
e-Informatica Software Engineering Journal, Volume 11, Issue 1, 2017, pages: 7–38, DOI 10.5277/e-Inf170101

ECLogger: Cross-Project Catch-Block Logging
Prediction Using Ensemble of Classifiers

Sangeeta Lal∗, Neetu Sardana∗, Ashish Sureka∗∗
∗Jaypee Institute of Information Technology, Noida, Uttar-Pradesh, India

∗∗ABB Corporate Research, Bangalore, India
sangeeta@jiit.ac.in, neetu.sardana@jiit.ac.in, ashish.sureka@in.abb.com

Abstract
Background: Software developers insert log statements in the source code to record program
execution information. However, optimizing the number of log statements in the source code is
challenging. Machine learning based within-project logging prediction tools, proposed in previous
studies, may not be suitable for new or small software projects. For such software projects, we can
use cross-project logging prediction.
Aim: The aim of the study presented here is to investigate cross-project logging prediction methods
and techniques.
Method: The proposed method is ECLogger, which is a novel, ensemble-based, cross-project,
catch-block logging prediction model. In the research We use 9 base classifiers were used and
combined using ensemble techniques. The performance of ECLogger was evaluated on on three
open-source Java projects: Tomcat, CloudStack and Hadoop.
Results: ECLoggerBagging, ECLoggerAverageVote, and ECLoggerMajorityVote show a considerable
improvement in the average Logged F-measure (LF ) on 3, 5, and 4 source→target project pairs,
respectively, compared to the baseline classifiers. ECLoggerAverageVote performs best and shows
improvements of 3.12% (average LF ) and 6.08% (average ACC – Accuracy).
Conclusion: The classifier based on ensemble techniques, such as bagging, average vote, and
majority vote outperforms the baseline classifier. Overall, the ECLoggerAverageVote model performs
best. The results show that the CloudStack project is more generalizable than the other projects.

Keywords: classification, debugging, ensemble logging, machine learning, source code
analysis, tracing

1. Introduction

Logging is an important software development
practice that is typically performed by inserting
log statements in the source code. Logging helps
to trace the program execution. In the case of
failure, software developers can use this tracing
information to debug the source code. Logging
is important because this is often the only infor-
mation available to the developers for debugging
because of problems in recreating the same exe-
cution environment or because of unavailability
of the input used (security/privacy concerns of
the user). Logging statements have many applica-
tions, such as debugging [1] workload modelling

[2], performance problem diagnosis [3], anomaly
detection [4], test analysis [5,6], and remote issue
resolution [7].

Source code logging is important, but it has
a trade-off between the cost and the benefit
[8–11]. Excessive logging in the source code can
cause performance and cost overhead. It can also
decrease the benefits of logging by generating too
many trivial logs, which can potentially make
debugging more difficult by hiding important
debugging information. Excessive logging can
also cause a severe performance bottleneck for
a system. In a recent blog, inefficient logging
was considered to be a major factor for Tomcat
performance problems [12]. Similarly to exces-

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_11/eInformatica2017Art1.pdf


8 Sangeeta Lal, Neetu Sardana, Ashish Sureka

sive logging, sparse logging is also problematic.
Sparse logging can make logging ineffective by
missing important debugging information. Shang
et al. [13] reported an experience from a user
who was complaining about sparse logging of
catch-blocks in Hadoop. Hence, it is important to
optimize the number of logging statements in the
source code. However, previous research shows
that optimizing log statements in the source code
is challenging, and developers often face difficul-
ties with this task [8–11].

Several recent studies have proposed tools
and techniques to help developers optimize log
statements in the source code by automatically
predicting the code constructs that need to be
logged [8, 10, 11]. These techniques learn a pre-
diction model from the history of the project
(applying supervised learning from annotated
training data) to predict logging on new code
constructs. Predicting logged code constructs
will work well if a sufficient amount of training
data is available to train the model. However,
many real-world open-source and closed-source
applications and new or small projects do
not have sufficient prior training data to con-
struct the prediction model. There are sev-
eral long-lived and large projects that have
collected massive amounts of data. One can
use training data from these project(s) (source
project(s)) to predict logging on a particular
project (target project) of interest, i.e. one
can perform cross-project logging prediction.
Cross-project prediction is also called transfer
learning, which consists of transferring predictive
models trained from one project (source project)
to another project (target project). Cross-project
logging prediction can have several benefits:
1) multiple projects can be used for training
the model, and hence, good practices can be
learned from many projects, and 2) the model
can be refined offline over a period of time
to improve the performance of logging predic-
tion.

Cross-project logging prediction is an impor-
tant and a technically challenging task. There
are two main challenges in cross-project log-
ging prediction: 1) vocabulary mis-match prob-
lems and 2) differences in the domain of nu-

merical attributes. The vocabulary mis-match
problem can arise due to the use of different
terms in the source code of different projects.
For example, the Tomcat project has 119 unique
exception types, whereas the Hadoop project
has 265 unique exception types. Our analysis
of these exception types shows that 193 excep-
tion types present in the Hadoop project do not
exist in the Tomcat project. Similarly, the do-
main of numerical attributes may not be the
same in different projects. For example, the av-
erage SLOC of try-blocks associated with logged
catch-blocks is 6.98 and 10.65 for the Tomcat
and CloudStack projects, respectively. Hence,
it is important to create a prediction model
that uses generalized properties for cross-project
logging prediction rather than domain-specific
properties.

In this paper, theAuthors proposeECLogger,
a cross-project, catch-block logging prediction
framework that addresses the aforementioned
challenges. To address the first challenge (vo-
cabulary mis-match problem), ECLogger per-
forms data standardization prior to learning
the model. Data standardization helps to nor-
malize the data in a specific range and hence
helps to address the problem of data het-
erogeneity [14]. To address the second chal-
lenge (non-uniform distribution of numerical at-
tributes problem), ECLogger, uses an ensem-
ble of classifiers-based approach. Ensemble-based
techniques capture the strength of multiple
base classifiers [15]. In this work, 9 base clas-
sifiers (AdaBoostM1, ADTree, Bayesian network,
decision table, J48, logistic regression, Naïve
Bayes, random forest and radial basis func-
tion network) were used. ECLogger combines
these algorithms with three ensemble techniques,
i.e. bagging, average vote and majority vote.
8 ECLoggerBagging, 466 ECLoggerAverageVote and
466 ECLoggerMajorityVote models, i.e. a total of
940 models are created. The performance of
ECLogger on three large and popular open-source
Java projects: Tomcat, CloudStack and Hadoo-
pare evaluated. The experimental results reveal
that ECLoggerBagging, ECLoggerAverageVote and
ECLoggerMajorityVote show maximum improve-
ments of 4.6%, 7.04% and 5.39% in the logged



ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 9

F-measure, respectively, compared to the baseline
classifier.

2. Related work and novel research
contributions

In this section, previous works closely related to
the study presented in this paper are discussed.
They are organized and presented in multiple
lines of research. Then the novel research contri-
butions of this work in the context of existing
work is presented.

2.1. Logging applications

Log statements present in the source code generate
log messages at the time of software execution.
Log statements and logmessages were widely used
in the past for different purposes [3,5–7,13,16–18].
Shang et al. [13] used log statements present in
a file to predict defects. Shang et al. proposed
various product and process metrics using log
statements to predict post-release defects. Na-
garaj et al. [3] used good and bad logs of the
system to detect performance issues in the system.
Nagaraj et al. [3] developed a tool, DISTALYZER,
that helps developers in finding components re-
sponsible for poor system performance. Xu et al.
[18] worked on mining console logs from a dis-
tributed system at Google to find anomalies in
the system. Yuan et al. [17] used log informa-
tion to find the root cause of a failure. Yuan
et al. developed a tool, SherLog, that can use
log information to find information about failed
runs without any re-execution of the code. Log
messages are also helpful in fixing bugs, as the
empirical study performed by Yuan et al. [1]
showed that bug reports consisting of log mes-
sages were fixed 2.2 times faster compared to
bug reports not consisting of log messages. Log
messages are also useful in test analysis [5, 6],
remote issue resolution [7], security monitoring
[19], anomaly detection [4,18], and usage analy-
sis [20]. Many tools have also been proposed to
gather log messages [21, 22]. Our work is comple-
mentary to these studies, focuses on improving
logging in the catch-blocks, and can be benefi-

cial for studies that work on analysing the log
information.

2.2. Logging code analysis and
improvement

Logging statements are very important in soft-
ware development (refer to subsection 2.1), and
hence, logging improvements have attracted at-
tention from many researchers in the software
engineering community [1, 8–11,17, 23, 24]. Yuan
et al. [25] performed a study to identify a set of
generic exception types that cause most of the
system failures. Yuan et al. [25] proposed a con-
servative approach to log all of the generic excep-
tion types. Fu et al. [8] studied the logging prac-
tices of developers on C# projects and reported
the five most frequently logged code constructs.
Zhu et al. [11] and Fu et al. [8] proposed a ma-
chine learning-based framework for logging pre-
diction of exception-type and return-value-check
code snippets on C# projects. Lal et al. [9, 10]
proposed a machine learning-based framework
for catch-block and if-block logging prediction
on Java projects. All three approaches use
static features from the source code for logging
prediction.

Yuan et al. [24] proposed the LogEnhancer
tool to help developers in enhancing the cur-
rent log statements. LogEnhancer strategically
identifies the variables that need to be logged,
and experimental results obtained by Yuan et al.
[24] showed that LogEnhancer correctly iden-
tifies the logged variables 95% of the time. In
another study, Yuan et al. [1] proposed a code
clone-based tool to predict the correct verbosity
level of log statements. Log statements have an
option to assign a verbosity level (e.g. debug,
info, or trace) as an indicator of the severity level.
An incorrect verbosity level to a log statement
can have implications on software debugging and
other related aspects [26, 27]. Kabinna et al. [23]
performed a prediction on the stability (i.e. how
likely a logging statement will be modified) of
logging statements. Logging statements that are
frequently modified may cause log processing
applications to crash, and hence, timely logging
stability prediction can be beneficial [23]. Our



10 Sangeeta Lal, Neetu Sardana, Ashish Sureka

work is an extension of the logging prediction
studies performed by Fu et al. [8], Zhu et al. [11],
and Lal et al. [10]. In contrast to these studies,
which perform within-project logging prediction,
we emphasize on cross-project logging prediction.

2.3. Machine learning applications in
logging

Machine learning has been found to be useful in
various software engineering applications, such
as logging prediction [8,10,11], performance issue
diagnosis [3], defect prediction [28], and clean and
buggy commit prediction [29]. Fu et al. [8] and
Zhu et al. [11] applied the C4.5/J48 algorithm
for logging prediction. Lal et al. [10] applied
several other machine learning algorithms. These
algorithms are Adaboost (ADA), decision tree,
Gaussian Naïve Bayes (GNB), K-nearest neigh-
bor (KNN), and random forest (RF)) for log-
ging prediction. This article considers J48, ADA,
Naïve Bayesian (NB), and RF for cross-project
catch-block logging as the experimental results
by previous studies [8, 10, 11] show that these
algorithms perform better than the others. Ad-
ditionally, the logistic regression (LR), Bayesian
network (BN), decision table (DT), radial basis
function network (RBF), and alternating decision
trees (ADT) algorithms are considered in this
work. These machine learning algorithms have
never been explored for logging prediction but
have been found to be useful in other branches
of software engineering, such as defect predic-
tion [30], software project risk prediction [31],
and re-opened bug prediction [32]. The selection
of these algorithms is not random or arbitrary;
rather, algorithms belonging to different domains
of classification algorithms were selected, for ex-
ample, J48 and ADT are decision tree-based algo-
rithms, NB and BN are probabilistic algorithms,
and RBF is an artificial neural network-based
algorithm.

2.4. Ensemble methods

Ensemble methods are learning algorithms that
construct a prediction model from a set of base
classifiers, and new data points are classified by

taking a vote (weighted) of predictions made
by base classifiers [33]. An ensemble consists of
base classifiers that are combined in some way
to predict the label of the new instance. Any
base classification algorithm, such as a neural
network, a decision tree or any other machine
learning algorithm, can be used to generate the
base classifiers from the training data. The gen-
eralization ability of an ensemble is typically con-
siderably better than that of base classifiers [34].
Ensemble methods can use a single or multiple
base classification algorithms [35–38]. Bagging
[38], boosting [38], average vote [39], majority
vote [39], and stacking [40] are some of the en-
semble methods. Previous research shows that
ensemble methods are useful in improving the
performance of machine learning frameworks in
various software engineering applications, such
as defect prediction [15], cross-project defect pre-
diction [30, 41], and blocking bug prediction [42].
However, ensemble methods have not been ex-
plored for cross-project logging prediction. In
this work, three ensemble methods are applied,
namely, bagging [38], average vote [39] and ma-
jority vote [39], to construct the cross-project
logging prediction model.

2.5. Cross-project prediction

Cross-project prediction trains the model on one
(or more) project(s) to make predictions on an-
other project of interest. There are two types of
cross-project prediction: supervised and unsuper-
vised [43, 44]. The supervised techniques have
some labelled instances available from the target
project, whereas the unsupervised ones have all
unlabelled instances fromthe target project. In
the literature, cross-project prediction has been
applied in various applications, such as defect
prediction [14, 30, 41], build co-change predic-
tion [45], and sentiment classification [46]. How-
ever, cross-project logging prediction is a rela-
tively unexplored area, which is theprimary fo-
cus of this work. To the best knwoledge of the
Authors, only Zhu et al. [11] have performed
a basic exploration of cross-project logging pre-
diction. This study is different from that of
Zhu et al. in many aspects: 1) cross-project



ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 11

catch-block logging prediction is performed on
Java projects, whereas Zhu et al. considered C#
projects; 2) a focused and in-depth study is per-
formed, whereas Zhu et al.performed only a ba-
sic experiment on cross-project logging predic-
tion; and 3) an ensemble of classifiers is pro-
posed, whereas Zhu et al. only used the J48
classifier [39] for cross-project logging predic-
tion.

2.6. Research contributions

In context to related work, this work makes the
following novel and unique research contribu-
tions.
1. A comprehensive analysis of single classi-

fiers is performed for within-project and
cross-project logging prediction. Further-
more, the performances of single-project and
multi-project training models are comapred
for cross-project logging prediction (refer to
section 6.2).

2. ECLogger, a tool based on an ensemble of
machine learning algorithms, is proposed for
cross-project catch-block logging prediction
on Java projects. ECLogger uses static fea-
tures from the source code for cross-project
catch-block logging prediction. We create
8 ECLoggerBagging, 466 ECLoggerAverageVote
and 466 ECLoggerMajorityVote models, i.e. a to-
tal of 940 models (refer to section 4).

3. The results of a comprehensive evaluation of
ECLogger are presented on three large and
popular open-source Java projects: Tomcat,
CloudStack and Hadoop. The experimental
results demonstrate that ECLogger is effec-
tive in improving the performance of the
cross-project catch-block logging prediction
(refer to section 6.3).

3. Background

In this paper, 9 base machine learning algorithms
and three ensemble techniques are proposed. The
following subsections provide a brief introduction
to each of the 9 machine learning algorithms and
the 3 ensemble techniques.

