
e-Informatica Software Engineering Journal, Volume 10, Issue 1, 2016, pages: 69–87, DOI 10.5277/e-Inf160104

Highly Automated Agile Testing Process: An Industrial
Case Study

Jarosław Berłowskia, Patryk Chruściela, Marcin Kasprzyka, Iwona Konanieca,
Marian Jureczkob

aNetworkedAssets Sp. z o. o.
bFaculty of Computer Science and Management, Wrocław University of Science and Technology

marian.jureczko@pwr.edu.pl

Abstract
This paper presents a description of an agile testing process in a medium size software project that
is developed using Scrum. The research methods used is the case study were as follows: surveys,
quantifiable project data sources and qualitative project members opinions were used for data
collection. Challenges related to the testing process regarding a complex project environment
and unscheduled releases were identified. Based on the obtained results, we concluded that
the described approach addresses well the aforementioned issues. Therefore, recommendations
were made with regard to the employed principles of agility, specifically: continuous integration,
responding to change, test automation and test driven development. Furthermore, an efficient
testing environment that combines a number of test frameworks (e.g. JUnit, Selenium, Jersey Test)
with custom-developed simulators is presented.

Keywords: software engineering, testing process, agile software development, case study

1. Introduction

Software testing is a very costly part of the soft-
ware development process, it is sometimes esti-
mated to make 50% of the whole development
cost [1], [2]. It is one of the main activities (at
least should be) in agile software development
methods. Beck and Andres [3] claimed it to be
a measure of project progress and the main mean
of assuring software quality. On the other hand,
applying agile software development methods sig-
nificantly affects the testing process. The agile
methods usually require to test early and to have
the tests automated. In consequence, testing is
not left to the final phase, but requires sustain-
able investments during the whole process (in-
cluding after-release maintenance of automated
test cases). Some of the authors even recommend
to start with testing [4]. The agile testing has
been studied for several years, however, there
are still unanswered questions regarding scala-

bility [5], the role of testers [6] or test automa-
tion [7].

The goal of this research is to extend the body
of knowledge concerning agile testing by docu-
menting a real life software testing process. This
paper presents a case study of a medium-size soft-
ware project with special factors that affects the
aforementioned process, i.e. requests for unsched-
uled releases and high complexity of project envi-
ronment. The project is a Java Enterprise system
in the telecommunication domain and its main
purpose is to ease network devices controlling and
management. Thus, there is a number of features
that concern integration and communication with
other systems and devices. Functional tests of
such features involve items that are outside of the
tested system, but are necessary for a successful
test execution. Therefore, the test environment
is complex and its management can consume
a considerable amount of resources, specifically
in the case of automated tests, where all changes

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_10/eInformatica2016Art4.pdf

70 Jarosław Berłowski et al.

that come from test execution should be verified
and reverted in order to ensure tests repeatability.
On the other hand there are many, unscheduled
release requests that concern the newest version
of the developed system. Those releases regard
presentations for end users or deployments into
an environment for acceptance tests. Nonetheless,
the released version must satisfy company quality
standards and must be ‘potentially shippable’ [8].
The unscheduled releases could be explained as
releases in the middle of a Sprint (the project
is developed using Scrum), that are announced
one or two days in advance and are requested
to contain some features from the current Sprint
and, of course, all the features developed in pre-
vious Sprints. The unscheduled releases create
challenges. It is critical to ensure that the ‘old’
functionality still works correctly and there are
very limited resources for regression tests, since
there are the ‘in-progress’ features that must be
straightened up before the release. The solution
is somewhat obvious – test automation. In order
to support the unscheduled releases a complex
set of automated regression tests must be present
and frequently executed. In consequence, it is pos-
sible to evaluate the current version of software
instantly and decide if it is ‘potentially shippable’.
The paper describes how the challenges are sat-
isfied, in which ways they affected the testing
process and what results were obtained.

The case study presents an insider perspec-
tive, i.e. it is conducted by members of the team
that develops the project. Therefore, it is possible
to get a really deep insight, but unfortunately
the risk of biased observation or conclusion grows
simultaneously. In consequence, the case study
is focused on a quantitative approach, which is
associated with lower risk of subjectivity instead
of the qualitative one, which is usually employed
in similar case studies. The study is designed
according to guidelines given by Runeson and
Höst [9].

A number of concepts is used in this paper.
Let us present explanations of them in order to
clarify possible ambiguities. The authors refer to
project size. The concept is in fact the metric
which Mall [10] identified as one of the two most
popular and the simplest measures of project

size, namely the number of Lines of Code (LOC).
The project investigated here is described as
a medium-size software project. The small,
medium and large scale is not a precise term, it
is very intuitive (e.g. more intuitive than LOC).
The investigated project has been classified as
a medium-size one, since it seems to be a bit
smaller than projects described in [5] and [6]
which are reported as large ones. The authors
refer to costs of development and test. This
should be considered as the amount of time com-
mitted by the development team during project
related activities. One of the investigated aspects
of the testing process is availableness for un-
scheduled release. A possibility of making an
application release is evaluated using results of
the functional tests (Selenium tests and REST
tests) executed in a continuous integration system
(100% success of unit tests is a prerequisite of the
functional ones). The application is truly ready
for release if 100% of the functional tests are
passed. The application fits for a presentation in
the case when at least 90% of the tests are passed.
If more than 10% of the tests failed, no form
of release shall be considered. The investigated
testing process was assessed using the concept of
the level of agility that evaluates the adoption
of different agile principles using the concept of
the level of adoption. Both aforementioned
concepts are borrowed from [5], further details
about them can also be found in section 2.3.

The rest of this paper is organised as follows.
The next section presents the goal and study
design as well as a detailed description of the
study context. The obtained results are docu-
mented in section 3. In section 4, the threats to
validity are discussed and in section 5, related
work is summarized. Finally, the discussion and
conclusions are given in section 6.

2. Goal and Study Design

2.1. Context

The context is described according to the guide-
lines given by Petersen and Wohlin [11]. It corre-
sponds with the suggested description structure

Highly Automated Agile Testing Process: An Industrial Case Study 71

as well as the recommended elements of the con-
text.

2.1.1. Product

The investigated project regards the development
of a system which is used in the management of
telecommunication services delivery. The main
functionalities of the product are:
– managing customer access devices,
– managing and configuring network delivery

devices,
– managing resources of IP addresses from the

public and private pools.
The following technologies are used in the soft-

ware development:
– GWT – Google Web Toolkit is a develop-

ment toolkit for building and optimizing
complex browser-based applications (https:
//developers.google.com/web-toolkit/);

– Spring – a comprehensive programming and
configuration platform for modern Java-based
enterprise applications without unnecessary
ties to specific deployment environments
(http://www.springsource.org/);

– Hibernate – It is a framework which allows
to provide the service of the data storage in
a database, regardless of the database system
(http://www.hibernate.org/);

– Oracle DB – Relational database manage-
ment system which is commonly used in cor-
porations because of data maintaining capa-
bilities, security and reliability (http://www.
oracle.com);

Maturity. The project was conducted from May
2011, the first release was carried out in Autumn
2011. The study was conducted in January 2013.
Quality. The main means of ensuring the prod-
uct quality are tests. Further details regarding
the testing process are presented in the next
sections.
Size. The total number of Lines of Code is
327387 (calculated by StatSVN – all lines are
counted).
System type. Enterprise system with a web
UI. The development team makes use of func-
tionalities accessible as REST services and also
integrates a them with existing systems.

