
2016 volume 10 issue 1

Editors

Zbigniew Huzar (Zbigniew.Huzar@pwr.edu.pl)
Lech Madeyski (Lech.Madeyski@pwr.edu.pl, http://madeyski.e-informatyka.pl)

Department of Software Engineering, Faculty of Computer Science and Management
Wrocław University of Science and Technology, 50-370 Wrocław, Wybrzeże Wyspiańskiego 27,
Poland

e-Informatica Software Engineering Journal
www.e-informatyka.pl, DOI: 10.5277/e-informatica
Editorial Office Manager: Wojciech Thomas
Proofreader: Anna Tyszkiewicz
Typeset by Wojciech Myszka with the LATEX 2ε Documentation Preparation System

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publishers.

© Copyright by Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2016

OFICYNA WYDAWNICZA POLITECHNIKI WROCŁAWSKIEJ
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
www.oficyna.pwr.edu.pl;
e-mail: oficwyd@pwr.edu.pl; zamawianie.ksiazek@pwr.edu.pl

ISSN 1897-7979

Printed by beta-druk, www.betadruk.pl

http://madeyski.e-informatyka.pl
http://www.e-informatyka.pl
http://dx.doi.org/10.5277/e-informatica
http://www.oficyna.pwr.edu.pl
mailto:oficwyd@pwr.edu.pl
mailto:zamawianie.ksiazek@pwr.edu.pl
http://www.betadruk.pl

Editorial Board
Co-Editors-in-Chief

Zbigniew Huzar (Wrocław University of Science and Technology, Poland)
Lech Madeyski (Wrocław University of Science and Technology, Poland)

Editorial Board Members

Pekka Abrahamsson (NTNU, Norway)
Sami Beydeda (ZIVIT, Germany)
Miklos Biro (Software Competence Center Hagenberg, Austria)
Markus Borg (SICS Swedish ICT AB Lund, Sweden)
Pearl Brereton (Keele University, UK)
Mel Ó Cinnéide (UCD School of Computer Science & Informatics, Ireland)
Steve Counsell (Brunel University, UK)
Norman Fenton (Queen Mary University of London, UK)
Joaquim Filipe (Polytechnic Institute of Setúbal/INSTICC, Portugal)
Thomas Flohr (University of Hannover, Germany)
Francesca Arcelli Fontana (University of Milano-Bicocca, Italy)
Félix García (University of Castilla-La Mancha, Spain)
Carlo Ghezzi (Politecnico di Milano, Italy)
Janusz Górski (Gdańsk University of Technology, Poland)
Andreas Jedlitschka (Fraunhofer IESE, Germany)
Barbara Kitchenham (Keele University, UK)
Stanisław Kozielski (Silesian University of Technology, Poland)
Ludwik Kuźniarz (Blekinge Institute of Technology, Sweden)
Pericles Loucopoulos (The University of Manchester, UK)
Kalle Lyytinen (Case Western Reserve University, USA)
Leszek A. Maciaszek (Wrocław University of Economics, Poland
and Macquarie University Sydney, Australia)
Jan Magott (Wrocław University of Science and Technology, Poland)
Zygmunt Mazur (Wrocław University of Science and Technology, Poland)
Bertrand Meyer (ETH Zurich, Switzerland)
Matthias Müller (IDOS Software AG, Germany)
Jürgen Münch (University of Helsinki, Finland)
Jerzy Nawrocki (Poznań University of Technology, Poland)
Mirosław Ochodek (Poznań University of Technology, Poland)
Janis Osis (Riga Technical University, Latvia)
Mike Papadakis (Luxembourg University, Luxembourg)
Kai Petersen (Blekinge Institute of Technology, Sweden)
Łukasz Radliński (West Pomeranian University of Technology in Szczecin, Poland)
Guenther Ruhe (University of Calgary, Canada)
Krzysztof Sacha (Warsaw University of Technology, Poland)
Rini van Solingen (Drenthe University, The Netherlands)
Miroslaw Staron (IT University of Göteborg, Sweden)
Tomasz Szmuc (AGH University of Science and Technology Kraków, Poland)
Iwan Tabakow (Wrocław University of Science and Technology, Poland)
Guilherme Horta Travassos (Federal University of Rio de Janeiro, Brazil)

4

Adam Trendowicz (Fraunhofer IESE, Germany)
Burak Turhan (University of Oulu, Finland)
Rainer Unland (University of Duisburg-Essen, Germany)
Sira Vegas (Polytechnic University of Madrit, Spain)
Corrado Aaron Visaggio (University of Sannio, Italy)
Bartosz Walter (Poznań Technical University, Poland)
Bogdan Wiszniewski (Gdańsk University of Technology, Poland)
Jaroslav Zendulka (Brno University of Technology, The Czech Republic)
Krzysztof Zieliński (AGH University of Science and Technology Kraków, Poland)

Contents

Editorial . 7
ABC-CAG: Covering Array Generator for Pair-wise Testing Using Artificial Bee Colony Algorithm

Priti Bansal, Sangeeta Sabharwal . 9
Reducing the Number of Higher-Order Mutants with the Aid of Data Flow

Ahmed S. Ghiduk . 31
Automatic SUMO to UML translation

Bogumiła Hnatkowska . 51
Highly Automated Agile Testing Process: An Industrial Case Study

Jarosław Berłowski, Patryk Chruściel, Marcin Kasprzyk, Iwona Konaniec, Marian Jureczko . 69
Software Startups – A Research Agenda

Michael Unterkalmsteiner, Pekka Abrahamsson, XiaoFeng Wang, Anh Nguyen-Duc, Syed Shah, Sohaib
Shahid Bajwa, Guido H. Baltes, Kieran Conboy, Eoin Cullina, Denis Dennehy, Henry Edison, Carlos
Fernandez-Sanchez, Juan Garbajosa, Tony Gorschek, Eriks Klotins, Laura Hokkanen, Fabio Kon,
Ilaria Lunesu, Michele Marchesi, Lorraine Morgan, Markku Oivo, Christoph Selig, Pertti Seppänen,
Roger Sweetman, Pasi Tyrväinen, Christina Ungerer, Agustin Yagüe 89

Editorial

Following the mission of e-Informatica Software
Engineering Journal, we would like to present the
10th volume containing papers referring to testing,
domain modelling and startup software companies.

The first one by Bansal et al. [1] concentrates
on generating test cases to uncover faults caused by
the interaction of input parameters. An artificial
intelligence algorithm based on a bee colony was
elaborated. It reduces the exponential growth of the
number of test cases. The conducted experiments
have shown that the proposed approach gives bet-
ter or similar results in comparison to the existing
state-of-the-art algorithms.

A similar problem of overcoming the exponential
explosion in the number of higher-order mutants
is considered in the second paper by Ghiduk [3].
The basic idea is to utilize a data-flow analysis to
select points to seed mutation through the program
under test. A set of experiments showed that the
proposed technique is more effective than the ear-
lier techniques in generating higher-order mutants
without affecting the efficiency of mutation testing.

In the third paper by Hnatkowska [4], a pro-
gramming tool extracting some knowledge from
SUMO-like ontologies and transforming it into the
UML class diagram is presented. The usage of the
tool in the context of software modelling, especially
in domain model construction, is considered.

The problem of testing is considered again in
the fourth paper. A highly automated agile testing
process is presented by Berłowski et al. [2]. The
authors use their industrial experience in a medium
size software project developed using Scrum. The
main result of the paper is a set of recommendations
related to the testing process taking into account
the employed principles of agility, specifically: con-

tinuous integration, responding to change, test au-
tomation and test-driven development. Additionally,
an efficient testing environment that combines some
testing frameworks with custom-developed simula-
tors is presented.

The last, fifth paper, written by a group of 28
authors from 7 countries, [5] is very special. Soft-
ware engineering as scientific discipline suggests or
recommends a set of rules, good practices, and
methodologies for rational and efficient software
development. How to apply these suggestions and
recommendations in practice, especially in forming
software companies? How to establish software star-
tups? These are examples of the main questions
stated in the paper. There are no final answers
to these questions, but there is a systematic and
rational review of some problems that should be
considered and solved on the way to a software
startup. Software startups are quite distinct from
traditional mature software companies, but also
from micro-, small-, and medium-sized enterprises,
introducing new challenges relevant for software
engineering research. The considerations take into
account important human aspects and constraints
imposed by the modern economy in the societies of
today.

As Editors of the volume, we would like to thank
all of the authors as well as reviewers, for their ef-
forts. e-Infomatica Software Engineering Journal is
now indexed, among others, by the Web of Science™
Core Collection (Emerging Sources Citation Index),
Scopus, DBLP, DOAJ, and Google Scholar. We look
forward to receiving high quality contributions from
researchers and practitioners in software engineering
for the next issue of the journal.

Editors
Zbigniew Huzar
Lech Madeyski

References

[1] Priti Bansal, Sangeeta Sabharwal, Nitish Mit-
tal, and Sarthak Arora. ABC-CAG: Covering
Array Generator for Pair-wise Testing Using

Artificial Bee Colony Algorithm. e-Informatica
Software Engineering Journal, 10(1):9–29, 2016.
doi:10.5277/e-Inf160101.

[2] Jarosław Berłowski, Patryk Chruściel, Marcin
Kasprzyk, Iwona Konaniec, and Marian Ju-

http://dx.doi.org/10.5277/e-Inf160101

8 References

reczko. Highly Automated Agile Testing Process:
An Industrial Case Study. e-Informatica Soft-
ware Engineering Journal, 10(1):69–87, 2016.
doi:10.5277/e-Inf160104.

[3] Ahmed S. Ghiduk. Reducing the Number of
Higher-order Mutants with the Aid of Data Flow.
e-Informatica Software Engineering Journal,
10(1):31–49, 2016. doi:10.5277/e-Inf160102.

[4] Bogumiła Hnatkowska. Automatic SUMO to
UML translation. e-Informatica Software En-
gineering Journal, 10(1):51–67, 2016. doi:10.
5277/e-Inf160103.

[5] Michael Unterkalmsteiner, Pekka Abrahamsson,

XiaoFeng Wang, Anh Nguyen-Duc, Syed Shah,
Sohaib Shahid Bajwa, Guido H. Baltes, Kieran
Conboy, Eoin Cullina, Denis Dennehy, Henry
Edison, Carlos Fernandez-Sanchez, Juan Gar-
bajosa, Tony Gorschek, Eriks Klotins, Laura
Hokkanen, Fabio Kon, Ilaria Lunesu, Michele
Marchesi, Lorraine Morgan, Markku Oivo,
Christoph Selig, Pertti Seppänen, Roger Sweet-
man, Pasi Tyrväinen, Christina Ungerer, and
Agustin Yagüe. Software Startups – A Re-
search Agenda. e-Informatica Software En-
gineering Journal, 10(1):89–124, 2016. doi:
10.5277/e-Inf160105.

http://dx.doi.org/10.5277/e-Inf160104
http://dx.doi.org/10.5277/e-Inf160102
http://dx.doi.org/10.5277/e-Inf160103
http://dx.doi.org/10.5277/e-Inf160103
http://dx.doi.org/10.5277/e-Inf160105
http://dx.doi.org/10.5277/e-Inf160105

e-Informatica Software Engineering Journal, Volume 10, Issue 1, 2016, pages: 9–29, DOI 10.5277/e-Inf160101

ABC-CAG: Covering Array Generator for Pair-wise
Testing Using Artificial Bee Colony Algorithm

Priti Bansala, Sangeeta Sabharwala, Nitish Mittala, Sarthak Arorab
aNetaji Subhas Institute of Technology, University of Delhi

bSchool of Computer Science and Engineering, Vellore Institute of Technology, Tamil Nadu
bansalpriti79@gmail.com, ssab63@gmail.com, nitishmittal94@gmail.com,

sarthak10193@gmail.com

Abstract
Testing is an indispensable part of the software development life cycle. It is performed to improve
the performance, quality and reliability of the software. Various types of testing such as functional
testing and structural testing are performed on software to uncover the faults caused by an incorrect
code, interaction of input parameters, etc. One of the major factors in deciding the quality of
testing is the design of relevant test cases which is crucial for the success of testing. In this paper we
concentrate on generating test cases to uncover faults caused by the interaction of input parameters.
It is advisable to perform thorough testing but the number of test cases grows exponentially with
the increase in the number of input parameters, which makes exhaustive testing of interaction
of input parameters imprudent. An alternative to exhaustive testing is combinatorial interaction
testing (CIT) which requires that every t-way interaction of input parameters be covered by at least
one test case. Here, we present a novel strategy ABC-CAG (Artificial Bee Colony-Covering Array
Generator) based on the Artificial Bee Colony (ABC) algorithm to generate covering an array and
a mixed covering array for pair-wise testing. The proposed ABC-CAG strategy is implemented in
a tool and experiments are conducted on various benchmark problems to evaluate the efficacy of
the proposed approach. Experimental results show that ABC-CAG generates better/comparable
results as compared to the existing state-of-the-art algorithms.

Keywords: combinatorial interaction testing, pair-wise testing, covering array, artificial
bee colony

1. Introduction

Testing plays a critical role in the software devel-
opment life cycle (SDLC). It helps to improve the
performance of the software system and ensure
the delivery of quality and a reliable system. Often
more than 50% of the entire software development
resources are allocated to testing [1]. As the com-
plexity of the software system increases so does
the cost of testing, therefore testing the software
effectively within a reasonable time and budget
continues to be a challenge for the software testing
community. One of the major factors in determin-
ing the quality of testing is the design of relevant
test cases. Various types of testing techniques such

as white-box testing and black-box testing are
performed to detect faults in the software system.
In black-box testing, test cases are generated
from the specification of the system under test
(SUT), whereas in the case of white-box testing,
they are determined from the internal structure.
However, in both cases the primary focus of the
software testing community is to design a set of
optimal test cases to uncover maximum faults in
the software system within a reasonable time.

In a complex software system it has been
found that the interaction of input parameters
may cause interaction errors and to uncover these
interaction errors, it is necessary to generate test
cases that test all possible combinations of in-

10 Priti Bansal et al.

put parameters. A software system with m input
parameters, each having n values, will require
a total of nm test cases to exhaustively test all
the possible interactions among input parame-
ters. Furthermore, the number of test cases in-
creases exponentially with the increase in the
number of parameters, which makes exhaustive
testing impractical for large software systems.
In the existing literature it has been reported
that nearly 100% of the failures are triggered
by interactions among 6 parameters. This is the
main motivation behind Combinatorial Interac-
tion Testing (CIT) which selects values of input
parameters and combines them to generate test
cases so as to test all t-way interactions of input
parameters. CIT is a black-box testing technique
which only requires information about the in-
put parameters of the software system and their
values. Empirical studies [2–5] show that a test
set covering all possible 2-way combination of
input parameter values is effective for software
systems and can find a large percentage of the
existing faults. Kuhn et al. [6] examined fault
reports for many software systems and concluded
that more than 70% of the faults are triggered
by 2-way interaction of input parameters. Test-
ing all 2-way interactions of input parameters
values is known as pair-wise testing. The effec-
tiveness of pair-wise testing in detecting a com-
parable number of faults early was a key factor
driving the research work presented in this pa-
per.

Covering Arrays (CAs) are combinatorial
objects that are used to represent test sets
for a system where the cardinality of values
taken by each input parameter is the same.
However, in a system with varying cardinali-
ties of input parameter values, Mixed Cover-
ing Arrays (MCAs) are employed, which are
a generalization of CAs that are used to rep-
resent test sets. The rows of CA/MCA corre-
spond to test cases. As design of test cases
is a crucial factor in determining the qual-
ity of software testing, the aim of CIT is to
generate an optimal CA/MCA that provides
100% coverage of t-way interactions of input
parameters. Lei and Tai [7] have shown that
the problem of constructing optimal CA for

pair-wise testing is NP complete. Many greedy
[2, 3, 8–22] and meta-heuristic based optimiza-
tions algorithms/tools [23–34] have been devel-
oped by the researchers in the past with the
aim of generating a near optimal CA/MCA.
Both greedy and meta-heuristic techniques have
merits and demerits. Greedy techniques are effi-
cient as compared to their meta-heuristic coun-
terparts in terms of CA/MCA generation time
whereas meta-heuristic techniques generate op-
timal CA/MCA as compared to their greedy
counterparts. The impressive results of existing
meta-heuristic optimization algorithms to gener-
ate optimal CA/MCA motivated us to explore
yet another optimization algorithm, namely the
Artificial Bee Colony algorithm (ABC). It is pro-
posed by Karaboga [35] and has been used to
find an optimum solution for many optimization
problems [36].

In this paper, we propose ABC-CAG (Ar-
tificial Bee Colony-Covering Array Generator)
strategy that implements the ABC algorithm to
generate optimal CA/MCA for pair-wise test-
ing. The main contribution of this paper is to
propose a strategy that integrates greedy ap-
proach and meta-heuristic approach thereby ex-
ploiting the strength of both techniques, to gen-
erate CA/MCA.

The remainder of this paper is organized as
follows. In Section 2, we briefly describe combi-
natorial objects: CA and MCA. Section 3 dis-
cusses the existing state-of-the-art algorithms for
constructing CA/MCA for pair-wise testing. In
Section 4, we present a brief overview of ABC.
Section 5 describes the proposed ABC-CAG strat-
egy to generate CA for pair-wise testing. Section
6 describes the implementation of the proposed
approach and presents empirical results to show
the effectiveness of the proposed approach. Sec-
tion 7 discusses threats to validity. Section 8
concludes the paper and future plans are dis-
cussed.

2. Background

This section discusses the necessary background
related to combinatorial objects.

ABC-CAG: Covering Array Generator for Pair-wise Testing Using Artificial Bee Colony Algorithm 11

2.1. Covering Array

A covering array [37] denoted by CAλ(N ; t, k, v),
is an N × k two dimensional array on v symbols
such that every N × t sub-array contains all or-
dered subsets from v symbols of size t at least
λ times. If λ = 1, it means that every t-tuple
needs to be covered only once and we can use the
notation CA(N ; t, k, v). Here, k represents the
number of values of each parameter and t is the
strength of testing. An optimal CA contains the
minimum number of rows to satisfy the properties
of the entire CA. The minimum number of rows is
known as a covering array number and is denoted
by CAN(t, k, v). A CA of size N × k represents
a test set with N test cases for a system with k
input parameters each having an equal number
of possible values.

2.2. Mixed Covering Array

A mixed covering array [38] denoted by
MCA(N ; t, k, (v1, v2, . . . , vk)), is an N × k two
dimensional array, where v1, v2, . . . , vk is a cardi-
nality vector which indicates the values for every
column. An MCA has the following two proper-
ties: i) Each column i (1 ≤ i ≤ k) contains only
elements from a set Si with |Si| = vi and ii) The
rows of each N × t sub-array cover all t-tuples
of values from the t columns at least once. The
minimum N for which there exists an MCA is
called a mixed covering array number and is de-
noted by MCAN(t, k, (v1, v2, . . . , vk)). A short-
hand notation can be used to represent MCAs
by combining equal entries in vi : 1 ≤ i ≤ k. An
MCA(N ; t, k, (v1, v2, . . . , vk)) can be represented
as MCA(N ; t, k, (wq11 , w

q2
2 , . . . , w

qs
s)), where k =∑s

i=1 qi and wj |1 ≤ j ≤ s ⊆ {v1, v2, . . . , vk}.
Each element wqij in the set {wq11 , wq22 , . . . , wqss }
means that qi parameters can take wj values each.
A MCA of size N×k represents a test set with N
test cases for a system with k components each
with a varying domain size.

3. Related Work

Over the past two decades mathematicians and re-
searchers in computer science have proposed var-
ious algorithms and tools to generate CA/MCA.
Mathematicians use algebraic methods to gen-
erate CA [39–42]. These methods are extremely
fast, however, they are mostly designed to gen-
erate CAs only. Researchers in the field of soft-
ware testing have designed greedy algorithms
to construct optimal CAs and MCAs. Greedy
algorithms use two approaches to construct
CA/MCA: one-test-at-a-time and one-parame-
ter-at-a-time. In one-test-at-a-time [2, 3, 8–21],
CA is constructed by generating one test at
a time until all the uncovered combinations are
covered. Each subsequent test is generated in
such a way that it can cover the maximum
possible number of uncovered combinations. In
the case of one-parameter-at-a-time approach,
such as ACTS [22], a pair-wise test set is con-
structed by generating a pair-wise test set for
the first two parameters and then extending it
to generate a pair-wise test set for three param-
eters and continues to do so for each additional
parameter.

Recently, meta-heuristic techniques such as
simulated annealing (SA), particle swarm opti-
mization (PSO), tabu search (TS), ant colony
optimization (ACO), hill climbing (HC), genetic
algorithm (GA) and cuckoo search (CS) have
been used by researchers to generate optimal
CA/MCA. Meta-heuristic search techniques start
from a pre-existing CA/MCA or a population
of CA/MCA and apply a series of transfor-
mations on them until until a CA/MCA that
covers all the uncovered combinations is found.
Greedy algorithms generate CA/MCA faster
as compared to meta-heuristic techniques, how-
ever, meta-heuristic techniques usually generate
smaller CA/MCA [38]. Table 1 gives a summary
of existing tools/algorithms for constructing op-
timal CA/MCA.

12 Priti Bansal et al.

Table 1. List of existing tools/algorithms to construct CA/MCA for pair-wise testing

S.
No. Tool/Algorithm

Maximum
strength
support(t)

Technique employed
Test

generation
strategy

Constraint
handling

1 Test cover [39] 4

algebraic
one

parameter at
a time

3

2 TConfig [40] 2 7

3 CTS [41] 4 3

4 Algebraic
method [42] 2 7

5 AETG [2] 2

greedy one test at
a time

3

6 TCG [8] 2 3

7 ITCH [9] 6 3

8 TVG [10] 6 3

9 AllPairs [11] 2 7

10 PICT [12] 6 3

11 Jenny [13] 8 3

12 Density [14] 3 7

13 DA-RO [15] 3 7

14 DA-FO [15] 3 7

15 TSG [16] 3 7

16 G2Way [17] 2 7

17 GTWay [18] 12 7

18 MT2Way [19] 2 7

19 EPS2Way [20] 2 7

20 CASCADE [21] 6 3

21 ACTS (IPOG) [22] 6 greedy
one

parameter at
a time

7

22 Paraorder [14] 3 7

23 GA [23] 3

meta-heuristic

genetic algorithm

test based
generation

7

24 ACA [23] 3 ant colony optimization 7

25 PSO [24] 2 particle swarm optimization 7

26 TSA [25,26] 6 tabu search 7

27 SA [27] 6 simulated annealing 7

28 PPSTG [28] 6 particle swarm optimization 7

29 CASA [29] 3 simulated annealing 3

30 GAPTS [30] 2 genetic algorithm 7

31 PWiseGen [31] 2 genetic algorithm 7

32 GA [32] 2 genetic algorithm 7

33 CS [33] 6 cuckoo search 7

34 FSAPSO [34] 4 adaptive particle swarm optimization 7

35 PSO [24] 2 meta-heuristic particle swarm optimization
parameter
based

generation
7

ABC-CAG: Covering Array Generator for Pair-wise Testing Using Artificial Bee Colony Algorithm 13

4. Artificial Bee Colony (ABC)
Algorithm

The application of Artificial Intelligence (AI)
based algorithms to solve various optimization
problems in the field of software testing is an
emerging area of research. AI based algorithms
can be classified into different groups depending
upon the criteria being considered such as pop-
ulation based, iterative based, stochastic based,
deterministic, etc. [43]. Population based algo-
rithms commence with a population of individ-
uals (initial solutions) and evolve the popula-
tion to generate a better solution by performing
various recombination and mutation operations.
Population based AI algorithms are further cat-
egorized as evolutionary algorithms (EA) and
swarm intelligence (SI) based algorithms. The
well-known EAs are Genetic Algorithm (GA),
Genetic Programming (GP), Evolutionary Pro-
gramming (EP), Evolution Strategy (ES) and
Differential Evolution (DE). SI based algorithms
are inspired by the collective behaviour of so-
cial insect colonies and other animal societies
[44]. Various algorithms have been developed by
researchers by modelling the behaviour of dif-
ferent swarms of social insects such as ants and
bees, flocks of birds or schools of fishes. The well
known SI based algorithms are Particle Swarm
Optimization (PSO), Ant Colony Optimization
(ACO) and algorithms based on the specific in-
telligent behaviour of honey bee swarms such
as honey bee mating optimization (HBMO) [45],
ABC [36], Bee Colony optimization (BCO) [46]
and Bee Swarm optimization(BSO) [47].

ABC is a swarm-based algorithm which simu-
lates the intelligent foraging behavior of a honey
bee swarm. Many researchers have compared the
performance of ABC with other optimization
algorithms such as GA, PSO, ACO and DE by
evaluating their performance on various numeri-
cal functions which consist of unimodal and mul-
timodal distributions [48]. In [49], Mala et al.
proposed parallel ABC to generate optimal test
suites for white box testing of software systems
with path coverage, state coverage and branch
coverage as test adequacy criteria and compared
the performance of parallel ABC with sequential

ABC, GA and random testing. The results of
comparison showed that ABC is more effective
than other optimization algorithms. Optimiza-
tion algorithms are characterized by a trade-off
between two mechanisms, namely exploration
and exploitation and it is desirable to have a suit-
able balance between the two. the exploration
process refers to the ability of the algorithm to
look out for a global optimum whereas; exploita-
tion process refers to the ability of applying the
knowledge of previous solutions to look for bet-
ter solutions (local search). In the ABC algo-
rithm, an artificial bee colony is divided into three
groups: employed bees, onlooker bees and scouts.
Exploitation is done by means of employed bees
and onlooker bees, and exploration is done by
means of scouts. The number of employed bees
or onlooker bees is equal to the number of indi-
viduals (solutions) in the population. In ABC the
position of a food source represents a possible
solution to the optimization problem and the
nectar amount of the food source corresponds
to the fitness (quality) of the food source. The
various steps of ABC are as follows:
Step 1: Generation of initial population – ABC
starts by generating an initial population of SN
possible solutions to the given optimization prob-
lem randomly. Each solution xi {i = 1, . . . , SN}
is a D-dimensional vector, where D is the number
of optimization parameters.
Step 2: Employed Bees Phase – Each employed
bee selects a solution xi {i = 1, . . . , SN} and tries
to produce a new solution vi {i = 1, . . . , SN} by
updating the selected solution xi using Equa-
tion (1). It then applies a greedy selection be-
tween the old solution and the newly generated
solution and selects the one which has higher
fitness (nectar amount of the food source).

vij = xij + φij(xij − xkj) (1)

Here,
xij (or vij) denotes the jth dimension of xi (or
vi),
j ∈ {1, 2, . . . , D} is a randomly selected dimen-
sion,
xk is a randomly selected neighbour of xi|k ∈
{1, 2, . . . , SN},

14 Priti Bansal et al.

generate initial population
iteration=1
while (solution not found and iteration ≤ maximum number of iterations)

employed bees phase
onlooker bees phase
scout phase
memorize the best solution achieved so far
iteration = iteration + 1

end while

Figure 1. ABC algorithm

SN is the number of food sources (solutions) in
the population.
Although k is determined randomly, it has to be
different from i. φij is a random number between
[−1, 1]. Subsequently, once all employed bees have
performed the search operation, a probability is
assigned to each solution xi|1 ≤ i ≤ SN which
is calculated using Equation (2).

P (xi) =
fitness(xi)∑SN
n=1 fitness(xn)

(2)

Step 3: Onlooker Bees Phase – The ensuing
phase of onlooker bees selects a solution based on
the probability assigned to them and performs
modification on the selected solution using Equa-
tion (1). Then a greedy selection is applied as
done in case of employed bees.
Step 4: Scout Phase – Scouts look out for a so-
lution which has not been improved by employed
bees or onlooker bees through a predefined num-
ber of cycles called the limit and replaces it with
a randomly generated solution.
Step 2 – Step 4 are repeated until a solution
is found or a maximum number of iterations is
reached. For further explanation of the ABC al-
gorithms, readers can refer to [35, 43]. ABC is
good at exploration but poor in exploitation as
employed bees and onlooker bees only modify
a small part of the solution instead of taking the
global best, which may lead to the trapping of the
ABC in local minima [48]. In order to maintain
a good balance between exploration and exploita-
tion, various variants of ABC namely GABC [50],
I-ABC [48] and PS-ABC [48] were proposed by
researchers.
The outline of ABC is shown in Figure 1.

5. ABC-CAG Strategy
to Generate CA

In this paper, we propose aa ABC-CAG strategy
which applies ABC, a stochastic search based
optimization algorithm to solve the problem of
constructing an optimal CA/MCA for pair-wise
testing. From now onwards CA refers to both
CA and MCA unless mentioned explicitly. We
start by defining a search space, which in our
case consists of the input domain of all input
parameters of the SUT. Let us consider a SUT
having k input parameters. For each input pa-
rameter IPj | 1 ≤ j ≤ k, the possible values of
IPj are represented by an integer number be-
tween [0, vj) where vj is the maximum number
of values that IPj can have. We start by gen-
erating an initial population of PS individuals
where an individual in our case is a CA that
corresponds to a food source in ABC and rep-
resents a possible solution to the given problem.
Each covering array CAi | i ∈ {1, 2, . . . , PS}
in the population is a N × k dimensional ar-
ray. Let us consider a web based application
where the customer has different options of the
operating system, browsers, display, processor
and memory which they may use as shown
in Table 2.

In order to test the system thoroughly, we
need to test the system on all possible config-
urations, e.g. Android, Safari, 240 × 320, dual
core, 512 MB, etc. which would require a total of
5× 3× 3× 3× 4 = 540 test cases, whereas only
20 test cases will be required to test all pair-wise
combinations of features. A possible solution (set
of test cases/MCA) to the test pair-wise interac-
tions of features in Table 2 is shown in Figure 2.

ABC-CAG: Covering Array Generator for Pair-wise Testing Using Artificial Bee Colony Algorithm 15

Table 2. A web based application

Operating System Browser Display Processor Memory

Android Opera mini 128×160 single core 256 MB
iOS Safari 240×320 multi core 512 MB

Windows Chrome 800×1280 dual core 1 GB
Blackberry 2 GB
Symbian

Blackberry Safari 800×1280 single core 256 MB
iOS Opera mini 800×1280 dual core 256 MB
.
.

Windows Chrome 126×160 multi core 512 MB

Figure 2. MCA of size 20× 5 for pair-wise testing

When generating the initial population of
N × k CAs, N is unknown at the start of the
search process. So there are two possibilities. The
first one is to use the method suggested by Star-
dom [51], where we set loose lower bound (LB)
and upper bound (UB) on the size of an optimal
CA and then apply binary search repeatedly to
find the smallest CA. The second one, in case the
size of N is known in advance, i.e. best bound
achieved in the existing state-of-the-art, we start
with the known size and try to optimize it further.

As discussed in Section 4, the fitness of a CA
in the population is the measure of its quality. In
our case, the fitness of a CA is defined as the total
number of distinct 2-way interactions covered by
it and is calculated using Equation (3) as:

fitness(CAi) =

|{2− way interactions covered by CAi}|
∀ i ∈ {1, . . . , PS} (3)

The aim of ABC-CAG is to generate a cover-
ing array that maximizes the objective function
f |f : CAi → I+, where I+ represents a set of
positive integers. The objective function f tells
us, how good a solution it is for a given prob-
lem. In our case f can be calculated as shown in
Equation (4):

f(CAi) = fitness(CAi) | i ∈ {1, . . . , PS} (4)

Now, ABC-CAG tries to generate a covering array
CAmax that maximizes the objective function f
as shown in Equation (5):

CAmax = CAi |f(CAi) = max(f(CAi)

∀ i ∈ {1, . . . , PS}) (5)

Having defined the problem representation
and the fitness calculation, the next sub-section
describes the various steps of the ABC-CAG
strategy.

5.1. Generation of Initial Population

In EA’s the role of the impact of the initial popu-
lation on their performance cannot be ignored as
it can affect the convergence speed and quality of
the final solution [52]. Many population initializa-
tion methods exist to generate initial population.
The most common method used to generate the
initial population in EA is the random method.
ABC-CAG uses the Hamming distance approach
proposed by Bansal et al. [32] to generate a good
quality initial population of CAs. The motive be-
hind the use of the Hamming distance approach is
to generate test cases in a CA in such a way that
each new test case covers the maximum number
of possible distinct 2-way interactions not cov-
ered by the previous test cases. The Hamming
distance between two test cases (rows) in a CA is
the number of positions in which they differ. Let
PS be the population size and N be the size of CA.
For each CA in PS, 50% (first N/2) of the test
cases are created randomly. Let tc1, tc2, . . . , tci
represent the test cases in CA generated till now.
To create the next test case tcj where j = i+ 1,

16 Priti Bansal et al.

a candidate test case tc is generated randomly
and the Hamming distance of tc from tck, for
all k : 1 ≤ k ≤ i, denoted by distance(tc), is
calculated as:

distance(tc) =
i∑

k=1

HD(tck, tc) (6)

Where, HD(tck, tc) is the Hamming distance be-
tween tck and tc. An average distance denoted
by avg_distance(tc) is calculated as follows.

avg_distance(tc) = distance(tc)/(j − 1) (7)

Candidate test case tc is included in the test set
TS only if

avg_distance(tc) ≥ α×NIP (8)

Where, α is a diversity factor whose value ranges
from 0.3 to 0.4 and NIP is the number of input
parameters. Equation (8) implies that a candi-
date test case tc is included only if it covers at
least 30%-40% of distinct input parameter values
as compared to those covered by the existing test
cases. The process is repeated until the remain-
ing N/2 test cases are generated for the CA. The
use of the Hamming distance to create N/2 test
cases in each CA enhances the quality of initial
population as compared to one generated using
the random technique.

5.2. The Employed Bees Phase

The number of employed bees is equal to the
population size PS. In ABC, each employed bee
selects a dimension of a food source randomly and
uses the local information to modify the solution
using Equation (1). The new solution replaces
the old one only if the former is better than the
latter. However, in ABC-CAG each employed
bee uses a greedy approach to select a test case
(dimension) of a CAi (solution). The impetus
behind the greedy selection of test case in a CAi

by an employed bee is to formulate a new CA′
i

from the selected CAi in such a way that CA′
i

contains all the test cases of the selected CAi

except its worst test case. The worst test case of
CAi is replaced in CA′

i by a test case generated
using the information of a randomly selected

neighbouring CAm in an attempt to increase the
overall coverage of 2-way interactions between
input parameters. To select the worst test case
in CAi the fitness of each test case in CAi is cal-
culated by counting the number of distinct pairs
covered by each one of them. For instance, sup-
pose we have a CA with nine test cases as shown
in Figure 3, for the system shown in Table 2.

We calculate the number of distinct pairs
covered by each test case as shown in Table 3
and an employed bee selects the test case that
covers the least number of distinct pairs (test
case TC8 in Table 3). The value of each input
parameter IPj{j = 1, 2, . . . , k} of the test case
covering the least number of distinct pairs is
modified based on the values of the respective
input parameters in the corresponding test case
of the randomly selected neighbouring CA, i.e.
CAm using Equation (9).

CA′
iqj = CAiqj +φiqj(CAiqj −CAmqj) (9)

Here, i ∈ {1, 2, . . . , PS}, q ∈ {1, 2, . . . , N}
represent the index of the worst test
case in CAi, j ∈ {1, 2, . . . , k} and m ∈
{1, 2, . . . , PS} | m 6= i. Since φiqj is a random
number between [−1, 1], it is quite possible that
a non-integral value may get generated as a result
of calculation performed using Equation (9). To
avoid such a condition, whenever a non-integer
value is generated for an input parameter, it gets
rounded to the nearest integer number. After
rounding off the value, if it does not fall in the
range [0, vj) then a value is selected randomly
from the input domain of the respective param-
eter and it replaces the existing value of the
selected parameter.

5.3. The Onlooker Bees Phase

Subsequently, the fitness of each CA in the search
space is calculated and a probability is assigned to
each of them using Equation (2). In ABC-CAG,
to select a CA on the basis of the probability
assigned to them, a random number is generated
in the range [0, 1] and based on the interval in
which the random number falls; a covering array
CAi is selected by an onlooker bee. Unlike the
traditional ABC which is good at exploration but

ABC-CAG: Covering Array Generator for Pair-wise Testing Using Artificial Bee Colony Algorithm 17

iOS Chrome 240×320 dual core 1 GB
Android Chrome 800×1280 multi core 256 MB

Blackberry Safari 800×1280 multi core 256 MB
Blackberry Chrome 128×160 single core 2 GB
Symbian Opera mini 128×160 multi core 512 MB
Windows Safari 800×1280 dual core 512 MB

iOS Opera mini 800×1280 multi core 2 GB
Android Chrome 128×160 multi core 512 MB

Blackberry Opera mini 240×320 single core 1 GB

Figure 3. CA of size 9×5

Table 3. Calculation of distinct pairs covered by each test case of CA

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9

iOS,
Chrome

Android,
Chrome

Blackberry,
Safari

Blackberry,
Chrome

Symbian,
Opera mini

Windows,
Safari

iOS,
Opera mini

Android,
Chrome

Blackberry,
Opera mini

iOS,
240×320

Android,
800×1280

Blackberry,
800×1280

Blackberry,
128×160

Symbian,
128×160

Windows,
800×1280

iOS,
800×1280

Android,
128×160

Blackberry,
240×320

iOS,
dual core

Android,
multi core

Blackberry,
multi core

Blackberry,
single core

Symbian,
multi core

Windows,
dual core

iOS,
multi core

Android,
multi core

Blackberry,
single core

iOS,
1 GB

Android,
256 MB

Blackberry,
256 MB

Blackberry,
2 GB

Symbian,
512 MB

Windows,
512 MB

iOS,
2 GB

Android,
512 MB

Blackberry,
1 GB

Chrome,
240× 320

Chrome,
800× 1280

Safari,
800×1280

Chrome,
128×160

Opera mini,
128×160

Safari,
800×1280

Opera mini,
800×1280,

Chrome,
128×160

Opera mini,
240×320

Chrome,
dual core

Chrome,
multi core

Safari,
multi core

Chrome,
single core

Opera mini,
multi core

Safari,
dual core

Opera mini,
multi core

Chrome,
multi core

Opera mini,
single core

Chrome,
1 GB

Chrome,
256 MB

Safari,
256 MB

Chrome,
2 GB

Opera mini,
512 MB

Safari,
512 MB

Opera mini,
2 GB

Chrome,
512 MB

Opera mini,
1 GB

240×320,
dual core

800×1280,
multi core

800×1280,
multi core

128×160,
single core

128×160,
multi core

800×1280,
dual core

800×1280,
multi core

128×160,
multi core

240×320,
single core

240×320,
1 GB

800×1280,
256 MB

800×1280,
256 MB

128×160,
2 GB

128×160 ,
512 MB

800×1280,
512 MB

800×1280,
2 GB

128×160 ,
512 MB

240×320,
1 GB

dual core,
1GB

multi core,
256 MB

multi core,
256 MB

single core,
2 GB

multi core,
512 MB

dual core,
512 MB

multi core,
2 GB

multi core,
512 MB

single core,
1 GB

Distinct pairs covered by each test case:
9 4 6 8 6 9 8 3 8

poor at exploitation, ABC-CAG takes advantage
of the global best CA denoted by CAbest in the
population (based on gbest-guided ABC (GABC)
developed by Zhu and Kwong [50]) to guide the
search of a candidate solution and modifies the
selected CAi. Like an employed bee, an onlooker
bee selects the worst test case (dimension) of the
selected CAi and replaces it with a test case that
is generated by using the information of the global
best CA i.e., CAbest and a randomly selected
neighbouring CA i.e., CAm using Equation (10).

CA′
iqj = CAiqj +φiqj(CAiqj −CAmqj)+

ψiqj(CAbest
qj −CAiqj) (10)

Here, CAbest
qj is the value of jth parameter of

qth test case of the global best CAbest, ψiqj is
a uniform random number in [0, C], where C is
a non-negative constant. The GABC technique
drives the new candidate solution CA′

i towards
the global best solution, thereby improving its
exploitation capabilities.

18 Priti Bansal et al.

However, in case the best CA i.e., CAbest gets
selected per se, based on the generated random
number; the ABC-CAG modifies it by replacing
its worst test case by a smart test case. A smart
test case is constructed by selecting the value
for each parameter greedily. For each parameter,
the value whose occurrence in the best CA is
minimum is selected. The replacement of the
worst test case in the best CA by a smart test
case is done to make sure that certain new pairs
get covered by this replacement. An example to
illustrate the selection and modification done by
onlooker bees phase is shown in Table 4.

Let us consider a system having configuration
(N ; 2, 2233) as shown in Table 4a.

The total number of distinct 2-way interac-
tions in this system is 67. Let our population size
PS be 8 which means that the population consists
of 8 CAs and let us assume that the size of each
CA array is 7×5 which means that a CA consists
of 7 test cases. After an initial population of CAs
is generated, each employed bee modifies a CA
as discussed in Section 5.2. The fitness and the
probability assigned to each CA generated after
being modified by the employed bee is shown in
Table 4b.

Here, CA4 is the global best CA. Let a ran-
dom number ’r’ be generated to select a CA by
the onlooker bee. There are two cases:
Case 1: When the global best CA is different from
the CA selected by the onlooker bee – let r be
0.8. Based on the value of r, covering array CA7

gets selected by the onlooker bee and lets CA1

be the randomly selected neighbour of CA7. Also
according to the fitness values, CA4 is CAbest.
The test cases of CA1, CA4 and CA7 are shown
in Tables 4c–4e.

After calculating the number of distinct pairs
covered by each test case of CA7, it is clear that
TC2 covers the least number of distinct pairs
i.e., 1. So the value of each parameter in the test
case TC2 of CA7 is modified using Equation (10).
For performing calculations, the values of each
input parameter have been mapped to integer
values (0/1/2) and the new covering array CA′

7

generated after modification is shown in Table 4f.
After modification by the onlooker bee based

on the global best CA and the randomly selected

neighbouring CA, the fitness of the newly gen-
erated covering array CA′

7 increases by 2 and
becomes 47.
Case 2: When the global best CA and the CA
selected by the onlooker bee is the same – In
this case the worst test case of the global best
covering array CAbest is replaced by a smart
test case. However, in our case the global best
covering array CA4 has three test cases: TC1,
TC3 and TC4 that cover the least number of
distinct pairs. Here, ABC-CAG selects a test
case randomly from the three test cases cover-
ing the least number of distinct pairs. Let the
randomly selected test case be TC3. Now, TC3
will be replaced by a smart test case which
in this case is ’b1 b2 b3 c4 b5’ as these val-
ues have the least number of occurrences in
CA4. The replacement of the worst test case
of CA4 by the smart test case increases its fit-
ness by 2.

The above procedure is repeated for each on-
looker bee.

5.4. The Scouts Phase

ABC’s exploration strategy is effectuated by
scout bees replacing a food source abandoned
by an employed bee with a randomly generated
food source. To further enhance the exploration
capability of ABC, we use a greedy approach to
select a CA instead of the primitive approach
followed by ABC. In ABC-CAG, a scout replaces
the worst CA (least fitness) in the population by
a new CA. In ABC, the food sources that cannot
be improved through a predetermined threshold
called the limit are abandoned. The aforemen-
tioned abandoned food sources are thereupon
replaced by randomly created new food sources
by an artificial scout. ABC-CAG necessitates
setting the frequency of the scout operation with
discretion: a very high value of frequency will
proliferate diversity of the population and avoid
getting stuck in local minima but concurrently
makes it difficult to converge to a good solution,
whereas a lower value of frequency will result in
early convergence leading to a suboptimal solu-
tion. Hence, it is required to set the frequency
of scout denoted by fscout to an optimal value.

ABC-CAG: Covering Array Generator for Pair-wise Testing Using Artificial Bee Colony Algorithm 19

Table 4. Example: the selection and modification done by the onlooker bees phase

a) A (N ; 2, 2233) system

IP1 IP2 IP3 IP4 IP5
a1 a2 a3 a4 a5
b1 b2 b3 b4 b5

c3 c4 c5

b) The fitness and the probability assigned to each CA

CA CA1 CA2 CA3 CA4 CA5 CA6 CA7 CA8

Fitness 49 47 51 52 45 44 45 47
Probability 0.119 0.114 0.134 0.137 0.118 0.116 0.118 0.114

c) CA1 (randomly selected neighbouring CA)

TC1 TC2 TC3 TC4 TC5 TC6 TC7
a1 a2 a3 a4 b5 b1 a2 b3 a4 c5 a1 a2 c3 a4 c5 a1 b2 a3 c4 b5 a1 b2 a3 a4 c5 b1 a2 c3 b4 b5 b1 b2 b3 c4 a5

d) CA4 (best CA)

TC1 TC2 TC3 TC4 TC5 TC6 TC7
a1 a2 a3 b4 b5 a1 a2 c3 b4 b5 b1 b2 c3 b4 c5 a1 a2 b3 a4 c5 a1 a2 c3 c4 c5 a1 b2 a3 c4 c5 b1 a2 a3 a4 c5

e) CA7 (CA selected by onlooker on the basis of probability)

TC1 TC2 TC3 TC4 TC5 TC6 TC7
a1 a2 a3 b4 b5 a1 a2 c3 b4 b5 b1 b2 c3 b4 c5 a1 a2 b3 a4 c5 a1 a2 c3 c4 c5 a1 b2 a3 c4 c5 b1 a2 a3 a4 c5

Minimum distinct pairs covered by each test case:
2 1 6 5 2 4 4

f) CA′7 (CA7 after modifications)

TC1 TC2 TC3 TC4 TC5 TC6 TC7
a1 a2 a3 b4 b5 b1 a2 b3 c4 c5 b1 b2 c3 b4 c5 a1 a2 b3 a4 c5 a1 a2 c3 c4 c5 a1 b2 a3 c4 c5 b1 a2 a3 a4 c5

ABC-CAG replaces the worst CA by a randomly
generated CA after every fscout generation. For
example, in the example given in Section 5.3,
a scout will replace the worst covering array i.e.,
CA6 by a randomly created new CA.

All the three phases, namely the employed
bees phase, the onlooker bees phase and the scout
phase are perpetuated until a solution is found or
the maximum number of generations is reached.

6. Evaluation

We start our evaluation by presenting three re-
search questions in Section 6.1. Then we outline
our implementation and experimental design in
Section 6.2. The results and analysis are shown
in Section 6.3.

6.1. Research Questions

Many greedy and meta-heuristic techniques have
been proposed by researchers in the past with the
aim of generating an optimal CA. The ultimate
goal of the research work presented in this paper
is to develop a strategy that generates optimal
CA as compared to existing state-of-the-art al-
gorithms/tools. Our first objective is therefore
to measure the effectiveness of the proposed
approach:
RQ1: (Comparison of ABC-CAG with ex-
isting techniques) How effective is ABC-CAG
in generating an optimal CA with respect to the
existing state-of-the art algorithms/tools?

In addition to evaluating the effectiveness
of ABC-CAG, it is important to check whether
ABC-CAG is comparable in terms of runtime

20 Priti Bansal et al.

a) Command Line Interface (CLI) b) Graphical User Interface (GUI)

Figure 4. ABC-CAG interfaces

with the state-of-the art algorithms. Our next
research question is:
RQ2: (Efficiency of ABC-CAG) How effi-
cient is ABC-CAG in generating an optimal CA?