3.1. Machine learning algorithms

3.1.1. AdaBoostMI1 (ADA)

AdaBoostM1 (ADA) [47] is an extension of the
simple AdaBoost algorithm for multi-class classi-
fication. There are two main steps in the ADA
algorithm: boosting and ensemble creation. In
the boosting phase, ADA first assigns a weight
to each data point present in the database (D).
Initially, all the data points are assigned an equal
weight. The weights assigned to the data points
are updated in subsequent iterations. In each
iteration, ADA constructs a prediction model
(Mi) by training some base machine learning
algorithm, such as a decision tree or a neural net-
work, on a sample (Di) of D. In each iteration,
the error rate of the model Mi is computed, and
the weights of incorrectly classified data points
are increased, whereas the weights of correctly
classified data points are decreased. Using this
strategy, ADA generates k prediction models,
i.e. Mi, where i ∈ {1, 2, . . . , k}. In the ensemble
phase, the k models generated in the boosting
phase are linearly combined. For prediction on
a new instance, the weighted vote of the predic-
tion made by these k prediction models is taken.
ADA is an ensemble based algorithm. However,
this work consideres default WEKA [48] implan-
tation of ADA as a single classification algorithm
in Bagging [38], Average Vote [49] and Majority
Vote [49] (without the loss of generality).

3.1.2. Alternating decision tree (ADT)

The alternating decision tree (ADT) [50] is a gen-
eralization of the decision tree algorithm for
classification. The ADT algorithm constructs
a tree-like structure (i.e. ADT tree) for predic-
tion. The ADT tree consists of decision nodes and
prediction nodes in alternating order. Decision
nodes specify a prediction condition, whereas
prediction nodes consist of a single number. In
the ADT tree, prediction nodes are present both
as the root and as leaves. At the time of predic-
tion, the ADT algorithm maps each data point
in the ADT tree following all the paths for which
decision nodes are true and summing the value



12 Sangeeta Lal, Neetu Sardana, Ashish Sureka

of prediction nodes that are traversed. The pre-
diction of an instance is based on the sign of the
sum of the prediction values from the root to leaf,
i.e. an instance is classified as logged (+ve class)
if the sign is positive; otherwise, it is classified
as non-logged (–ve class).

3.1.3. Bayesian network (BN)

Bayesian network (BN) [51, 52] algorithm uses
a probabilistic graphical model for classifica-
tion. The BN algorithm generates a probabilistic
model (a directed acyclic graph (DAG)) in the
training phase that is used to predict labels in
the prediction phase. This model shows a proba-
bilistic relationship or dependency between ran-
dom variables. Nodes represent random variables,
and edges between the nodes represent the prob-
abilistic dependencies among the variables. In
particular, a directed edge from variables Xi to
Xj indicates that the value taken by the vari-
able Xj depends on Xi. In the BN algorithm,
a reasoning process can operate by propagating
information in any direction, and each variable
is independent of its nondescendents given the
state of its parents.

3.1.4. Decision table (DT)

The decision table (DT) [53] classification al-
gorithm consists of a decision table that is con-
structed in the training phase and is used to make
predictions in the prediction phase. A decision
table consists of two main components: schema
and body [53]. The schema of the decision table
consists of a set of features included in the table,
and the body consists of labelled instances. In the
training phase, the DT algorithm determines the
set of features and labelled instances to retain
in the decision table. The algorithm searches
through the feature space (using the wrapper
model [54]) to determine the optimal set of fea-
tures that enhances prediction accuracy. Once
the decision table is constructed, prediction on
a new instance is performed by searching in the
decision table for an exact match of the features.
If there is a match, i.e. the algorithm finds some
labelled instances matching the unlabelled in-

stance, it returns the majority class of labelled
instances. Otherwise, it returns the majority class
present in the table.

3.1.5. J48

The J48 algorithm is an open-source implemen-
tation of the C4.5 algorithm in the WEKA tool
[48]. The J48 algorithm constructs a decision
tree in the training phase that is used to make
predictions in the prediction phase. To create the
decision tree, in each iteration, the J48 algorithm
selects the attribute with the highest information
gain [39], i.e. the attribute that most effectively
discriminates the various data points. Now, for
each attribute, the J48 algorithm finds the set
of values for which there is no ambiguity among
the data points regarding the class label, i.e. all
data points having this value belong to the same
class. It terminates this branch and assigns it the
class (or label) [55].

3.1.6. Logistic regression (LR)

The logistic regression (LR) [56] model is a gener-
alization of the linear regression model for binary
classification. The LR model computes a score
for each data point (Score(di)). If the value of
Score(di) is greater than 0.5, the instance is
predicted as logged (+ve class); otherwise, it
is predicted as non-logged (–ve class). Equa-
tion (1) shows the general formula for computing
the logistic regression model. In Equation (1),
α,w1, w2, . . . wn represent the linear combination
coefficients, and x1, x2, . . . , xn represent the fea-
tures used in the prediction model. The larger
the value of wi is, the larger the impact of the
feature xi is on the prediction outcome.

P (di) =
e
α+w1x1+w2x2+⋯+wnxn

1 + ew1x1+w2x2+⋯+wnxn
(1)

3.1.7. Naïve Bayes (NB)

The Naïve Bayes (NB) classifier [39] is a sim-
ple probabilistic classifier based on Bayes the-
orem. NB uses a feature vector and input la-
bel to generate a simple probabilistic model.



ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 13

This probabilistic model is used to predict the
label of an instance in the prediction phase.
The NB algorithm considers each attribute
to be equally important and independent [55].
NB is one of the simplest machine learning
methods and is known to provide good per-
formance in text categorization and numerical
data [57,58].

3.1.8. Random forest (RF)

Random forest (RF) [36, 39] is an ensemble
method that uses decision trees as the base clas-
sification algorithm. RF generates multiple de-
cision trees using bagging [38] and random fea-
ture selection. Each decision tree is generated
from the bootstrap sample of the data. At the
time of tree generation, at each node, RF selects
a subset of features (randomly) to split. Once
all the decision trees are generated, prediction
on a new instance is performed by taking the
majority vote of the predictions of individual
decision trees. RF is one of the fastest learn-
ing algorithms and is suitable for large datasets
[39]. RF is an ensemble based algorithm. How-
ever, in this work we consider default WEKA
[48] implantation of RF as a single classifica-
tion algorithm in Bagging [38], Average Vote
[49] and Majority Vote [49] (without the loss of
generality).

3.1.9. Radial basis function network (RBF)

The radial basis function network (RBF) [59]
is a type of artificial neural network that uses
a radial basis as an activation function. There
are three main layers in RBFNetwork, i.e. input
layer, hidden layer and output layer. The input
layer corresponds to the features, i.e. source code
attributes. The hidden layer is used to connect
the input layer to the output layer and consists
of radial basis functions. The output layer per-
forms the mapping to the outcomes to predict,
i.e. logged or non-logged. The network learn-
ing is divided into two parts: first, weights are
learned from the input layer to the hidden layer
and then from the hidden layer to the output
layer.

3.2. Ensemble techniques

3.2.1. Bagging

Bootstrap aggregating (bagging) [38] is an ensem-
ble technique that can be combined with other
supervised machine learning algorithms. Given
a dataset D of size n, bagging first creates m
datasets, i.e. Di , i ∈ {1, 2, . . . ,m}. The size of
each Di is ni, such that ni = n. Since Dis are
generated by random sampling (with replace-
ment) from D, some data points can be missing
and others can be repeated in Di. Bagging trains
a supervised machine learning algorithm, such
as a decision tree, NB, or BN, on each Di and
generatesm classifiers. For prediction, the output
of these m classifiers is combined using majority
vote. Bagging is helpful in improving the overall
performance of supervised machine learning al-
gorithms as it helps to avoid the data overfitting
problem [39].

3.2.2. Voting

Voting is one of the easiest ensemble techniques.
Voting first generates m base models by training
some supervised machine learning algorithm(s)
(base algorithm(s)), such as a decision tree, NB,
or BN, on the training datasets. Base models can
be generated in multiple ways, such as training
some base machine learning algorithm on dif-
ferent splits of the same training dataset, using
the same dataset with different base machine
learning algorithms, or some other method. At
the time of prediction, the output of these base
models is combined to generate the final predic-
tion. For example, the average vote [49] ensemble
method computes the average of the confidence
score given by each base model to compute the
final score. The final score is then compared
with a threshold value. If the confidence score
is greater than the threshold value, the given
instance is predicted as logged (+ve class); oth-
erwise, it is predicted as non-logged (–ve class).
Similarly, the majority vote [49] ensemble method
takes the majority vote of the predictions of these
base models to make the prediction, i.e. if the
majority of the base models predict an instance



14 Sangeeta Lal, Neetu Sardana, Ashish Sureka

Figure 1. Overview of the proposed ECLogger framework

as logged, it is predicted as logged; otherwise, it
is predicted as non-logged.

4. ECLogger model

Figure 1 presents the framework of ECLogger.
It consists of two main phases: model building
and prediction (refer to Figure 1). In the model
building phase, a cross-project logging predic-
tion model is build from the labelled instances
of the source project. There are 4 main steps
in the model building phase: training instance
collection (Step 1), feature extraction (Step 2),
pre-processing (Step 3), and ECLogger model
building (Step 4) (refer to Step 1 to Step 4 in
Figure 1). In the prediction phase, the label
(logged or non-logged) of the new instance in
the target project is predicted (refer to Step 5
in Figure 1). Algorithm 1 shows the sequence of
operations performed by the ECLogger model
and the details of the experimental setup (re-
fer to Table 1 for details regarding the notations
used). In Algorithm 1, lines 2–6, 11, 15 and 21–22
correspond to the experimental setup, whereas,
other lines correspond to the steps of the ECLog-
ger model. The lines 24–26 and 28–32 defines
the functions that are part of the experimental
setup. The lines 34–39 and 41–49 define the func-

tions that are part of the ECLogger model. The
following are the main steps of the ECLogger
model:

4.1. Phase 1: (model building)

Training instance collection (step 1): The
experimental dataset consists of three projects:
Tomcat, CloudStack and Hadoop. One project is
considered as the source project (SP), i.e. train-
ing project, and the other two projects as the
target project (T P), i.e. testing project, a sin-
gle project at a particular instance. Using this,
6 source and target project pairs are created
(lines 7–10 in Algorithm 1). EClogger extracts
all logged and non-logged catch-blocks (CBSP )
from the source project for training.
Feature extraction (step 2): ECLogger
extracts all the features from the source
catch-blocks (CBSP ) for training as initial
source features (FVISP ) (refer to function
ExtractFeatures(), i.e. lines 34–39 in Algo-
rithm 1). All 46 features proposed by Lal
et al. [10] are used for catch-block logging predic-
tion on Java projects (refer to Table 2). These
features are selected because they have shown
promising results for within-project catch-block
logging prediction [10]. Lal et al. [10] described
three properties for the features, i.e. domain, type



ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 15

Algorithm 1. ECLogger Algorithm
1: procedure ECLogger
2: P = {PT,PC,PH}
3: A = {AADA,AADT,ABN,ADT,AJ48,ALR,ANB,ARF,ARBN}
4: EA = {EABA, EAMV, EAAV}
5: M=10
6: CS = {3, 4, 5, 6, 7, 8, 9}
7: for all S ∈ P do
8: for all T ∈ P do
9: if S ≠ T then

10: SP = S, T P = T
11: CBSP = ReadCompleteData(SP)
12: FVI

SP = ExtractFeatures(CBSP)
13: FVF

SP = Preprocess(FVI
SP)

14: ECLoggerModel[] = BuildModel(FVF
SP ,A, EA, CS)

15: CBT P[M] = ReadBalanceData(T P)
16: for i = 1 to size(ECLoggerModel) do
17: for j = 1 to M do
18: FVI

T P = ExtractFeatures(CB)T P[j])
19: FVF

T P = Preprocess(FVI
T P)

20: PD[i][j] = ApplyModel(FVF
T P ,ECLoggerModels[j])

21: AR[i] =
M

∑
j=1

PD[i][j]

M

22: BMSP→T P = FindBestModel(AR,ECLoggerModels)
23: procedure ReadCompleteData(P )
24: CB = ReadCatchBlocks(P )
25: return CB
26: procedure ReadBalanceData(P,M)
27: CB = ReadCatchBlocks(P )
28: ĈB = Randomize(CB)
29: BS[] = Generate_M_BalanceSamples(ĈB)
30: return BS
31: procedure ExtractFeatures(CB)
32: TFV = getTextualFeatures(CB)
33: NFV = getNumericFeatures(CB)
34: BFV = getBooleanFeatures(CB)
35: FV = {TFV, NFV, BFV}
36: return FV
37: procedure Preprocess(FV)
38: T F̂V = TF_IDFConversion(Stemming(StopWordRemoval(CamelCaseSeparation(TFV))))
39: if It is Test Data then
40: T F̃V = FilterFeatureNotTrainData(T F̂V)
41: else
42: T F̃V = T F̂V
43: FVF

= Discretization(Standardization(Combine(T F̃V, BFV, NFV)))
44: return FVF



16 Sangeeta Lal, Neetu Sardana, Ashish Sureka

Table 1. Notations used in the ECLogger Algorithm (i.e. Algorithm 1)

Notation Meaning Notation Meaning
P Projects A Algorithms
PX Project X, where X ∈ {Tom-

cat (T), CloudStack (C), Hadoop
(H)}

AX Algorithm X, where X ∈ {ADA,
ADT, BN, DT, J48, LR, NB, RF,
RBN}

SP Source Project EA Ensemble technique
T P Target Project EAX Ensemble technique X, where

X ∈ {Bagging (BA), Majority
Vote (MV), Average Vote (AV)}

CS Combination Size CB Catch-Blocks
ĈB Randomized catch-blocks CBX Catch-Blocks of X project, where

X ∈ {SP, T P}
FV Feature Vector F̂V Feature vector obtained after

pre-processing textual features
F̃V Feature vector obtained after fil-

tering undesired features
ZFVY

X Feature Vector for project X of
type Y and domain Z, where
X ∈ {SP, T P}, Y ∈ {Initial (I),
Final (F)} and Z ∈ {Textual (T),
Numerical (N), Boolean (B)}

BS Balance SubSamples PD Prediction results
AR Average values of the prediction

results
BMX→Y Best model for X(SP) and

Y (T P)
i, j,M, P Temporary Variables ECLoggerModels All the 940 models generated by

ECLogger

and class. Domain indicates from which part of
the source code a particular feature is extracted.
Type indicates whether a features is numeric,
boolean, or textual. Class indicates whether a fea-
ture belongs to a positive class or a negative class.
In Table 2, the features are categorized based
on their type. ECLogger extracts all three types
of features for model building. For example, the
size a try-block (refer to numeric feature 1 in
Table 2) is a numeric feature that computes the
SLOC of try-blocks associated with logged and
non-logged catch-blocks and that belong to the
try/catch domain. All the features with their
respective properties are listed in Table 2.
Pre-processing (step 3): Six pre-processing
steps are applied to clean the initial source fea-
tures (FVISP ). First the textual features are
celaned. All the terms concatenated using the
camel-casing in the textual features (i.e. ‘getTar-
get’ is converted to ‘get’, ‘target’) are separated.
Subsequently, all the English stop words from the
textual features are removed. The used stop word
list was provided by the Python nltk tool [60].
Then stemming is applied (the Porter stemming

algorithm by the nltk tool [60]) on all the textual
features and converted all the textual features
to their tf-idf transformation to create the tex-
tual feature vector. The textual feature vector
is then combined with numerical and boolean
feature vectors. To address the problem of data
heterogeneity in the source and target projects,
data standardization was performed, i.e. feature
values were converted to a z-distribution. Nam
et al. [14] demonstrated the usefulness of data
normalization for the cross-project defect pre-
diction problem. Finally, all the features were
discretized, as some algorithms, such as Naïve
Bayes, work only with discretized data. Using
this, the final feature vector (FVFSP ) for train-
ing the model (refer to function Preprocess() is
obtained, i.e. lines 41–49 in Algorithm 1).
ECLogger model building (step 4): ECLog-
ger models were built using 9 base classi-
fiers (ADA, ADT, BN, DT, J48, LR, NB,
RF, and RBF) and three ensemble techniques
(bagging, average voting and maximum vot-
ing). Bagging was applied on 8 of the 9 base
classifiers. We create 8 ECLoggerBagging mod-



ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 17

Table 2. Features used for cross-project catch-block logging prediction taken from previously published work
by Lal et al. [10]. PT: class = positive, domain = try/catch; PM: class = positive, domain = method_bt;
PO: class = positive, domain = other; NT: class = negative, domain = try/catch; and NM: class = negative,

domain = method_bt

Features

S. No. Textual (Class Domain) S. No. Numeric (Class Domain) S. No. Boolean (Class Domain)

1 Catch Exception Type (PT) 1 Size of Try Block [LOC] (PT) 1 Previous Catch Blocks (PT)

2 Log Levels in Try Block (PT) 2 Size of Method_BT[LOC]
(PM) 2 Logged Previous Catch

Blocks (PT)

3 Log Levels in Method_BT
(PM) 3 Log Count Try Block (PT) 3 Logged Try Block (PT)

4 Operators in Try Block (PT) 4 Log Count in Method_BT
(PM) 4 Logged Method_BT (PM)

5 Operators in Method_BT
(PM) 5 Count of Operators in Try

Block (PT) 5 Method have Parameter (PO)

6 Method Parameters (Type)
(PO) 6 Count of Operators in

Method_BT (PM) 6 IF in Try (PT)

7 Method Parameters (Name)
(PO) 7 Variable Declaration Count in

Try Block (PT) 7 IF in Method_BT (PM)

8 Container Package Name
(PO) 8 Variable Declaration Count in

Method_BT (PM) 8 Throw/Throws in Try Block
(NT)

9 Container Class Name (PO) 9 Method Call Count in Try
Block (PT) 9 Throw/Throws in Catch

Block (NT)

10 Container Method Name
(PO) 10 Method Call Count in

Method_BT (PM) 10 Throw/Throws in Method_-
BT (NM)

11 Variable Declaration Name in
Try Block (PT) 11 Method Parameter Count

(PO) 11 Return in Try Block (NT)

12 Variable Declaration Name in
Method_BT (PM) 12 IF Count in Try Block (PT) 12 Return in Catch Block (NT)

13 Method Call Name in Try
Block (PT) 13 IF Count in Method_BT

(PM) 13 Return in Method_BT (NM)

14 Method Call Name in
Method_BT (PM) 14 Assert in Try Block (NT)

15 Assert in Catch Block (NT)
16 Assert in Method_BT (NM)

17 Thread.Sleep in Try Block
(NT)

18 Interrupted Exception Type
(NT)

19 Exception Object "Ignore" in
Catch (NT)

Total Features = 46 (Textual (14) + Numeric (13) + Boolean (19))

els, i.e. BaggingADA, BaggingADT, BaggingBN,
BaggingJ48, BaggingLR, BaggingNB, BaggingRF
and BaggingRBF. BaggingADA is an ECLogger
model that is generated by applying bagging on
the ADA classifier. Bagging was not applied on
the decision table (DT) classifier because of its
high time complexity.

The number of created ECLogger average
vote models was 466. One can take an average
vote of n classifiers to perform a logging pre-
diction on a new code construct. For example,
ADA-ADT-BN is one possible combination of
3 classifiers which can be chosen to take an
average vote. In this case,the best value of n
(i.e. number of classifiers to take) is not known

similarly to the information which classifiers are
the most suitable for cross-project logging pre-
diction. Hence, all possible combinations of base
classifiers are created for n = {3, 4, 5, 6, 7, 8, 9}.
Using this strategy, 466 ECLoggerAverageVote mod-
els are created. Similarly to ECLoggerAverageVote,
466 ECLoggerMajorityVote models are created. 940
distinct ECLogger models (ECLoggerModels[])
are created for cross-project logging prediction
(line 14 in Algorithm 1).

4.2. Phase 2: (prediction)

Prediction (step 5): In the prediction phase,
ECLoggerModels are used to predict the label of



18 Sangeeta Lal, Neetu Sardana, Ashish Sureka

Table 3. Experimental dataset details

Type Tomcat CloudStack Hadoop

Version 8.0.9 4.3.0 2.7.1
No. of Java Files 2,036 5,350 6,331
SLOC* 273,419 849,857 926,644
Log Statements Count 2,703 10,428 10,108
Total Catch-blocks 3,279 8,077 7,947
Logged Catch-Blocks 887 (27%) 2,792 (34.56%) 2,078 (26.14%)
Distinct Exception Types 119 163 265
* Computed using: http://www.locmetrics.com/.

a new code construct in the target project. All
the catch-blocks are extracted from the target
project and all the pre-processing techniques de-
scribed in Step 3 are applied. In addition to
these pre-processing steps, one additional filter-
ing step is applied in the prediction phase. In
cross-project prediction, there is a possibility
that some features that are present in the source
project (FVFSP ) may not be available in the tar-
get project (because of a vocabulary mismatch).
Hence, in the target project, the features that
are absent in the source project (line 44 in Al-
gorithm 1) are eliminated. Using this, the final
feature vector (FVFTP ) for the target project in-
stance is created. Then all the ECLogger mod-
els to predict the labels of target project in-
stances are applied. For each source and tar-
get project pair, the ECLoggerModel(BMSP→TP )
that provides the best performance (mea-
sured in terms of average LF ) is then
identified.

5. Experimental details

In this section, we present details related to the
experiments performed in this work. We present
details regarding dataset selection, dataset prepa-
ration, experimental environment, design of the
experiment, and evaluation metrics.

5.1. Experimental dataset selection

To facilitate the replication of this study, all of
our experiments were conducted on open-source

Java projects from the Apache Software Founda-
tion (ASF1). The ASF consists of a large number
of actively maintained and widely used projects.
Hence, it is believed that the projects from the
ASF consist of good logging and are suitable for
our study. We select projects from the ASF that
match the following criteria:
1. Number of files: The selected projects have

have at least 1000 files so that statistically
significant conclusions can be drawn.

2. Number of catch-blocks: The selected
projects have at least 1000 catch-blocks so
that statistically significant conclusions can
be drawn.

3. Programing language: The selected
projects are written in the Java programing
language. Java projects are selected because
Java is one of the most widely used program-
ming languages [61].

Three projects matching the above criteria are
selected: Tomcat [62], CloudStack [63], and
Hadoop [64] (see Tab. 3). All of these projects
are widely used and have previously been used
in logging studies [10,13,23,65].

5.2. Experimental dataset preparation

The catch-blocks (see Tab. 3) are extracted from
the three projects, i.e. Tomcat, CloudStack and
Hadoop. A catch-block is marked as logged (+ve
class) if it consists of at least one log statement;
otherwise, it is marked as non-logged (–ve class).
Numerous variations are observed in the usage
format of log statements in the three projects.
Hence, 26 regular expressionsare created to ex-

1http://www.apache.org/

http://www.locmetrics.com/
http://www.apache.org/


ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 19

tract all types of logging statements present in
the catch-blocks.

5.3. Experimental environment

The WEKA [48] implementation is used for all
the classifiers. The default parameters are used
for all the classifiers. All of our experiments are
run on Windows Server 2012, with 64 GB RAM,
64-Bit operating system, and an Intel® Xeon®

CPU E5-2640 0, 2.50 GHz processor (2 proces-
sors), 6 cores per processor.

5.4. Design of the experiment

Two types of experiments were performed:
within-project and cross-project catch-block log-
ging prediction. The following presents the ex-
perimental design for both types of predictions:
Within-project prediction: To compute the
within-project logging prediction, 10 equal-sized
balanced datasets for each project were created,
namely,Tomcat, CloudStack, and Hadoop. Be-
cause the number of –ve class (non-logged) in-
stances is higher than that of +ve class (logged)
instances, the subsampling of –ve class instances
were performed to make the dataset balanced. In
this way, 10 random samples (with replacement)
were created from the database. The majority
class (–ve class) subsampling technique was used
in previous studies to balance the dataset [10,66].
On the balanced dataset, a 70/30 training-testing
split is used and the average results over the
10 datasets are reported.
Cross-project prediction: To conduct the
cross-project logging prediction experiment,
training and testing datasets are created. All
the catch-blocks of the source projects are
used for training. For the purpose of testing,
10 balanced subsamples of catch-blocks of the
target projects are created, i.e. the same as
the ones created for the within-project logging
prediction. Using this, 10 datasets that have
the same training dataset and different test-
ing datasets are created. The results are com-
puted for each of the 10 datasets and report
the average results over 10 datasets. Train-
ing and testing datasets are created (it is pre-
ferred solution to using 10-fold cross validation)

to compare the effectiveness of multiple mod-
els. This is because in the cross-project predic-
tion the model is trained on the source project
and tested on the traget project. Furthermore,
separation of training and testing data using
10-fold cross-validation is challenging in this con-
text.

5.5. Evaluation metrics

In this subsection, the performance metrics used
to evaluate the effectiveness of the prediction
model is described. Five metrics were used in
the evaluation process: precision, recall, accu-
racy, F-measure, and area under the ROC curve.
All of these are widely used metrics and were
previously used in logging prediction and defect
prediction studies [8,10,11,30,67]. There are four
possible outcomes while predicting the logging
of a code construct:
1. Predicting logged code construct as logged,

l → l (true positive).
2. Predicting logged code construct as

non-logged, l → n (false negative).
3. Predicting non-logged code constructs as

non-logged, n→ n (true negative).
4. Predicting non-logged code constructs as

logged, n→ l (false positive).
After constructing the classifier on the train-
ing set, its performance on the test set can
be evalauted. The total number of logged code
constructs predicted as logged (Cl→l), logged
code constructs falsely predicted as non-logged
(Cl→n), non-logged code constructs predicted as
non-logged (Cn→n), and non-logged code con-
structs predicted and logged (Cn→l) are com-
puted. Using these 4 values, the following metrics
are defined:
Logged Precision: It shows the percentage of
code constructs that are correctly labelled as
logged among those labelled as logged.

Logged Precision (LP ) =

Cl→l
Cl→l + Cn→l

× 100 (2)

Logged Recall: It shows the proportion of
logged code constructs that are correctly labelled
as logged.



20 Sangeeta Lal, Neetu Sardana, Ashish Sureka

Logged Recall (LR) = Cl→l
Cl→l + Cl→n

× 100 (3)

Logged F-measure: It is a metric that com-
bines logged precision and recall. Precision and
recall metrics have a trade-off. One can increase
precision (recall) by decreasing recall (precision)
[39,68]. Hence, it is difficult to evaluate the per-
formance of different prediction algorithms us-
ing only one of the precision or recall metrics.
F-measure computes the weighted harmonicmean
of precision and recall and is hence useful in over-
coming the precision and recall trade-off. It has
been widely used in the software engineering lit-
erature for performance evaluation [42, 69, 70].
Equation (4) shows the formula to compute the
LF metric. In this equation, β is a weighting
parameter, where the value of β less than one
emphasizes precision and greater than one empha-
sizes recall. In this paper, β = 1, which gives equal
weightage to both precision and recall, is used.

Logged F-measure (LF ) =

(β2 + 1) × LP × LR
β2 × LP + LR

× 100 (4)

Accuracy: It computes the percentage of code
constructs that are correctly labelled as logged
or non-logged to the total number of code con-
structs. It is also a widely used metric for evalu-
ating the performance of prediction models. Ac-
curacy is found to be a biased metric in the case
of imbalanced datasets. However, in this work,
testing was performed only on balanced datasets.

Accuracy (ACC) =

Cl→l + Cn→n
Cl→l + Cl→n + Cn→n + Cn→l

× 100 (5)

Area under the ROC curve (RA): It mea-
sures the likelihood that a logged code construct
is given a high likelihood score compared to
a non-logged code construct. RA can take any
value in the range 0 to 1. In general, higher RA
values are considered better, i.e. an RA value
of 1 is the best.

6. Experimental results

In this section, the eight identified research ques-
tions (RQs) are addressed. The following subsec-
tions elaborate the motivation, approach, and
results for each of the identified RQs.

6.1. Research questions

Eight RQs are categorized in two dimensions.
RQ1–RQ4 investigate the performance of single
classifiers for cross-project catch-block logging
prediction, whereas RQ5–RQ8 examine the per-
formance of the ECLogger models.
Research Objective 1 (RO1): Perfor-
mance of the single classifier for cross-project
catch-block logging prediction
– RQ1: How is the performance of within-pro-

ject different from cross-project catch-block
logging prediction?

– RQ2: Which is better, the single-project or
multi-project training model for cross-project
catch-block logging prediction?

– RQ3: Are different classifiers complimentary
to each other when applied to cross-project
catch-block logging prediction?

– RQ4: Are the algorithms that perform
best for within-project and cross-project
catch-block logging predictions identical?

Research Objective 2 (RO2) : Performance
of ensemble-based classifiers, i.e. ECLogger mod-
els, for cross-project catch-block logging predic-
tion.
– RQ5: What is the performance of

ECLoggerBagging for cross-project catch-block
logging prediction?

– RQ6: What is the performance of
ECLoggerAverageVote for cross-project
catch-block logging prediction?

– RQ7: What is the performance of
ECLoggerMajorityVote for cross-project
catch-block logging prediction?

– RQ8:What is the average performance of the
baseline classifier and ECLoggerModels over
all the source and target project pairs?



ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 21

TC->TC
CS->CS

HD->HD
CS->TC

HD->TC
TC->CS

HD->CS
TC->HD

CS->HD

Source Project -> Target Project

0

20

40

60

80

100

A
v
e
ra

g
e
 L

F 
(%

)

RQ 1: Within-project vs. Cross-project Logging Prediction

Cross-project

Within-project

Figure 2. The highest average LF of within-project and cross-project logging predictions.
CS: CloudStack, TC: Tomcat, and HD: Hadoop

Table 4. Within-project catch-block logging prediction results (using a single classifier).
ML ALGO: Machine Learning Algorithm

Project: Tomcat
Total Instances: 1,774, Features: 1,522

ML ALGO Avg. LP (%) Avg. LR (%) Avg. LF (%) Avg. ACC (%) Avg. RA (%)

ADA 75.13 ± 4.76 78.55 ± 11.82 75.97 ± 2.84 76.56 ± 1.13 86.6 ± 0.97
ADT 73.82 ± 3.72 88.59 ± 8.86 80.08 ± 2.05 79.06 ± 1 88.16 ± 0.99
BN 74.79 ± 1.07 81.92 ± 0.75 78.18 ± 0.55 78.08 ± 0.7 87.45 ± 0.76
DT 76.19 ± 2.2 72.12 ± 5.82 73.98 ± 3.16 75.81 ± 2.39 84.12 ± 1.76
J48 80.45 ± 1.7 83.45 ± 2.5 81.92 ± 1.95 82.35 ± 1.81 86.17 ± 2.06
LR 79.98 ± 2.12 86.35 ± 1.2 83.03 ± 1.36 83.06 ± 1.53 91.64 ± 0.94
NB 74.56 ± 1.12 81.76 ± 0.77 77.99 ± 0.61 77.88 ± 0.76 87.25 ± 0.74
RF 80.93 ± 2.77 82.71 ± 1.96 81.79 ± 2 82.33 ± 2.07 90.37 ± 1.07
RBF 57.98 ± 0.98 93.14 ± 3.63 71.42 ± 0.92 64.3 ± 1.08 75.19 ± 0.87

Project: CloudStack
Total Instances: 5,584, Features: 1,332

ML ALGO Avg. LP (%) Avg. LR (%) Avg. LF (%) Avg. ACC (%) Avg. RA (%)

ADA 72.28 ± 3.94 93.34 ± 7.06 81.13 ± 0.4 78 ± 1.23 85.9 ± 1.31
ADT 79.74 ± 1.99 92.42 ± 3.01 85.54 ± 0.39 84.16 ± 0.43 92.11 ± 0.48
BN 73.6 ± 0.45 94.89 ± 0.45 82.9 ± 0.3 80.14 ± 0.39 89.34 ± 0.4
DT 83.18 ± 1.27 85.34 ± 2.49 84.23 ± 1.63 83.8 ± 1.56 91.54 ± 1.17
J48 88.43 ± 1.25 88.12 ± 2 88.25 ± 0.74 88.1 ± 0.66 91.69 ± 0.58
LR 87.61 ± 0.41 87.28 ± 0.83 87.45 ± 0.52 87.28 ± 0.49 94.16 ± 0.53
NB 73.54 ± 0.49 94.76 ± 0.49 82.81 ± 0.32 80.04 ± 0.43 89.2 ± 0.39
RF 86.21 ± 0.96 90.86 ± 0.99 88.47 ± 0.85 87.98 ± 0.88 94.93 ± 0.28
RBF 55.02 ± 1.52 100 ± 0 70.97 ± 1.28 58.44 ± 2.64 57.79 ± 2.68

Project: Hadoop, Type: Catch-Block
Total Instances: 4,156, Features: 1,322

ML ALGO Avg. LP (%) Avg. LR (%) Avg. LF (%) Avg. ACC (%) Avg. RA (%)

ADA 73.74 ± 0.89 74.74 ± 2 74.22 ± 1.13 74.53 ± 0.92 81.06 ± 0.42
ADT 75.28 ± 1.93 78.64 ± 1.88 76.89 ± 0.81 76.79 ± 1 83.17 ± 0.25
BN 74.11 ± 1.12 65.18 ± 0.89 69.35 ± 0.72 71.72 ± 0.72 81.06 ± 0.63
DT 76.76 ± 1.66 76.13 ± 2.56 76.4 ± 1.12 76.93 ± 0.96 83.27 ± 0.7
J48 77.89 ± 1.89 79.74 ± 1.59 78.78 ± 0.93 78.91 ± 1.1 81.57 ± 1.21
LR 78.74 ± 1.08 80 ± 0.94 79.36 ± 0.62 79.57 ± 0.68 87.25 ± 0.5
NB 74.08 ± 1.09 65.13 ± 0.84 69.31 ± 0.69 71.69 ± 0.7 80.97 ± 0.63
RF 77.9 ± 0.91 77.75 ± 1.27 77.82 ± 0.94 78.25 ± 0.88 86.28 ± 0.65
RBF 57.07 ± 0.81 76.68 ± 4.87 65.39 ± 2.27 60.27 ± 1.33 59.32 ± 1.64



22 Sangeeta Lal, Neetu Sardana, Ashish Sureka

6.2. RO1: Performance of the single
classifier for cross-project
catch-block logging prediction

In this subsection four RQs (RQ1–RQ4), which
investigate the performance of single classifiers,
are answered. The questions related to the vari-
ation in performance of a single classifier for
within-project and cross-project logging predic-
tions using multiple evaluation metrics, using
both single-project and multi-project training
models are answered.

6.2.1. RQ1: How is the performance of
within-project different from cross-project
catch-block logging prediction

Motivation: IIn RQ1, the effectiveness of
within-project and cross-project logging predic-
tion models (using a single classifier) are com-
pared. Cross-project logging prediction is chal-
lenging, and hence, it is important to identify
the performance variation of the cross-project
logging prediction model compared to that of
the within-project logging prediction model. The
results from this investigation can provide im-
portant insights and motivation for constructing
the cross-project logging prediction model.
Approach: To answer RQ1, the performances
of single classifiers for within-project and
cross-project logging prediction are compared.
The average LF is used to compare the perfor-
mances of different classifiers.
Results: Table 4 presents the detailed results of
within-project catch-block logging prediction for
all three projects. Our experimental results show
that the RF and LR models outperform other al-
gorithms in terms of average LF . The highest av-
erage LF of 83.03%, 88.47%, and 79.36% for the
within-project catch-block logging prediction was
achieved on the Tomcat, CloudStack and Hadoop
projects, respectively. Figure 2 shows the highest
average LF values from the within-project and
cross-project experiments. Figure 2 shows that
the highest average LF for all six cross-project
results is lower than all three within-project re-
sults. Table 5, Table 6 and Table 7 show the
detailed cross-project logging prediction results

(using a single classifier). These experimental
results show that for the cross-project logging
prediction, the highest average LF of 73.66%,
70.42% and 68.62% was achieved for the Tomcat,
CloudStack and Hadoop projects, respectively.
A 6.37% to 18.05% decrease was observed in
the classification performance for cross-project
logging prediction compared to within-project
logging prediction. The performance of the RBF
classifier is the worst for cross-project logging
prediction. For all six pairs of source and target
project pairs, RBF provides an average LF of 0%
and average ACC of 50%, i.e. predicting all the
code constructs as non-logged (refer to Table 5,
Table 6, and Table 7).

A 6.37% to 18.05% decrease was observed in
the average LF for cross-project logging pre-
diction compared to within-project logging
prediction.

6.2.2. RQ2: Which is better, the single-project
or multi-project training model for
cross-project catch-block logging
prediction?

Motivation: In RQ2, the objective is to exam-
ine the effectiveness of multi-project training
for cross-project logging prediction. Thus it is
necessary to ascertain whether information fu-
sion enhances the accuracy of the cross-project
logging prediction. Training a predictive model
from multiple projects is one type of informa-
tion fusion-based approach and was shown to
enhance accuracy because it involves combining
information from multiple sources. Few stud-
ies in the past used multi-project training for
cross-project defect prediction [30,71]. However,
for cross-project logging prediction, this has yet
to be explored. The answer to this RQ can
provide important insights about selecting the
single-project or multi-project cross-project log-
ging prediction model.
Approach: Approach: To answer RQ2, 9 pairs
of source and target projects are created, i.e.
6 pairs consisting of one source project and
3 pairs consisting of two source projects.
Results: Figure 3 presents the histogram
of the average LF and average ACC val-



ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 23

Table 5. Cross-project catch-block logging prediction results (using a single classifier) for Tomcat
(target project). ML ALGO: Machine Learning Algorithm

Project: CloudStack→Tomcat
Total Instances (Source): 8077, Total Instances (Target): 1,774, Features: 1,304

ML ALGO Avg. LP (%) Avg. LR (%) Avg. LF (%) Avg. ACC (%) Avg. RA (%)

ADA 50.07 ± 0.1 97.07 ± 0 66.06 ± 0.08 50.13 ± 0.19 57.11 ± 0.18
ADT 78.26 ± 0.79 69.11 ± 0 73.4 ± 0.35 74.95 ± 0.44 82.96 ± 0.45
BN 66.36 ± 0.57 82.75 ± 0 73.65 ± 0.35 70.39 ± 0.54 77.16 ± 0.51
DT 60.85 ± 0.55 82.19 ± 0 69.93 ± 0.36 64.65 ± 0.61 77.56 ± 0.43
J48 58.64 ± 0.41 70.35 ± 0 63.96 ± 0.24 60.37 ± 0.42 61.4 ± 0.72
LR 64.2 ± 0.78 66.74 ± 0 65.45 ± 0.4 64.76 ± 0.62 69.84 ± 0.51
NB 66.39 ± 0.56 82.41 ± 0 73.54 ± 0.34 70.34 ± 0.52 77.19 ± 0.51
RF 62.08 ± 0.63 56.82 ± 0 59.33 ± 0.29 61.05 ± 0.46 63.64 ± 0.49
RBF 0 ± 0 0 ± 0 0 ± 0 50 ± 0 50 ± 0

Project: Hadoop→Tomcat
Instances (Source): 7,947, Instances (Target): 1,774, Features: 1,313

ML ALGO Avg. LP (%) Avg. LR (%) Avg. LF (%) Avg. ACC (%) Avg. RA (%)

ADA 85.5 ± 0.88 49.15 ± 0 62.42 ± 0.24 70.41 ± 0.3 79.45 ± 0.32
ADT 79.37 ± 0.95 55.36 ± 0 65.22 ± 0.32 70.48 ± 0.42 77.96 ± 0.44
BN 74.74 ± 0.67 72.49 ± 0 73.6 ± 0.33 73.99 ± 0.44 80.17 ± 0.47
DT 84.98 ± 0.94 52.2 ± 0 64.67 ± 0.27 71.48 ± 0.34 77.17 ± 0.33
J48 65.82 ± 0.65 65.95 ± 0 65.88 ± 0.33 65.85 ± 0.5 66.8 ± 0.66
LR 76.52 ± 0.72 54.57 ± 0 63.7 ± 0.25 68.91 ± 0.34 76.99 ± 0.43
NB 74.76 ± 0.64 72.6 ± 0 73.66 ± 0.31 74.04 ± 0.41 80.19 ± 0.47
RF 67.91 ± 1.06 39.46 ± 0 49.91 ± 0.29 60.4 ± 0.46 67.2 ± 0.52
RBF 0 ± 0 0 ± 0 0 ± 0 50 ± 0 52.77 ± 0.93

Table 6. Cross-project catch-block logging prediction results (using a single classifier) for CloudStack
(target project). ML ALGO: Machine Learning Algorithm

Project: Tomcat→CloudStack
Total Instances (Source): 3,279, Total Instances (Target): 5,584, Features:1,425

ML ALGO Avg. LP (%) Avg. LR (%) Avg. LF (%) Avg. ACC (%) Avg. RA (%)

ADA 87.84 ± 0.49 53.19 ± 0 66.26 ± 0.14 72.91 ± 0.17 81.45 ± 0.22
ADT 90.12 ± 0.41 52.79 ± 0 66.58 ± 0.11 73.5 ± 0.13 80.95 ± 0.13
BN 63.46 ± 0.39 69.41 ± 0 66.3 ± 0.21 64.72 ± 0.34 71.7 ± 0.38
DT 72.75 ± 0.33 45.38 ± 0 55.89 ± 0.1 64.19 ± 0.14 74.41 ± 0.16
J48 66.36 ± 0.44 56.91 ± 0 61.28 ± 0.19 64.03 ± 0.28 63.32 ± 0.34
LR 80.48 ± 0.56 48.14 ± 0 60.24 ± 0.16 68.23 ± 0.21 74.94 ± 0.14
NB 63.36 ± 0.39 69.23 ± 0 66.16 ± 0.21 64.59 ± 0.34 71.7 ± 0.38
RF 80.84 ± 0.38 37.29 ± 0 51.03 ± 0.08 64.22 ± 0.11 75.45 ± 0.18
RBF 0 ± 0 0 ± 0 0 ± 0 50 ± 0 63.11 ± 0.44

Project: Hadoop→CloudStack
Instances (Source): 7,947, Instances (Target): 5,584, Features: 1,313

ML ALGO Avg. LP (%) Avg. LR (%) Avg. LF (%) Avg. ACC (%) Avg. RA (%)

ADA 83.44 ± 0.59 49.61 ± 0 62.22 ± 0.16 69.88 ± 0.21 79.79 ± 0.25
ADT 88.64 ± 0.36 51.33 ± 0 65.01 ± 0.1 72.37 ± 0.12 81.86 ± 0.16
BN 64.25 ± 0.29 77.87 ± 0 70.41 ± 0.17 67.27 ± 0.27 76.79 ± 0.29
DT 84.71 ± 0.5 45.95 ± 0 59.58 ± 0.12 68.83 ± 0.16 74.65 ± 0.2
J48 64.58 ± 0.38 58.45 ± 0 61.37 ± 0.17 63.2 ± 0.27 65.21 ± 0.28
LR 83.19 ± 0.5 55.73 ± 0 66.75 ± 0.16 72.23 ± 0.2 79.03 ± 0.2
NB 64.25 ± 0.29 77.9 ± 0 70.42 ± 0.17 67.27 ± 0.27 76.8 ± 0.29
RF 83.91 ± 0.57 36.1 ± 0 50.48 ± 0.1 64.59 ± 0.15 73.11 ± 0.25
RBF 0 ± 0 0 ± 0 0 ± 0 50 ± 0 57.72 ± 0.42



24 Sangeeta Lal, Neetu Sardana, Ashish Sureka

Table 7. Cross-project logging prediction results (using a single classifier) for Hadoop (target project).
ML ALGO: Machine Learning Algorithm

Project: Tomcat→Hadoop
Total Instances (Source): 3,279, total instances (target): 4,156, features: 1,425

ML ALGO Avg. LP (%) Avg. LR (%) Avg. LF (%) Avg. ACC (%) Avg. RA (%)

ADA 85.91 ± 0.8 37.63 ± 0 52.34 ± 0.15 65.73 ± 0.2 78.22 ± 0.32
ADT 87.76 ± 0.7 33.88 ± 0 48.89 ± 0.11 64.58 ± 0.15 77.04 ± 0.18
BN 73.67 ± 0.72 45.57 ± 0 56.31 ± 0.21 64.64 ± 0.3 69.96 ± 0.39
DT 83.69 ± 0.74 34.31 ± 0 48.67 ± 0.12 63.81 ± 0.18 72.14 ± 0.45
J48 67.57 ± 0.61 36.77 ± 0 47.62 ± 0.15 59.56 ± 0.24 70.75 ± 0.36
LR 82.12 ± 1.01 26.23 ± 0 39.76 ± 0.12 60.26 ± 0.2 73.99 ± 0.35
NB 73.58 ± 0.68 45.86 ± 0 56.5 ± 0.2 64.69 ± 0.29 69.47 ± 0.38
RF 82.76 ± 0.99 21.13 ± 0 33.66 ± 0.08 58.36 ± 0.15 69.35 ± 0.4
RBF 0 ± 0 0 ± 0 0 ± 0 50 ± 0 55.4 ± 0.34

Project: CloudStack→Hadoop
Instances (source): 8,077, instances (target): 4,156, features: 1,304

ML ALGO Avg. LP (%) Avg. LR (%) Avg. LF (%) Avg. ACC (%) Avg. RA (%)

ADA 50.29 ± 0.06 98.12 ± 0 66.5 ± 0.05 50.57 ± 0.12 54.24 ± 0.1
ADT 79.55 ± 0.56 52.12 ± 0 62.97 ± 0.18 69.36 ± 0.23 76.51 ± 0.27
BN 57.26 ± 0.3 79.74 ± 0 66.65 ± 0.2 60.11 ± 0.36 68.2 ± 0.39
DT 77.99 ± 0.36 61.26 ± 0 68.62 ± 0.14 71.99 ± 0.18 76.31 ± 0.14
J48 73.4 ± 0.65 58.13 ± 0 64.88 ± 0.25 68.53 ± 0.35 69.99 ± 0.45
LR 72.76 ± 0.95 55.58 ± 0 63.02 ± 0.36 67.38 ± 0.5 71.83 ± 0.61
NB 57.31 ± 0.28 79.69 ± 0 66.67 ± 0.19 60.16 ± 0.34 68.16 ± 0.39
RF 66.35 ± 0.77 46.92 ± 0 54.97 ± 0.26 61.56 ± 0.41 67.32 ± 0.41
RBF 0 ± 0 0 ± 0 0 ± 0 50 ± 0 50 ± 0

ues of multi-project cross-project catch-block
logging prediction. Figure 3a reveals that
there is no dominant approach between sin-
gle-project and multi-project. In certain in-
stances, multi-project training increased the
prediction performance, and in other cases
it has decreased the prediction performance.
For example, in the CloudStack project
when single source-project training is used,
the highest average LF of 66.5% (source
project Tomcat) and 70.42% (source project
Hadoop) are achived (refer to Table 6).
In contrast, when multi-project training is
used and both Tomcat and Hadoop are ap-
plied to build the model, the highest av-
erage LF of 67.74% is achieved. Hence,
multi-project training causes a 1.24% decrease
and a 2.68% increase in the prediction per-
formance of single-project training when Tom-
cat and Hadoop are used, respectively. A sim-
ilar result is observed for the ACC metric
(refer to Figure 3b).