Customisation. It is custom software develop-
ment. The product is tailored to the requirements
of a customer (a telecommunication vendor).
Programming language. The system is devel-
oped mostly in Java.

2.1.2. Processes

Figure 1 presents the testing process. In fact, no
defined process is used, and what the diagram
shows is the result of the ‘definition of done’
that is being employed. New user stories are
first identified, then acceptance criteria for them
are defined and stories are estimated. When the
Sprint begins, the development team makes the
Sprint planning and later software development
and unit tests. At the same time a specification
for functional tests must be prepared. If pair pro-
gramming was not carried out, than a code review
is needed. Before the end of the Sprint, functional
tests must be conducted. When there is time, au-
tomated functional tests are prepared, in other
case, automation is postponed to the next Sprint.
Test automation is not a part of the ‘definition
of done.’ It might seem strange as automation
is very important in agile processes, but unfortu-
nately automation is very time-consuming and
for technical reasons sometimes must be done af-
ter implementation (this remark does not regard
unit tests). In consequence, it was not possible
to always do implementation and automation in
the same Sprint. Having the choice to either do
longer Sprints or postpone automation it was
preferable to postpone the automation as there is
the requirement for unscheduled releases, which
does not correspond well with long Sprints. Post-
poning test automation is not a good practice, but
conducting functional tests manually [12,13] or
automating after the sprint [5,14] is not unique in
software development. Puleio [14] even invented
a name for not doing the test automation on
time, i.e. testing debt. At the end of the Sprint
the software is potentially shippable as the new
features which are not covered by automated
tests (if there are such) are tested manually. As
presumably it already emerged from the above
description, the employed development process
is Scrum.

https://developers.google.com/web-toolkit/
https://developers.google.com/web-toolkit/
http://www.springsource.org/
http://www.hibernate.org/
http://www.oracle.com
http://www.oracle.com

72 Jarosław Berłowski et al.

Figure 1. Testing process

2.1.3. Practices, Tools, Techniques

CASE tools
Eclipse STS (http://www.springsource.org/sts)
is used as the primary development environment.
Furthermore, the development team uses a set
of frameworks for test automation which are em-
ployed in a continuous integration system (details
in the next section).
Practices and techniques
– Time–boxing.
– Frequent (in fact continuous) integration.
– Frequent, small releases.
– Early feedback.
– Test automation.

2.1.4. People

Roles
• Product Owner – comes up with new ideas,

updates priorities and chooses the most impor-
tant issues, he is also responsible for contact
with customers.

• Scrum Master – takes control of the Scrum
process and enables team members to reach
the goal of the Sprint by helping them with
all impediments. For a short period of time
there were two Scrum Masters, as the project
was developed by two different teams.

• Team – responsible for reaching the goal of
the Sprint. The development team currently
consists of 8 people including: software devel-

opers, testers (one tester performs also the
role of a business analyst), the Scrum Master
(who takes part in software development) and
the Product Owner (who does not take part
in the software development):
– Software developers (5),
– Scrum Master (1),
– Testers (2).

2.2. Experience

Some software developers have longiterm experi-
ence in the IT field, i.e. two people 5+ years
of experience (one of them is a Scrum Mas-
ter), the Product Owner 15+ years of experi-
ence and one of the testers who is also a busi-
ness analyst 10+ years of experience. For the
rest of the team, this is the first job. They
take part in the project, learn technical skills
and expand knowledge using different tools. The
entire team has completed bachelor’s or mas-
ter’s degree studies in computer science. In or-
der to improve the qualifications, the members
of the development team have participated in
some trainings and certification programs, for
example ISTQB (International Software Testing
Qualifications Board) – both testers, Professional
Scrum Master I – the Scrum Master, CISCO
certificates (CCNA/CCNP, CCAI) – one of the
testers.

The development process was configured by
the experienced team members who also take care

http://www.springsource.org/sts

Highly Automated Agile Testing Process: An Industrial Case Study 73

of the introduction of their younger colleagues.
Thus, there are no reasons to believe that there
are issues in the process resulting a lack of experi-
ence. Additionally, the trainings and certification
program were used to ensure high development
standards and to avoid shortcomings.

2.3. The Level of Agility of the
Investigated Testing Process

The paper is to be focused on agile testing process.
Hence, it is important to take carefully analyze
the principles of agility and assess the process.
Otherwise, there would be a considerable risk of
investigating other phenomena, not the ones that
should be investigated.

2.3.1. Survey Design

The issue is addressed with a survey conducted
among all the staff that is or was involved in
project development. The survey is designed ac-
cording to a set of weighted criteria suggested
by Jureczko1 [5], i.e. the following criteria are
used (each of them can be met fully, partly or
not at all):
– Test driven development – TDD is one of

the most remarkable improvements, which
has been brought to testing with the agile
methods [15], [3]. Presumably not every agile
testing process uses TDD, on the other hand
TDD affects the process and system design
in such a significant way, that it cannot be
ignored when evaluating the level of agility
(weight = 3).

– Test automation – most of the agile methods
move the focus from manual to automated
tests, e.g. [3]. Furthermore, the automation
is often considered an essential practice [16],
[14] (weight = 3).

– Continuous integration – what is the use of
automated tests when they are not executed
frequently? (weight = 2).

– Communication – it is considered at two lev-
els, i.e. not only between team members but

also with the customer, however, with respect
to testing process the most relevant commu-
nication is between developers and testers
(weight = 2).

– Pair programming – pair programming does
not relate to testing directly. Nevertheless, it
affects the quality of a source code – could be
considered as on-the-fly code review (weight
= 1).

– Root-cause analysis – it is one of the quality
related eXtreme Programming corollary prac-
tices. It forces complex analysis for each of the
identified defects. Not only the defect should
be resolved, but also the software development
process should be improved to avoid similar
defects in future. The root-cause analysis is
not recommended when some of the essen-
tial eXtreme Programming practices are not
adopted. Therefore, there are agile testing
processes that do not employ it (weight = 1).

– Working software (over comprehensive docu-
mentation) – one of the Manifesto for Agile
Software Development rules that may have
strong influence on tests (weight = 1).

– Responding to change (over following the
plan) – another rule from the aforementioned
manifesto. In the context of a testing process,
this rule is mainly considered with respect to
the flexibility of test plans (weight = 1).

The above listed criteria are extracted from prin-
ciples suggested in eXtreme Programming [3]
and Agile Manifesto. Each of them is somehow
connected with testing and as the Authors be-
lieve they make a rich enough subset of all agile
principles to offer a good understanding of the
project reality with respect to the testing process.
The questionnaire was generated in a paper form,
nonetheless, it is available on-line: http://purl.
org/MarianJureczko/TestingProcess/Survey.

