o lomalcs

software engineering journal

2018 issue |

e-Informatica

e-Informatica

sssss

Wroctaw University
of Science and Technology

Editors
Zbigniew Huzar (Zbigniew. Huzar@pwr.edu.pl)
Lech Madeyski (Lech. Madeyski@pwr.edu.pl, http://madeyski.e-informatyka.pl)

Department of Software Engineering, Faculty of Computer Science and Management,
Wroctaw University of Science and Technology, 50-370 Wroctaw, Wybrzeze Wyspianskiego 27,
Poland

e-Informatica Software Engineering Journal
www. e-informatyka.pl, DOI: 10.5277 /e-informatica

Editorial Office Manager: Wojciech Thomas

Proofreader: Anna Tyszkiewicz

Typeset by Wojciech Myszka with the KTEX 2¢ Documentation Preparation System

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,

transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publishers.

© Copyright by Oficyna Wydawnicza Politechniki Wroctawskiej, Wroctaw 2018

OFICYNA WYDAWNICZA POLITECHNIKI WROCLAWSKIEJ
Wybrzeze Wyspianskiego 27, 50-370 Wroctaw
www.oficyna.pwr.edu.pl;

e-mail: oficwyd@pwr.edu.pl; zamawianie.ksiazek@pwr.edu.pl

ISSN 1897-7979

Print and binding: beta-druk, www.betadruk.pl

http://madeyski.e-informatyka.pl
http://www.e-informatyka.pl
http://dx.doi.org/10.5277/e-informatica
http://www.oficyna.pwr.edu.pl
mailto:oficwyd@pwr.edu.pl
mailto:zamawianie.ksiazek@pwr.edu.pl
http://www.betadruk.pl

Editorial Board

Co-Editors-in-Chief

Zbigniew Huzar (Wroctaw University of Science and Technology, Poland)
Lech Madeyski (Wroctaw University of Science and Technology, Poland)

Editorial Board Members

Pekka Abrahamsson (NTNU, Norway)

Sami Beydeda (ZIVIT, Germany)

Miklés Biré (Software Competence Center
Hagenberg, Austria)

Markus Borg (SICS Swedish ICT AB Lund,
Sweden)

Pearl Brereton (Keele University, UK)

Mel O Cinnéide (UCD School of Computer
Science & Informatics, Ireland)

Steve Counsell (Brunel University, UK)
Norman Fenton (Queen Mary University

of London, UK)

Joaquim Filipe (Polytechnic Institute

of Setiibal/INSTICC, Portugal)

Thomas Flohr (University of Hannover,
Germany)

Francesca Arcelli Fontana (University

of Milano-Bicocca, Italy)

Félix Garcia (University of Castilla-La Mancha,
Spain)

Carlo Ghezzi (Politecnico di Milano, Italy)
Janusz Gérski (Gdansk University of Technology,
Poland)

Andreas Jedlitschka (Fraunhofer IESE,
Germany)

Barbara Kitchenham (Keele University, UK)
Stanistaw Kozielski (Silesian University

of Technology, Poland)

Ludwik Kuzniarz (Blekinge Institute

of Technology, Sweden)

Pericles Loucopoulos (The University

of Manchester, UK)

Kalle Lyytinen (Case Western Reserve
University, USA)

Leszek A. Maciaszek (Wroctaw University

of Economics, Poland

and Macquarie University Sydney, Australia)
Jan Magott (Wroclaw University of Science and
Technology, Poland)

Zygmunt Mazur (Wroclaw University of Science
and Technology, Poland)

Bertrand Meyer (ETH Zurich, Switzerland)
Matthias Miiller (IDOS Software AG, Germany)

Jiirgen Miinch (University of Helsinki, Finland)
Jerzy Nawrocki (Poznan University

of Technology, Poland)

Mirostaw Ochodek (Poznan University

of Technology, Poland)

Janis Osis (Riga Technical University, Latvia)
Mike Papadakis (Luxembourg University,
Luxembourg)

Kai Petersen (Hochschule Flensburg, University
of Applied Sciences, Germany)

FLukasz Radliniski (West Pomeranian University
of Technology in Szczecin, Poland)

Guenther Ruhe (University of Calgary, Canada)
Krzysztof Sacha (Warsaw University

of Technology, Poland)

Martin Shepperd (Brunel University London,
UK)

Rini van Solingen (Drenthe University,

The Netherlands)

Miroslaw Staron (IT University of Goteborg,
Sweden)

Tomasz Szmuc (AGH University of Science and
Technology Krakéw, Poland)

Iwan Tabakow (Wroctaw University of Science
and Technology, Poland)

Guilherme Horta Travassos (Federal
University of Rio de Janeiro, Brazil)

Adam Trendowicz (Fraunhofer IESE, Germany)
Burak Turhan (University of Oulu, Finland)
Rainer Unland (University of Duisburg-Essen,
Germany)

Sira Vegas (Polytechnic University of Madrit,
Spain)

Corrado Aaron Visaggio (University of Sannio,
Italy)

Bartosz Walter (Poznan University

of Technology, Poland)

Bogdan Wiszniewski (Gdansk University

of Technology, Poland)

Jaroslav Zendulka (Brno University

of Technology, The Czech Republic)

Krzysztof Zielinnski (AGH University of Science
and Technology Krakéw, Poland)

Gratitude for Reviewers

We would like to express appreciation to all reviewers for the effort and expertise contributed
to reviewing, without which it would be difficult to maintain and raise the high standard of our

peer-reviewed journal.

Tore Dyba

Sousuke Amasaki
Said Assar

Pearl Brereton

Steve Counsell
Darko Durisic
Robert Feldt
Vincenzo Ferme
Dariusz Gall
Jarostaw Hryszko
Sami Hyrynsalmi
Foutse Khomh
Barbara Kitchenham
Sylwia Kopczyriska
Mathieu Lavallée
Luigi Lavazza
Valentina Lenarduzzi
Lech Madeyski
Fuensanta Medina Dominguez
Nasir Minhas
Jefferson Molleri
Marta Olszewska

Mel O Cinnéide
Fabio Palomba

Kai Petersen

Marcin Pietranik
Pierre Robillard

Per Runeson

Aneesa Saeed

Faiz Shah

Miroslaw Staron
Davide Taibi
Guilherme Travassos
Adam Trendowicz
Masateru Tsunoda
Magdalena Turowska
Michael Unterkalmsteiner
Sira Vegas

Auri Vincenzi

Anita Walkowiak
Bartosz Walter
Dietmar Winkler
Franz Wotawa
Andrzej Zalewski

Contents

A Graphical Modelling Editor for STARSoC Design Flow Tool
Based on Model Driven Engineering Approach

Elhillali Kerkouche, El Bay Bourennane, Allaoua Chaout 9
An Empirical Study on the Factors Affecting Software Development Productivity

Luigi Lavazza, Sandro Morasca, Davide Tosi 27
Knowledge Management in Software Testing: A Systematic Snowball Literature Review

Krzysztof Wnuk, Thrinay Garrepalli o 51

Tool Features to Support Systematic Reviews in Software Engineering —
A Cross Domain Study
Chris Marshall, Barbara Kitchenham, Pearl Brereton 79
Are We Working Well with Others? How the Multi Team Systems Impact
Software Quality

Mathieu Lavallée, Pierre N. Robillard 117
A Systematic Mapping Study on Software Measurement Programs in SMEs
Touseef Tahir, Ghulam Rasool, Muhammad Noman 133

The Role of Organisational Phenomena in Software Cost Estimation:
A Case Study of Supporting and Hindering Factors

Jurka Rahikkala, Sami Hyrynsalmi, Ville Leppinen, Ivan Porres 167
Applying Machine Learning to Software Fault Prediction