ABC is a meta-heuristic search algorithm and
all search algorithms are randomized in nature.
Randomized algorithms are used to solve prob-
lems where it is not possible to solve the problem
in a deterministic way within a reasonable time
and they are associated with a certain degree
of randomness as part of their logic. Due to the
randomized nature of search algorithms, running
them on the same problem instance multiple
times produces different results. It is therefore
important to analyse their results and compare
them against simpler alternatives. This motivates
our next research question:
RQ3: (Effectiveness of ABC-CAG) How ef-
fective is ABC-CAG when applied to the problem
of generating an optimal CA for pair-wise testing
as against existing meta-heuristic techniques?

6.2. Experimental Design

To answer the research questions asked in Sec-
tion 6.1, we have implemented ABC-CAG using
Java. Two types of external interfaces have been
provided: Command Line Interface (CLI) and
Graphical User Interface (GUI) which are shown
in Figure 4a and Figure 4b, respectively.

ABC-CAG takes population size PS and max-
imum number of iterations NI as input. As dis-

cussed in Section 5, in ABC-CAG there is an
option of whether we want to start from a known
N or we want to start with a large random array
whose size is calculated as suggested by Stardom
[51]. If we start with a known N, then the user has
to supply the value of N as input to ABC-CAG.

To answer RQ1 and RQ2, three sets of
experiments were conducted. In the first ex-
periment, a Traffic collision avoidance system
(TCAS) benchmark, which has been used by
many researchers [25,26,53] in the past to com-
pare CA generation strategies, is taken to eval-
uate the performance of ABC-CAG with re-
spect to the existing state-of-the-art algorithms.
TCAS has 12 control parameters with 2 pa-
rameters having 10 values, 1 having 4 values,
2 having 3 values and 7 having 2 values each.
It can be represented by an MCA instance
MCA(N ; 2, 12, 102413227).

In the second experiment, we took a case
study of various features of a printer that are
available while printing a document as shown in
Figure 5. The printer case study is a practical
example that models and illustrates the concept
of combinatorial testing.

It is clear from Figure 5 that there are
7 features that a user can set during print-
ing. However, the feature ’Resolution’ is only
for information and a user cannot change
its value. So, we consider only 6 features
and regard them as input parameters. Out
of these 6 input parameters, 3 parameters

ABC-CAG: Covering Array Generator for Pair-wise Testing Using Artificial Bee Colony Algorithm 21

have 2 values each, 2 parameters have 3 val-
ues each whereas the remaining 1 parameter
has 4 values as shown in Table 5. This prob-
lem can be represented by an MCA instance
MCA(N ; 2; 5; 233241).

Figure 5. Various features of a printer

To ensure fair comparison and to evaluate
the effectiveness of ABC-CAG, in the third ex-
periment we took a dataset that consists of 20
benchmark problems selected carefully from the
existing literature [25–28,38,54] on pair-wise test-
ing as shown in Table 6. Each benchmark problem
in the dataset is either an instance of CA or MCA.
For example the problem 33 in Table 6 represents
a CA instance CA(N ; 2, 3, 33) which means that
the system has 3 input parameters each having
3 possible values and the strength of testing is
2. Similarly the problem 513822 in Table 6 rep-
resents an MCA instance MCA(N ; 2, 11, 513822)
which means that the system has 11 input pa-
rameters with 1 parameter having 5 values, 8
parameters having 3 values and 2 parameters
having 2 values each and the strength of test-
ing is 2.

As CA size is absolute and is independent
of the system configuration, to answer RQ1, we
compared CA sizes based on the data available
in the existing literature [21, 25–28,33,34,38, 54].
However, CA generation time is dependent on

the system configuration, so to answer RQ2 and
to ensure a fair comparison, we limited our
comparison based on CA generation time to
only those algorithms whose implementations
are publicly available, which includes greedy al-
gorithms based tools, namely AllPairs, Jenny,
TVG, ACTS(IPOG), and meta-heuristic algo-
rithms based tools namely CASA, PWiseGen [55].
The CA generation time was obtained by execut-
ing the dataset of Table 5 on these tools under
Windows using an INTEL Pentium Dual Core
1.73 GHZ processor with 1.00 GB of memory.

To answer RQ3, we need to perform
a statistical test to compare ABC-CAG
with meta-heuristic techniques. We compared
ABC-CAG with two meta-heuristic tools namely
PWiseGen and CASA.

PWiseGen starts with a known array size
N and tries to generate a CA that covers 100%
pair-wise combinations of input parameter values.
Therefore, to compare ABC-CAG and PWiseGen
we ran each problem on both of them 30 times
and noted down the fitness of the CAs/MCAs
obtained during these runs. The value of N was
kept the same for a problem during these 30 runs.
To compare ABC-CAG and CASA, we ran each
problem on ABC-CAG and CASA 30 times and
noted down the size of generated CA/MCA.

6.3. Results and Analysis

Here we present the results of experiments con-
ducted to answer RQ1, RQ2 and RQ3.

6.3.1. Comparison of ABC-CAG with Existing
Techniques (RQ1)

Results: The result of experiments performed to
compare ABC-CAG with the existing techniques
for TCAS, the printer case study and the dataset
shown in Table 6 are shown in Table 7, Table
8 and Table 9 respectively. Entries marked ‘–’
mean that the results are not available. Since
ABC-CAG is a randomized algorithm and it gives
different results when run multiple times on the
same problem instance, therefore we report the
best as well as average CA size obtained over
multiple runs.

22 Priti Bansal et al.

Table 5. Various features of a printer

HP Real Life
Technologies

Borderless
Printing

Print in max
DPI

Pages per sheet
layout

Print in
grayscale Pages to print

On Print with
border No Left then down Off Print all pages

Off Print
borderless Yes Down then left High quality

grayscale
Print even
pages only

Right then
down Black ink only Print odd

pages only

Down then
right

Table 6. Dataset

Sno. Benchmark
Problems

k (number of input
parameters)

Total number
of pairs

1 33 3 27
2 34 4 54
3 313 13 702
4 510 10 1125
5 1020 20 19000
6 2100 100 19800
7 4534 9 454
8 513822 11 492
9 7262423222 10 854
10 82726252 8 1178
11 644527 16 1556
12 514431125 21 1944
13 6151463823 19 1992
14 624929 20 2052
15 655534 14 2074
16 716151453823 19 2175
17 694327 19 3000
18 674823 18 3004
19 415317229 61 14026
20 41339235 75 17987

Analysis: It is clear from Tables 7–9 that
ABC-CAG generates CA of smaller size as com-
pared to greedy algorithms. When compared to
meta-heuristic techniques, ABC-CAG generates
comparable results in the case of TCAS and the
printer case study, whereas it outperforms GA,
ACA, PSO, PPSTG, PWiseGen and CS in the
case of benchmark problems given in dataset of
Table 6. When compared to CASA, it can easily
be seen from Table 9 that in 60% cases the size
of CAs generated by ABC-CAG and CASA are
the same. In 25% of cases ABC-CAG generates
smaller CAs whereas in only 15% of cases CASA

outperforms ABC-CAG. In the case of TS, the re-
sults are comparable. Overall, ABC-CAG outper-
forms all greedy and most of the meta-heuristic
techniques and generates a smaller size CA for
pair-wise testing.

6.3.2. Efficiency of ABC-CAG (RQ2)

Results: The time (in seconds) taken by each of
the publicly available tools, namely Jenny, All-
Pairs, TVG, ACTS (IPOG), CASA, PWiseGen,
and the proposed algorithm ABC-CAG for gen-
erating CA for TCAS, the printer case study and

ABC-CAG: Covering Array Generator for Pair-wise Testing Using Artificial Bee Colony Algorithm 23

Table 7. Comparison of MCA sizes generated for TCAS

Problem
Instance Pairs ACTS

(IPOG) PICT AllPairs ITCH Jenny TConfig TVG TSA CASA PWise-
Gen

ABC-CAG
best avg. best avg.

102413227 837 100 100 100 120 108 108 100 100 100 100 101 100 100

Table 8. Comparison of MCA sizes generated for printer case study

Problem
Instance Pairs ACTS

(IPOG) PICT AllPairs Jenny TVG CASA PWise-
Gen

ABC-CAG
best avg. best avg.

322341 105 12 14 16 14 13 12 12 12 12 12

Table 9. Comparison of CA/MCA sizes generated for the 20 benchmark problems

Benchmark
Problems AETG TCG All-

Pairs PICT Jenny CAS-
CADE

ACTS
(IPOG) GA ACA PSO TS PPSTG CASA PWise-

Gen CS FSAPO ABC-CAG
best avg. best avg.

33 – – 9 10 9 – 9 – – 9 – – 9 9 9 9 9 9 9

34 9 – 9 12 11 9 9 9 9 9 – 9 9 9 9 9 9 9 9

313 15 20 17 20 18 – 19 18 18 18 – 17 16 16.24 16 20 16 15 15.93

510 – – 47 47 45 – 45 – – – – 45 38 39.7 43 – – 41 41.6

1020 180 218 197 216 193 – 227 227 232 213 – – 192 193.33 224 – – 210 211.5

2100 10 16 14 16 16 – 16 14 14 – – – 11 11 11 – – 10 10.43

4534 – – 22 26 26 – 24 – – – 19 – 19 20 21 – – 19 19.83

513822 20 20 20 20 23 – 19 17 17 17 15 21 15 16.24 16 21 18 15 15.96

7262423222 – – 54 56 57 – 53 – – – – – 49 49.3 50 – – 49 49.6

82726252 – – 64 80 76 – 72 – – – 64 – 64 65.13 72 – – 64 64.4

644527 – – 45 55 53 – 44 – – – 38 – 41 52.8 47 – – 39 41.9

514431125 30 30 27 32 32 – 26 26 27 27 22 – 22 23.7 26 – – 22 23.9

6151463823 34 41 34 38 40 – 36 33 34 35 30 39 30 30.26 33 43 35 30 30.2

624929 – – 38 41 44 – 39 – – – 36 – 36 36.4 39 – – 36 36.16

655534 – – 53 59 56 – 56 – – – 50 – 47 49.33 55 – – 51 52.5

716151453823 45 45 43 46 50 – 43 43 43 43 42 49 42 42 43 51 – 42 42.16

694327 – – 59 67 64 – 61 – – – 51 – 52 53.23 61 – – 51 51.66

674823 – – 53 63 63 – 54 – – – 47 – 48 49.86 57 – – 47 48.1

415317229 37 33 35 38 39 – 33 38 38 38 30 30 30 30.53 33 – – 30 30.43

41339235 27 – 26 29 31 – 28 29 28 27 22 – 22 22.9 24 – – 22 22.73

the dataset of Table 6 are shown in Table 10,
Table 11 and Table 12, respectively.

Analysis: It is evident from Tables 10–12
that meta-heuristic techniques take a longer time
to generate CA as compared to their greedy
counterparts. However, the extra time taken by
meta-heuristic techniques allows them to gener-
ate smaller CA/MCA than greedy algorithms.
When we compare the time taken by CASA,
PWiseGen and ABC-CAG, it has been observed
that out of the three meta-heuristic techniques,
CASA takes the minimum time to generate
CA whereas the time taken by PWiseGen and
ABC-CAG is comparable.

6.3.3. Effectiveness of ABC-CAG (RQ3)

Results: To compare ABC-CAG and PWiseGen,
we performed a statistical test namely Welch’s
t-test on the fitness of CAs/MCAs generated
during 30 runs for each benchmark problem in

the dataset except the two benchmark problems
CA (33) and CA (34), TCAS and the printer
case study, as the fitness of CAs generated dur-
ing 30 runs of TCAS, the printer case study
and the two aforementioned benchmark prob-
lems were the same for both techniques. Hence,
there is no reason for performing the Welch
t-test on these two problems. Each problem was
run 30 times as a minimum of 30 data points
are required for Welch’s t-test [56]. From Ta-
ble 7 and Table 9, it is evident that ABC-CAG
generates smaller CAs than PWiseGen, how-
ever by performing Welch’s t-test we try to
assess whether the difference is significant or
not. To do this, we formulate null hypothe-
sis H0 as:
There is no difference between the average fitness
of CAs generated by ABC-CAG and the average
fitness of CAs generated by PWiseGen.
When a statistical test is performed, two types of
errors are possible: (I) we reject the null hypothe-

24 Priti Bansal et al.

Table 10. Comparison of time (in seconds) to generate MCA for TCAS

Problem
Instance

ACTS
(IPOG) AllPairs Jenny TVG CASA PWiseGen ABC-CAG

102413227 0.07 0.13 0.545 0.09 0.726 20.34 0.5

Table 11. Comparison of time (in seconds) to generate MCA for the printer case study

Problem
Instance

ACTS
(IPOG) AllPairs Jenny TVG CASA PWiseGen ABC-CAG

322341 0.01 0.016 0.015 0.10 0.269 0.32 0.15

Table 12. Comparison of time (in seconds) to generate CA/MCA for the 20 benchmark problems

Problem
Instance

ACTS
(IPOG) AllPairs Jenny CASA PWiseGen ABC-CAG

33 0.047 0.059 0.034 0.104 0.0546 0.06
34 0.002 0.012 0.027 0.151 4.392 0.106
313 0.014 0.018 0.144 2.23 29.428 70.98
510 0.003 0.013 0.309 3.608 47.017 123.708
1020 0.53 0.009 2.615 10852.35 675.168 2057.943
2100 0.078 0.071 1.208 4.6985 701.25 1654.17
4534 0.001 0.012 0.15 0.6785 20.88 37.2
513822 0.002 0.013 0.095 0.8145 22.62 47.1
7262423222 0.001 0.01 0.141 2.54 135.42 91.2
82726252 0.003 0.007 0.183 10.28 50.04 100.5
644527 0.006 0.01 0.329 26.36 83.52 133.4
514431125 0.015 0.016 0.202 3.15 84.12 74.9
6151463823 0.016 0.009 0.229 11.2 40.68 78.65
624929 0.016 0.009 0.247 2.21 46.38 180.8
655534 0.015 0.015 0.249 106.56 87.18 246.87
716151453823 0.016 0.016 0.383 1.44 50.58 66.24
694327 0.016 0.015 0.319 7.06 152.82 633.23
674823 0.016 0.015 0.295 140.323 135.42 315.34
415317229 0.031 0.017 0.741 65.8 705.921 1843.56
41339235 0.016 0.031 1.96 122.2 752.35 2143.23

sis H0 when it is true and (II) we accept the null
hypothesis H0 when it is false. These two types
of errors are conflicting means minimizing the
probability of one increasing the probability of
the other. In general there is more emphasis on
not committing a type I error. When performing
Welch’s t-test, the p-value denotes the probability
of type I error. The significant level α of a test
is the highest p-value that can be accepted to
reject H0. Traditionally, α = 0.05 is used during
experimentation. We have conducted the Welch
t-test at both α = 0.05 and α = 0.01.The results
of the Welch t-test performed to compare aver-
age fitness of CAs/MCAs obtained by ABC-CAG

and PWiseGen at α = 0.05 and at α = 0.01 are
shown in Table 13. For space reason, we show
the graphs depicting the t-values and p-values of
only few benchmark problems at α = 0.05 and at
α = 0.05 in Figure 6 and Figure 7, respectively.

As discussed in Section 6.3.1, the performance
of ABC-CAG and CASA is comparable in around
60% cases. So we calculated the standard devi-
ation of the sizes of each CA obtained over 30
runs of TCAS, the printer case study and each of
the 20 benchmark problem on both ABC-CAG
and CASA to quantify the amount of dispersion
or variation of the CA size obtained over these
runs on the two meta-heuristic techniques. For

ABC-CAG: Covering Array Generator for Pair-wise Testing Using Artificial Bee Colony Algorithm 25

Table 13. Results of the Welch t-test to compare ABC-CAG and PWiseGen

Benchmark
Problems

α = 0.05 α = 0.01
p (2-tailed) t-critical t-stat df p (2-tailed) t-critical t-stat df

33 – – – – – – – –
34 – – – – – – – –
313 0.028

2.00

2.247 58 0.028

2.66

2.247 58
510 0.006 2.852 45 0.006 2.85 45
1020 2.02 × 10−11 8.355 56 2.02 × 10−11 8.35 56
2100 4.4 × 10−05 4.416 58 4.44 × 10−05 4.41 58
4534 2.33 × 10−06 5.25 57 2.33 × 10−06 5.25 57
513822 4.83 × 10−07 5.716 54 2.43 × 10−07 5.71 54
7262423222 1.67 × 10−06 5.33 58 1.67 × 10−06 5.33 58
82726252 1.6 × 10−10 7.86 54 1.6 × 10−10 7.86 54
644527 5.05 × 10−06 5.04 56 5.05 × 10−06 5.047 56
514431125 3.07 × 10−09 7.24 48 3.07 × 10−09 7.24 48
6151463823 5.9 × 10−04 3.65 53 5.9 × 10−04 3.65 53
624929 1.79 × 10−05 4.96 35 1.7 × 10−05 4.96 35
655534 9.7 × 10−09 6.95 55 4.04 × 10−09 6.5 56
716151453823 3.49 × 10−08 6.37 57 3.49 × 10−08 6.37 57
694327 6.9 × 10−08 6.193 57 6.92 × 10−08 6.19 57
674823 2.3 × 10−07 5.889 56 2.3 × 10−07 5.88 56
415317229 4.2 × 10−04 3.744 57 0.0004 3.74 57
41339235 2.44 × 10−05 4.59 57 2.44 × 10−05 4.59 57

a) CA(313) b) CA(510) c) CA(1020)

d) MCA(4534) e) MCA(415317229) f) MCA(41339235)

Figure 6. Results of the Welch t-test of the selected benchmark problems at α = 0.05

TCAS and the printer case study, the size of CA
generated in each of the 30 runs on ABC-CAG
is the same. The same is true for CASA as well.
Therefore, we plotted the average standard devi-
ation of only the benchmark problems given in
Table 6 when run multiple times on ABC-CAG
and CASA as shown in Figure 8.

Analysis: It is evident from Table 13 and
Figure 6 that at α = 0.05, the value of t-stat >
t-critical and p < α for each benchmark problem.
Similarly, from Table 13 and Figure 7, it can
be seen that at α = 0.01, the value of t-stat >

t-critical and p < α for each benchmark problem
except CA (313). So, we reject the null hypoth-
esis H0 and conclude that there is a significant
difference between ABC-CAG and PWiseGen.

From Figure 8, it can be seen that for most of
the benchmark problems, the average standard
deviation of the sizes of CA/MCA obtained over
multiple runs of a problem instance on ABC-CAG
is smaller than that of CASA. Even in the case
of those problems where the best sizes generated
by both ABC-CAG and CASA are the same, the
standard deviation of ABC-CAG is smaller than

26 Priti Bansal et al.

a) CA(313) b) MCA(513822) c) MCA(6151463823)

d) MCA(655534) e) MCA(694327) f) MCA(674823)

Figure 7. Results of the Welch t-test of the Selected Benchmark Problems at α = 0.01

Figure 8. Average standard deviation of sizes of CAs obtained over multiple runs

CASA for 8 problems out of 10. On this basis it
can be inferred that ABC-CAG is more stable as
compared to CASA.

In summary, we can conclude that ABC-CAG
performs better than greedy algorithms and most
of the meta-heuristic techniques except TS where
the results are comparable, and the outcome of
statistical testing proves the validity of the re-
sults generated by ABC-CAG and the standard
deviation shows that ABC-CAG is more stable
as compared to CASA when run multiple times
on the same problem instance.

7. Threats to Validity

An important threat to validity is that we use
only 30 runs of the stochastic algorithms namely

ABC-CAG, CASA and PWiseGen because of
time and resource constraints. Though more runs
are unlikely to change the qualitative answer
to the research questions, they may affect the
magnitude of the algorithmic differences.

8. Conclusion and Future Work

In this paper we have presented the Artificial Bee
Colony – Covering Array Generator (ABC-CAG)
that deals with the problem of constructing op-
timal covering arrays for pair-wise testing. The
key feature of ABC-CAG is the integration of
greedy and meta-heuristic algorithms which en-
able ABC-CAG to exploit the advantages of both
techniques. Second, the use of the global best CA
during onlooker bees’ phase derives the solution

ABC-CAG: Covering Array Generator for Pair-wise Testing Using Artificial Bee Colony Algorithm 27

towards global best thereby improving the ex-
ploitation capability of onlooker bees. In addition
to this, the use of smart test cases to replace the
worst test case of the global best CA during the
onlooker bees’ phase further enhances the per-
formance of ABC-CAG. Experiments conducted
on various benchmark problems and a real world
problem show that the proposed strategy gener-
ates smaller CA as compared to its greedy and
meta-heuristic counterparts except TS where the
results are comparable.

In future, we plan to construct CA for
strength t greater than 2 and incorporate con-
straint handling feature in ABC-CAG.

References

[1] J.M. Glenford, The art of software testing. John
Willey & Sons, 2011.

[2] D.M. Cohen, S.R. Dalal, A. Kajla, and G.C.
Patton, “The automatic efficient test generator
(AETG) system,” in Proceedings of the 5th In-
ternational Symposium on Software Reliability
Engineering. IEEE, 1994, pp. 303–309.

[3] D.M. Cohen, S.R. Dalal, M.L. Fredman, and
G.C. Patton, “The AETG system: An approach
to testing based on combinatorial design,” IEEE
Transactions on Software Engineering, Vol. 23,
No. 7, 1997, pp. 437–444.

[4] K. Burr and W. Young, “Combinatorial test
techniques: Table-based automation, test gen-
eration and code coverage,” in Proceedings of the
International Conference on Software Testing
Analysis & Review, San Diego, 1998.

[5] S.R. Dalal, A. Jain, N. Karunanithi, J. Leaton,
C.M. Lott, G.C. Patton, and B.M. Horowitz,
“Model-based testing in practice,” in Proceedings
of the 21st international conference on Software
engineering. ACM, 1999, pp. 285–294.

[6] D.R. Kuhn, D.R. Wallace, and A.M. Gallo Jr,
“Software fault interactions and implications for
software testing,” IEEE Transactions on Soft-
ware Engineering, Vol. 30, No. 6, 2004, pp.
418–421.

[7] Y. Lei and K.C. Tai, “In-parameter-order: A test
generation strategy for pairwise testing,” in
Proceedings of the Third IEEE International
High-Assurance Systems Engineering Sympo-
sium. IEEE, 1998, pp. 254–261.

[8] Y.W. Tung and W.S. Aldiwan, “Automating test
case generation for the new generation mission

software system,” in Proceedings of the IEEE
Aerospace Conference, Vol. 1. IEEE, 2000, pp.
431–437.

[9] A. Hartman, T. Klinger, and L. Raskin, “IBM
intelligent test case handler,” Discrete Mathe-
matics, Vol. 284, 2010, pp. 149–156.

[10] J. Arshem, Test vector generator (TVG), (2010).
[Online]. https://sourceforge.net/projects/tvg/

[11] AllPairs, (2009). [Online]. http://sourceforge.
net/projects/allpairs/

[12] J. Czerwonka, “Pairwise testing in the real world:
Practical extensions to test-case scenarios,” in
Proceedings of the 24th Pacific Northwest Soft-
ware Quality Conference, 2006, pp. 419–430.

[13] B. Jenkins, jenny: a pairwise testing tool,
(2005). [Online]. http://burtleburtle.net/bob/
math/jenny.html

[14] Z. Wang, B. Xu, and C. Nie, “Greedy heuristic
algorithms to generate variable strength combi-
natorial test suite,” in The Eighth International
Conference on Quality Software. QSIC’08. IEEE,
2008, pp. 155–160.

[15] Z. Wang and H. He, “Generating variable
strength covering array for combinatorial soft-
ware testing with greedy strategy,” Journal of
Software, Vol. 8, No. 12, 2013, pp. 3173–3181.

[16] S.A. Abdullah, Z.H. Soh, and K.Z. Zamli,
“Variable-strength interaction for t-way test gen-
eration strategy,” International Journal of Ad-
vances in Soft Computing & Its Applications,
Vol. 5, No. 3, 2013.

[17] M.F. Klaib, K.Z. Zamli, N.A.M. Isa, M.I. Younis,
and R. Abdullah, “G2Way a backtracking strat-
egy for pairwise test data generation,” in 15th
Asia-Pacific Software Engineering Conference,
APSEC’08. IEEE, 2008, pp. 463–470.

[18] K.Z. Zamli, M.F. Klaib, M.I. Younis, N.A.M. Isa,
and R. Abdullah, “Design and implementation
of a t-way test data generation strategy with
automated execution tool support,” Information
Sciences, Vol. 181, No. 9, 2011, pp. 1741–1758.

[19] K.F. Rabbi, A.H. Beg, and T. Herawan,
“MT2Way: A novel strategy for pair-wise test
data generation,” in Computational Intelligence
and Intelligent Systems. Springer, 2012, pp.
180–191.

[20] K. Rabbi, S. Khatun, C.Y. Yaakub, and
M. Klaib, “EPS2Way: an efficient pairwise test
data generation strategy,” International Journal
of New Computer Architectures and their Ap-
plications (IJNCAA), Vol. 1, No. 4, 2011, pp.
1099–1109.

[21] Z. Zhang, J. Yan, Y. Zhao, and J. Zhang, “Gen-
erating combinatorial test suite using combinato-

28 Priti Bansal et al.

rial optimization,” Journal of Systems and Soft-
ware, Vol. 98, 2014, pp. 191–207.

[22] R. Kuhn, Advanced combinatorial test-
ing system (ACTS), National Institute of
Standards and Technology, (2011). [On-
line]. http://csrc.nist.gov/groups/SNS/acts/
documents/comparison-report.html#acts

[23] T. Shiba, T. Tsuchiya, and T. Kikuno, “Using
artificial life techniques to generate test cases
for combinatorial testing,” in Proceedings of the
28th Annual International Computer Software
and Applications Conference. IEEE, 2004, pp.
72–77.

[24] X. Chen, Q. Gu, J. Qi, and D. Chen, “Applying
particle swarm optimization to pairwise test-
ing,” in IEEEProceedings of the 34th Annual
Computer Software and Applications Conference.
IEEE, 2010, pp. 107–116.

[25] L. Gonzalez-Hernandez, N. Rangel-Valdez, and
J. Torres-Jimenez, “Construction of mixed cov-
ering arrays of variable strength using a tabu
search approach,” in Combinatorial Optimization
and Applications. Springer, 2010, pp. 51–64.

[26] L. Gonzalez-Hernandez, N. Rangel-Valdez, and
J. Torres-Jimenez, “Construction of mixed cov-
ering arrays of strengths 2 through 6 using a
tabu search approach,” Discrete Mathematics,
Algorithms and Applications, Vol. 4, No. 03, 2012,
p. 1250033.

[27] H. Avila-George, J. Torres-Jimenez, V. Hernán-
dez, and L. Gonzalez-Hernandez, “Simulated an-
nealing for constructing mixed covering arrays,”
in Distributed Computing and Artificial Intelli-
gence. Springer, 2012, pp. 657–664.

[28] B.S. Ahmed, K.Z. Zamli, and C. Lim, “The devel-
opment of a particle swarm based optimization
strategy for pairwise testing,” Journal of Artifi-
cial Intelligence, Vol. 4, No. 2, 2011, pp. 156–165.

[29] B.J. Garvin, M.B. Cohen, and M.B. Dwyer,
“Evaluating improvements to a meta-heuristic
search for constrained interaction testing,” Em-
pirical Software Engineering, Vol. 16, No. 1, 2011,
pp. 61–102.

[30] J.D. McCaffrey, “Generation of pairwise test sets
using a genetic algorithm,” in Proceedings of
the 33rd Annual IEEE International Computer
Software and Applications Conference, Vol. 1.
IEEE, 2009, pp. 626–631.

[31] P. Flores and Y. Cheon, “PWiseGen: Generating
test cases for pairwise testing using genetic algo-
rithms,” in Proceedings of the International Con-
ference on Computer Science and Automation
Engineering, Vol. 2. IEEE, 2011, pp. 747–752.

[32] P. Bansal, S. Sabharwal, S. Malik, V. Arora, and
V. Kumar, “An approach to test set generation
for pair-wise testing using genetic algorithms,”
in Search Based Software Engineering. Springer,
2013, pp. 294–299.

[33] B.S. Ahmed, T.S. Abdulsamad, and M.Y. Potrus,
“Achievement of minimized combinatorial test
suite for configuration-aware software functional
testing using the cuckoo search algorithm,” Infor-
mation and Software Technology, Vol. 66, 2015,
pp. 13–29.

[34] T. Mahmoud and B.S. Ahmed, “An efficient strat-
egy for covering array construction with fuzzy
logic-based adaptive swarm optimization for soft-
ware testing use,” Expert Systems with Applica-
tions, Vol. 42, No. 22, 2015, pp. 8753–8765.

[35] D. Karaboga, “An idea based on honey bee
swarm for numerical optimization,” Erciyes Uni-
versity, Engineering Faculty, Computer Engineer-
ing Department, Tech. Rep. TR-06, 2005.

[36] D. Karaboga and B. Basturk, “Artificial bee
colony (ABC) optimization algorithm for solving
constrained optimization problems,” in Foun-
dations of Fuzzy Logic and Soft Computing.
Springer, 2007, pp. 789–798.

[37] A.S. Hedayat, N.J.A. Sloane, and J. Stufken,
Orthogonal arrays. Springer Science & Business
Media, 2012.

[38] M.B. Cohen, P.B. Gibbons, W.B. Mugridge, and
C.J. Colbourn, “Constructing test suites for in-
teraction testing,” in Proceedings of the 25th In-
ternational Conference on Software Engineering.
IEEE, 2003, pp. 38–48.

[39] G. Sherwood, Testcover.com, (2006). [Online].
http://testcover.com/

[40] A.W. Williams, “Determination of test configura-
tions for pair-wise interaction coverage,” in Test-
ing of Communicating Systems. Springer, 2000,
pp. 59–74.

[41] A. Hartman, “Software and hardware testing
using combinatorial covering suites,” in Graph
theory, combinatorics and algorithms. Springer,
2005, pp. 237–266.

[42] N. Kobayashi, T. Tsuchiya, and T. Kikuno,
“A new method for constructing pair-wise cover-
ing designs for software testing,” Information
Processing Letters, Vol. 81, No. 2, 2002, pp.
85–91.

[43] D. Karaboga and B. Basturk, “A powerful and
efficient algorithm for numerical function opti-
mization: artificial bee colony (ABC) algorithm,”
Journal of global optimization, Vol. 39, No. 3,
2007, pp. 459–471.

ABC-CAG: Covering Array Generator for Pair-wise Testing Using Artificial Bee Colony Algorithm 29

[44] E. Bonabeau, M. Dorigo, and G. Theraulaz,
Swarm intelligence: from natural to artificial
systems. Oxford University Press, 1999.

[45] O.B. Haddad, A. Afshar, and M.A. Mariño,
“Honey-bees mating optimization (HBMO) al-
gorithm: a new heuristic approach for water
resources optimization,” Water Resources Man-
agement, Vol. 20, No. 5, 2006, pp. 661–680.

[46] D. Teodorović and M. Dell’Orco, “Bee colony op-
timization – a cooperative learning approach to
complex transportation problems,” in Advanced
OR and AI Methods in Transportation: Proceed-
ings of 16th Mini–EURO Conference and 10th
Meeting of EWGT. Poznań: Publishing House
of the Polish Operational and System Research,
2005, pp. 51–60.

[47] H. Drias, S. Sadeg, and S. Yahi, “Cooperative
bees swarm for solving the maximum weighted
satisfiability problem,” in Computational Intelli-
gence and Bioinspired Systems. Springer, 2005,
pp. 318–325.

[48] G. Li, P. Niu, and X. Xiao, “Development and
investigation of efficient artificial bee colony al-
gorithm for numerical function optimization,”
Applied soft computing, Vol. 12, No. 1, 2012, pp.
320–332.

[49] D. Jeya Mala, V. Mohan, and M. Ka-
malapriya, “Automated software test optimi-

sation framework – an artificial bee colony
optimisation-based approach,” IET Software,
Vol. 4, No. 5, 2010, pp. 334–348.

[50] G. Zhu and S. Kwong, “Gbest-guided artificial
bee colony algorithm for numerical function op-
timization,” Applied Mathematics and Computa-
tion, Vol. 217, No. 7, 2010, pp. 3166–3173.

[51] J. Stardom, “Metaheuristics and the search for
covering and packing arrays,” Ph.D. dissertation,
Simon Fraser University, 2001.

[52] B. Kazimipour, X. Li, and A. Qin, “A review
of population initialization techniques for evolu-
tionary algorithms,” in IEEE Congress on Evo-
lutionary Computation (CEC). IEEE, 2014, pp.
2585–2592.

[53] D.R. Kuhn and V. Okun, “Pseudo-exhaustive
testing for software,” in Proceedings of the
30th Annual IEEE/NASA Software Engineering
Workshop. IEEE, 2006, pp. 153–158.

[54] Pairwise testing, (2016). [Online]. http:
//www.pairwise.org/

[55] P. Flores, PWiseGen, (2010). [Online].
https://code.google.com/p/pwisegen/

[56] A. Arcuri and L. Briand, “A practical guide for
using statistical tests to assess randomized algo-
rithms in software engineering,” in Proceedings
of the 33rd International Conference on Software
Engineering. IEEE, 2011, pp. 1–10.

e-Informatica Software Engineering Journal, Volume 10, Issue 1, 2016, pages: 31–49, DOI 10.5277/e-Inf160102

Reducing the Number of Higher-order Mutants
with the Aid of Data Flow

Ahmed S. Ghiduka

aDept. of IT, College of Computers and Information Technology, Taif University, Saudi Arabia, Department
of Mathematics and Computer Science, Faculty of Science, Beni-Suef University, Egypt

asaghiduk@tu.edu.sa

Abstract
Higher-order mutants are created by injecting two or more mutations into the original program,
while first-order mutants are generated by seeding single faults in the original program. Mutant
generation is a key stage of mutation testing which is computationally very expensive, especially in
the case of higher-order mutants. Although many mutation testing techniques have been developed
to construct the first-order mutants, a very small number of techniques have been presented to
generate the higher-order mutants because of the exponential growth of the number of higher-order
mutants, and the coupling effect between higher-order and first-order mutants. To overcome the
exponential explosion in the number of higher-order mutants considered, this paper introduces
a new technique for generating a reduced set of higher-order mutants. The proposed technique
utilizes a data-flow analysis to decrease the number of mutation points through the program under
test and consequently reduce the number of higher-order mutants. In this technique only positions
of defs and uses are considered as locations to seed the mutation. The generated set of higher-order
mutants consists of a reduced number of mutants, which reduces the costs of higher-order mutation
testing. In addition, the proposed technique can generate the higher-order mutants directly without
generating the first-order mutants or by combining two or more first-order mutants. A set of
experiments are conducted to evaluate the effectiveness of the proposed technique. The results
of the conducted experiments are presented and compared with the results of the related work.
These results showed that the proposed technique is more effective than the earlier techniques in
generating higher-order mutants without affecting the efficiency of mutation testing.

Keywords:mutation testing, first-order mutants, higher-order mutants, data-flow analysis

1. Introduction

Higher-order mutants (HOMs) are complex mu-
tants, which are produced by inserting two or
more mutations in the original program [1]. The
space of higher-order mutants is wider than the
space of first-order mutants (FOMs) [2]. Muta-
tion testing has been developed by DeMillo et al.
[3] and Hamlet [4] to find test inputs to kill the
seeded mutants in the program under test [5].
The motivation of mutation testing is that the
injected faults represent errors that programmers
often create. Although mutation testing is a very
powerful software testing technique, it contains

many computationally expensive phases such as
mutant generation and mutant execution.

Many mutation testing techniques have been
developed to consider the first-order mutants
[6]. Higher-order mutation testing techniques are
proposed by Jia and Harman [1] and used to
study the interactions between defects and their
impact on software testing for fault detection.

Although mutation testing is an effective high
automation technique to assess the quality of the
test data, it has three main limitations. These
limitations are large number of mutants, realism,
and the equivalent mutant problem [7,8]. A large
number of mutants will be generated during the

32 Ahmed S. Ghiduk

mutant generation phase of mutation testing
even for small programs. For example, a program
consists of one statement such as return x + y;
(where x and y are integers) can be mutated into
many different mutants: return x−y; return x∗y;
return x/y; return x + y + +; return − x + y;
return x + −y; return 0 + y; return x + 0; ...,
etc. This problem leads to a very high execu-
tion cost because the test cases are executed
not only on original program but also on each
mutant. For example, if a program under test
has 200 mutants and 150 test cases, it requires
(1 + 200) ∗ 150 = 30150 executions with their cor-
responding results [7]. In addition, because mu-
tants are generated by single and simple syntactic
changes, they don’t represent realistic faults and
90% of real faults are complex [2]. In fact, sev-
eral mutation operators can generate equivalent
mutants which have the same behavior as the
original program and need additional human ef-
fort to kill [9]. These limitations are resulting
from the used method to generate mutants.

Many techniques have been proposed to re-
duce the number of mutants. The first approach
to reduce the number of mutants is Mutant Sam-
pling approach proposed by Acree [10] and Budd
[11]. In addition, Bluemke and Kulesza [12] ex-
plored the reduction of computational costs of
mutation testing by randomly sampling mutants.
This approach randomly selects a small subset
of mutants from the entire set. Mutant Sampling
is valid with a value higher than 10% of mutants
[7]. Agrawal et al. [13] and Mathur [14] proposed
an approach to reduce the number of mutation
operators which can lead to reduced number of
mutants. Offutt et al. [15,16] used the same idea
and called it Selective Mutation. This approach
selects a small set of operators that generate
a subset of all possible mutants without losing
test effectiveness. Husain [17] applied clustering
algorithms to select a subset of mutants.

Second-order Mutation Testing [9, 18–20], in
particular, and Higher-Order Mutation Testing
[1,2,21,22] in general, are the most promising so-
lutions to reduce the number of mutants [7]. The
number of generated mutants can be reduced to
about 50% by combining two first-order mutants
to generate a second-order mutant or by using

subsuming higher-order mutants algorithms [7].
Previous work employed different methods for
reducing the number of higher-order mutants.
Polo et al. [20] proposed three methods: 1) Ran-
domMix which couples randomly selected muta-
tion operators, 2) LastToFirst which combines
FOMs in order from the last operator to the first
one, and 3) DifferentOperator which combines
different FOMs mutation operators. Madeyski
et al. [9] proposed two methods: 1) JudyDiffOp
which combines different FOMs mutation oper-
ators, and 2) NeighPair which combines FOMs
which are close to each other. Although, these
techniques have the ability to reduce the number
of mutants, the number of mutants can still grow
exponentially. From the above discussion, the
higher-order mutant generation problem needs
a lot of effort.

Data-flow testing is essential because it aug-
ments control-flow testing. It aims at creating
more efficient and targeted test suites. Data flow
testing is concerned not only with the definitions
and uses of variables, but also with sub-paths
from definitions to statements where those def-
initions are used [23, 24]. A family of data flow
criteria [25] have been proposed and successfully
applied in many software testing activities [26].
Unfortunately, this family of criteria has never
been applied in mutation testing as basis for
generating the HOMs or reducing the number of
these mutants.

The main contributions of this paper are: 1)
introducing a data-flow based approach for gen-
erating higher-order mutants; In this approach
only locations of def points and use points are
considered as locations to seed the mutation.
A second-order mutant contains two mutations,
the first mutation at the def point and the second
mutation at the use point and the two points
belong to the same def-use pairs. 2) Using the
proposed approach to perform a set of empirical
studies to answer the following research ques-
tions:
– RQ1: How effective is data flow in aiding the

generation of higher-order mutants?
– RQ2: How effective is the proposed technique

in reducing the number of higher-order mu-
tants?

Reducing the Number of Higher-order Mutants with the Aid of Data Flow 33

Table 1. An example of mutants

Original Program Mutants
FOM1 FOM2 SOM

i f (min < max)
{
max = min + max ;
min = max − min ;

}

i f (min > max)
{
max = min + max ;
min = max − min ;

}

i f (min < max)
{
max = min − max ;
min = max − min ;

}

i f (min > max)
{
max = min − max ;
min = max − min ;

}

The rest of this paper is organized as follows.
Section 2 gives some basic concepts and defini-
tions. Section 3 describes the proposed technique
for generating a reduced set of higher-order mu-
tants. Section 4 describes the empirical studies
performed to evaluate the proposed technique.
Section 5 gives a discussion of how the present
paper differs from the related ones. Section 6
gives the conclusion and future work.

2. Background

This section introduces some basic concepts that
will be used throughout this work.

2.1. Mutation Testing

The input parameters to the mutation testing
are: the tested program P , a set of mutation
operators, and a set of test inputs, T. Initially,
the program under test must be executed with
the test set T to show that it is correct and
produces the desired outputs. If not, then the
program under test contains faults, which should
be corrected before resuming the process.

The next stage is generating a set of mu-
tants of the tested program by seeding faults
in it. The seeded faults are generated by ap-

plying the mutation operators. The transforma-
tion that creates a mutant from the original
program is known as a mutation operator [1].
A mutant is generated by making one or more
small changes (faults) into the original program.
FOMs, which are created by the injection of
unique faults in the tested program, are cre-
ated by applying mutation operators only once.
HOMs, which are created by injecting two or
more mutations into the original program, are
created by applying mutation operators more
than once. Table 1 shows two first-order mutants
(FOM1 and FOM2) generated by changing the
“<” operator in the original program into the
“>” operator in FOM1 and changing the “+”
operator in the original program into the “−”
operator in FOM2. In addition, Table 1 gives
a second-order mutant, SOM, created by cou-
pling the two first-order mutants FOM1 and
FOM2.

In Traditional Mutation Testing (Strong Mu-
tation), each mutant will be executed using a test
set T. If the result of executing a mutant is dif-
ferent from the result of executing the original
program for any test case in T, then the mutant
is killed otherwise it is survived. The adequacy
level of the test set T can be measured by a mu-
tation score [27] that is computed in terms of
the number of mutants killed by T as follows.

MS(P, T) = Number of Killed Mutants
Total Number of Mutants−Number of Equivalent Mutants (1)

Howden [6] proposed Weak Mutation [28]
to optimize the execution of Strong Mutation.
Weak Mutation checks the result of a mutant
immediately after the mutated component is exe-
cuted with the resulting execution of the original
component to say is the mutant is killed or not.

2.2. Higher-order Mutation Testing

Higher-order mutation (HOM) testing is a gen-
eralization of traditional mutation testing.
Higher-order mutants are constructed by insert-
ing two or more changes into the program under

34 Ahmed S. Ghiduk

test or by combining two or more first-order
mutants. Higher-order mutants can be classified
into six categories based on the way that they
are Coupled and Subsuming [1]. Coupled means:
complex errors are coupled to simple errors, and
the coupling effect hypothesis states that test
input sets that detect simple types of faults are
sensitive enough to detect more complex types
of faults [3]. A subsuming HOM is one in which
the first-order constituent mutants partly mask
one another. Therefore, a subsuming HOM is
harder to kill than the first-order mutants from
which it is constructed.

2.3. Data-flow Analysis

The structure of the program can be represented
by the control-flow graph. A control-flow graph
G = (N, E) with a unique entry node n0 and
a unique exit node nk, consists of a set N of
nodes, where each node represents a statement,
and a set E of directed edges, where a directed
edge e = (n, m) is an ordered pair of two adja-
cent nodes, called tail and head of e, respectively
[29,30].

Data-flow analysis identifies all definition-use
(def-use) pairs for any variable v of the program
under test. A def-use is the order triple (d, u, v)
in which statement d contains a definition for
variable v and statement u contains a use of v
that can be reached by d over some paths in
the program under test [23, 24]. A variable is
defined in a statement when its value is assigned
or changed. A variable is used in a statement
when its value is utilized in a statement and not
changed. A predicate use (p-use) for a variable
indicates the use of the variable in a predicate.
A computational use (c-use) indicates the use of
the variable in a computation.

3. A Proposed Higher-Order Mutant
Generation Technique

This section describes the proposed technique for
generating a reduced set of higher-order mutants.
This technique utilizes the concepts of data-flow
analysis of the program to reduce the number of

mutation positions through the tested program
which will reduce the number of higher-order
mutants. The proposed technique is based on
data-flow analysis [31] and Muclipse tool [32,33].
The proposed technique consists of the following
main modules.
1. Analysis Module.
2. Mutant Generation Module.
3. Mutant Filtering Module.
These modules are described in more detail be-
low.

3.1. Analysis Module

This module applies the data-flow analysis proce-
dure proposed by F.E. Allen and J. Cocke [31] to
find all definition-use pairs (all definition-c-use
and all definition-p-use) in the tested program.
This module reads the Java source code of
the program under test, builds the control-flow
graph of the tested program, and identifies all
definition-use pairs for each method in this Java
program individually. The proposed technique
reduces the number of def-p-use pairs by com-
bining all def-p-use pairs which have the same
def point (i.e., beginning statement of the edge
p-u) into one def-p-use pair where the use point
(end statement u) does not contain any uses. The
outputs of this phase are passed to the Mutant
Generation Module (step 2).

For the Java example program shown in Ta-
ble 2, this phase finds all definition-c-uses and
all definition-p-uses pairs in the tested program
by applying the proposed data-flow analysis pro-
cedure. The Analysis Module finds 10 def-c-use
pairs and 20 def-p-use pairs for method Mid-
num(). Table 3 shows all def-use pairs of method
Midnum() of the example program given in Ta-
ble 2. In Table 3, a def-c-use (d, cu, x) consists of
the statement “d” which contains a definition for
variable “x” which is used in a computation state-
ment “cu” and a def-p-use (d, p-u, x) consists
of the statement “d” which contains a definition
for variable “x” which is used through the edge
“p-u” which starts at statement “p” and ends
at statement “u”. Then, the proposed technique
reduces the number of def-p-use pairs by merging
all def-p-use pairs which have the same def point.

Reducing the Number of Higher-order Mutants with the Aid of Data Flow 35

Table 2. Java example program

1. package edu.ncsu.csc326.paperHOM_dataflow; 29. {
2. public class Mid1 { 30. mid = y;
3. private int num1, num2, num3, Mid; 31. }
4. public Mid1(){ 32. else
5. } 33. {
6. public void setNum1(int x){ 34. if(x<z)
7. num1 = x; 35. {
8. } 36. mid = x;
9. public void setNum2(int x){ 37. }
10. num2 = x; 38. }
11. } 39. }
12. public void setNum3(int x){ 40. else
13. num3 = x; 41. {
14. } 42. if(x>=y)
15. public int getMid(){ 43. {
16. return Mid; 44. mid = y;
17. } 45. }
18. public void Midnum() 46. else
19. { 47. {
20. int x, y, z; 48. if(x>z)
21. int mid; 49. {
22. x = num1; 50. mid = x;
23. y = num2; 51. }
24. z = num3; 52. }
25. mid = z; 53. }
26. if(y<z) 54. Mid = mid;
27. { 55. }
28. if(x<y) 56. }

Therefore, two def-p-use pairs such as (22, 28-39,
x) and (22, 28-32, x) will merge to one def-p-use
(22, 28, x). The proposed technique reduces the
20 def-p-uses to 10 def-p-uses. Table 3 gives the
new def-p-uses pairs. The list of def-c-uses and
the reduced def-p-uses are passed to the Mutant
Generation Module.