2.3.2. Survey Results

The questionnaire was completed by all present
team members and those past members that are
still working for the company. The results are dis-

1 The author argued the usage of weights by stating that the principles of agility have different relevancy from the
testing perspective. It is also noteworthy that some of the agile software development methods, e.g. XP [3], identify
categories of principles that are based on the relevancy of their adoption.

http://purl.org/MarianJureczko/TestingProcess/Survey
http://purl.org/MarianJureczko/TestingProcess/Survey

74 Jarosław Berłowski et al.

cussed in detail in the forthcoming subsections
and presented in Figure 2. Each of the sub figures
shows which respondents recognised given levels
of adoption. It is worth mentioning that there is
no single ‘I do not know’ response. Presumably
it is a consequence of the fact that each of the
respondents actively participates or participated
in the investigated project.
Test driven development More than half of
the respondents recognised test driven develop-
ment as partly implemented and the rest of them
as fully implemented (Fig. 2a). TDD has been
used in the project for a long time, however,
not all features are developed in this way. It is
always the developer’s responsibility to choose
the most efficient way of the development and
there are no repercussions for not doing TDD.
Regardless of the selected development method,
the unit tests are obligatory and hence TDD
is often a good choice. Nonetheless, there is
also a number of features that are closely cou-
pled to moderately documented, external ser-
vices which do not make a perfect environment
for TDD.
Test automation Almost all respondents recog-
nised test automation as fully adopted (Fig. 2b).
test automation is very important in the investi-
gated testing process. The automated unit tests
are explicitly written in the project’s ‘Definition
of Done’ [8]. The automation of functional tests
is also obligatory, however, sometimes it is post-
poned and it is not conducted in the very same
sprint as the functionality which has to be tested.
Typically, there is one automated test case per
a user story, but there are also some very com-
plex stories that are tested by more test cases
and some complex test cases that cover more
stories. All the automated tests cases are used as
regression tests and are executed in a continuous
integration system which brings us to the next
evaluation criterion.
Continuous integration Each of the respon-
dents acknowledged that the continuous integra-
tion principle was fully adopted (Fig. 2c). There
is only one development line, and as far as it is
possible the development team is avoiding using
branches and promotes frequent commits. More-
over, there is a number of jobs defined in the Hud-

son (http://hudson-ci.org/) system to support
automatic compilation, testing and deployment
of the developed system.

The unit tests and some of the functional
tests are executed after each commit. The func-
tional tests are split into two groups. The first of
them contains test cases that do not need a great
amount of time for execution, which in fact means
no interaction with graphical interface – these
tests are executed after each commit. The second
group of tests contains GUI related tests and for
performance reasons it is executed nightly.

The Hudson continuous integration system
supports also releases. After a Sprint Review
Meeting, i.e. when the sprint ends, a Hudson job
is executed and performs the following actions:
– The version number of the developed system

is updated.
– A SubVersion ‘TAG’ is created for the new

version of the developed system.
– Release notes regarding newly implemented

features are generated.
– A new version of the developed system is

deployed to Apache Maven repository and
saved on a FTP server.

– The new version is installed automatically in
the customer acceptance tests environment.

Communication All respondents recognised
the Communication principle as partly adopted
(Fig. 2d). The communication was considered at
two levels, namely among team members, specifi-
cally between testers and developers and between
team members and the customer. The communi-
cation between team members is acknowledged
to be effective. Testers and developers work in
the same location. The communication is mostly
verbal (but all major issues are reported in an is-
sue tracking system) and supported by the Scrum
meetings, e.g. Daily Scrum Standup Meeting. Fur-
thermore, the roles (i.e. testers and developers)
are not fixed, thus a team member has an oppor-
tunity to do developing as well as testing tasks.

The communication with customer was not
assessed so well. The eXtreme Programming ‘on
site customer’ principle [3] has not been installed.
Furthermore, customer representatives do not
participate in Planning and Review meetings
[8]. Communication channels usually go through

http://hudson-ci.org/

Highly Automated Agile Testing Process: An Industrial Case Study 75

(a) Test driven development (b) Test automation (c) Continuous integration

(d) Communication (e) Pair programming (f) Root-cause analysis

(g) Working software (over com-
prehensive documentation)

(h) Responding to change (over following
the plan)

Figure 2. The level of agility in testing process

Product Owner, which sometimes makes the com-
munication inefficient.
Pair programming Most of the respondents
recognised pair programming as partly adopted
(Fig. 2e). The usage of pair programming in the
project is limited – more often informal code
reviews are used instead, usually in the form of
a code walk-through. Nonetheless, presumably
each team member experienced this practice since
it is extensively used as a knowledge transfer tool.
New employees work in pairs with the more ex-
perienced ones in order to improve their learning
curve.
Root-cause analysis Presumably there is
a confusion over what it means to adopt this
principle since no clear message comes from the

questionnaires (Fig. 2f). Definitely the root-cause
analysis is not executed for all identified defects,
only a fraction of them is so closely investigated.
On the other hand, there are Sprint Retrospective
Meetings [8] which address the most important is-
sues and give the team an opportunity to identify
remedies.
Working software (over comprehensive
documentation) Most of the respondents ac-
knowledged that the working software is valued
over comprehensive documentation (Fig. 2g). As
a matter of fact the customer is not interested
in technical documentation. He is provided only
with the user and installation guide. Therefore,
the team could decide which technical documents
to use and there are no reasons for preparing doc-

76 Jarosław Berłowski et al.

uments that are not useful. The Agile Modeling
principles [17] are followed and in consequence
the number of created documents is limited and
always corresponds with one of two purposes, i.e.
a model to communicate or a model to under-
stand. The Product and Sprint Backlogs are used,
but neither of these documents is delivered with
the released product.
Responding to change (over following the
plan) Most of the respondents recognised that
responding to change is valued over following the
plan (Fig. 2h). With regard to test plans the prin-
ciple is fully adopted since test plans are never
fixed and there is always room for an update.
It looks slightly different in the case of the set
of features (user stories) that are chosen for im-
plementation during a Sprint Planning Meeting.
The plan created during the aforementioned meet-
ing shall not be changed according to Schwaber
[8]. However, there is a possibility to terminate
a Sprint and plan a new one (which has been
done several times during the project). Further-
more, sprints are not long (for several months one
week sprints were used, currently they have been
extended to two weeks), thus waiting for a new
sprint with an unplanned change is not painful.
It should also also stressed that there is no fixed
long term plan. Each new sprint is planned from
scratch and hence unexpected changes can be
easily handled.
Conclusion The results were evaluated in the
way suggested in [5], i.e. value 1 was used for
full adoption of an agile principle and 0.5 for
partial adoption, then weighted average was cal-
culated (the weights are given in teh previous
subsection) and the value of 76.6% was obtained.
The value is higher than the one calculated for
the project investigated in [5], which could be
interpreted as a slightly better adoption of agile
testing principles in the described in this study
process.

2.4. Objective

The study is focused on a testing process in
a medium-size software project with challeng-
ing requirements for unscheduled releases and
complex infrastructure to deal with. The pa-

per presents how the testing process was tuned
with respect to the aforementioned requirements,
hence it can be considered as a descriptive or
exploratory study [9]. The Authors believe that
other practitioners who operate in a similar con-
text will find this work helpful and use it as an
example of a well working testing process. The
study objective can be defined as follows:

Describe and evaluate an agile testing
process with support for unscheduled re-
leases in development of a software system
that depends on a number of external ser-
vices and devices.