There is no dominant approach among the
single-project and multi-project cross-project
catch-block prediction models.

6.2.3. RQ3: Are different classifiers
complimentary to each other when
applied to cross-project catch-block
logging prediction?

Motivation: In RQ3, the objective is to exam-
ine the performance of individual classifiers on
multiple evaluation metrics. The evaluation of
a predictive model or a classifier can be per-
formed using several metrics or measures, and
the selected set of metrics depends on the classi-
fication task and problem. The Authors believe
that the answer to this research question will
provide important insights about combining dif-
ferent classifiers (using an ensemble of classifiers)
for improving the cross-project logging prediction
performance.
Approach: Individual classifiers are compared
on 5 evaluation metrics, namely, average LP ,
average LR, average LF , average ACC, and av-
erage RA, to identify whether a single classifier
dominates and provides the highest values over
all the evaluation metrics.
Results: The results indicate that different
classifiers are complementary to each other. For



ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 25

CS->TC
HD->TC

TC->CS
HD->CS

TC->HD
CS->HD

CS+HD->TC

TC+HD->CS

TC+CS->HD

Source Project -> Target Project

0

20

40

60

80

100

A
v
e
ra

g
e
 L

F 
(%

)

RQ 2 (a): Single vs. Multi-project Training

Single project

Multi-project

(a) Average LF (%)

CS->TC
HD->TC

TC->CS
HD->CS

TC->HD
CS->HD

CS+HD->TC

TC+HD->CS

TC+CS->HD

Source Project -> Target Project

0

20

40

60

80

100

A
v
e
ra

g
e
 A

C
C

 (
%

)

RQ 2 (b): Single vs. Multi-project Training

Single project

Multi-project

(b) Average ACC (%)

Figure 3. The Highest Average LF of Single-project and Multi-project Training Logging Prediction Models.
CS: CloudStack, TC: Tomcat, and HD: Hadoop

AVG. LP AVG. LR AVG. LF AVG. ACC AVG. RA
Metric

0

20

40

60

80

100

V
a
lu

e
s(

%
)

RQ 3(a): Single Classifier Performance (CS->TC)

ADA

ADT

BN

(a) Classifier performance for the CS→TC project pair

AVG. LP AVG. LR AVG. LF AVG. ACC AVG. RA
Metric

0

20

40

60

80

100

V
a
lu

e
s(

%
)

RQ 3(b): Single Classifier Performance (HD->CS)

NB

ADT

(b) Classifier performance for the HD→CS project pair

Figure 4. The Results (average LP , LR, LF , ACC and RA) of Selected Single Classifiers.
CS: CloudStack, TC: Tomcat, and HD: Hadoop

example, consider the results obtained on the
following source and target project pair:
CloudStack (source)→Tomcat (target):
Figure 4a presents the histogram of all five
metrics (LP , LR, LF , ACC and RA) for the
CloudStack→Tomcat project pair for the ADA,
ADT and NB classifiers. ADA, ADT and NB
are selected because these three classifiers pro-
vide the best results for cross-project catch-block
logging prediction on the CloudStack→Tomcat
project pair. Figure 4a shows that the ADT
model provides the highest average LP , ACC

and RA values, whereas ADA and BN provide
the highest average LR and LF , respectively
(refer to Table 5 for detailed results).
Hadoop (source)→CloudStack (target):
Similarly to Figure 4a, Figure 4b presents
the histogram of all 5 metrics for the
Hadoop→CloudStack project pair for the ADT
and NB classifiers. Figure 4b shows that NB
provides the highest average LR and LF val-
ues, whereas ADT provides the highest average
LP , ACC, and RA values (refer to Table 6 for
detailed results).



26 Sangeeta Lal, Neetu Sardana, Ashish Sureka

The above two examples indicate that differ-
ent classifiers provide complementary informa-
tion for cross-project catch-block logging predic-
tion and, hence, their ensemble can be benefi-
cial for improving the results of the prediction
model [72].

The results indicate that the different clas-
sifiers are complementary to each other for
cross-project catch-block logging prediction.

6.2.4. RQ4: Are the algorithms that perform
best for within-project and cross-project
catch-block logging predictions identical?

Motivation: In a related work, Zhu et al. [11]
used the same algorithm (J48) for both
within-project and cross-project logging pre-
dictions. However, there is a possibility that
the same algorithm is not suitable for both
within-project and cross-project logging predic-
tions. In RQ4, the performances of different clas-
sifiers for within-project and cross-project logging
predictions are compared. The Authors believe
that the results of this investigation will provide
us with important insights regarding algorithm
selection for ensemble creation.
Approach: To answer RQ4, we compare
the performances of different classifiers for
within-project and cross-project logging predic-
tions.
Results: Figure 5 presents the histogram of the
average LF values of the RF, ADT and NB
classifiers for within-project and cross-project
logging predictions for the CloudStack project.
Figure 5 shows that the RF classifier provides the
highest average LF of 88.47% for within-project
logging prediction. The ADT and NB models
provide considerably lower average LF of 85.54%
and 82.81%, respectively, compared to the RF
classifier for within-project logging prediction.
However, for cross-project logging prediction, the
ADT and NB classifiers provide better average
LF compared to that of the RF classifier. For ex-
ample, for the Hadoop→CloudStack project pair,
NB provides an average LF of 70.42%, which
is considerably higher than the average LF of
the RF classifier (50.48%). Similar results are
observed for other classifiers on other source and

target project pairs (refer to Table 4, Table 5,
Table 6 and Table 7 for detailed results). This
result shows that algorithms that perform best
for within-project and cross-project catch-block
logging predictions are different. These results re-
veal the weakness of the cross-project logging pre-
diction experiment performed by Zhu et al. [11],
where the authors perform within-project and
cross-project logging predictions using the same
algorithm (J48). Hence, in this work, the Au-
thors explore multiple classifiers for cross-project
catch-block logging prediction model building.

Classifiers that provide the best results for
within-project and cross-project logging pre-
dictions are different.

Performance summary of base classifiers
(RQ1–RQ4): In RO1, 4 investigations are per-
formed in the context of cross-project logging pre-
diction. RQ1 indicates that the results of single
classifiers are considerably lower for cross-project
logging prediction compared to the results for
within-project logging prediction. Hence, more
advanced methods are required for building the
cross-project logging prediction model. RQ2 in-
dicates that multi-project training does not im-
prove the performance of cross-project logging
prediction on all source and target project pairs.
Hence, to improve the model building time, only
a single project for training the cross-project
logging prediction model is considered. RQ3 indi-
cates that the classifiers provide complementary
information for the task of cross-project logging
prediction. Hence, the Authors believe that an
ensemble of different classifiers may be beneficial
in improving the performance of cross-project
logging prediction. RQ4 indicates that the classi-
fiers which provide good results for within-project
logging prediction are different from the classi-
fiers which provide good results for cross-project
logging prediction. Hence, to build an ensem-
ble of classifiers to improve the performance of
cross-project logging prediction, it is necessary
to conduct experiments on a wide range of clas-
sifiers to find the best set of classifiers. The first
four RQs derive the motivation for construct-
ing the ECLogger model, i.e. an ensemble of
classifiers-based model which uses a single project
for training the model.



ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 27

CS->CS TC->CS HD->CS
Source Project -> Target Project

0

20

40

60

80

100

A
v
e
ra

g
e
 L

F 
(%

)

RQ 4: Single Classifier Performance

RF

ADT

NB

Figure 5. Performance of RF, ADT, and NB classifiers for within-project
and cross-project catch-block logging predictions

6.3. RO2: Performance of
ensemble-based classifiers for
cross-project catch-block logging
prediction

In this subsection, the performances of
ensemble-based classifiers are investigated and
compared with the performances of single clas-
sifiers for cross-project logging prediction (re-
fer to RQ5–RQ8). For each source and target
project pair, the single classifier that provides
the best results (in terms of average LF ) be-
comes the baseline classifier. For example, for
the CloudStack→Tomcat project pair, the BN
classifier provides the highest average LF and is
hence considered to be a baseline classifier (refer
to Table 5).

6.3.1. RQ5: What is the performance of
ECLoggerBagging for cross-project
catch-block logging prediction?

Motivation: In RQ5, the performances of 8 en-
semble classifiers, created using the bagging tech-
nique, are investigated and compared with the
performance of the baseline classifier. The an-
swer to this research question can provide impor-
tant insights regarding whether bagging is useful
in improving the performance of cross-project
catch-block logging prediction.
Approach: To answer this research question,
the average LF and average ACC of 8 ensemble

classifiers generated by applying bagging on the
base classifiers, i.e. ECLoggerBagging models, are
computed. For each source→target project pair,
the bagging model which provides the best av-
erage LF is reported. Then the results obtained
by the best bagging model is compared with the
baseline classifier for each source→target project
pair.
Results: Table 8 presents the average LF
and average ACC of the baseline classifier
and the best ECLoggerBagging model for each
source→target project pair. Table 8 shows that
ECLoggerBagging considerably improves (more
than 1% improvement) the average LF and av-
erage ACC for three and two source→target
project pairs, respectively. It improves the av-
erage LF and average ACC by 4.6% and
5.57% (CloudStack→Tomcat) and by 3.96% and
2.44% (CloudStack→Hadoop) when BaggingADT
is used. For the Tomcat→CloudStack project
pair, project pair, a considerable improvement
(1.03%) is observed only in the average LF . For
all other source and target project pairs, no
considerable difference in the performance of
ECLoggerBagging was observed, compared to the
performance of the baseline classifier. Overall,
the BaggingADT model performs better than the
other bagging models and gives the highest av-
erage LF for three source and target project
pairs.

ECLoggerBagging shows a considerable im-
provement in the average LF in 3 out of 6



28 Sangeeta Lal, Neetu Sardana, Ashish Sureka

Table 8. Results of ECLoggerBagging. NA: Not Applicable and IMP: Improvement

Source Project →Target Project Algorithm Avg. LF (%) %IMP Avg. ACC (%) %IMP

CloudStack→Tomcat Baseline (BN) 73.65 ± 0.35 NA 70.39 ± 0.54 NA
BaggingADT 78.25 ± 0.22 4.6 75.96 ± 0.32 5.57

Hadoop→Tomcat Baseline (NB) 73.66 ± 0.31 NA 74.04 ± 0.41 NA
BaggingNB 73.54 ± 0.29 -0.12 73.96 ± 0.39 -0.08

Tomcat→CloudStack Baseline (ADT) 66.58 ± 0.11 NA 73.5 ± 0.13 NA
BaggingADT 67.61 ± 0.14 1.03 73.92 ± 0.17 0.42

Hadoop→CloudStack Baseline (NB) 70.42 ± 0.17 NA 67.27 ± 0.27 NA
BaggingBN 70.49 ± 0.19 0.07 67.56 ± 0.29 0.29

Tomcat→Hadoop Baseline (NB) 56.5 ± 0.2 NA 64.69 ± 0.29 NA
BaggingNB 56.43 ± 0.2 -0.07 64.7 ± 0.29 0.01

CloudStack→Hadoop Baseline (DT) 68.62 ± 0.14 NA 71.99 ± 0.18 NA
BaggingADT 72.58 ± 0.3 3.96 74.43 ± 0.39 2.44

source→target project pairs with a maximum
improvement of 4.6% (average LF ) and 5.57%
(average ACC) for the CloudStack→Tomcat
project pair.

6.3.2. RQ6: What is the performance of
ECLoggerAverageVote for cross-project
catch-block logging prediction?

Motivation: In RQ6, the performances of 466
ECLoggerAverageV ote models are investigated
and compared with the performances of baseline
classifiers. The answer to this research question
can provide important insights about the effec-
tiveness of the average vote ensemble technique
for cross-project catch-block logging prediction.
Approach: To answer this research question,
the average LF and average ACC of 466
ECLoggerAverageVote models, generated using the
average voting ensemble technique are com-
puted. For each source→target project project
pair, the ECLoggerAverageVote model which pro-
vides the best average LF is reported. We
then compare the results obtained by the best
ECLoggerAverageVote models with the baseline
classifier for each source→target project pair.
Results: Table 9 presents the average LF
and average ACC of the baseline classifier
and the best average voting technique for each
source→target project pair. Table 9 shows that
the ECLoggerAverageVote technique considerably
improves the average LF and average ACC on 5
source→target project pairs. ECLoggerAverageVote

improves the average LF and average ACC
by 3.78% and 5.92% (CloudStack→Tomcat),
2.3% and 3.01% (Hadoop→Tomcat), 7.04% and
2.45% (Tomcat→CloudStack), 6.9% and 11.43%
(Hadoop→CloudStack) and 3.57% and 1.35%
(CloudStack→Hadoop). For the 6th source→
→target project pair, i.e. Tomcat→Hadoop,
ECLoggerAverageVote shows a considerable im-
provement in the average ACC (1.74%), whereas
for the average LF , it provides results compara-
ble to the baseline classifier. No particular group
of classifiers whose average vote provides the best
results on each source and target project pair
was observed. However, it was observed that the
ADT, DT, BN, and NB classifiers are present
in most of the ECLoggerAverageVote models which
provide the best results.

ECLoggerAverageVote shows a considerable im-
provement in the average LF in 5 out of 6
source→target project pairs with a maximum
improvement of 7.04% in the average LF
(for the Tomcat→CloudStack project pair)
and 11.43% in the average ACC (for the
Hadoop→CloudStack project pair).