3.2. Mutant Generation Module

This module uses the data collected by the Anal-
ysis Module to generate the set of higher-order
mutants. This module considers only the loca-
tions of def points and use points as locations
to seed mutation. This module uses the set of
method-level operators proposed by Y. Ma and
J. Offutt [34] using the Muclipse tool [32,33] to
generate the first-order mutants. Table 4 shows
this set of mutation operators. This module re-
quires three inputs to perform its task (i.e., gen-
erating a set of higher-order mutants): the first

input is the Java source code of the program
under test, the second is the set of mutation
operators given in Table 4, and the third is the
set of mutation locations which is the location
of def and use statements (i.e., set of defs ∪ set
of uses) in the tested program. For the exam-
ple program given in Table 2, the set of muta-
tion locations is {22, 23, 24, 25, 30, 36, 44, 50} ∪
{36, 50, 30, 44, 25, 54, 28, 34, 42, 48, 26} = {22,
23, 24, 25, 26, 28, 30, 34, 36, 42, 44, 48, 50, 54}.

For generating first-order mutants, the pro-
posed technique needs a set of mutation op-
erators, a set of mutation locations, and the
program to be mutated. For the example pro-
gram, the set of mutation locations is the
set of defs locations and uses locations =
{22, 23, 24, 25, 26, 28, 30, 34, 36, 42, 44, 48, 50, 54}
and the set of mutation operators is the 16 oper-
ators given in Table 4. The following pseudocode
presents the proposed DataFolwBasedFOM algo-
rithm for generating a reduced list of FOMs.

36 Ahmed S. Ghiduk

Table 3. All def-uses of method Midnum() of the example program

def-c-uses def-p-uses Reduced def-p-uses
1 (22,36,x) (22,28-39,x) (22,28-32,x) (22,28,x)
2 (22,50,x) (22,34-35,x) (22,34-38,x) (22,34,x)
3 (23,30,y) (22,42-43,x) (22,42-46,x) (22,42,x)
4 (23,44,y) (22,48-49,x) (22,48-52,x) (22,48,x)
5 (24,25,z) (23,26-27,y) (23,26-40,y) (23,26,y)
6 (25,54,mid) (23,28-29,y) (23,28-32,y) (23,28,y)
7 (30,54,mid) (23,42-43,y) (23,42-46,y) (23,42,y)
8 (36,54,mid) (24,26-27,z) (24,26-40,z) (24,26,z)
9 (44,54,mid) (24,34-35,z) (24,34-38,z) (24,34,z)
10 (50,54,mid) (24,48-49,z) (24,48-52,z) (24,48,z)

Table 4. Set of mutation operators

Category Mutation
Operator Description

AO

AORB A binary arithmetic operator is replaced by another one.
AORU An unary arithmetic operator is replaced by another one.
AORS A short-cut arithmetic operator is replaced by another one.
AOIS A short-cut arithmetic operator is inserted into the program.
AOIU An unary arithmetic operator is inserted into the program.
AODS A short-cut arithmetic operator is deleted from the program.
AODU An unary arithmetic operator is deleted from the program.

RO ROR A relational operator is replaced by another one.

CO
COR A binary conditional operator is replaced by another one.
COI An unary conditional operator is inserted into the program.
COD An unary conditional operator is deleted from the program.

SO SOR A shift operator is replaced by another one.

LO
LOR A binary logical operator is replaced by another one.
LOI An unary logical operator is inserted into the program.
LOD An unary logical operator is deleted from the program.

AS ASRS A short-cut assignment operator is replaced by another one.

Algorithm DataFolwBasedFOM(program,
mutationPoints[], operators[])

LET firstOrderMutants be an empty list
WHILE mutationPoints.size() > 0 DO

WHILE !(oprators.empty()) DO
op = oprators.select();
mp = mutationPoints.select();
newMutant = program.mutate(op, mp);
firstOrderMutants.update(newMutant);

ENDWHILE
ENDWHILE
RETURN firstOrderMutants;

The function Operator.select() uses differ-
ent procedures to select an operator such as

1) not selected yet, 2) different operator, and
3) different category and the function mutation-
Points.select() selects a not selected yet mutation
position.

A second-order mutant contains two muta-
tions, the first mutation at the def position and
the second mutation at the use position and
the two positions belong to the same def-use
pairs. Therefore, the set of second-order mu-
tants is the intersection between the set of
first-order mutants at defs locations with the set
of first-order mutants at uses locations. To gen-
erate second-order mutants, the proposed tech-
nique inserts two mutations into the original pro-

Reducing the Number of Higher-order Mutants with the Aid of Data Flow 37

FOMs

at

all-defs

FOMs

at

all-uses

SOM

at possible

def-use

Figure 1. Mathematical representation of FOM and SOM

gram at the def and the use locations of the same
def-use pairs. It can also merge the two first-order
mutants at def and use positions of the same
def-use pairs to construct a second-order mutant.
Figure 1 shows a mathematical representation
for the first-order mutants and the second-order
mutants.

According to the above description the pro-
posed technique needs only mutation positions,
mutation operators, and the program to be mu-
tated to generate higher-order mutants without
needing the first-order mutants. The proposed
technique selects one of the elements of the set
of all def-use pairs and seeds this element with
two mutation operators: one operator is applied
at the def location and the second operator is
applied at the use location. The following pseu-
docode presents the proposed DataFolwBased-
SOM algorithm for generating the reduced list
of second-order mutants.
Algorithm DataFolwBasedSOM(program,

allDefUsePairs[], operators[])
LET secondOrderMutants be an empty list
WHILE allDefUsePairs.size()>0 DO

WHILE !(oprators.empty()) DO
op1 = oprators.select();
op2 = oprators.select();
du= allDefUsePairs.select();
newMutant=program.mutate(op1, op2,

du);
secondOrderMutants.update(newMutant);

ENDWHILE
ENDWHILE
RETURN secondOrderMutants;

The function Operator.select() uses different
procedures to select two operators such as 1) not
selected yet, 2) different operator, and 3) different
category and the function allDefUsePairs.select()

selects a not selected yet def-use pairs to be a mu-
tation point.

Table 5 (a) presents an example for sec-
ond-order mutant of the example program at the
def-c-use (22, 36, x) and Table 5 (b) presents an
example for second-order mutant of the example
program at the def-p-use (24, 48, z).

For generating higher-order mutants of even
order greater than the second-order, the pro-
posed technique applies the DataFolwBased-
SOM algorithm more than one time with
a change of the input program to the out-
put or mutated program of the previous cy-
cle. To generate higher-order mutants of odd
order greater than the second order, the pro-
posed technique applies the DataFolwBasedSOM
algorithm more than one time with a change
of the input program to the output or mu-
tated program of the previous cycle in such
a way that in the last cycle the algorithm seeds
one mutation operator at def or use location
only.

For example, for generating fourth-order mu-
tants the technique applies the DataFolwBased-
SOM algorithm two times in such a way that
the inputs of the second cycle are the mu-
tated programs (second-order mutants) of the
first cycle. To generate third-order mutants,
the technique applies the DataFolwBasedSOM
algorithm two times such that the inputs of
the second cycle are the mutated programs of
the first cycle (second-order mutants) restrict-
ing the function program.mutate(op1, op2, du)
to seed one operator at the def location or
at the use location only. Table 6 gives exam-
ples for third-order (3OMs) and fourth-order
(4OMs) mutants of the example program given
in Table 2.

38 Ahmed S. Ghiduk

Table 5. An example for second-order mutant of the example program

18. public void Midnum() 38. } 18. public void Midnum() 38. }
19. { 39. } 19. { 39. }
20. int x, y, z; 40. else 20. int x, y, z; 40. else
21. int mid; 41. { 21. int mid; 41. {
22. x = ++num1; 42. if(x>=y) 22. x = num1; 42. if(x>=y)
23. y = num2; 43. { 23. y = num2; 43. {
24. z = num3; 44. mid = y; 24. z = num3++; 44. mid = y;
25. mid = z; 45. } 25. mid = z; 45. }
26. if(y<z) 46. else 26. if(y<z) 46. else
27. { 47. { 27. { 47. {
28. if(x<y) 48. if(x>z) 28. if(x<y) 48. if(x<z)
29. { 49. { 29. { 49. {
30. mid = y; 50. mid = x; 30. mid = y; 50. mid = x;
31. } 51. } 31. } 51. }
32. else 52. } 32. else 52. }
33. { 53. } 33. { 53. }
34. if(x<z) 54. Mid = mid; 34. if(x<z) 54. Mid = mid;
35. { 55. } 35. { 55. }
36. mid *= x; 56. } 36. mid = x; 56. }
37. } 37. }

(a) SOM at du-pair (22,36,x) (b) SOM at du-pair (24,48,z)

3.3. Mutant Filtering Module

This module eliminates any useless mutants from
the generated set of higher-order mutants. This
module uses some criteria to divide the mutants
into two categories: the first category is the target
set of HOMs and the second one is the set of
useless mutants. These criteria are:
1. Redundant mutants: the repeated mutants

which were generated before.
2. First-order mutants: this happens if the muta-

tion location of the SOM refers to the same
position of the FOM (i.e., the same arith-
metic operator in the same statement). This
happens if the def location and use location
are in the same statement. For example in
the following loop:

1 i = 0 ;
2 sum = 0 ;
3 while (i < 10)
4 sum = sum + i ;

In the above code, the def-use (4, 4, sum)
is a def-use at statement 4 for variable sum.
In this def-use pairs, the def location and
the use location are the same. Therefore, the
proposed algorithm can generate a first-order
mutant by changing the addition operator

“ + ” to the division operator “ / ” and chang-
ing the division operator “ / ” to the addition
operator “ + ”.

3. Equivalent mutants: this module can be sup-
ported by a technique for identifying the
equivalent mutants to remove it. In our ex-
periments, equivalent mutants are manually
identified.

4. Empirical Studies

This section describes the empirical studies per-
formed to evaluate the proposed technique. Two
empirical studies were conducted: the first study
aims to investigate the efficiency of data flow in
aiding the generation of higher-order mutants
and reducing their number as well; the second
study aims to demonstrate that the proposed
mutants do not lead to a substantial loss in the
effectiveness of the method.

4.1. Empirical Study #1

4.1.1. Setup of Empirical Study #1

Prototype: Figure 2 gives the architecture of
the prototype HOMG, which consists of three

Reducing the Number of Higher-order Mutants with the Aid of Data Flow 39

Table 6. An example for third and fourth order mutants of the example program

18. public void Midnum() 38. } 18. public void Midnum() 38. }
19. { 39. } 19. { 39. }
20. int x, y, z; 40. else 20. int x, y, z; 40. else
21. int mid; 41. { 21. int mid; 41. {
22. x = ++num1; 42. if(x>=y) 22. x = num1; 42. if(x>=y)
23. y = num2; 43. { 23. y = num2; 43. {
24. z = num3; 44. mid = y; 24. z = num3++; 44. mid = y;
25. mid = z; 45. } 25. mid = z; 45. }
26. if(y<z) 46. else 26. if(y<z) 46. else
27. { 47. { 27. { 47. {
28. if(x<y) 48. if(x>z) 28. if(x<y) 48. if(x<z)
29. { 49. { 29. { 49. {
30. mid = y++; 50. mid = x; 30. mid = ++y; 50. mid = x;
31. } 51. } 31. } 51. }
32. else 52. } 32. else 52. }
33. { 53. } 33. { 53. }
34. if(x<z) 54. Mid = mid; 34. if(x<z) 54. Mid = -mid;
35. { 55. } 35. { 55. }
36. mid *= x; 56. } 36. mid = x; 56. }
37. } 37. }
(a) 3OM at du-pairs (22,36,x), and (30,54,mid) (b) 4OM at du-pair (24,48,z) and (30,54,mid)

modules: an analysis module, a mutant gener-
ation module, and a mutants filtering module.
This prototype is based on the proposed tech-
nique which is presented in Section 3.
Subject Programs: A set of Java programs was
selected from the previous studies for conduct-
ing an empirical study to evaluate the proposed
technique. The set of subject programs contains
some common programs which are often used
as benchmarks in many software testing stud-
ies. This set of programs is triangle, mid, power,
remainder, and three synthetic programs with
different and complex structures.

Table 7 presents the details of the subject
programs: the first column, Subject Program,
presents a designated title of the program un-
der test; the second column, Reference, presents
some of the previous studies which used this set
of subject programs; and the third column, Scale,
presents the number of lines of code, classes, and
methods in the subject program.

Procedure: the empirical study is conducted
as follows.
1. Run Muclipse tool on the program to be

mutated (original program) to generate
FOMs. Because Muclipse cannot generate
second-order mutants mutants the Muclipse
tool was run on each first-order mutant to

generate all possible second-order mutants.
This set of second-order mutants is used for
comparing the LastToFirst Algorithm, Dif-
ferentOperators Algorithm, and our proposed
Algorithm.

2. Run the analysis module of our technique to
find all def-use pairs of the original program.

3. Run the mutants generation module accord-
ing to the DataFolwBasedSOM algorithm.
Then the useless mutants are removed.

4.1.2. Objectives of Study #1

The study procedure to measure the efficiency
of our proposed technique in generating the
second-order mutants was applied. This study
addresses the following research questions:
– RQ1: How effective is data flow in aiding the

generation of higher-order mutants?
– RQ2: How effective is the proposed technique

in finding a reduced set of higher-order mu-
tants?

4.1.3. Results and Discussion of Study #1

To answer the first research question RQ1,
the DataFolwBasedFOM algorithm to find the
first-order mutants was applied. According to the

40 Ahmed S. Ghiduk

Java program to be mutated Finding
def-use pairs

Generating HOM s

Filtering the generated HOMs

Mutation Operators

Set of HOMs

Figure 2. The architecture of the prototype of HOMG

Table 7. Subject programs

Subject Program Reference Scale
P#1. Triangle [2, 20,26,35] 73 LOC, 1 C, 6 M
P#2. Mid [20,26,36] 61 LOC, 1 C, 6 M
P#3. Power [26,36,37] 49 LOC, 1 C, 5 M
P#4. Remainder [26,36,37] 60 LOC, 1 C, 5 M
P#5. SyntheticProg1 [26] 65 LOC, 1 C, 5 M
P#6. SyntheticProg2 [26] 60 LOC, 1 C, 5 M
P#7. SyntheticProg3 [26] 62 LOC, 1 C, 5 M

procedure of the empirical study, the Muclipse
tool was run on the program to be mutated to
generate FOMs. Muclipse generates 1114 mu-
tated versions of the programs to be mutated.
Table 8 presents the number of first-order mu-
tants for each subject program, and the frequency
of each mutation operator.

The analysis modulefinds a list of def-c-use
pairs and def-p-use pairs for each subject pro-
gram. The analysis module finds 124 def-c-use
pairs for all subject programs and 196 def-p-use
pairs which are reduced to 98 def-p-use pairs.
The analysis module finds 320 du-pairs which
are reduced to 222 du-pairs for all subject
programs. Table 9 presents the number of
du-pairs for each subject program. The mu-
tant generation module generates 122 mutated
versions of the programs to be mutated. This
means that the proposed technique reduced
89% of the number of first-order mutants
generated by Muclipse and presents the effi-
ciency of data flow in aiding the reduction of
the number of mutants. Figure 3 shows the
number of FOMs generated by Muclipse and
the proposed technique for each subject pro-
gram.

To answer the second research question RQ2,
the four techniques were applied: the Muclipse
tool, the LastToFirst Algorithm, the DifferentOp-
erators Algorithm, and the proposed DataFolw-
BasedSOM algorithm to generate all possible
second-order mutants. Table 10 presents the
number of second-order mutants (SOMs) gen-
erated by each one of these algorithms. Apply-
ing the Muclipse tool twice gives 186802 SOMs,
which represents the worst case. The proposed
algorithm generated 222 SOMs, while the Last-
ToFirst algorithm generated 559 SOMs, and
the DifferentOperators algorithm generated 595
SOMs for all subject programs. To compare the
last three algorithms in reducing the number
of higher-order mutants regarding FOMs, the
reduction value of FOMs generated by Muclipse
(RR1 = (FOMs−SOMs)/FOMs) was computed.
Table 10 and Figure 4 show the reduction ra-
tio of the 1114 first-order mutants generated by
the Muclipse tool for each subject program. Our
proposed algorithm reduced 88.07% of the 1114
FOMs, while the LastToFirst algorithm reduced
49.82%, and the DifferentOperators algorithm
reduced 46.59% of 1114 FOMs for all subject
programs. The results show that our proposed al-

Reducing the Number of Higher-order Mutants with the Aid of Data Flow 41

Table 8. Details of FOMs using Muclipse

Mutation Operators Total
AORB AOIU AODU ROR COD SOR LOI ASRS AORS AOIS AODS COR COI LOR LOD

P#1 4 13 0 40 0 0 30 0 0 118 0 4 10 0 0 219
P#2 0 9 0 10 0 0 19 0 0 76 0 0 5 0 0 119
P#3 16 8 1 5 0 0 7 0 0 48 0 0 3 0 0 88
P#4 20 13 1 25 0 0 24 0 0 96 0 2 7 0 0 188
P#5 32 12 0 25 0 0 20 0 0 80 0 0 5 0 0 174
P#6 16 12 0 20 0 0 22 0 0 88 0 0 5 0 0 163
P#7 36 10 0 15 0 0 20 0 0 78 0 0 4 0 0 163
Total 124 77 2 140 0 0 142 0 0 584 0 6 39 0 0 1114

Table 9. The number of du-pairs for each subject program

Subject program dcu dpu Reduced dpu (Rdpu) dcu+Rdpu Mutation Points (mp)
P#1 16 72 36 52 22
P#2 10 20 10 20 14
P#3 14 10 5 19 13
P#4 24 30 15 39 21
P#5 20 20 10 30 18
P#6 22 28 14 36 19
P#7 18 16 8 26 15
Total 124 196 98 222 122

1

4

16

64

256

P#1 P#2 P#3 P#4 P#5 P#6 P#7

N
um

be
r

of
M

ut
an

ts

FOMs generated by Muclipse and the proposed technique

FOMs using
Muclipse

FOMs using
the proposed
algorithm

Figure 3. The number of FOMs generated by Muclipse and the proposed technique

gorithm outperforms the LastToFirst algorithm
by 38.25% and the DifferentOperators algorithm
by 41.48%.

To compare the last three algorithms in
reducing all possible number of higher-order
mutants, the Authors computed the reduction
value of SOMs generated by Muclipse (RR2 =
(MSOMs−ASOMs)/MSOMs) whereMSOMs
is the number of second-order mutants gener-
ated by Muclipse tool, and ASOMs is the num-
ber of second-order mutants generated by one

of the other three algorithms. Table 12 and Fig-
ure 5 show the reduction ratio RR2 of the 186802
second-order mutants generated by the Muclipse
tool for all subject programs. Our proposed al-
gorithm reduced 99.88% of all SOMs while the
LastToFirst algorithm reduced 99.70% and the
DifferentOperators algorithm reduced 99.68% of
186802 SOMs for all subject programs. The re-
sults show that our proposed algorithm outper-
forms the LastToFirst algorithm by 0.18%, and
DifferentOperators algorithm by 0.20%. The re-

42 Ahmed S. Ghiduk

Table 10. The number of second-order mutants generated by the three algorithms

Subject program Muclipse LastToFirst DifferentOperators The proposed algorithm
P#1 47557 110 118 52
P#2 13935 60 76 20
P#3 7634 44 48 19
P#4 35028 94 96 39
P#5 29995 87 87 30
P#6 26304 82 88 36
P#7 26349 82 82 26
Total 186802 559 595 222

Table 11. Reduction % of the number of first-order mutants generated by the three algorithms

Subject program LastToFirst DifferentOperators The proposed algorithm
P#1 49.77% 46.12% 76.26%
P#2 72.60% 65.30% 90.87%
P#3 79.91% 78.08% 91.32%
P#4 57.08% 56.16% 82.19%
P#5 60.27% 60.27% 86.30%
P#6 62.56% 59.82% 83.56%
P#7 62.56% 62.56% 88.13%
Total 49.82% 46.59% 80.07%

35.00%

45.00%

55.00%

65.00%

75.00%

85.00%

95.00%

P#1 P#2 P#3 P#4 P#5 P#6 P#7

R
ed

cu
ti

o
n

R
a
ti

o

Reduction % of FOMs

LastToFirst
Algorithm

Different
Operators
Algorithm

Data-flow
based
algorithm

Figure 4. Reduction percentage of FOMs using the three algorithms

sults show the efficiency of data flow in aid-
ing the reduction of the number of mutants,
and the effectiveness of the proposed technique
in finding a reduced set of higher-order mu-
tants.

4.2. Empirical Study #2

4.2.1. Setup of Empirical Study #2

Subject Programs: The Authors selected four
programs of the subject programs showed in
Table 7 for conducting this empirical study to

demonstrate that the proposed mutant gener-
ation technique does not lead to a substantial
loss in the effectiveness of the mutation test-
ing method. These programs are: triangle, mid,
power, and remainder.
Procedure: the empirical study is conducted as
follows.
1. The Authors randomly selected a set of the

generated FOMs and SOMs. Table 13 shows
the number and ratio of the selected FOMs
and HOMs.

2. The Authors manually generated a set of test
cases to kill all selected FOMs. Then, the

Reducing the Number of Higher-order Mutants with the Aid of Data Flow 43

Table 12. Reduction % of the number of second-order mutants generated by the three algorithms

Subject program LastToFirst DifferentOperators The proposed algorithm
P#1 99.77% 99.75% 99.89%
P#2 99.57% 99.45% 99.86%
P#3 99.42% 99.37% 99.75%
P#4 99.73% 99.73% 99.89%
P#5 99.71% 99.71% 99.90%
P#6 99.69% 99.67% 99.86%
P#7 99.69% 99.69% 99.90%
Total 99.70% 99.68% 99.88%

99.25%

99.35%

99.45%

99.55%

99.65%

99.75%

99.85%

99.95%

P#1 P#2 P#3 P#4 P#5 P#6 P#7

R
ed

u
ct

io
n

R
a
ti

o

Reduction % of SOMs

LastToFirst
Algorithm

Different
Operators
Algorithm

Data-flow
based
algorithm

Figure 5. Reduction percentage of SOMs using the three algorithms

selected SOMs were executed using this set
of test cases.

Table 13. The number and ratio of selected FOMs
and HOMs

#Subject program FOMs SOMs
P#1. Triangle 28 (12.8%) 12 (23.1%)
P#2. Mid 36 (30.3%) 10 (50.0%)
P#3. Power 63 (71.6%) 17 (89.5%)
P#4. Remainder 32 (17.0%) 10 (25.6%)
Total(Mean) 159 (25.9%) 49 (37.7%)

4.3. Objectives of Study #2

The Authors applied the study procedure to il-
lustrate that the proposed mutant generation
technique does not lead to a substantial loss in
the effectiveness of the mutation testing method.

4.3.1. Results and Discussion of Study #2

To illustrate that the proposed mutant gener-
ation technique does not lead to a substantial

loss in the effectiveness of the mutation testing
method, the Authors selected approximately 26%
of FOMs and 38% of SOMs as shown in Table 13.
There is a difference between the ratio of FOMs
and SOMs because most of the selected SOMs
contained one of the selected FOMs. The Au-
thors manually generated a set of test cases to
kill selected set of FOMs. Table 14 shows the
number of required test cases to kill the selected
set of FOMs.

All FOMs and SOMs were selected using the
generated test cases Then, we classified the se-
lected FOMs and SOMs into killed, not killed,
and equivalent (manually investigated) mutants.
Table 15 and Table 16 show the classification,
number, and ratio of FOMs and SOMs, respec-
tively.

The mutation score MS(P, T) was computed
for each program using Eq. 1. Table 17 shows the
mutation score for each program with respect
to FOMs and SOMs. The mutation score shows
that there is no significant loss in the efficiency of
the generated mutants. The results of empirical
study show that the proposed technique gener-
ated a smaller number of equivalent mutants.

44 Ahmed S. Ghiduk

Table 14. The number of test cases

Subject program P#1. Triangle P#2. Mid P#3. Power P#4. Remainder Total
No. of test cases 3 3 2 2 10

Table 15. Classification of the selected FOMs

Subject program #Killed mutants(%) #Not killed (%) #Equivalent (%) Total
P#1. Triangle 26 (93%) 2 (7%) 0 (0%) 28 (100%)
P#2. Mid 32 (89%) 0 (0%) 4 (11%) 36 (100%)
P#3. Power 52 (83%) 11 (17%) 0 (0%) 63 (100%)
P#4. Remainder 29 (91%) 0 (0%) 3 (9%) 32 (100%)
Total(Mean) 139 (89%) 13 (6%) 7 (5%) 159 (100%)

Table 16. Classification of the selected SOMs

Subject program #Killed mutants(%) #Not killed(%) #Equivalent(%) Total
P#1. Triangle 11 (92%) 1 (8%) 0 (0%) 12 (100%)
P#2. Mid 9 (90%) 0 (0%) 1 (10%) 10 (100%)
P#3. Power 14 (82%) 2 (12%) 1 6%) 17 (100%)
P#4. Remainder 10 (100%) 0(0%) 0(0%) 10 (100%)
Total(Mean) 44 (91%) 3 (5%) 2 (4%) 49 (100%)

Table 17. Mutation score of FOMS and SOMs

Subject Program FOM SOM
P#1. Triangle 92.9% 91.7%
P#2. Mid 100.0% 100.0%
P#3. Power 82.5% 87.5%
P#4. Remainder 100.0% 100.0%
Mean 93.8% 94.8%

4.4. Threats to Validity

– Construct Validity
There are three important questions about
the goal of the experiments. First, are the Au-
thors measuring the construct they intended
to measure? Although, the Authors intended
to find a reduced set of higher-order mutants,
some useless mutants (e.g., equivalent mu-
tants and redundancies) can be generated
and included in this set. Second, did the Au-
thors translate these constructs correctly into
observable measures? Although, the consid-
ered the def locations and use locations of
the same variable, the mutations for other
variables at these use locations are not con-
sidered. Third, did the used metrics have

suitable discriminatory power? Although, the
metric of the reduction is the ratio between
the number of generated higher-order mu-
tants to the number of all first-order mutants,
it does not consider the subtlety of the gen-
erated higher-order mutants.

– External Validity
The main external threat to validity; condi-
tions that limit the ability to generalize the
results of our empirical studies to a larger
population of subjects programs, is the set of
subject programs. Although the set of the sub-
ject programs contains some programs which
have been used in many previous studies,
the Authors cannot claim that these subjects
represent a random selection over the popu-
lation of programs as a whole. Although the
set of the subject programs have been used
in many previous studies, a single researcher
selected these programs which may influence
results. Although, the Authors selected the
subject programs in a neutral attitude, there
is no guarantee that selection process was
performed in unbiased way.

– Internal Validity
There are some main internal threats to va-
lidity, which are the influences that can af-

Reducing the Number of Higher-order Mutants with the Aid of Data Flow 45

fect the dependent variables. First, although
the mutation operators were selected in a
significant way to prevent the generation of
equivalent mutants, the equivalent mutants
were not considered through the reduction
ratio. Therefore, other empirical studies are
required to overcome this problem. Second,
although a common algorithm proposed by
F.E. Allen and J. Cocke [31] was imple-
mented to find the set of definition-uses, the
accuracy of the implementation can influence
the number of definition-uses pairs which
have a strong effect on the number of gener-
ated mutants.

5. Related Work

Mutation testing has been developed by DeMillo
et al. [3] and Hamlet [4] to create test data
for killing the seeded mutations in the tested
program [5]. The researchers classified mutants
into two categories: 1) First-order mutants which
are created by the injection of a unique fault in
the tested program [5]; 2) Higher-order mutants
which are produced by inserting two or more
faults in the tested program [1]. Jia and Har-
man [38] provided a comprehensive analysis of
trends and results of mutation testing techniques.
This section reviews mutation operators design,
generation of mutants, reduction of the number
of mutants, and data flow analysis in mutation
testing.

5.1. Mutation Operators
and Mutant Generation

At the beginning of mutation testing, most muta-
tion testing techniques targeted FORTRAN pro-
grams. Many mutation operators are presented
for most of programming languages such as FOR-
TRAN IV [39, 40], FORTRAN 77 [15, 41], Ada
[42,43], ANSI C [13], and the Java programming
language [44, 45]. Alexander et al. [46] presented
a set of mutation operators to insert into Java
utility libraries. Bradbury et al. [47] presented
a set of mutation operators to the concurrent
Java programs. Derezińska proposed a set of

C# mutation operators [48, 49]. Ferrari et al.
[50] suggested a set of mutation operators for
Aspect-Oriented programs. Anbalagan and Xie
[51, 52] presented a technique for creating mu-
tants for pointcuts and detecting equivalent mu-
tants.

5.2. Mutant Reduction

Considering all mutants makes mutation testing
a computationally expensive technique. There-
fore, reducing the number of the considered mu-
tants without a significant loss of test effective-
ness has become a key research problem. Sup-
pose M is a set of mutants and T is a set of
test data. The mutation score of the test set
T applied to mutants M is MS(M, T). There-
fore, the mutant reduction problem is known as
finding a subset of mutants m from M, where
MS(m, T) = MS(M, T). Offutt and Untch [53]
classified mutant reduction techniques to three
techniques. These techniques concentrate only
on the fewer, the faster, or the smarter mutants.
Jia and Harman [38] divided these techniques
into two techniques. One technique reduces the
created mutants and the other technique reduces
the execution cost. There are four popular tech-
niques to reduce the number of considered mu-
tants: mutant sampling, mutant clustering, se-
lective mutation, and higher-order mutation. In
mutant sampling a percentage of mutants is ran-
domly selected from the set of all mutants [10–12]
and the remaining mutants are discarded [15,54].
In mutant clustering [17] a subset of mutants
is selected using clustering algorithms and the
remaining mutants are discarded [55]. The Selec-
tive Mutation [56,57] can be achieved by reducing
the number of applied mutation operators with-
out a significant loss of test effectiveness [14].
Selective Mutation can be done by omitting two
mutation operators [14], four mutation opera-
tors [53], or six mutation operators. Wong and
Mathur selected mutation operators based on
test effectiveness [58, 59]. Offutt et al. [60] classi-
fied Mothra mutation operators to three groups:
statements, operands, and expressions and omit-
ted operators from each class in turn. Mresa and
Bottaci [61] considered mutants which have the

46 Ahmed S. Ghiduk

ability to detect equivalent mutants. Jia and Har-
man [20, 22] suggested reducing the number of
first-order mutants by replacing them with a sin-
gle HOM. Langdon et al. have used genetic pro-
gramming to generate higher-order mutants [62].

5.3. Data Flow Analysis
and Mutation Testing

A number of work explored the role of data
flow analysis in mutation testing. Girgis and
Woodward [63] and Marshall et al. [64] studied
applying data flow analysis in weak mutation
testing. Offutt and Tewary [65] and Mathur and
Wong [54] studied the coverage of mutation based
and data flow criteria by each other. Wong and
Mathur [66] compared the effectiveness of mu-
tation and data flow testing in fault detection.
A comprehensive comparison between mutation
and data flow testing techniques based on find-
ings reported in research articles can be found in
[67]. This field is in need for a lot of work to study
the role of data flow concepts in higher-order
mutation testing. From the above discussion, it
is clear that our work belongs to the mutant
reduction category. In addition, it differs from
all pervious mutant reduction work. It is the first
work treating mutant reduction by reducing the
locations of seeding mutation.

6. Conclusion and Future work

In this paper a new technique for generating a re-
duced set of higher-order mutants was introduced.
The proposed technique uses data-flow concepts
for the identification of the higher-order mutants.
The generated set of higher-order mutants con-
sists of a reduced number of mutants, which
reduces the cost of higher-order mutation testing.
In addition, the proposed technique can gener-
ate the higher-order mutants directly without
generating the first-order mutants or by combin-
ing two or more first-order mutants. The results
of the conducted experiments showed that the
proposed technique outperforms the LastToFirst
algorithm by 38.25%, and the DifferentOperators
algorithm by 41.48% reducing the total possible
number of higher-order mutants regarding FOMs.

In addition, the proposed algorithm outperforms
the LastToFirst algorithm by 0.18%, and the Dif-
ferentOperators algorithm by 0.20% in reducing
all possible number of higher-order mutants. The
obtained results showed the efficiency of data flow
in aiding the reduction of the number of mutants
and the effectiveness of the proposed technique
in finding a reduced set of higher-order mutants.
In future work, The Authors are planning to
perform these studies with real and large subject
programs. In addition, the future work will try
to answer the questions: “Do data-flow based
higher-order mutants create subtle faults?” and
“What are the effects of the proposed approach
in terms of overcoming realism and equivalent
mutant problems of mutation testing?”. Besides,
the Authors will study the subsuming property
of the generated mutants in the future work.

References

[1] Y. Jia and M. Harman, “Higher order
mutation testing,” Inf. Softw. Technol., Vol. 51,
No. 10, Oct. 2009, pp. 1379–1393. [Online].
http://dx.doi.org/10.1016/j.infsof.2009.04.016

[2] W.B. Langdon, M. Harman, and Y. Jia,
“Efficient multi-objective higher order mutation
testing with genetic programming,” J. Syst.
Softw., Vol. 83, No. 12, Dec. 2010, pp. 2416–2430.
[Online]. http://dx.doi.org/10.1016/j.jss.2010.07.
027

[3] R.A. DeMillo, R.J. Lipton, and F.G. Say-
ward, “Hints on test data selection: Help
for the practicing programmer,” Computer,
Vol. 11, No. 4, Apr. 1978, pp. 34–41. [Online].
http://dx.doi.org/10.1109/C-M.1978.218136

[4] R.G. Hamlet, “Testing programs with the aid
of a compiler,” IEEE Transactions on Software
Engineering, Vol. SE-3, No. 4, July 1977, pp.
279–290.

[5] K. Ayari, S. Bouktif, and G. Antoniol,
“Automatic mutation test input data generation
via ant colony,” in Proceedings of the 9th
Annual Conference on Genetic and Evolutionary
Computation, ser. GECCO ’07. New York, NY,
USA: ACM, 2007, pp. 1074–1081. [Online].
http://doi.acm.org/10.1145/1276958.1277172

[6] W.E. Howden, “Weak mutation testing and com-
pleteness of test sets,” IEEE Transactions on
Software Engineering, Vol. SE-8, No. 4, July
1982, pp. 371–379.

Reducing the Number of Higher-order Mutants with the Aid of Data Flow 47

[7] Q.V. Nguyen and L. Madeyski, Advanced Com-
putational Methods for Knowledge Engineering:
Proceedings of the 2nd International Conference
on Computer Science, Applied Mathematics
and Applications (ICCSAMA 2014). Cham:
Springer International Publishing, 2014, ch.
Problems of Mutation Testing and Higher Order
Mutation Testing, pp. 157–172. [Online]. http:
//dx.doi.org/10.1007/978-3-319-06569-4_12

[8] M. Kintis, M. Papadakis, and N. Malevris, “Iso-
lating first order equivalent mutants via second
order mutation,” in IEEE Fifth International
Conference on Software Testing, Verification and
Validation (ICST), April 2012, pp. 701–710.

[9] L. Madeyski, W. Orzeszyna, R. Torkar, and
M. Józala, “Overcoming the equivalent mutant
problem: A systematic literature review and a
comparative experiment of second order muta-
tion,” IEEE Transactions on Software Engineer-
ing, Vol. 40, No. 1, Jan 2014, pp. 23–42.

[10] A.T. Acree, “On mutation,” Ph.D. dissertation,
Georgia Inst of Tech Atlanta School of Informa-
tion and Computer Science, Aug 1980.

[11] T.A. Budd, “Mutation analysis of program test
data,” Ph.D. dissertation, Yale Univ, 1980.

[12] I. Bluemke and K. Kulesza, New Results
in Dependability and Computer Systems:
Proceedings of the 8th International Con-
ference on Dependability and Complex Systems
DepCoS-RELCOMEX, September 9-13, 2013,
Brunów, Poland. Heidelberg: Springer Inter-
national Publishing, 2013, ch. Reduction of
Computational Cost in Mutation Testing by
Sampling Mutants, pp. 41–51. [Online]. http:
//dx.doi.org/10.1007/978-3-319-00945-2_4

[13] H. Agrawal, R.A. DeMillo, R. Hathaway, W.M.
Hsu, W. Hsu, E. Krauser, R.J. Martin, A.P.
Mathur, and E. Spafford, “Design of mutant
operators for the C programming language,”
Software Eng. Research Center, Computer Sci-
ence Dept., Purdue Univ., Technical Report
SERC-TR-41-P, 1989.

[14] A.P. Mathur, “Performance, effectiveness, and re-
liability issues in software testing,” in Computer
Software and Applications Conference, 1991.
COMPSAC ’91., Proceedings of the Fifteenth
Annual International, Sep 1991, pp. 604 – 605.

[15] K.N. King and A.J. Offutt, “A fortran
language system for mutation-based soft-
ware testing,” Softw. Pract. Exper., Vol. 21,
No. 7, Jun. 1991, pp. 685–718. [Online].
http://dx.doi.org/10.1002/spe.4380210704

[16] A.J. Offutt, G. Rothermel, and C. Zapf, “An
experimental evaluation of selective mutation,”
in Software Engineering, 1993. Proceedings.,

15th International Conference on, May 1993, pp.
100–107.

[17] S. Hussain, “Mutation clustering,” Master’s the-
sis, King’s College London, 2008.

[18] A.J. Offutt, “Investigations of the soft-
ware testing coupling effect,” ACM Trans.
Softw. Eng. Methodol., Vol. 1, No. 1,
Jan. 1992, pp. 5–20. [Online]. http:
//doi.acm.org/10.1145/125489.125473

[19] M. Kintis, M. Papadakis, and N. Malevris, “Eval-
uating mutation testing alternatives: A collat-
eral experiment,” in Software Engineering Con-
ference (APSEC), 2010 17th Asia Pacific, Nov
2010, pp. 300–309.

[20] M. Polo, M. Piattini, and I. García-Rodríguez,
“Decreasing the cost of mutation testing with
second-order mutants,” Softw. Test. Verif. Re-
liab., Vol. 19, 2009, pp. 111–131.

[21] M. Harman, Y. Jia, and W.B. Langdon, “A
manifesto for higher order mutation testing,” in
Software Testing, Verification, and Validation
Workshops (ICSTW), 2010 Third International
Conference on, April 2010, pp. 80–89.

[22] Y. Jia and M. Harman, “Constructing subtle
faults using higher order mutation testing,” in
Eighth IEEE International Working Conference
onSource Code Analysis and Manipulation, Sept
2008, pp. 249–258.

[23] P.M. Herman, “A data flow analysis approach to
program testing,” Australian Computer Journal,
Vol. 8, No. 3, 1976, pp. 92–96.

[24] S. Rapps and E.J. Weyuker, “Selecting soft-
ware test data using data flow information,”
IEEE Transactions on Software Engineering, Vol.
SE-11, No. 4, April 1985, pp. 367–375.

[25] P.G. Frankl and E.J. Weyuker, “An applicable
family of data flow testing criteria,” IEEE Trans-
actions on Software Engineering, Vol. 14, No. 10,
Oct 1988, pp. 1483–1498.

[26] A.S. Ghiduk, M.J. Harrold, and M.R. Girgis,
“Using genetic algorithms to aid test-data gen-
eration for data-flow coverage,” in Software En-
gineering Conference, 2007. APSEC 2007. 14th
Asia-Pacific, Dec 2007, pp. 41–48.

[27] I. Burnstein, Practical Software Testing, 1st ed.
Springer Science+Business Media New York:
Springer Professional Computing, 2003, ch. A
Process-Oriented Approach.

[28] M. Papadakis and N. Malevris, “Automatically
performing weak mutation with the aid
of symbolic execution, concolic testing and
search-based testing,” Software Quality Journal,
Vol. 19, No. 4, Dec. 2011, pp. 691–723. [Online].
http://dx.doi.org/10.1007/s11219-011-9142-y

48 Ahmed S. Ghiduk

[29] M.S. Hecht, Flow Analysis of Computer Pro-
grams. New York, NY, USA: Elsevier Science
Inc., 1977.

[30] S. Rapps and E.J. Weyuker, “Data flow
analysis techniques for test data selection,” in
Proceedings of the 6th International Conference
on Software Engineering, ser. ICSE ’82. Los
Alamitos, CA, USA: IEEE Computer Society
Press, 1982, pp. 272–278. [Online]. http:
//dl.acm.org/citation.cfm?id=800254.807769

[31] F.E. Allen and J. Cocke, “A program data
flow analysis procedure,” Commun. ACM,
Vol. 19, No. 3, Mar. 1976, p. 137. [Online].
http://doi.acm.org/10.1145/360018.360025

[32] B.H. Smith and L. Williams, “On guiding the
augmentation of an automated test suite via
mutation analysis,” Empirical Softw. Engg.,
Vol. 14, No. 3, Jun. 2009, pp. 341–369. [Online].
http://dx.doi.org/10.1007/s10664-008-9083-7

[33] B.H. Smith and L. Williams, “An empirical
evaluation of the muJava mutation operators,”
in Testing: Academic and Industrial Conference
Practice and Research Techniques - MUTATION,
2007. TAICPART-MUTATION 2007, Sept 2007,
pp. 193–202.

[34] Y.S. Ma and J. Offutt, “Description of
method-level mutation operators for Java,” 2005.
[Online]. https://cs.gmu.edu/~offutt/mujava/
mutopsMethod.pdf

[35] P. May, J. Timmis, and K. Mander, Artificial
Immune Systems: 6th International Confer-
ence, ICARIS 2007, Santos, Brazil, August
26-29, 2007. Proceedings. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, ch. Immune
and Evolutionary Approaches to Software
Mutation Testing, pp. 336–347. [Online]. http:
//dx.doi.org/10.1007/978-3-540-73922-7_29

[36] C.C. Michael, G. McGraw, and M.A. Schatz,
“Generating software test data by evolution,”
IEEE Transactions on Software Engineering,
Vol. 27, No. 12, Dec. 2001, pp. 1085–1110.
[Online]. http://dx.doi.org/10.1109/32.988709

[37] R.P. Pargas, M.J. Harrold, and R. Peck,
“Test-data generation using genetic algorithms,”
Softw. Test., Verif. Reliab., Vol. 9, No. 4, 1999,
pp. 263–282. [Online]. http://dx.doi.org/10.
1002/(SICI)1099-1689(199912)9:4<263::AID-
STVR190>3.0.CO;2-Y

[38] Y. Jia and M. Harman, “An analysis and survey
of the development of mutation testing,” IEEE
Transactions on Software Engineering, Vol. 37,
No. 5, Sept 2011, pp. 649–678.

[39] T.A. Budd, R.J. Lipton, R. DeMillo, and F. Say-
ward, “The design of a prototype mutation sys-

tem for program testing,” in Proceedings NCC,
AFIPS Conference Records, 1978, pp. 623–627.

[40] T.A. Budd, R.A. DeMillo, R.J. Lipton, and
F.G. Sayward, “Theoretical and empirical
studies on using program mutation to test
the functional correctness of programs,” in
Proceedings of the 7th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming
Languages, ser. POPL ’80. New York, NY,
USA: ACM, 1980, pp. 220–233. [Online].
http://doi.acm.org/10.1145/567446.567468

[41] A. J.Offutt and K.N. King, “A FORTRAN 77 in-
terpreter for mutation analysis,” SIGPLAN Not.,
Vol. 22, No. 7, Jul. 1987, pp. 177–188. [Online].
http://doi.acm.org/10.1145/960114.29669

[42] J. Bowser, “Reference manual for Ada mutant
operators,” Georgia Inst. of Technology, Techni-
cal Report GIT-SERC-88/02, 1988.

[43] A.J. Offutta, J. Voas, and J. Payn, “Mutation op-
erators for Ada,” George Mason Univ., Technical
Report ISSE-TR-96-09, 1996.

[44] S. Kim, J.A. Clark, and J.A. McDermid, “The
rigorous generation of Java mutation operators
using HAZOP,” in 12th International Conf. Soft-
ware and Systems Eng. and Their Applications,
1999.

[45] Y.S. Ma, Y.R. Kwon, and J. Offutt, “Inter-class
mutation operators for Java,” in Software Relia-
bility Engineering, 2002. ISSRE 2003. Proceed-
ings. 13th International Symposium on, 2002, pp.
352–363.

[46] R.T. Alexander, J.M. Bieman, S. Ghosh, and
B. Ji, “Mutation of Java objects,” in Proceedings
of the 13th International Symposium on Software
Reliability Engineering, 2002, pp. 341–351.

[47] J.S. Bradbury, J.R. Cordy, and J. Dingel, “Mu-
tation operators for concurrent Java (J2SE 5.0),”
in Mutation Analysis, 2006. Second Workshop
on, Nov 2006, p. 11.

[48] A. Derezińska, Software Engineering Techniques:
Design for Quality. Boston, MA: Springer
US, 2007, ch. Advanced mutation operators
applicable in C# programs, pp. 283–288.
[Online]. http://dx.doi.org/10.1007/978-0-387-
39388-9_27

[49] A. Derezinska, “Quality assessment of mutation
operators dedicated for C# programs,” in Qual-
ity Software, 2006. QSIC 2006. Sixth Interna-
tional Conference on, Oct 2006, pp. 227–234.

[50] F.C. Ferrari, J.C. Maldonado, and A. Rashid,
“Mutation testing for aspect-oriented programs,”
in Software Testing, Verification, and Validation,
2008 1st International Conference on, April 2008,
pp. 52–61.

Reducing the Number of Higher-order Mutants with the Aid of Data Flow 49

[51] P. Anbalagan and T. Xie, “Efficient mutant
generation for mutation testing of pointcuts
in aspect-oriented programs,” in Proceedings
of the Second Workshop on Mutation Analysis,
ser. MUTATION ’06. Washington, DC, USA:
IEEE Computer Society, 2006, p. 3. [Online].
http://dx.doi.org/10.1109/MUTATION.2006.3

[52] P. Anbalagan and T. Xie, “Automated genera-
tion of pointcut mutants for testing pointcuts in
AspectJ programs,” in 19th International Sympo-
sium on Software Reliability Engineering, 2008.
ISSRE 2008., Nov 2008, pp. 239–248.

[53] A.J. Offutt and R.H. Untch, “Mutation
testing for the new century,” W.E. Wong,
Ed. Norwell, MA, USA: Kluwer Academic
Publishers, 2001, ch. Mutation 2000: Uniting
the Orthogonal, pp. 34–44. [Online]. http:
//dl.acm.org/citation.cfm?id=571305.571314

[54] A.P. Mathur and W.E. Wong, “An em-
pirical comparison of data flow and mu-
tation-based test adequacy criteria,” Soft-
ware Testing, Verification and Reliability,
Vol. 4, No. 1, 1994, pp. 9–31. [Online].
http://dx.doi.org/10.1002/stvr.4370040104

[55] C. Ji, Z. Chen, B. Xu, and Z. Zhao, “A novel
method of mutation clustering based on domain
analysis,” in Proceedings of the 21st Interna-
tional Conference on Software Engineering &
Knowledge Engineering (SEKE’2009), Boston,
Massachusetts, USA, July 1-3, 2009, 2009, pp.
422–425.