Barttomiej Wojcicki, Robert Dgbrowski oo 199
Milestone-Oriented Usage of Key Performance Indicators — An Industrial Case Study

Miroslaw Staron, Kent Niesel, Niclas Bauman 217

Semantic Knowledge Management System to Support Software Engineers:
Implementation and Static Evaluation through Interviews at Ericsson

Ali Demirsoy, Kai Petersen 0 e e e e e 237
A Literature Review on the Effectiveness and Efficiency of Business Modeling

Magnus Wilson, Krzysztof Wnuk, Johan Silvander, Tony Gorschek 265
Special Secion: WASA 2017 — Workshop on Automotive Software
and Systems Architectures L 303

Experience Report: Towards Extending an OSEK-Compliant RTOS
with Mixed Criticality Support
Tarun Gupta, Erik J. Luit, Martijn M.H.P. van den Heuvel, Reinder J. Bril 305

e-Informatica Software Engineering Journal, Volume 12, Issue 1, 2018, pages: 9-26, DOI 10.5277/e-Inf180101

A Graphical Modelling Editor for STARSoC
Design Flow Tool Based on Model Driven
Engineering Approach

Elhillali Kerkouche*, El Bay Bourennane**, Allaoua Chaoui***

*Department of Computer Science, Mohamed Seddik Ben Yahia University, Jijel, Algeria
**LE2I Laboratoire, University of Bourgogne, Dijon, France
** MISC' Laboratory, Department of Computer Science and its Applications, Faculty of IT,
Abdelhamid Mehri University, Constantine, Algeria

elhillalik@yahoo.fr, ebourenn@u-bourgogne.fr, a_chaoui2001@yahoo.com

Abstract

Background: Due to the increasing complexity of embedded systems, system designers use higher
levels of abstraction in order to model and analyse system performances. STARSoC (Synthesis Tool
for Adaptive and Reconfigurable System-on-Chip) is a tool for hardware/software co-design and
the synthesis of System-on-Chip (SoC) starting from a high level model using the StreamsC textual
language. The process behaviour is described in the C syntax language, whereas the architecture
is defined with a small set of annotation directives. Therefore, these specifications bring together
a large number of details which increase their complexity. However, graphical modelling is better
suited for visualizing system architecture.

Objectives: In this paper, the authors propose a graphical modelling editor for STARSoC design
tool which allows models to be constructed quickly and legibly. Its intent is to assist designers
in building their models in terms of the UML Component-like Diagram, and in the automatic
translation of the drawn model into StreamsC specification.

Methods: To achieve this goal, the Model-Driven Engineering (MDE) approach and well-known
frameworks and tools on the Eclipse platform were employed.

Conclusion: Our results indicate that the use of the Model-Driven Engineering (MDE) approach
reduces the complexity of embedded system design, and it is sufficiently flexible to incorporate
new design needs.

Keywords: embedded systems, hardware/software co-design, STARSoC tool, UML,
model-driven engineering, Eclipse modelling project

1. Introduction

The increasing complexity of embedded system
designs calls for high level specification languages
(like StreamsC [1] or others C/C++ based ex-
tensions), and for automated transformations
towards lower level descriptions. These languages
allow to create high level models quickly, run sim-
ulations, optimize designs and investigate the ef-
ficiency of different algorithms and architectures
before generating their corresponding low level
implementations. The automatic generation of

low level implementation drastically reduces the
amount of code to be written by designers, which
saves time to market and reduces fabrication
costs compared to hand-tuned implementations
[2]. For these reasons, the design tools are widely
adopted by the embedded system designers’ com-
munity [3]. The specification of the applications
becomes easier at high abstraction levels, since
the implementation details are hidden from the
designer.

The Synthesis Tool for Adaptive and Recon-
figurable System-On-Chip(STARSoC) [4] is one

10

Elhillali Kerkouche, El Bay Bourennane, Allaoua Chaoui

of those design tools that allow hardware-soft-
ware co-design, design space exploration and high
level synthesis from a StreamsC textual specifi-
cation. The StreamsC language [5] permits the
modelling of the architecture and the behaviour
of a complex embedded system containing both
Hardware and Software communicating processes.
In StreamsC textual models, the architecture of
the system is defined with a collection of annota-
tion directives which are used to declare processes
and communication between them, whereas pro-
cesses’ behaviours are described in the C pro-
gramming language. Therefore, these specifica-
tions allow for gathering a lot of details (system
architecture and processes’ behaviours) which
increase their length and their complexity, and
consequently decrease their legibility.

It is well known that graphical specification
is better suited for describing the system com-
ponents and their relationships, whereas compo-
nents’ behaviours are generally expressed in tex-
tual notations (like the C programming language)
which allow their reuse as building blocks in new
designs. The optimal modelling solution consists
in combining textual notations with graphical
notations in order to accumulate their advan-
tages. Thereby, every system aspect is provided
with the most suitable view (textual/graphical).
UML Component Diagrams [6] are widely used
to define the structure of a system. A Component
Diagram provides a clear view of the organization
and the dependency among components in a sys-
tem, including their contents (source code, binary
code or executable) and their interfaces through
which they interact with one another. In this
work, the Authors propose to develop a graphical
modelling editor for the STARSoC design tool.
More precisely, it is an approach and a tool sup-
port to allow a high-level graphical specification
of embedded systems which combines the archi-
tectural and behavioural aspects of a system in
one model. The architectural aspect is expressed
with a UML Component-like Diagram which is an
adaptation of the UML Component Diagram to
the structural concepts of the StreamsC language,
whereas the behavioural aspect is specified in the
C programming language. From the graphical
specification of a system, this approach permits

to automatically generate a clean and correct
SteamsC specification. In order to achieve this
objective, it is proposed to use the Model-Driven
Engineering (MDE) [7] approach which is based on
meta-modelling and Model Transformations, and
to employ well-known frameworks and tools under
the Eclipse platform to in this automatic approach.

The rest of the paper is organized as follows.
Section 2 outlines the major related works. In Sec-
tion 3, some concepts of the StreamsC language
are presented. Section 4 presents the STARSoC
Tool. In Section 5, an overview of the Eclipse
Modelling Project is given. In Section 6, the
approach is presented and it is applied on an ex-
ample in Section 7. The last section concludes the
paper and gives some perspectives of this work.

2. Related works

In the literature, several research works have
been done on the automatic code generation tools
for Multi-Processor Systems-on-Chip (MPSoCs)
in order to facilitate and to accelerate the design
process.

In addition to STARSoC, there are several
code generation tools for MPSoCs which use the
textual specification of the whole system as input.
From this high level specification containing var-
ious system parameters, the tools generate a low
level description of the system and perform their
functionalities which are necessary in the design
process, such as simulation, design space explo-
ration, performance evaluation, etc. For exam-
ple, xENOC [8] is an automatic environment for
hardware/software design of Network-on-Chip
(NoC)-based MPSoC architectures. xENoC is
based on a tool, called NoCWizard which uses
an eXtensible Markup Language (XML) specifi-
cation (including NoC features, Intellectual Prop-
erties (IPs) and mapping) to generate many types
of NoC instances by using Verilog language [9].
In addition to NoC instances generation, xNoC
also includes an Embedded Message Passing In-
terface (eMPI) supporting parallel task communi-
cation. SystemCoDesigner [10] is another design
environment for high-level system modelling and
simulation, automatic design space exploration

A Graphical Modelling Editor for STARSoC Design Flow Tool Based on Model Driven Engineering Approach 11

and automatic hardware/software synthesis from
abstract model to final implementation. In Sys-
temCoDesigner, the input model is given using
SystemC textual language [11] which describes
the structural and behavioural aspects of the sys-
tem. In addition to academic environments, some
commercial design environments support the cre-
ation of MPSoCs. The most popular are Altera
System on a Programmable Chip (SoPC) [12]
and Xilinx Embedded Development Kit (EDK)
[13]. In these environments, the hardware part
description and the hardware-software integra-
tion of the final system are strongly automated
using an extensive IP cores library. Although tex-
tual notations better describe system parameters
and aspects for the design and implementation,
these notations increase the complexity of system
specifications.