The investigated testing process deals with
two challenges. Rge first of them comes from
business, i.e. there are often unexpected opportu-
nities which must be addressed immediately, i.e.
within one or two days depending on a release,
otherwise they are missed. In consequence, some-
times it is not possible to wait with the release
till the end of a Sprint. The second challenge
comes from the project domain. The developed
system operates in a complex environment that
consists of a number of different network devices
and services. Thus, it is a typical case when the
configuration of the surroundings requires more
time that the test execution itself. This chal-
lenge significantly affected the testing process,
and therefore the Authors believe that it is a very
important part of the project’s big picture and
must not be ignored in the case study.

2.5. Research Questions and Data
Analysis Methods

RQ1: To what extent is the requirement
for unscheduled releases satisfied? The un-
scheduled releases are one of the main drivers of
the definition of testing process. Thus, it is critical
to study this aspect. It will be evaluated using
a quantitative approach. The continuous integra-
tion server will be employed as a data source and
the results of the builds that execute functional
tests (builds with unit tests are a prerequisite)
will be used as a measure of the possibility of
a release. In order to quantify the data we as-
sumed the a release is possible when all tests are
passed. Additionally, we assumed the possibility

Highly Automated Agile Testing Process: An Industrial Case Study 77

of a release with acceptable risk of failure when
not more than 10% of tests failed. Such a risk can
be accepted only when the release is conducted
exclusively for presentation purposes. The 10%
threshold is provided to give insight into the vari-
ability of the continuous integration outcomes. It
also corresponds with the business requirements
as 90% of available functionality is usually enough
to conduct a presentation. The Authors assumed
that the release is possible when before 1 PM
the build is successfully finished according to the
aforementioned criteria. The time, i.e. 1 PM, was
selected as it was the latest possible hour that
enables installation in the customer environment
or preparation of a presentation (depending on
the goal of the unscheduled release) during the
same working day.

RQ2: How is the test automation per-
formed? Test automation is the main mean to
address unscheduled releases as it is the only
way to quickly assess the current software qual-
ity and decide if it is acceptable for a release.
Furthermore, automation has a crucial role in
the testing process and requires significant ef-
forts. Specifically, in a project that operates in
a complex environment that creates non-standard
requirements for test configuration and in conse-
quence out-of-the-box solutions are not sufficient.
Hence, it is vital to describe in detail how the
test automation is done. This research question
will be addressed using the qualitative approach.
All the employed testing frameworks, tools and
home-made solutions will be described with re-
spect to their role in the project.

RQ3: How much effort does the test au-
tomation require (with respect to different
types of activities and tools)? Automated
tests play a crucial role in deciding about an
unscheduled release and since two different test
frameworks were used it could be very interesting
to evaluate the process from a business perspec-
tive as well. Hence, the study presents data re-
garding costs of test automation that allow to jus-
tify whether it is worth making the investments
and which framework should be be chosen to have
support for unscheduled releases. The company
tracks data about committed efforts using the
issue tracking system (Atlassian JIRA). There-

fore, it is possible to address the third research
question by mining the collected data and ex-
tracting information regarding efforts connected
with creating new automated functional tests as
well as with maintaining the existing ones. The
results are presented using descriptive statistics
and statistical tests.

3. Results

3.1. To what Extent is the Requirement
for Unscheduled Releases Satisfied?

Research regarding availableness for an unsched-
uled release was conducted over a period of two
months. The results are shown in the Figure 3.
For 47.4% of the time, the application was ready
for the release. A period of release with accept-
able risk – 10,5%. The application was not ready
for release for 42.1% of the time. The obtained
results can be claimed as satisfactory with respect
to availableness for an unscheduled release.

Kaner et al. [18] considered test coverage in
the context of requirements-based testing, which
is very similar to the REST and Selenium func-
tional tests, as they are intended for proving that
the program satisfies certain requirements. There
is at least one automated test per requirement,
which the investigated project is expressed us-
ing user stories. Therefore, there is 100% test
coverage at the requirement level, i.e. each of
the requirements is tested. However, it is an
overoptimistic interpretation as not all corner
cases in some of the user stories are automated
and thus there are places where errors cannot
be detected using the REST or Selenium func-
tional tests. The tests execution results may also
misleadingly show errors in the case of database
malfunction or overload of a machine on which
the test environment is located. Adding further
tests would decrease the probability of releasing
a low quality version of the system by limiting
the number of not covered corner cases but it
would also increase the probability of blocking
a high quality release which can happen as a re-
sult of the aforementioned continuous integration

78 Jarosław Berłowski et al.

Figure 3. Results obtained from the continuous integration system

system malfunctions. Additional tests would also
increase the costs of tests maintenance.

3.2. How is Test Automation Performed?

The results of the execution of automated tests
are used as the primary citerion in making deci-
sions regarding unscheduled releases. In order to
ensure that tests results correspond with sys-
tem quality, the team uses a wide variety of
tools and frameworks. This includes also sev-
eral self-developed solutions which contribute to
conducting test automation in complex environ-
ments.

3.2.1. JUnit Test Framework

JUnit is a test framework for the Java language.
On its own it provides the basic functionality
for writing tests, which can be further enhanced
by other extensions. JUnit tests also serve as
an entry point to nearly every type of test in
the project development (including the aforemen-
tioned self-developed solutions). It is a first class
citizen with regard to the way the unit testing and
test driven development are conducted. The unit
tests are a part of the build, and thus the system
cannot be built (and in consequence released)
when some of the tests do not pass. There is also
a positive side effect, i.e. developers are forced to
instantly fix issues detected by unit tests.
EasyMock class extensions. EasyMock pro-
vides Mock Objects for interfaces and objects
through class extension which is used to replace

couplings to external systems or dependencies in
unit tests.

3.2.2. Automated Selenium Tests

Automated regression tests with Selenium Web-
Driver are used to test whether high level func-
tionalities and a graphical user interface work
and react properly to input. These tests are com-
bined into a suite and executed nightly within
the continuous integration system (a new build
of the system under test is deployed at the end of
every day on a dedicated server and its database
is set to a predefined state). These tests are not
executed after each commit, as it is in the case of
JUnit and REST tests, since, due to their com-
plexity, the execution takes more than one hour.
It is more than the recommended 10 minutes [3]
and thus would have decreased the comfort of
developers’ work.

Tests using Selenium WebDriver are func-
tional, they simulate a user action on the interface
and check whether the output matches expecta-
tions. Typically a test covers exactly one user
story, however, there are exceptions that span
multiple test cases and user stories. Additionally,
for tests where a connection to an external device
is required (and it is not feasible to keep a real
device connected to a test machine at all times),
the team developed simulators which can be set
up to respond like this particular device would
(see 3.2.5). The development team strives to have
at least one automatic functional test for every
user story.

Highly Automated Agile Testing Process: An Industrial Case Study 79

3.2.3. Jersey Test Framework

Tests prepared using Jersey Test Framework are
referred to as the REST tests for short. The
framework enables functional tests for REST ser-
vices. It launches the service on an embedded
container, sends HTTP requests and captures
the responses.