[56] A.S. Namin and J.H. Andrews, “Finding
sufficient mutation operators via variable
reduction,” in Proceedings of the Second
Workshop on Mutation Analysis, ser. MUTA-
TION ’06. Washington, DC, USA: IEEE
Computer Society, 2006, p. 5. [Online].
http://dx.doi.org/10.1109/MUTATION.2006.7

[57] A.S. Namin and J.H. Andrews, “On sufficiency
of mutants,” in Companion to the Proceedings
of the 29th International Conference on Software
Engineering, ser. ICSE COMPANION ’07.
Washington, DC, USA: IEEE Computer Society,
2007, pp. 73–74. [Online]. http://dx.doi.org/10.
1109/ICSECOMPANION.2007.56

[58] W.E. Wong, “On mutation and data flow,” Ph.D.
dissertation, West Lafayette, IN, USA, 1993, uMI
Order No. GAX94-20921.

[59] W.E. Wong and A.P. Mathur, “Reducing
the cost of mutation testing: An empirical

study,” J. Syst. Softw., Vol. 31, No. 3,
Dec. 1995, pp. 185–196. [Online]. http:
//dx.doi.org/10.1016/0164-1212(94)00098-0

[60] A.J. Offutt, A. Lee, G. Rothermel, R.H.
Untch, and C. Zapf, “An experimental de-
termination of sufficient mutant operators,”
ACM Trans. Softw. Eng. Methodol., Vol. 5,
No. 2, Apr. 1996, pp. 99–118. [Online].
http://doi.acm.org/10.1145/227607.227610

[61] E.S. Mresa and L. Bottaci, “Efficiency of
mutation operators and selective mutation
strategies: an empirical study,” Software Testing,
Verification and Reliability, Vol. 9, No. 4, 1999,
pp. 205–232. [Online]. http://dx.doi.org/10.
1002/(SICI)1099-1689(199912)9:4<205::AID-
STVR186>3.0.CO;2-X

[62] W.B. Langdon, M. Harman, and Y. Jia, “Multi
objective higher order mutation testing with ge-
netic programming,” in Testing: Academic and
Industrial Conference - Practice and Research
Techniques, 2009. TAIC PART ’09, Sept 2009,
pp. 21–29.

[63] M.R. Girgis and M.R. Woodward, “An
integrated system for program testing using
weak mutation and data flow analysis,” in
Proceedings of the 8th International Conference
on Software Engineering, ser. ICSE ’85. Los
Alamitos, CA, USA: IEEE Computer Society
Press, 1985, pp. 313–319. [Online]. http:
//dl.acm.org/citation.cfm?id=319568.319662

[64] A.C. Marshall, D. Hedley, I.J. Riddell, and M.A.
Hennell, “Static dataflow-aided weak mutation
analysis (sdawm),” Inf. Softw. Technol., Vol. 32,
No. 1, Jan. 1990, pp. 99–104. [Online]. http:
//dx.doi.org/10.1016/0950-5849(90)90053-T

[65] A.J. Offutt and K. Tewary, “Empirical compar-
isons of data flow and mutation testing,” 1992.

[66] W.E. Wong and A.P. Mathur, “Fault
detection effectiveness of mutation and
data flow testing,” Software Quality Jour-
nal, Vol. 4, No. 1, pp. 69–83. [Online].
http://dx.doi.org/10.1007/BF00404650

[67] S. Kakarla, S. Momotaz, and A.S. Namin, “An
evaluation of mutation and data-flow testing:
A meta-analysis,” in IEEE Fourth International
Conference on Software Testing, Verification and
Validation Workshops (ICSTW), March 2011, pp.
366–375.

e-Informatica Software Engineering Journal, Volume 10, Issue 1, 2016, pages: 51–67, DOI 10.5277/e-Inf160103

Automatic SUMO to UML translation

Bogumiła Hnatkowskaa
aFaculty of Computer Science and Management, Wrocław University of Science and Technology

bogumila.hnatkowska@pwr.edu.pl

Abstract
Existing ontologies are a valuable source of domain knowledge. This knowledge could be extracted
and reused to create domain models. The extraction process can be aided by tools that enable
browsing ontology, marking interesting notions and automatic conversion of selected elements to
other notations. The paper presents a tool that can be used for SUMO to UML translation. Such
a transformation is feasible and results in a high-quality domain model which is consistent, correct,
and complete, providing that input ontology has the same features.

Keywords: SUMO ontology, information retrieving, domain model, UML, class diagram

1. Introduction

A domain model is a key development artifact. It
captures the most important types of objects in
the context of the domain, i.e. entities that exist
or events that transpire in the environment in
which the system works [1,2]. The domain model,
besides business object models and glossary [1],
is used to document the domain to which the
system relates. The domain model could be repre-
sented with the use of different notations, among
which the most popular are Entity Relationships
Diagrams and UML class diagrams.

Domain models should be of high quality to
reduce the number of changes when the develop-
ment proceeds. Among quality factors the most
important are [3]: consistency, completeness, and
correctness (3C).

Consistency and completeness could be per-
ceived from 2 perspectives: external and internal,
from which the external one is more difficult
to achieve. External completeness means that
we have identified all important entities and re-
lationships in the domain, while external con-
sistency means that we have documented the
identified elements in a way that preserves their
semantics [4]. On the other hand, the domain
model is internally consistent when it contains

no contradictions and it is internally complete
when it does not include any undefined object,
no information is left unstated or is to be deter-
mined [2].

The definition of model correctness is much
vaguer. Some authors define it as a mixture of
consistency and completeness [3], others [4] re-
fer it to syntactic correctness (this meaning of
correctness is used further in the paper).

A business analyst typically elaborates a do-
main model during a business modelling or re-
quirement specification phase [2].

Different elicitation techniques serve to dis-
cover entities in the domain, e.g. interviews. How-
ever, the obtained results strongly depend on the
complexity of the domain, business analyst ex-
perience and the quality of information sources.
The more difficult domain, the less experienced
an analyst or poor quality sources, the more likely
worse quality of the resultant domain model.

On the other hand, domain knowledge is often
included in existing ontologies and could be ex-
tracted from them. The extraction process could
be (partially) automated, which would result in
a high- quality domain model. Consistency and
correctness of such a model could be guaranteed
by construction, assuming that the source (on-
tology) itself is correct and consistent with the

52 Bogumiła Hnatkowska

domain. The model completeness, at least the
internal one, could also be checked.

Many papers prove that the domain knowl-
edge represented by ontology can be widely used
in the design process of information systems. For
example, in [5] author analyses the role of ontolo-
gies in software engineering process. The author
claims that ontology is a significant source of
knowledge in the conceptualization phase and
proposes the ontology life cycle as the background
for a software development. A similar view is pre-
sented in [6] where the authors state that the
integration with ontology can improve software
modelling. An application of domain ontologies
to conceptual model development is also in pre-
sented in [7].

There are many high-level ontologies cur-
rently developed, e.g. BFO, Cyc, GFO, SUMO.
The last one, SUMO, seems to be very promis-
ing because it became the basis for the devel-
opment of many specific domain ontologies. A
particularly useful feature is that the notions
of SUMO have formal definitions (expressed in
SUO-KIF language) and at the same time they
are mapped to the WordNet lexicon [8]. SUO-KIF
is a variant of the KIF (Knowledge Interchange
Format) language [9]. Knowledge is described
declaratively as objects, functions, relations, and
rules. SUMO and related ontologies form the
largest formal public ontology in existence today
[8,9]. What is more, the ontologies that extend
SUMO, are available under GNU General Public
License.

The paper presents a tool for automatic
SUMO to UML translation. It is thought as
a support for a business analyst collaborating
with business experts. The main functionalities
include: browsing ontology content, selection of
interesting elements, and translation of selected
elements to a UML class diagram. The solution
presentation covers the meta-model of SUMO
notions (the main input to the transformation
process), tool architecture and an example of the
domain model which results from tool applica-
tion. The genesis of the tool (related works) is
also shortly described as well as the problems
met during implementation, and the elements
that will be included in the next release.

The only tool available on the Internet that
supports SUMO is SUMO browser, called Sigma
[10]. Tools that allow to create a UML class dia-
gram from the existing ontology exist for other
formalisms, e.g. OWL [11], but not for SUO-KIF.
However, SUO-KIF could be translated to other
formalisms, e.g. DLP [12].

SUMO was selected from existing ontologies
for the following reasons:
– It constitutes the biggest set of ontologies

which is freely available; SUMO contains def-
initions of more than 21 thousands of terms,
and more than 70 thousands of axioms; more-
over, the mapping of SUMO notion to Word-
Net is also available [9];

– SUO-KIF language is very flexible; it allows
to handle relations among three or more
things directly (e.g. OWL does not); it sup-
ports statements and rules written not only
in First-Order Logic, but also (at least par-
tially) in the Higher-Order Logic (e.g. “(be-
lieves John (likes Bob Sue))”, when the second
argument of “believes” is a proposition) [9];

– Existing translation of SUMO to OWL is
a provisional and necessarily lossy [9], which
calls into question its usefulness; on the other
hand, it is possible to perform the reverse
translation from OWL to SUMO, which seems
more promising, because the result could be
extended with the usage of SUO-KIF features;

– The flexibility of SUO-KIF is very similar to
the SBVR standard [13], promoted by OMG,
defining the meta-model for representation
of business vocabulary, and business rules;
SBVR statements could be directly translated
either to SUO-KIF or UML.
UML was selected as the target language

for translation because it is a general purpose
modeling and specification language commonly
used not only by programmers but also by busi-
ness analysts. Besides, the Entity Relationship
Diagram is a frequently selected notation to
describe domain models. Together with OCL
it forms a very useful tandem to define con-
straints on the domain behavior in a formal
way. The UML class diagram could be eas-
ily translated to other representations, either
more business oriented like SBVR (e.g. [13]) or

Automatic SUMO to UML translation 53

more program oriented like Java, C++, SQL
(e.g. [14]).

A tool for automatic SUMO to UML transla-
tion can be useful for anyone (especially a busi-
ness analyst) who would like to familiarize with
some specific domain. Theoretically, he or she
can read the ontology definition for that pur-
pose. Unfortunately, even if the SUMO browser
is in use, knowledge extraction from SUMO is
a challenge. SUMO is expressed in the textual
SUO-KIF language which is not not commonly
known. After a while, a reader is overloaded with
textual definitions. The aim of the paper is to
propose a solution to this problem. The solution
is based on the observations that: (1) UML is
a universal specification and modeling language
to present data models, software architecture
or business models; moreover it is supported by
many tools (CASE, IDE), (2) graphical notations
are easier to understand especially if the model is
complex, with many relationships among model
elements.

The rest of the paper is structured as follows.
Section 2 presents related works and clearly states
the paper’s contribution. The proposed SUMO
meta-model which supports the transformation
process is described in Section 3. The tool and
its main functional components are presented
in Section 4. Newly introduced transformation
rules for SUMO attributes and their relations
are the subject of Section 5. Section 6 shortly
defines existing transformation rules. An exam-
ple of a transformation with a short discussion
of its shortcomings is given in Section 7. Section
8 presents the problems to be addressed in the
future. Section 9, the last one, concludes the
paper.

2. Related Works

The paper [15] is the first in a series consider-
ing the SUMO ontology as a source for domain
modelling. It presents an initial set of mapping
rules between SUMO notions and UML notions,
and identifies the elements difficult to extract,
e.g. attributes.

The paper [16] presents an outline of a sys-
tematic approach to the development of a domain

model on the basis of selected SUMO ontologies.
It involves only a few steps. It starts with needs
description, next it goes through the identifica-
tion of business processes in the area of interests
which help to decide if a notion of an ontology
is in the area of interests (and should be trans-
lated to UML) or not. After the analysis of the
selected elements, they are translated (manually)
to a UML class diagram. The approach was tested
on a few examples. Some SUMO-UML mappings
were also refined. The biggest problems the au-
thors found are:
– ontology size – it contains many irrelevant

(out of scope) elements,
– domain knowledge is spread over many on-

tologies (files),
– some facts are defined at a very general level

(predicates between Object, Physical) which
makes the interpretation more difficult.
In the paper [17] the refined version of the

approach from [16] is presented. It also consists of
only a few steps, but their definition is much more
formal and close to implementation needs. The
main idea of the approach is a guided selection of
the SUMO extract, which will be further trans-
lated to UML. The paper also proposes some new
transformation rules, e.g. transformation of unary
functions. The general finding of that work is that
the process of knowledge extraction must be sup-
ported by a tool. Otherwise, the process, even if
the results are promising, is very time-consuming,
and error prone.

The contributions of this paper are as follows:
– The meta-model of SUMO notions used

within a transformation process (see Section
3).

– Definition of a tool architecture (see Section
4).

– New transformation rules for SUMO at-
tributes and their relations (see Section 5).

– Verification and correction of transformation
rules defined in [15–17]; the subset of imple-
mented rules (including the changed ones) is
presented in Section 6.
The transformation process between two mod-

els can be specified and performed in many ways.
If the source and targeted models are expressed
in the XML language, the transformation pro-
cess can be defined as the Extensible Stylesheet

54 Bogumiła Hnatkowska

Language Transformation (XSLT) and executed
by a dedicated engine (see [18] for an exam-
ple). This approach suffers from low readability
and maintainability, this is why the transforma-
tion between meta-models is considered more
often (e.g. [19]). In this approach at first the
meta-models of the source and target models
are prepared or adopted, and next the transfor-
mation rules between meta-classes are defined.
Transformation rules can be expressed either in
operative languages, like the Atlas Transforma-
tion Language (ATL), java or declarative ones
like QVT-Relations. In the paper, the approach
based on meta-models is in use. The SUMO
meta-model is defined by the author of that pa-
per. The UML meta-model is freely available
(eclipse.uml2 framework).

The SUMO to UML transformation rules de-
fined in [15–17] answer the question how to map
elements such as classes and their hierarchies or
relations and their hierarchies but they do not
address SUMO attributes and their relationships.
The problem with the SUMO attributes is that
they are represented differently than attributes
in the UML language. In SUMO the attribute is
defined as “a quality which we cannot choose not
to reify into subclasses of Objects” [8]. Because
of that, attributes are assigned not to classes
as in UML but to class instances. This paper
fills this gap. The thorough analysis of SUMO
relations between attributes is conducted here.
On that basis the mapping of SUMO attributes
to UML language is proposed. The mapping in-
volves the definition of a UML profile, presented
in Section 5.

The set of transformation rules defined in
[15–17] was verified and extended in the mean-
time. The newly introduced transformation rules
(including those defined for attributes), and the
changed transformation rules with their justifica-
tion are presented in Section 6.

3. Meta-model of SUMO Notions

To support the SUMO to UML transformation
process the content of SUO-KIF files has to be
represented at the higher abstraction level, which

enables both: checking static consistency rules
and performing the transformation process it-
self. It is achieved with so called meta-model of
SUMO notions – see Fig. 1. The initial version of
the meta-model was presented in [20]. Here the
diagram is extended by new meta-classes.

The diagram reflects the logical structure of
the SUO-KIF file which can be perceived as a set
of sentences. A SUMO sentence is represented
by the Sentence abstract class – the parent of
all possible kinds of statements in SUMO. Each
sentence belongs to exactly one OntologySegment
(SUO-KIF file). Below there is a short description
of concrete sentence classes:
1. LogicalSentence – a sentence starting with

a logical operator, e.g. “(=> . . .), (<=> . . .)”;
a tautology built with an implication and/or
an equivalence operator;

2. QuantifiedSentence – a sentence starting ei-
ther with a universal or existential quantifier:
“(forall . . .) or (exists . . .)”;

3. RelationalSentence – a sentence starting with
a name of function or relation: “(name . . .)”;
a fact in the considered domain stating, for
example, that John likes Karin.
It is assumed that only sentences written at

the first level are instantiated by the SUMO to
UML translator, e.g. the text: “(=> (instance
?REL BinaryPredicate) (valence ?REL 2))” will
be instantiated as one sentence even if it contains
two internal sub-sentences. The parser omits
SUMO comments.

The right side of the class diagram shows the
structure of SUMO notions. The Entity is “the
root node of the ontology” [8]. It is associated
with all sentences it belongs to (as a part).

Entity is the parent for two UML classes in-
teresting in the context of the considered trans-
formation:
– Relation – definition of a SUMO relation or

function, together with its domains and/or
range (see Fig. 2);

– Type – represents a SUMO notion that can be
instantiated, e.g. BinaryPredicate; types that
represent SUMO Attributes are distinguished
with isAttribute=true field.
Each instance of RelationalSentence is linked

to one Relation (basicRelation role) and many

Automatic SUMO to UML translation 55

Figure 1. Meta-model of SUMO notions – main elements

Entities involved (params role), e.g. the sentence:
“(domain part 1 Object)” is linked to domain
relation, and has three parameters.

Sometimes relational sentences point out
a type indirectly by referencing to a function
which returns a type; see the sentence: “(sub-
class Fodder (FoodForFn DomesticAnimal))” for
example. Fodder is a subclass of the type re-
turned by the function FoodForFn called with
the DomesticAnimal parameter. According to the
specification this function returns a subclass of
SelfConnectedObject. Such cases are represented
in the proposed SUMO meta-model by a Com-
plexType class. An instance of the ComplexType
class refers to the function it is built upon (basic
role) – FoodForFn – and remembers the func-
tion parameters (params role) – DomesticAni-
mal.

Some specific relational sentences (defined in
the SUMO upper ontology) play a crucial role
in the transformation process. Up to now seven
types of such sentences have been identified:
1. Documentation sentence (Documentation-

Sent) – a sentence starting with “(documen-
tation. . .)”; contains documentation (an in-
stance of SymbolicString) in a specific lan-
guage for a specific entity;

2. Instance sentence (InstanceSent) – a sentence
starting with “(instance. . .)”; is associated
with an entity (instance) and a type for that
instance;

3. Subclass sentence (SubclassSent) – a sentence
starting with “(subclass. . .)”; used to describe
inheritance hierarchy between SUMO classes;
it is associated with parent and child types;

4. Subrelation sentence (SubrelationSent) –
a sentence starting with “(subrelation. . .)”;
allows to describe the inheritance hierarchy
between SUMO relations; it is associated with
parent and child relations;

5. Domain sentence (DomainSent) – a sentence
starting either with “(domain. . .)” or “(do-
mainSubclass. . .)”; it represents the domain
element (Type) for a specific relation;

6. Range sentence (RangeSent) – a sentence
starting either with “(range. . .)” or “(range-
Subclass. . .)”; represents a range (Type) for
a function (Relation with isFunction attribute
set to true);

7. Partition sentence (PartitionSent) – a sen-
tence starting either with “(partition. . .)”
or “(disjointDecomposition. . .)” or “(exhaus-
tiveDecomposition. . .)”; all sentences repre-
sent partition of class C into subclasses but

56 Bogumiła Hnatkowska

Figure 2. Meta-model of SUMO notions – hierarchy of relational sentences

they are characterized by different proper-
ties represented by PartitionSent attributes
(isOverlapping, isComplete); i.e. a normal
partition assumes that the subclasses are
mutually disjoint and cover C ; disjoint-
Decomposition requires only that the sub-
classes are disjoint; and exhaustiveDecom-
position disallows to have instances of C
which do not belong to any of its sub-
classes (the subclasses do not need to be dis-
joint).

4. Architecture of the SUMO to UML
Translator

The SUMO to UML translator is implemented
in Java 8 with the Swing library. The main func-
tional elements of the translator are presented
on a component diagram – see Fig. 3.

An end-user is allowed to select any subset
of ontology SUO-KIF files (called ontology seg-
ments) to be read by the tool. The loading process
is controlled by a SumoLoadConttroller compo-
nent and is presented – with the use of a sequence
diagram – in Fig. 4.

SumoLoadController runs SumoParser to: (a)
check the syntax correctness of the file, (b) walk
through all tokens in the file and call Sumo-
ModelBuilder to translate SUMO sentences into
an internal SUMO meta-model representation.
SumoParser was generated with antlr [21] from
the SUO-KIF context-free grammar [22].

Unfortunately, it turned out that SUMO on-
tology suffered from some bugs that could not
be found by the parser (according to the rules
formulated in context-free grammar). The bugs
could negatively influence the correctness of the
intended transformation process. So, there was
a strong need to implement the SumoChecker
component whose main functionality is to per-
form different consistency checks. The buggy ele-
ments are marked and reported by the tool, so
the user has an opportunity to correct the input.

As it was mentioned in the previous Sec-
tion, domain knowledge is spread over different
SUO-KIF files which is not very convenient for
transformation. That is why a separate compo-
nent – SumoReasoner – was introduced. Its main
responsibility is to update the previously gener-
ated SUMO model by inferring information indi-
rectly defined in SUMO, e.g.: a subrelation could

Automatic SUMO to UML translation 57

Figure 3. Architecture (functional view) of SUMO to UML translator

Figure 4. Processing of an ontology segment

inherit the domain definition from its parents; in
such a case SumoReasoner copies domains from
the parent to all its children.

It is also planned (this feature has not been
implemented yet), that SumoReasoner will com-
municate with a selected theorem prover to rea-
son knowledge from the rules. The new version of
the Sigma tool [10] is prepared to collaborate with
E prover [23]. E prover can deliver answers for
specifically marked conjecture formulas. Sigma
implemented mapping rules between SUO-KIF
and TPTP formalism used by E prover. In con-
sequence, a user can formulate questions like:
“(instance ?X BinaryPredicate)” to find out all
instances of BinaryPredicate.

The SumoUMLTranslator component con-
ducts the transformation process. It produces
– with the use of eclipse.emf and eclipse.uml2

frameworks – an instance of a UML model (ver-
sion 2.5 [24]) and stores it in a file (*.uml) which
can be read in a form of a tree or can be visual-
ized on a diagram with additional tools, like e.g.
Papyrus [25].

5. Translation of SUMO Attributes
and Their Relations to UML

This section presents a proposal of SUMO at-
tributes translation to UML.

5.1. Attributes and Attributes’ Relations
in SUMO

The Attribute in SUMO is a subclass of the Ab-
stract class. Instances of the Abstract class “can-

58 Bogumiła Hnatkowska

not exist at a particular place and time without
some physical encoding or embodiment” [8]. In
other words, attributes represent some properties
or the characteristics of instances.

The Attribute class has two direct sub-
classes (InternalAttribute, and RelationalAt-
tribute) which in turn have many own subclasses.
The hierarchy of attributes is more than five
levels deep.

Attribute as a class is the domain of several
SUMO relations (given below in an alphabetical
order):
– contraryAttribute: Attribute x . . . x Attribute –

is used to define “a set of Attributes such that
something cannot simultaneously have more
than one of these Attributes. For example,
(contraryAttribute Pliable Rigid) means that
nothing can be both Pliable and Rigid” [8];

– exhaustiveAttribute: AttributeSubclass x At-
tribute x . . . x Attrbute – “relates a class to
a set of Attributes, and it means that the
elements of this set exhaust the instances of
the class. For example, (exhaustiveAttribute
PhysicalState Solid Fluid Liquid Gas Plasma)
means that there are only five instances of
the class PhysicalState” [8];

– subAttribute: Attribute x Attribute – means
that “the second argument can be ascribed
to everything which has the first argument
ascribed to it” [8]; it is a partial ordering
relation which means that the hierarchy of
attributes can form a tree;

– successorAttribute: Attribute x Attribute –
means that the second attribute comes imme-
diately after the first attribute on the scale
that they share, e.g. “(successorAttribute
DeluxeRoom SuiteRoom)”; subAttribute tu-
ples have nothing in common (are disjoint)
with successorAttribute tuples; moreover, suc-
cessorAttribute is not a partial ordering rela-
tion which means that the involved attributes
must be directly ordered;

– successorAttributeClosure: Attribute x At-
tribute – means that there is a chain of suc-
cessorAttribute assertions connecting the first
and the second parameter, e.g. “(successorAt-
tributeClosure StandardRoom SuiteRoom)”.

An assignment of an attribute instance to
an entity instance can be done with a property
relation (or one of its subrelations), e.g. “(prop-
erty ?Entity ?Attr)” means that ?Entity has the
attribute ?Attr.

The extended version of SUMO meta-model,
covering the newly introduced relations, is pre-
sented in Fig. 5. The successorAttributeClosure
relation is not included as it will not be trans-
lated to the UML. The meta-class represent-
ing contraryAttribute relation (contraryAttribute-
Sent) inherits all necessary assotiations from
its parent.

5.2. Mappings of SUMO Attributes and
Attributes’ Relations to UML

5.2.1. Mappings of SUMO Attributes

Transformations of SUMO notions to UML
should preserve the original semantics as much
as it is possible. An existing transformation
rule maps any SUMO class to a UML class
with the same name. This rule needs to be
refined for attributes (understood as classes).
As an attribute can have many instances (e.g.
Solid, Fluid, Liquid, Gas, Plasma are instances of
PhysicalStateemph attribute), it would be valu-
able to represent directly these instances on
a UML class diagram. So this is why the At-
tribute class and their subclasses are mapped to
a UML enumeration data type with the same
name. “As a specialization of classifier, enu-
meration can participate in generalization re-
lationships” [8]. This feature enables to repre-
sent also the inheritance hierarchy between At-
tribute subclasses. An enumeration value cor-
responds to one of user-defined enumeration
literals.

These literals are used to represent attribute
instances.

Not all relations between SUMO attributes
can be represented graphically on a class diagram.
Fortunately, UML is a very flexible language
which can be extended for a specific purpose
with the use of profiles.

Automatic SUMO to UML translation 59

Figure 5. Extended version of the SUMO meta-model – definition of attributes’ relations

5.2.2. UML Profile for Modelling SUMO
Attributes

A UML profile is a lightweight extension mech-
anism to the UML by defining custom stereo-
types, tagged values, and constraints. Profiles
allow to adapt the UML metamodel for differ-
ent domains [26]. UML profiles were defined for
other ontology languages, e.g. OWL [27]. In the
paper “UML Profile for OWL” authors define
two-way mappings between the ontology defini-
tion meta-model (ODM) and the ontology UML
profile.

The UML profile is defined as a specific
package, containing stereotypes and constrains.
These stereotypes can have meta-attributes called
tagged values. “A stereotype is a profile class
which defines how an existing metaclass may be
extended as part of a profile. It enables the use
of a platform or domain specific terminology or
notation in place of, or in addition to, the ones
used for the extended metaclass” [27].

UML profile for SUMO attributes introduces
only two stereotypes (see Fig. 6):
– «Attribute» which is applied to enumerations,

and

– «AttributeInstance» which is applied to enu-
meration literals being owned by the enumer-
ation with «Attribute» stereotype; this stereo-
type has one property (pos: Integer), which
introduces a tag definition; its semantics is
explained in subsection 5.1.

Figure 6. UML profile to represent SUMO attributes

5.2.3. Mappings of Attributes’ Relations

This subchapter defines possible mappings for all
relations between SUMO attributes, identified in
Section 5.1, to UML language.

60 Bogumiła Hnatkowska

Figure 7. Transformation of
the subAttribute relation

Figure 8. Transformation of successorAttribute
relation

Transformation of contraryAttribute rela-
tion
The contraryAttribute relation is used to describe
the fact that two specific attributes cannot be
assigned to the same instance. Such a demand
can be represented by an Object Constraint Lan-
guage (OCL) invariant. OCL [28] is the language
which enables to formally define constraints on
UML models. Thus, any SUMO sentence of the
form “(contraryAttribute atr1 atr2)” will be trans-
formed as an invariant defined in the context of
Entity class, according to the schema:
context Entity :
inv : not Entity . a l l I n s t a n c e s ()−> e x i s t s (e |

e . hasProperty (’ atr1 ’)
and e . hasProperty (’ atr2 ’))

where hasProperty(name: String): Boolean is an
auxiliary function which checks whether a specific
entity e has assigned the attribute with a name
equal to the input parameter.
Transformation of the exhaustiveAttribute
relation
The exhaustiveAttribute relation lists all instances
of a given attribute class. The list of instances
cannot be further extended. To achieve the same
semantics in the UML language, the UML class
representing a SUMO attribute will be marked
as a leaf class (isLeaf = true).
Transformation of subAttribute relation
The subAttribute relation defines the hierarchy
of attribute instances. One attribute instance
can be a parent for many sub-attributes, e.g.
“(subAttribute Antropologist Scientist)”, “(sub-
Attribute Archeologist Scientist)”. It would be
valuable to present all these sub-attributes di-
rectly on a UML class diagram in the same way
the other attributes’ instances are represented,

i.e. as enumeration literals. However, the chil-
dren of a specific instance should be grouped
together.

To achieve the demands mentioned above
the following transformation rule is proposed.
Each sentence of the form “(subAttribute atrSpec
atrGen)” will be transformed according to the
schema:
– If it does not exists a new artificial enumer-

ation data type with «Attribute» stereotype
and name atrGen_SubAttributes is created,
e.g. Scientists_SubAttributes; the newly cre-
ated enumeration will inherit from the enu-
meration data type for which atrGen is an
enumeration literal; in the example the Sci-
entists_SubAttributes enumeration data type
will inherit from the Proffesion enumeration
data type (see Fig. 7);

– atrSpec is defined as a new enumeration lit-
eral in the atrGen_SubAttributes enumera-
tion data type; e.g. the Anthropologist enu-
meration literal will be added to the Scien-
tists_SubAttributes enumeration.

Transformation of the successorAttribute
relation
The successorAttribute relation defines the di-
rect order between attributes. Such an order can
be represented by UML tag definitions ({pos
= value}). An attribute instance which is the
first “in the queue” will have pos set to 1, its
direct successor – pos set to 2, etc. For exam-
ple, see Fig. 8 on which the transformation of
SUMO sentence: “(successorAttribute Standard-
Room DeluxeRoom)” is presented.
Transformation of the successorAttribute-
Closure relation
The successorAttributeClosure relation can be in-

Automatic SUMO to UML translation 61

ferred from successorAttribute relation, and this
is why it is not translated to UML.

6. Examples of Transformation Rules

This section shortly presents the implemented
transformation rules focusing on those that were
changed in comparison to the previous publica-
tions [15–17]. Selected transformation rules are
described below.

6.1. Rule 1

SUMO Element : Direct or indirect subclass of
Entity, e.g. City, Nation
UML Element : Class
Comment : Data values like Integers are also rep-
resented as separate classes (which results in uni-
form representation of relations).

6.2. Rule 2

SUMO Element : Binary (including self) and
higher arity relations with all domains defined
in the form “(domain relation int class)”, e.g.
“(domain citizen 1 Human)”, “(domain citizen 2
Nation)”
UML Element : Association with a proper arity,
e.g. citizen, capitalCity
Comment : Previously, when one of the domains
in a relation was a data value, e.g. Integer, the
relation was represented either as an attribute
(for a binary relation) or an association class; now,
all binary or higher arity relations are represented
in the same way as associations.

6.3. Rule 3

SUMO Element : A relation domain or a func-
tion range defined in the form “(domainSubclass
relation int class)”, e.g. “(domainSubclass room-
Amenity 1 HotelUnit)”, or “(rangeSublcass func-
tion class)”, e.g. “(rangeSublcass FoodForFn Self-
ConnectedObject)”

UMLElement :Generalization set, e.g.HotelUnit_-
Subclasses, SelfConnectedObject_Subclasses
Comment : domainSublcass is a constraintmeaning
that the int’th element of each tuple in relation
must be a subclass of a specific class; similarly,
rangeSubclass stays the same for function ranges;
that this notion is represented by the UML gener-
alization set.

6.4. Rule 4

SUMO Element : Binary (including self) and
higher arity relations for which at least one do-
main is defined in the form “(domainSublcass
relation int class)”, e.g. “(domainSublcass room-
Amenity 1 HotelUnit)”, “(domainSubclass roomA-
menity 2 Physical)”
UML Element : Association among the results of
the transformation of relation domains including
generalization sets, e.g. roomAmenity (associa-
tion between Physical_Subclasses and HotelU-
nit_Subclasses)
Comment : The previous transformation was in-
correct (misinterpreted semantics); the associa-
tion used to link classes; the new association links
generalization sets.

6.5. Rule 5

SUMO Element : Subrelation relationship
“(subrelation child-relation parent-relation)”
e.g.“(subrelation geographicSubregion located)”
UML Element : An association with a “sub-
setted” property; the association ends of the
child-relation will be the subsets of association
ends of parent-relation; e.g. geographicSubregion
association ends will be the subsets of located
association ends
Comment : A subrelation is a constraint meaning
that every tuple of a child relation is also a tuple
of a parent relation; in the UML 2.5 such a feature
is represented by a subset constraint.

6.6. Rule 6

SUMO Element : Partition relationship in the
form “(partition C C1 C2. . .)”
UML Element : Generalization set with isOver-

62 Bogumiła Hnatkowska

lapping=false and isComplete=true
Comment : New.

6.7. Rule 7

SUMO Element : Exhaustive decomposition rela-
tionship in the form “(exhaustiveDecomposition
C C1 C2. . .)”
UML Element : Generalization set with isOver-
lapping=true and isComplete=false
Comment : New.

6.8. Rule 8

SUMO Element : Disjoint decomposition relation-
ship in the form “(disjointDecomposition C C1
C2. . .)”
UML Element : Generalization set with isOver-
lapping=false and isComplete=false
Comment : New.

6.9. Rule 9

SUMO Element : Attribute class or its subclass
UML Element : Enumeration data type with «At-
tribute» stereotype
Comment : New.

6.10. Rule 10

SUMO Element : Attribute instance
UML Element : Enumeration literal with «At-
tributeInstance» stereotype in the enumeration
data type
Comment : New.

6.11. Rule 11

SUMO Element : subclass relation between At-
tribute classes, e.g. “(subclass HotelRoomAt-
tribute RelationalAttribute)”
UML Element : Generalization relationship be-
tween enumerations
Comment : New.

6.12. Rule 12

SUMO Element : contraryAttribute relation, e.g.
“(contraryAttribute Dirty Clean)”

UML Element : An OCL invariant defined in the
context of Entity class
Comment : New.

6.13. Rule 13

SUMO Element : exhaustiveAttribute relation,
e.g. “(exhaustiveAttribute SexAttribute Female
Male)”
UML Element : Property isLeaf in the class rep-
resenting the attribute is set to true
Comment : New.

6.14. Rule 14

SUMO Element : subAttribute relation, e.g. “(sub-
Attribute Anthropologist Scientist)”
UML Element : A new enumeration data type
gathering all sub attributes (left parameter) of
the right parameter as literals; this new data
type inherits from the enumeration data type
representing the right parameter
Comment : New.

6.15. Rule 15

SUMO Element : successorAttribute relation,
e.g. “(successorAttribute StandardRoom Deluxe-
Room)”
UML Element : Tag definitions assigned to enu-
meration literals with pos tag set to the order
number of the attribute instance
Comment : New.

7. SUMO to UML
Transformation Example

The functionality of SUMO to UML transla-
tor will be presented with the use of a sim-
ple example. It aims at elaborating an ini-
tial version of domain diagram based on
the Countries and Regions ontology and the
ontologies it is based upon (e.g. Merge.kif,
Mid-level-ontology.kif, Goverment.kif, all down-
loaded on the 1st January 2016) [8]. Fig-
ure 9 shows a form which allows a user
to select interesting ontologies (ontology seg-
ments).

Automatic SUMO to UML translation 63

Figure 9. SUMO to UML translator – the initial form

After file loading the SumoChecker compo-
nent reports found bugs. SUMO sentences which
are the source of bugs are marked in red in the
main window. Examples of such bugs are pre-
sented below:
– Entity: DeviceNormal has two different infor-

mal documentation sets.
– Relation: defendant 1st domain: Cogni-

tiveAgent does not fit parent: patient domain:
Process.

– Type: PostalAddressText lacks its documen-
tation.
Let us assume that a user wants to propose

a domain model to represent the structure of
geographic areas, their types, inclusions, as well
as capital cities for particular geopolitical regions.
He needs to find among SUMO notions those to
be translated to UML and to mark them. The tool
helps to identify interesting concepts by providing
all sentences in which a given concept is used,
grouped by their type; for example, for a relation
the documentation sentence is presented first,
next relation domains, sub-relations and relation
instances (see Fig. 10).

Within the main window, a user can search or
browse SUMO content. On the left there is a list
of all entities found in selected SUMO ontologies.
Because the number of entities is huge, the view
could be limited only to entities whose names
start with a specific letter. On the right, there
is a set of sentences the entity is part of. There
is also Rule tab containing axioms referring to
a selected entity.

By a double click a user can select either
entities or sentences to be translated to UML. Se-
lected elements are marked in yellow – see Fig. 10.
If a relation is selected, its domains are auto-
matically selected as well. For example, among
relationships in which the City class is involved,
capitalCity was chosen to be translated into UML.
When the selection process is completed, the user
runs the translation process.

Figure 11 presents the result of a transforma-
tion made by the translator. The resulting UML
class diagram has a form of a tree with properties
set for classes and associations.

For readability purposes the generated file
was rewritten in the Visual Paradigm tool and
presented as a graph in Fig. 12. Examples of
elements that cannot be visualized (e.g. subset
constraint for association ends) are given in com-
ments.

As one can observe, the resulting class dia-
gram may consist of more than one sub-graphs –
see the located association between Object and
Physical classes. There could be the following
reasons for that:
– The user did not mark SUMO sentences de-

scribing the inheritance hierarchy to be trans-
formed; e.g. GeographicArea is an indirect
child of Object and Physical which means,
that – in this context – located relation can
happen between GeographicAreas.

– Some knowledge is contained in qualified sen-
tences which are not processed at that mo-
ment in any way.

64 Bogumiła Hnatkowska

Figure 10. SUMO to UML translator – the main window

Figure 11. SUMO to UML transformation example (automatic translation)

SUMO ontologies form a set. The upper layer
is included in Merge.kif file. At this level, many
basic relations are defined, including located, so
this is why their domains are top classes from
SUMO class hierarchy (Physical and Object for
located relation). When considering a specific do-
main, e.g. countries and regions, one deals with
subclasses of the top level classes; the instances
of these subclasses can be used in all places where
their parents are allowed. It means that an inter-

esting relation could be defined between classes
being far away (in the inheritance hierarchy) from
classes of the considered domain. To solve this
problem, the translation tool can add indirect in-
heritance relationships between classes presented
on the class diagram.

The domain diagram resulting from the trans-
formation process is a starting point to under-
stand a given domain. It is consistent with do-
main ontology by construction, but it can lack

Automatic SUMO to UML translation 65

Figure 12. SUMO to UML transformation example – results presented as a class diagram

some important information. The quality of the
diagram strongly depends on the initial step per-
formed by a system analyst – identification of
SUMO notions to be translated. This problem is
addressed in [29].

8. Problems to be Addressed

8.1. Meta-classes and Meta-relations

SUMO, similarly to UML, is described in SUMO
itself. Some elements of SUMO play the role of
meta-classes, i.e. classes the instances of which
are functions or relations; examples include Bi-
naryPredicate, IrreflexiveRelation. Meta-classes
are not directly translated to a UML class dia-
gram, but they define important properties of
other transformed elements, e.g. the arity of re-
lations or functions. At this moment, only arity
is transformed. Another relation properties, e.g.
the “reflexivity” constraint is not translated, but
that could be done with the use of OCL.

Meta-relations are the relations describing re-
lationships between 2 or more classes or 2 or more
relations; examples include: subclass, partition,
disjoint for classes, and subrelation, disjointRe-

lation for relations. In the current version of the
tool most of them are addressed (see Sections
4–6 for details) but still some other can be taken
into consideration, e.g. disjointRelation.

8.2. Axioms

SUMO axioms introduce constraints on ontology
instances. The example below states that every
instance of EuropeanCity must be part of Europe.

(=>
(in s t anc e ?CITY EuropeanCity)
(part ?CITY Europe)
)

The other example stays that if an instance
belongs to VirginIslands it must be also an in-
stance of Island.

(=>
(member ?ISLAND Vi r g i n I s l and s)
(i n s t anc e ?ISLAND Is l and)
)

Some of such axioms could be expressed di-
rectly in UML (e.g. with the use of a composition
relationship), some other could be translated into
OCL. The current version of the SUMO to UML

66 Bogumiła Hnatkowska

transformation tool allows reading axioms but
they cannot be selected for transformation.

9. Summary

The paper presents an approach to SUMO-UML
translation. The translation is defined as a set of
transformation rules between SUMO and UML
meta-models.

The SUMO meta-model was proposed for this
purpose. The initial set of transformation rules,
identified and described in [15–17], was revised
and extended with new rules e.g. for SUMO at-
tributes and their relations.

The results of the tool applications are promis-
ing. The obtained domain class diagrams are con-
sistent, correct and complete to the level to which
the input ontology has these features. These are
the main benefits the tool can bring to potential
users. Business expert or business analyst can
use the tool to find out interesting notions, select
them, and translate to a UML class diagram with
a set of OCL constraints with one click. The user
is warned about incompleteness and inconsisten-
cies found in the original files. He or she can
experiment with transformation results, select-
ing new elements or un-selecting the previously
selected ones. The obtained UML model can be
re-factored, and next transformed to other repre-
sentations, e.g. programming languages, database
schemas, etc.

The tool to be effectively used needs a quali-
fied business analyst or business expert to select
all interesting SUMO notions for transformation.
Otherwise, the resulting domain model will be
incomplete. To address this matter a research
group, the author of this paper belongs to, is try-
ing to propose an algorithm to extract knowledge
from ontology on the basis of limited input only
– see [29].

A kind of a side effect of the tool implemen-
tation is the definition of static consistency rules
which allow to detect inconsistencies in existing
ontologies. In the future, this module can be used
as a part of an ontology editor.

The next release of the tool will address
problems presented in Section 8. Additionally,

the transformations at the instance level, rep-
resented by object diagrams, are planned to be
implemented. It seems to be especially impor-
tant because in domain ontologies more than
half of sentences represent instances and links
among them, e.g. “(instance Mauritius Nation)
(geographicSubregion Mayotte SouthernAfrica)”
for CountiresAndRegions.kif.

References

[1] K. Bittner and I. Spencer, Use Case Modeling.
Addison-Wesley Professional, 2002.

[2] I. Jacobson, G. Booch, and J. Rumbaugh,
The Unified Software development process.
Addison-Wesley Professional, 1999.

[3] D. Zowghi and V. Gervasi, “The three cs of
requirements: Consistency, completeness, and
correctness,” in Proceedings of 8th International
Workshop on Requirements Engineering: Foun-
dation for Software Quality, (REFSQ ’02, 2002,
pp. 155–164.

[4] P. Mohagheghi, V. Dehlen, and T. Neple, “Def-
initions and approaches to model quality in
model-based software development – a review of
literature,” Information and Software Technol-
ogy, Vol. 51, No. 12, Dec. 2009, pp. 1646–1669.

[5] W. Hesse, “Ontologies in the software engineering
process,” in EAI 2005: Enterprise Application In-
tegration – Proceedings of the 2nd GI-Workshop
on Enterprise Application Integration, R. Lenz,
U. Hasenkamp, W. Hasselbring, and M. Reichert,
Eds., 2005.

[6] H.J. Happel and S. Seedorf, “Applications of
ontologies in software engineering,” in Proc. of
Workshop on Sematic Web Enabled Software En-
gineering"(SWESE) on the ISWC, 2006, pp. 5–9.

[7] F. Gailly and G. Poels, “Conceptual model-
ing using domain ontologies: Improving the
domain- specific quality of conceptual schemas,”
in Proceedings of the 10th Workshop on
Domain-Specific Modeling, ser. DSM ’10. New
York, NY, USA: ACM, 2010, pp. 18:1–18:6.

[8] Suggested Upper Merged Ontology, last
access: 10 Jan 2016. [Online]. http:
//www.ontologyportal.org

[9] A. Pease, Ontology: A practical Guide. Articulate
Software Press, 2011.

[10] Sigma, last access: 10 Jan 2016. [Online]. http:
//sourceforge.net/projects/sigmakee/files/

[11] I. Istochnick, OWL2UML, last access: 10 Jan
2016. [Online]. http://protegewiki.stanford.edu/
wiki/OWL2UML

Automatic SUMO to UML translation 67

[12] F. Suchanek, “Ontological reasoning for natural
language understanding,” Master Thesis in Com-
puter Science, Saarland University, Germany,
March 2005.

[13] Semantics of Business Vocabulary and Business
Rules (SBVR). Version 1.3, OMG, (2015, May).
[Online]. http://www.omg.org/spec/SBVR/1.3/

[14] A. Marinos, S. Moschoyiannis, and P.J. Krause,
“An SBVR to SQL compiler,” in Proceedings of
the RuleML-2010 Challenge, at the 4th Interna-
tional Web Rule Symposium, 2010.

[15] B. Hnatkowska, Z. Huzar, I. Dubielewicz, and
L. Tuzinkiewicz, “Problems of SUMO-like ontol-
ogy usage in domain modelling,” in Intelligent
Information and Database Systems, ser. Lecture
Notes in Computer Science, N. Nguyen, B. At-
tachoo, B. Trawinski, and K. Somboonviwat,
Eds. Springer International Publishing, 2014,
Vol. 8397, pp. 352–363.

[16] I. Dubielewicz, B. Hnatkowska, Z. Huzar, and
L. Tuzinkiewicz, “Domain modelling in the con-
text of ontology,” Foundations of Computing and
Decision Sciences, Vol. Volume 40, No. 1, 2015,
pp. 3–15.

[17] B. Hnatkowska, Z. Huzar, I. Dubielewicz, and
L. Tuzinkiewicz, “Development of domain model
based on SUMO ontology,” in Theory and Engi-
neering of Complex Systems and Dependability,
ser. Advances in Intelligent Systems and Com-
puting, W. Zamojski, J. Mazurkiewicz, J. Sugier,
T. Walkowiak, and J. Kacprzyk, Eds. Springer
International Publishing, 2015, Vol. 365, pp.
163–173.

[18] D. Gasevic, D. Djuric, V. Devedzic, and V. Dam-
janovi, “Converting UML to OWL ontologies,”
in Proceedings of the 13th International World
Wide Web Conference on Alternate Track Papers
&Amp; Posters, ser. WWW Alt. ’04. New York,
NY, USA: ACM, 2004, pp. 488–489.

[19] J. Zedlitz, J. Jörke, and N. Luttenberger,
Knowledge Technology. Berlin, Heidelberg:
Springer-Verlag, 2012, ch. From UML to OWL 2,
pp. 154–163.

[20] B. Hnatkowska, From requirements to software:
research and practice. Warszawa: Polish Infor-
mation Processing Society, 2015, ch. Towards
automatic Sumo to UML translation, pp. 87–99.

