e-Informatica Software Engineering Journal, Volume 11, Issue 1, 2017, pages: 103-116, DOI 10.5277/e-Inf170105

NRFixer: Sentiment Based Model for Predicting
the Fixability of Non-Reproducible Bugs

Anjali Goyal*, Neetu Sardana*
*Jaypee Institute of Information Technology, Noida, India

anjaligoyall9@yahoo.in, neetu.sardana@jiit.ac.in

Abstract

Software maintenance is an essential step in software development life cycle. Nowadays, software
companies spend approximately 45% of total cost in maintenance activities. Large software projects
maintain bug repositories to collect, organize and resolve bug reports. Sometimes it is difficult
to reproduce the reported bug with the information present in a bug report and thus this bug is
marked with resolution non-reproducible (NR). When NR bugs are reconsidered, a few of them
might get fixed (NR-to-fix) leaving the others with the same resolution (NR). To analyse the
behaviour of developers towards NR-to-fix and NR bugs, the sentiment analysis of NR bug report
textual contents has been conducted. The sentiment analysis of bug reports shows that NR bugs’
sentiments incline towards more negativity than reproducible bugs. Also, there is a noticeable
opinion drift found in the sentiments of NR-to-fix bug reports. Observations driven from this
analysis were an inspiration to develop a model that can judge the fixability of NR bugs. Thus
a framework, NRFixer, which predicts the probability of NR bug fixation, is proposed. NRFixer was
evaluated with two dimensions. The first dimension considers meta-fields of bug reports (model-1)
and the other dimension additionally incorporates the sentiments (model-2) of developers for
prediction. Both models were compared using various machine learning classifiers (Zero-R, Naive
Bayes, J48, random tree and random forest). The bug reports of Firefox and Eclipse projects were
used to test NRFixer. In Firefox and Eclipse projects, J48 and Naive Bayes classifiers achieve
the best prediction accuracy, respectively. It was observed that the inclusion of sentiments in
the prediction model shows a rise in the prediction accuracy ranging from 2 to 5% for various
classifiers.

Keywords: bug report, bug triaging, non-reproducible bugs, sentiment analysis, mining
software repositories

1. Introduction

A software bug is an error or fault in a program
which causes the software to behave in unin-
tended ways. Software bugs are usually annoying
and inconvenient for developers, often leading
to serious consequences. Large software projects
use bug tracking repositories where the users and
developers report all the bugs they encounter.
The developers try to reproduce the bugs with
the help of information provided by a reporter in
a bug report and then make the required correc-
tions in the source code to rectify the issue. How-
ever, sometimes it is not possible to reproduce
the reported bug with the information specified

in a bug report. In such a scenario, the bug is
marked with resolution “Non-Reproducible” or
“works for me”.

NR bugs account for approximately 17% of
all bug reports and 3% of these bugs are later
marked as fixed [1]. There could be various rea-
sons behind this fixation of NR bugs. It may
be due to any new code patch that might be
made available by the reporter, user or devel-
oper which could help to reproduce the cause of
a bug, or there may be various ways of fixing
it. Thus the choice of the solution tested by the
developer to reproduce or fix the bug could be
wrong [2] and either a new solution or a new
developer can reproduce and fix the NR bug.

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_11/eInformatica2017Art5.pdf

104

Anjali Goyal, Neetu Sardana

Another reason could be that the developer had
initially marked the bug as NR erroneously due
to negligence or, possibly, in reluctance to re-
duce his or her workload. Thus at later times,
a new or previously assigned developer solves
the bug. If there was a mechanism which could
provide information to the developer beforehand
whether the bug report currently marked as NR
would be fixed in the future or not, it would not
only provide insights to a triager, but also help
developers to predict if a bug report marked as
NR could be fixed in the future or not. This
would save time, effort and cost incurred in
those NR bugs in the case of which there is
low probability of fixing. With the use of such
a mechanism, developers and a triager can ac-
tually devote their precious time and efforts to
those bugs that are regarded as fixable by the
proposed mechanism. This would also raise the
level of interest among developers towards NR
bugs.

The objective of this work is to establish if it
is possible that a bug report, currently marked as
NR, will get fixed in the future or not. Thus, the
investigation of bug reports is carried out at two
different levels. At the first level, the sentiments
of comment messages in NR bugs are mined to
investigate whether there is any difference be-
tween the sentiments of NR-to-fix bug reports
and NR bug reports that do not get fixed. At
the second level, the NRFixer framework that
predicts the probability of NR bug fixation is pro-
posed. NRFixer is evaluated with two dimensions.
The first dimension considers the meta-fields of
bug reports, such as a component, hardware,
a platform, etc., to develop a prediction model-1.
Another dimension additionally incorporates sen-
timents along with the existing meta-fields of
a bug report to develop prediction model-2. In
this work, the investigations were carried out
with reference to six research questions (RQs)
to attain two research objectives (ROs). RO1 in-
vestigates the sentiment analysis of bug reports
using (RQ1-RQ4), whereas RO2 examines the
performance of NRFixer using (RQ5-RQ6).
Research Objective 1 (RO1): Exploring sen-
timents in bug reports.

— RQ1. Do sentiments exist in the NR bug
reports?

— RQ2. What is the difference between senti-
ments of reproducible (R) bugs and NR bugs?

— RQ3. Do the sentiments of developers vary
in different categories of NR bugs?

— RQA4. Compare the developer’s sentiments for
the bug report passing through the stages:
‘Newbug-to-NR’ and ‘NR-to-fix’?

Research Objective 2 (RO2): The fixability

prediction of NR bugs.

— RQ5. What is the probability of NR fixing
with the use of different classifiers?