The REST tests are used to test function-
ality of the system (each user story is covered
by at least one Selenium or REST test). The
communication between a client and a server and
its validity is tested, unfortunately defects from
a graphical user interface cannot be detected in
such an approach. The REST tests are a part of
the build and thus broken tests are early detected
and fixed.

3.2.4. DbUnit

DbUnit is a JUnit extension targeted at
database-driven tests that, among other things,
puts a database into a known state between
test runs. DbUnit is used for preparing database
for tests. Specifically, it helps in creating the
HSQLDB in-memory database that is used dur-
ing the Selenium and REST tests.

3.2.5. Custom Developed Simulators

In some cases the system under test requires com-
munication with a device or an external service.
To solve this problem the team developed:
– SSH Simulator (https://github.com/

NetworkedAssets/ssh-simulator/) to simulate
communication with a device through the
SSH protocol.

– Policy Server Simulator to test communica-
tion with a policy server through HTTP.

– WebService simulators to test WebService
clients.

The simulators are used in the Selenium and
REST tests.

SSH Simulator can be configured to read
and respond to commands received through the
SSH protocol. The exact behaviour, such as what

response should be given to request, is configured
in an XML settings file.

The SSH Simulator can be used in two ways.
It is possible to launch it as an SSH server or as
a temporary service for a single JUnit test. The
SSH Simulator tool is configured using XML files.
The XML configuration file contains the expected
requests and responses that will be generated by
the simulator:
SSH Simulator configuration file

<test_case ...>
<login >login </login >
<password >password </password >
<device_type >CNR </ device_type >
<request delay_in_ms ="3000" >

<request_command >dhcp reload </ request_command >
<response_message >

100 Ok
</response_message >
<response_prompt >nrcmd >$</ response_prompt >

</request >
</test_case >

The configuration file contains the
<test_case> entry that represents the sequence
of requests and responses mapped using series
of <request> nodes (on the presented listing
there is only one) that define the expected client
requests and instruct the simulator how to reply
to them. When the XML configuration file is
ready, it is enough to use it in a JUnit test case
as it is presented in the listing below:
Using SSH-Simulator in JUnit

public class MyTest extends
SshSimulatorGenericTestCase {

@Test
public void sampleTest () {

initializeNewSshServer(xmlConfigFile ,
ipAddress , port);

//do the tests here
}

}

The WebServices simulators are made
using J2EE classes from javax.jws and
javax.xml.ws packages. There is a dedicated
class that is responsible for launching the Web-
Services in a separate thread.

https://github.com/NetworkedAssets/ssh-simulator/
https://github.com/NetworkedAssets/ssh-simulator/

80 Jarosław Berłowski et al.

Executing a simulated WebService for test pur-
poses

public class WebServiceExecutor {
private static Endpoint endpoint;
private static ExecutorService executor;
...
public WebServiceExecutor(NaWebService ws) {

if (endpoint != null &&
endpoint.isPublished ()) {

endpoint.stop ();
}
endpoint = Endpoint.create(ws);

}
/∗∗ Starts the web service ∗/
public void publish () {

if (executor == null) {
executor =
Executors.newSingleThreadScheduledExecutor ();

}
endpoint.setExecutor(executor);
endpoint.publish(WS_URL);

}
/∗∗ Closes the web service and verifies

execution results ∗/
public void shutdown () throws Throwable {

endpoint.stop ();
assertTrue(webService.isOk ());
}

}

The web service has its own thread, but the
‘shutdown’ method is called from the JUnit con-
text. Therefore, it is possible to assess what calls
the received WebService. It is done by using the
‘isOk’ method which should be implemented by
each of the simulated WebServices:
Example of a WebService implementation

@WebService(name = "WS",
serviceName = "WSService ")

public class MyWs extends NaWebService
...
@WebMethod(operationName = "OP",

action = "urn#OP")
@WebResult(name = "Result",

targetNamespace = "http ://...")
@RequestWrapper (...)
@ResponseWrapper (...)

public Result op(@WebParam(name = "NAME "...)
String name ...)

throws OperationFault_Exception {
try {

assertEquals ("PCSCF", name);
} catch (Throwable t) {

log.error(t.getMessage (), t);
reportError(t);

}
return = new GenericResponseType.Result ();

}
}

The presented example shows how to test the
value of a WebService parameter. WebService
simulators are usually employed in the REST
tests and are useful in testing WebService clients.

3.3. How Much Effort Does the Test
Automation Require (with Respect
to Different Types of Activities and
Tools)?

To answer this question, it is necessary to refer
to historical data about the efforts made by team
members to create and maintain existing auto-
mated tests. For this purpose, data from the issue
tracking system used by the company (Atlassian
JIRA) were collected.

Then the data about all automated tests have
been divided into two categories according to
the used tool: Selenium tests and REST tests.
This distinction has been made due to the fact
that these tools tests different layers of the soft-
ware. The REST tests are focused on the REST
services, while the Selenium test examines the
correctness of the operations of GUI which in
turn may use the aforementioned services. The
difference between these two types of tests is
also noticeable in in their maintenance because
of time needed to activate them. The Selenium
tests are started periodically at a specified time
by the continuous integration system (or manu-
ally by a developer in their environment), which
prolongs the response time to errors in tests.
The REST tests are executed in a continuous
integration system after each commit and IN
A local environment when developers build the

Highly Automated Agile Testing Process: An Industrial Case Study 81

application, so tests errors are usually spotted
immediately.

Team effort has been measured based on the
time which has been logged on specific tasks
which regard the creation of automated tests and
their subsequent maintenance. Figure 4 presents
the measured percentage of time spent on cre-
ation and maintenance related to the total time
of the REST tests. A relatively low percentage
of the REST tests maintenance (18%) is due to
the fact that fixing is usually easy to perform.
So the overwhelming amount of time is spent
on the implementation of new test cases. Figure
5 presents the percentage of time spent on the
creation and maintenance of the Selenium tests.
Figure 6 shows the average time spent on the
implementation and maintenance task of the Se-
lenium and REST test. The average time spent
by a developer on Selenium test creation (13.46h)
was more than two times longer than the cre-
ation of a REST test (5.53h). An even greater
difference between average times was observed
between the maintenance of the Selenium and
a REST tests. The average time of Selenium test
maintenance tasks (6.75h) was more than three
times longer than the average time logged on
REST tests maintenance. It results from the fact
that repairing Selenium tests is usually difficult
to perform (in most cases there is a need to fix
the code on both, the client and the server sides).
Figure 6 shows the differences between the effort
committed for the REST and Selenium tests. This
is largely due to the difference in the complexity
of these tests. On the other hand, the Selenium
tests (which generally require more effort) de-
tect errors in both, the server and the client
side code.

In the case of the creation of both the Sele-
nium and the REST tests, it is possible to present
further statistics, see Table 1. The average num-
bers of hours committed to automation of a test
case are reported once more but also the vari-
abilities and results of analysing the differences
between the Selenium and the REST tests are
given. In the case of the REST tests not only the
mean effort but also the variance is noticeably
smaller. In order to compare the two types of

tests a two-sample t-test was used to verify the
following null hypothesis:

The average effort committed to cre-
ation of a Selenium test is equal to the
average effort of a REST test creation.
versus an alternative hypothesis:

The average effort committed to cre-
ation of a Selenium test is larger than in
the case of a REST test.