6.3.3. RQ7: What is the performance of
ECLoggerMajorityVote for cross-project
catch-block logging prediction?

Motivation: In RQ7, the performances of 466
ECLoggerMajorityVote models are investigated and
compared with the performances of baseline clas-
sifiers. The answer to this research question can



ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 29

Table 9. Results of ECLoggerAverageVote. IMP: Improvement, NA: Not Applicable, and AV: Average Vote

Source Project →Target Project Algorithm Avg. LF (%) %IMP Avg ACC (%) %IMP

CloudStack→Tomcat Baseline (BN) 73.65 ± 0.35 NA 70.39 ± 0.54 NA
AV (ADT-BN-DT-LR) 77.43 ± 0.47 3.78 76.31 ± 0.64 5.92

Hadoop→Tomcat Baseline (NB) 73.66 ± 0.31 NA 74.04 ± 0.41 NA
AV (ADT-BN-DT-J48-NB) 75.96 ± 0.41 2.3 77.05 ± 0.51 3.01

Tomcat→CloudStack Baseline (ADT) 66.58 ± 0.11 NA 73.5 ± 0.13 NA
AV (ADT-BN-DT-J48-NB) 73.62 ± 0.1 7.04 75.95 ± 0.13 2.45

Hadoop→CloudStack Baseline (NB) 70.42 ± 0.17 NA 67.27 ± 0.27 NA
AV (ADA-ADT-BN-DT-LR-NB) 77.32 ± 0.15 6.9 78.7 ± 0.18 11.43

Tomcat→Hadoop Baseline (NB) 56.5 ± 0.2 NA 64.69 ± 0.29 NA
AV (ADT-BN-DT-J48-NB) 56.77 ± 0.16 0.27 66.43 ± 0.22 1.74

CloudStack→Hadoop Baseline (DT) 68.62 ± 0.14 NA 71.99 ± 0.18 NA
AV (ADA-ADT-DT-J48-NB) 72.19 ± 0.26 3.57 73.34 ± 0.34 1.35

Table 10. Results of ECLoggerMajorityVote. IMP: Improvement, NA: Not Applicable, and MV: Majority Vote

Source Project→Target Project Algorithm Avg. LF (%) %IMP Avg. ACC (%) %IMP

CloudStack→Tomcat Baseline (BN) 73.65 ± 0.35 NA 70.39 ± 0.54 NA
MV (ADT-BN-DT) 77.85 ± 0.3 4.2 76.78 ± 0.41 6.39

Hadoop→Tomcat Baseline (NB) 73.66 ± 0.31 NA 74.04 ± 0.41 NA
MV (BN-NB-RF) 73.7 ± 0.32 0.04 74.09 ± 0.43 0.05

Tomcat→CloudStack Baseline (ADT) 66.58 ± 0.11 NA 73.5 ± 0.13 NA
MV (ADA-BN-J48- LR-NB) 71.12 ± 0.13 4.54 74.45 ± 0.16 0.95

Hadoop→CloudStack Baseline (NB) 70.42 ± 0.17 NA 67.27 ± 0.27 NA
MV (ADA-BN-DT- LR-NB) 74.17 ± 0.18 3.75 76.74 ± 0.22 9.47

Tomcat→Hadoop Baseline (NB) 56.5 ± 0.2 NA 64.69 ± 0.29 NA
MV (ADT-BN-NB) 56.49 ± 0.2 -0.01 64.75 ± 0.28 0.06

CloudStack→Hadoop Baseline (DT) 68.62 ± 0.14 NA 71.99 ± 0.18 NA
MV (ADA-ADT- BN-DT-J48) 74.01 ± 0.23 5.39 73.78 ± 0.31 1.79

provide important insights about the effective-
ness of majority vote models for cross-project
catch-block logging prediction.
Approach: To answer this research question,
the average LF and average ACC of 466
ECLoggerMajorityVote models generated using
the majority vote ensemble technique are com-
puted. For each source→target project pair, the
ECLoggerMajorityVote model which provides the
best average LF is reported. Then the results
obtained by the best ECLoggerMajorityVote mod-
els are compared with the baseline classifier for
each source→target project pair.
Results: Table 10 shows the average LF and av-
erage ACC of the baseline classifier and the best
majority vote classifier for each source→target
project pair. Table 10 shows that the
ECLoggerMajorityVote classifier improves the aver-

age LF and average ACC for 4 source→target
project pairs. ECLoggerMajorityVote improves
the average LF and average ACC by 4.2%
and 6.39% (CloudStack→Tomcat), 4.54% and
0.95% (Tomcat→CloudStack), 3.75% and 9.47%
(Hadoop→CloudStack) and 5.39% and 1.79%
(CloudStack→Hadoop). In other cases, no consid-
erable difference in the performances of the base-
line classifier and ECLoggerMajorityVote classifier
was observed. No particular group of classifiers
whose majority vote provides the best results on
each source and target project pair was observed.
However, it was observed that the BN classifier
was present in all of the ECLoggerMajorityVote
models that provide the best results.

ECLoggerMajorityVote improved the
cross-project catch-block logging prediction
in 4 out of 6 source→target project pairs with



30 Sangeeta Lal, Neetu Sardana, Ashish Sureka

Table 11. Average performance of ECLogger models on all source→target projects pairs.
IMP: Improvement, NA: Not Applicable, AV: Average Vote, and MV: Majority Vote

Source→Target Approach Algorithm Avg. LF (%) % IMP Avg. ACC (%) %IMP

All

Baseline NB 67.825 NA 66.85 NA
ECLoggerBagging BaggingBN 67.8 −0.025 66.89 0.04
ECLoggerAverageVote AV (ADA-ADT-BN-DT-LR-NB) 70.95 3.12 72.93 6.08
ECLoggerMajorityVote MV (ADT-BN-DT-LR-NB) 68.775 0.95 72.84 5.99

a maximum improvement of 5.39% in the
average LF (for the CloudStack→Hadoop
project pair) and 9.47% in the average ACC
(for the Hadoop→CloudStack project pair).

6.3.4. RQ8: What is the average performance of
the baseline classifier and ECLoggerModels
over all the source and target project
pairs?

Motivation: In RQ 8, the performances of all
9 base classifiers and 940 ensemble models are
examined over all 6 source and target project
pairs. The answer to this RQ can be beneficial in
identifying a dominant approach that is suitable
for all types of source and target project pairs.
Approach: To answer RQ8, performances of all
9 single classifiers and 940 ensemble classifiers on
all the source and target project pairs are com-
puted. Then the average performance of all the
9 + 940 classifiers is computed. For example, to
compute the average performance of a model M,
its performance on all 6 source→target project
pairs is computed. The summation of these 6 val-
ues is divided by 6.
Results: Table 11 shows the results of the av-
erage performances of the best classifiers in each
category, i.e. single classifier, ECLoggerBagging,
ECLoggerMajorityVote and ECLoggerAverageVote.
The results show that for individual classifiers,
NB provides the best results and provides on
average a 67.82% average LF and 66.85% av-
erage ACC on all source and target project
pairs and, hence it is considered to be a base-
line classifier for this experiment. The results
of the best bagging technique are comparable
with the baseline classifier, i.e., best individual
classifier. ECLoggerMajorityVote provides an av-
erage ACC of 72.84%, i.e. a 5.99% improve-
ment in the average ACC of baseline classi-

fier. ECLoggerMajorityVote provides an average
LF comparable to that of the baseline classifier.
ECLoggerAverageVote performs best and provides
an average LF and average ACC of 70.95% and
70.93%, respectively. ECLoggerAverageVote results
in 3.12% and 6.08% improvements in the average
LF and average ACC, respectively, compared to
the baseline classifier.

ECLoggerAverageVote performs best and shows
improvements of 3.12% (average LF ) and
6.08% (average ACC) compared to the base-
line classifier.

Overall performance summary of the
three proposed approaches (RQ5–RQ8):
Table 12 presents the overall perfor-
mance summary of the ECLoggerBagging,
ECLoggerAverageVote and ECLoggerMajorityVote
models. The model that provides the highest
improvement (measured in average LF and aver-
age ACC) by each approach is selected for each
source and target project pair. In Table 12, cells
containing

√
indicate that the respective model

improved the results of the baseline classifier
and those containing ⭒ indicate the model pro-
viding the best result for the respective source
and target project pair. Table 12 shows that
for three source and target project pairs, i.e.
Hadoop→Tomcat, Tomcat→CloudStack and
Hadoop→CloudStack, the ECLoggerAverageVote
model provides the best results in terms of
both average LF and average ACC. Table
12 shows that the cells associated with the
ECLoggerAverageVote model consist of a higher
number of ⭒ compared to those associated with
ECLoggerMajorityVote and ECLoggerBagging. This
result shows that the ECLoggerAverageVote model
results in better improvements compared to the
other two approaches, i.e. ECLoggerBagging and
ECLoggerMajorityVote. Table 12 shows that the
rows consisting of CloudStack as the source



ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 31

Table 12. Performance summary of ECLoggerBagging, ECLoggerAverageVote and ECLoggerMajorityVote.
IMP: Improvement and ALGO: Algorithm

Source→Target ECLoggerBagging ECLoggerAverageVote ECLoggerMajorityVote

IMP. in Avg.
LF

IMP. in Avg.
ACC

IMP. in Avg.
LF

IMP. in Avg.
ACC

IMP. in Avg.
LF

IMP. in Avg.
ACC

CloudStack→Tomcat √
⭒

√ √ √ √ √
⭒

Hadoop→Tomcat √
⭒

√
⭒

Tomcat→CloudStack √ √
⭒

√
⭒

√
Hadoop→CloudStack √

⭒
√
⭒

√ √
Tomcat→Hadoop √

⭒
CloudStack→Hadoop √ √

⭒
√ √ √

⭒
√

project consist of the largest number of
√

sym-
bols . This result indicates that all three proposed
models provide better performance (improve the
results provided by the baseline classifier) when
the CloudStack project (used as the source
project) is used to train the cross-project logging
prediction model compared to when Tomcat
or Hadoop is used to train the model. This
reveals that the overall CloudStack project is
more generalizable compared to the Hadoop
and Tomcat projects for cross-project logging
prediction. In all cases, the proposed models
provide better or comparable results analogous
with baseline baseline classifier.

7. Discussion

Performance of single classifiers: The log
context can be viewed from two perspectives.
One perspective is the log level such as debug,
fatal, error, info, trace and warn. The other
perspective is the programming construct and
the block in which the log statements are used
such as try-catch or if-else. The static code fea-
tures used as predictive variables to estimate
the position of the log statement depends on
the log context. This study focused on a spe-
cific context such as catch-block, and in future
a study will be conducted on a larger context.
It was observed that classifiers LR, RF, and
J48 provide better performance than the other
classifiers for within-project catch-block logging
prediction. The results are in compliance with
results of previous studies which report RF [10]
and J48 [11] as the best performing classifier for
within-project logging prediction. It was observed

that RF algorithm not only gives decent perfor-
mance for logging prediction but it is also one of
the fastest algorithms and, hence, is suitable for
large datasets or time constrained environments.
For cross-project catch-block logging prediction,
ADT, BN, NB, and DT provide better results.
The results reveal that NB performs best in three
out of the six cross-project logging prediction ex-
periments, whereas ADT, DT and BN perform
best for one cross-project logging prediction ex-
periment. Logging prediction is essentially a text
classification problem and NB has shown good
results for text classification problems [58]. The
simplistic learning approach of NB makes is suit-
able for cross-project learning. NB gives good
results for other cross-project prediction stud-
ies, such as cross-project defect prediction [73].
In addition to this, NB does not need a large
training dataset and can handle missing data
and uncorrelated features [74]. The performance
of RBF is worst for cross-project catch-block
logging prediction. RBF consistently provides
poor performance across all the projects. RBF
is a neural network-based approach [59]. RBF is
known to be highly sensitive towards the training
data and the dimensionality of the training data
and, hence, it cannot extrapolate beyond the
training data [75].
Performance of ensemble techniques: The
investigated problem was the concept of integrat-
ing and combining multiple models to obtain
a more accurate global predictive model in com-
parison to its constituent models for cross-project
logging prediction [76–78]. The objective of using
ensemble methods was to develop a more reli-
able and robust global model by reducing the
generalization error [76–78]. Reducing generaliza-



32 Sangeeta Lal, Neetu Sardana, Ashish Sureka

tion error is particularly important in this study
because the experimental dataset consisting of
three open-source software projects can natu-
rally have biases due to specific logging practice
guidelines and characteristics. Although there
are several types of ensemble methods available,
three methods were used in the experiments: bag-
ging, average vote and majority vote. It was ob-
served that BaggingADT provided better results
for cross-project catch-block logging prediction
compared to other bagging combinations. The
Authors believe that the better performance of
bagging is due to the decreased variance of the
base model [76–78]. BaggingADT model was also
found to be useful in other applications such as
the detection of Single Nucleotide Polymorphism
(SNP) associated with diseases [79]. However,
a considerable increase in the model building
time was observed when the bagging technique
was applied and, therefore, it was not possible
to build the BaggingDT model because of its
high time complexity. Hence, bagging may not
be a good option for large datasets. It was also
observed that for the ADA algorithms, bagging
results in a considerable drop in the prediction
performance, i.e. upto 28.1% in average LF on
CloudStack→Hadoop project pair, as compared
to the results of the ADA algorithm. The Authors
believe this happened because ADA is an ensem-
ble based algorithm and its learning method is
quite different from bagging [80].

The results show that the average vote and
majority vote ensemble techniques give better
results as compared to that of the bagging en-
semble technique. It was also observed that the
time complexity of the average vote and the
majority vote is considerably lower as compared
to that of bagging. The reason for the higher
time complexity of bagging is that the bag-
ging technique assigns weight to the source in-
stances by running multiple iterations of the
algorithm on a sub-sampled dataset to generate
the learner whereas the average vote and the
majority vote generate a multiple learner in one
iteration [38,49]. However, it was observed that
for majority weight ensemble technique, the ma-
jority vote of a different classifier gives the best
results (measured in average LF ) for different

source and target project pairs. For example,
classifier set ADT-BN-DT gives the highest aver-
age LF for the CloudStack→Tomcat project pair.
No dominating set of classifiers which gave the
best average LF for all source and target project
pairs was found. For the majority vote technique
classifier set, ADT-BN-DT-LR-NB gives overall
0.95% and 5.99% improvement (average over
all source and target project pairs) in average
LF and average ACC respectively, as compared
to the results of baseline classifier. Similarly
to majority vote for the average vote ensem-
ble technique, the average vote of different set
of classifiers gives the best results (measured
in average LF ) for different source and target
project pairs. However, for the average vote tech-
nique classifier set ADA-ADT-BN-DT-LR-NB
gives overall 3.12% and 6.08% improvement (av-
erage over all source and target project pairs)
in average LF and average ACC respectively,
as compared to the results of the baseline clas-
sifier. Comparing the improvements percentage
of the majority vote and the average vote we
can infer that the average vote gives better pre-
diction results. Moreover, in the case of the
equal number of votes to both the positive
and negative class, the majority vote ensemble
technique does random prediction of the class,
whereas the average vote ensemble technique
makes fair decisions. As it considers classification
score for decision making. However, the Authors
observed that in the literature, there are sev-
eral studies which analyse the performance of
the majority vote ensemble technique in differ-
ent contexts, such as effect of the small-world
and various diversities [81–83]. There has been
much less emphasis given to the average vote
ensemble technique. The Authors believe that
the results of this paper mean that an indepth
study of the average vote ensemble technique
is necessary.
Project generalizability: During the exper-
iments it was observed that the CloudStack
project was more generalizable compared to
Hadoop and Tomcat for cross-project catch-block
logging prediction. Some traces of the associa-
tion of the CloudStack project with both the
Tomcat and Hadoop projects were found. Cloud-



ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 33

Stack is the first cloud platform to join ASF2

and is quite popular in organizations which
prefer an open-source option for their cloud
and big data infrastructure. It was found out
that Hortonworks and the CloudStack project
team were working on identifying opportunities
where Hadoop components could be used to
back Cloud APIs and also where Cloud APIs
could be used to deploy Hadoop [84]. In addition,
CloudStack uses Tomcat as its servlet container
[85]. To find some examples of association in
the source code of these three projects,a simple
experiment was performed. For each source
and target project pair, the count of logged
catch-blocks that were common (i.e. have same
exception types) was computed. It was observed
that Tomcat→CloudStack, Tomcat→Hadoop,
CloudStack→Tomcat, CloudStack→Hadoop,
Hadoop→Tomcat, and Hadoop→CloudStack
have 38, 44, 38, 41, 41 and 44 common unique
exception types, respectively. The frequency of
each of these exception types in each source
project was computed. It was found out that the
CloudStack→Tomcat and CloudStack→Hadoop
projects have the highest frequency of these
exception types, i.e.1852 and 1934, respectively.
This provides an indication that the CloudStack
project has some similarities in its code with
both the Tomcat and Hadoop projects. The
Authors believe that the CloudStack project is
more generalizable than the Tomcat and Hadoop
projects because it provides some support to
both of these projects.