— RQ6. Does the inclusion of the category of
an NR bug and the sentiments of developers
affect the accuracy of a prediction model?
For experimental evaluation, bug reports ex-

tracted from Eclipse and Firefox projects of

Bugzilla repository were used to gauge the pres-

ence of sentiments. Bugzilla is the most popular

open source bug repository used by different pop-
ular projects, such as Firefox, Eclipse, Linux, etc.

Both prediction models (model-1 and model-2)

were evaluated using various machine learning

classifiers. It was observed that model-1 achieved
an accuracy of 70.2% for Firefox and 66.4% for
the Eclipse project. The inclusion of sentiments

(model-2) further achieved an increase of 2-5%

in precision values.

The remainder of this paper is structured as
follows. Section 2 illustrates the related work. Sec-
tion 3 discusses certain preliminaries. Section 4
presents the proposed architecture for NRFixer.
Section 5 provides experimental details. Section 6
presents the results of experimental evaluation.
Section 7 discusses various threats to validity. Fi-
nally, section 8 concludes the paper and discusses
future directions for research.

2. Background

This section presents the previous works closely
related to the areas: a) Sentiment analysis of
bug reports and b) Prediction models in bug
repositories.

2.1. Sentiment analysis of bug reports

Sentiment analysis is becoming an important
area in the field of natural language analysis.

NRFizer: Sentiment Based Model for Predicting the Fizability of Non-Reproducible Bugs

105

It comprehends the natural language processing,
text analysis, computational logistics with the hu-
man psychology to gain an individual’s attitude
to or feeling about a particular situation or prod-
uct. It is the “task of identifying positive and neg-
ative opinions, emotions and evaluations” [3]. Ju-
rado et al. [4] confirmed that developers do leave
sentiments in the textual units of issue reposito-
ries. Murgia et al. [5] analysed the existence of
emotions in software artefacts, such as issue re-
ports. Their finding confirms the presence of var-
ious emotions, such as joy, love, surprise, anger,
sadness and fear in issue reports. They also re-
ported that emotions have an impact on software
development activities, such as bug fixing. A de-
veloper possessing negative emotions may not be
able to fix the bug and, thus, it should be assigned
to some other developer. Tourani et al. [6] evalu-
ated automatic sentiment analysis in open source
mailing lists of the Apache project. The manual
study of the emails performed by them contains
19.77% positive sentiments and 11.27% contains
negative sentiments. Garcia et al. [7] presented
a case study on the Gentoo project of the Bugzilla
repository to mine the role of emotions in the
contributor’s activities. Their study found that
a contributor become inactive after experiencing
strong positive or negative emotions.

Pletea et al. [8] gauged the presence of emo-
tions in the security related discussions on the
GitHub repository. They found that more neg-
ative emotions are expressed in security related
discussions than in other discussions. The results
obtained reflect the reluctance of developers
towards the sensitive issue of security. Guzman
et al. [9] analysed the sentiments of commit
comments in the GitHub repository with respect
to four parameters: programming language, day
of the week and time of writing the comment,
geographic distribution of a team and project
approval. Destefanis et al. [10] showed that
politeness in developers’ comments affects the
time to fix an issue.

2.2. Prediction models in bug
repositories

As for the prediction model, Garcia et al. [11]
built a model to predict blocking bugs. This

work is similar to the work on using various
machine learning classifiers for prediction. They
utilized 14 different parameters to discriminate
between blocking and non-blocking bugs and
then compared the efficiency of a decision tree,
Naive Bayes, kNN, random forest and Zero-R
classifier. They achieved an F-measure of 15-42%
by tenfold cross validation on various different
bug datasets. The prediction analysis described
in this paper is similar to their work. However,
there is a difference in the manner of predicting
the NR bugs that may get fixed in the future.

Shihab et al. [12] addressed the nature of
bugs that get reopened. They used 22 different
factors categorized under four dimensions: (1)
the work habits dimension, (2) the bug report
dimension, (3) the bug fix dimension, and (4)
the team dimension. Their model achieved a pre-
cision of 52.1% to 78.6% and a recall of 70.5%
to 94.1% when predicting whether a bug will
be reopened or not. They also found a comment
text and the last status to be the most influential
factors for predicting the possibility of reopening.
Hewett et al. [13] predicted the time required to
repair software defects. Their model achieved an
accuracy of 93.44% on medical software system
dataset. Guo et al. [14] proposed a statistical
model to predict the possibility of fixing a newly
arrived bug. Their model achieved 68% precision
and 64% recall on the Windows Vista project.
They further validated their model by conduct-
ing a survey among 1773 Microsoft employees.
Zimmermann et al. [15] also investigated and
characterized the reopened bugs in Microsoft
Windows to find the possible causes of reopening
bugs and their impact.

3. Preliminaries

This section summarizes the basic information
about a bug report, sentiment analysis technique
and various machine learning classifiers used in
this paper.

3.1. Bug report

A bug report is a document containing complete
specification related to a bug. A bug report may

106

Anjali Goyal, Neetu Sardana

be created by an end user, developer or beta
tester of the software project. A bug report con-
stitutes various predefined meta-fields and free
form textual contents. The predefined meta-fields
include bug id, product, component, operating
system, platform, milestone, severity, version,
status, resolution, reporter, reported date and
time, assigned to, etc. The textual contents in-
clude keywords, summary (or tagline), descrip-
tion and comments. “Summary” refers to the
one-line short definition about the bug. “Descrip-
tion” refers to the complete detailed specification
submitted by the reporter regarding the submit-
ted bug. It forms the main body of the bug
report that generally incorporates the steps to
reproduce the issue. “Comments” refers to the
open discussion by a group of people to discuss
and review the solutions for the reported bug.
This group of people generally comprehends some
expertise in the related area of the bug.