Table 1. Efforts committed to the creation of
the Selenium and REST tests statistics

Selenium REST
tests Tests

Mean 13.46 5.83
Variance 146.89 5.67

F 24
P (F ≤ f) one-tail 0.0004

t-Stat 3.2
P (T ≤ t) one-tail 0.0014

Since the alternative hypothesis is asymmet-
ric, the one-tail version of the t-test was used.
The hypotheses are tested at the significance level
α = 0.05. The F -Test was used to test whether
the variances of two populations are equal and
according to the obtained value of P (F ≤ f),
i.e. smaller that 0.05, the two-sample assuming
unequal variances version of t-test 2 was used.
P (T ≤ t) value equal to 0.0014 was obtained,
thus the null hypothesis can be rejected and the
alternative one accepted. In other words, the ef-
fort needed to create a REST test is significantly
smaller than it is in the case of the Selenium
tests.

It is not possible to present analogous statis-
tics for the efforts related to the maintenance of
the tests. The maintenance task almost always
spans across multiple test cases, hence there are
no data regarding individual tests and the average
values have already been reported.

The execution of the automated test cases is
done in the continuous integration system, hence
it does not involve additional efforts. The project
compilation and build process, which is frequently
executed by developers as a part of their work,
includes only unit tests and REST tests and in

2 Satterthwaite’s approximate t-test, a method in the Behrens–Welch family.

82 Jarosław Berłowski et al.

Figure 4. Time spent on the REST tests Figure 5. Time spent on the Selenium tests

Figure 6. Average time spent on implementation and maintenance of a single Selenium and REST test

consequence it is below the 10 minutes suggested
by Beck [3]. Therefore, the Authors do not con-
sider test execution as a source of additional effort
for a development team.

The next logical step in answering this re-
search question leads to the unit tests. Unfortu-
nately, there are no empirical data in this area.
As in the case of test driven development, the
unit tests are created simultaneously with the
code. There were no dedicated tasks regarding
unit tests that carry effort related information.
Furthermore, it is not possible to decide which
part of the tracked effort was committed to the
production and which to the test code. However,
test driven development considers the prepara-
tion of a unit test as an integral part of the
development process, hence decisions regarding
unit tests should not be driven by cost and effort
related criteria in an agile testing process.

There is one more type of tests in the investi-
gated project, i.e. the manual tests. These tests
are outside of the scope of RQ3 as they are not
appropriate for supporting unscheduled releases,
but still could be interesting. Unfortunately, it
was not possible to correlate the manual tests ef-
forts per particular requirement and according to
the development team there is a significant frac-
tion of untracked efforts. Therefore, the Authors
decided to report the subjective interpretations of
team members involved in manual testing. The
interviewed team members estimated the cost
of implementing and maintaining an automated
test scenario in the investigated project to be
up to 20 times higher than the cost of manual
execution. Furthermore, the overall testing effort
(it covers both manual and automated tests) was
estimated by the members of the development

Highly Automated Agile Testing Process: An Industrial Case Study 83

team to be close to 25% of the overall develop-
ment effort.

4. Threats to Validity

In this section the most trustworthy results are
evaluated: to what extent they are true and not
biased toward the Authors’ subjective point of
view.

4.1. Construct Validity

Most of the employed measures are indirect. The
level of agility was assessed using questionnaires,
hence there is a risk of misunderstanding the
questions or giving biased answers due to unin-
tentional company influence or context. To ad-
dress the risk a meeting was organized, where all
concepts from the questionnaires were explained
and all questions that were answered. The pos-
sibility of unintentional influence is connected
with the fact that all of the questioned people (as
well as the Authors) were involved in the project
development. Therefore, they have a wide knowl-
edge about the object of study, but simultane-
ously they cannot have an objective point of view
which is necessary to spot the influence. In conse-
quence, it must be stated that the level of agility
was assessed only from a subjective perspective.
Moreover, the Authors’ involvement creates an
even greater threat to validity in terms of bias.
To mitigate the issue quantitative measures were
preferred over qualitative ones in the study de-
sign as the latter ones are more vulnerable to
influence.

The ability of making an unscheduled release
was assessed from the perspective of automated
tests and the continuous integration system. The
tests results carry information about the qual-
ity of the developed system. Nevertheless, using
them exclusively is a simplification of the sub-
ject. There could be some unmeasurable factors
involved (like team members intuition). The test
results obtained from the continuous integration
system is the most convincing, quantitative mea-
sure we were able to come up with.

Test automation efforts were evaluated using
data stored in the issues tracking system. There
are no serious doubts about the quality of the
data, but when it comes to completeness the situ-
ation changes. There is a considerable probability
that a fraction of efforts was not tracked. There
could be small issues that were not reported at all
or issues that were missed by the developers, e.g.
if they forgot about tracking their efforts. We did
not find a way to evaluate which fraction of the
collected data suffers from such problems. How-
ever, the data filtering was done manually. The
developers, who were assigned to the test automa-
tion tasks were approached and asked how the
collected data correspond with their real efforts.

4.2. Internal Validity

According to Runeson and Höst [9] the internal
validity is a concern when casual relations are
examined. This study does not provide such a re-
lation explicitly. Nonetheless, it may create an
impression that following the principles that are
used in the project described here should lead to
similar results, which the Authors in fact believe
is true. However, there is still a possibility that
some relevant factors are missing as they were not
identified by the Authors. To mitigate the risk of
this threat, the context was described according
to guidelines suggested by Petersen and Wohlin
[11] and the rest of the study was designed fol-
lowing Runeson and Höst [9] recommendations
for a descriptive and to some extend exploratory
case study. Specifically, the Authors used the
suggested research process, terminology, research
instruments and validity analysis.

4.3. External Validity

The context of this case study is described in
Section 2.1 and there is no evidence that the
same or similar results could be achieved in a an-
other context. Nonetheless, the Authors believe
that the environment complexity (e.g. the need
for simulators) increases the efforts related to
test automation and hence better results may
be obtained when there are fewer couplings with
external systems.

84 Jarosław Berłowski et al.

Specifically, it must be stressed out that the
comparison of efforts related to different test
frameworks has very limited external validity.
Statistical tests were employed, but the investi-
gated data were mined from only one project.
Therefore, it is not clear whether the results are
true for other projects and it cannot be empir-
ically verified which project specific factors are
relevant for the comparison results. A plausible
explanation is presented in the ‘Discussion and
conclusions’ section, however, data from addi-
tional projects are required to confirm it.

4.4. Reliability

According to Runeson and Höst [9] reliability
is concerned with the extent to which the data
and the analysis are dependent on specific re-
searchers. The conducted analyses are rather
straightforward and several perspectives have
been presented to ensure the reliability. Nonethe-
less, the Authors do not publish raw data, as
they contain business critical information, and
that can be an obstacle in replicating the study.
Additionally, the Authors were involved in project
development and thus the observations as well as
conclusions may be biased – the issue is discussed
in Subsection 4.1.