[21] ANTLR, last access: 10 Jan 2016. [Online].
http://www.antlr.org/

[22] A. Pease, Standard upper ontology
knowledge interchange format, (2009).
[Online]. http://sigmakee.cvs.sourceforge.net/
viewvc/sigmakee/sigma/suo-kif.pdf

[23] S. Schulz, “System description: E 1.8,” in
Logic for Programming, Artificial Intelligence,
and Reasoning, ser. Lecture Notes in Com-
puter Science, K. McMillan, A. Middeldorp,
and A. Voronkov, Eds. Berlin Heidelberg:
Springer-Verlag, 2013, Vol. 8312, pp. 735–743.

[24] Unified Modeling Language. Version 2.5,
OMG, (2013, September). [Online]. http:
//www.omg.org/spec/UML/

[25] Papyrus modeling environment, last access:
10 Jan 2016. [Online]. http://www.eclipse.org/
papyrus/

[26] UML profile diagrams, last access: 28 May 2016.
[Online]. http://www.uml-diagrams.org/profile-
diagrams.html

[27] D. Djurić, D. Gašević, V. Devedžic, and V. Dam-
janović, Proceedings of the Web Engineering:
4th International Conference. Berlin, Heidelberg:
Springer-Verlag, 2004, ch. UML Profile for OWL,
pp. 607–608.

[28] Object Constraint Language. Version 2.4,
OMG, (2014, February). [Online]. http:
//www.omg.org/spec/OCL/2.4/

[29] B. Hnatkowska, Z. Huzar, L. Tuzinkiewicz,
and I. Dubielewicz, Intelligent Information
and Database Systems, ser. Lecture Notes
in Computer Science. Berlin, Heidelberg:
Springer-Verlag, 2016, Vol. 6592, ch. Conceptual
Modeling Using Knowledge of Domain Ontology,
pp. 554–564.

e-Informatica Software Engineering Journal, Volume 10, Issue 1, 2016, pages: 69–87, DOI 10.5277/e-Inf160104

Highly Automated Agile Testing Process: An Industrial
Case Study

Jarosław Berłowskia, Patryk Chruściela, Marcin Kasprzyka, Iwona Konanieca,
Marian Jureczkob

aNetworkedAssets Sp. z o. o.
bFaculty of Computer Science and Management, Wrocław University of Science and Technology

marian.jureczko@pwr.edu.pl

Abstract
This paper presents a description of an agile testing process in a medium size software project that
is developed using Scrum. The research methods used is the case study were as follows: surveys,
quantifiable project data sources and qualitative project members opinions were used for data
collection. Challenges related to the testing process regarding a complex project environment
and unscheduled releases were identified. Based on the obtained results, we concluded that
the described approach addresses well the aforementioned issues. Therefore, recommendations
were made with regard to the employed principles of agility, specifically: continuous integration,
responding to change, test automation and test driven development. Furthermore, an efficient
testing environment that combines a number of test frameworks (e.g. JUnit, Selenium, Jersey Test)
with custom-developed simulators is presented.

Keywords: software engineering, testing process, agile software development, case study

1. Introduction

Software testing is a very costly part of the soft-
ware development process, it is sometimes esti-
mated to make 50% of the whole development
cost [1], [2]. It is one of the main activities (at
least should be) in agile software development
methods. Beck and Andres [3] claimed it to be
a measure of project progress and the main mean
of assuring software quality. On the other hand,
applying agile software development methods sig-
nificantly affects the testing process. The agile
methods usually require to test early and to have
the tests automated. In consequence, testing is
not left to the final phase, but requires sustain-
able investments during the whole process (in-
cluding after-release maintenance of automated
test cases). Some of the authors even recommend
to start with testing [4]. The agile testing has
been studied for several years, however, there
are still unanswered questions regarding scala-

bility [5], the role of testers [6] or test automa-
tion [7].

The goal of this research is to extend the body
of knowledge concerning agile testing by docu-
menting a real life software testing process. This
paper presents a case study of a medium-size soft-
ware project with special factors that affects the
aforementioned process, i.e. requests for unsched-
uled releases and high complexity of project envi-
ronment. The project is a Java Enterprise system
in the telecommunication domain and its main
purpose is to ease network devices controlling and
management. Thus, there is a number of features
that concern integration and communication with
other systems and devices. Functional tests of
such features involve items that are outside of the
tested system, but are necessary for a successful
test execution. Therefore, the test environment
is complex and its management can consume
a considerable amount of resources, specifically
in the case of automated tests, where all changes

70 Jarosław Berłowski et al.

that come from test execution should be verified
and reverted in order to ensure tests repeatability.
On the other hand there are many, unscheduled
release requests that concern the newest version
of the developed system. Those releases regard
presentations for end users or deployments into
an environment for acceptance tests. Nonetheless,
the released version must satisfy company quality
standards and must be ‘potentially shippable’ [8].
The unscheduled releases could be explained as
releases in the middle of a Sprint (the project
is developed using Scrum), that are announced
one or two days in advance and are requested
to contain some features from the current Sprint
and, of course, all the features developed in pre-
vious Sprints. The unscheduled releases create
challenges. It is critical to ensure that the ‘old’
functionality still works correctly and there are
very limited resources for regression tests, since
there are the ‘in-progress’ features that must be
straightened up before the release. The solution
is somewhat obvious – test automation. In order
to support the unscheduled releases a complex
set of automated regression tests must be present
and frequently executed. In consequence, it is pos-
sible to evaluate the current version of software
instantly and decide if it is ‘potentially shippable’.
The paper describes how the challenges are sat-
isfied, in which ways they affected the testing
process and what results were obtained.

The case study presents an insider perspec-
tive, i.e. it is conducted by members of the team
that develops the project. Therefore, it is possible
to get a really deep insight, but unfortunately
the risk of biased observation or conclusion grows
simultaneously. In consequence, the case study
is focused on a quantitative approach, which is
associated with lower risk of subjectivity instead
of the qualitative one, which is usually employed
in similar case studies. The study is designed
according to guidelines given by Runeson and
Höst [9].

A number of concepts is used in this paper.
Let us present explanations of them in order to
clarify possible ambiguities. The authors refer to
project size. The concept is in fact the metric
which Mall [10] identified as one of the two most
popular and the simplest measures of project

size, namely the number of Lines of Code (LOC).
The project investigated here is described as
a medium-size software project. The small,
medium and large scale is not a precise term, it
is very intuitive (e.g. more intuitive than LOC).
The investigated project has been classified as
a medium-size one, since it seems to be a bit
smaller than projects described in [5] and [6]
which are reported as large ones. The authors
refer to costs of development and test. This
should be considered as the amount of time com-
mitted by the development team during project
related activities. One of the investigated aspects
of the testing process is availableness for un-
scheduled release. A possibility of making an
application release is evaluated using results of
the functional tests (Selenium tests and REST
tests) executed in a continuous integration system
(100% success of unit tests is a prerequisite of the
functional ones). The application is truly ready
for release if 100% of the functional tests are
passed. The application fits for a presentation in
the case when at least 90% of the tests are passed.
If more than 10% of the tests failed, no form
of release shall be considered. The investigated
testing process was assessed using the concept of
the level of agility that evaluates the adoption
of different agile principles using the concept of
the level of adoption. Both aforementioned
concepts are borrowed from [5], further details
about them can also be found in section 2.3.

The rest of this paper is organised as follows.
The next section presents the goal and study
design as well as a detailed description of the
study context. The obtained results are docu-
mented in section 3. In section 4, the threats to
validity are discussed and in section 5, related
work is summarized. Finally, the discussion and
conclusions are given in section 6.

2. Goal and Study Design

2.1. Context

The context is described according to the guide-
lines given by Petersen and Wohlin [11]. It corre-
sponds with the suggested description structure

Highly Automated Agile Testing Process: An Industrial Case Study 71

as well as the recommended elements of the con-
text.

2.1.1. Product

The investigated project regards the development
of a system which is used in the management of
telecommunication services delivery. The main
functionalities of the product are:
– managing customer access devices,
– managing and configuring network delivery

devices,
– managing resources of IP addresses from the

public and private pools.
The following technologies are used in the soft-

ware development:
– GWT – Google Web Toolkit is a develop-

ment toolkit for building and optimizing
complex browser-based applications (https:
//developers.google.com/web-toolkit/);

– Spring – a comprehensive programming and
configuration platform for modern Java-based
enterprise applications without unnecessary
ties to specific deployment environments
(http://www.springsource.org/);

– Hibernate – It is a framework which allows
to provide the service of the data storage in
a database, regardless of the database system
(http://www.hibernate.org/);

– Oracle DB – Relational database manage-
ment system which is commonly used in cor-
porations because of data maintaining capa-
bilities, security and reliability (http://www.
oracle.com);

Maturity. The project was conducted from May
2011, the first release was carried out in Autumn
2011. The study was conducted in January 2013.
Quality. The main means of ensuring the prod-
uct quality are tests. Further details regarding
the testing process are presented in the next
sections.
Size. The total number of Lines of Code is
327387 (calculated by StatSVN – all lines are
counted).
System type. Enterprise system with a web
UI. The development team makes use of func-
tionalities accessible as REST services and also
integrates a them with existing systems.

Customisation. It is custom software develop-
ment. The product is tailored to the requirements
of a customer (a telecommunication vendor).
Programming language. The system is devel-
oped mostly in Java.

2.1.2. Processes

Figure 1 presents the testing process. In fact, no
defined process is used, and what the diagram
shows is the result of the ‘definition of done’
that is being employed. New user stories are
first identified, then acceptance criteria for them
are defined and stories are estimated. When the
Sprint begins, the development team makes the
Sprint planning and later software development
and unit tests. At the same time a specification
for functional tests must be prepared. If pair pro-
gramming was not carried out, than a code review
is needed. Before the end of the Sprint, functional
tests must be conducted. When there is time, au-
tomated functional tests are prepared, in other
case, automation is postponed to the next Sprint.
Test automation is not a part of the ‘definition
of done.’ It might seem strange as automation
is very important in agile processes, but unfortu-
nately automation is very time-consuming and
for technical reasons sometimes must be done af-
ter implementation (this remark does not regard
unit tests). In consequence, it was not possible
to always do implementation and automation in
the same Sprint. Having the choice to either do
longer Sprints or postpone automation it was
preferable to postpone the automation as there is
the requirement for unscheduled releases, which
does not correspond well with long Sprints. Post-
poning test automation is not a good practice, but
conducting functional tests manually [12,13] or
automating after the sprint [5,14] is not unique in
software development. Puleio [14] even invented
a name for not doing the test automation on
time, i.e. testing debt. At the end of the Sprint
the software is potentially shippable as the new
features which are not covered by automated
tests (if there are such) are tested manually. As
presumably it already emerged from the above
description, the employed development process
is Scrum.

72 Jarosław Berłowski et al.

Figure 1. Testing process

2.1.3. Practices, Tools, Techniques

CASE tools
Eclipse STS (http://www.springsource.org/sts)
is used as the primary development environment.
Furthermore, the development team uses a set
of frameworks for test automation which are em-
ployed in a continuous integration system (details
in the next section).
Practices and techniques
– Time–boxing.
– Frequent (in fact continuous) integration.
– Frequent, small releases.
– Early feedback.
– Test automation.

2.1.4. People

Roles
• Product Owner – comes up with new ideas,

updates priorities and chooses the most impor-
tant issues, he is also responsible for contact
with customers.

• Scrum Master – takes control of the Scrum
process and enables team members to reach
the goal of the Sprint by helping them with
all impediments. For a short period of time
there were two Scrum Masters, as the project
was developed by two different teams.

• Team – responsible for reaching the goal of
the Sprint. The development team currently
consists of 8 people including: software devel-

opers, testers (one tester performs also the
role of a business analyst), the Scrum Master
(who takes part in software development) and
the Product Owner (who does not take part
in the software development):
– Software developers (5),
– Scrum Master (1),
– Testers (2).

2.2. Experience

Some software developers have longiterm experi-
ence in the IT field, i.e. two people 5+ years
of experience (one of them is a Scrum Mas-
ter), the Product Owner 15+ years of experi-
ence and one of the testers who is also a busi-
ness analyst 10+ years of experience. For the
rest of the team, this is the first job. They
take part in the project, learn technical skills
and expand knowledge using different tools. The
entire team has completed bachelor’s or mas-
ter’s degree studies in computer science. In or-
der to improve the qualifications, the members
of the development team have participated in
some trainings and certification programs, for
example ISTQB (International Software Testing
Qualifications Board) – both testers, Professional
Scrum Master I – the Scrum Master, CISCO
certificates (CCNA/CCNP, CCAI) – one of the
testers.

The development process was configured by
the experienced team members who also take care

Highly Automated Agile Testing Process: An Industrial Case Study 73

of the introduction of their younger colleagues.
Thus, there are no reasons to believe that there
are issues in the process resulting a lack of experi-
ence. Additionally, the trainings and certification
program were used to ensure high development
standards and to avoid shortcomings.

2.3. The Level of Agility of the
Investigated Testing Process

The paper is to be focused on agile testing process.
Hence, it is important to take carefully analyze
the principles of agility and assess the process.
Otherwise, there would be a considerable risk of
investigating other phenomena, not the ones that
should be investigated.

2.3.1. Survey Design

The issue is addressed with a survey conducted
among all the staff that is or was involved in
project development. The survey is designed ac-
cording to a set of weighted criteria suggested
by Jureczko1 [5], i.e. the following criteria are
used (each of them can be met fully, partly or
not at all):
– Test driven development – TDD is one of

the most remarkable improvements, which
has been brought to testing with the agile
methods [15], [3]. Presumably not every agile
testing process uses TDD, on the other hand
TDD affects the process and system design
in such a significant way, that it cannot be
ignored when evaluating the level of agility
(weight = 3).

– Test automation – most of the agile methods
move the focus from manual to automated
tests, e.g. [3]. Furthermore, the automation
is often considered an essential practice [16],
[14] (weight = 3).

– Continuous integration – what is the use of
automated tests when they are not executed
frequently? (weight = 2).

– Communication – it is considered at two lev-
els, i.e. not only between team members but

also with the customer, however, with respect
to testing process the most relevant commu-
nication is between developers and testers
(weight = 2).

– Pair programming – pair programming does
not relate to testing directly. Nevertheless, it
affects the quality of a source code – could be
considered as on-the-fly code review (weight
= 1).

– Root-cause analysis – it is one of the quality
related eXtreme Programming corollary prac-
tices. It forces complex analysis for each of the
identified defects. Not only the defect should
be resolved, but also the software development
process should be improved to avoid similar
defects in future. The root-cause analysis is
not recommended when some of the essen-
tial eXtreme Programming practices are not
adopted. Therefore, there are agile testing
processes that do not employ it (weight = 1).

– Working software (over comprehensive docu-
mentation) – one of the Manifesto for Agile
Software Development rules that may have
strong influence on tests (weight = 1).

– Responding to change (over following the
plan) – another rule from the aforementioned
manifesto. In the context of a testing process,
this rule is mainly considered with respect to
the flexibility of test plans (weight = 1).

The above listed criteria are extracted from prin-
ciples suggested in eXtreme Programming [3]
and Agile Manifesto. Each of them is somehow
connected with testing and as the Authors be-
lieve they make a rich enough subset of all agile
principles to offer a good understanding of the
project reality with respect to the testing process.
The questionnaire was generated in a paper form,
nonetheless, it is available on-line: http://purl.
org/MarianJureczko/TestingProcess/Survey.

2.3.2. Survey Results

The questionnaire was completed by all present
team members and those past members that are
still working for the company. The results are dis-

1 The author argued the usage of weights by stating that the principles of agility have different relevancy from the
testing perspective. It is also noteworthy that some of the agile software development methods, e.g. XP [3], identify
categories of principles that are based on the relevancy of their adoption.

74 Jarosław Berłowski et al.

cussed in detail in the forthcoming subsections
and presented in Figure 2. Each of the sub figures
shows which respondents recognised given levels
of adoption. It is worth mentioning that there is
no single ‘I do not know’ response. Presumably
it is a consequence of the fact that each of the
respondents actively participates or participated
in the investigated project.
Test driven development More than half of
the respondents recognised test driven develop-
ment as partly implemented and the rest of them
as fully implemented (Fig. 2a). TDD has been
used in the project for a long time, however,
not all features are developed in this way. It is
always the developer’s responsibility to choose
the most efficient way of the development and
there are no repercussions for not doing TDD.
Regardless of the selected development method,
the unit tests are obligatory and hence TDD
is often a good choice. Nonetheless, there is
also a number of features that are closely cou-
pled to moderately documented, external ser-
vices which do not make a perfect environment
for TDD.
Test automation Almost all respondents recog-
nised test automation as fully adopted (Fig. 2b).
test automation is very important in the investi-
gated testing process. The automated unit tests
are explicitly written in the project’s ‘Definition
of Done’ [8]. The automation of functional tests
is also obligatory, however, sometimes it is post-
poned and it is not conducted in the very same
sprint as the functionality which has to be tested.
Typically, there is one automated test case per
a user story, but there are also some very com-
plex stories that are tested by more test cases
and some complex test cases that cover more
stories. All the automated tests cases are used as
regression tests and are executed in a continuous
integration system which brings us to the next
evaluation criterion.
Continuous integration Each of the respon-
dents acknowledged that the continuous integra-
tion principle was fully adopted (Fig. 2c). There
is only one development line, and as far as it is
possible the development team is avoiding using
branches and promotes frequent commits. More-
over, there is a number of jobs defined in the Hud-

son (http://hudson-ci.org/) system to support
automatic compilation, testing and deployment
of the developed system.

The unit tests and some of the functional
tests are executed after each commit. The func-
tional tests are split into two groups. The first of
them contains test cases that do not need a great
amount of time for execution, which in fact means
no interaction with graphical interface – these
tests are executed after each commit. The second
group of tests contains GUI related tests and for
performance reasons it is executed nightly.

The Hudson continuous integration system
supports also releases. After a Sprint Review
Meeting, i.e. when the sprint ends, a Hudson job
is executed and performs the following actions:
– The version number of the developed system

is updated.
– A SubVersion ‘TAG’ is created for the new

version of the developed system.
– Release notes regarding newly implemented

features are generated.
– A new version of the developed system is

deployed to Apache Maven repository and
saved on a FTP server.

– The new version is installed automatically in
the customer acceptance tests environment.

Communication All respondents recognised
the Communication principle as partly adopted
(Fig. 2d). The communication was considered at
two levels, namely among team members, specifi-
cally between testers and developers and between
team members and the customer. The communi-
cation between team members is acknowledged
to be effective. Testers and developers work in
the same location. The communication is mostly
verbal (but all major issues are reported in an is-
sue tracking system) and supported by the Scrum
meetings, e.g. Daily Scrum Standup Meeting. Fur-
thermore, the roles (i.e. testers and developers)
are not fixed, thus a team member has an oppor-
tunity to do developing as well as testing tasks.

The communication with customer was not as-
sessed so well. The eXtreme Programming ‘on site
customer’ principle [3] has not been installed. Fur-
thermore, customer representatives do not partic-
ipate in Planning and Review meetings [8]. Com-
munication channels usually go through Product

Highly Automated Agile Testing Process: An Industrial Case Study 75

(a) Test driven development (b) Test automation (c) Continuous integration

(d) Communication (e) Pair programming (f) Root-cause analysis

(g) Working software (over com-
prehensive documentation)

(h) Responding to change (over following
the plan)

Figure 2. The level of agility in testing process

Owner, which sometimes makes the communica-
tion inefficient.
Pair programming Most of the respondents
recognised pair programming as partly adopted
(Fig. 2e). The usage of pair programming in the
project is limited – more often informal code
reviews are used instead, usually in the form of
a code walk-through. Nonetheless, presumably
each team member experienced this practice since
it is extensively used as a knowledge transfer tool.
New employees work in pairs with the more ex-
perienced ones in order to improve their learning
curve.
Root-cause analysis Presumably there is
a confusion over what it means to adopt this
principle since no clear message comes from the

questionnaires (Fig. 2f). Definitely the root-cause
analysis is not executed for all identified defects,
only a fraction of them is so closely investigated.
On the other hand, there are Sprint Retrospective
Meetings [8] which address the most important is-
sues and give the team an opportunity to identify
remedies.
Working software (over comprehensive
documentation) Most of the respondents ac-
knowledged that the working software is valued
over comprehensive documentation (Fig. 2g). As
a matter of fact the customer is not interested
in technical documentation. He is provided only
with the user and installation guide. Therefore,
the team could decide which technical documents
to use and there are no reasons for preparing doc-

76 Jarosław Berłowski et al.

uments that are not useful. The Agile Modeling
principles [17] are followed and in consequence
the number of created documents is limited and
always corresponds with one of two purposes, i.e.
a model to communicate or a model to under-
stand. The Product and Sprint Backlogs are used,
but neither of these documents is delivered with
the released product.
Responding to change (over following the
plan) Most of the respondents recognised that
responding to change is valued over following the
plan (Fig. 2h). With regard to test plans the prin-
ciple is fully adopted since test plans are never
fixed and there is always room for an update.
It looks slightly different in the case of the set
of features (user stories) that are chosen for im-
plementation during a Sprint Planning Meeting.
The plan created during the aforementioned meet-
ing shall not be changed according to Schwaber
[8]. However, there is a possibility to terminate
a Sprint and plan a new one (which has been
done several times during the project). Further-
more, sprints are not long (for several months one
week sprints were used, currently they have been
extended to two weeks), thus waiting for a new
sprint with an unplanned change is not painful.
It should also also stressed that there is no fixed
long term plan. Each new sprint is planned from
scratch and hence unexpected changes can be
easily handled.
Conclusion The results were evaluated in the
way suggested in [5], i.e. value 1 was used for
full adoption of an agile principle and 0.5 for
partial adoption, then weighted average was cal-
culated (the weights are given in teh previous
subsection) and the value of 76.6% was obtained.
The value is higher than the one calculated for
the project investigated in [5], which could be
interpreted as a slightly better adoption of agile
testing principles in the described in this study
process.

2.4. Objective

The study is focused on a testing process in
a medium-size software project with challeng-
ing requirements for unscheduled releases and
complex infrastructure to deal with. The pa-

per presents how the testing process was tuned
with respect to the aforementioned requirements,
hence it can be considered as a descriptive or
exploratory study [9]. The Authors believe that
other practitioners who operate in a similar con-
text will find this work helpful and use it as an
example of a well working testing process. The
study objective can be defined as follows:

Describe and evaluate an agile testing
process with support for unscheduled re-
leases in development of a software system
that depends on a number of external ser-
vices and devices.

The investigated testing process deals with
two challenges. Rge first of them comes from
business, i.e. there are often unexpected opportu-
nities which must be addressed immediately, i.e.
within one or two days depending on a release,
otherwise they are missed. In consequence, some-
times it is not possible to wait with the release
till the end of a Sprint. The second challenge
comes from the project domain. The developed
system operates in a complex environment that
consists of a number of different network devices
and services. Thus, it is a typical case when the
configuration of the surroundings requires more
time that the test execution itself. This chal-
lenge significantly affected the testing process,
and therefore the Authors believe that it is a very
important part of the project’s big picture and
must not be ignored in the case study.

2.5. Research Questions and Data
Analysis Methods

RQ1: To what extent is the requirement
for unscheduled releases satisfied? The un-
scheduled releases are one of the main drivers of
the definition of testing process. Thus, it is critical
to study this aspect. It will be evaluated using
a quantitative approach. The continuous integra-
tion server will be employed as a data source and
the results of the builds that execute functional
tests (builds with unit tests are a prerequisite)
will be used as a measure of the possibility of
a release. In order to quantify the data we as-
sumed the a release is possible when all tests are
passed. Additionally, we assumed the possibility

Highly Automated Agile Testing Process: An Industrial Case Study 77

of a release with acceptable risk of failure when
not more than 10% of tests failed. Such a risk can
be accepted only when the release is conducted
exclusively for presentation purposes. The 10%
threshold is provided to give insight into the vari-
ability of the continuous integration outcomes. It
also corresponds with the business requirements
as 90% of available functionality is usually enough
to conduct a presentation. The Authors assumed
that the release is possible when before 1 PM
the build is successfully finished according to the
aforementioned criteria. The time, i.e. 1 PM, was
selected as it was the latest possible hour that
enables installation in the customer environment
or preparation of a presentation (depending on
the goal of the unscheduled release) during the
same working day.

RQ2: How is the test automation per-
formed? Test automation is the main mean to
address unscheduled releases as it is the only
way to quickly assess the current software qual-
ity and decide if it is acceptable for a release.
Furthermore, automation has a crucial role in
the testing process and requires significant ef-
forts. Specifically, in a project that operates in
a complex environment that creates non-standard
requirements for test configuration and in conse-
quence out-of-the-box solutions are not sufficient.
Hence, it is vital to describe in detail how the
test automation is done. This research question
will be addressed using the qualitative approach.
All the employed testing frameworks, tools and
home-made solutions will be described with re-
spect to their role in the project.

RQ3: How much effort does the test au-
tomation require (with respect to different
types of activities and tools)? Automated
tests play a crucial role in deciding about an
unscheduled release and since two different test
frameworks were used it could be very interesting
to evaluate the process from a business perspec-
tive as well. Hence, the study presents data re-
garding costs of test automation that allow to jus-
tify whether it is worth making the investments
and which framework should be be chosen to have
support for unscheduled releases. The company
tracks data about committed efforts using the
issue tracking system (Atlassian JIRA). There-

fore, it is possible to address the third research
question by mining the collected data and ex-
tracting information regarding efforts connected
with creating new automated functional tests as
well as with maintaining the existing ones. The
results are presented using descriptive statistics
and statistical tests.

3. Results

3.1. To what Extent is the Requirement
for Unscheduled Releases Satisfied?

Research regarding availableness for an unsched-
uled release was conducted over a period of two
months. The results are shown in the Figure 3.
For 47.4% of the time, the application was ready
for the release. A period of release with accept-
able risk – 10,5%. The application was not ready
for release for 42.1% of the time. The obtained
results can be claimed as satisfactory with respect
to availableness for an unscheduled release.

Kaner et al. [18] considered test coverage in
the context of requirements-based testing, which
is very similar to the REST and Selenium func-
tional tests, as they are intended for proving that
the program satisfies certain requirements. There
is at least one automated test per requirement,
which the investigated project is expressed us-
ing user stories. Therefore, there is 100% test
coverage at the requirement level, i.e. each of
the requirements is tested. However, it is an
overoptimistic interpretation as not all corner
cases in some of the user stories are automated
and thus there are places where errors cannot
be detected using the REST or Selenium func-
tional tests. The tests execution results may also
misleadingly show errors in the case of database
malfunction or overload of a machine on which
the test environment is located. Adding further
tests would decrease the probability of releasing
a low quality version of the system by limiting
the number of not covered corner cases but it
would also increase the probability of blocking
a high quality release which can happen as a re-
sult of the aforementioned continuous integration

78 Jarosław Berłowski et al.

Figure 3. Results obtained from the continuous integration system

system malfunctions. Additional tests would also
increase the costs of tests maintenance.

3.2. How is Test Automation Performed?

The results of the execution of automated tests
are used as the primary citerion in making deci-
sions regarding unscheduled releases. In order to
ensure that tests results correspond with sys-
tem quality, the team uses a wide variety of
tools and frameworks. This includes also sev-
eral self-developed solutions which contribute to
conducting test automation in complex environ-
ments.

3.2.1. JUnit Test Framework

JUnit is a test framework for the Java language.
On its own it provides the basic functionality
for writing tests, which can be further enhanced
by other extensions. JUnit tests also serve as
an entry point to nearly every type of test in
the project development (including the aforemen-
tioned self-developed solutions). It is a first class
citizen with regard to the way the unit testing and
test driven development are conducted. The unit
tests are a part of the build, and thus the system
cannot be built (and in consequence released)
when some of the tests do not pass. There is also
a positive side effect, i.e. developers are forced to
instantly fix issues detected by unit tests.
EasyMock class extensions. EasyMock pro-
vides Mock Objects for interfaces and objects
through class extension which is used to replace

couplings to external systems or dependencies in
unit tests.

3.2.2. Automated Selenium Tests

Automated regression tests with Selenium Web-
Driver are used to test whether high level func-
tionalities and a graphical user interface work
and react properly to input. These tests are com-
bined into a suite and executed nightly within
the continuous integration system (a new build
of the system under test is deployed at the end of
every day on a dedicated server and its database
is set to a predefined state). These tests are not
executed after each commit, as it is in the case of
JUnit and REST tests, since, due to their com-
plexity, the execution takes more than one hour.
It is more than the recommended 10 minutes [3]
and thus would have decreased the comfort of
developers’ work.

Tests using Selenium WebDriver are func-
tional, they simulate a user action on the interface
and check whether the output matches expecta-
tions. Typically a test covers exactly one user
story, however, there are exceptions that span
multiple test cases and user stories. Additionally,
for tests where a connection to an external device
is required (and it is not feasible to keep a real
device connected to a test machine at all times),
the team developed simulators which can be set
up to respond like this particular device would
(see 3.2.5). The development team strives to have
at least one automatic functional test for every
user story.

Highly Automated Agile Testing Process: An Industrial Case Study 79

3.2.3. Jersey Test Framework

Tests prepared using Jersey Test Framework are
referred to as the REST tests for short. The
framework enables functional tests for REST ser-
vices. It launches the service on an embedded
container, sends HTTP requests and captures
the responses.

The REST tests are used to test function-
ality of the system (each user story is covered
by at least one Selenium or REST test). The
communication between a client and a server and
its validity is tested, unfortunately defects from
a graphical user interface cannot be detected in
such an approach. The REST tests are a part of
the build and thus broken tests are early detected
and fixed.

3.2.4. DbUnit

DbUnit is a JUnit extension targeted at
database-driven tests that, among other things,
puts a database into a known state between
test runs. DbUnit is used for preparing database
for tests. Specifically, it helps in creating the
HSQLDB in-memory database that is used dur-
ing the Selenium and REST tests.

3.2.5. Custom Developed Simulators

In some cases the system under test requires com-
munication with a device or an external service.
To solve this problem the team developed:
– SSH Simulator (https://github.com/

NetworkedAssets/ssh-simulator/) to simulate
communication with a device through the
SSH protocol.

– Policy Server Simulator to test communica-
tion with a policy server through HTTP.

– WebService simulators to test WebService
clients.

The simulators are used in the Selenium and
REST tests.

SSH Simulator can be configured to read
and respond to commands received through the
SSH protocol. The exact behaviour, such as what
response should be given to request, is configured
in an XML settings file.

The SSH Simulator can be used in two ways.
It is possible to launch it as an SSH server or as
a temporary service for a single JUnit test. The
SSH Simulator tool is configured using XML files.
The XML configuration file contains the expected
requests and responses that will be generated by
the simulator:
SSH Simulator configuration file

<test_case ...>
<login >login </login >
<password >password </password >
<device_type >CNR </ device_type >
<request delay_in_ms ="3000" >

<request_command >dhcp reload </ request_command >
<response_message >

100 Ok
</response_message >
<response_prompt >nrcmd >$</ response_prompt >

</request >
</test_case >

The configuration file contains the
<test_case> entry that represents the sequence
of requests and responses mapped using series
of <request> nodes (on the presented listing
there is only one) that define the expected client
requests and instruct the simulator how to reply
to them. When the XML configuration file is
ready, it is enough to use it in a JUnit test case
as it is presented in the listing below:
Using SSH-Simulator in JUnit

public class MyTest extends
SshSimulatorGenericTestCase {

@Test
public void sampleTest () {

initializeNewSshServer(xmlConfigFile ,
ipAddress , port);

//do the tests here
}

}

The WebServices simulators are made
using J2EE classes from javax.jws and
javax.xml.ws packages. There is a dedicated
class that is responsible for launching the Web-
Services in a separate thread.
Executing a simulated WebService for test pur-
poses

80 Jarosław Berłowski et al.

public class WebServiceExecutor {
private static Endpoint endpoint;
private static ExecutorService executor;
...
public WebServiceExecutor(NaWebService ws) {

if (endpoint != null &&
endpoint.isPublished ()) {

endpoint.stop ();
}
endpoint = Endpoint.create(ws);

}
/∗∗ Starts the web service ∗/
public void publish () {

if (executor == null) {
executor =
Executors.newSingleThreadScheduledExecutor ();

}
endpoint.setExecutor(executor);
endpoint.publish(WS_URL);

}
/∗∗ Closes the web service and verifies

execution results ∗/
public void shutdown () throws Throwable {

endpoint.stop ();
assertTrue(webService.isOk ());
}

}

The web service has its own thread, but the
‘shutdown’ method is called from the JUnit con-
text. Therefore, it is possible to assess what calls
the received WebService. It is done by using the
‘isOk’ method which should be implemented by
each of the simulated WebServices:
Example of a WebService implementation
@WebService(name = "WS",

serviceName = "WSService ")
public class MyWs extends NaWebService

...
@WebMethod(operationName = "OP",

action = "urn#OP")
@WebResult(name = "Result",

targetNamespace = "http ://...")
@RequestWrapper (...)
@ResponseWrapper (...)
public Result op(@WebParam(name = "NAME "...)

String name ...)
throws OperationFault_Exception {

try {
assertEquals ("PCSCF", name);

} catch (Throwable t) {
log.error(t.getMessage (), t);
reportError(t);

}
return = new GenericResponseType.Result ();

}
}

The presented example shows how to test the
value of a WebService parameter. WebService
simulators are usually employed in the REST
tests and are useful in testing WebService clients.

3.3. How Much Effort Does the Test
Automation Require (with Respect
to Different Types of Activities and
Tools)?

To answer this question, it is necessary to refer
to historical data about the efforts made by team
members to create and maintain existing auto-
mated tests. For this purpose, data from the issue
tracking system used by the company (Atlassian
JIRA) were collected.

Then the data about all automated tests
have been divided into two categories accord-
ing to the used tool: Selenium tests and REST
tests. This distinction has been made due to
the fact that these tools tests different lay-
ers of the software. The REST tests are fo-
cused on the REST services, while the Sele-
nium test examines the correctness of the op-
erations of GUI which in turn may use the
aforementioned services. The difference between
these two types of tests is also noticeable in in
their maintenance because of time needed to
activate them. The Selenium tests are started
periodically at a specified time by the con-
tinuous integration system (or manually by
a developer in their environment), which pro-
longs the response time to errors in tests. The
REST tests are executed in a continuous inte-
gration system after each commit and IN A lo-
cal environment when developers build the ap-
plication, so tests errors are usually spotted
immediately.

Highly Automated Agile Testing Process: An Industrial Case Study 81

Team effort has been measured based on the
time which has been logged on specific tasks
which regard the creation of automated tests and
their subsequent maintenance. Figure 4 presents
the measured percentage of time spent on cre-
ation and maintenance related to the total time
of the REST tests. A relatively low percentage
of the REST tests maintenance (18%) is due to
the fact that fixing is usually easy to perform.
So the overwhelming amount of time is spent
on the implementation of new test cases. Figure
5 presents the percentage of time spent on the
creation and maintenance of the Selenium tests.
Figure 6 shows the average time spent on the
implementation and maintenance task of the Se-
lenium and REST test. The average time spent
by a developer on Selenium test creation (13.46h)
was more than two times longer than the cre-
ation of a REST test (5.53h). An even greater
difference between average times was observed
between the maintenance of the Selenium and
a REST tests. The average time of Selenium test
maintenance tasks (6.75h) was more than three
times longer than the average time logged on
REST tests maintenance. It results from the fact
that repairing Selenium tests is usually difficult
to perform (in most cases there is a need to fix
the code on both, the client and the server sides).
Figure 6 shows the differences between the effort
committed for the REST and Selenium tests. This
is largely due to the difference in the complexity
of these tests. On the other hand, the Selenium
tests (which generally require more effort) de-
tect errors in both, the server and the client
side code.

In the case of the creation of both the Sele-
nium and the REST tests, it is possible to present
further statistics, see Table 1. The average num-
bers of hours committed to automation of a test
case are reported once more but also the vari-
abilities and results of analysing the differences
between the Selenium and the REST tests are
given. In the case of the REST tests not only the
mean effort but also the variance is noticeably
smaller. In order to compare the two types of
tests a two-sample t-test was used to verify the
following null hypothesis:

The average effort committed to cre-
ation of a Selenium test is equal to the
average effort of a REST test creation.
versus an alternative hypothesis:

The average effort committed to cre-
ation of a Selenium test is larger than in
the case of a REST test.

Table 1. Efforts committed to the creation of
the Selenium and REST tests statistics

Selenium REST
tests Tests

Mean 13.46 5.83
Variance 146.89 5.67

F 24
P (F ≤ f) one-tail 0.0004

t-Stat 3.2
P (T ≤ t) one-tail 0.0014

Since the alternative hypothesis is asymmet-
ric, the one-tail version of the t-test was used.
The hypotheses are tested at the significance level
α = 0.05. The F -Test was used to test whether
the variances of two populations are equal and
according to the obtained value of P (F ≤ f),
i.e. smaller that 0.05, the two-sample assuming
unequal variances version of t-test 2 was used.
P (T ≤ t) value equal to 0.0014 was obtained,
thus the null hypothesis can be rejected and the
alternative one accepted. In other words, the ef-
fort needed to create a REST test is significantly
smaller than it is in the case of the Selenium
tests.

It is not possible to present analogous statis-
tics for the efforts related to the maintenance of
the tests. The maintenance task almost always
spans across multiple test cases, hence there are
no data regarding individual tests and the average
values have already been reported.

The execution of the automated test cases
is done in the continuous integration system,
hence it does not involve additional efforts. The
project compilation and build process, which
is frequently executed by developers as a part
of their work, includes only unit tests and
REST tests and in consequence it is below the
10 minutes suggested by Beck [3]. Therefore,

2 Satterthwaite’s approximate t-test, a method in the Behrens–Welch family.

82 Jarosław Berłowski et al.

Figure 4. Time spent on the REST tests Figure 5. Time spent on the Selenium tests

Figure 6. Average time spent on implementation and maintenance of a single Selenium and REST test

the Authors do not consider test execution as
a source of additional effort for a development
team.

The next logical step in answering this re-
search question leads to the unit tests. Unfortu-
nately, there are no empirical data in this area.
As in the case of test driven development, the
unit tests are created simultaneously with the
code. There were no dedicated tasks regarding
unit tests that carry effort related information.
Furthermore, it is not possible to decide which
part of the tracked effort was committed to the
production and which to the test code. However,
test driven development considers the prepara-
tion of a unit test as an integral part of the
development process, hence decisions regarding
unit tests should not be driven by cost and effort
related criteria in an agile testing process.

There is one more type of tests in the investi-
gated project, i.e. the manual tests. These tests
are outside of the scope of RQ3 as they are not
appropriate for supporting unscheduled releases,
but still could be interesting. Unfortunately, it
was not possible to correlate the manual tests ef-
forts per particular requirement and according to
the development team there is a significant frac-
tion of untracked efforts. Therefore, the Authors
decided to report the subjective interpretations of
team members involved in manual testing. The
interviewed team members estimated the cost
of implementing and maintaining an automated
test scenario in the investigated project to be
up to 20 times higher than the cost of manual
execution. Furthermore, the overall testing effort
(it covers both manual and automated tests) was
estimated by the members of the development

Highly Automated Agile Testing Process: An Industrial Case Study 83

team to be close to 25% of the overall develop-
ment effort.

4. Threats to Validity

In this section the most trustworthy results are
evaluated: to what extent they are true and not
biased toward the Authors’ subjective point of
view.

4.1. Construct Validity

Most of the employed measures are indirect.
The level of agility was assessed using ques-
tionnaires, hence there is a risk of misunder-
standing the questions or giving biased answers
due to unintentional company influence or con-
text. To address the risk a meeting was orga-
nized, where all concepts from the questionnaires
were explained and all questions that were an-
swered. The possibility of unintentional influ-
ence is connected with the fact that all of the
questioned people (as well as the Authors) were
involved in the project development. Therefore,
they have a wide knowledge about the object
of study, but simultaneously they cannot have
an objective point of view which is necessary
to spot the influence. In consequence, it must
be stated that the level of agility was assessed
only from a subjective perspective. Moreover,
the Authors’ involvement creates an even greater
threat to validity in terms of bias. To miti-
gate the issue quantitative measures were pre-
ferred over qualitative ones in the study design
as the latter ones are more vulnerable to influ-
ence.

The ability of making an unscheduled release
was assessed from the perspective of automated
tests and the continuous integration system. The
tests results carry information about the qual-
ity of the developed system. Nevertheless, using
them exclusively is a simplification of the sub-
ject. There could be some unmeasurable factors
involved (like team members intuition). The test
results obtained from the continuous integration
system is the most convincing, quantitative mea-
sure we were able to come up with.

Test automation efforts were evaluated using
data stored in the issues tracking system. There
are no serious doubts about the quality of the
data, but when it comes to completeness the situ-
ation changes. There is a considerable probability
that a fraction of efforts was not tracked. There
could be small issues that were not reported at all
or issues that were missed by the developers, e.g.
if they forgot about tracking their efforts. We did
not find a way to evaluate which fraction of the
collected data suffers from such problems. How-
ever, the data filtering was done manually. The
developers, who were assigned to the test automa-
tion tasks were approached and asked how the
collected data correspond with their real efforts.

4.2. Internal Validity

According to Runeson and Höst [9] the internal
validity is a concern when casual relations are
examined. This study does not provide such a re-
lation explicitly. Nonetheless, it may create an
impression that following the principles that are
used in the project described here should lead to
similar results, which the Authors in fact believe
is true. However, there is still a possibility that
some relevant factors are missing as they were not
identified by the Authors. To mitigate the risk of
this threat, the context was described according
to guidelines suggested by Petersen and Wohlin
[11] and the rest of the study was designed fol-
lowing Runeson and Höst [9] recommendations
for a descriptive and to some extend exploratory
case study. Specifically, the Authors used the
suggested research process, terminology, research
instruments and validity analysis.

4.3. External Validity

The context of this case study is described in
Section 2.1 and there is no evidence that the
same or similar results could be achieved in a an-
other context. Nonetheless, the Authors believe
that the environment complexity (e.g. the need
for simulators) increases the efforts related to
test automation and hence better results may
be obtained when there are fewer couplings with
external systems.

84 Jarosław Berłowski et al.

Specifically, it must be stressed out that the
comparison of efforts related to different test
frameworks has very limited external validity.
Statistical tests were employed, but the investi-
gated data were mined from only one project.
Therefore, it is not clear whether the results are
true for other projects and it cannot be empir-
ically verified which project specific factors are
relevant for the comparison results. A plausible
explanation is presented in the ‘Discussion and
conclusions’ section, however, data from addi-
tional projects are required to confirm it.

4.4. Reliability

According to Runeson and Höst [9] reliability
is concerned with the extent to which the data
and the analysis are dependent on specific re-
searchers. The conducted analyses are rather
straightforward and several perspectives have
been presented to ensure the reliability. Nonethe-
less, the Authors do not publish raw data, as
they contain business critical information, and
that can be an obstacle in replicating the study.
Additionally, the Authors were involved in project
development and thus the observations as well as
conclusions may be biased – the issue is discussed
in Subsection 4.1.

5. Related Work

The agile methods have been used for a cou-
ple of years. Thus, a number of case studies
with regard to the testing process have already
been conducted. Nonetheless, the Authors are
not familiar with any works that analyze the
agile testing process with respect to unscheduled
releases. On the other hand, the complexity of
the developed system is always a factor taken
into account, however, it but seldom becomes the
object of a study – none of the works reported
in this section consider a similar approach to
handling system complexity.

Kettunen et al. [2] compared testing pro-
cesses between software organizations that ap-
plied agile practices and employ traditional plan
driven-methods. Altogether twelve organizations

were investigated and as a result the Authors
concluded that agile practices:
– tend to allow more time for testing activates,

while the total time for the project remains
the same,

– smooth the load of test resources,
– require stakeholders to understand and con-

form to the practices in agile methods,
– are usually supported by internal customers,
– allow faster reaction time for change.
The findings advocate agile testing but do not
correspond with the goals of the process investi-
gated in this study, i.e. support for unscheduled
releases and complex infrastructure.

Jureczko [5] investigated the level of agility
in a testing process in a large scale financial
software project. The studied project is of differ-
ent size and comes from another domain, never-
theless, the suggested criteria for agility evalua-
tion have been used to assess the testing process
described in this study. Therefore, a compari-
son is possible. The process from [5] is signif-
icantly outperformed in the scope of continu-
ous integration, pair programming, root-cause
analysis and working software (over comprehen-
sive documentation), however, it is underper-
formed in the field of communication. The over-
all assessment is higher in the process studied
in this work. Let us elaborate the development
and testing process of this work. The project
was planned for 150 working years, but later
the duration time was lengthened. More than
150 high skilled developers, testers and man-
agers were involved. The project was divided
into five sub-projects and the paper is focused
on only one of them. The sub-project was de-
veloped by a group of about 40 people. The
project is a custom-build solution that supports
more than 1500 initially identified case scenarios.
The system is based on a well defined techni-
cal framework, called Quasar. The development
team frequently delivers new releases with new
functionalities. There are two major releases per
year: in spring and autumn. They are used to
deliver large changes and bulks of possible bugs.
The two major ones are supplemented by hot-
fix releases that target the most important bug-
fixes only. The employed testing process forces

Highly Automated Agile Testing Process: An Industrial Case Study 85

practices borrowed from the V-Model. Testers
work on test concepts once the specification of
a requirement is ready. Subsequently develop-
ers write a source code and perform manual
tests when testers write new automated tests.
Each of the tests is immediately added to the
regression test set that is executed daily. Sub-
system tests are performed after the integration.
They are usually manual and focused on new
features.

The role of test automation in a testing pro-
cess was empirically evaluated by Karhu et al.
[7] in five software organizations among which he
was developing a complex system with a number
of interfaces to customer-specific external systems
and hence creates challenges in test automation.
The Authors identified a number of interesting
consequences of automation. Quality improve-
ment through better test coverage and increase
in the number of executed test cases were noted
among benefits, whereas costs of implementa-
tion, maintenance and training were pointed out
as the main disadvantages. Moreover, according
to Berlino [1] great emphasis is put on this is-
sue and the methods of extending the degree of
attainable automation are in the focus of test-
ing research. Unfortunately, there is a dichotomy
with regard to the industrial reality, i.e. many
companies, which claim that they have adopted
XP, practice the automation in a limited scope
[19]. Considerable research has been conducted
on the test automation [16,20–23] and in general
this practice is strongly recommended. Among
the aforementioned works especially [21] is note-
worthy as it is conducted it the context of the
Scrum method. Another commonly investigated
agile testing practice is test driven development.
There is evidence for its usefulness in the indus-
trial environment [24, 25], reports of controlled
experiments are also available [26, 27].

Winter [28] investigated the challenges regard-
ing testing in a complex environment, however,
the complexity came from evaluation usability
for a variety of end users. One of the areas of
interest was the agility of a testing process and
the balance between the formal and informal
approaches. The agility was considered in the
context of the Agile Manifesto, and hence there

was limited overlap with the criteria employed
in our study (i.e. only Working software (over
comprehensive documentation) and Responding
to change (over following the plan) are considered
in both studies).

Talby et al. [6] described installation of ag-
ile software testing practices in a real large-scale
project in a traditional environment. The authors
pointed out that in the investigated case study
the agile methods dramatically improved quality
and productivity. The testing process was ana-
lyzed and described in four key areas: test design
and activity execution, working with professional
testers, planning, and defect management. The
investigated project is a sub-project of a larger
one. The larger one was developed by 60 skilled
developers and testers. Thus, there is a consider-
able probability that the sub-project is similar in
size to the project described in this study. More
details about the software project investigated in
[6] can be found in [29].