3.2. Sentiment analysis

Sentiment analysis is a technique to extract, iden-
tify or characterize the sentimental content of
a text unit. It assigns a quantitative value rep-
resenting the contextual polarity of the text. To
analyse the sentiments in bug reports natural
language text processing (NLTK) toolkit was
used [16]. NLTK takes a text unit as an input
and performs a two-level classification. Level 1
determines whether the text is neutral or polar.
A text unit may or may not contain sentiments.
If the probability of the lack of sentiment is
greater than 0.5, the text is labelled as neutral.
Otherwise, if the probability of the presence of
sentiments is greater than 0.5, the text is labelled
as polar, and the second level classification is per-
formed to determine whether the text expresses
positive or negative sentiment. The label with
higher probability is finally assigned to the input
text.

3.3. Machine learning classifiers

1. Zero-R: Zero-R (or no rule classifier) is
the simplest classification algorithm. It al-
ways predicts the majority class present in

the training dataset. Although it has no
predictability power, it is useful in the de-
termination of the baseline performance as
a benchmark. In this study, during each fold
of cross validation, the Zero-R classifier pre-
dicts the majority class among NR-to-NR and
NR-to-fix classes during that fold. The indi-
vidual fold efficiencies related to NR-to-fix
class are aggregated to compute the overall
efficiency of the Zero-R classifier for NR-to-fix
class.

Naive Bayes: Naive Bayes [17] is a simple
probabilistic classification algorithm based
on Bayes’ theorem. It classifies a new record
r=<1,...,Tp > to class k that maximizes
the conditional probability:

P(C=k/X)=<mz,...,2p >

Under the assumption that the factors are
randomly independent of each other, the
Naive Bayes classifier can be re-written as:
Here, P(C = k) is known as the class prior
probability and can be approximated with
the percentage of training files marked with
label k. The likelihood or conditional prob-
ability P(x;/C = k) can be estimated with
Ni, * i/ Ny, where the numerator is the num-
ber of records marked with label k for which
the i;,-factor is equal to and the denominator
is the number of records regarded with label k.
The probability P(X = z) is the predictor
of the prior probability and is constant with
respect to the different classes.

J48: J48 is the open source Java implemen-
tation of the C4.5 algorithm [18] in the weka
data mining toolkit. C4.5 builds decision trees
from a set of training data in the same way
as ID3, using the concept of information gain
and entropy. The training data is a set

S =sl,82,...
of already classified samples. Each sample
consists of a p-dimensional vector
(x(l,i)a L(2,4)5 -+ fE(p,i)),

where the x; represent attribute values or
features of the sample, as well as the class
in which falls. At each node of the tree, C4.5

NRFizer: Sentiment Based Model for Predicting the Fizability of Non-Reproducible Bugs

107

algorithm selects the attribute of the data
that most efficiently splits the samples into
subsets enriched in one class or the other. The
criterion for splitting is the largest normalized
information gain. The attribute with the high-
est normalized information gain is selected
to build the decision. The C4.5 algorithm is
then run recursively on smaller sub lists until
data are classified [17].

4. Random Forest: Random forest [19,20] is
an ensemble learning algorithm for data classi-
fication. It is a meta estimator that makes the
prediction based on the majority vote of the
multitude of decision trees. This classification
algorithm reduces the variance of the indi-
vidual decision trees and makes the classifier
more resilient to noise in the training data
set. For constructing the Random Forests
of m decision trees, m bootstrap samples are
generated from the training data set and each
of them is utilized for training a decision tree.

5. Random Tree: Random decision tree algo-
rithm builds multiple decision trees randomly.
While building a decision tree, the classifica-
tion algorithm picks a “remaining” feature
randomly at each node without any accuracy
estimation procedure (such as cross valida-
tion). A categorical attribute (such as gen-
der) is considered “remaining” if the same
categorical attribute has not been selected
formerly in a particular decision path arising
from the root to the current node of the tree.
A continuous attribute (such as income), on
the other hand, can be selected more than
once in the same decision path. Every time
the continuous attribute is selected, a random
threshold is chosen.

4. NRFixer: proposed architecture

Objective: To find out if there is a possibility
that a bug report currently marked as NR will
get fixed in the future.

Input: To find out if there is a possibility that
a bug report currently marked as NR will get
fixed in the future.

Output: Predicted class: NR-to-fix or NR-to-NR.

Proposed approach: The proposed approach
uses bug reports currently marked as NR to
predict whether it will be fixed in the future
or not. Two prediction models were developed
and are compared. To develop the prediction
model-1, as shown in Figure 1, it extracts eight
bug report meta-fields such as product, com-
ponent, hardware, severity, priority, cc count,
number of comments and keywords to train ma-
chine learning classifiers (Zero-R, Naive Bayes,
J48, random forest and random tree). Prediction
model-2 additionally uses the extracted parame-
ters namely developer’s sentiments and NR bug
category along with the eight meta-fields consid-
ered in model-1 to train the machine learning
classifiers and predicts the class label (NR-to-fix
or NR-to-NR).

5. Experimental details

In this section, the experimental details for the
prediction of NR-to-fix bugs are presented. For
the Eclipse and Firefox projects, various bug re-
port meta-fields were used for prediction and
five different classifiers were compared. The
classifiers are Zero-R, Naive Bayes, J48, ran-
dom forest and random tree. In this experiment
a weka toolkit was used. The NR bugs were
investigated and the probability of their fixation
was predicted.