On the other hand, several research works
have been proposed to adapt the UML notation
to the modelling of embedded systems. The ad-
vantage of UML is that it can be extended to
any particular domain by defining profiles which
introduce additional domain-specific modelling
concepts and constraints. In this context, many
profiles have been proposed for embedded sys-
tems design. The SysML (System Modelling Lan-
guage) profile [14] reuses a subset of UML nota-
tion and provides additional extensions needed in
system engineering. It offers graphical modelling
support for the specification, analysis, design,
verification and validation of complex heteroge-
neous systems that may combine hardware and
software components. The MARTE (Modelling
and Analysis of Real-time and Embedded Sys-
tems) profile [15] is another UML profile which
adds capabilities to UML for the development
of Real Time and Embedded Systems (RTES).
This extension provides support for specification,
design and verification/validation phases. In ad-
dition, it defines a common way of modelling
both the hardware and software aspects of sys-
tems (such as the representation of repetitive
structures) in order to improve communication
between developers. In order to cope with the
design complexities of intensive signal and image
data processing applications, the DaRT (Data-
parallelism for Real-Time) team [16] of LIFL (the

Computer Science Laboratory of Lille University,
French) developed a design flow methodology and
a tool labelled GASPARD?2 [17]. Using a subset of
MARTE Profile, GASPARD?2 follows the Model
Driven Architecture (MDA) [18] principles to de-
scribe systems at different level of abstractions. It
emphasizes system level co-modelling (hardware
and software), simulation, models refinement,
automatic code generation and IPs integration.
The UML-SystemC profile [19] is proposed to
take advantages of both UML and the SystemC
language. It captures both the structural and the
behavioural features of the SystemC language
and allows high level modelling of systems with
straightforward translation to the SystemC code.
In [20], the authors proposed an UML-based
design environment, called Koski, for MPSoCs
implementations of wireless sensor network ap-
plications. It provides a complete design flow
covering the design phases from system level
modelling to the FPGA (Field Programmable
Gate Array) prototyping. Note that only the rel-
evant profiles have been given here. Many other
works which combine the UML modelling with
embedded system design flow exist in the litera-
ture. However, they rarely cover all design phases
from requirement modelling to implementation
and validation.

In this work, the Authors intend to introduce
a straightforward graphical modelling layer for
the STARSoC tool. The proposed graphical mod-
elling editor increases flexibility by integrating
the UML notation (UML Component Diagram
notation) to the STARSoC input specification
language (StreamsC). Furthermore, it takes ad-
vantages of the MDE approach to rapidl design
systems and integrates new design needs.

3. StreamsC language

The StreamsC language is a parallel program-
ming language following the communicating pro-
cess model [5]. The language is a small set of di-
rectives and library functions callable from a con-
ventional C program. The directives are used
to declare three distinguished objects: process,
stream or signal, whereas the library functions

12

Elhillali Kerkouche, El Bay Bourennane, Allaoua Chaoui

/// PROCESS FUN <function name>

/// IN_STREAM <stream element_data_type> <stream_name>

/// OUT_STREAM <stream element_data_type> <stream_ name>
/// IN_SIGNAL <signal element_data_type> <signal name>
/// OUT_SIGNAL <signal element_data_type> <signal name>
/// PROCESS _FUN BODY

. C code ...
/// PROCESS_FUN_END

Figure 1. Format of the PROCESS FUN directive

/// PROCESS <process_name> PROCESS FUN <process_fun name> [TYPE [SP | HP]] <on_spec>

Figure 2. Format of a process directive

are used to communicate stream data between
processes. In the StreamsC programming model
a process is an independently executing object
with a process body. The process body is writ-
ten in a subset of C syntax and uses intrinsic
functions to perform stream or signal operations.
A process may be either software or hardware.
All declared processes are initiated when the
program begins and runs until their subroutine
bodies complete their tasks/functions.

In the following, the directives format is re-
called for describing processes, streams and sig-
nals that a StreamsC program uses. These direc-
tives are embedded in specially formatted blocks.
Each directive must be on one line and prepended
by “///” followed by a keyword identifying the
directive and optional parameter(s) [1].

The first set of directives describes the run
function of a process. This is the body of code
that gets executed when the associated process
is initiated. The PROCESS FUN directive gives
a name to the run function, input and output
streams and signal parameters, followed by an
optional parameter to be passed to the process
when it is initiated. After the parameter, the body
of the function appears as a normal C code, usually
containing variable declarations, stream and/or
signal communication, and computation. Finally,
a keyword directive is used to mark the end of
the run function. The format of the PROCESS
FUN directive is shown in Figure 1.

The stream and signal names can be used
within stream operations within the body of

the process. The data type of stream or signal
elements precedes the name of the stream or
signal. StreamsC provides predefined unsigned
and signed integer data types of stream or signal
elements for selected bit lengths ranging from 1
to 64. The supported bit lengths are 1, 2, 4, 6,
8, 12, 16, 18, 20, 24, 32, 40, 48, 64, 128. A sim-
ple convention is used to name these predefined
types. The signed types have the name sc__int
<bit length>. The unsigned types have the
name sc__uint<bit length>.

To describe a process to StreamsC, the PRO-
CESS directive is used. A process has an asso-
ciated run function and it is an SP (software
process) or HP (hardware process) type. If omit-
ted, SP is assumed. Figure 2 shows the format
of the PROCESS directive.

The last directive CONNECT is used to con-
nect processes via streams and signals. To con-
nect two processes, the name of one process’s
stream or signal is associated with the name of
another process’s stream or signal. In Figure 3,
the stream or signal formal parameter defined
in the PROCESS FUN directive is generically
referred to as a port. The CONNECT directive
must be specified from “source” to “destination”
(see Figure 3).

Note that the connections between processes
must be one-to-one. Broadcast patterns and
many-to-one connections are not supported.

An example of the use of these directives to
declare and connect processes is shown in Fig-
ure 4. There are two software processes called

A Graphical Modelling Editor for STARSoC Design Flow Tool Based on Model Driven Engineering Approach 13

/// CONNECT <process__name>.<port> <process_name>.<port>

Where: <port> ::= stream or

signal name from a PROCESS FUN directive

Figure 3. Format of a StreamsC CONNECT directive

//
// Process Functions definitions
//
/1!
/11
/1!

/1]
/1]
/1!
/1]

/1]
/1]
/1]
/1!
/1]

/1]
/!

// Process definitions

PROCESS_FUN setup_ run
OUT STREAM sc_uint4 data
PROCESS FUN BODY

. C code
PROCESS_FUN__END
PROCESS FUN finish run
IN_STREAM sc_ uint4 processed_ data
PROCESS_FUN_BODY

. C code
PROCESS_FUN_END
PROCESS_FUN p_ run
IN STREAM sc_uint4 strl
OUT STREAM sc_ uint8 str2
PROCESS_FUN_BODY

. C code
PROCESS_FUN_END

/// PROCESS setup PROCESS FUN setup_run
/// PROCESS p_1 PROCESS FUN p run TYPE HP
/// PROCESS p_2 PROCESS_FUN p_run TYPE HP
/// PROCESS finish PROCESS_FUN finish_run
//

// Connections

//

/// CONNECT setup.data p_1.strl

/// CONNECT p_1.str2 p_2.strl

/// CONNECT p_2.str2 finish.processed_data

Figure 4. CONNECT directives example

setup and finish, and two hardware processes
which are instances of the p process. The first
instance of the p process (p_1) receives stream
data from the setup process. The second instance
of the p process (p_2) receives data from the
previous instance and outputs data to the finish
process.