A lesson learned from a transformation from
a plan-driven to agile testing process is docu-
mented in [14]. Extreme programming and Scrum
were adopted, which makes the process similar
to the one described here. Hence, the challenges
described by Puleio [14] may arise when trying to
adopt adopt the principles advocated in this pa-
per in a traditional (i.e. not agile) environment.

6. Discussion and Conclusions

This paper contributes to the body of knowledge
in two ways. The Authors provide a detailed case
study of an agile testing process, which can be
used in further research and in combination with
other studies to help make general conclusions.
The documentation of the testing process in this
project could also be beneficial to practitioners
interested in installing an agile testing process in
a similar environment. Especially, a number of
ready to use testing tools are recommended (e.g.
the simulators).

A survey was conducted in order to assess
the level of agility and the results showed a high
level of adoption, i.e. 76.6%. Furthermore, each of
the assessment criteria was compared against the

86 Jarosław Berłowski et al.

project reality in a qualitative approach which
gives an insight into the way the agile principles
work. A detailed analysis indicated some areas of
possible improvement, e.g. communication with
customer and pair programming.

The project preparation for the ‘on short no-
tice’ release was analysed and assessed according
to test execution results in the continuous inte-
gration system. The results gave a value of about
47% of time in which the project was ready to
be released and 10% of time it could have been
released with the acceptable risk. Hence, the Au-
thors can conclude that the requirement for un-
scheduled releases is supported to a considerable
extent.

Comparative evaluation of the cost of the
REST and Selenium tests was conducted. It mea-
sured how much time is necessary in both test
frameworks for the implementation of new test
and maintenance of the existing ones. A signifi-
cant disadvantage was found in the case of the
Selenium tests, which we believe is a result of
using Google Web Toolkit for the graphical in-
terface – this framework uses dynamic identifiers
and generates complex (at least from the Sele-
nium point of view) web pages. This extra cost
is counterbalanced with an ability to detect bugs
in GUI which is covered only by the Selenium
test. Nonetheless, the big difference in costs en-
courages reconsideration of the testing approach.

A brief description of all tools that were used
to implement automated tests is provided. The
main contribution in this area regards the sug-
gestion for mitigating environment complexity
with simulators. There is a detailed description
of an open-source project called SSH-simulator
which was co-developed by the Authors, in fact,
it is officially presented in this paper for the first
time. Furthermore, the Authors also suggested
a straightforward solution for simulating WebSer-
vices in a test environment. The paper contains
listings that show how to mock a WebService
in the context of the JUnit tests. The Authors
believe that the detailed descriptions of those
simulators will help other practitioners who face
similar challenges during test automation since
the presented solutions are ready to use (the nec-

essary listings and references to external sources
are given in Sec. 3.2.5).

The overall results are satisfactory with re-
gard to the project goals. Therefore, we would like
to recommend following the same rules (in simi-
lar projects), i.e. adopt the principles of agility,
specifically assure high quality and coverage of
automated tests and employ a continuous inte-
gration system for automated builds.

References

[1] A. Bertolino, “Software testing research: Achieve-
ments, challenges, dreams,” in Future of Software
Engineering, FOSE ’07. IEEE, 2007, pp. 85–103.

[2] V. Kettunen, J. Kasurinen, O. Taipale, and
K. Smolander, “A study on agility and testing
processes in software organizations,” in Proceed-
ings of the 19th international symposium on
Software testing and analysis. ACM, 2010, pp.
231–240.

[3] K. Beck and C. Andres, Extreme programming
explained: embrace change. Addison–Wesley Pro-
fessional, 2004.

[4] L. Koskela, Test driven: practical TDD and ac-
ceptance TDD for Java developers. Manning Pub-
lications Co., 2007.

[5] M. Jureczko, “The level of agility in the testing
process in a large scale financial software project,”
in Software engineering techniques in progress,
T. Hruška, L. Madeyski, and M. Ochodek, Eds.
Oficyna Wydawnicza Politechniki Wrocławskiej,
2008, pp. 139–152.

[6] D. Talby, A. Keren, O. Hazzan, and Y. Dubinsky,
“Agile software testing in a large-scale project,”
IEEE Software, Vol. 23, No. 4, 2006, pp. 30–37.

[7] K. Karhu, T. Repo, O. Taipale, and K. Smolan-
der, “Empirical observations on software test-
ing automation,” in International Conference
on Software Testing Verification and Validation,
ICST ’09. IEEE, 2009, pp. 201–209.

[8] K. Schwaber, Agile project management with
Scrum. Microsoft Press, 2004.

[9] P. Runeson and M. Höst, “Guidelines for con-
ducting and reporting case study research in
software engineering,” Empirical Software Engi-
neering, Vol. 14, No. 2, 2009, pp. 131–164.

[10] R. Mall, Fundamentals of software engineering.
PHI Learning Pvt. Ltd., 2009.

[11] K. Petersen and C. Wohlin, “Context in indus-
trial software engineering research,” in Proceed-

Highly Automated Agile Testing Process: An Industrial Case Study 87

ings of the 3rd International Symposium on Em-
pirical Software Engineering and Measurement.
IEEE Computer Society, 2009, pp. 401–404.

[12] S. Harichandan, N. Panda, and A.A. Acharya,
“Scrum testing with backlog management in agile
development environment,” International Jour-
nal of Computer Science and Engineering, Vol. 2,
No. 3, 2014.

[13] K.K. Jogu and K.N. Reddy, “Moving towards
agile testing strategies,” CVR Journal of Science
& Technology, Vol. 5, 2013.

[14] M. Puleio, “How not to do agile testing,” in Agile
Conference. IEEE, 2006, pp. 305–314.

[15] K. Beck, Test driven development: By example.
Addison–Wesley Professional, 2003.

[16] M. Jureczko and M. Mlynarski, “Automated ac-
ceptance testing tools for web applications us-
ing test-driven development,” Electrical Review,
Vol. 86, No. 09, 2010, pp. 198–202.

[17] S. Ambler, Agile modeling: effective practices
for extreme programming and the unified process.
Wiley, 2002.

[18] C. Kaner, J. Bach, and B. Pettichord, Lessons
learned in software testing. John Wiley & Sons,
2008.

[19] D. Martin, J. Rooksby, M. Rouncefield, and
I. Sommerville, “ ‘Good’ organisational reasons
for ’bad’ software testing: An ethnographic study
of testing in a small software company,” in 29th
International Conference on Software Engineer-
ing, ICSE 2007. IEEE, 2007, pp. 602–611.

[20] M. Catelani, L. Ciani, V.L. Scarano, and A. Ba-
cioccola, “Software automated testing: A solution
to maximize the test plan coverage and to in-
crease software reliability and quality in use,”
Computer Standards & Interfaces, Vol. 33, No. 2,
2011, pp. 152–158.

[21] R. Löffler, B. Güldali, and S. Geisen, “Towards
model-based acceptance testing for Scrum,”
Softwaretechnik-Trends, Vol. 30, No. 3, 2010.

[22] X. Wang and P. Xu, “Build an auto testing frame-
work based on selenium and fitnesse,” in Inter-
national Conference on Information Technology
and Computer Science, ITCS 2009, Vol. 2. IEEE,
2009, pp. 436–439.

[23] T. Xie, “Improving effectiveness of automated
software testing in the absence of specifica-
tions,” in 22nd IEEE International Conf. on
Software Maintenance, ICSM ’06. IEEE, 2006,
pp. 355–359.

[24] N. Nagappan, E.M. Maximilien, T. Bhat, and
L. Williams, “Realizing quality improvement
through test driven development: results and
experiences of four industrial teams,” Empirical
Software Engineering, Vol. 13, No. 3, 2008, pp.
289–302.

[25] A.P. Ress, R. de Oliveira Moraes, and M.S.
Salerno, “Test-driven development as an innova-
tion value chain,” Journal of technology manage-
ment & innovation, Vol. 8, 2013, p. 10.

[26] L. Madeyski, “The impact of pair programming
and test-driven development on package depen-
dencies in object-oriented design—an experi-
ment,” in Product-Focused Software Process Im-
provement. Springer, 2006, pp. 278–289.

[27] L. Madeyski, “The impact of test-first program-
ming on branch coverage and mutation score
indicator of unit tests: An experiment,” Infor-
mation and Software Technology, Vol. 52, No. 2,
2010, pp. 169–184.

[28] J. Winter, K. Rönkkö, M. Ahlberg, and
J. Hotchkiss, “Meeting organisational needs
and quality assurance through balancing agile
and formal usability testing results,” in Soft-
ware Engineering Techniques. Springer, 2011, pp.
275–289.

[29] Y. Dubinsky, D. Talby, O. Hazzan, and A. Keren,
“Agile metrics at the Israeli air force,” in Agile
Conference, Proceedings. IEEE, 2005, pp. 12–19.

e-Informatica Software Engineering Journal, Volume 10, Issue 1, 2016, pages: 89–123, DOI 10.5277/e-Inf160105

Software Startups – A Research Agenda

Michael Unterkalmsteinera, Pekka Abrahamssonb, XiaoFeng Wangc, Anh Nguyen-Duca,
Syed Shahd, Sohaib Shahid Bajwac, Guido H. Baltese, Kieran Conboyf , Eoin Cullinaf ,

Denis Dennehyf , Henry Edisonc, Carlos Fernandez-Sanchezg, Juan Garbajosag,
Tony Gorscheka, Eriks Klotinsa, Laura Hokkanenh, Fabio Koni, Ilaria Lunesuj,

Michele Marchesij, Lorraine Morgank, Markku Oivol, Christoph Seligk, Pertti Seppänenl,
Roger Sweetmanf , Pasi Tyrväinenm, Christina Ungererk, Agustin Yagüeg

aBlekinge Institute of Technology, Sweden, bNorwegian University of Science and Technology, Norway,
cFree University of Bolzano-Bozen, Italy, dSICS, Sweden, eLake Constance University, Germany,

fNational University of Ireland Galway, Ireland, gTechnical University of Madrid, Spain,
hTampere University of Technology, Finland, iUniversity of São Paulo, Brazil, jUniversity of Cagliari, Italy,

kNational University of Ireland Maynooth, Ireland, lUniversity of Oulu, Finland,
mHochschule Konstanz, Germany, nUniversity of Jyväskylä, Finland

mun@bth.se, pekkaa@ntnu.no, xiaofeng.wang@unibz.it, anhn@idi.ntnu.no, shah@sics.se,
bajwa@inf.unibz.it, guido.baltes@cetim.org, kieran.conboy@nuigalway.ie,

eoin.cullina@outlook.com, denis.dennehy@nuigalway.ie, henry.edison@inf.unibz.it,
carlos.fernandez@upm.es, jgs@eui.upm.es, tgo@bth.se, ekx@bth.se, laura.hokkanen@tut.fi,

fabio.kon@ime.usp.br, ilaria.lunesu@diee.unica.it, michele@diee.unica.it,
lorraine.morgan@nuim.ie, markku.oivo@oulu.fi, cselig@htwg-konstanz.de,

pertti.seppanen@oulu.fi, roger.sweetman@nuigalway.ie, pasi.tyrvainen@jyu.fi,
christina.ungerer@htwg-konstanz.de, ayague@etsisi.upm.es

Abstract
Software startup companies develop innovative, software-intensive products within limited time
frames and with few resources, searching for sustainable and scalable business models. Software
startups are quite distinct from traditional mature software companies, but also from micro-,
small-, and medium-sized enterprises, introducing new challenges relevant for software engineering
research. This paper’s research agenda focuses on software engineering in startups, identifying,
in particular, 70+ research questions in the areas of supporting startup engineering activities,
startup evolution models and patterns, ecosystems and innovation hubs, human aspects in software
startups, applying startup concepts in non-startup environments, and methodologies and theories
for startup research. We connect and motivate this research agenda with past studies in software
startup research, while pointing out possible future directions. While all authors of this research
agenda have their main background in Software Engineering or Computer Science, their interest
in software startups broadens the perspective to the challenges, but also to the opportunities that
emerge from multi-disciplinary research. Our audience is therefore primarily software engineering
researchers, even though we aim at stimulating collaborations and research that crosses disciplinary
boundaries. We believe that with this research agenda we cover a wide spectrum of the software
startup industry current needs.

Keywords: software startup, research agenda, software-intensive systems

90 Michael Unterkalmsteiner et al.

1. Introduction

Researchers are naturally drawn to complex phe-
nomena that challenge their understanding of
the world. Software startup companies are an
intriguing phenomenon, because they develop in-
novative software-intensive1 products under time
constraints and with a lack of resources [2], and
constantly search for sustainable and scalable
business models. Over the past few years, soft-
ware startups have garnered increased research
interest in the Software Engineering (SE) com-
munity.

While one could argue that software star-
tups represent an exceptional case of how soft-
ware products are developed and brought to
the market, several factors suggest a broader
impact. From an economical perspective, star-
tups contribute considerably to overall wealth
and progress by creating jobs and innovation [3].
Digital software startups2 are responsible for an
astonishing variety of services and products [5].
In the farming sector, venture investment in
so-called “AgTech” startups reached $2.06 billion
in just the first half of 2015; this figure neared the
$2.36 billion raised during the whole of 2014 [6].
From an innovation perspective, startups often
pave the way for the introduction of even more
new and disruptive innovations [7]. Kickstarter is
changing the retail and finance industries, Spotify
is offering a new way to listen to and purchase
music, and Airbnb is reinventing the hospitality
industry [8]. From an engineering perspective,
startups must inventively apply existing knowl-
edge in order to open up unexpected avenues for
improvement [9]; e.g., they must provide educa-
tion for full stack engineers, develop techniques
for continuous lightweight requirements engineer-
ing, or develop strategies to control technical
debt.

Despite these promising conditions, software
startups face challenges to survival, even in con-
texts where they play a key role in developing
new technology and markets, such as cloud com-
puting [10]. These challenges may arise because,
while developing a product can be easy, selling it
can be quite difficult [11]. Software startups face
other challenges, such as developing cutting-edge
products, acquiring paying customers, and build-
ing entrepreneurial teams [12]. Such diverse fac-
tors underscore the need to conduct research
on software startups, which will benefit both
scholarly communities and startup leaders.

This paper’s research agenda is driven by
past and current work on software startups. We
outline the various research tracks to provide
a snapshot of ongoing work and to preview fu-
ture research, creating a platform for identifying
collaborations with both research and startup
environments and ecosystems. This effort is not
a one-way path. We have therefore founded a re-
search network, the Software Startup Research
Network (SSRN)3, which enables interactions
and collaborations among researchers and inter-
ested startups. SSRN envisions to: (1) spread
novel research findings in the context of soft-
ware startups; and (2) inform entrepreneurs with
necessary knowledge, tools and methods that
minimize threats and maximize opportunities
for success. As part of the network initiatives,
an International Workshop of Software Startups
was established in 2015. The first edition of the
workshop was held in Bolzano4 (Italy) in 2015,
and the second took place in Trondheim5 (Nor-
way) in 2016. This paper provides a research
agenda based on the activities carried out by the
researchers in the network.

The rest of the paper is organized as follows.
After we clarify the meaning of software startup
and what we know about software startups from

1 ISO 42010:2011 [1] defines software-intensive systems as “any system where software contributes essential
influences to the design, construction, deployment, and evolution of the system as a whole” to encompass “individual
applications, systems in the traditional sense, subsystems, systems of systems, product lines, product families, whole
enterprises, and other aggregations of interest”.

2 In our article, digital startups refer specifically to startups in which the business value of the solution is created
by means of software [4].

3 https://softwarestartups.org
4 http://ssu2015.inf.unibz.it/
5 https://iwssublog.wordpress.com/

Software Startups – A Research Agenda 91

prior research in the Background section, Sec-
tion 3 introduces the research topics on software
startups, organized under six main tracks that
we have either investigated or envision investi-
gating in the future. Wherever possible, each
topic is illustrated and motivated by previous
studies. Section 4 highlights the implications of
these main tracks for future research. The paper
concludes with Section 5, which points out fu-
ture actions that can establish and consolidate
software startups as a research area.

2. Background

2.1. What is a Software Startup?

To understand software startups, we must first
clarify what a startup is. According to Ries [13],
a startup is a human institution designed to
create a new product/service under conditions
of extreme uncertainty. Similarly, Blank [14] de-
scribes a startup as a temporary organization
that creates high-tech innovative products and
has no prior operating history. These defini-
tions distinguish startups from established or-
ganizations that have more resources and al-
ready command a mature market. In addition,
Blank [14,15] defines a startup as a temporary or-
ganization that seeks a scalable, repeatable, and
profitable business model, and therefore aims to
grow. Blank’s definition highlights the difference
between a startup and a small business, which
does not necessarily intend to grow, and conse-
quently lacks a scalable business model.

Even though sharing common characteris-
tics with other types of startups, such as re-
source scarcity and a lack of operational his-
tory, software startups are often caught up in
the wave of technological change frequently hap-
pening in software industry, such as new com-
puting and network technologies, and an in-
creasing variety of computing devices. They also
need to use cutting-edge tools and techniques
to develop innovative software products and
services [16]. All these make software startups
challenging endeavours and meanwhile fascinat-
ing research phenomena for software engineer-

ing researchers and those from related disci-
plines.

In 1994, Carmel first introduced the term
software startup, or, to be more precise, software
package startup, in SE literature [17]. Carmel [17]
argued that software was increasingly becoming
a fully realized product. Since then, other re-
searchers have offered their own definitions of
software startup. Sutton [16] considers software
startups as organizations that are challenged
by limited resources, immaturity, multiple influ-
ences, vibrant technologies, and turbulent mar-
kets. Hilmola et al. [18] claim that most software
startups are product-oriented and develop cut-
ting edge software products. Coleman and Con-
nor [19] describe software startups as unique com-
panies that develop software through various pro-
cesses and without a prescriptive methodology.

Currently, there is no consensus on the defini-
tion of software startup, even though many share
an understanding that software startups deal
with uncertain conditions, grow quickly, develop
innovative products, and aim for scalability. Dif-
ferent definitions emphasize distinct aspects, and
consequently may have varying implications for
how studies that adopt them should be designed,
e.g., who qualifies as study subjects, or which fac-
tor is worth exploring. For this reason, despite the
lack of a single agreed-upon definition of software
startup, it is important and recommended that
researchers provide an explicit characterization
of the software startups they study in their work.
The research track in Section 3.1.1 is dedicated
to develop a software startup context model that
would allow for such a characterization.

2.2. What are the Major Challenges of
Software Startups?

Software startups are challenging endeavours,
due to their nature as newly created companies
operating in uncertain markets and working with
cutting edge technology. Giardino et al. [20] high-
light software startups’ main challenges as: their
lack of resources, that they are highly reactive,
that they are by definition a new company, that
they are comprised of small teams with little
experience, their reliance on a single product

92 Michael Unterkalmsteiner et al.

and innovation, and their conditions of uncer-
tainty, rapid evolution, time pressure, third-party
dependency, high risk, and dependency (they are
not self-sustained). Further, Giardino et al. [12]
apply the MacMillan et al. [21] framework in the
software startup context, categorizing the key
challenges faced by early stage software startups
into four holistic dimensions: product, finance,
market, and team. The findings of Giardino et
al. [12] reveal that thriving in technological un-
certainty and acquiring the first paying customer
are the top key challenges faced by many startups.
In another study, Giardino et al. [22] discover
that inconsistency between managerial strategies
and execution could lead to startup failure.

Although research exists on the challenges
software startups face, there is no study dedi-
cated to their success factors. Block and Macmil-
lan’s [23] study highlights the success factors for
any new business, including generating ideas to
complete product testing, completing a proto-
type, and consistently re-designing or making
amendments. Researchers have yet to explore
these general factors’ applicability to the specific
software startup context.

2.3. What do We Know about Software
Engineering in Software Startups?

Software development comprises a software
startup’s core activity. However, some initial
research studies report a lack of software en-
gineering activities in software startups. A sys-
tematic mapping study conducted by Paternos-
ter et al. [2] allows us to start understanding
how software startups perform software develop-
ment. The study reveals that software require-
ments are often market driven and are not very
well documented. Software development prac-
tices are only partially adopted; instead, pair
programming and code refactoring sessions sup-
ported by ad-hoc code metrics are common prac-
tices. Testing is sometimes outsourced or con-
ducted through customer acceptance and focus
groups, and team members are empowered and
encouraged to adapt to several roles. Similarly,
Giardino et al. [20] highlight the most com-
mon development practices that have been used

in software startup companies, such as: using
well-known frameworks to quickly change the
product according to market needs, evolutionary
prototyping and experimenting via existing com-
ponents, ongoing customer acceptance through
early adopters’ focus groups, continuous value
delivery, focusing on core functionalities that en-
gage paying customers, empowerment of teams
to influence final outcomes, employing metrics
to quickly learn from consumers’ feedback and
demand, and engaging easy-to-implement tools
to facilitate product development.

Although a few studies provide snapshots of
software engineering practices in software star-
tups [9, 24], the state of the art presented in
literature is not enough to base an understand-
ing of how software engineering practices could
help software startups. Researchers must build
a more comprehensive, empirical knowledge base
in order to support forthcoming software star-
tups. The research agenda presented in this paper
intends to inspire and facilitate researchers inter-
ested in software startup related topics to start
building such knowledge base.

3. Research Agenda

The Software Startup Research Agenda, initial-
ized in June 2015, was developed by a network
of researchers interested in studying the startup
phenomenon from different angles and perspec-
tives. This variety of research interests not only
opens up new avenues for collaboration, but also
sheds light on the complexity of the studied
phenomenon. Initially, ten researchers created
a mind map of different research areas, aiming to
provide an overview of software startup research
areas and how they connect to each other. Over
a period of six months, more researchers joined
the network, added their research tracks, and
continuously expanded the map. A working ses-
sion with twenty researchers at the 1st workshop
on software startup research in December 2015
was devoted at discussing the identified areas
and finding potential interest overlaps among
the participants. After this meeting, the authors
of this paper prepared eighteen research track

Software Startups – A Research Agenda 93

Figure 1. Overview of the Software Startup Research Agenda

descriptions according to the following pattern:
background of the area, motivation and relevance
for software engineering in startups, research
questions, potential impact of answering these re-
search questions on practice and research, poten-
tial research methodologies that can be employed
to answer the proposed research questions, and
related past or ongoing work. Most of the authors
interacted in the past or are currently active as
advisory board members, mentors, founders or
team members of software startups.

The leading authors of this paper grouped the
eighteen research tracks into six major clusters,
based on the thematic similarities and differ-
ences of the tracks. While this grouping is one of
the several possible ways to create the clusters,
it served the purpose to ease the presentation
and discussion of the research agenda, shown in
Figure 1. Supporting Startup Engineering Activ-
ities (Section 3.1) encompasses research foci that
address specific software engineering challenges
encountered by startup companies. Startup Evo-
lution Models and Patterns (Section 3.2) focuses
on the progression of startups over time, trying to
understand the underlying mechanics that drive
a company towards success or failure. Human
Aspects in Software Startups (Section 3.3) covers
research tracks that investigate factors related to
the actors involved in startups. The research on
Applying Startup Concepts in Non-Startup Envi-

ronments (Section 3.4) seeks to strengthen inno-
vation by extracting successful software startup
practices and integrating them in traditional en-
vironments. Startup Ecosystems and Innovation
Hubs (Section 3.5), on the other hand, investi-
gates whether and how a thriving environment
for software startups can be designed. Finally, all
of these areas are connected by research tracks
that develop methodologies and theories for soft-
ware startup research (Section 3.6).

Figure 1’s illustration of the research agenda
includes reference to research areas outside this
paper’s current scope. Marketing and Business
and Economic Development are directions that
are likely relevant for the performance of software
startups. These and other areas may be added
to the research agenda in later editions when
more evidence exists regarding whether and how
they interact with software startup engineering,
i.e. the “use of scientific, engineering, managerial
and systematic approaches with the aim of suc-
cessfully developing software systems in startup
companies” [9].

3.1. Supporting Startup Engineering
Activities

The research tracks in this cluster share the
theme of studying, identifying, transferring, and
evaluating processes, methods, framework, mod-

94 Michael Unterkalmsteiner et al.

els, and tools aimed at supporting software
startup engineering activities.

3.1.1. The Context of Software Intensive
Product Engineering in Startups

Rapid development technologies have enabled
small companies to quickly build and launch
softwareintensive products with few resources.
Many of these attempts fail due to market con-
ditions, team breakup, depletion of resources, or
a bad product idea. However, the role of software
engineering practices in startups and their impact
on product success has not yet been explored in
depth. Inadequacies in applying engineering prac-
tices could be a significant contributing factor to
startup failure.

Studies show that startups use ad-hoc engi-
neering practices or attempt to adopt practices
from agile approaches [25, 26]. However, such
practices often focus on issues present in larger
companies and neglect startup-specific challenges.
For example, Yau and Murphy [25] report that
test-driven development and pair programming
provide increased software quality at an expense
of cost and time. Also keeping to a strict backlog
may hinder innovation. Since neglecting engineer-
ing challenges can lead to sub-optimal product
quality and generate waste, engineering practices
specific to the startup context are needed. The
overarching questions in this research track are:
– RQ1: To what degree is the actual engineering

a critical success factor for startups?
– RQ2: How can the startup context be defined

such that informed decisions on engineering
choices can be made?

– RQ3: What engineering practices, processes
and methods/models are used today, and do
they work in a startup context?
An answer to RQ1 could help practitioners

to decide on what activities to focus on and
prioritize allocation of resources. Several studies,
e.g Paternoster et al. [2], Giardino et al. [12] and
Sutton [16], emphasize the differences between
established companies and startups, noting that
startups are defined by limited resources and
dynamic technologies. However, these charac-
terizations are not granular enough to support

a comparison of engineering contexts in differ-
ent companies, making the transfer of practices
from company to company difficult [27]. Thus,
understanding the engineering context of star-
tups (RQ2) is an important milestone in develop-
ing startup context specific engineering practices
(RQ3). While there exists work that provides
systematic context classifications for the field
of software engineering in general [27–31], these
models are not validated and adapted for use
within startups. The work in this research track
aims to develop such a software startup context
model by analysing data from startup experience
reports [24]. Provided that engineering contexts
among startups and established companies can
be compared at a fine level of detail, the context
model can be used to identify candidate practices.
Moreover, researchers can develop decision sup-
port by mapping specific challenges with useful
practices, thereby validating the model and help-
ing practitioners select a set engineering practices
for their specific context and set of challenges.

3.1.2. Technical Debt Management

The software market changes rapidly. As dis-
cussed by Feng et al. [32], in fast changing envi-
ronments, the product management focus evolves
from the more traditional cost or quality orien-
tation to a time orientation. New product devel-
opment speed is increasingly important for orga-
nizations, and a commonly shared belief is that
time-to-market of new products can build a com-
petitive advantage [32]. In the software startup
context, it may be vital to be the first to mar-
ket in order to obtain customers. Since software
startups also lack resources, quality assurance
is often largely absent [2]. However, long-term
problems will only be relevant if the product
obtains customers in the short term [33]. This
short-term vision may produce software code
that is low-quality and difficult to change, com-
pelling the company to invest all of its efforts
into keeping the system running, rather than in-
creasing its value by adding new capabilities [33].
Scaling-up the system may become an obstacle,
which will prevent the company from gaining new
customers. Finding a viable trade-off between

Software Startups – A Research Agenda 95

time-to-market demands and evolution needs is
thus vital for software startups.

One promising approach to performing such
a trade-off is technical debt management. Techni-
cal debt management consists of identifying the
sources of extra costs in software maintenance
and analysing when it is profitable to invest ef-
fort into improving a software system [33]. Hence,
technical debt management could assist startups
in making decisions on when and what to fo-
cus effort on in product development. Technical
debt management entails identifying the techni-
cal debt sources, the impact estimation of the
problems detected, and the decision process on
whether it is profitable to invest effort in solving
the detected sources of technical debt [34, 35].
Only those sources of technical debt that provide
return on investment should be resolved. More
importantly, technical debt should be managed
during project development [36] in order to con-
trol the internal quality of the developed software.
Several research questions need to be answered
to successfully manage technical debt in this way:
– RQ1: What kind of evolution problems are

relevant in the software startup context? How
can we identify them?

– RQ2: How can we prioritize the possible im-
provements/changes in the context of soft-
ware startups?

– RQ3. What factors beyond time-to-market
and resource availability must be considered
in trade-offs?

– RQ4: How can we make decisions about when
to implement the improvements/changes
within the software startup roadmap?

– RQ5: How can we provide agility to technical
debt management, necessary in an environ-
ment plenty of uncertainty and changes?

Answering these questions will impact on both
practitioners and researchers focused on software
startups. Practitioners will be able to make bet-
ter decisions considering the characteristics of
the current software product implementation.
The current implementation could make it im-
possible to reach a deadline (time to market), be-
cause of the complexity of the changes to perform
to implement a new feature, assuming a given
amount (and qualifications) of effort to be de-

ployed. Furthermore, it will be also possible to
decide between two alternative implementations,
with different costs, but also with different po-
tential for the future, assuming that the “future”
has been previously outlined. For researchers,
answering these questions could help clarify the
role of design decisions in software development
in the context of a software product roadmap,
similarly to what happens in other engineering
disciplines.

Technical debt is context dependent since
quality tradeoffs are context dependent [37].
While technical debt is as important to software
startups as it is to mature companies, the kind of
decisions to take and the consequences of making
the wrong decisions are not the same, justifying
research on technical debt specifically in software
startups.

In general, there is a lack of specific studies on
technical debt management in software startups,
and current literature reviews on technical debt
management do not address this topic [34, 35].
Moreover, there are several specific challenges
to managing technical debt that are of special
relevance for software startups. For one, very few
studies address how to prioritize improvements to
solve technical debt problems, especially for com-
mercial software development [35]. In addition,
technical debt management literature often refers
to time-to-market, but very few studies actually
address it [34], perhaps because it is a topic that
straddles engineering and economics.

3.1.3. Software Product Innovation Assessment

Startup companies strive to create innovative
products. For firms in general, and software star-
tups in particular, it is critical to know as soon
as possible if a product aligns with the market,
or whether they can increase their chances to
lead the market and recruit the highest possible
number of customers [38].

The need to invest in infrastructures to mea-
sure the impact of innovation in software was
highlighted by OECD [39], and more recently
by Edison et al. [40]. These measures will en-
able companies to assess the impact of innova-
tion factors and achieve the expected business

96 Michael Unterkalmsteiner et al.

goals, as well as to improve the understanding
of success yield high returns on investments in
the innovation process [39]. Product innovation
assessment is thus very relevant for product de-
velopers, and especially for startups, which are
more sensitive to market reactions. Product in-
novation assessment is complex, particularly for
software products [41].

Product innovation assessment is reported
in literature as the combination of a number of
multi-dimensional factors impacting the success
or failure of a software product [42]. Factor’s
measures intend to engage people in the in-
novation process to think more deeply about
factors affecting product innovation. Factors such
as time-to-market, perceived value, technology
route, incremental product, product liability,
risk distribution, competitive environment, life
cycle of product, or strength of market could be
grouped into dimensions likemarket, organization,
environment, or any other terms of impact on the
market and business drivers [43]. These factors
can act as innovation enablers or blockers [44].

Since these factors are not always indepen-
dent, it is critical to identify the existing de-
pendencies and gain a better understanding
of each factor’s impact. It would be necessary
to relate these factors to characteristics spe-
cific to software products, such as, but not lim-
ited to, software quality attributes proposed by
ISO/IEC [45].

There is a lack of specific literature on soft-
ware product innovation assessment; most of the
past research refers to products in general, and
not specifically to software products [40,46], lead-
ing to the following research questions:
– RQ1: What should be the components

of a software product innovation assess-
ment/estimation model?

– RQ2: What factors can help measure innova-
tion from a software product and a market
perspective?

– RQ3: To what extent are factors that can
help measure innovation dependent on the
software product and the market perspective?

– RQ4: What is the relation between software
product innovation factors and quality fac-
tors?

– RQ5: What kind of tools for software product
innovation estimation could support software
startups in decision making?

While innovation has been widely studied from
the process perspective, the product perspec-
tive, by nature, has been addressed mainly from
the viewpoint of specific products and indus-
tries. However, software products are different
compared to other kinds of products [47] and
innovations in the software industry happen fast.
Hence, answers to RQ1-RQ4 would provide a fun-
damental understanding on software product in-
novation assessment and be beneficial for both
researchers and practitioners. Software startups
need to be fast and spend resources in an efficient
way. Therefore, to be able to estimate existing
products or design new products, considering
those characteristics that experience shows that
are relevant from an innovation point of view,
can be essential for software startups to develop
successful products (RQ5).

3.1.4. Empirical Prototype Engineering

Startups often start with a prototype, which
serves as a form to validate either a new technol-
ogy or knowledge about targeted customers [2].
Traditionally, prototyping implies a quick and
economic approach to determining final prod-
ucts [48–50]. Defined as a concrete representation
of part or all of an interactive system, proto-
types has been intensively researched and used
in Software Engineering, with well-developed
taxonomies, such as horizontal and vertical,
low-fidelity and high-fidelity prototypes [50]. The
strategy of developing a prototype can greatly
vary due to a great variety of prototype types,
their development efforts and value they can
produce.

While much about prototyping techniques
can be learnt from the SE body of knowledge,
the discussion about prototyping in the context
of business development process is rare. Recent
work on startup methodologies, such as Lean
Startup [13] and Design Thinking [51] emphasizes
the adoption of prototypes to increase chances
of success through validated learning. Alterna-
tively, startup prototypes need to be developed to

Software Startups – A Research Agenda 97

satisfactorily serve their purposes, i.e. technical
feasibility test, demonstration to early customers,
and fund raising. We argue that the prevalent
Software Engineering practices used by startups
to develop their first product inefficiently inte-
grate into startups’ dynamic contexts. Hence we
call for research in understanding the develop-
ment and usage of prototypes in startup con-
texts:
– RQ1: How can prototyping be used to maxi-

mize learning experience?
– RQ2: How can prototyping be used for opti-

mization?
– RQ3: How can prototyping be used to support

communication with external stakeholders?
– RQ4: How do prototypes evolve under the

multiple influences of startups’ stakeholders?
Early stage startups are lacking actionable guide-
lines for making effective prototypes that can
serve multiple purposes. We believe that many
startups will economically and strategically ben-
efit by having proper practices in prototyping,
such as technology evaluation (RQ1), strate-
gic planning (RQ2) and customer involvement
(RQ3).

To understand prototype development and
its usage in startups, i.e. answering the first three
research questions, exploratory case studies can
be conducted. Cases would be selected to cover
different types of startup prototypes at different
phase of startup progress. A large-scale survey
can be used to understand the prototype usage
patterns, i.e. answering RQ4.

Despite an increasing body of knowledge on
software startups [2], empirical research on pro-
totyping processes and practices are rare. A few
studies have investigated the adoption of soft-
ware prototypes in combination with Design
Thinking [52] and proposed prototyping tech-
niques [52–54]. However, these studies rely on
a very limited number of cases. Moreover, differ-
ent constraints on prototyping decisions are often
neglected. Future work can address antecedence
factors, i.e. the involvement of lead-users, avail-
able human resources, and technological push,
and how they impact prototyping strategies and
usages in different startup contexts [55].

3.1.5. Risk Management Tools for
Software Startups

The management of risk, namely the risk of fail-
ing to meet one’s goals within given constraints
in budget and/or time, is of paramount impor-
tance in every human activity. In the context
of software startups, risk management looks un-
conventional, because startups naturally involve
a much higher risk than traditional businesses.
Yet, perhaps even more so than in traditional
contexts, evaluating and managing risk in the
software startup context might be a key factor
for success.

Risk factors can be identified as a check-list of
the incidents or challenges to face. Each of them
could be categorized and prioritized according
to its probability and the impact level of its
consequences. This research track aims to study,
model, and quantify various aspects related to
risk management in software startups, with the
goal of providing tools, based on process simula-
tion, that control risk. Being able to efficiently
model and simulate the startup process and its
dynamics, would support startups in timely deci-
sion making. While numerous other approaches
to risk control exist [56], we have found in our
previous work [57, 58] that process simulations
can be effective in risk management. Therefore,
the overarching questions in this research track
are:
– RQ1: To what extent do software startups

explicitly manage risk?
– RQ2: To what degree is it feasible to model

software development processes in startups?
– RQ3: To what extent can these models be

used to quantify the risk of exceeding project
budget or time?

– RQ4: What systematic ways exist to under-
stand when to pivot or persevere [13], and
what might be the cost of a wrong or untimely
decision?

Following our previous experiences in software
process modelling and simulation, to gain a bet-
ter understanding is necessary to identify and
analyse significant activities, not limited to
the software development phase, of a software

98 Michael Unterkalmsteiner et al.

startup (RQ1). This is necessary to be able to
identify the critical aspects of startup develop-
ment risks that are suitable for simulation. In
our previous work we studied the application of
Event-Driven models and/or System Dynamics
to the software development processes. From this
work we know that it is possible analyse project
variations in time and budget with a Monte Carlo
approach, by performing several simulations of
the same project, varying the unknown parame-
ters according to given distributions, and calcu-
lating the resulting distributions of cost and time
of the simulated projects. Such analysis allows
one to compute the Value At Risk (VAR) of these
quantities, at given VAR levels. While Cocco et
al. [57] and Concas et al. [58] provide exemplar
studies of the application of these techniques in
mature (agile) software development contexts,
the question is whether such an approach is suit-
able and beneficial for software startups, and
under what conditions (RQ2). By simulating the
evolution of a startup as a process, we might
be able to make predictions on its future devel-
opment. Such predictions, or a result that can
be rapidly be drawn from simulations, might be
crucial for startups to understand which deci-
sions are less costly and/or risky (RQ3). This is
particularly true for decisions related to fields
such as market strategies, team management,
financial issues or product development (RQ4).

3.1.6. Startup Support Tools

Support tools can help software startups get
their business off the ground with less pain
and more guidance. These tools generally em-
bed crucial knowledge regarding startup pro-
cesses and activities. A plethora of tools (mostly
software tools) exist for meeting the different
needs of entrepreneurs and supporting various
startup activities. For example, the web-page6
by Steve Blank, a renowned entrepreneurship
educator, author, and researcher from Stan-
ford University, contains a list of more than
1000 tools. Well-designed portals such as Star-
tupstash.com ease access to these supporting
tools.

However, due to the lack of time, resources,
and/or necessary knowledge, entrepreneurs can-
not easily find the tools that best suit their needs,
or cannot effectively utilize these tools to their
potential. Existing studies provide limited in-
sights on how entrepreneurial teams could find,
use and benefit from support tools. Hence, the
overarching questions in this research track are:
– RQ1: What are the needs of software startups

that can be supported by software tools?
– RQ2: What are the tools that support differ-

ent startup activities?
– RQ3: How can support tools be evaluated

with respect to their efficiency, effectiveness,
and return-on-investment?

– RQ4: How can support tools be effectively
recommended to entrepreneurs and used by
them?

RQ1 and RQ2 are targeted at identifying a match
between the needs of software startups and the
available tool support. To enable robust recom-
mendations, both the individual startups and the
software tools need to be objectively character-
ized allowing for their evaluation w.r.t. certain
quality criteria (RQ3). There are potential syn-
ergies with the research track looking at the con-
text characterization of software startups (Sec-
tion 3.1.1). Answers to these research questions
can be also valuable input for software tool ven-
dors to develop the right tools that are needed by
startups. In addition, the findings can be useful
for future studies that develop proof-of-concept
prototypes to support startup activities.

To investigate the proposed questions, vari-
ous research methods can be applied, including
survey of software startups regarding their needs
and usage of support tools, in-depth case study
of adoption and use of support tools, and de-
sign science approach to develop recommender
systems of support tools (RQ4).

Research on tooling aspects in the software
startup context is scarce. Edison et al. [59] argue
that, despite the fact that different startup sup-
porting tools have been developed and published
over the Internet, new entrepreneurs might not
have sufficient knowledge of what tools they need
when compared to experienced entrepreneurs. In

6 http://steveblank.com/tools-and-blogs-for-entrepreneurs/

Software Startups – A Research Agenda 99

addition, not all tools will help entrepreneurs
in certain tasks or situations. Entrepreneurs’ ex-
periences using the tools can serve as the basis
for evaluating and recommending appropriate
tools. Besides suggesting a new categorization of
existing startup support tools, Edison et al. [59]
propose a new design of a tool portal that will
incorporate new ways to recommend tools to
entrepreneurs, especially to those who engage for
the first time in a software startup endeavour.

3.1.7. Supporting Software Testing

Testing software is costly and often compromised
in startups [60], as it is challenging for startups
to fulfil customer needs on time, while simultane-
ously delivering a high quality product. In many
software startups there is a common slogan that
says “done is better than perfect”, which indi-
cates a general tendency toward a lack of testing
and quality assurance activities [61]. However, it
is sometimes also observed that startups do not
know how and what to test; they lack expertise to
test requirements as they do not have knowledge
about their customers and users [61]. Therefore
considering testing in software startups poses the
following research questions:
– RQ1: To what extent does software testing

in startup companies differ from traditional
companies?

– RQ2: To what extent does testing evolve over
time in software startup companies?

– RQ3: What is an optimal balance between
cost/time spent on testing and development
activities?

– RQ4: How can a software startup leverage
customers/users for testing?

Answering RQ1 would provide insights on the
aspects that differentiate the software testing
process in startups from mature companies. For
example, integration testing is likely very impor-
tant for startups due to the fast paced product
development. At the same time however, startups
tend to work with cutting edge technologies, re-
quiring a robust and flexible test integration plat-
form. Connected to this is the question whether
testing needs change over time, while the soft-
ware startup matures. Answers to RQ2 and RQ3

would be particularly valuable for practitioners
who could then better allocate resources. Users
of software could be used for different testing
purposes. On one hand, users provide valuable
feedback in testing assumptions on customers
needs. On the other hand, early adopters that
are more robust towards deficiencies can help to
improve product quality before targeting a larger
market. Answers to RQ4 would provide strategies
to harvest these resources.

In order to answer these research questions,
various empirical research methods could be uti-
lized. The studies would be devised in a way that
“contrasting results but for anticipatable reasons”
could be expected [62], i.e. different software
startup companies would be taken into account
to acquire a broad view of testing in software
startups.

To the best of our knowledge, software testing
in software startups has been scarcely researched.
Paternoster et al. [2] highlighted the quality as-
surance activities in software startups in their
mapping study. They found that it is important
to provide software startups effective and effi-
cient testing strategies to develop, execute, and
maintain tests. In addition, they highlighted the
importance of more research to develop practical,
commercial testing solutions for startups.

3.1.8. User Experience

User experience (UX) is described as “a person’s
perceptions and responses that result from the
use or anticipated use of a product, system or
service” [63]. Good UX can be seen as providing
value to users, as well as creating a competitive
advantage. UX is important for software startups
from their earliest stages. Firstly, human-centred
design methods such as user research and user
testing can help startups better understand how
they can provide value to users and customers, as
well as what features and qualities need testing
for users to be satisfied with their product. Com-
bined with business strategy, this human-centred
approach helps startups move towards successful,
sustainable business creation. Secondly, provid-
ing an initially strong UX in the first product
versions can create positive word of mouth [64],

100 Michael Unterkalmsteiner et al.

as well as keep users interested in the product for
a longer time [65]. Genuine interest from users
for the product idea while the product is still
a prototype helps gain meaningful feedback [65].
Compared to more established businesses, soft-
ware startups may pivot resulting in new target
markets and user groups. This means efforts put
into designing UX need to be faster and less
resource consuming. Furthermore, failing to de-
liver satisfying UX can be fatal to small startups
that can not cover the costs of redesigning. The
overarching questions in this research track are:
– RQ1: What useful methods and practices ex-

ist for creating UX in startups?
– RQ2: What is UX’s role during different

phases of a startup’s life-cycle?
– RQ3: To what extent are UX and business

models connected in customer value creation?
An answer to RQ1 can provide software startups
methods for developing strong UX in the first
product versions which can keep users interested
in the product for a longer time [65]. Genuine
interest from users for the product idea while
the product is still a prototype helps to gain
meaningful feedback [65]. For business creation,
understanding the value of UX for startups (RQ2)
helps assigning enough resources for creation of
UX while not wasting resources where there is
no value to be gained (RQ3).

Research on startups and UX has been very
limited. Some case studies report UX’s role in
building successful startups [66, 67]. Practices
and methods for UX work in startups have been
reported in [65,68,69]. A framework for creating
strong early UX was presented by Hokkanen et
al. [70]. These provide some results on feasible
and beneficial UX development in startups, but
more generalizable results are needed.

3.2. Startup Evolution Models
and Patterns

The research tracks in this cluster share the
theme of studying, identifying, and differenti-
ating the transformation of startups in different
stages. This also includes studies about different
business and technical decision-making practices.

3.2.1. Pivots in Software Startups

It is very difficult for software startups to un-
derstand from start what are the real problems
to solve and what are the right software solu-
tions and suitable business models. This is evi-
denced by the fact that many successful software
startups are different from what they started
with. For example, Flickr, a popular online photo
sharing web application, originally was a mul-
tiplayer online role playing game [71]. Twitter,
a famous microblogging application, was born
from a failed attempt to offer personal podcast
service [71].

Due to their dynamic nature, software star-
tups must constantly make crucial decisions on
whether to change directions or stay on the cho-
sen course. These decisions are known as pivot
or persevere in the terms of Lean Startup [13].
A pivot is a strategic decision used to test fun-
damental hypothesis about a product, market,
or the engine of growth [13]. Software startups
develop technology intensive products in nature.
Due to this, these are more prone to the rapidly
changing technology causing pivots. Similarly,
certain types of pivots are more relevant to soft-
ware startups e.g. zoom in pivot: a pivot where
one feature of a product become the whole prod-
uct as in the case of Flickr. Pivot is closely linked
to validated learning, another key concept from
Lean Startup. The process to test a business
hypothesis and measure it to validate its effect
is called validated learning [13], whereas pivot is
often the outcome of validated learning. A recent
study [22] reveals that startups often neglect the
validated learning process, and neglect pivoting
when they need to, which leads to failure. This
shows the importance of pivoting for a startup to
survive, grow, and eventually attain a sustainable
business model. In order to better understand
and explore the pivoting process in the software
startup context, the following fundamental re-
search questions can be formed:
– RQ1: To what extent is pivoting crucial for

software startups?
– RQ2: How do software startups pivot during

the entrepreneurial/startup process?

Software Startups – A Research Agenda 101

– RQ3: What are the existing pro-
cess/strategies/methods to make a pivoting
decision in a startup context?

– RQ4: How do pivots occur during different
product development and customer develop-
ment life cycles?

Answering RQ1–RQ2 is necessary to understand
pivoting in the context of software startups,
building a fundamental framework on reasons for
pivoting and their types. RQ3–RQ4, on the other
hand, are targeted at understanding pivoting de-
cisions and mechanisms. The overall contribution
of answering the stated research questions has
implications for both researchers and practition-
ers. The answers would provide an empirically
validated conceptual and theoretical basis for
the researchers to conduct further studies regard-
ing the pivot phenomenon. For the practitioners,
it would help them to make informed decision
regarding when and how to pivot in order to
increase the chances of success.