5.1. Dataset

The data for this study were extracted from the
dataset used by Joorabchi et al. [1]. The bug
reports of the Firefox and Eclipse projects were
used for experimentation. The sentiments of a to-
tal of 419 NR bug reports containing 4250 text
units were analysed. In the dataset, a single bug
report contains a varying number of comment
messages which ranges from 1 to 83.

5.2. Experiment parameters

Various meta-fields of bug reports were consid-
ered to determine the fixable NR bugs. All factors
are listed below:

108

Anjali Goyal, Neetu Sardana

Product
Component
Hardware —> @ —>| Predicted
R Severity @ Class
Priority
Cfc count Prediction
No. of comments Model 1
- Keywords
Bug NR Bug
Repository Reports
.| Sentiments
"] category
@ —>| Predicted
@ Class
Prediction
Model 2

Figure 1. NRFixer: Prediction model for NR bugs

1. Product: It refers to the general area the
bug belongs to.

2. Component: It refers to the second level
categorization of a product.

3. Hardware: It indicates the computing envi-
ronment where the bug originated.

4. Severity: It describes the impact of the bug.
This field offers options, such as severe, nor-
mal and minor.

5. Priority: The priority field is used to prior-
itize bug reports. The values of the priority
field ranges from P1 to P5 (P1 being the high-
est priority and P5 being the lowest priority
value).

6. CC Count: It defines the number of develop-
ers in the cc list of the bug report. It is usually
the number of developers participating in the
bug report.

7. No. of comments: It refers to the number
of comments made by the developers in order
to resolve the bug.

8. Keywords: It refers to the tags or catego-
rization of bug reports.

Two more parameters were added in the predic-

tion model:

1. Sentiment: It refers to the positive, negative
or neutral value expressed by a textual unit.

2. Category: It refers to the cause category
of the bug. The non-reproducible bugs are
classified into six cause categories namely,

inter-bug dependencies, environmental differ-

ences, insufficient information, conflicting ex-

pectations, non-deterministic behaviour and
others.

Once the aforementioned factors are ex-
tracted, they are used to train various machine
learning classifiers in order to predict the fixable
bugs from the currently NR marked bugs. The
different classifiers used for the prediction of NR
in the case of fixed bugs are discussed in the
following section.

5.3. Evaluation metrics

To evaluate the performance of the prediction

model, standard performance evaluation metrics

was used: precision, recall and F-measure.

1. Precision: It refers to the fraction of relevant
instances retrieved from the total instances
that are retrieved.

ip
tp+ fp
2. Recall: It refers to the fraction of relevant

instances retrieved from the total relevant
instances.

Precision =

tp

Recall = ———
cea tp+ fn

NRFizer: Sentiment Based Model for Predicting the Fizability of Non-Reproducible Bugs

109

3. F-Measure: It refers to the harmonic mean
of precision and recall.

2 x Precision * Recall
F-measure =

Precision + Recall

In the equations, tp represents the number of
positive samples correctly predicted, fp repre-
sents the number of negative samples incorrectly
predicted as positive, tn represents the number
of positive samples incorrectly predicted and fn
represents the number of negative samples cor-
rectly predicted. Table 1 shows the confusion
matrix.

The tenfold cross validation technique was
used in weka to measure the efficiency of NR-
Fixer. When only a limited amount of data is
available, cross validation is used to attain an
unbiased estimation of model performance. In
k-fold cross-validation, data is divided into k
subsets of equal size. Thus the model is built
k times, each time using sets of data for train-
ing the classifier and leaving out one subset as
a test set. In order to reduce the impact of the
class imbalance problem, the dataset re-sampling
technique was used.

6. Experimental results

This section addresses the experimental results
of the six identified research questions (RQs).
The RQs are classified under two research objec-
tives (RO). RO1 explores the sentiments in bug
reports and RO2 investigates the performance of
NRFixer.

6.1. Research objective 1 (RO1):
exploring sentiments in bug reports

This subsection answers four RQs (RQ1-RQ4)
which investigate the sentiments of developers.
Joorabchi et al. [1] claimed that a large pro-
portion of bug reports are marked as NR but
a small part of these NR bugs (approximately
3%) are fixed later. An empirical evaluation of
the sentiments of bug reports was conducted to
investigate the developer’s behaviour towards
R, NR and NR-to-fix bugs. The investigation

results of the sentiment analysis of bug reports
are presented as below.

RQ1. Do sentiments exist in the NR bug
reports? The analysis encompassed 419 NR bug
reports to detect whether bug report discussions
contain any sentiments or not. These reports con-
stituted a total of 4250 text units (419 taglines,
419 descriptions and 3412 commit comment mes-
sages written by software developers). A tagline
contains 5 to 10 words and offers a short summary
of the bug. A description contains detailed infor-
mation about the bug and usually constitutes the
steps required to reproduce the issue. Commit
comment messages contain the developer’s dis-
cussions regarding the steps that may be useful
in bug fixation. The statistics for the sentiment
analysis are shown in Figure 2. The percentage of
the analysed text units which had either positive
or negative sentiments was 65.66%. This confirms
the existence of sentiments in software artefacts,
such as issue reports as stated by [5].

On the other hand, 34.32% text units ex-
hibited no sentiments. In particular, the tagline
field exhibits 67.06% neutral sentiments. This
is because a tagline is a 5 to 10-word descrip-
tion of the bug report and thus it is difficult
for any sentiment analysis tool to extract the
polarity of sentiment in such a small amount of
text. Similarly, the description and comments
exhibit 39.85% and 29.63% neutral sentiments,
respectively. This is due to the fact that these
fields sometimes may contain a lot of technical
code to resolve the issue and thus may lack any
sentiments.

