 ∧ p : P |),
(|p.d ≤ 1 ∧ p : P ∧ p.d > 1|){p.m(δ); a = sin-1 (1/p.d)}(|p.d ≤ 1 ∧ p : P |),
(|p.d ≤ 1 ∧ p : P ∧ p.d ≤ 1|){p.m(−1

2p.x); a = sin-1 (p.d)}(|p.d ≤ 1 ∧ p : P |),
(|p.d ≤ 1 ∧ p : P |)ms(p)(|p.d ≤ 1 ∧ p : P |).The validity of triple A on the top of the proof tree is provided by Lemma 1. 2

C

E
(impliation) A

(Lemma 1)
B
(assignment)

D
(omposition)

F
(impliation)

G
(if-statement)Figure 13: The Proof of ms's Property7 Conlusion and Future WorkTyping is an e�ient means in program veri�ations. Objet omponent interdependenyinformation is ritial in determining and prediting objet behaviors and in shaping objettypes. If this information is not aptured in objet typing, as is the ase in onventionalobjet type systems, then a statially well-typed program may go wrong at run-time ausingrun-time errors and program veri�ation troubles. We proposed objet type graphs (OTG)as an initial treatment for handling objet omponent interdependenies in objet typingand program veri�ations. We have seen that due to OTG's ability of revealing moreinformation about objet behaviors,

• Programs that go wrong at run-time in onventional objet type systems an bee�etively deteted at ompile-time under OTG typing/subtyping.
• Program veri�ations that annot be done with onventional objet type systems anbe easily arried out with the support of OTG typing/subtyping.This demonstrates that OTG is a safer typing sheme than onventional ones, andprovides a valuable support for OOP program veri�ations. The following issues are ofimmediate interests for future work:
• Devise a link omputation algorithm and assess its omplexity.
• Prove/disprove that the standard properties of type systems, suh as subjet redu-tion and soundness, hold under OTG.
• As far as applying the idea of OTG to pratial objet-oriented languages is on-erned, we believe that a diret approah would be to adapt OCaml [1℄ by modifyingits type for lasses. In�uened by OOP theory researh, Oaml, unlike other objet-oriented languages (e.g. Java) where lasses are the sole type of objets, gives a type

96 Cong-Cong Xingfor eah of its lasses. In a sense, the type of a lass in OCaml is the (more abstrat)type of the objet generated by that lass. This is a typial ase where pratie ben-e�ts from theory, and it would be very interesting to keep extending OCaml alongthis line.Referenes[1℄ http://aml.inria.fr/oaml/. 2007.[2℄ M. Abadi and L. Cardelli. A Theory of Objets. Springer-Verlag, New York, 1996.[3℄ V. Bono, M. Bugliesi, M. Dezani-Cianaglini, and L. Liquori. Subtyping for Extensible,Inompete objets. Fundamenta Informatiae, 38(4):325�364, 1999.[4℄ V. Bono and L. Liquori. A subtyping for the Fisher-Honsell-Mithell lambda alulus ofobjets. In Pro. of International Conferene of Computer Siene Logi, number 933 inLNCS, pages 16�30. 1995.[5℄ K. Brue. A paradigmati objet-oriented programming language: Design, stati typing andsemantis. Journal of Funtional Programming, 4(2):127�206, 1994.[6℄ K. Brue. Foundations of Objet-Oriented Languages. MIT Press, 2002.[7℄ K. Brue, A. Shuett, R. van Gent, and A. Fieh. Polytoil: A type-safe polymorphi objet-oriented language. ACM Transations on Programming Languages and Systems, 25(2):225�290, 2003.[8℄ W. Cook, W. Hill, and P. Canning. Inheritane is not subtyping. In Proeedings of the 17theAnnual ACM Symposium on Priniples of Programming Languages, pages 125�135, 1990.[9℄ R. Deline and M. Fahndrih. Typestates for objets. In ECOOP 2004, 2004.[10℄ H. Ehrig. Introdution to the algebrai theory of graph grammars. In Graph-Grammars andTheir Appliations to Computer Siene and Biology, volume 73 of Leture Notes in ComputerSiene, pages 1�69. Springer-Verlag, 1978.[11℄ H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of Graph Grammarsand Computing by Graph Transformation, volume 2. World Sienti�, 1999.[12℄ H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of GraphGrammars and Computing by Graph Transformation, volume 3. World Sienti�, 1999.[13℄ H. Ehrig, M. Pfender, and H. J. Shneider. Graph grammars: An algebrai approah. InIEEE Conferene of Automata and Swithing Theory, pages 167�180, 1973.[14℄ K. Fisher, F. Honsell, and J. Mithell. A lambda alulus of objets and method speialization.Nodi Journal of Computing, 1:3�37, 1994.[15℄ J. Hikey. Introdution to OCaml, http://aml.inria.fr/tutorials-eng.html. 2002.[16℄ C. A. R. Hoare. An axiomati basis for omputer programming. Communiations of the ACM,12:576�580, 1969.[17℄ M. Huth and M. Ryan. Logi in Computer Siene. Cambridge University Press, 2nd edition,2004.[18℄ L. Liquori. On objet extension. In ECOOP'98 Objet-oriented Programming, number 1445in Leture Notes in Computer Siene, pages 498�522. Springer�Verlag, 1998.