8. Threats to validity

Number and type of projects: The Tomcat,
CloudStack and Hadoop projects were selected
for the study. All three projects are open-source
Java-based projects. However, the results may
not be generalizable for all Java projects or
projects written in other programing languages.
Additional studies are required for other Java
projects or projects written in other languages
(e.g. C#, python). Only open-source projects

are considered in this study; hence, the results
cannot be generalized to closed-source projects.
Overall, no general conclusion which would be
applicable to logging prediction in all types of
software applications can be drawn.
Quality of ground truth: It was assumed that
logging statements inserted by the software de-
velopers of the Apache Tomcat, CloudStack and
Hadoop projects were optimal. There is a pos-
sibility of errors or non-optimal logging in the
code by the developers, which can affect the
results of this study. However, all three of the
projects are long lived and are actively main-
tained; hence, it can be assumed that most of
the code constructs follow good logging (if not
optimal). In the study 26 regular expressions3

were used to extract the logging statements from
the source code. Manual analysis reveals that all
the logging statements were extracted (to the
best of the Authors’ knowledge). However, there
is still a possibility that the regular expressions
missed some types of logging statements in the
source code.
Algorithm parameters: Default parameters
for all the algorithms were used. Tuning classifi-
cation parameters is important and can help im-
prove the classification results. However, the Au-
thors considered default parameters for all the al-
gorithms as the initial step towards cross-project
logging prediction. Some planned future work
will encompass finding optimal parameters for
each of the classification algorithms.
Sampling bias: The under-sampling of major-
ity class instances was performed to balance the
datasets. This can lead a sampling bias in the
results. However, to reduce the sampling bias,
10 datasets were created and the average results
over these 10 datasets were reported.
Classifier set: In this work, we explored 9
base classifiers and 3 ensemble techniques. How-
ever, there are many other classifiers (such as
genetic algorithms [86]) and many other ensemble
techniques (such as stacking [39] and boosting
[39]), which have not been explored in this work.
It is possible that a different set of algorithms
would provide better results for cross-project

2http://nosql.mypopescu.com/post/20461845393/cloudstack-and-hadoop-a-match-made-in-the-cloud
3https://dl.dropboxusercontent.com/u/48972351/RegExLoggingStudy.txt

http://nosql.mypopescu.com/post/20461845393/cloudstack-and-hadoop-a-match-made-in-the-cloud
https://dl.dropboxusercontent.com/u/48972351/RegExLoggingStudy.txt


34 Sangeeta Lal, Neetu Sardana, Ashish Sureka

catch-block logging prediction compared to the
set of algorithms explored in this work.
Computation of LF metric: Equation (4)
was used to compute the LF metric. In Equa-
tion (4), parameter β can take any value ranging
from 0 to ∞. If the value of β is less than 1,
Equation (4) gives more weightage to precision.
Similarly, the value of β greater than 1 gives
more weightage to recall. A system with high
precision but low recall returns few results, but
most of its predicted labels are correct when com-
pared to the training labels. A system with high
recall but low precision returns many results, but
most of its predicted labels are incorrect when
compared to the training labels. At the time of
logging prediction, a high recall and low precision
system can cause the excess of log statements in
the source code. However, a high precision and
low recall system can cause less than required
number of log statements. In this system, both
excess or sparse logging in the source code is
problematic. Hence, the value of β as 1, i.e. as-
signed equal weightage to both precision and re-
call, was used. Hence, this study gives preference
to the classifier which optimizes both precision
and recall. There are certain application domains
which prefer either high-precision (low recall) or
high recall (low precision) system [87]. Hence,
depending upon the application domain either
high precision (low recall) or high recall (low
precision) system may be more suitable. In such
cases the value of β needs to be adjusted accord-
ingly. In this work, we have not compared the
performance of different classifiers for different
values of β.

9. Conclusion and future work

In this paper, the Authors propose ECLogger ,
an ensemble-based, cross-project, catch-block log-
ging prediction framework. ECLogger uses 9 base
classifiers (AdaBoostM1, ADTree, Bayesian net-
work, decision table, J48, logistic regression, Naïve
Bayes, random forest and radial basis function
network). ECLogger combines these algorithms
with three ensemble techniques, i.e. bagging,
average vote and majority vote. In the study

8 ECLoggerBagging, 466 ECLoggerAverageVote
and 466 ECLoggerMajorityVote models were cre-
ated. The performance of ECLogger on three
open-source Java projects: Tomcat, Cloud-
Stack and Hadoop was evaluated. The re-
sults of the comparison of ECLoggerBagging,
ECLoggerAverageVote and ECLoggerMajorityVote
with baseline classifiers were presented.
ECLoggerBagging, ECLoggerAverageVote and
ECLoggerMajorityVote show maximum improve-
ments of 4.6%, 7.04% and 5.39% in average
LF , respectively, in comparison to the base-
line classifier. Overall, the ECLoggerAverageVote
model performs better than ECLoggerBagging and
ECLoggerMajorityVote. The experimental results
show that the CloudStack project is more gen-
eralizable for cross-project catch-block logging
prediction than the Tomcat and Hadoop projects.

In the future, there are plans to evaluate to
evaluate ECLogger on datasets from more soft-
ware projects, i.e. closed-source applications and
projects from other programing languages (i.e. C,
C++, and C#). There are also plans to extend
the functionality of ECLogger for other types of
code constructs, such as if-blocks. The Authors
will also work to improve the performance of
ECLogger using other ensemble techniques, such
as stacking, which is found to be useful in bug
assignment problem [88]. Apart from this work
will be conducted on tuning various classifier
parameters to obtain the optimal classification
performance [89]. In addition to this, the iden-
tification of the most productive feature will be
examined using various feature selection tech-
niques to reduce the model building time and
to further improve the performance. The Au-
thors believe that their research can be applied
or transferred into practice by building a devel-
opment environment tool, such as an Eclipse
or Visual Studio plug-in. Future plans encom-
pass the development of an ECLogger plug-in for
Eclipse IDE which will give a logging suggestion
to software developers. at the time of coding.
The advantage of a plug-in based implementa-
tion is that the developers can use the tool as
part of their existing infrastructure and process
and do not need to learn or install a completely
new tool.



ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 35

References

[1] D. Yuan, S. Park, and Y. Zhou, “Characterizing
logging practices in open-source software,” in
Proceedings of the 34th International Conference
on Software Engineering, 2012, pp. 102–112.

[2] B. Sharma, V. Chudnovsky, J.L. Hellerstein,
R. Rifaat, and C.R. Das, “Modeling and syn-
thesizing task placement constraints in Google
compute clusters,” in Proceedings of the 2Nd
ACM Symposium on Cloud Computing. New
York: ACM, 2011, pp. 3:1–3:14.

[3] K. Nagaraj, C. Killian, and J. Neville,
“Structured comparative analysis of sys-
tems logs to diagnose performance prob-
lems,” in Proceedings of the 9th USENIX
Conference on Networked Systems Design
and Implementation, 2012, pp. 353–366.
[Online]. https://www.usenix.org/system/files/
conference/nsdi12/nsdi12-final61.pdf

[4] Q. Fu, J.G. Lou, Y. Wang, and J. Li, “Ex-
ecution anomaly detection in distributed sys-
tems through unstructured log analysis,” in Pro-
ceedings of the 2009 Ninth IEEE International
Conference on Data Mining. Washington: IEEE
Computer Society, 2009, pp. 149–158.

[5] Z.M. Jiang, A.E. Hassan, G. Hamann, and
P. Flora, “Automatic identification of load test-
ing problems,” in IEEE International Confer-
ence on Software Maintenance, Sep. 2008, pp.
307–316.

[6] Z.M. Jiang, A.E. Hassan, G. Hamann, and
P. Flora, “Automated performance analysis of
load tests,” in IEEE International Conference on
Software Maintenance, Sep. 2009, pp. 125–134.

[7] Blackberry enterprise server logs submission,
BlackBerry Limited. [Online]. https://salesforce.
services.blackberry.com/webforms/beslogs [Ac-
cessed 4 June 2016].

[8] Q. Fu, J. Zhu, W. Hu, J.G. Lou, R. Ding, Q. Lin,
D. Zhang, and T. Xie, “Where do developers
log? An empirical study on logging practices in
industry,” in Companion Proceedings of the 36th
International Conference on Software Engineer-
ing, 2014, pp. 24–33.

[9] S. Lal, N. Sardana, and A. Sureka, “LogOpt-
Plus: Learning to optimize logging in catch and
if programming constructs,” in 40th Annual
Computer Software and Applications Conference
COMPSAC, Vol. 1, Jun. 2016, pp. 215–220.

[10] S. Lal and A. Sureka, “LogOpt: Static feature
extraction from source code for automated catch
block logging prediction,” in 9th India Soft-
ware Engineering Conference ISEC, 2016, pp.
151–155.

[11] J. Zhu, P. He, Q. Fu, H. Zhang, M. Lyu, and
D. Zhang, “Learning to log: Helping developers
make informed logging decisions,” in 37th IEEE
International Conference on Software Engineer-
ing ICSE, Vol. 1, May 2015, pp. 415–425.

[12] A. Grabner, Top Tomcat performance
problems part 2: Bad coding, inefficient
logging and exceptions. [Online]. http:
//apmblog.dynatrace.com/2016/03/08/top-
tomcat-performance-problems-part-2-bad-
coding-inefficient-logging-exceptions/ [Accessed
31 May 2015].

[13] W. Shang, M. Nagappan, and A.E. Hassan,
“Studying the relationship between logging char-
acteristics and the code quality of platform soft-
ware,” Empirical Software Engineering, Vol. 20,
No. 1, 2015, pp. 1–27.

[14] J. Nam, S.J. Pan, and S. Kim, “Transfer de-
fect learning,” in 35th International Conference
on Software Engineering ICSE, May 2013, pp.
382–391.

[15] A.T. Mısırlı, A.B. Bener, and B. Turhan, “An
industrial case study of classifier ensembles for lo-
cating software defects,” Software Quality Jour-
nal, Vol. 19, No. 3, 2011, pp. 515–536.

[16] L. Mariani and F. Pastore, “Automated iden-
tification of failure causes in system logs,” in
Software Reliability Engineering, 2008. ISSRE
2008. 19th International Symposium on, Nov.
2008, pp. 117–126.

[17] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou,
and S. Pasupathy, “SherLog: error diagnosis by
connecting clues from run-time logs,” in Pro-
ceedings of the Fifteenth Edition of ASPLOS
on Architectural Support for Programming Lan-
guages and Operating Systems. New York: ACM,
2010, pp. 143–154.

[18] W. Xu, L. Huang, A. Fox, D. Patterson, and M.I.
Jordan, “Detecting large-scale system problems
by mining console logs,” in Proceedings of the
ACM SIGOPS 22nd Symposium on Operating
Systems Principles, 2009, pp. 117–132.

[19] M. Montanari, J.H. Huh, D. Dagit, R. Bobba,
and R.H. Campbell, “Evidence of log in-
tegrity in policy-based security monitoring,” in
IEEE/IFIP 42nd International Conference on
Dependable Systems and Networks Workshops
DSN-W. IEEE, 2012, pp. 1–6.

[20] G. Lee, J. Lin, C. Liu, A. Lorek, and D. Ryaboy,
“The unified logging infrastructure for data ana-
lytics at Twitter,” Proc. VLDB Endow., Vol. 5,
No. 12, Aug. 2012, pp. 1771–1780.

[21] Logstash homepage, Elasticsearch. [Online].
https://www.elastic.co/products/logstash/ [Ac-
cessed 27 July 2016].

https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final61.pdf
https://www.usenix.org/system/files/conference/nsdi12/nsdi12-final61.pdf
https://salesforce.services.blackberry.com/webforms/beslogs
https://salesforce.services.blackberry.com/webforms/beslogs
http://apmblog.dynatrace.com/2016/03/08/top-tomcat-performance-problems-part-2-bad-coding-inefficient-logging-exceptions/
http://apmblog.dynatrace.com/2016/03/08/top-tomcat-performance-problems-part-2-bad-coding-inefficient-logging-exceptions/
http://apmblog.dynatrace.com/2016/03/08/top-tomcat-performance-problems-part-2-bad-coding-inefficient-logging-exceptions/
http://apmblog.dynatrace.com/2016/03/08/top-tomcat-performance-problems-part-2-bad-coding-inefficient-logging-exceptions/
https://www.elastic.co/products/logstash/


36 Sangeeta Lal, Neetu Sardana, Ashish Sureka

[22] Splunk homepage, Splunk, Inc. [Online].
http://www.splunk.com/ [Accessed 27 July
2016].

[23] S. Kabinna, C.P. Bezemer, W. Shang, and A.E.
Hassan, “Examining the stability of logging state-
ments,” in The 23rd IEEE International Con-
ference on Software Analysis, Evolution, and
Reengineering SANER, 2016.

[24] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Sav-
age, “Improving software diagnosability via log
enhancement,” in Proceedings of the Sixteenth
International Conference on Architectural Sup-
port for Programming Languages and Operating
Systems. New York: ACM, 2011, pp. 3–14.

[25] D. Yuan, S. Park, P. Huang, Y. Liu, M.M. Lee,
X. Tang, Y. Zhou, and S. Savage, “Be conserva-
tive: Enhancing failure diagnosis with proactive
logging,” in Proceedings of the 10th USENIX
Conference on Operating Systems Design and
Implementation, 2012, pp. 293–306.

[26] T. Nurkiewicz, 10 tips for proper application
logging. [Online]. http://www.javacodegeeks.
com/2011/01/10-tips-proper-application-
logging.html [Accessed 19 Oct 2015].

[27] Why does the TRACE level exists, and
when should I use it rather than DEBUG?
[Online]. http://programmers.stackexchange.
com/questions/279690/why-does-the-trace-
level-exists-and-when-should-i-use-it-rather-
than-debug [Accessed 22 Oct 2015].

[28] T. Menzies, J. Greenwald, and A. Frank, “Data
mining static code attributes to learn defect pre-
dictors,” IEEE Transactions on Software Engi-
neering, Vol. 33, No. 1, Jan. 2007, pp. 2–13.

[29] S. Kim, E.J.W. Jr., and Y. Zhang, “Classifying
software changes: Clean or buggy?” IEEE Trans-
actions on Software Engineering, Vol. 34, No. 2,
Mar. 2008, pp. 181–196.

[30] Y. Zhang, D. Lo, X. Xia, and J. Sun, “An
empirical study of classifier combination for
cross-project defect prediction,” in 39th Annual
Computer Software and Applications Conference
COMPSAC, Vol. 2, Jul. 2015, pp. 264–269.

[31] Y. Hu, X. Zhang, E. Ngai, R. Cai, and M. Liu,
“Software project risk analysis using Bayesian
networks with causality constraints,” Decision
Support Systems, Vol. 56, 2013, pp. 439–449.

[32] X. Xia, D. Lo, X. Wang, X. Yang, S. Li, and
J. Sun, “A comparative study of supervised learn-
ing algorithms for re-opened bug prediction,” in
17th European Conference on Software Mainte-
nance and Reengineering CSMR. IEEE, 2013,
pp. 331–334.

[33] T.G. Dietterich, “Ensemble learning,” in The
handbook of brain theory and neural networks,
2nd ed., M.A. Arbib, Ed. MIT Press: Cambridge,
MA, 2002, pp. 405–408.

[34] Z.H. Zhou, “Ensemble learning,” Encyclopedia
of Biometrics, 2015, pp. 411–416.

[35] L. Breiman, “Bagging predictors,” Machine
Learning, Vol. 24, No. 2, 1996, pp. 123–140.

[36] L. Breiman, “Random forests,” Mach. Learn.,
Vol. 45, No. 1, Oct. 2001, pp. 5–32.

[37] Y. Freund and R.E. Schapire, “A decision-the-
oretic generalization of on-line learning and an
application to boosting,” Journal of Computer
and System Sciences, Vol. 55, No. 1, Aug. 1997,
pp. 119–139.

[38] J.R. Quinlan, “Bagging, boosting, and C4.S,” in
Proceedings of the Thirteenth National Confer-
ence on Artificial Intelligence – Volume 1. AAAI
Press, 1996, pp. 725–730.