RQ2. What is the difference between sen-
timents of reproducible bugs and NR
bugs? To address this question, two categories
of bug reports were considered: the bug reports
which are marked as NR at least once in their
lifetime and fixed bug reports which are never
marked as NR, which are termed as R. For this
step, 200 R bug reports were considered (two
bug reports from this set contained textual units
in languages other than English and thus were
removed). Finally 198 R bug reports containing
1556 text units (198 taglines, 198 descriptions
and 1160 commit comment messages written by
software developers) were studied in addition

110

Anjali Goyal, Neetu Sardana

Table 1. Confusion Matrix

Positive (p)

Negative (n)

Positive (p)
Negative (n)

Ip

tn

80

70 67.06

60

50

40

30

20

10

Tagline Description

B Positive

W Negative

® Neutral

Comments Total

Figure 2. Sentiment distribution in NR bug reports

to 419 NR bug reports (containing 4250 text
units). Table 2 presents the statistics of senti-
ments in reproducible and NR bug reports. The
results show that the fraction of negative senti-
ments is higher in NR bugs (48.25%) than the
reproducible bugs (29.24%). Also the fraction of
positive sentiments is lower in NR bugs (17.41%)
than the reproducible bugs (20.24%). The results
confirm that developers have negative sentiments
while solving NR bugs. This may be due to the
smaller probability of fixing NR bugs.

RQ3. Do the sentiments of developers
vary in different categories of NR bugs?
To examine this research question, the sentiments
of 419 NR bug reports category wise were anal-
ysed. The NR bug reports are categorized into six
possible cause categories: conflict of knowledge
(32 bug reports containing 320 text units), depen-
dent bugs (83 bug reports containing 979 text
units), environmental settings (129 bug reports
containing 1192 text units), non-deterministic
bugs (16 bug reports containing 149 text units),
precise information required (113 bug reports
containing 1205 text units) and others (46 bug

reports containing 405 text units). The statis-
tics for sentiment analysis is shown in Table
3. It was found out that negative sentiments
dominated in all six categories of NR bugs. The
negative sentiments appear 29.8%-36.24% more
than positive sentiments in different cause cat-
egories. Among the various categories, the en-
vironmental setting contains maximum positive
textual units (18.62%) and the category oth-
ers contains minimum negative textual units
(37.17%).

RQ4. Compare the developer’s sentiments
for the bug report passing through the
stages ‘Newbug-to-NR’ and ‘NR-to-fix’?
To investigate NR-to-fix bugs, 100 bug reports
containing 1648 textual units (100 taglines, 100
descriptions and 1448 textual comments) were
considered, they were initially marked from reso-
lution Newbug to NR and were later marked as
fixed. NR bugs may go through various stages be-
fore being fixed. Stage 1 (Newbug-to-NR) depicts
a bug declared as NR and stage 2 (NR-to-Fix)
depicts NR being fixed. Figure 3 shows the stages
a normal NR bug usually passes through.

NRFizer: Sentiment Based Model for Predicting the Fizability of Non-Reproducible Bugs

111

Table 2. Percentage distribution of sentiments in various categories

of NR bug reports

Bug Reports

Positive (%)

Negative (%)

Neutral (%)

Tagline 5.55 16.66 7777

. Description 11.11 22.22 66.66
Reproducible Comments 24.30 32.59 43.1
Total 20.24 29.24 50.51

Tagline 7.87 925.05 67.06

. Description 10.97 49.16 39.85
Non-Reproducible " s 19.37 50.99 29.63
Total 17.41 48.25 34.32

Table 3. Percentage distribution of sentiments in various categories
of NR bug reports

Category Positive (%) Negative (%) Neutral (%)
Conflict of Knowledge 16.56 52.18 31.25
Dependant Bugs 15.32 49.23 35.44
Environmental Settings 18.62 51.00 30.36
Non-Deterministic Bugs 16.10 52.34 31.54
Precise Information Required 17.75 47.55 34.68
Others 15.38 37.17 47.43

The investigation was conducted with two
different perspectives. For primary investigation,
the overall positive and negative percentage of
sentiments were searched for in comment mes-
sages during both stages. For secondary investiga-
tion, the change in sentiments during both stages
of each bug report was analysed. To address the
developer’s sentiments during stage 1 and stage
2, the sentiments of 1448 textual comments were
analysed. Table 4 shows the statistics of senti-
ments at different stages of NR-to-fix bugs.

The primary observation during stage 1
(Newbug-to-NR) comprised 511 textual com-
ments and shows that 13.89% comments have
positive sentiments whereas 57.73% comments
have negative sentiments. During stage 2
(NR-to-fix), 937 textual comments were anal-
ysed. At stage 2, the positive percentage in-
creased to 19.10% whereas negative percentage
declined to 47.91%. Thus, it was observed that
during stage 2, the positive percentage of sen-
timents increased by 6% and the negative de-
creased by 10% as compared to the stage 1.
This incline in positivity and decline in nega-
tivity reflect the enhanced confidence of develop-
ers towards bug reports during the NR-to-fix

stage and this optimism leads to fixing NR
bugs.

For the secondary investigation, each bug
report was analysed to find the change in the
positive and negative percentage of sentiments
during both stages. It was observed that there
is an opinion drift in the sentiments of bug re-
ports in Newbug-to-NR and NR-to-fix stages.
The statistics for opinion drift in sentiments dur-
ing the Newbug-to-NR and NR-to-fix stages is
shown in Table 5. This investigation result shows
that overall in 71% bug reports either the neg-
ativity decreased or positivity increased. It was
inferred that during the initial stage of triaging,
the developers were reluctant to solve the bug,
but this reluctance decreased and as a result NR
bugs were fixed.