4. STARSoC design tool

STARSoC [4] is a framework for hard-
ware/software co-design, design space explo-
ration and rapid prototyping on an FPGA

(Field Programmable Gate Array) platform for
Multi-Processor Systems on Chip (MPSoCs).
The overall design flow of the STARSoC tool
is summarized in Figure 5.

The design methodology in the STARSoC
tool starts from a global model of an applica-
tion which is a set of communicating processes
described in the StreamsC textual language. In
the StreamsC model, a process may be either
a software process (SP) or a hardware process
(HP). Software and hardware processes represent
the software and hardware part of the system, re-
spectively. The hardware and software partitions
are defined by the user. Note that this design

14

Elhillali Kerkouche, El Bay Bourennane, Allaoua Chaoui

Specification model

v

StreamsC language

'

HW/SW

v

Partitioning

SoftWare HardWare
Partition (*.C) Partition (*.C)
PE-assembly ["==--____
= model | TTTeea |
Bus-arbitration Transaction-Level Modelling
o model Co-simulation
Cycle/time accurate | =00 __---7
Computationmodel | _ __---""" y
- SoftWare High Level Synthesis
Compilation Accelerators

Figure 5. STARSoC design flow [21]

flow is based mainly on reusing open source Intel-
lectual Properties (IPs) for both hardware and
software parts.

After hardware-software partitioning, the
hardware part is synthesized in Register-Transfer
Level (RTL) re-using the StreamsC compiler [22].
In addition, the hardware interface allowing the
two partitions, i.e. hardware and software, to
communicate is also generated in the RTL code.
The obtained RTL code is then downloaded to
the FPGA. The software part will be compiled
and re-instrumented to generate the machine
code of the software processes. This machine
code is then downloaded into the program mem-
ory of each available processor in the gener-
ated MPSoC platform. As a result, STARSoC
generates a bus-based MPSoC platform from
a high-level application specification.

Before building a prototype for an applica-
tion, the STARSoC performs a hardware/soft-
ware co-simulation to validate the behaviour for
both hardware and software components and
also the interaction between them. In addition,
co-simulation permits the performance analy-
sis and rapid exploration of several solutions
containing different descriptions of the system
components. For this purpose, The STARSoC
tool uses Transaction-Level Modelling (TLM)
framework [23] which is commonly used for the

fast simulation and design exploration of a com-
plex System on Chips (SoCs) at several levels
of abstraction and detail. TLM proposes four
well-defined transaction level abstraction mod-
els that can be independently validated, simu-
lated and estimated. In these models, the ap-
plication is represented as a set of communi-
cating processes where the communication and
the computation are explicitly separated. These
processes perform computations and communi-
cate with other processes through an abstract
channel.

On the basis of the specification model which
describes system functionality without any ar-
chitecture details (obtained from process codes),
the STARSoC tool performs co-simulation by
using the following TLM model levels shown in
Figure 5:

— PE-assembly model: it is made up with mul-
tiple processing elements (PEs) connected by
channels.

— Bus-arbitration model: it represents a refined
PE-assembly model in the communication
part.

— Cycle/time-accurate computation model:
It contains cycle accurate computation
and approximate-timed communication.
This model can be generated from the
bus-arbitration model.

A Graphical Modelling Editor for STARSoC Design Flow Tool Based on Model Driven Engineering Approach 15

The advantage of this approach is that it
allows designers to exploit the platform at the
earlier stages of the design flow.

5. Eclipse modelling project —
overview

The Eclipse Modelling Project [24] is a collection
of frameworks and tools for the Model Driven
Engineering on the Eclipse platform. In short,
they provide a wide range of solutions for vari-
ous aspects of model driven development, from
language definition, generative development of
language editors to code generation as well as
model verification and validation [25]. In the fol-
lowing, some of the tools from Eclipse Modelling
Project that have been used in this work are
introduced. These tools are specifically recom-
mended as a basis for developing a graphical
editor for the STARSoC tool.

5.1. Eclipse Modelling Framework
(EMF)

The Eclipse Modelling Framework [26] forms the
basis for all Eclipse Modelling Project tools. It
represents the modelling framework and the code
generation facility for specifying meta-models
and managing model instances. More precisely,
EMF includes its own meta-modelling language
called Ecore which is used for defining the ab-
stract syntax of modelling languages [27]. From
a modelling language specification defined by
the Ecore meta-model, EMF generates a sim-
ple tree-based editor that enables viewing and
editing the instances of the modelling language.
In addition, EMF comes with a set of related
frameworks for validating models, creating and
executing queries against EMF models as well as
model transactions.

5.2. Graphical Editing Framework
(GEF)

Although EMF is able to generate tree-based edi-
tors for model instances of existing meta-models,
these editors do not suffice since models are

better rendered in a true graphical way. The
Graphical Editing Framework [28] provides tech-
nology to aid developers in creating rich graph-
ical editors, which are not easily built using
native widgets found in the base Eclipse plat-
form. It contains the entire set of tools to de-
fine a graphical concrete syntax for each entity
of the meta-model according to its appropriate
graphical notation. In addition, GEF employs
a Model-View-Controller (MVC) architecture
which is used to interconnect the graphical part
of an editor with the model elements. Thereby, it
permits changes to be applied to the model from
the view [25]. Although EMF and GEF can be
used separately, building a graphical editor re-
quires both of them. In this sense, GEF provides
the graphical support required for building a di-
agram editor on the top of the EMF framework.

5.3. Graphical Modelling Framework
(GMF)

The Graphical Modelling Framework [29] pro-
vides a generative component and runtime infras-
tructure for developing graphical editors based on
EMF and GEF. In other words, it provides a gen-
erative bridge between the EMF (that allows the
meta-model definition) and GEF (a lightweight
graphical framework, based on MVC architec-
ture) to help developers creating enhanced graph-
ical editors [25]. Using this framework, one can
define graphical notations for existing EMF
meta-models.

5.4. Acceleo language

Acceleo is a model-to-text transformation frame-
work that generates text from models [30]. It has
been in development since 2006, and was incorpo-
rated into the Eclipse M2T project in 2009 [24].
Its purpose is to implement code generators with
an easy to use language (according to Object
Management Group’s MOF model to text trans-
formation language standard [31]) and a good
enough tool support (IDE, syntax highlighting,
error reporting and debugging features). An Ac-
celeo program requires a meta-model and a model
compliant with this meta-model, from which it

16

Elhillali Kerkouche, El Bay Bourennane, Allaoua Chaoui

generates a text or a code. The meta-model and
the model are defined using the EMF framework,
which makes Acceleo compatible with other tools
based on EMF.

The Acceleo language is a template based
approach wherein the text or code to be gener-
ated from models are specified as a set of text
templates that are parameterized with model el-
ements. More precisely, Acceleo scans the source
model according to its meta-model and defines
a textual template in the relevant syntax for
each text fragment to be generated. The vari-
able parts in the text fragment are specified
over model elements. An advantage of this sit-
uation is the fact that the structure of the Ac-
celeo templates will directly reflect the struc-
ture of the generated text. Thus, the destina-
tion text is directly generated, with no need for
post-processing. The main feature of Acceleo is
that the generated text is mixed with Acceleo
syntax.

6. Graphical modelling editor for
STARSoC

As it was mentioned earlier, the STARSoC tool
starts from a StreamsC textual specification
which consists of the architecture and behaviour
of a complex embedded system. Gathering all
system aspects in StreamsC textual specifications
increase their complexity, decrease their readabil-
ity, and make their understanding and mainte-
nance more difficult. To remedy this, the authors
propose to develop a graphical modelling editor
for the STARSoC design tool which combines
the architectural and behavioural aspects of the
system in one model. The architectural aspect is
expressed with a UML Component-like Diagram
serving this purpose, whereas the behavioural
aspect is specified in the C syntax. From this
whole model, the StreamsC specification can be
generated and all STARSoC design flow activities
can be performed.