[39] J. Han, M. Kamber, and J. Pei, Data Mining:
Concepts and Techniques, 3rd ed. San Francisco:
Morgan Kaufmann Publishers Inc., 2011.

[40] D.H. Wolpert, “Stacked generalization,” Neural
networks, Vol. 5, No. 2, 1992, pp. 241–259.

[41] A. Panichella, R. Oliveto, and A.D. Lucia,
“Cross-project defect prediction models: L’union
fait la force,” in IEEE Conference on Software
Maintenance, Reengineering and Reverse Engi-
neering CSMR-WCRE, Feb. 2014, pp. 164–173.

[42] X. Xia, D. Lo, E. Shihab, X. Wang, and X. Yang,
“ELBlocker: Predicting blocking bugs with en-
semble imbalance learning,” Information and
Software Technology, Vol. 61, 2015, pp. 93–106.

[43] W. Dai, Q. Yang, G.R. Xue, and Y. Yu, “Boost-
ing for transfer learning,” in Proceedings of
the 24th International Conference on Machine
Learning. New York: ACM, 2007, pp. 193–200.

[44] S.J. Pan, I.W. Tsang, J.T. Kwok, and Q. Yang,
“Domain adaptation via transfer component anal-
ysis,” IEEE Transactions on Neural Networks,
Vol. 22, No. 2, Feb. 2011, pp. 199–210.

[45] X. Xia, D. Lo, S. McIntosh, E. Shihab, and
A.E. Hassan, “Cross-project build co-change pre-
diction,” in 22nd International Conference on
Software Analysis, Evolution, and Reengineering
SANER, Mar. 2015, pp. 311–320.

[46] S.J. Pan, X. Ni, J.T. Sun, Q. Yang, and Z. Chen,
“Cross-domain sentiment classification via spec-
tral feature alignment,” in Proceedings of the
19th international conference on World wide web.
ACM, 2010, pp. 751–760.

[47] Y. Freund and R.E. Schapire, Experiments
with a new boosting algorithm, (1996).[Online].

http://www.splunk.com/
http://www.javacodegeeks.com/2011/01/10-tips-proper-application-logging.html
http://www.javacodegeeks.com/2011/01/10-tips-proper-application-logging.html
http://www.javacodegeeks.com/2011/01/10-tips-proper-application-logging.html
http://programmers.stackexchange.com/questions/279690/why-does-the-trace-level-exists-and-when-should-i-use-it-rather-than-debug
http://programmers.stackexchange.com/questions/279690/why-does-the-trace-level-exists-and-when-should-i-use-it-rather-than-debug
http://programmers.stackexchange.com/questions/279690/why-does-the-trace-level-exists-and-when-should-i-use-it-rather-than-debug
http://programmers.stackexchange.com/questions/279690/why-does-the-trace-level-exists-and-when-should-i-use-it-rather-than-debug


ECLogger: Cross-Project Catch-Block Logging Prediction Using Ensemble of Classifiers 37

http://www.public.asu.edu/~jye02/CLASSES/
Fall-2005/PAPERS/boosting-icml.pdf

[48] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I.H. Witten, “The WEKA
data mining software: An update,” SIGKDD
Explor. Newsl., Vol. 11, No. 1, Nov. 2009, pp.
10–18.

[49] M. Sewell, “Ensemble learning,” RN, Vol. 11,
No. 02, 2008.

[50] Y. Freund and L. Mason, “The alternating deci-
sion tree learning algorithm,” in Proceedings of
the Sixteenth International Conference on Ma-
chine Learning, 1999, pp. 124–133.

[51] K. Murphy, A brief introduction to graph-
ical models and Bayesian networks. [On-
line]. http://www.cs.ubc.ca/~murphyk/Bayes/
bnintro.html [Accessed 20 March 2016].

[52] T.D. Nielsen and F.V. Jensen, Bayesian net-
works and decision graphs. Springer Science &
Business Media, 2009.

[53] R. Kohavi, “The power of decision tables,” in
Machine Learning: ECML-95, ser. Lecture Notes
in Computer Science (Lecture Notes in Artifi-
cial Intelligence), N. Lavrac and S. Wrobel, Eds.
Springer, 1995, Vol. 912, pp. 174–189.

[54] G.H. John, R. Kohavi, K. Pfleger et al., “Irrele-
vant features and the subset selection problem,”
inMachine Learning: Proceedings of the Eleventh
International Chonference, 1994, pp. 121–129.

[55] A. Padhye, Classification methods.
[Online]. http://www.d.umn.edu/~padhy005/
Chapter5.html [Accessed 20 March 2016].

[56] D.W. Hosmer and S. Lemeshow, “Introduction
to the logistic regression model,” Applied Logistic
Regression, Second Edition, 2000, pp. 1–30.

[57] D.D. Lewis, “Naive (Bayes) at forty: The inde-
pendence assumption in information retrieval,”
in Proceedings of the 10th European Confer-
ence on Machine Learning. London, UK, UK:
Springer-Verlag, 1998, pp. 4–15.

[58] S. Shivaji, E.J. Whitehead, R. Akella, and
S. Kim, “Reducing features to improve code
change-based bug prediction,” IEEE Transac-
tions on Software Engineering, Vol. 39, No. 4,
2013, pp. 552–569.

[59] M.D. Buhmann and M.D. Buhmann, Radial Ba-
sis Functions. New York: Cambridge University
Press, 2003.

[60] Python NLTK library, NLTK Project. [Online].
http://www.nltk.org/ [Accessed 19 March 2016].

[61] P. Krill, Java regains spot as most popular
language in developer index. [Online].
http://www.infoworld.com/article/2909894/
application-development/java-back-at-1-in-

language-popularity-assessment.html [Accessed
19 March 2016].

[62] Apache project homepage, The Apache Software
Foundation. [Online]. https://commons.apache.
org/proper/commons-logging/ [Accessed 18
March 2016].

[63] Cloudstack project homepage, The Apache Soft-
ware Foundation. [Online]. https://cloudstack.
apache.org/ [Accessed 18 March 2016].

[64] Hadoop project homepage, The Apache Software
Foundation. [Online]. http://hadoop.apache.org/
[Accessed 18 March 2016].

[65] B. Chen and Z.M. (Jack) Jiang, “Characterizing
logging practices in Java-based open source soft-
ware projects – a replication study in Apache
Software Foundation,” Empirical Software Engi-
neering, 2016, pp. 1–45.

[66] D. Correa and A. Sureka, “Chaff from the wheat:
Characterization and modeling of deleted ques-
tions on Stack Overflow,” in Proceedings of the
23rd International Conference on World Wide
Web. New York: ACM, 2014, pp. 631–642.

[67] S. Shivaji, E.J.W. Jr., R. Akella, and S. Kim,
“Reducing features to improve bug prediction,”
in Proceedings of the 2009 IEEE/ACM Interna-
tional Conference on Automated Software Engi-
neering. Washington: IEEE Computer Society,
2009, pp. 600–604.

[68] C.D. Manning, P. Raghavan, and H. Schütze, In-
troduction to Information Retrieval. New York:
Cambridge University Press, 2008.

[69] Y. Tian, J. Lawall, and D. Lo, “Identifying Linux
bug fixing patches,” in Proceedings of the 34th
International Conference on Software Engineer-
ing. Piscataway: IEEE Press, 2012, pp. 386–396.

[70] H. Valdivia Garcia and E. Shihab, “Charac-
terizing and predicting blocking bugs in open
source projects,” in Proceedings of the 11th Work-
ing Conference on Mining Software Repositories.
New York: ACM, 2014, pp. 72–81.

[71] F. Zhang, Q. Zheng, Y. Zou, and A.E. Hassan,
“Cross-project defect prediction using a connec-
tivity-based unsupervised classifier,” in Proceed-
ings of the 38th International Conference on
Software Engineering. New York: ACM, 2016,
pp. 309–320.

[72] G. Zhou, D. Shen, J. Zhang, J. Su, and S. Tan,
“Recognition of protein/gene names from text
using an ensemble of classifiers,” BMC bioinfor-
matics, Vol. 6, No. 1, 2005, p. 1.

[73] R.F. Satin, I.S. Wiese, and R. Ré, “An ex-
ploratory study about the cross-project defect
prediction: Impact of using different classifica-
tion algorithms and a measure of performance in

http://www.public.asu.edu/~jye02/CLASSES/Fall-2005/PAPERS/boosting-icml.pdf
http://www.public.asu.edu/~jye02/CLASSES/Fall-2005/PAPERS/boosting-icml.pdf
http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html
http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html
http://www.d.umn.edu/~padhy005/Chapter5.html
http://www.d.umn.edu/~padhy005/Chapter5.html
http://www.nltk.org/
http://www.infoworld.com/article/2909894/application-development/java-back-at-1-in-language-popularity-assessment.html
http://www.infoworld.com/article/2909894/application-development/java-back-at-1-in-language-popularity-assessment.html
http://www.infoworld.com/article/2909894/application-development/java-back-at-1-in-language-popularity-assessment.html
https://commons.apache.org/proper/commons-logging/
https://commons.apache.org/proper/commons-logging/
https://cloudstack.apache.org/
https://cloudstack.apache.org/
http://hadoop.apache.org/


38 Sangeeta Lal, Neetu Sardana, Ashish Sureka

building predictive models,” in Latin American
Computing Conference CLEI. IEEE, 2015, pp.
1–12.

[74] A. Jordan, “On discriminative vs. generative clas-
sifiers: A comparison of logistic regression and
Naive Bayes,” Advances in neural information
processing systems, Vol. 14, 2002, p. 841.

[75] Neural networks, StatSoft, Inc. [On-
line]. http://www.fmi.uni-sofia.bg/fmi/statist/
education/textbook/eng/stneunet.html [Ac-
cessed 30 July 2016].

[76] T.G. Dietterich, “Ensemble methods in machine
learning,” in Proceedings of the First Interna-
tional Workshop on Multiple Classifier Systems.
London, UK, UK: Springer-Verlag, 2000, pp.
1–15.

[77] S.B. Kotsiantis, “Supervised machine learning:
A review of classification techniques,” in Pro-
ceedings of the 2007 Conference on Emerging
Artificial Intelligence Applications in Computer
Engineering: Real Word AI Systems with Appli-
cations in eHealth, HCI, Information Retrieval
and Pervasive Technologies. Amsterdam, The
Netherlands, The Netherlands: IOS Press, 2007,
pp. 3–24.

[78] Z.H. Zhou, Ensemble methods: foundations and
algorithms. CRC Press, 2012.

[79] R.T. Guy, P. Santago, and C.D. Langefeld,
“Bootstrap aggregating of alternating decision
trees to detect sets of SNPs that associate with
disease,” Genetic epidemiology, Vol. 36, No. 2,
2012, pp. 99–106.

[80] E. Bauer and R. Kohavi, “An empirical com-
parison of voting classification algorithms: Bag-
ging, boosting, and variants,” Machine Learning,
Vol. 36, No. 1-2, 1999, pp. 105–139.

[81] G. Brown and L.I. Kuncheva, “Good and bad
diversity in majority vote ensembles,” in Interna-

tional Workshop on Multiple Classifier Systems.
Springer, 2010, pp. 124–133.

[82] P.R. Campos, V.M. de Oliveira, and F.B. Mor-
eira, “Small-world effects in the majority-vote
model,” Physical Review E, Vol. 67, No. 2, 2003,
p. 026104.

[83] L.I. Kuncheva, C.J. Whitaker, C.A. Shipp, and
R.P. Duin, “Limits on the majority vote accu-
racy in classifier fusion,” Pattern Analysis &
Applications, Vol. 6, No. 1, 2003, pp. 22–31.

[84] Sheng, Cloudstack and Hadoop: A
match made in the cloud. [On-
line]. http://nosql.mypopescu.com/post/
20461845393/cloudstack-and-hadoop-a-match-
made-in-the-cloud#fn:2-fn-Sheng/ [Accessed 27
July 2016].

[85] Additional installation options, The Apache
Software Foundation. [Online]. http://docs.
cloudstack.apache.org/projects/cloudstack-
installation/en/4.9/optional_installation.html
[Accessed 27 July 2016].

[86] M. Mitchell, An introduction to genetic algo-
rithms. MIT Press, 1998.

[87] C. Zhai and S. Massung, Text Data Manage-
ment and Analysis: A Practical Introduction to
Information Retrieval and Text Mining. Associa-
tion for Computing Machinery and Morgan &
Claypool Publishers, 2016.

[88] L. Jonsson, M. Borg, D. Broman, K. Sandahl,
S. Eldh, and P. Runeson, “Automated bug assign-
ment: Ensemble-based machine learning in large
scale industrial contexts,” Empirical Software
Engineering, 2015, pp. 1–46.

[89] M. Borg, “TuneR: a framework for tuning soft-
ware engineering tools with hands-on instruc-
tions in R,” Journal of Software: Evolution and
Process, Vol. 28, No. 6, 2016, pp. 427–459.

http://www.fmi.uni-sofia.bg/fmi/statist/education/textbook/eng/stneunet.html
http://www.fmi.uni-sofia.bg/fmi/statist/education/textbook/eng/stneunet.html
http://nosql.mypopescu.com/post/20461845393/cloudstack-and-hadoop-a-match-made-in-the-cloud#fn:2-fn-Sheng/
http://nosql.mypopescu.com/post/20461845393/cloudstack-and-hadoop-a-match-made-in-the-cloud#fn:2-fn-Sheng/
http://nosql.mypopescu.com/post/20461845393/cloudstack-and-hadoop-a-match-made-in-the-cloud#fn:2-fn-Sheng/
http://docs.cloudstack.apache.org/projects/cloudstack-installation/en/4.9/optional_installation.html
http://docs.cloudstack.apache.org/projects/cloudstack-installation/en/4.9/optional_installation.html
http://docs.cloudstack.apache.org/projects/cloudstack-installation/en/4.9/optional_installation.html

	Introduction
	Related work and novel research contributions
	Logging applications
	Logging code analysis and improvement
	Machine learning applications in logging
	Ensemble methods
	Cross-project prediction
	Research contributions

	Background
	Machine learning algorithms
	AdaBoostMI1 (ADA) 
	Alternating decision tree (ADT)
	Bayesian network (BN)
	Decision table (DT)
	J48
	Logistic regression (LR) 
	Naïve Bayes (NB)
	Random forest (RF)
	Radial basis function network (RBF)

	Ensemble techniques 
	Bagging
	Voting


	ECLogger model
	Phase 1: (model building)
	Phase 2: (prediction)

	Experimental details
	Experimental dataset selection
	Experimental dataset preparation
	Experimental environment
	Design of the experiment
	Evaluation metrics

	Experimental results
	Research questions
	RO1: Performance of the single classifier for cross-project catch-block logging prediction
	RQ1: How is the performance of within-project different from cross-project catch-block logging prediction
	RQ2: Which is better, the single-project or multi-project training model for cross-project catch-block logging prediction?
	RQ3: Are different classifiers complimentary to each other when applied to cross-project catch-block logging prediction? 
	RQ4: Are the algorithms that perform best for within-project and cross-project catch-block logging predictions identical?

	RO2: Performance of ensemble-based classifiers for cross-project catch-block logging prediction
	RQ5: What is the performance of ECLoggerBagging for cross-project catch-block logging prediction?
	RQ6: What is the performance of ECLoggerAverageVote for cross-project catch-block logging prediction?
	RQ7: What is the performance of ECLoggerMajorityVote for cross-project catch-block logging prediction?
	RQ8: What is the average performance of the baseline classifier and ECLoggerModels over all the source and target project pairs?


	Discussion
	Threats to validity
	Conclusion and future work
	References