Investigation summary (RQ1-RQ4). In
RO1, four investigations were conducted in the
context of the sentiment analysis of bug reports.
The investigations confirm that bug reports do
express sentiments. The textual units of NR bugs
are more inclined towards negative sentiments
as compared to reproducible bugs. It has been
also found that there is an opinion drift between
the Newbug-to-NR and NR-to-fix stages. There

112

Anjali Goyal, Neetu Sardana

New Bug
Report

Stage 1
(Newbug-to-NR)

Declared as
Non- Reproducible

P T T ——

Stage 2
(NR-to-fix) _.-~

-

| Y.

Figure 3. Stages of NR bugs

Table 4. Percentage distribution of sentiments in two different stages
of bug reports: Newbug-to-NR and NR-to-fix

Negative (%) Neutral (%)

Stage Positive (%)
Newbug-to-NR(Stage 1) 13.89
NR-to-fix(Stage 2) 19.10

97.73
47.91

28.18
32.87

Table 5. Accuracy of NRFixer using various meta-fields of bug report

Opinion drift

% age of bug reports in which
Positivity increases

Total % age of bugs

Negativity decreases which observed change

Newbug-to-NR and NR-to-fix

(before and after declaring NR) 46%

62% 71%

is a significant drift towards increasing positivity
or decreasing negativity in the sentiments of NR
bugs during stage NR-to-fix as compared to the
Newbug-to-NR stage. This confirms the reluc-
tant behaviour of developers while marking the
resolution of a bug report as NR.

The observation of the sentiments of NR bugs
highly inclines towards the positive side, it has
been inferred that we need an automated way
(i.e. prediction model) for judging those NR bugs
that have high chances of being fixed. Further,
the sentiments can be incorporated to enquire
the prediction model’s behaviour. This predic-
tion model will not only build the confidence of
developers, but will also save time, effort and cost
incurred in debugging those bugs which are less
likely to be fixed. Thus the NRFixer framework
was proposed.

6.2. Research objective 2 (RO2):
prediction of the fixability of NR
bugs

In this subsection, the performance of NRFixer
is investigated (refer to RQ5-RQ6). The re-
sults of the research questions addressed in this
study are also presented by comparing the perfor-
mance of five different classifiers: Zero-R, Naive
Bayes, J48, random forest and random tree.
In this study, 419 NR bug reports containing
4250 textual units were considered for experi-
mentation. Among these bug reports, 319 bug
reports containing 2602 textual units are marked
as NR-to-NR (170 bug reports for Mozilla project
and 149 bug reports for the eclipse project)
whereas 100 bug reports (containing 1648 textual
units) are marked as NR-to-fix (50 bug reports

NRFizer: Sentiment Based Model for Predicting the Fizability of Non-Reproducible Bugs

113

B Model-1 Model-2

80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

1

Zero-R

148 Random Random

Forest Tree

Naive
Bayes

B Model-1 Model-2

80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

i

Zero-R

148 Random

Tree

Random
Forest

Naive
Bayes

Figure 4. Comparing the accuracy of both models for different classifiers

for the Mozilla project and 50 bug reports for
the eclipse project).

RQ5. What is the probability of NR fixing
with the use of different classifiers? To ad-
dress this research question, the performance for
prediction model 1 is evaluated. Table 6 presents
the precision, recall and F-measure achieved by
various machine learning classifiers while using the
meta-fields of bug reports, namely product, com-
ponent, hardware, severity, priority, cc count, num-
ber of comments and keywords. For the Firefox
project, J48 presents the best precision, recall and
F-measure values and the component was found
to be the most influencing factor. For the Eclipse
project, Naive Bayes gives the best precision, recall
and F-measure values. In this project, severity
was found to be the most influencing factor.
RQ6. Does the inclusion of the category
of an NR bug and the sentiments of devel-
opers affect the efficiency of a prediction
model? To address this question, the perfor-
mance of prediction model-2 in NRFixer is eval-
uated. Table 7 presents the precision, recall and
F-measure achieved by various classifiers using
the meta-fields of a bug report, namely product,
component, hardware, severity, priority, cc count,
number of comments and keywords along with
the extracted parameters such as the sentiments
of developers and the category of NR bugs. For
prediction model-2, the J48 classifier presents the
best precision value in the Firefox project and
the component was found to be the most influenc-
ing factor. Similarly, for the Eclipse project, the
Naive Bayes classifier gives the best precision,
recall and F-measure values and severity was
found to be the most influencing factor.

The investigation in RO2 confirms that based
on bug report meta-fields and sentiment related
parameters, it is possible to predict whether the
NR bug will get fixed in the future or not. Among
different projects, Naive Bayes and J48 machine
learning classifiers achieved the best prediction
performance. Taking into consideration the pre-
cision metric, J48 is the most suitable classifier
for the Firefox project and the Naive Bayes clas-
sifier is the most suitable one for predictions in
the Eclipse project. Figure 4 depicts the com-
parison of accuracy for both prediction models.
The inclusion of the sentiments and category of
non-reproducible bugs presents better precision
of 2-5%.

7. Threats to validity

In this section, we present the various internal
and external threats to validity in this work.
External validity. In this work, the bug reports
used in experimental evaluation were collected
from two popular projects, Firefox and Eclipse
of open source bug tracking repository, Bugzilla.
Data collected from these projects may vary from
other open and closed source projects. Therefore,
the outcomes from this study may not general-
ize well to other commercial software projects.
Additional studies are required for other closed
source projects or projects that use different soft-
ware processes. Although we have examined large
open source projects which cover a wide range
of products, there may be other projects which
use different software processes. Thus, the results
may not generalize to all of them.