This section provides the outline of, the pro-
cess of building the proposed graphical modelling
editor using the well-known frameworks defined
in MDE approach on the Eclipse platform. The

presented approach consists of a process with

two steps:

1. The first step consists of specializing UML
Component Diagram [6] into StreamsC struc-
tural concepts. For this purpose a meta-model
for the specialised UML Component Dia-
gram is proposed and a graphical modelling
editor is built according to the proposed
meta-model.

2. The second step encompasses defining the
code generation of StreamsC specification. In
order to obtain the automatic and correct
process of the code generation, the authors
propose to use an Acceleo template language
to define and implement the transformation.

6.1. Specializing UML Component
Diagram into StreamsC structural
concepts

To define a new modelling language or to extend
and adapt an existing one, it is necessary to
provide an abstract syntax (i.e. a meta-model de-
noting constructs, their attributes, relationships
and constraints) as well as concrete graphical
syntax information (the appearance of constructs
and relationships in the graphical editor). In this
work, the authors prefer to adapt an existing
modelling language rather than to develop a new
modelling language for specifying systems on the
STARSoC tool.

Since StreamsC specification consists of a set
of communicating parallel software and hardware
processes described with a high level textual lan-
guage and each process may be linked to a con-
nector by an input port or an output port, the au-
thors propose a modelling language adapted from
UML Component Diagram [6] which meets ad-
ditional needs for specifying embedded systems.
UML Component Diagrams are widely used to
define the architecture and the structure of a sys-
tem. A Component Diagram shows components,
their contents (source code, binary code or exe-
cutable one), required interfaces, ports and rela-
tionships between them. For this purpose, the au-
thors proposed to meta-model the structural as-
pect of StreamsC language expressed in the UML
Component-like Diagram with the meta-model

A Graphical Modelling Editor for STARSoC Design Flow Tool Based on Model Driven Engineering Approach

17

¥ DataType
= sc_uintl
sc_int2
sc_uint2
sc_int4
sc_uint4
sc_inté
sC_uinté
sc_int8
sc_uint8
sc_int12
sC_uint12
s¢_int16
sc_uint16
sc_int18
sc_uint18
sc_int20
sC_uint20
sc_int24
sC_uint24
sc_int32
sC_uint32
sc_int40
sC_uint40
sC_int48
sC_uint48
sc_int64
sC_uint64
sc_int128
- SC_uint128

* ProcessType
- SP
- HP

H port
© name
= DataType

HasOutputPort
0..1

HasInputPort
0..1

£ OutputPort B InputPort

H Process
© name

't

] ProcessFun
= FunCode

>

£ Applcation
o name

t
ContansProcessFun
0..*
Contanﬂ:cssc:l

ContainsConnectors
0.~

£ ProcessCal
= ProcessType

£ Connector
InstanceOf
1..1

TolnputPort
1..1

FromOutputPort

1.1

Figure 6. Proposed meta-model in Ecore

shown in Figure 6. In EMF, a meta-model is
created and defined in the Ecore format, which
is basically a sub-set of UML Class Diagrams.
The proposed Ecore model is composed by the
following classes:

The Application class (attribute name: name)
represents the application. It contains all the ele-
ments used in the application which are process
function definitions (ProcessFun), process defi-
nitions (ProcessCall) and connections between
processes (Connector). The containment rela-
tions between the Application class and these
elements are specified with Composition relations
as shown in Figure 6.

The ProcessFun class represents the run func-
tions of processes. It has a String attribute named
FunCode containing the function code that gets
executed when the associated process is initiated.

The ProcessCall class represents initiated pro-
cesses in the application. Each process has an
associated run function which is specified with
an Instanceof association, and a ProcessType
attribute to indicate the type of the process. The

ProcessType attribute takes its value from Pro-
cess Type enumeration class which is SP (Software
Process) or HP (Hardware Process).

The Connector class represents the connec-
tions between processes via Ports. A connector
has two associations with two other classes called
OutputPort and InputPort, which are sub-classes
of the Port class.

The OutputPort class describes the output
ports of source processes, whereas the InputPort
class represents the input ports of destination
processes. QutputPort and InputPort classes in-
herit two attributes from the Port class: the name
of the port and the data type of the stream or
signal which takes its value from the DataType
enumeration class.

In addition, OutputPort and InputPort
classes are contained in the Process class which is
the abstract class of ProcessFun and ProcessCall
classes.

Despite its expressiveness, Ecore cannot cover
all modelling constraints for a modelling language
using only graphical elements. Usually, OCL is

18

Elhillali Kerkouche, El Bay Bourennane, Allaoua Chaoui

import ecore :

package STARSoC
{
class Application
{
attribute name :
property ContainsConnectors :
property ContainsProcessCall :
property ContainsProcessFun :
}
class Connector
{

property ToInputPort :
property FromOutputPort :

InputPort(?]):

}
class ProcessCall extends Process
{

attribute type : ProcessType[?]:
property InstanceOf : ProcessFun([l]):
}
class ProcessFun extends Process(]
® class Process[]
® class Port(]
class InputPort extends Port;
class OutputPort extends Port;
® enum ProcessType[]
enum DataType[]

'http://vvv.eclipse.org/emf/2002/Ecoret/"; -

: STARSoC = 'http://STARSoC/'

String([?] = 'MyApplication';

Connector(*]) { composes };
ProcessCall[*)
ProcessFun([*])

invariant Connector_ Must Connect_Two_Ports_of The Same DataTlype:
self.ToInputPort.DataType = self.FromOutputPort.DataType:

CutputPort(?]:;

invariant ProcessCall InPort DataType Is As ProcessFun InPort DataType:
self.HasInputPort.DataType = self.InstanceOf.HasInputPort.DataType:
invariant ProcessCall outPort_Datalype_Is_As_ ProcessFun_outPort_DataType:
self.HasOutputPort.DataType = self.InstanceOf.HasOutputPort.DataType;

{ composes };
{ composes };

Figure 7. Corresponding OCL invariants of the rules

employed to define additional constraints as the
so-called well-formedness rules. These rules are
implemented in OCL as invariants which are
attached to meta-model classes in order to de-
scribe properties that should always be satisfied
for every model. Thus, the invariant constraints
are defined on the meta-model and validated on
the model level using the EMF Validation Frame-
work [32]. By introducing the OCL invariants for
meta-model classes, a modelling language is more
precisely defined leading to models with higher
quality.

For this purpose, the proposed Ecore model
was enriched with three OCL invariant con-
straints. These invariants allow the user to check
the correctness of the described models with re-
spect to their construction rules as stated in the
StreamsC language. In the following part, these
rules are described in a natural language, and

subsequently the corresponding OCL invariants
in the OCLinEcore text editor [33], which embeds
the OCL expressions directly into Ecore models
by annotating the relevant classes, are shown in
Figure 7.

Rule 1: The two end ports of the Connector
must have the same data type to assure their
compatibility.

Rule 2: ProcessCall must have the data type
of the input port as declared in the input port
of its corresponding ProcessFun.

Rule 3: ProcessCall must have the data type
of the output port as declared in the output port
of its corresponding ProcessFun.