Due to the nascent nature of software startup
research area, exploratory cases studies is a suit-
able approach to answer the research questions.
Followed by the case studies, quantitative surveys
can also be conducted to further generalize the
results regarding pivoting in software startups.

Recently, there were some studies conducted
on pivots in software startups. A study by Van
der Van and Bosch [72] compares pivoting deci-
sions with software architecture decisions. An-
other study by Terho et al. [73] describes how
different types of pivots may change business hy-
pothesis on lean canvass model. However, these
studies lack the sufficient detail to understand
different types of pivots and the factors triggering
pivots. A study by Bajwa et al. [74], presents
an initial understanding of different types of piv-
ots occurred at different software development
stages, however it lacks the deeper understanding
of the pivoting decision that can only be achieved
by a longitudinal study.

3.2.2. Determination of Software Startup
Survival Capability through Business
Plans

Software startups are highly specialized from
a technological point of view. Focusing on the

economic exploitation of technological innova-
tions [75], they belong to the group of new
technology-based firms. Literature suggests that
one of their major challenges is the transforma-
tion of technological know-how into marketable
products [76,77]. New technology-based firms of-
ten struggle with unlocking the product-market
fit [78] and commercializing their technological
products [76]. Applying a resource-based view
does thus not suffice for explaining survival and
growth of software startups [79,80]: a crucial suc-
cess factor is the ability of new technology-based
firms to understand and interact with the market
environment to position their products accord-
ingly [81,82].

Particularly in early lifecycle stages, new
technology-based firms need to build net-
work relations with the market. Network
theory literature suggests that with increas-
ing network maturity, the chances for sur-
vival and growth increase [83–85]. The abil-
ity to transform resources in response to
triggers resulting from market interactions
can be described as a dynamic capabil-
ity [86–89] which helps software startups com-
mercialize their products. This transforma-
tion process captures the evolution of new
technology-based firms in their early-stages.
Current research is based on the construct
of “venture emergence”, which provides a per-
spective on the evolutionary change process
of new technology-based firms [81, 90]. Ven-
ture emergence reflects the interaction process
with agents and their environments [91]. Busi-
ness plans of new technology-based firms are
used as the artefact for measuring the sta-
tus of venture emergence. They contain de-
scriptions of transaction relations [92–94] new
technology-based firms build in four market
dimensions: customer, partner, investor, and
human resources [95]. This research track in-
tends to answer a number of research ques-
tions:
– RQ1: How reliably can annotated transac-

tion relations from business plan texts de-
termine the venture emergence status of
technology-based startups?

– RQ2: To what extent are the number and
strength (“level”) of identified transaction re-

102 Michael Unterkalmsteiner et al.

lationships useful as an indicator of survival
capability?

– RQ3: How can patterns of transaction re-
lations be used as an indicator for eval-
uating strengths and weaknesses of new
technology-based firms, and thus be used to
more effectively direct support measures?

While it is possible to measure the ven-
ture emergence status even in a software
startup’s very early stages, the predictive
strength of transaction relations needs to be
evaluated (RQ1–RQ2). This use of network
theory to operationalize the venture emer-
gence construct is a new approach, which
adds to network theory literature in the con-
text of the survival of new technology-based
firms. It further confirms the business plans
of new technology-based firms as a valu-
able source of information on startup po-
tential. Finally, the resource-based approach
to explain venture survival is enriched by
applying a process-oriented perspective: we
analyse resource transformation, rather than
only looking at the initial resource configu-
ration (RQ3). Furthermore, the research can
contribute to the effectiveness of the in-
novation system by investigating indicators
that reveal strengths and weaknesses of new
technology-based firms. These can be used to di-
rect support measures to software startups more
effectively.

To answer the stated research questions, one
can use content analysis [96,97], combining hu-
man and computer-based coding of business
plans, to determine the number and strength
of transaction relations [98,99].

Initial statistical tests that have been per-
formed on a sample of 40 business plans of
new technology-based firms confirm the relation-
ship between the status of venture emergence
of new technology-based firms and venture sur-
vival [99]. Earlier work led to the development
of the concept for analysing early-stage startup
networks and the relevance for survival [95].
Based on this concept, a coding method for
transaction relations in business plans has been
developed and validated with 120 business
plans [98].

3.3. Cooperative and Human Aspects in
Software Startups

The research tracks in this cluster address chal-
lenges and practices related to how people coop-
erate and work is software startups.

3.3.1. Competencies and Competency Needs in
Software Startups

Software startups set different competency re-
quirements on their personnel than more estab-
lished companies. The biggest differences occur
in two phases of the evolution of startups which
have an impact on the nature of software devel-
opment and competence needs: (1) in the early
stages of rapid software development when there
is a lack of resources and immature competen-
cies in many key areas, and (2) when the rapid
business growth of successful startups requires
management of a fast growing personnel and
amount of software with limited management
resources and competencies. In the early phases
strong competition requires the software startup
to innovate and react quickly [2], and deployment
of systematic software engineering processes is
many times replaced by light-weight ad-hoc pro-
cesses and methods [2,26]. The nature of software
makes it possible for successful startups to scale
fast [2]. Rapid software-driven growth requires
fast scaling of the software production, distri-
bution, and maintenance. The required compe-
tences also quickly evolve when software develop-
ment moves from rapid greenfield prototyping to
professional software development and manage-
ment. Mastering this demanding situation often
requires a broad prior skill basis from the startup
team, including an ability to adjust to changes,
and learn quickly.

Research on specific skills and competency
needs in software startups broadens not only
the knowledge on software startups themselves,
but also broadens the knowledge on software
engineering conducted under the challenging cir-
cumstances of startups. Focusing the research
on the early stages and on the growth pe-
riod of the software startups, when the chal-
lenges of the software startups are the great-

Software Startups – A Research Agenda 103

est [12,22], brings the most valuable knowledge
to both academia and practitioners. Compe-
tency research also brings human factors into
focus [100,101], and reinforces the results of ex-
isting software startup research towards a more
comprehensive modelling and understanding.
The research questions for studies on competen-
cies and competency needs in software startups
include:
– RQ1: Software startup challenges and com-

petency needs – what software development
knowledge and skills are needed to overcome
the challenges?

– RQ2: What are the competency needs specific
for software startups compared to the more
established software companies?

– RQ3: How do the competency needs change
over the evolution of software startups?

– RQ4: How do the competency needs map onto
the roles and responsibilities of the startup
teams in software startups?

– RQ5: How can the growth of software star-
tups be managed in terms of competency
needs for software development practices, pro-
cesses and recruitment?

Research on software startups, including research
on competency needs, provides the research
and development of software engineering with
new knowledge and viewpoints on how to di-
rect the work in order to best address the spe-
cific challenges of the software startups (RQ1).
In particular, differences to mature software
companies are interesting to study (RQ2) con-
sidering software startups evolve, if they sur-
vive, to established companies. Knowing how
competency needs change might turn out as
one key factor for this transition (RQ3). The-
oretical models describing the evolution paths
of software startups have been created [13,
102], but competency needs and how they
map to roles and responsibilities have been
to a large degree ignored (RQ4). Similarly,
while software development work [2] and soft-
ware engineering practices [26] have also been
studied, it is unclear how competency needs
can be managed in growing software startups
(RQ5).

3.3.2. Teamwork in Software Startups

The importance of human aspects in software de-
velopment is increasingly recognized by software
engineering researchers and practitioners. Team-
work effectiveness is crucial for the successes of
any product development project [103]. A com-
mon definition of a team is ”a small number of
people with complementary skills who are com-
mitted to a common purpose, set of performance
goals, and approach for which they hold them-
selves mutually accountable” [104]. A startup
team is special in the wide range of variety, in-
cluding both technicians and entrepreneurs.

While an innovative idea is important for the
formation of a startup, startup success or failure
ultimately rests on the ability of the team to exe-
cute. Entrepreneurship research showed that over
80 percent of startups that survive longer than
two years were founded by a group of two or more
individuals [105]. The dynamic and intertwined
startups activities require the close collaboration
not only among startup team members, but also
with external stakeholders, such as mentors and
investors. Given the diversity in mindsets and
skill sets among founders, it is essential that they
can work well together along with the startup
life-cycle. The movement with recent methodol-
ogy in Lean startup introduces an opportunity
to look at startup teams from various angles, i.e.
pivoting, startup culture, team formation, and
decision-making. The overarching questions in
this research track are:
– RQ1: Is there a common cultural/organiza-

tional/team characteristic among successful
software startups?

– RQ2: How can a software startup team effec-
tively communicate with other stakeholders,
i.e. mentors and investors?

– RQ3: How can a software startup manage
team internal relationships?

– RQ4: What are the common patterns of
competence growth among software startup
teams?

Understanding software startup team behaviour
to internal and external environments and relat-
ing them to startup success measures would help

104 Michael Unterkalmsteiner et al.

to identify characteristics and teamwork patterns
of successful startups. Answering RQ1 would pro-
vide practitioners some guidance on how to form
startup teams while answers to RQ2–RQ3 would
provide an understanding how internal end ex-
ternal team dynamics work and can improved.
An answer to RQ4 would also support the work
in Section 3.3.1, looking however specifically at
competence growth patterns that could be valu-
able for practitioners when deciding on what to
focus on in competence development. Empirical
studies, i.e. case studies, surveys and action re-
search are all suitable to investigate the stated
research questions. Among them, comparative
case studies would be the first option to discover
the difference in startup teamwork patterns.

There exists a large body of literature in busi-
ness management, entrepreneurship, and small
ventures about entrepreneurial teams’ charac-
teristics and their relationship to startup out-
comes [105–107]. In Software Engineering, few
empirical studies identified team factors in the
failure of software startups. Giardino et al. found
that building entrepreneurial teams is one of
the key challenges for early-stage software star-
tups from idea conceptualization to the first
launch [12]. Crowne et al. described issues with
founder teamwork, team commitment and skill
shortages [108]. Ensley et al. investigated the
relative influence of vertical versus shared leader-
ship within new venture top management teams
on the performance of startups [109]. Other team
dimensions are explored in the business and en-
gineering management domain in specific geogra-
phies. E.g., Oechslein analysed influencing vari-
ables on the relational capital dimension trust
within IT startup companies in China [105]. How
generalizable these influencing variables to other
geographies is yet to be seen.

3.4. Applying Startup Concepts in
Non-Startup Contexts

One of the Lean Startup principles claims that
entrepreneurs are everywhere, and that en-
trepreneurial spirits and approaches may be ap-
plied in any size company, in any sector or indus-
try [13]. On the other hand, established organi-

zations face the challenge of innovation dilemma
and inertia caused by the organization’s stability
and the maturity of markets [110]. Therefore, ap-
plying startup concepts in non-startup contexts
seems an promising avenue for established orga-
nizations to improve their innovation potential.

3.4.1. Internal Software Startups in Large
Software Companies

The internal software startup concept has been
promoted as a way to nurture product innovation
in large companies. An internal software startup
operates within the corporation and takes respon-
sibility for everything from finding a business idea
to developing a new product and introducing it to
market [111]. Internal software startups can help
established companies master the challenge of im-
proving existing businesses, while simultaneously
exploring new future business that sometimes
can be very different from existing ones [112].
Usually, this involves a conflict of interest in
terms of learning modes [113] or risk propen-
sity [114], which can be prevented by establish-
ing dual structures within the organization for
implementing internal software startups [115].
Compared to the traditional R&D activities of
larger companies, an internal software startup
develops products or services faster [2] and with
higher market orientation [116]. This helps estab-
lished companies maintain their competitiveness
in volatile markets [117].

Besides the fact that the successful imple-
mentation of internal software startups faces
various barriers, such as cultural conflicts [118]
or the fear of cannibalization of existing busi-
nesses [119], internal software startups can also
benefit from being part of established compa-
nies. Shared resources, such as capital, human
resources [120, 121], and the access to the cor-
porates’ internal and external network [122] are
just some benefits.

Earlier research on analysing the results of
startups’ value creation cycle has taken place in
the context of the evolution of the enterprise [123].
However, this occurs over too long of a time
period to be useful for guiding software develop-
ment. Measuring the cycle time of the software

Software Startups – A Research Agenda 105

engineering process to the completion of a soft-
ware feature is also insufficient. The Lean startup
approach [13] has been commonly adopted to new
business creation in software intensive ventures.
They use the learning loop to discover the cus-
tomer value and potential of the new product
concept, as well as to find new means to pro-
duce software. Tyrväinen et al. [124] propose
that measuring the cycle time from development
to analysis of customer acceptance of the feature
enables faster learning of market needs. In ad-
dition, receiving fast feedback from users makes
changing the software easier for the programmers
who have not yet forgotten the code. Relevant
research questions regarding internal software
startups can be formulated as follows:
– RQ1: How can Lean startup be adopted and

adapted for software product innovation in
large software companies?

– RQ2: What are the challenges and enablers
of Lean startup in large software companies?

– RQ3: How should internal software startups
be managed/lead?

– RQ4: What metrics can be used to evalu-
ate software product innovation in internal
startups?

– RQ5: To what extent do internal startups
have a competitive advantage compared to
independent startups (through shared re-
sources, etc.)?

Lean startup approach gains more interest from
scholars and academics as a new way to fos-
ter innovation since it helps to avoid building
products that nobody wants [125]. Some evi-
dence shows that mature software companies
and startups differ in applying Lean startup
approach [126]; e.g. mature firms start the cy-
cle by collecting data from existing users and
then generating a hypothesis based on that data,
whereas software startups generate ideas and
collect data from new users to validate the
ideas. However, it seems that, to a large ex-
tent, the approach can be used both in star-
tups and established enterprises. By answer-
ing RQ1–RQ3 we aim at defining structured
guidelines on how to introduce Lean startup
in large software companies, supporting practi-
tioners, while answering RQ4-RQ5 would pro-

vide a motivation for this approach, allow-
ing to compare effectiveness on a quantitative
level.

Due to the complex nature of the research
phenomenon and the intention to achieve an
in-depth understanding of it, we consider mul-
tiple case studies [62] as a suitable research ap-
proach. The case organizations can be selected
based on the following criteria: (1) the organiza-
tion develops software in-house, (2) a dedicated
team is responsible from ideation to commercial-
ization of a new software, and (3) the software
falls out of the current main product line. The
unit of analysis in this study would be a devel-
opment team.

Very few studies have investigated how the
Lean startup [13] can leverage internal startups
in large software companies to improve their com-
petency and capabilities of product innovation.
Initial steps have been taken and some of the
results have been published to fill this observed
gap (e.g. [119, 127]). Marijarvi et al. [128] re-
port on Finnish large companies’ experience in
developing new software through internal star-
tups. They also discuss the lifecycle phases of
innovation work in large companies. The authors
argue that different types of internal organiza-
tion may take place in each stage of new product
development. For example, problem/solution fit
can be done in an internal startup or company
subsidiary.

3.4.2. Lean Startup for Project Portfolio
Management and Apen Innovation

Building on the challenges proposed in Sec-
tion 3.4.1, we propose that Lean startup could
also be applied within both (i) project portfo-
lio management (PPM), to co-ordinate multiple
startup initiatives within an organization, and
(ii) open innovation, wherein internal startups
involve multiple organizations, individuals, or
even unknown participants. Both PPM and open
innovation and their main challenges are briefly
introduced below, followed by research questions
that require investigation before Lean startup
principles can be successfully applied in these
new contexts.

106 Michael Unterkalmsteiner et al.

Software engineering PPM describes the on-
going identification, selection, prioritization, and
management of the complete set of an organiza-
tion’s software engineering projects, which share
common resources in order to maximize returns
to the organization and achieve strategic busi-
ness objectives [44, 129–131]. Open innovation
is defined as the use of “purposive inflows and
outflows of knowledge to accelerate internal in-
novation and to expand the markets for external
use of innovation, respectively” [132]. Popular
examples of open innovation include open source
software development, crowd-sourcing, and inner
source.

Effective PPM is critical to achieving busi-
ness value [133, 134], improving cost and time
savings, and eliminating redundancies [135, 136].
Unfortunately, existing portfolio management
practices, which are based on the effective com-
pletion of individual projects with only episodic
portfolio level reviews [134], fail to manage either
the dynamic nature of contemporary projects, or
problems associated with portfolios comprising
too many projects [134, 137]. Indeed, many port-
folios report an unwillingness to cancel projects
that no longer contribute to the achievement of
strategy [134].

Open innovation (OI) presents numerous ad-
vantages for organizations, such as access to
a requisite variety of experts, a prospective
reduction in overall R&D spending, reduced
time-to-market, improved software development
processes, and the integration of the firm into new
and collaborative value networks [132,138,139].
Nonetheless, adopting open innovation processes
can be significantly challenging. For example,
adopters often lack internal commitment, in ad-
dition to challenges associated with aligning in-
novation strategies to extend beyond the bound-
aries of the firm. Moreover, there are concerns
regarding intellectual property and managing
unknown contributors/contributions, as well as
managing the higher costs and risks associated
with managing both internal and external in-
novations [140–142]. The role of Lean startup
principles in addressing these challenges in both
PPM and OI is worthy of further research:

– RQ1: How can Lean startup be implemented
within a portfolio management or open inno-
vation context?

– RQ2: How can Lean startup initiatives drive
or accelerate open innovation?

– RQ3: What Lean startup concepts could be
adapted to facilitate open innovation pro-
cesses in an organization?

– RQ4: How can one ensure Lean startup ini-
tiatives conducted across multiple projects or
organizations align with strategy?

– RQ5: How do you reconcile potential conflicts
between portfolio / open innovation processes
and Lean startup processes?

– RQ6: How do you achieve consensus in defin-
ing the minimum viable product (MVP) in
networks comprised of multiple autonomous
(and sometime anonymous) agents?
The successful application of Lean startup

principles (RQ1–RQ3) has the potential to re-
duce the costs arising from the poor implemen-
tation of PPM and OI practices and increase the
value achieved from these initiatives. However,
because such approaches are often practice led,
it is necessary for academic research to develop
effective theory to underpin practice and provide
empirical data to support, or refute claims of ef-
fectiveness (RQ4–RQ6). Rich human interactions
are at the heart of software engineering PPM
and open innovation. Accordingly, phenomena in
these domains can be examined using interpre-
tive, qualitative methods such as semi-structured
interviews, case studies and ethnography.

While the principles of lean have been applied
to PPM (e.g. [143, 144], there is little research
looking at the application of Lean startup princi-
ples to PPM. Similarly, while there is interest in
the application of Lean startup principles in open
innovation contexts, to date, such applications
have predominantly been driven by practice.

3.5. Software Startup Ecosystems and
Innovation Hubs

Successful software startups do not live in iso-
lation. Normally, they are inserted in a rich en-
vironment that includes a number of relevant

Software Startups – A Research Agenda 107

players, such as entrepreneurs, developers, in-
vestors, scientists, as well as business and intel-
lectual property consultants. To support these
players, a number of support programs from the
private and public sectors are required to provide
funding, incubation, acceleration, training, net-
working, and consulting. All these elements com-
bine into what scholars and practitioners have
called Startup Ecosystems [145]. In our software
startups research agenda, we focus on Software
Startup Ecosystems (SSE) and the elements that
are relevant for startups that have software as
a key part of their products or services.

By studying how SSEs are created, their main
characteristics, and how they can evolve, one
can better understand the environments that
favour, or not, the birth and development of
successful software startups. Research in this
field can provide, to the relevant stakehold-
ers, the concrete actions (e.g., public policies,
private activities) that will establish a fruit-
ful and vibrant environment for the execu-
tion of high-growth innovative projects within
nascent software companies. The main research
questions that need to be answered are the
following:
– RQ1: What are the key elements of a fruitful

SSE?
– RQ2: Are there different types of SSEs, e.g.

differentiated by size, technology sectors,
country economy or other factors?

– RQ3: How do SSEs evolve over time?
– RQ4: How can one measure the output and

qualities of an SSE?
By answering RQ1, researchers will provide

a better understanding of the way how SSEs
and innovation hubs work, instrumenting key
stakeholders in taking actions to improve their
ecosystems. By identifying what factors promote
or hinder the development of successful startups
within a certain SSE, policy makers will get sup-
port in decision making (RQ2). Entrepreneurs
will also be able to better understand what are
the environmental factors and forces that can
help or hinder the success of their enterprises.

Researchers from Brazil, Israel, and the USA
have developed a methodology to map a specific
software startup ecosystem; this methodology

has been applied to Israel [145], São Paulo [146]
and New York [147]. Currently, with the help of
dozens of experts worldwide, they are developing
a maturity model for SSEs [145, 148], address-
ing RQ3 and RQ4. This maturity model needs
further research and validation before it can be
applied in real scenarios to help practitioners and
policy makers.

The Global Startup Ecosystem Ranking [149]
is crafted by a group of experts that have been
proposing metrics to evaluate regional ecosys-
tems around the world and compare them accord-
ing to multiple criteria. Frenkel and Maital [150]
have developed a methodology to map national
innovation ecosystems and use this map to pro-
pose policies to promote improvement. Jayshree
has studied the influence of environmental fac-
tors on entrepreneurial success [151]. Finally,
Sternberg [152] researched the role of regional
government support programs and the regional
environment as success factors for startups.

3.6. Theory and Methodologies for
Software Startup Research

The tracks in this cluster direct their research
towards identifying means to better study and
understand software startups.

3.6.1. Overview of the Possible Theoretical
Lenses for Studying Software Startups

Theories are important in any scientific field, as
they form the foundation to understand a con-
temporary phenomenon better. Theories provide
answers to the “why” questions, and are therefore
useful for explaining why certain events occur
while others do not. Software startup research
does not operate in a vacuum, but rather can
borrow theories from both the software engineer-
ing and information systems fields, business and
management literature, as well as from the fields
of organizational and social sciences.

We have identified a few potential theories
that can be meaningfully applied in the context of
software startup companies. The proposed theo-
ries are the hunter-gatherer model [153], Cynefin
model [154], Effectuation theory [155] and Bound-

108 Michael Unterkalmsteiner et al.

ary Spanning theory [156]. These theories are
briefly outlined in this section.

Although 90% of human history was occu-
pied by hunters and gatherers, who forged for
wild plants and killed wild animal to survive,
only recently was the hunter-gatherer model
re-discovered by Steinert and Leifer [153] to ex-
plain how designers pursue their endeavours in
search of the best design outcome. The model
shows the changes in the design process, as well as
subsequently in the design outcome. The model
portrays a distinction between a hunter who
aims to find an innovative idea, and a gath-
erer who aims to implement the idea. Both
are needed to achieve concrete results. While
hunting the idea through ambiguous spaces has
a change-driven, analytical, and qualitative na-
ture; gathering the idea across predetermined
paths has a plan-oriented, manageable, and quan-
titative nature. The model has recently been
applied in software startup research to explain
startups’ evolutionary paths [157].

Complexity theory has been used as a frame
of reference, by analysing its implications on soft-
ware design and development (e.g. Pelrine [158],
Rikkilä et al. [159]). Software projects can be
characterized as endeavours wherein a dynamic
network of customers, software designers, devel-
opers, 3rd party partners, and external stake-
holders interact and can be seen as a Com-
plex Adaptive System (CAS). To reason about
decision-making in different situations, Snowden
et al. [154] proposed a sense-making framework
for such systems. The model has five sub-domains
and divides the world in two parts – ordered and
unordered main domains. The ordered domain is
the one in which cause-effect (CE) relationships
are known (the Known domain), or at least know-
able after analysis (the Complicate domain). In
contrast, the unordered domain includes a com-
plexity situation, wherein the CE relationship
can only be perceived in retrospect, but not in ad-
vance (the Complex domain), and a chaotic situa-
tion, wherein behaviours are completely random,
lacking any expected consequence when acted
upon. Depending on the problem domain, suit-
able approaches include categorizing, analysing,
probing or acting [154]. The Cynefin model pro-

vides a framework that can be used to analyse the
decisions made by software startuppers in devel-
oping their products. Often they find themselves
in the unordered domain, attempting to make
sense out of the current situation and navigate
to the ordered domain.

Effectuation theory is a simple model, rooted
in entrepreneurship, of decision-making under
uncertainty. The effectual thinking is in the op-
posite of causal reasoning which starts from de-
sired ends to necessary means (top-down). Expe-
rienced entrepreneurs reason from means to ends
(bottom-up), trying to work out meanings and
goals based on the resources they have at hand.
The theory is embodied by five principles: the
bird-in-hand principle, the affordable loss princi-
ple, the crazy quilt principle, the lemonade prin-
ciple, and the pilot-in-the-plane principle [155].
The effectuation theory can help to make better
sense of entrepreneurs’ decision-making process
in the evolution of software startups, such as
problem validation, value proposition definition,
design of MVPs, and pivoting processes. Good
practices could be discovered using the effectua-
tion theory as a theoretical lens.

Startups operate in a dynamic environment
and face expectations and influences from many
directions. In order to survive, they need to ef-
fectively collaborate within their team, but also
outside it. Boundary spanning is a concept that
deals with the structures of organizations that
are transitioning from a rigid hierarchical struc-
ture towards a network-based expert organiza-
tion, which gives rise to informal boundaries
rather than structural ones [156]. Boundary span-
ners are those people and entities who bridge
these boundaries and opportunities. In the soft-
ware engineering context, boundary spanning has
been studied in the context of global software
development [160]. Startuppers can be seen as
boundary spanners when they need to bridge
between various stakeholders. While boundaries
are always unavoidable, but also necessary and
useful, knowledge is required on how they can
be crossed, rearranged, or even dissolved when
considered harmful [161]. Startuppers should see
boundaries as tools that facilitate and support
making sense out of the environment. Boundary

Software Startups – A Research Agenda 109

spanning helps in discovering how to overcome
the challenges of distributed global work, where
motivations, work styles, and knowledge domains
vary across boundaries. Startuppers can become
knowledge brokers, transferring and sharing their
knowledge.

There are other theoretical lenses that can be
used to study software startups. Startups deal
with innovative services and products, often for
new or emerging markets. Birkinshaw et al. [162]
analyse the innovation theories presented and
propose a framework for management innovation
process. This could be applied to the startup in-
novation process context to explore how product
development moves from problem-driven search
through trial and error to a finished prototype.
The analysis can be complemented with Van de
Ven and Poole’s [163] four views into organiza-
tional changes, in which they present alternate
processes for organizations to transform.

Theorizing software startups is important,
since there is a current lack of understanding of
the dynamics in startups. Theoretical advance-
ments need to be achieved so that researchers
can make better sense out the diverse contexts,
situations, and places where startuppers strive
for success.

3.6.2. Defining the Lean Startup Concept and
Evaluating Practice

Many positive drivers underpin the Lean Startup
movement. The literature is abound with
claims of reduced risk [13, 125], the benefits
of evidenced-based trials [13, 164], and shorter
time-to-market [13]. We certainly know that
these benefits are needed, given the challenges ex-
perienced by early stage software startups [12,22]
and the percentage that fail [13]. Indeed, many
software startups fail [108, 165] because they
waste too much time and money building the
wrong product before realising too late what
the right product should have been [102, 166].
These challenges coupled with high uncertainty
make the Lean Startup Methodology attractive
to software startups as it supposedly offers an
integrated approach to creating products and
services that fit the market [167]. This research

builds on previous research conducted by Den-
nehy, Kasraian, O’Raghallaigh, and Conboy [168],
which identified a significant absence of frame-
works that assisted startups to efficiently and
effectively progress their Minimum Viable Prod-
ucts (MVP) to a Product Market Fit (PMV).
The theoretical advancement of the lean concept
in contemporary software engineering and soft-
ware development literature has been arrested,
mainly because the academic research commu-
nity has followed “fads and fancies” which char-
acterize academic research. The implications for
the arrested theoretical development of lean con-
cept, listed next, are the motivation for this re-
search.

As is often the case with new and emerg-
ing phenomena, Lean Startup practice has led
research, with the creation, promotion, and dis-
semination of these methods almost completely
due to the efforts of practitioners and consul-
tants. Now, Lean Startup research is beginning
to gain momentum, as is evident from the in-
creasing number of dedicated journal special is-
sues, conferences, conference tracks, and work-
shops. While there are merits to adopting such
a practice-oriented focus, little if any research
effort has focused on the conceptual development
of Lean Startup and its underlying components.
As practice has lead research, the definition of
Lean Startup has emerged through how it is used
in practice. As a result, Lean Startup adoption
is often defined by how the practices are adhered
to, rather than the value gleaned from their use,
adaptation, or, in some cases, abandonment. We
see this in many other methods such as in agile,
where many define “being agile” as how many
Scrum or XP practices are used, rather than the
value obtained by their use [169]. As a result,
the current body of software startup knowledge
suffers from a number of limitations, including:

1. Lack of clarity: While there is broad agree-
ment in principle regarding what constitutes key
concepts such as MVP, assumptions regarding
the specific definitions, interpretations, use, and
evaluations are often unclear in many existing
Lean Startup studies. This makes critical ap-
praisal, evidence-based evaluation, and compari-
son across studies extremely difficult.

110 Michael Unterkalmsteiner et al.

2. Lack of cohesion and cumulative tradition:
A good concept or theory should cumulatively
build on existing research. Very little academic
research has examined Lean Startup using con-
cepts that have more mature and substantive
bodies of research with theories, frameworks and
other lenses that have been thoroughly tested
over time. The lean concept has been applied
in manufacturing since WW1, and yet in Lean
Startup research we see very myopic and limited
use of the broad lean frameworks available. Other
concepts that influence Lean Startup include
agility, flow, and innovation.

3. Limited applicability: Adherence-based
measures of Lean Startup inhibit the ability to
apply Lean Startup in domains other than that
originally intended. Research now attempts to ap-
ply Lean Startup in other environments, such as
large organizations and regulated environments,
and so this will become a more prevalent issue
as this trend continues. Therefore, questions rel-
evant for this research track include:
– RQ1: What are the core concepts that under-

pin Lean Startup?
– RQ2: What are the components of a higher

abstract Lean Startup that allows the concept
to be applied and evaluated in a value-based
manner?

– RQ3: What theories, frameworks, metrics,
and other instruments from these existing
related bodies of knowledge can be applied
to Lean Startup?

– RQ4: How can these be effectively applied
to improve the use of Lean Startup in prac-
tice, and the study and improvement of Lean
Startup in research?

– RQ5: How can Lean Startup then be tailored
to suit environments it was not originally
designed to support, e.g. large organizations,
regulated environments, or peer production?

– RQ6: Does Lean Startup enable or inhibit
fundamental leaps in business and software
business ideas? For example, does MVP place
an invisible ceiling, wherein once you reach
MVP you subconsciously stop looking for the
truly significant innovation?

As there is reciprocal relationship between prac-
tice and academia, where academic research is

informed by practice and practice is informed
by academic research, this research would im-
pact on research and on practice. By answering
RQ4–RQ6, this research track would provide
practice with empirical evidence on the utility
of lean practices in diverse environments, while
also positioning the lean method at the core of
academic research (RQ1–RQ3). As case study
research is an empirical inquiry that “investigates
a contemporary phenomenon in depth and within
its real-life context” [62], it would be highly
suited to addressing the theoretical limitations
of lean and for answering the questions listed
above. Specifically, the use of a multiple-case de-
sign would allow a cross-case pattern to develop
more sophisticated descriptions and powerful ex-
planations [170] of the lean concept.

The challenges of new product development
are not confined to software startups. There-
fore, software engineering teams working in dis-
tributed or regulated environments such as finan-
cial services and within multinational companies
would provide rich insights to the advancement
of the lean concept.

3.6.3. Research Collaboration Strategies with
Software Startups

Empirical research in the area of software engi-
neering normally requires access to organizations
and artefacts from companies developing soft-
ware intensive products and services [171]. In the
case of startups, such access is very limited, due
to several challenges:
1. startups have limited resources both in terms

of person hours and calendar time for any-
thing but working on their MVP,

2. startups want all investments to yield al-
most immediate results, thus investments in
long-term potential are not prioritized, and

3. artefacts and actual products are often very
sensitive, as the startup is very vulnerable.

These and other reasons limit empirical research,
as reflected in both academic knowledge about
startups overall, but also in the superficial na-
ture of what is available. For this reason, any
initiative to seriously collect empirical data as
well as conduct research on core challenges facing

Software Startups – A Research Agenda 111

startups has to originate with a strategy that
overcomes these obstacles. One possible strategy
is to pool resources and access to startups, in
essence sharing empirical data and coordinating
research into startup software engineering. Coor-
dination should be seen as equally central, as it
enables researchers to limit the impact and costs
as each study and project part can be focused
and small, and several larger issues can be tackled
through coordination. Concrete examples of joint
activities include, but are not limited to:
1. joint surveys at the superficial level (pooling

resources to collect many data points),
2. complementary surveys and case studies

where each partner does a part only, but
the results can be combined in analysis and
synthesis,

3. formulating a complementary research
agenda with clear interfaces and joint re-
search questions, and

4. pooling resources in relation to testing “solu-
tions” emerging from the collaboration.
While this strategy opens the possibility to

share the resource requirements among the stud-
ied startups, there are open questions regarding
its implementation:
– RQ1: To what extent is data from different

startups and startup ecosystems comparable?
In other words, which techniques exist to
perform meta-analysis of the gathered het-
erogeneous data?

– RQ2: How can we efficiently transfer technol-
ogy between researchers and startups, and
how can we measure the impact of transferred
solutions?
We conjecture that the software startup con-

text model discussed in Section 3.1.1 would be
an enabler for answering RQ1. Confounding vari-
ables [172] could then be easier identified, allow-
ing for sample stratification and robust statistical
analyses [173]. In particular, data collected from
different researchers could be aggregated and in-
crease the strength of the conclusions drawn from
the analysis, i.e. enabling meta-analysis [174].

Answering RQ2 would allow us to actually
support software startups on a broad basis with
the knowledge gained from the research proposed
in this agenda. While different approaches exist

to transfer knowledge from academia to indus-
try [175,176], they are mostly targeted at mature
companies that have the resources to collaborate
with researchers over a longer period of time. We
think that software startup ecosystems, discussed
in Section 3.5, can contribute to technology trans-
fer if researchers are active in these structures
and can create a win-win situation where both
startups and researchers benefit.

4. Discussion

In this section we give a brief overview of the re-
search tracks in relation to other work in software
engineering and their potential impact on the
field. We conclude this section with a discussion
on the study’s limitations.

Software startup engineering research centers
around the core knowledge base in Software En-
gineering [177]. This is illustrated by the research
tracks proposed in Section 3.1 that encompass
providing support for startup engineering activi-
ties. Noticing what is considered “good” software
engineering practice [177], and the challenges
that software startups encounter [12, 24], we see
potential in directing research towards efficient
and effective requirements for engineering prac-
tices in startups. Klotins et al. [24] studied 88 ex-
perience reports from startups and identified lack
of requirements validation, classification (to en-
able prioritization), and identification of require-
ments sources (to identify a relevant value propo-
sition) as causes for engineering uncertainty,
which maps to the early-stage startup challenges
of technology uncertainty and delivering cus-
tomer value, identified by Giardino et al. [12].
Unlike large companies, software startups have
unique time and resource constraints and thus
cannot afford to develop features and services
that will not be used or valued by the customers.
We believe that lightweight practices to identify,
and, most importantly, analyse requirements for
their business value can help software startups
in their decision process. Looking at the research
tracks in Section 3.1, several of them touch upon
requirements engineering aspects. Prototypes can
be used to communicate with customers to elicit

112 Michael Unterkalmsteiner et al.

requirements (Section 3.1.4), while product inno-
vation assessment (Section 3.1.3) is relevant in
the context of analysing the customers’ perceived
value of the offered solutions. Even optimizing
the effort spent in requirements engineering and
quality assurance, for example by using test cases
as requirements [178], involving product users for
testing (Section 3.1.7), addresses requirements
engineering aspects.

The focus on requirements in software startup
engineering research directly relates to the re-
search tracks presented in Section 3.2, startup
evolution models and patterns, as the cost of piv-
oting could be reduced by earlier and less ad-hoc
analysis of requirements and value propositions
of the envisioned products. The patterns emerg-
ing from the research on survival capabilities
of software startups, proposed in Section 3.2.2,
could provide valuable heuristics leading to
a lightweight analysis of product value propo-
sitions. The research on pivoting and survival
capabilities is likely to affect software startup
practitioners on a strategic level by providing
them managerial decision support that draws
from models rooted in software engineering prac-
tice. An example where such a cross-discipline
approach has been very successful is value-based
software engineering [179].

The research tracks described in Section 3.3
were grouped under the name “cooperative and
human aspects in software startups”, borrowed
from the research area in software engineer-
ing that is interested in studying the impact
of cognitive abilities, team composition, work-
load, informal communication, expertise identi-
fication and other human aspects on software
construction [180]. We conjecture that study-
ing and understanding these aspects better has
a large potential as software startups are driven
by motivated individuals rather than a corporate
agenda. Lessons from this research can both bene-
fit startup practitioners, in particular in conjunc-
tion with the work on software startups ecosys-
tems (Section 3.5), and more mature companies,
for example by applying models of competency
needs that could emerge from the work presented
in Section 3.3.1.

The remaining research tracks described in
Sections 3.4 - 3.5 take a step back from what

happens inside a software startup. The research
tracks in Section 3.4 propose to apply startup
concepts in non-startup contexts. The idea of
extracting a concept from one context and
applying it in another has proven successful
in other areas, such as in systematic litera-
ture reviews [181, 182] and open source princi-
ples [183–185]. The premise of internal startups
is that the positive traits of “startups in the wild”
can be transferred to a corporate environment,
fostering innovation and faster product develop-
ment. The overall aim of the research tracks de-
scribed in Section 3.4 is to evaluate whether the
traits of startups can actually produce thriving
environments within mature companies. In com-
parison, the research on startup ecosystems and
innovation hubs (Section 3.5) takes a broader and
higher level view of software startup phenomenon.
Neither independent startups nor mature com-
panies adopting internal startup initiatives live
in isolation. A better understanding of startup
ecosystems and innovation hubs might thereby
provide key insights into the factors that create
a fruitful software startup environment.

Finally, the research tracks in Section 3.6 look
at aspects relevant for implementing the research
agenda described in this paper. In particular, the-
ories that can be used to better understand the
dynamics in and around software startups are
of value when attempting to construct a more
holistic understanding of software startups in
their various contexts. For the research on defin-
ing the Lean Startup concept, parallels to and
lessons from similar endeavours around research
on agile software development [186] should be
taken into consideration. In this paper, we fol-
lowed a recommendation by Dybå and Dingsøyr
to develop a research agenda on the phenomenon
of interest [186]. However, in order to implement
this research agenda, we need to also answer
the questions about how to enable efficient and
effective research collaborations with software
startups (Section 3.6.3).

4.1. Limitations

The research agenda presented in this paper was
developed “bottom-up”, i.e. the areas of interest
were proposed and described by a sample of soft-

Software Startups – A Research Agenda 113

ware startup researchers without any restriction
on covering certain aspects of the software engi-
neering body of knowledge but guided by their
past, current and future work in the field. Often,
these researchers have both a leg in academia
and in the startup community, either as men-
tors, founders, or simply as part of the develop-
ment team. This approach to develop a research
agenda is not uncommon (see e.g. [187–189]),
but is threatened by a potential bias towards
the preferences of individual researchers. This
is why we invited a large number of our peers
to contribute to the agenda. Even though the
research tracks cover many software engineering
aspects and beyond, the agenda is only a sam-
ple of the potentially relevant future research
on software startups. This means that poten-
tially interesting and relevant research topics,
such as use of open source software, business
model development, legal issues and intellectual
property rights, are not discussed in this paper.
However, we expect that the agenda will grow
together with the research community as soon as
the work on the proposed research tracks bears
fruits, leading to new research questions.

5. Outlook and Conclusions

Software startups are an interesting and stimu-
lating phenomenon in the modern economy and
are of paramount importance for the societies of
today. Despite of high failure rates, communities,
cities and countries are investing on stimulating
the creation of software startups. While these
startups may not solve the unemployment prob-
lems of many countries they stimulate a new type
of positive dynamism in societies encouraging
people to collaborate and develop their personal
skills in novel ways. The emergence of the soft-
ware startup research area reflects the fact that
we need to better understand this phenomenon
to learn valuable lessons and accumulate valid
knowledge to benefit future entrepreneurial ini-
tiatives. The research agenda described in this
paper is one of the first attempts to establish the
software startup as a nascent, yet fast growing
research area, and to depict its landscape by

highlighting the interesting research topics and
questions to explore.

It is worth emphasizing again that software
engineering is only one of the multiple disciplines
that are relevant and can inform software startup
practice. Other disciplines include Economics,
Entrepreneurship, Design, Finance, Sociology,
and Psychology. Therefore, there is a need to col-
laborate with researchers from these disciplines
in order to increase the potential of achieving rel-
evant and useful research results that can benefit
practice.

Due to the emerging nature of the field, there
is still much to be done to establish software star-
tups as a research area. Relevant concepts need
clear definitions, substantive theories need to be
developed, and initial research findings need to
be validated by future studies. Software startups
are very diversified in terms of entrepreneurs’
varying approaches to their startup endeavours.
Without the sound foundation mentioned above
for this research area, there are risks of asking
irrelevant research questions and not being able
to attain rigorous results.

Last but not least, this research agenda is
not meant to be exhaustive, and we are aware
that we may exclude some important Software
Engineering topics relevant to software startups.
The research agenda is open to additions of new
tracks, topics, and research questions by other
researchers interested in the research area. With
contributions and commitments from researchers
from different institutions and backgrounds, col-
lectively we can establish software startup as
a promising and significant research area that
attracts more exciting discovery and contribu-
tion. We welcome those interested in joining the
Software Startup Research Network in fostering
the collaboration between researchers and taking
the research agenda further.

References

[1] 42010-2011ISO/IEC/IEEE Systems and soft-
ware engineering – Architecture description,
ISO Std., 2011.

[2] N. Paternoster, C. Giardino, M. Unterkalm-
steiner, T. Gorschek, and P. Abrahamsson,
“Software Development in Startup Companies:

114 Michael Unterkalmsteiner et al.

A Systematic Mapping Study,” Information
and Software Technology, Vol. 56, No. 10, 2014,
pp. 1200–1218.

[3] “Frequently asked questions about small busi-
ness,” U.S. Small Business Administration,
Tech. Rep., 2014.

[4] S. Nambisan, K. Lyytinen, A. Majchrzak, and
M. Song, “Digital Innovation Management:
Reinventing Innovation Management Research
in a Digital World,” MIS Quarterly, 2016, in
press.

[5] “A cambrian moment cheap and ubiquitous
building blocks for digital products and services
have caused an explosion in startups. special
report: Tech startups,” The Economist, 18/01
2014.

[6] WMF, “Intelligent assets unlocking the circular
economy potential,” World Economic Forum,
Tech. Rep., December 2015.

[7] S. Srinivasan, I. Barchas, M. Gorenberg, and
E. Simoudis, “Venture Capital: Fueling the In-
novation Economy,” Computer, Vol. 47, No. 8,
2014, pp. 40–47.

[8] A. Shontell, “The 11 most disrup-
tive startups,” Business Insider, 12/07
2012. [Online]. http://www.businessinsider.
com/disruptive-startups-2012-7?op=1&IR=T

[9] C. Giardino, N. Paternoster, M. Unterkalm-
steiner, T. Gorschek, and P. Abrahamsson,
“Software Development in Startup Companies:
The Greenfield Startup Model,” Transactions
on Software Engineering, Vol. 42, No. 6, 2016,
pp. 585–604.

[10] “Progress without profits. A flock of startups
is making cloud computing faster and more
flexible, but most of them will not survive,”
The Economist, 19/09 2015.

[11] “Testing, testing,” The Economist, 18/01 2014.
[12] C. Giardino, S.S. Bajwa, X. Wang, and

P. Abrahamsson, “Key Challenges in
Early-Stage Software Startups,” in Proceed-
ings 16th International XP Conference (XP).
Helsinki, Finland: Springer, 2015, pp. 52–63.
[Online]. http://link.springer.com/chapter/10.
1007/978-3-319-18612-2_5

[13] E. Ries, The lean startup: How today’s en-
trepreneurs use continuous innovation to create
radically successful businesses. Crown Books,
2011.

[14] S. Blank, The Four Steps to the Epiphany:
Successful Strategies for Products that
Win. Cafepress.com, 2005. [Online].
http://www.amazon.com/The-Four-Steps-
Epiphany-Successful/dp/0976470705

[15] S. Blank and B. Dorf, The Startup Owner’s
Manual: The Step-By-Step Guide for Building
a Great Company. K & S Ranch, 2012.

[16] S.M. Sutton, “The Role of Process in a Software
Start-up,” IEEE Softw., Vol. 17, No. 4, 2000,
pp. 33–39. [Online]. http://dx.doi.org/10.1109/
52.854066

[17] E. Carmel, “Time-to-completion in software
package startups,” in Proceedings 27th Hawaii
International Conference on System Sciences
(HICSS). IEEE, 1994, pp. 498–507. [On-
line]. http://ieeexplore.ieee.org/articleDetails.
jsp?arnumber=323468

[18] O.P. Hilmola, P. Helo, and L. Ojala, “The
value of product development lead time in
software startup,” System Dynamics Review,
Vol. 19, No. 1, 2003, pp. 75–82. [Online].
http://doi.wiley.com/10.1002/sdr.255

[19] G. Coleman and R.V. O’Connor, “An in-
vestigation into software development pro-
cess formation in software start-ups,” Jour-
nal of Enterprise Information Management,
Vol. 21, No. 6, 2008, pp. 633–648. [On-
line]. http://www.emeraldinsight.com/10.1108/
17410390810911221

[20] C. Giardino, M. Unterkalmsteiner, N. Paternos-
ter, T. Gorschek, and P. Abrahamsson, “What
do we know about software development in
startups?” IEEE Software, Vol. 31, No. 5, 2014,
pp. 28–32.

[21] I.C. Macmillan, L. Zemann, and P. Subba-
narasimha, “Criteria distinguishing success-
ful from unsuccessful ventures in the venture
screening process,” Journal of Business Ven-
turing, Vol. 2, No. 2, 1987, pp. 123–137.

[22] C. Giardino, X. Wang, and P. Abrahamsson,
“Why early-stage software startups fail: A be-
havioral framework,” in Proceedings 5th In-
ternational Conference on Software Business
(ICSOB). Paphos, Cyprus: Springer, 2014, pp.
27–41. [Online]. http://link.springer.com/10.
1007/978-3-319-08738-2{_}3

[23] Z. Block and I.C. MacMillan, “Milestones for
successful venture planning,” Harvard Business
Review, Vol. 63, No. 5, 1985, pp. 184–196.

[24] E. Klotins, M. Unterkalmsteiner, and
T. Gorschek, “Software Engineering in
Start-up Companies: an Exploratory Study of
88 Startups,” Empirical Software Engineering,
2016, in Submission.