114

Anjali Goyal, Neetu Sardana

Table 6. Accuracy of NRFixer using various meta-fields
of bug report

Project Classifier Precision Recall F-measure

Zero-R 22.7% 22.7% 22.7%
Naive Bayes 68% 67.1% 66.6%
Firefox J48 70.2% 70.1% 70%
Random Forest 67.3% 67.3% 67.3%

Random Tree 61.8% 61.7% 61.7%

Zero-R 25.2% 25.2% 25.2%

Naive Bayes 66.4% 65.2% 65.79%

Eclipse J48 65.1% 64.9% 64.99%
Random Forest 61.3% 61.2% 61.1%

Random Tree 58.6% 58.6% 58.6%

Table 7. Accuracy of NRFixer using various meta-fields
of bug report, sentiments of developers and category of NR bugs

Project Classifier Precision Recall F-measure
Zero-R 22.7% 22.7% 22.7%
Naive Bayes 72.9% 77.5% 75.12%
Firefox J48 74.7% 73% 73.84%
Random Forest 66% 66% 66%
Random Tree 62.8% 62.5% 62.3%
Zero-R 25.5% 25.2% 25.2%
Naive Bayes 68% 65.3% 66.62%
Eclipse J48 66.9% 65% 65.6%
Random Forest 60.5% 60.5% 60.5%
Random Tree 57% 57% 57%

Internal validity. In this work, it was assumed
that the data obtained from a bug repository
are optimal. However, there is a possibility of
errors or noise in the extracted data, which may
affect the results of this study. To mitigate this
threat, the bug reports used in this study were
obtained from the most widely used projects
of the Bugrzilla repository. These projects are
long lived and are actively maintained, hence
it is safe to assume that the extracted data
are acceptable (if not optimal). Also, the used
dataset suffers from a class imbalance problem
and so the re-sampling of dataset was used to
overcome this effect. Moreover, the categories
of NR bugs may be erroneous. But since the
studies related to NR bugs are in their initial
phase, this threat was considered to be minor
and careful cross-checks of the data and the tech-
nique was conducted to eliminate errors in the
best possible way.

Five different classifiers were explored:
Zero-R, Naive Bayes, J48, random forest and
random tree for the performance evaluation of
NRFixer. However, there are many other clas-
sifiers (such as genetic algorithms [21], neural
network, etc.) and ensemble based techniques
[18] (such as stacking, bagging, boosting) which
have not been explored in this work. Nevertheless,
it is possible that a different set of algorithms
would provide better results for NR-to-fix bug
prediction as compared to the set of algorithms
explored in this work.

Further, in this work, the python NLTK
toolkit was utilized [16] for the sentiment analysis
of textual contents in bug reports. However, there
are many other toolkits available for sentiment
analysis, such as SentiStrength, Stanford NLP,
etc. Jongeling et al. [22] evaluated various senti-
ment analysis tools for software engineering stud-
ies. They observed that sentiments obtained from

NRFizer: Sentiment Based Model for Predicting the Fizability of Non-Reproducible Bugs

115

various tools neither agree with each other, nor
with manual labelling. They suggested a need for
a sentiment analysis tool that specifically caters
to the software engineering domain. Therefore,
the results of this study may improve with the
domain specific tailoring of sentiment analysis.
But since such a toolkit is not available, we are
considering one of the most popular sentiment
analysis toolkit, NLTK for experimentation.

8. Conclusion and future work

Non-reproducible bugs are generally frustrating
for developers due to the uncertainty of their
fixation. To minimize this uncertainty, we have
mined the sentiments of textual data present in
the non-reproducible bug reports. Mining is done
for both categories of bug reports NR-to-fix and
NR-to-NR. It was done to find out any clue to
assist the developer during the initial stages of
bug triaging. The study is being carried out at
two different levels. At the first level, the sen-
timents of bug reports were mined and at the
second level framework NRFixer which predicts
the probability of NR bug fixation is proposed.

The first level of the study confirms that
bug reports do express sentiments. It was found
out that the developers possess more negative
sentiments for non-reproducible bugs than re-
producible bugs. As long as bugs are marked
as non-reproducible, the percentage of negative
sentiments is 66% bigger than the reproducible
bugs. This confirms the reluctant behaviour of
developers towards the non-reproducible bugs. It
was also found out that there is a major opin-
ion drift found in the sentiments of NR-to-fix
bugs. In 71% NR-to-fix bug reports, either there
was a decrease in the percentage of negative
comments or an increase in the percentage of
positive comments when the bug is reopened and
is near fixation. This reveals that the developers
may have marked the bug as non-reproducible
erroneously or it could be due to the lack of some
code patch.

The second level of the study deals with the
prediction of the possibility of non-reproducible
bugs getting fixed using NRFixer. It is evalu-

ated with two dimensions. In the first dimension,
we considered various meta-fields of bug report
(prediction model-1). In the second dimension,
the sentiments of developers were additionally
incorporated along with the existing meta-fields
of a bug report (prediction model-2). The results
of this investigation show that NRFixer could effi-
ciently predict bugs marked as non-reproducible.
It was observed that the inclusion of sentiments
in prediction model-2 shows an additional rise
in the prediction accuracy ranging from 2 to 5%
for various classifiers.

For future work, it is planned to explore NR-
Fixer on more machine learning classifiers and
software projects, such as closed source applica-
tions. Work will also be conducted on improv-
ing the performance of NRFixer using ensem-
ble based machine learning techniques. There
are also plans to perform a qualitative analysis
on domain specific NR-to-fix bug prediction us-
ing different textual factors of bug reports. In
addition to this work, a fix suggestion tool for
non-reproducible bugs that could be fixed will
be built.