Program Veri�ations, Objet Interdependenies, and Objet Types 97[19℄ L. Liquori and G. Castagna. A Typed Lambda Calulus of Objets. Number 1179 in LetureNotes in Computer Siene, pages 129�141. Springer�Verlag, 1996.[20℄ B. Liskov and J. Wing. A Behavioral Notion of Subtyping. ACM Transations on Program-ming Languages and Systems, 16(6):1811�1841, 1994.[21℄ O. L. Madsen. Towards Integration of State Mahines and Objet-Oriented Languages. InTehnology of Objet-Oriented Languages and Systems (TOOLS Europe'99), 1999.[22℄ G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Transforma-tion, volume 1. World Sienti�, 1997.

Informatics Europe

Informatics Europe (http://www.informatics-europe.org) is the association of computer
science/IT/informatics departments of universities and research organizations, public and
private, in Europe and neighboring areas.

The mission of Informatics Europe is to foster the development of quality research and
teaching in information and computer sciences.

Informatics Europe was created as a result of the first two European Computer Science
Summits (ECSS), held at ETH Zurich in October 2005 and October 2006, where heads of
computer science departments from all over the European region joined forces for the first
time to define and promote common policies and study common issues.

Informatics Europe is a nonprofit membership organization; members are organizations
such as CS departments of universities as well as public or private research laboratories.
Informatics Europe maintains close ties with other academic and professional organiza-
tions.

The association pursues its goals through meetings, working groups, newsletters and
other activities. Currently five working groups are active, each with a mailing list and
a Wiki page:

• Evaluation criteria for informatics research (what are the appropriate measures for
evaluating the work of researchers in computer science and information technology?)

• Curriculum issues (what is an appropriate informatics curriculum, how do we assess
equivalences for exchange students etc.?)

• Facts and figures (collecting the basic data about informatics in Europe, from the
mere list of departments to bachelor/master/PhD graduation figures, faculty salaries
etc.).

• Lobbying and strategy (making our voice heard by political authorities and others).

Informatics Europe also publishes the weekly “Tech Watch Digest”, a concise summary
of the latest development in the field, with a European accent. Subscription is free and
open to anyone; see http://www.informatics-europe.org/techwatch.html.

The next annual meeting of Informatics Europe, the European Computer Science Sum-
mit 2007, will take place in Berlin on 8–9 October 2007.

Informatics Europe is currently building up its membership; major universities from
across the region have already joined. Membership is for the calendar year and covers
access to all activities of Informatics Europe; it is the opportunity to engage in contacts
with many colleagues facing the same issues, learn from their experience, and help the
recognition and progress of informatics in Europe.

This note was received from
prof. Bertrand Meyer, ETH Zurich, Switzerland

The Short Story of SDC Wroc law

– Two Software Development Centers

at the Oder River

Siemens Software Development Center was established in Wroclaw in the year 2000.
As a part of Siemens’ former Information and Communications Group, SDC was set up
as one of many Siemens Research and Development centers in the world.

Back in 2000, SDC employed only 10 people working on customizing core mobile net-
work software to customers’ specific requirements. Since then, the task list has significantly
expanded and SDC became a leading and one of the largest R&D centers in Poland as
well as a major R&D unit within Siemens Communications branch. In 2005 SDC already
employed over 700 people.

A year later, in October 2006 SDC was divided into two parts as a result of Siemens
AG management’s decision to merge Siemens’ and Nokia’s telecommunications businesses
within Nokia Siemens Networks joint venture, what is planned for the first quarter of 2007.
As a result of these decisions and as a preparatory step for the merger, a separate unit
called Siemens Networks was established, comprising mobile networks, fixed networks and
carrier services departments of the former Siemens Communications branch.

Thus Siemens Networks Software Development Center (Siemens Networks SDC) was
carved out of SDC. Siemens Networks SDC employs currently 670 specialists and is a
part of Siemens Networks Sp. z.o.o. It develops solutions and applications in the lat-
est technologies: 3G Technology (HSDPA, HSUPA, UMTS), GSM, GPRS, IN Services,
Wimax.

The part of Software Development Center which remained in Siemens Sp. z o.o. is
now Siemens Development Center (SDC). SDC is a software house that provides com-
plete software engineering services, application management and professional services for
Siemens AG and Siemens Group companies. The Center continuously moves into new
areas of activity and grows quickly. Siemens Development Center at the moment employs
more than 250 people.