EMF from the proposed Ecore model was
used to generate a simple tree-based editor for
the modelling language that enables editing and
viewing model instances. To develop its graphical
modelling editors, both GEF and GMF were used

A Graphical Modelling Editor for STARSoC Design Flow Tool Based on Model Driven Engineering Approach 19

4 4 Canvas STARSoC
4 <% Figure Gallery Default
< Figure Descriptor ConnectorFigure
4 < Figure Descriptor ProcessCallFigure
4 4 Rectangle ProcessCallFigure
<4 Flow Layout false
<4 Foreground: {68,54,16}
Background: {199,240,225}
Maximum Size: [120,60]
Minimum Size: [120,60]
Preferred Size: [120,60]
Margin Border
Label ProcessCallINameFigure
Label ProcessCallTypeFigure

L R

Figure definitions

< Figure Descriptor ProcessFunFigure
< Figure Descriptor InputPortFigure
< Figure Descriptor OutputPortFigure
< Figure Descriptor InputPortNameFigure
< Figure Descriptor OutputPortNameFigure
< Figure Descriptor InputPortTypeFigure
& < Figure Descriptor OutputPortTypeFigure
4 % Node ProcessCall (ProcessCallFigure)
4 4 Default Size Facet
<4 [120,60]
4 Node ProcessFun (ProcessFunFigure)
4 Node InputPort (InputPortFigure)
4 Node OutputPort (OutputPortFigure)
<4 Connection Connector
<4 Connection ProcessCalllnstanceOf
<4 Diagram Label ProcessCallName
<4 Diagram Label ProcessCallType
<4 Diagram Label ProcessFunName
<4 Diagram Label ProcessFunPathToFile
<4 Diagram Label InputPortName
<4 Diagram Label OutputPortName
<4 Diagram Label InputPortType
. 4 Diagram Label OutputPortType

Connections Nodes

Labels
A

4 4 platform:/resource/STARSoCMM/model/STARSoC.gmfgraph

<4 Child Access getFigureProcessCallNameFigure
< Child Access getFigureProcessCallTypeFigure

ProcessCall Figure definition

Figure 8. Graphical concrete syntax definition

to define the Graphical model and the Tooling
model and Mapping model, respectively.

The Graphical model defines the concrete
syntax of the modelling language according to
their appropriate graphical notations. It includes
information related to the graphical elements
(i.e. nodes, labels, connections and decorations
for connection ends) that will appear in the ed-
itor. The Graphical model contains also a Fig-
ure Gallery that contains figures which are used
to define shapes. The elements that define the
nodes, connections and labels are under the Fig-
ure Gallery root in the graphical model. Figure 8
shows the graphical definition model for the pro-
posed Ecore model. For example, the ProcessCall
node uses the rectangle shape defined under Pro-

cessCallFigure Figure Descriptor. The rectangle
sizes, colours, borders and labels are described
separately as rectangle attributes. Similarly, each
node element of the Ecore model references the
corresponding Figure Descriptor.

The Tooling model defines the toolbar, menus
to be used and other periphery to facilitate the
management of the model content in the ed-
itor. The main focus of the Tooling model is
the toolbar definition. The toolbar is defined
within a Palette and contains Tool Groups which
contain the Tools. In Figure 9, the Tooling def-
inition model for this editor consists of three
Tool Groups, namely Processes, Ports and Con-
nectors. The Processes Tool Group contains the
ProcessFun and ProcessCall tools for creating the

20

Elhillali Kerkouche, El Bay Bourennane, Allaoua Chaoui

["2 P platform:/resource/STARSOCMM/model/STARSoC.gmftool

4 4 Tool Registry

4) Palette STARSoCPalette
4 4 Tool Group Processes
< Creation Tool ProcessFun
4 Creation Tool ProcessCall

4 4 Tool Group Ports

4 Creation Tool InputPort

<% Creation Tool OutputPort
4 4 Tool Group Connectors

4 Creation Tool Connector

Figure 9. Tooling definition model

4 | platform:/resource/STARSoCMM/model/STARSoC.gmfmap
4 4 Mapping

») Top Node Reference <ContainsProcessFun:ProcessFun/ProcessFun>
4)] Top Node Reference <ContainsProcessCall:ProcessCall/ProcessCall>

4 [T Node Mapping <ProcessCall/ProcessCall>
Ab Feature Label Mapping false
Ab Feature Label Mapping false

4 1) Child Reference <HasInputPort|HasInputPort:InputPort/InputPort>

IT Node Mapping <InputPort/InputPort>

4 ») Child Reference <HasOutputPort|HasOutputPort:OutputPort/OutputPort>

IT Node Mapping <OutputPort/OutputPort>

< Link Mapping <Connector{Connector.FromOutputPort:OutputPort-> Connector.TolnputPort:InputPort)/Connector>

[Canvas Mapping
| platform:/resource/STARSOCMM/model/STARSoC.ecore

¢ platform:/resource/STARSoCMM/model/STARSoC.gmfgraph

& platform:/resource/STARSoCMM/model/STARSoC.gmftool

Figure 10. Mapping definition model

ProcessFun and ProcessCall elements. The Ports
Tool Group includes InputPort and OutputPort
tools for creating the Input Port and Output
Port elements. The last tool group concerns the
creation of Connectors in the models.

The Mapping model maps graphical elements
from the graphical definition model and creation
tools from the tooling definition model to the
language constructs from the meta-model. The
Mapping model consists of several Top Node Ref-
erences, each of which contain one Node Mapping.
The Node Mapping is used to map an element
in the graphical model to both the construct
in the meta-model and to the creation tool. In
addition, it is within the Node Mapping that
the Label Mappings and Child References are
defined. Label Mappings map a Diagram Label
in the graphical model to an attribute in the
meta-model class that is referenced by the en-
closing Node Mapping. Child References allow

meta-model elements to have children, where
each child contains an inner Node Mapping. In
addition to Top Node References, Link Mapping
is used to specify information about a link. It
contains information about a source feature, tar-
get feature, graphical representation, creation
tool, and many other properties. For instance,
according to the mapping model in Figure 10,
ProcessCall elements (Fig. 6) are created by
means of the Creation Tool ProcessCall (Fig. 9)
and the graphical representation for them is the
ProcessCall Figure definition (Fig. 8). For each
ProcessCall the corresponding “name” and “Pro-
cessType” attributes are also visualized because
of the specified Feature Label Mappings which
relate the attribute “name” (resp. the attribute
“ProcessType”) of the ProcessCall class with the
diagram label ProcessCallName (resp. Process-
CallProcessType) defined in the graphical defini-
tion model.

A Graphical Modelling Editor for STARSoC Design Flow Tool Based on Model Driven Engineering Approach — 21

id) STARSoC_Specification.starsoc_diagram &3

sc_uint8

= =]

* | 5e Palette

(3 ProcessFun sc_uint8 RRQAD ~
=] output_stream (& Processes
o s 53 ProcessFun
ProcessCall
. -
(& ProcessCall OutputFol nputPor 'J (& ProcessCall & Ports
i _,1. Hp B inputPort
P sc_uint1 sc_uint1 . o OutputPort
(= Connectors
E Connector
[Properties &3 = o > =g
& ProcessCall
Core Property Value =
Appearance Instance Of (=) Process Fun ProcessFun E

Name '= ProcessCall
Type ‘2 HP

Figure 11. Generated editor for STARSoC

Finally, the Mapping model is transformed
into a diagram generator model from which a di-
agram editor can be generated. Figure 11 shows
the graphical modelling editor generated form
EMF and GMF models defined for specifying
systems on the STARSoC design tool. The edi-
tor shows the graphical elements in the diagram
and the tools in the palette. Furthermore, GMF
provides more advanced features such as anno-
tating, zooming and layouting for the generated
editor. The properties of a graphical element can
be accessed through the properties view.

6.2. Code generation of StreamsC
specification

The next step is the transformation of the graph-
ical specification of a system into its equivalent
StreamsC specification using the Acceleo trans-
formation language. In order to do that, the pre-
ceding transformation was composed with a set of
Acceleo templates (see Figure 12) that traverses
the elements of the source model (instances of
meta-models) and generates the corresponding
StreamsC code.