5. Related Work

The agile methods have been used for a cou-
ple of years. Thus, a number of case studies
with regard to the testing process have already
been conducted. Nonetheless, the Authors are
not familiar with any works that analyze the
agile testing process with respect to unscheduled
releases. On the other hand, the complexity of
the developed system is always a factor taken
into account, however, it but seldom becomes the
object of a study – none of the works reported
in this section consider a similar approach to
handling system complexity.

Kettunen et al. [2] compared testing pro-
cesses between software organizations that ap-
plied agile practices and employ traditional plan
driven-methods. Altogether twelve organizations

were investigated and as a result the Authors
concluded that agile practices:
– tend to allow more time for testing activates,

while the total time for the project remains
the same,

– smooth the load of test resources,
– require stakeholders to understand and con-

form to the practices in agile methods,
– are usually supported by internal customers,
– allow faster reaction time for change.
The findings advocate agile testing but do not
correspond with the goals of the process investi-
gated in this study, i.e. support for unscheduled
releases and complex infrastructure.

Jureczko [5] investigated the level of agility
in a testing process in a large scale financial
software project. The studied project is of differ-
ent size and comes from another domain, never-
theless, the suggested criteria for agility evalua-
tion have been used to assess the testing process
described in this study. Therefore, a compari-
son is possible. The process from [5] is signif-
icantly outperformed in the scope of continu-
ous integration, pair programming, root-cause
analysis and working software (over comprehen-
sive documentation), however, it is underper-
formed in the field of communication. The over-
all assessment is higher in the process studied
in this work. Let us elaborate the development
and testing process of this work. The project
was planned for 150 working years, but later
the duration time was lengthened. More than
150 high skilled developers, testers and man-
agers were involved. The project was divided
into five sub-projects and the paper is focused
on only one of them. The sub-project was de-
veloped by a group of about 40 people. The
project is a custom-build solution that supports
more than 1500 initially identified case scenarios.
The system is based on a well defined techni-
cal framework, called Quasar. The development
team frequently delivers new releases with new
functionalities. There are two major releases per
year: in spring and autumn. They are used to
deliver large changes and bulks of possible bugs.
The two major ones are supplemented by hot-
fix releases that target the most important bug-
fixes only. The employed testing process forces

Highly Automated Agile Testing Process: An Industrial Case Study 85

practices borrowed from the V-Model. Testers
work on test concepts once the specification of
a requirement is ready. Subsequently develop-
ers write a source code and perform manual
tests when testers write new automated tests.
Each of the tests is immediately added to the
regression test set that is executed daily. Sub-
system tests are performed after the integration.
They are usually manual and focused on new
features.

The role of test automation in a testing pro-
cess was empirically evaluated by Karhu et al.
[7] in five software organizations among which he
was developing a complex system with a number
of interfaces to customer-specific external systems
and hence creates challenges in test automation.
The Authors identified a number of interesting
consequences of automation. Quality improve-
ment through better test coverage and increase
in the number of executed test cases were noted
among benefits, whereas costs of implementa-
tion, maintenance and training were pointed out
as the main disadvantages. Moreover, according
to Berlino [1] great emphasis is put on this is-
sue and the methods of extending the degree of
attainable automation are in the focus of test-
ing research. Unfortunately, there is a dichotomy
with regard to the industrial reality, i.e. many
companies, which claim that they have adopted
XP, practice the automation in a limited scope
[19]. Considerable research has been conducted
on the test automation [16,20–23] and in general
this practice is strongly recommended. Among
the aforementioned works especially [21] is note-
worthy as it is conducted it the context of the
Scrum method. Another commonly investigated
agile testing practice is test driven development.
There is evidence for its usefulness in the indus-
trial environment [24, 25], reports of controlled
experiments are also available [26, 27].

Winter [28] investigated the challenges regard-
ing testing in a complex environment, however,
the complexity came from evaluation usability
for a variety of end users. One of the areas of
interest was the agility of a testing process and
the balance between the formal and informal
approaches. The agility was considered in the
context of the Agile Manifesto, and hence there

was limited overlap with the criteria employed
in our study (i.e. only Working software (over
comprehensive documentation) and Responding
to change (over following the plan) are considered
in both studies).

Talby et al. [6] described installation of ag-
ile software testing practices in a real large-scale
project in a traditional environment. The authors
pointed out that in the investigated case study
the agile methods dramatically improved quality
and productivity. The testing process was ana-
lyzed and described in four key areas: test design
and activity execution, working with professional
testers, planning, and defect management. The
investigated project is a sub-project of a larger
one. The larger one was developed by 60 skilled
developers and testers. Thus, there is a consider-
able probability that the sub-project is similar in
size to the project described in this study. More
details about the software project investigated in
[6] can be found in [29].

A lesson learned from a transformation from
a plan-driven to agile testing process is docu-
mented in [14]. Extreme programming and Scrum
were adopted, which makes the process similar
to the one described here. Hence, the challenges
described by Puleio [14] may arise when trying to
adopt adopt the principles advocated in this pa-
per in a traditional (i.e. not agile) environment.

6. Discussion and Conclusions

This paper contributes to the body of knowledge
in two ways. The Authors provide a detailed case
study of an agile testing process, which can be
used in further research and in combination with
other studies to help make general conclusions.
The documentation of the testing process in this
project could also be beneficial to practitioners
interested in installing an agile testing process in
a similar environment. Especially, a number of
ready to use testing tools are recommended (e.g.
the simulators).

A survey was conducted in order to assess
the level of agility and the results showed a high
level of adoption, i.e. 76.6%. Furthermore, each of
the assessment criteria was compared against the

86 Jarosław Berłowski et al.

project reality in a qualitative approach which
gives an insight into the way the agile principles
work. A detailed analysis indicated some areas of
possible improvement, e.g. communication with
customer and pair programming.

The project preparation for the ‘on short no-
tice’ release was analysed and assessed according
to test execution results in the continuous inte-
gration system. The results gave a value of about
47% of time in which the project was ready to
be released and 10% of time it could have been
released with the acceptable risk. Hence, the Au-
thors can conclude that the requirement for un-
scheduled releases is supported to a considerable
extent.

Comparative evaluation of the cost of the
REST and Selenium tests was conducted. It mea-
sured how much time is necessary in both test
frameworks for the implementation of new test
and maintenance of the existing ones. A signifi-
cant disadvantage was found in the case of the
Selenium tests, which we believe is a result of
using Google Web Toolkit for the graphical in-
terface – this framework uses dynamic identifiers
and generates complex (at least from the Sele-
nium point of view) web pages. This extra cost
is counterbalanced with an ability to detect bugs
in GUI which is covered only by the Selenium
test. Nonetheless, the big difference in costs en-
courages reconsideration of the testing approach.