References

[1] M. Erfani Joorabchi, M. Mirzaaghaei, and
A. Mesbah, “Works for me! characterizing
non-reproducible bug reports,” in Proceedings of
the 11th Working Conference on Mining Software
Repositories. ACM, 2014, pp. 62-T71.

[2] E. Murphy-Hill, T. Zimmermann, C. Bird, and
N. Nagappan, “The design space of bug fixes and
how developers navigate it,” IEEE Transactions
on Software Engineering, Vol. 41, No. 1, 2015,
pp. 65-81.

[3] T. Wilson, J. Wiebe, and P. Hoffmann, “Recog-
nizing contextual polarity in phrase-level senti-
ment analysis,” in Proceedings of the Conference
on Human Language Technology and Empirical
Methods in Natural Language Processing. Asso-
ciation for Computational Linguistics, 2005, pp.
347-354.

[4] F. Jurado and P. Rodriguez, “Sentiment analysis
in monitoring software development processes:
An exploratory case study on GitHub’s project
issues,” Journal of Systems and Software, Vol.
104, 2015, pp. 82-89.

[5] A. Murgia, P. Tourani, B. Adams, and M. Ortu,
“Do developers feel emotions? an exploratory

116

Anjali Goyal, Neetu Sardana

[7]

analysis of emotions in software artifacts,” in
Proceedings of the 11th working conference on
mining software repositories. ACM, 2014, pp.
262-271.

P. Tourani, Y. Jiang, and B. Adams, “Moni-
toring sentiment in open source mailing lists:
Exploratory study on the apache ecosystem,” in
Proceedings of 24th Annual International Con-
ference on Computer Science and Software En-
gineering. IBM Corp., 2014, pp. 34—44.

D. Garcia, M.S. Zanetti, and F. Schweitzer, “The
role of emotions in contributors activity: A case
study on the Gentoo community,” in The Third
International Conference on Cloud and Green
Computing (CGC). IEEE, 2013, pp. 410-417.
D. Pletea, B. Vasilescu, and A. Serebrenik, “Se-
curity and emotion: Sentiment analysis of secu-
rity discussions on GitHub,” in Proceedings of
the 11th working conference on mining software
repositories. ACM, 2014, pp. 348-351.

E. Guzman, D. Azécar, and Y. Li, “Sentiment
analysis of commit comments in GitHub: An em-
pirical study,” in Proceedings of the 11th Work-
ing Conference on Mining Software Repositories.
ACM, 2014, pp. 352-355.

G. Destefanis, M. Ortu, S. Counsell, S. Swift,
M. Marchesi, and R. Tonelli, “Software develop-
ment: Do good manners matter?” PeerJ Com-
puter Science, Vol. 2, 2016, p. e73.

H. Valdivia Garcia and E. Shihab, “Charac-
terizing and predicting blocking bugs in open
source projects,” in Proceedings of the 11th Work-
ing Conference on Mining Software Repositories.
ACM, 2014, pp. 72-81.

E. Shihab, A. Thara, Y. Kamei, W.M. Ibrahim,
M. Ohira, B. Adams, A.E. Hassan, and K. Mat-
sumoto, “Studying re-opened bugs in open

[15]

source software,” Empirical Software Engineer-
ing, Vol. 18, No. 5, 2013, pp. 1005-1042.

R. Hewett and P. Kijsanayothin, “On modeling
software defect repair time,” Empirical Software
Engineering, Vol. 14, No. 2, 2009, p. 165.

P.J. Guo, T. Zimmermann, N. Nagappan, and
B. Murphy, “Characterizing and predicting
which bugs get fixed: An empirical study of
Microsoft Windows,” in ACM/IEEE 32nd In-
ternational Conference on Software Engineering,
Vol. 1. IEEE, 2010, pp. 495-504.

T. Zimmermann, N. Nagappan, P.J. Guo, and
B. Murphy, “Characterizing and predicting
which bugs get reopened,” in Proceedings of the
84th International Conference on Software En-
gineering. IEEE Press, 2012, pp. 1074-1083.
Python NLTK sentiment analysis with
text classification demo. [Online]. http:
/ /text-processing.com/demo/sentiment/ [Ac-
cessed September 2016].

A. Padhye, Classification methods.
[Online]. http://www.d.umn.edu/~padhy005/
Chapter5.html [Accessed September 2016].

J.R. Quinlan, C4.5: programs for machine learn-
ing. Elsevier, 2014.

L. Breiman, “Random forests,” Machine learn-
ing, Vol. 45, No. 1, 2001, pp. 5-32.

J. Han, J. Pei, and M. Kamber, Data mining:
concepts and techniques. Elsevier, 2011.

M. Mitchell, An introduction to genetic algo-
rithms. MIT press, 1998.

R. Jongeling, S. Datta, and A. Serebrenik,
“Choosing your weapons: On sentiment analysis
tools for software engineering research,” in IEEFFE
International Conference on Software Mainte-
nance and Evolution (ICSME). IEEE, 2015, pp.
531-535.

http://text-processing.com/demo/sentiment/
http://text-processing.com/demo/sentiment/
http://www.d.umn.edu/~padhy005/Chapter5.html
http://www.d.umn.edu/~padhy005/Chapter5.html

	Introduction
	Background
	Sentiment analysis of bug reports
	Prediction models in bug repositories

	Preliminaries
	Bug report
	Sentiment analysis
	Machine learning classifiers

	NRFixer: proposed architecture
	Experimental details
	Dataset
	Experiment parameters
	Evaluation metrics

	Experimental results
	Research objective 1 (RO1): exploring sentiments in bug reports
	Research objective 2 (RO2): prediction of the fixability of NR bugs

	Threats to validity
	Conclusion and future work
	References