The first Acceleo template ToStreamsC (App :
Application) is the main template. It creates the
file of the StreamsC specification and takes the
only instance of the Application class which con-
tains all model elements as a parameter. Using
this parameter (App), it scans the contained

elements and for each element type produces
the corresponding StreamsC code. To achieve
this, the ToStreamsC template uses three others
templates defined for the ProcessFun, Process-
Call and Connector meta-model elements. For
example, the template GenProcessFun(pf : Pro-
cessFun) takes ProcessFun pf as a parameter
and writes the run function description of pf,
which contains the PROCESS FUN directive,
the name of the run function, the input and the
output streams, the body of the function and the
PROCESS_FUN_END directive, to the output
file.

7. Case study

To evaluate the practical usefulness of the pro-
posed graphical editor, a simple application of
image processing involving the horizontal edge
detection of an image of 256 X 256 pixels coded
out of 8 bits was considered. The edge detection
is a preliminary step in most image processing
techniques. Figure 13 presents the model created
in this editor.

The application is defined through two differ-
ent processes. The first one is a software process,
it allows to send the original image, through
its output stream, in the direction of the input
stream of the second process which is a hardware
process. The hardware process performs edge

22 Elhillali Kerkouche, El Bay Bourennane, Allaoua Chaoui

[comment encoding UTF-8 /]
[module generate (’http://STARSoc/’)]
[template public ToStreamsC (App : Application)]
[comment @main /]
[file (App.name.concat(’.sc’), false, 'UTF-8’)
/* [App.name /] .
Automatically generated streamsc specification

//

// Process Functions definitions

//

[for (processFun : ProcessFun| App.ContainsProcessFun)]
[GenProcessFun (processFun) /]

[/ for]

//

// Process definitions

//

[for (processCall : ProcessCall| App.ContainsProcessCall)]
[GenProcessFun (processCall)/]

[/ for]

//

// Connections

//

[for (connector : Connector| App.ContainsConnectors)]
[GenConnector (connector , App)/]

[/ for]

[/ file]

[/ template]

[template private GenProcessFun(pf : ProcessFun)]
/// PROCESS _FUN [pf.name/]
/// IN_STREAM |[pf.HasInputPort.DataType/] [pf.HasInputPort.name/
/// OUT_STREAM |[pf.HasOutput Port.DataType/] [pf.HasOutputPort.name/]
/// PROCESS FUN BODY
[pf.FunCode /]
/// PROCESS FUN_END
[/ template]

[template private GenProcessCall(pc : ProcessCall)]
/// PRoCESS [pc.name/] PROCESS FUN [pc.InstanceOf.name/] TYPE [pc.ProcessType/]
[/ template]

[template private GenConnector(c : Connector, App:Application)]
[for (pc :ProcessCall| App.ContainsProcessCall)]
[if (pc.HasOutputPort=c.FromOutputPort)] [pc.name/][/ if]
[/ for]
.[c¢.FromOutputPort .name /]
[for (pc :ProcessCall| App.ContainsProcessCall)]
[if (pc.HasInputPort=c.TolnputPort)][pc.name/][/ if]
[/ for]
.[c.TolnputPort.name/]
[/ template]

Figure 12. Acceleo templates for StreamsC code generation

A Graphical Modelling Editor for STARSoC Design Flow Tool Based on Model Driven Engineering Approach

23

& Essaistarsoc 4 Essaistarsoc_dsagram .
* | 5e Palette
sc_uint8) ina A sc_uint8 sc_uint8 AL~
Q S €3 Hort 9 . Processes
input_stream output_stream input_stream output_stream 3 ProcessfFun
3 ProcessCall
&> Ports

M inputbont

B} OutputPort
sc_uint8 sc_uint8

sc_uint8 Image_Processing_Process sc_uint8 HorizontalEdgeDetection_Process > Connectors

H Connector
input_stream | SP output_stream input_stream| HP output_stream

Figure 13. Graphical specification of the application

detection image and returns the resulting image
to the software process.

The edge detection algorithm calculates the
absolute value of the difference between two con-
secutive pixels arriving on the data bus of the
input streams. The equation of the horizontal
edge detection filter is as follows:

y(x) = [z(n) —z(n - 1)| (1)

Only one hardware process is sufficient to
perform this calculation. The algorithm of hor-
izontal edge detection is described below (see
Figure 14).

Its equivalent StreamsC description is gen-
erated from the graphical specification of the
application. To generate StreamsC specification
in this approach, it is necessary to execute the
Acceleo template defined in the previous section.
The automatic generated file Essai.sc, which con-
tains the specification, is shown in Figure 15.

This StreamsC specification of the whole ap-
plication is the basis on which all STARSoC de-
sign activities can be performed. Figure 16 shows
the development environment for STARSoC tool.

8. Conclusion

The paper presents some attempts to improve
the STARSoC design tool by taking advantage
of the Model Driven Engineering techniques.
More precisely, Eclipse Modelling Project frame-

works and tools (EMF, GEF, GMF, Acceleo,. ..),
which follow the principles of MDE approach,
were used to develop a graphical editor for the
STARSoC design tool. This editor supports the
graphical editing of embedded system models
in terms of UML Component-like Diagram and
generates the StreamsC textual specifications
of these models. The adapted UML Compo-
nent Diagram is defined in accordance with
the embedded system design needs using the
Ecore model, whereas the transformation pro-
cess is defined and executed using the Acceleo
framework. The resulting StreamsC specifica-
tions are used to perform all STARSoC de-
sign tool activities, such as hardware/software
co-design, design space exploration and high level
synthesis.

According to the authors this approach is suf-
ficiently flexible to incorporate new design needs.
Due to the employed Eclipse Modelling Project,
revisions of the meta-model almost automatically
yield an updated editor and the generation of
a text or code is supported as the coding of each
meta-model element is analysed separately.

Future work plans encompass the use and
adaptation of some UML behavioural diagrams
in order to depict the behavioural features of
embedded system processes. These behavioural
diagrams will be used to automatically generate
process codes. One promising direction is to com-
bine existing UML profiles for embedded systems
design, such as SysML and MARTE profiles. This

24 Elhillali Kerkouche, El Bay Bourennane, Allaoua Chaoui

sc_uint8 data_in, data_out, x, y;
sc_stream_open (input_stream);
sc_stream__open (output_stream);

while (!sc_stream — eos(input_stream)) {
#pragma SC pipeline

data_in = sc_stream_read (input_stream)
sc_stream__write (output__stream.data_ out
y = x — data_in;

x = data_in;

If (y >= 0) { data_out =y; }

Else { data_out =y * (—1); }

}

sc_stream__close (input__stream);
sc_stream_ close (output_stream);

)

Figure 14. Horizontal edges detection algorithm

P Essai - Bloc-notes E'@(z|
w Edition Format Affichage ?

/% _Essai .SC __ _
Automatically generated StreamsC specification

'

//
// Process Functions definitions

VV// PROCESS_FUN Image_processing_app
/// IN_STREAM sc_uint8 input_stream
/// OUT_STREAM sc_uint8 output_stream
/// PROCESS_FUN_BODY

sc_uint8 data_in, data_out, X, y;
sc_stream_openginput_stream)'
sc_stream_open(output_stream);

/% Application code ... %/

sc_stream_c1oseginput_stream)'
sc_stream_close(output_stream);
/// PROCESS_FUN_END

/// PROCESS_FUN HorizontaleEdgeDetection
/// IN_STREAM sc_uint8 input_stream
/// OUT_STREAM sc_uint8 output_stream
/// PROCESS_FUN_BODY

sc_uint8® data_in, data_out, X, y;
sc_stream_open%i nput_stream);
sc_stream_open(output_stream);

while (!sc_stream-eos(input_stream)) {
pragma sC pipeline

pata_in = sc_stream_read(input_stream);
sc_stream_write(output_stream, data_out);
Y = x-data_in;

xf-(dataagr{\é }

1 >m ata_out= y;

E'Isey{data_out = y'(-{ﬁ;}

sc_stream_cl oseE‘i nput_stream);
sc_stream_close(output_stream);
/// PROCESS_FUN_END

/
// Process definitions
/7

/// PROCESS Ima?e_Process'!ng_Process PROCESS_FUN Image_processing_App TYPE SP
/// PROCESS HorizontaledgeDetection_Process PROCESS_FUN HorizontaledgeDetection TYPE HP

//
// connections
/!