A brief description of all tools that were used
to implement automated tests is provided. The
main contribution in this area regards the sug-
gestion for mitigating environment complexity
with simulators. There is a detailed description
of an open-source project called SSH-simulator
which was co-developed by the Authors, in fact,
it is officially presented in this paper for the first
time. Furthermore, the Authors also suggested
a straightforward solution for simulating WebSer-
vices in a test environment. The paper contains
listings that show how to mock a WebService
in the context of the JUnit tests. The Authors
believe that the detailed descriptions of those
simulators will help other practitioners who face
similar challenges during test automation since
the presented solutions are ready to use (the nec-

essary listings and references to external sources
are given in Sec. 3.2.5).

The overall results are satisfactory with re-
gard to the project goals. Therefore, we would like
to recommend following the same rules (in simi-
lar projects), i.e. adopt the principles of agility,
specifically assure high quality and coverage of
automated tests and employ a continuous inte-
gration system for automated builds.

References

[1] A. Bertolino, “Software testing research: Achieve-
ments, challenges, dreams,” in Future of Software
Engineering, FOSE ’07. IEEE, 2007, pp. 85–103.

[2] V. Kettunen, J. Kasurinen, O. Taipale, and
K. Smolander, “A study on agility and testing
processes in software organizations,” in Proceed-
ings of the 19th international symposium on
Software testing and analysis. ACM, 2010, pp.
231–240.

[3] K. Beck and C. Andres, Extreme programming
explained: embrace change. Addison–Wesley Pro-
fessional, 2004.

[4] L. Koskela, Test driven: practical TDD and ac-
ceptance TDD for Java developers. Manning Pub-
lications Co., 2007.

[5] M. Jureczko, “The level of agility in the testing
process in a large scale financial software project,”
in Software engineering techniques in progress,
T. Hruška, L. Madeyski, and M. Ochodek, Eds.
Oficyna Wydawnicza Politechniki Wrocławskiej,
2008, pp. 139–152.

[6] D. Talby, A. Keren, O. Hazzan, and Y. Dubinsky,
“Agile software testing in a large-scale project,”
IEEE Software, Vol. 23, No. 4, 2006, pp. 30–37.

[7] K. Karhu, T. Repo, O. Taipale, and K. Smolan-
der, “Empirical observations on software test-
ing automation,” in International Conference
on Software Testing Verification and Validation,
ICST ’09. IEEE, 2009, pp. 201–209.

[8] K. Schwaber, Agile project management with
Scrum. Microsoft Press, 2004.

[9] P. Runeson and M. Höst, “Guidelines for con-
ducting and reporting case study research in
software engineering,” Empirical Software Engi-
neering, Vol. 14, No. 2, 2009, pp. 131–164.

[10] R. Mall, Fundamentals of software engineering.
PHI Learning Pvt. Ltd., 2009.

[11] K. Petersen and C. Wohlin, “Context in indus-
trial software engineering research,” in Proceed-
ings of the 3rd International Symposium on Em-

Highly Automated Agile Testing Process: An Industrial Case Study 87

pirical Software Engineering and Measurement.
IEEE Computer Society, 2009, pp. 401–404.

[12] S. Harichandan, N. Panda, and A.A. Acharya,
“Scrum testing with backlog management in agile
development environment,” International Jour-
nal of Computer Science and Engineering, Vol. 2,
No. 3, 2014.

[13] K.K. Jogu and K.N. Reddy, “Moving towards
agile testing strategies,” CVR Journal of Science
& Technology, Vol. 5, 2013.

[14] M. Puleio, “How not to do agile testing,” in Agile
Conference. IEEE, 2006, pp. 305–314.

[15] K. Beck, Test driven development: By example.
Addison–Wesley Professional, 2003.

[16] M. Jureczko and M. Mlynarski, “Automated ac-
ceptance testing tools for web applications us-
ing test-driven development,” Electrical Review,
Vol. 86, No. 09, 2010, pp. 198–202.

[17] S. Ambler, Agile modeling: effective practices
for extreme programming and the unified process.
Wiley, 2002.

[18] C. Kaner, J. Bach, and B. Pettichord, Lessons
learned in software testing. John Wiley & Sons,
2008.

[19] D. Martin, J. Rooksby, M. Rouncefield, and
I. Sommerville, “ ‘Good’ organisational reasons
for ’bad’ software testing: An ethnographic study
of testing in a small software company,” in 29th
International Conference on Software Engineer-
ing, ICSE 2007. IEEE, 2007, pp. 602–611.

[20] M. Catelani, L. Ciani, V.L. Scarano, and A. Ba-
cioccola, “Software automated testing: A solution
to maximize the test plan coverage and to in-
crease software reliability and quality in use,”
Computer Standards & Interfaces, Vol. 33, No. 2,
2011, pp. 152–158.

[21] R. Löffler, B. Güldali, and S. Geisen, “Towards
model-based acceptance testing for Scrum,”
Softwaretechnik-Trends, Vol. 30, No. 3, 2010.

[22] X. Wang and P. Xu, “Build an auto testing frame-
work based on selenium and fitnesse,” in Inter-
national Conference on Information Technology
and Computer Science, ITCS 2009, Vol. 2. IEEE,
2009, pp. 436–439.

[23] T. Xie, “Improving effectiveness of automated
software testing in the absence of specifica-
tions,” in 22nd IEEE International Conf. on
Software Maintenance, ICSM ’06. IEEE, 2006,
pp. 355–359.

[24] N. Nagappan, E.M. Maximilien, T. Bhat, and
L. Williams, “Realizing quality improvement
through test driven development: results and
experiences of four industrial teams,” Empirical
Software Engineering, Vol. 13, No. 3, 2008, pp.
289–302.

[25] A.P. Ress, R. de Oliveira Moraes, and M.S.
Salerno, “Test-driven development as an innova-
tion value chain,” Journal of technology manage-
ment & innovation, Vol. 8, 2013, p. 10.

[26] L. Madeyski, “The impact of pair programming
and test-driven development on package depen-
dencies in object-oriented design—an experi-
ment,” in Product-Focused Software Process Im-
provement. Springer, 2006, pp. 278–289.

[27] L. Madeyski, “The impact of test-first program-
ming on branch coverage and mutation score
indicator of unit tests: An experiment,” Infor-
mation and Software Technology, Vol. 52, No. 2,
2010, pp. 169–184.

[28] J. Winter, K. Rönkkö, M. Ahlberg, and
J. Hotchkiss, “Meeting organisational needs
and quality assurance through balancing agile
and formal usability testing results,” in Soft-
ware Engineering Techniques. Springer, 2011, pp.
275–289.

[29] Y. Dubinsky, D. Talby, O. Hazzan, and A. Keren,
“Agile metrics at the Israeli air force,” in Agile
Conference, Proceedings. IEEE, 2005, pp. 12–19.

	Introduction
	Goal and Study Design
	Context
	Product
	Processes
	Practices, Tools, Techniques
	People

	Experience
	The Level of Agility of the Investigated Testing Process
	Survey Design
	Survey Results

	Objective
	Research Questions and Data Analysis Methods

	Results
	To what Extent is the Requirement for Unscheduled Releases Satisfied?
	How is Test Automation Performed?
	JUnit Test Framework
	Automated Selenium Tests
	Jersey Test Framework
	DbUnit
	Custom Developed Simulators

	How Much Effort Does the Test Automation Require (with Respect to Different Types of Activities and Tools)?

	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Related Work
	Discussion and Conclusions
	References