[25] A. Yau and C. Murphy, “Is a Rigorous Ag-
ile Methodology the Best Development Strat-
egy for Small Scale Tech Startups?” Tech-

Software Startups – A Research Agenda 115

nical Report MS-CIS-13-01, 2013. [Online].
http://repository.upenn.edu/cis_reports/980

[26] E. Klotins, M. Unterkalmsteiner, and
T. Gorschek, “Software engineering practices in
start-up companies: A mapping study,” in 6th
International Conference on Software Business.
Springer, 2015, pp. 245–257.

[27] K. Petersen and C. Wohlin, “Context in In-
dustrial Software Engineering Research,” in
Proceedings 3rd International Symposium on
Empirical Software Engineering and Measure-
ment (ESEM). Orlando, USA: IEEE, 2009, pp.
401–404.

[28] P. Clarke and R.V. O’Connor, “The situational
factors that affect the software development
process: Towards a comprehensive reference
framework,” Information and Software Tech-
nology, Vol. 54, No. 5, 2012, pp. 433–447. [On-
line]. http://www.sciencedirect.com/science/
article/pii/S0950584911002369

[29] T. Dybå, D.I. Sjøberg, and D.S. Cruzes, “What
Works for Whom, Where, When, and Why?:
On the Role of Context in Empirical Soft-
ware Engineering,” in Proceedings Interna-
tional Symposium on Empirical Software En-
gineering and Measurement (ESEM). Lund,
Sweden: ACM, 2012, pp. 19–28. [Online].
http://doi.acm.org/10.1145/2372251.2372256

[30] D. Kirk and S.G. MacDonell, “Investigating a
Conceptual Construct for Software Context,”
in Proceedings 18th International Conference
on Evaluation and Assessment in Software En-
gineering (EASE). London, UK: ACM, 2014,
pp. 27:1–27:10. [Online]. http://doi.acm.org/
10.1145/2601248.2601263

[31] D. Kirk and S. MacDonell, “Categorising Soft-
ware Contexts,” in Proceedings 2014 Ameri-
cas Conference on Information Systems (AM-
CIS). Savannah, USA: AIS Electronic Li-
brary, 2014. [Online]. http://aisel.aisnet.org/
amcis2014/Posters/ITProjectManagement/8

[32] T. Feng, L. Sun, C. Zhu, and A.S. Sohal, “Cus-
tomer orientation for decreasing time-to-market
of new products IT implementation as a com-
plementary asset,” Industrial Marketing Man-
agement, Vol. 41, No. 6, 2012, pp. 929–939.

[33] E. Tom, A. Aurum, and R. Vidgen, “An ex-
ploration of technical debt,” Journal of Sys-
tems and Software, Vol. 86, No. 6, 2013, pp.
1498–1516. [Online]. http://www.sciencedirect.
com/science/article/pii/S0164121213000022

[34] C. Fernández-Sánchez, J. Garbajosa, and
A. Yagüe, “A framework to aid in decision mak-
ing for technical debt management,” in Pro-

ceedings 7th International Workshop on Manag-
ing Technical Debt (MTD). Bremen, Germany:
IEEE, 2015, pp. 69–76.

[35] Z. Li, P. Avgeriou, and P. Liang, “A system-
atic mapping study on technical debt and
its management,” Journal of Systems and
Software, Vol. 101, 2015, pp. 193–220. [On-
line]. http://www.sciencedirect.com/science/
article/pii/S0164121214002854

[36] E. Lim, N. Taksande, and C. Seaman, “A bal-
ancing act: What software practitioners have
to say about technical debt,” IEEE Software,
Vol. 29, No. 6, 2012, pp. 22–27.

[37] F. Shull, D. Falessi, C. Seaman, M. Diep, and
L. Layman, “Technical Debt: Showing the Way
for Better Transfer of Empirical Results,” in
Perspectives on the Future of Software Engi-
neering. Springer, 2013, pp. 179–190.

[38] F. Johne and P.A. Snelson, “Success factors
in product innovation: A selective review of
the literature,” Journal of Product Innovation
Management, Vol. 5, No. 2, 1988, pp. 114–128.

[39] D. Lippoldt and P. Stryszowski, “Innovation
in the software sector,” Organisation for Eco-
nomic Co-operation and Development, Tech.
Rep., 2009.

[40] H. Edison, N. bin Ali, and R. Torkar, “To-
wards innovation measurement in the software
industry,” Journal of Systems and Software,
Vol. 86, No. 5, 2013, pp. 1390–1407. [On-
line]. http://www.sciencedirect.com/science/
article/pii/S0164121213000058

[41] W. Eversheim, Innovation Management for
Technical Products: Systematic and Integrated
Product Development and Production Planning.
Springer Science & Business Media, 2008.

[42] M.M. Crossan and M. Apaydin, “A multi-di-
mensional framework of organizational inno-
vation: A systematic review of the literature,”
Journal of Management Studies, Vol. 47, No. 6,
2009, pp. 1154–1191. [Online]. http://doi.wiley.
com/10.1111/j.1467-6486.2009.00880.x

[43] R. Balachandra and J. Friar, “Factors for suc-
cess in R/D projects and new product inno-
vation: a contextual framework,” IEEE Trans-
actions on Engineering Management, Vol. 44,
No. 3, 1997, pp. 276–287.

[44] R.G. Cooper, “From experience – the invisible
success factors in product innovation,” Journal
of Product Innovation Management, Vol. 16,
No. 2, 1999, pp. 115–133.

[45] “Software engineering – software product qual-
ity requirements and evaluation (SQuaRE) –
guide to SQuaRE – ISO/IEC 25000:2005,” In-

116 Michael Unterkalmsteiner et al.

ternational Organization for Standardization,
Tech. Rep., 2005.

[46] A. Yagüe, J. Garbajosa, J. Pérez, and J. Díaz,
“Analyzing Software Product Innovation Assess-
ment by Using a Systematic Literature Review,”
in Proceedings 47th Hawaii International Con-
ference on System Sciences (HICSS). Waikoloa,
USA: IEEE, 2014, pp. 5049–5058.

[47] M. Pikkarainen, W. Codenie, N. Boucart, and
J.A. Heredia Alvaro, Eds., The Art of Software
Innovation. Berlin, Germany: Springer, 2011.

[48] H. Lichter, M. Schneider-Hufschmidt, and
H. Züllighoven, “Prototyping in Industrial Soft-
ware Projects–Bridging the Gap Between The-
ory and Practice,” in Proceedings 15th In-
ternational Conference on Software Engineer-
ing (ICSE). Baltimore, USA: IEEE, 1993, pp.
221–229.

[49] M. Beaudouin-Lafon and W.E. Mackay, “Pro-
totyping development and tools,” Handbook
of Human-Computer Interaction, 2002, pp.
1006–1031.

[50] I. Sommerville, Software Engineering, 9th ed.
Boston: Pearson, 2010.

[51] T. Brown, Change by Design: How Design
Thinking Transforms Organizations and In-
spires Innovation. New York: HarperBusiness,
2009.

[52] A. Efeoğlu, C. Møller, and M. Sérié, “Solu-
tion Prototyping with Design Thinking – Social
Media for SAP Store: A Case Study,” in Pro-
ceedings European Design Science Symposium
(EDSS). Dublin, Ireland: Springer, 2013, pp.
99–110.

[53] P. Newman, M.A. Ferrario, W. Simm, S. For-
shaw, A. Friday, and J. Whittle, “The role of
design thinking and physical prototyping in
social software engineering,” 37th IEEE Inter-
national Conference on Software Engineering,
2015.

[54] C. Grevet and E. Gilbert, “Piggyback proto-
typing: Using existing, large-scale social com-
puting systems to prototype new ones,” in
Proceedings 33rd Annual ACM Conference on
Human Factors in Computing Systems. Seoul,
Korea: ACM, 2015, pp. 4047–4056. [Online].
http://doi.acm.org/10.1145/2702123.2702395

[55] A. Nguyen Duc and P. Abrahamsson, “Mini-
mum viable product or multiple facet product?
The Role of MVP in software startups,” in
Proceedings 17th International XP Conference.
Edinburgh, UK: Springer, 2016.

[56] T. Raz and E. Michael, “Use and bene-
fits of tools for project risk management,”

International Journal of Project Manage-
ment, Vol. 19, No. 1, 2001, pp. 9–17. [On-
line]. http://www.sciencedirect.com/science/
article/pii/S0263786399000368

[57] L. Cocco, K. Mannaro, G. Concas, and
M. Marchesi, “Simulating Kanban and Scrum
vs. Waterfall with System Dynamics,” in Pro-
ceedings 12th Internation XP Conference (XP).
Madrid, Spain: Springer, 2011, pp. 117–131.
[Online]. http://link.springer.com/10.1007/978-
3-642-20677-1_9

[58] G. Concas, M.I. Lunesu, M. Marchesi, and
H. Zhang, “Simulation of software maintenance
process, with and without a work-in-process
limit,” Journal of Software: Evolution and Pro-
cess, Vol. 25, No. 12, 2013, pp. 1225–1248.
[Online]. http://onlinelibrary.wiley.com/doi/10.
1002/smr.1599/abstract

[59] H. Edison, D. Khanna, S.S. Bajwa, V. Branca-
leoni, and L. Bellettati, “Towards a Software
Tool Portal to Support Startup Process,” in
Proceedings 1st International Workshop on Soft-
ware Startups. Bolzano, Italy: Springer, 2015,
pp. 577–583. [Online]. http://link.springer.com/
chapter/10.1007/978-3-319-26844-6_43

[60] J. Zettel, F. Maurer, J. Münch, and L. Wong,
“LIPE: a lightweight process for e-business
startup companies based on extreme program-
ming,” in Proceedings 3rd International Con-
ference on Product-Focused Software Process
Improvement (PROFES). Kaiserslautern, Ger-
many: Springer, 2001, pp. 255–270.

[61] M.D. Kelly, “Lessons Learned from Software
Testing at Startups,” in EuroStar-Software
Testing Conference, Amsterdam, The Nether-
lands, 2012.

[62] R.K. Yin, Case Study Research: Design and
Methods, 3rd ed. Sage Publications, 2003.

[63] Ergonomics of Human-system Interaction: Part
210: Human-centred Design for Interactive Sys-
tems, ISO Std., 2010.

[64] J. Füller, R. Schroll, and E. von Hippel, “User
generated brands and their contribution to the
diffusion of user innovations,” Research Policy,
Vol. 42, No. 6–7, 2013, pp. 1197–1209. [On-
line]. http://www.sciencedirect.com/science/
article/pii/S004873331300053X

[65] L. Hokkanen and K. Väänänen-Vainio-Mattila,
“UX work in startups: current prac-
tices and future needs,” in Proceedings
16th International XP Conference (XP).
Helsinki, Finland: Springer, 2015, pp. 81–92.
[Online]. http://link.springer.com/chapter/10.
1007/978-3-319-18612-2_7

Software Startups – A Research Agenda 117

[66] B. May, “Applying Lean Startup: An Experi-
ence Report – Lean & Lean UX by a UX Vet-
eran: Lessons Learned in Creating & Launching
a Complex Consumer App,” in Proceedings Ag-
ile Conference (AGILE). Dallas, USA: IEEE,
2012, pp. 141–147.

[67] M. Taipale, “Huitale–A Story of a Finnish Lean
Startup,” in Proceedings 1st International Con-
ference on Lean Enterprise and Software Sys-
tems (LESS). Helsinki, Finland: Springer, 2010,
pp. 111–114. [Online]. http://www.springerlink.
com/index/w48n06l04712621p.pdf

[68] L. Hokkanen, K. Kuusinen, and K. Väänä-
nen, “Early Product Design in Startups: To-
wards a UX Strategy,” in Proceedings 16th
International Conference on Product-Focused
Software Process Improvement (PROFES).
Bolzano-Bozen, Italy: Springer, 2015, pp.
217–224. [Online]. http://link.springer.com/
chapter/10.1007/978-3-319-26844-6_16

[69] L. Hokkanen and M. Leppänen, “Three Pat-
terns for User Involvement in Startups,” in Pro-
ceedings 20th European Conference on Pattern
Languages of Programs (EuroPLoP). Kloster
Irsee, Germany: ACM, 2015, pp. 51:1–51:8.
[Online]. http://doi.acm.org/10.1145/2855321.
2855373

[70] L. Hokkanen, K. Kuusinen, and K. Väänänen,
“Minimum viable user experience: A framework
for supporting product design in startups,” in
Proceedings 17th International XP Conference
(XP). Edinburgh, Scotland: Springer, 2016, in
press.

[71] J. Nazar, “14 Famous Business Pivots,” Forbes,
2013. [Online]. http://www.forbes.com/sites/
jasonnazar/2013/10/08/14-famous-business-
pivots/

[72] J. Bosch, V.D. Veen, and J. Salvador,
“Pivots and Architectural Decisions: Two
Sides of the Same Medal?” in Chalmers
Publication Library (CPL), 2013, pp. 310–317.
[Online]. http://publications.lib.chalmers.se/
publication/189719-pivots-and-architectural-
decisions-two-sides-of-the-same-medal

[73] H. Terho, S. Suonsyrjä, A. Karisalo, and
T. Mikkonen, Ways to Cross the Rubicon: Piv-
oting in Software Startups. Cham: Springer
International Publishing, 2015, pp. 555–568.
[Online]. http://dx.doi.org/10.1007/978-3-319-
26844-6_41

[74] S. Shahid Bajwa, X. Wang, A. Nguven Duc,
and P. Abrahamsson, “How do software star-
tups pivot? empirical results from a multiple
case study,” in 7th International Conference on

Software Business (ICSOB 2016), Ljubljana,
Slovenia, 2016, pp. 169–176.

[75] H. Löfsten and P. Lindelöf, “Science Parks
and the growth of new technology-based
firms–academic-industry links, innovation
and markets,” Research Policy, Vol. 31,
No. 6, 2002, pp. 859–876. [Online].
http://www.sciencedirect.com/science/
article/pii/S0048733301001536

[76] J.S. Gans and S. Stern, “The product market
and the market for “ideas”: commercializa-
tion strategies for technology entrepreneurs,”
Research Policy, Vol. 32, No. 2, 2003, pp.
333–350. [Online]. http://www.sciencedirect.
com/science/article/pii/S0048733302001038

[77] A. Brem and K.I. Voigt, “Integration of mar-
ket pull and technology push in the corpo-
rate front end and innovation management
– Insights from the German software indus-
try,” Technovation, Vol. 29, No. 5, 2009, pp.
351–367. [Online]. http://www.sciencedirect.
com/science/article/pii/S0166497208000898

[78] A. Maurya, Running Lean: Iterate from Plan
A to a Plan That Works. O’Reilly Media, Inc.,
2012.

[79] K. Klyver and M.T. Schenkel, “From Re-
source Access to Use: Exploring the Impact
of Resource Combinations on Nascent En-
trepreneurship,” Journal of Small Business
Management, Vol. 51, No. 4, 2013, pp. 539–556.
[Online]. http://onlinelibrary.wiley.com/doi/10.
1111/jsbm.12030/abstract

[80] J. Levie and B.B. Lichtenstein, “A Ter-
minal Assessment of Stages Theory: Intro-
ducing a Dynamic States Approach to En-
trepreneurship,” Entrepreneurship Theory and
Practice, Vol. 34, No. 2, 2010, pp. 317–350.
[Online]. http://onlinelibrary.wiley.com/doi/10.
1111/j.1540-6520.2010.00377.x/abstract

[81] F. Giones and F. Miralles, “Strategic Signaling
in Dynamic Technology Markets: Lessons From
Three IT Startups in Spain,” Global Business
and Organizational Excellence, Vol. 34, No. 6,
2015, pp. 42–50. [Online]. http://onlinelibrary.
wiley.com/doi/10.1002/joe.21634/abstract

[82] B. Clarysse, J. Bruneel, and M. Wright,
“Explaining growth paths of young
technology-based firms: structuring re-
source portfolios in different competitive
environments,” Strategic Entrepreneurship
Journal, Vol. 5, No. 2, 2011, pp. 137–157.
[Online]. http://onlinelibrary.wiley.com/doi/10.
1002/sej.111/abstract

118 Michael Unterkalmsteiner et al.

[83] S.L. Newbert and E.T. Tornikoski, “Supporter
networks and network growth: a contingency
model of organizational emergence,” Small
Business Economics, Vol. 39, No. 1, 2010,
pp. 141–159. [Online]. http://link.springer.com/
article/10.1007/s11187-010-9300-9

[84] T. Semrau and S. Sigmund, “Networking
Ability and the Financial Performance of
New Ventures: A Mediation Analysis among
Younger and More Mature Firms,” Strategic En-
trepreneurship Journal, Vol. 6, No. 4, 2012, pp.
335–354. [Online]. http://onlinelibrary.wiley.
com/doi/10.1002/sej.1146/abstract

[85] P. Witt, “Entrepreneurs’ networks and the
success of start-ups,” Entrepreneurship & Re-
gional Development, Vol. 16, No. 5, 2004, pp.
391–412. [Online]. http://dx.doi.org/10.1080/
0898562042000188423

[86] K.M. Eisenhardt and J.A. Martin, “Dy-
namic capabilities: what are they?”
Strategic Management Journal, Vol. 21,
No. 10-11, 2000, pp. 1105–1121. [Online].
http://onlinelibrary.wiley.com/doi/10.1002/
1097-0266(200010/11)21:10/11<1105::AID-
SMJ133>3.0.CO;2-E/abstract

[87] D.J. Teece, G. Pisano, and A. Shuen,
“Dynamic capabilities and strategic man-
agement,” Strategic Management Journal,
Vol. 18, No. 7, 1997, pp. 509–533. [Online].
http://onlinelibrary.wiley.com/doi/10.1002/
(SICI)1097-0266(199708)18:7<509::AID-
SMJ882>3.0.CO;2-Z/abstract

[88] S.L. Newbert, S. Gopalakrishnan, and B.A.
Kirchhoff, “Looking beyond resources: Ex-
ploring the importance of entrepreneurship
to firm-level competitive advantage in tech-
nologically intensive industries,” Technova-
tion, Vol. 28, No. 1–2, 2008, pp. 6–19. [On-
line]. http://www.sciencedirect.com/science/
article/pii/S0166497207000910

[89] B.B. Lichtenstein, K.J. Dooley, and G.T. Lump-
kin, “Measuring emergence in the dynamics
of new venture creation,” Journal of Busi-
ness Venturing, Vol. 21, No. 2, 2006, pp.
153–175. [Online]. http://www.sciencedirect.
com/science/article/pii/S0883902605000376

[90] C.G. Brush, T.S. Manolova, and L.F. Edel-
man, “Properties of emerging organizations:
An empirical test,” Journal of Business Ventur-
ing, Vol. 23, No. 5, 2008, pp. 547–566. [On-
line]. http://www.sciencedirect.com/science/
article/pii/S0883902607000602

[91] J. Katz and W.B. Gartner, “Properties of
Emerging Organizations,” Academy of Manage-

ment Review, Vol. 13, No. 3, 1988, pp. 429–441.
[Online]. http://amr.aom.org/content/13/3/
429

[92] B. Honig and T. Karlsson, “Institutional forces
and the written business plan,” Journal of
Management, Vol. 30, No. 1, 2004, pp. 29–48.
[Online]. http://jom.sagepub.com/content/30/
1/29

[93] D. Kirsh, B. Goldfarb, and A. Gera, “Firm or
substance: the role of business plans in ven-
ture capital decision making process,” Strate-
gic Management Journal, No. 30, 2009, pp.
487–515.

[94] T. Karlsson and B. Honig, “Judging a business
by its cover: An institutional perspective on
new ventures and the business plan,” Journal
of Business Venturing, Vol. 24, No. 1, 2009, pp.
27–45. [Online]. http://www.sciencedirect.com/
science/article/pii/S0883902607000791

[95] M. König, G. Baltes, and B. Katzy, “On the
role of value-network strength as an indica-
tor of technology-based venture’s survival and
growth: Increasing innovation system efficiency
by leveraging transaction relations to prioritize
venture support,” in Proceedings International
Conference on Engineering, Technology and
Innovation/ International Technology Manage-
ment Conference (ICE/ITMC). IEEE, 2015, pp.
1–9. [Online]. http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6904149

[96] K. Dovan, “Reliability in content analysis:
Some common misconceptions and recommen-
dations,” Human Communication Research,
Vol. 30, No. 3, 1998, pp. 411–433.

[97] S. Elo and H. Kyngäs, “The qualitative con-
tent analysis process,” Journal of Advanced
Nursing, Vol. 62, No. 1, 2008, pp. 107–115.
[Online]. http://onlinelibrary.wiley.com/doi/10.
1111/j.1365-2648.2007.04569.x/abstract

[98] M. König, C. Ungerer, R. Büchele, and
G. Baltes, “Agreement on the Venture’s Reality
Presented in Business Plans,” in Proceedings
22nd International Conference on Engineering,
Technology and Innovation (ICE). Trondheim,
Norway: IEEE, 2016.

[99] C. Ungerer, M. König, F. Giones, and G. Baltes,
“Measuring Venture Emergence and Survival by
Analyzing Transaction Relations in Business
Plans,” in Proceedings 22nd International Con-
ference on Engineering, Technology and Inno-
vation (ICE). Trondheim, Norway: IEEE, 2016.

[100] S. Marlow, “Human resource manage-
ment in smaller firms: A contradiction in
terms?” Human Resource Management Re-

Software Startups – A Research Agenda 119

view, Vol. 16, No. 4, 2006, pp. 467–477. [On-
line]. http://www.sciencedirect.com/science/
article/pii/S1053482206000684

[101] S. Jack, J. Hyman, and F. Osborne,
“Small entrepreneurial ventures culture, change
and the impact on HRM: A critical re-
view,” Human Resource Management Review,
Vol. 16, No. 4, 2006, pp. 456–466. [On-
line]. http://www.sciencedirect.com/science/
article/pii/S1053482206000672

[102] J. Bosch, H.H. Olsson, J. Björk, and J. Ljung-
blad, “The Early Stage Software Startup Devel-
opment Model: A Framework for Operational-
izing Lean Principles in Software Startups,” in
Proceedings 4th International Conference on
Lean Enterprise Software and Systems (LESS).
Galway, Ireland: Springer, 2013, pp. 1–15.

[103] T. Dingsøyr and Y. Lindsjørn, “Team perfor-
mance in agile development teams: Findings
from 18 focus groups,” in Proceedings 14th
International Conference on Agile Software De-
velopment, Vienna, Austria, 2013, pp. 46–60.
[Online]. http://link.springer.com/10.1007/978-
3-642-38314-4

[104] J.R. Katzenbach and D.K. Smith, “The dis-
cipline of teams.” Harvard Business Review,
Vol. 71, No. 2, 1993, pp. 111–120.

[105] O. Oechslein and A. Tumasjan, “Examin-
ing trust within the team in it startup
companies–an empirical study in the people’s
republic of china,” in Proceedings 45th Hawaii
International Conference on System Science
(HICSS), Maui, USA, 2012, pp. 5102–5111.
[Online]. http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=6149511

[106] J. Kamm, J. Shuman, J. Seeger, and A. Nurick,
“Entrepreneurial teams in new venture creation:
A research agenda,” Entrepreneurship Theory
and Practice, Vol. 14, No. 4, 1990, pp. 7–17.

[107] D. Francis and W. Sandberg, “Friendship
within entrepreneurial teams and its associ-
ation with team and venture performance,”
Entrepreneurship: Theory and Practice,
Vol. 25, No. 2, 2000, pp. 5–21. [Online].
http://go.galegroup.com/ps/i.do?id=GALE%
7CA74524630&sid=googleScholar&v=2.1&
it=r&linkaccess=fulltext&issn=10422587&p=
AONE&sw=w

[108] M. Crowne, “Why software product startups
fail and what to do about it,” in International
Engineering Management Conference (IEMC).
Cambridge, UK: IEEE, 2002, pp. 338–343.

[109] M.D. Ensley, K.M. Hmieleski, and C.L.
Pearce, “The importance of vertical and

shared leadership within new venture top man-
agement teams: Implications for the perfor-
mance of startups,” The Leadership Quar-
terly, Vol. 17, No. 3, 2006, pp. 217–231. [On-
line]. http://www.sciencedirect.com/science/
article/pii/S1048984306000051

[110] R.G. Cooper, “Perspective: The innovation
dilemma: How to innovate when the market is
mature,” Journal of Product Innovation Man-
agement, Vol. 28, No. SUPPL. 1, 2011, pp. 2–27.

[111] C.K. Bart, “New venture units: use them wisely
to manage innovation,” Sloan Management Re-
view, Vol. 29, No. 4, 1988, pp. 35–43.

[112] S.A. Hill and J. Birkinshaw, “Ambidexterity
and survival in corporate venture units,” Jour-
nal of Management, Vol. 40, No. 7, 2014, pp.
1899–1931. [Online]. http://jom.sagepub.com/
cgi/doi/10.1177/0149206312445925

[113] J.J.P. Jansen, M.P. Tempelaar, F.A.J. van den
Bosch, and H.W. Volberda, “Structural differ-
entiation and ambidexterity: The mediating
role of integration mechanisms,” Organization
Science, Vol. 20, No. 4, 2009, pp. 797–811. [On-
line]. http://pubsonline.informs.org/doi/abs/
10.1287/orsc.1080.0415

[114] R. Nanda and M. Rhodes-Kropf, “Investment
cycles and startup innovation,” Journal of Fi-
nancial Economics, Vol. 110, No. 2, 2013, pp.
403–418.

[115] D. Lavie, U. Stettner, and M.L. Tushman, “Ex-
ploration and exploitation within and across
organizations,” The Academy of Management
Annals, Vol. 4, No. 1, 2010, pp. 109–155. [On-
line]. http://www.tandfonline.com/doi/abs/10.
1080/19416521003691287

[116] J. Lerner, “Corporate venturing,” Harvard
Business Review, Vol. 91, No. 10, 2013, pp.
86–94.

[117] C.A. O’Reilly and M.L. Tushman, “Organiza-
tional ambidexterity: Past, present, and future,”
Academy of Management Perspectives, Vol. 27,
No. 4, 2013, pp. 324–338. [Online]. http://amp.
aom.org/cgi/doi/10.5465/amp.2013.0025

[118] D.A. Garvin and L.C. Levesque, “Meeting the
challenge of corporate entrepreneurship.” Har-
vard business review, Vol. 84, No. 10, 2006, pp.
102–12, 150. [Online]. http://www.ncbi.nlm.
nih.gov/pubmed/17040043

[119] H. Edison, X. Wang, and P. Abrahamsson,
“Lean startup,” in Scientific Workshop Proceed-
ings of the XP conference. Helsinki, Finland:
ACM, 2015, pp. 1–7. [Online]. http://dl.acm.
org/citation.cfm?doid=2764979.2764981

120 Michael Unterkalmsteiner et al.

[120] C.J. Chen, “Technology commercialization, in-
cubator and venture capital, and new venture
performance,” Journal of Business Research,
Vol. 62, No. 1, 2009, pp. 93–103.

[121] S. Coleman, C. Cotei, and J. Farhat, “A
resource-based view of new firm survival: new
perspectives on the role of industry and exit
route,” Journal of Developmental Entrepreneur-
ship, Vol. 18, No. 01, 2013, pp. 1–25. [On-
line]. http://www.worldscientific.com/doi/abs/
10.1142/S1084946713500027

[122] G.G. Dess, R.D. Ireland, S.A. Zahra, S.W.
Floyd, J.J. Janney, and P.J. Lane, “Emerging is-
sues in corporate entrepreneurship,” Journal of
Management, Vol. 29, No. 3, 2003, pp. 351–378.
[Online]. http://jom.sagepub.com/cgi/doi/10.
1016/S0149-2063{_}03{_}00015-1

[123] A. Croll and B. Yoskovitz, Lean Analytics: Use
Data to Build a Better Startup Faster, 1st ed.
Sebastopol, USA: O’Reilly Media, 2013.

[124] P. Tyrväinen, M. Saarikallio, T. Aho, T. Lehto-
nen, and R. Paukeri, “Metrics Frame-
work for Cycle-Time Reduction in Software
Value Creation,” in Proceedings 10th Inter-
national Conference on Software Engineer-
ing Advances (ICSEA). Barcelona, Spain:
IARIA, 2015. [Online]. https://jyx.jyu.fi/
dspace/handle/123456789/47980

[125] T.R. Eisenmann, E. Ries, and S. Dillard,
“Hypothesis-driven entrepreneurship: The lean
startup,” Harvard Business School, 2012.

[126] J. Järvinen, T. Huomo, T. Mikkonen, and
P. Tyrväinen, “From Agile Software Develop-
ment to Mercury Business,” in Proceedings 5th
International Conference on Software Business
(ICSOB). Paphos, Cyprus: Springer, 2014, pp.
58–71. [Online]. http://link.springer.com/10.
1007/978-3-319-08738-2_5

[127] H. Edison, “A conceptual framework of
lean startup enabled internal corporate ven-
ture,” in Proceedings 1st International Work-
shop on Software Startups. Bolzano-Bozen,
Italy: Springer, 2015, pp. 607–613. [On-
line]. http://link.springer.com/10.1007/978-3-
319-26844-6_46

[128] J. Märijärvi, L. Hokkanen, M. Komssi, H. Kil-
jander, Y. Xu, M. Raatikainen, P. Seppänen,
J. Heininen, M. Koivulahti-Ojala, M. Helenius,
and J. Järvinen, The Cookbook for Successful
Internal Startups. DIGILE and N4S, 2016.

[129] S. Meskendahl, “The influence of business strat-
egy on project portfolio management and its
success – a conceptual framework,” Interna-

tional Journal of Project Management, Vol. 28,
No. 8, 2010, pp. 807–817.

[130] B.S. Blichfeldt and P. Eskerod, “Project portfo-
lio management – there’s more to it than what
management enacts,” International Journal of
Project Management, Vol. 26, No. 4, 2008, pp.
357–365.

[131] J.R. Turner, The handbook of project-based
management. McGraw-Hill, 2014.

[132] H.W. Chesbrough, Open innovation: The new
imperative for creating and profiting from tech-
nology. Harvard Business Press, 2006.

[133] T. Hatzakis, M. Lycett, and A. Serrano, “A
programme management approach for ensur-
ing curriculum coherence in is (higher) educa-
tion,” European Journal of Information Sys-
tems, Vol. 16, No. 5, 2007, pp. 643–657.

[134] B.D. Reyck, Y. Grushka-Cockayne, M. Lockett,
S.R. Calderini, M. Moura, and A. Sloper, “The
impact of project portfolio management on in-
formation technology projects,” International
Journal of Project Management, Vol. 23, No. 7,
2005, pp. 524–537.

[135] B. Kersten and C. Verhoef, “IT portfolio man-
agement: A banker’s perspective on IT,” Cutter
IT Journal, 2003. [Online]. http://www.few.vu.
nl/~x/bp/bp.pdf

[136] R. LeFave, B. Branch, C. Brown, and
B. Wixom, “How sprint nextel reconfigured it
resources for results,”MIS Quarterly, 2008. [On-
line]. http://misqe.org/ojs2/index.php/misqe/
article/view/213

[137] J. Krebs, Agile portfolio management, 1st ed.
Microsoft Press, 2008.

[138] Y.Z. Anbardan and M. Raeyat, “Open innova-
tion: Creating value through co-creation,” in
Proceedings 7th World Conference on Mass Cus-
tomization, Personalization, and Co-Creation
(MCPC 2014). Aalborg, Denmark: Springer,
2014, pp. 437–447.

[139] W. Vanhaverbeke and M. Cloodt, Open Inno-
vation: Researching a New Paradigm. Oxford
University Press, 2008, ch. Open innovation in
value networks, pp. 258–284.

[140] V. Van de Vrande, J.P. De Jong, W. Vanhaver-
beke, and M. De Rochemont, “Open innovation
in smes: Trends, motives and management chal-
lenges,” Technovation, Vol. 29, No. 6, 2009, pp.
423–437.

[141] J. West and S. Gallagher, “Challenges of
open innovation: the paradox of firm invest-
ment in open-source software,” R&D Manage-
ment, Vol. 36, No. 3, 2006, pp. 319–331. [On-

Software Startups – A Research Agenda 121

line]. http://dx.doi.org/10.1111/j.1467-9310.
2006.00436.x

[142] H. Chesbrough and A. Crowther, “Beyond
high tech: early adopters of open inno-
vation in other industries,” R&d Manage-
ment, Vol. 36, No. 3, 2006, pp. 229–236.
[Online]. http://onlinelibrary.wiley.com/doi/10.
1111/j.1467-9310.2006.00428.x/full

[143] G. Hu, L. Wang, S. Fetch, and B. Bidanda,
“A multi-objective model for project port-
folio selection to implement lean and Six
Sigma concepts,” International Journal of
Production Research, Vol. 46, No. 23, 2008,
pp. 6611–6625. [Online]. http://dx.doi.org/10.
1080/00207540802230363

[144] M.A. Cusumano and K. Nobeoka, Thinking
Beyond Lean: How Multi-project Management
is Transforming Product Development at Toy-
ota and Other Companies. Simon and Schuster,
1998.

[145] F. Kon, D. Cukier, C. Melo, O. Hazzan,
and H. Yuklea, “A conceptual framework for
software startup ecosystems: the case of Israel,”
Department of Computer Science, University of
São Paulo, Tech. Rep. RT-MAC-2015-01„ 2015.
[Online]. http://www.ime.usp.br/~kon/papers/
SoftwareStartupsConceputalFramework-
TR.pdf

[146] M.C. Fonseca, “O ecossistema de startups de
software da cidade de são paulo,” Master’s the-
sis, University of São Paulo, 2016.

[147] D. Cukier, F. Kon, and L.S. Thomas, “Software
startup ecosystems evolution: The New York
City case study,” in Proceedings 2nd Interna-
tional Workshop on Software Startups. Trond-
heim, Norway: IEEE, 2016.

[148] D. Cukier, F. Kon, and N. Krueger, “Design-
ing a maturity model for software startup
ecosystems,” in Proceedings 1st International
Workshop on Software Startups. Bolzano, Italy:
Springer, 2015, pp. 600–606.

[149] B.L. Herrmann, J.F. Gauthier, D. Holtschke,
R. Berman, and M. Marmer, “The global
startup ecosystem ranking 2015,” Tech. Rep.
August, 2015.

[150] A. Frenkel and S. Maital, Mapping National
Innovation Ecosystems: Foundations for Policy
Consensus. London, UK: Edward Elgar Pub-
lishing, 2014.

[151] S. Jayshree and R. Ramraj, “Entrepreneurial
ecosystem: Case study on the influence of envi-
ronmental factors on entrepreneurial success,”
European Journal of Business and Management,
Vol. 4, No. 16, 2012, pp. 95–102.

[152] R. Sternberg, “Success factors of
university-spin-offs: Regional government
support programs versus regional environment,”
Technovation, Vol. 34, No. 3, 2014, pp. 137–148.
[Online]. http://www.sciencedirect.com/
science/article/pii/S0166497213001399

[153] M. Steinert and L.J. Leifer, “‘Finding One’s
Way’: Re-Discovering a Hunter - Gatherer
Model based on Wayfaring,” International
Journal of Engineering Education, Vol. 28,
No. 2, 2012, pp. 251–252.

[154] D.J. Snowden and M.E. Boone, “A leader’s
framework for decision making,” Harvard Busi-
ness Review, Vol. 85, No. 11, 2007, pp. 69–76.

[155] S.D. Sarasvathy, “Causation and effectuation:
Toward a theoretical shift from economic
inevitability to entrepreneurial contingency,”
Academy of Management, Vol. 26, No. 2, 2001,
pp. 243–263. [Online]. http://www.jstor.org.
proxy.lib.ul.ie/stable/info/259121

[156] P. Williams, “The Competent Boundary
Spanner,” Public Administration, Vol. 80,
No. 1, 2002, pp. 103–124. [Online]. http:
//onlinelibrary.wiley.com/doi/10.1111/1467-
9299.00296/abstract

[157] A. Nguyen Duc, P. Seppänen, and P.K. Abra-
hamsson, “Hunter-gatherer cycle: a conceptual
model of the evolution of software startups,” in
Proceedings 2015 International Conference on
Software and System Process. Tallin, Estonia:
ACM, 2015, pp. 199–203.

[158] J. Pelrine, “On Understanding Software Agility:
A Social Complexity Point Of View,” Emer-
gence: Complexity & Organization, Vol. 13, No.
1/2, 2011, pp. 26–37.

[159] J. Rikkila, P. Abrahamsson, and X. Wang,
“The Implications of a Complexity Perspec-
tive for Software Engineering Practice and
Research,” Journal of Computer Engineer-
ing & Information Technology, 2012. [On-
line]. http://www.scitechnol.com/2324-9307/
2324-9307-1-e103.pdf

[160] A. Johri, “Boundary spanning knowledge bro-
ker: An emerging role in global engineering
firms,” in Proceedings 38th Annual Frontiers in
Education Conference. IEEE, 2008, pp. 7–12.

[161] E. Wenger, Communities of Practice: Learning,
Meaning, and Identity. Cambridge University
Press, 1998.

[162] J. Birkinshaw, G. Hamel, and M.J. Mol, “Man-
agement innovation,” Academy of management
Review, Vol. 33, No. 4, 2008, pp. 825–845. [On-
line]. http://amr.aom.org/content/33/4/825.
short

122 Michael Unterkalmsteiner et al.

[163] A.H.V.D. Ven and M.S. Poole, “Explaining
Development and Change in Organizations,”
Academy of Management Review, Vol. 20, No. 3,
1995, pp. 510–540. [Online]. http://amr.aom.
org/content/20/3/510

[164] S. Blank, “Why the lean start-up changes ev-
erything,” Harvard Business Review, Vol. 91,
No. 5, 2013.

[165] J.W. Mullins and R. Komisar, Getting to Plan
B: Breaking Through to a Better Business
Model. Harvard Business Press, 2009.

[166] C. Nobel, “Teaching a ‘Lean Startup’ Strat-
egy,” HBS Working Knowledge, 2011. [On-
line]. http://hbswk.hbs.edu/item/teaching-a-
lean-startup-strategy

[167] Y. Harb, C. Noteboom, and S. Sarnikar,
“Evaluating Project Characteristics for Select-
ing the Best-fit Agile Software Development
Methodology: A Teaching Case,” Journal of
the Midwest Association for Information Sys-
tems (JMWAIS), Vol. 1, No. 1, 2015. [Online].
http://aisel.aisnet.org/jmwais/vol1/iss1/4

[168] D. Dennehy, L. Kasraian, O. O’Raghallaigh,
and K. Conboy, “Product Market Fit Frame-
works for Lean Product Development,” in Pro-
ceedings R&D Management Conference 2016
“From Science to Society: Innovation and Value
Creation”, Cambridge, UK, 2016.

[169] K. Conboy, “Agility from first principles: Recon-
structing the concept of agility in information
systems development,” Information Systems
Research, Vol. 20, No. 3, 2009, pp. 329–354. [On-
line]. http://pubsonline.informs.org/doi/abs/
10.1287/isre.1090.0236

[170] M.B. Miles and A. Huberman, Qualitative data
analysis: An expanded sourcebook. Thousand
Oaks, US: Sage Publications, Inc, 1994.

[171] C. Wohlin, A. Aurum, L. Angelis, L. Phillips,
Y. Dittrich, T. Gorschek, H. Grahn, K. Hen-
ningsson, S. Kagstrom, G. Low et al., “The
success factors powering industry-academia col-
laboration,” IEEE software, Vol. 29, No. 2, 2012,
p. 67.

[172] M. Unterkalmsteiner, T. Gorschek, A. Islam,
C. Cheng, R. Permadi, and R. Feldt, “A concep-
tual framework for SPI evaluation,” Journal of
Software: Evolution and Process, Vol. 26, No. 2,
2014, pp. 251–279.

[173] B. Kitchenham, L. Madeyski, D. Budgen, J. Ke-
ung, P. Brereton, S. Charters, S. Gibbs, and
A. Pohthong, “Robust Statistical Methods for
Empirical Software Engineering,” Empirical
Software Engineering, 2016, pp. 1–52. [On-
line]. http://link.springer.com/article/10.1007/
s10664-016-9437-5

[174] W. Hayes, “Research synthesis in software en-
gineering: a case for meta-analysis,” in Proceed-
ings 6th International Software Metrics Sym-
posium. Boca Raton, USA: IEEE, 1999, pp.
143–151.

[175] T. Gorschek, C. Wohlin, P. Carre, and S. Lars-
son, “A Model for Technology Transfer in Prac-
tice,” IEEE Software, Vol. 23, No. 6, 2006, pp.
88–95.

[176] R. Wieringa, “Empirical research methods for
technology validation: Scaling up to practice,”
Journal of Systems and Software, Vol. 95, 2014,
pp. 19–31.

[177] P. Bourque and R.E. Fairley, Eds., Guide to
the Software Engineering Body of Knowledge,
3rd ed. IEEE, 2014.

[178] E. Bjarnason, M. Unterkalmsteiner, E. En-
gström, and M. Borg, “A multi-case study of
agile requirements engineering and using test
cases as requirements,” Information and Soft-
ware Technology, Vol. 77, 2016, pp. 61–79.

[179] B. Boehm, “Value-based Software Engineering,”
SIGSOFT Softw. Eng. Notes, Vol. 28, No. 2,
2003, pp. 1–12.

[180] C.R.B.d. Souza, H. Sharp, J. Singer, L.T.
Cheng, and G. Venolia, “Guest Editors’ Intro-
duction: Cooperative and Human Aspects of
Software Engineering,” IEEE Software, Vol. 26,
No. 6, 2009, pp. 17–19.

[181] C.D. Mulrow, “Rationale for systematic
reviews.” BMJ: British Medical Journal,
Vol. 309, No. 6954, 1994, pp. 597–599.
[Online]. http://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2541393/

[182] B.A. Kitchenham, T. Dybå, and M. Jørgensen,
“Evidence-Based Software Engineering,” in Pro-
ceedings 26th International Conference on Soft-
ware Engineering (ICSE). Edinburgh, UK:
IEEE, 2004, pp. 273–281.

[183] R. Torkar, P. Minoves, and J. Garrigós, “Adopt-
ing free/libre/open source software practices,
techniques and methods for industrial use,”
Journal of the Association for Information
Systems, Vol. 12, No. 1, 2011, p. 88. [On-
line]. http://search.proquest.com/openview/
beaf4af76e081e0d38c0c1c574218df2/1

[184] E. von Hippel, “Innovation by User Commu-
nities: Learning from Open-Source Software,”
MIT Sloan Management Review, Vol. 42,
No. 4, 2001, pp. 82–82. [Online]. http:
//adaptknowledge.com/wp-content/uploads/
rapidintake/PI_CL/media/InnArticle.pdf

[185] J. West, “How open is open enough?: Melding
proprietary and open source platform strate-
gies,” Research Policy, Vol. 32, No. 7, 2003, pp.

Software Startups – A Research Agenda 123

1259–1285. [Online]. http://www.sciencedirect.
com/science/article/pii/S0048733303000520

[186] T. Dybå and T. Dingsøyr, “Empirical studies
of agile software development: A systematic
review,” Information and Software Technology,
Vol. 50, No. 9–10, 2008, pp. 833–859. [On-
line]. http://www.sciencedirect.com/science/
article/pii/S0950584908000256

[187] M. Broy, “Challenges in Automotive Soft-
ware Engineering,” in Proceedings 28th In-
ternational Conference on Software Engineer-
ing (ICSE). Shanghai, China: ACM, 2006, pp.
33–42. [Online]. http://doi.acm.org/10.1145/
1134285.1134292

[188] S. Chandra, V.S. Sinha, S. Sinha, and
K. Ratakonda, “Software Services: A Research
Roadmap,” in Future of Software Engineering
(FOSE). Hyderabad, India: ACM, 2014, pp.
40–54. [Online]. http://doi.acm.org/10.1145/
2593882.2593892

[189] J. Cleland-Huang, O.C.Z. Gotel, J. Huff-
man Hayes, P. Mäder, and A. Zisman, “Soft-
ware Traceability: Trends and Future Direc-
tions,” in Proceedings Future of Software En-
gineering. Hyderabad, India: ACM, 2014, pp.
55–69. [Online]. http://doi.acm.org/10.1145/
2593882.2593891

e-Informatica Software Engineering Journal (eISEJ) is an international, open access, no authorship fees, blind peer-reviewed
journal that concerns theoretical and practical issues pertaining development of software systems. Our aim is to focus on
experimentation and machine learning in software engineering.
The journal is published under the auspices of the Polish Academy of Sciences, Committee of Computer Science, Software
Engineering Section.
Aims and Scope:
The purpose of e-Informatica Software Engineering Journal is to publish original and significant results in all areas of
software engineering research.
The scope of e-Informatica Software Engineering Journal includes methodologies, practices, architectures, technologies
and tools used in processes along the software development lifecycle, but particular stress is laid on empirical evaluation.
e-Informatica Software Engineering Journal is published online and in hard copy form. The on-line version is from the
beginning published as a gratis, no authorship fees, open access journal, which means it is available at no charge to the
public. The printed version of the journal is the primary (reference) one.
Topics of interest include, but are not restricted to:
— Software requirements engineering and modeling
— Software architectures and design
— Software components and reuse
— Software testing, analysis and verification
— Agile software development methodologies and practices
— Model driven development
— Software quality
— Software measurement and metrics
— Reverse engineering and software maintenance
— Empirical and experimental studies in software engineering (incl. replications)
— Evidence based software engineering
— Systematic reviews and mapping studies
— Meta-analyses
— Object-oriented software development
— Aspect-oriented software development
— Software tools, containers, frameworks and development environments
— Formal methods in software engineering.
— Internet software systems development
— Dependability of software systems
— Human-computer interaction
— AI and knowledge based software engineering
— Data mining in software engineering
— Prediction models in software engineering
— Mining software repositories
— Search-based software engineering
— Multiobjective evolutionary algorithms
— Tools for software researchers or practitioners
— Project management
— Software products and process improvement and measurement programs
— Process maturity models
Important information: Papers can be rejected administratively without undergoing review for a variety reasons, such as
being out of scope, being badly presented to such an extent as to prevent review, missing some fundamental components of
research such as the articulation of a research problem, a clear statement of the contribution and research methods via
a structured abstract (see 1, 2, 3, 4 and 5) or the evaluation of the proposed solution (empirical evaluation is strongly
suggested).
Funding acknowledgements: Authors are requested to identify who provided financial support for the conduct of the
research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the
collection, analysis and interpretation of data; in the writing of the paper. If the funding source(s) had no such involvement
then this should be stated as well.
The submissions will be accepted for publication on the base of positive reviews done by international Editorial Board and
external reviewers.
English is the only accepted publication language. To submit an article please enter our online paper submission site.
Subsequent issues of the journal will appear continuously according to the reviewed and accepted submissions.

http://www.nlm.nih.gov/bsd/policy/structured_abstracts.html
http://dx.doi.org/10.1007/s10664-007-9053-5
http://dx.doi.org/10.1109/TSE.2002.1027796
http://dx.doi.org/10.1109/ISESE.2005.1541818
http://dx.doi.org/10.1007/s10664-008-9075-7
http://www.e-informatyka.pl/wiki/e-Informatica_-_Editorial_Board
https://mc.manuscriptcentral.com/e-InformaticaSEJ

	References