/// CONNECT Ima?e_Processing_Process.output_stream HorizontaledgeDetection_Process. input_stream
/// CONNECT HorizontaledgeDetection_Process.output_stream Image_Processing_Process.input_stream

Figure 15. Generated StreamsC specification

A Graphical Modelling Editor for STARSoC Design Flow Tool Based on Model Driven Engineering Approach

25

v C/C++ - essai.sc - STARSoC [=lB]x]
File Edt Navigate Search Run Project Windonw Help
Civ & fm., o | Ev G [clv @y Ty QO Qr | = & & [EEC/C++ ”
Yz Pvahy | =
m stlessai.sc & [essai_starsoc.vhd BN =08
— while (!sc_stream_eos(input_streanm)) { Zf An outline
; — ‘ is not
¢ D R|BE #pragma SC pipeline available.
v 5 de [l
e data_in = sc_stream_read(input_strean);
b [5Includes x = data_in;
[&) Makefile y = x - data_in; L
irf (y >= D) {dd[a_ou[= y,)
| essai_starsoc.vhd else {data_out =y * (-1);}
b 1S essail
o sc_stream_write(output_stream, data out):
P i=test
} =]
[¢] [*] ‘
| Problems | &) Console 22 - Properies 8 4| B-y=8
C-Build [demo]
§CZ_1.4DeTa;/nin/Seqgen > essal_starsor.vna
< [/opt/oasys/sc2_1.4beta/src/synth/misc/scripts/makearch E

demg/essai.sc

Figure 16. The development environment for STARSoC tool

combination is possible since most of the profiles
are focused on the process paradigm.

References

[1] M. Gokhale, sc2 Reference Manual, Los Alamos
National Laboratory, Los Alamos, NM, USA,
2003.

[2] W. Meeus, K.V. Beeck, T. Goedemé, J. Meel,
and D. Stroobandt, “An overview of today’s
high-level synthesis tools,” Design Automation
for Embedded Systems, Vol. 16, No. 3, 2012, pp.
31-51.

[3] J. Cong, B. Liu, S. Neuendorffer, J. Noguera,
K.A. Vissers, and Z. Zhang, “High-level synthe-
sis for FPGAs: From prototyping to deployment,”
IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 30, No. 4,
2011, pp. 473-491.

[4] A.Samahi and E. Bourennane, “Automated inte-
gration and communication synthesis of reconfig-
urable MPSoC platform,” in Second NASA/ESA
Conference on Adaptive Hardware and Sys-
tems (AHS), University of Edinburgh. Scotland,
United Kingdom: IEEE Computer Society, 2007,
pp. 379-385.

[5]) M. B.Gokhale, J.M. Stone, J. Arnold, and
M. Kalinowski, “Stream-oriented FPGA com-
puting in the Streams-C high level language,”

8]

in Proceedings of the 2000 IEEE Symposium
on Field-Programmable Custom Computing Ma-
chines. Napa Valley, CA, USA: IEEE Computer
Society, 2000, pp. 49-56.

Unified Modeling Language, Version 2.5,
Object Management Group, 2015, OMG
Document Number: formal/15-03-01. [Online].
http://www.omg.org/spec/UML/2.5/PDF
A.R. da Silva, “Model-driven engineering,’
Computer Languages, Systems and Structures,
Vol. 43, No. C, 2015, pp. 139-155.

J. Joven, O. Font-Bach, D. Castells-Rufas,
R. Martinez, L. Terés, and J. Carrabina, “xENoC
— an experimental network-on-chip environment
for parallel distributed computing on NoC-based
MPSoC architectures,” in 16th Euromicro In-
ternational Conference on Parallel, Distributed
and Network-Based Processing. Toulouse, France:
IEEE Computer Society, 2008, pp. 141-148.

D. Thomas and P. Moorby, The Verilog Hard-
ware Description Language, 3rd ed. Norwell, MA,
USA: Kluwer Academic Publishers, 1996.

J. Keinert, M. Streubuhr, T. Schlichter, J. Falk,
J. Gladigau, C. Haubelt, J. Teich, and M. Mered-
ith, “SystemCoDesigner — an automatic ESL syn-
thesis approach by design space exploration and
behavioral synthesis for streaming applications,”
ACM Transactions on Design Automation of
Electronic Systems, Vol. 14, No. 1, 2009, pp.
1-23.

i

26

Elhillali Kerkouche, El Bay Bourennane, Allaoua Chaoui

[11]

[12]

[13]

[20]

T. Grotker, System Design with SystemC. Nor-
well, MA, USA: Kluwer Academic Publishers,
2002.

SOPC Builder User Guide, Version
1.0, Altera Corporation, San Jose, CA,
USA, 2010, Document Number: UG-01096.
[Online]. http://www.altera.com/literature/ug/
ug_ SOPC_ builder.pdf

EDK Concepts, Tools, and Techniques:

A Hands-On Guide to Effective Embedded
System Design, Version 13.2, Xilinx
Online Documents, 2011, OMG Docu-
ment Number: UG683. [Online]. http:

//www.xilinx.com/support/documentation/
sw__manuals/xilinx13_2/edk__ctt.pdf

Systems Modeling Language (OMG SysML), Ver-
sion 1.4, Object Management Group, 2015, OMG
Document Number: formal/2015-06-03. [Online].
http://www.omg.org/spec/SysML/1.4/

A UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded systems,
Version Beta 2, Object Management Group,
2008, OMG Document Number: ptc/2008-06-09.
[Online]. http://www.omg.org/omgmarte/
Documents/Specifications/08-06-09.pdf

DaRT team: Dataparallelism for Real-Time.
[Online]. http://www.inria.fr/en/teams/dart/
[Accessed 2016].

GASPARD2 SoC Framework. [Online]. http:
//www.gaspard2.org/ [Accessed 2016].

Model Driven Architecture Guide, Version
1.0, Object Management Group, 2003,
OMG Document Number: omg/2003-05-01.
[Online]. http://www.omg.org/mda/mda_ files/
MDA__ Guide_ Versionl-0.pdf

UML Profile for System on a Chip (SoC),
Version 1.0.1, Object Management Group, 2006,
OMG Document Number: formal/2006-08-01.
[Online]. http://www.omg.org/spec/SoCP/1.0.
1/PDF

T. Kangas, P. Kukkala, H. Orsila, E. Salminen,
M. Hénnikainen, T.D. Hadmalédinen, J. Riihimé&ki,
and K. Kuusilinna, “UML-based multiprocessor
SoC design framework,” ACM Transactions on
Embedded Computing Systems, Vol. 5, No. 2,
2006, pp. 281-320.

[21]

S. Boukhechem and E. Bourennane, “SystemC
transaction-level modeling of an MPSoC plat-
form based on an open source ISS by using inter-
process communication,” International Journal
of Reconfigurable Computing, Vol. 2008, 2008,
pp- 1-10.

J. Frigo, sc2 Hardware Library Reference Man-
ual, Los Alamos National Laboratory, Los
Alamos, NM, USA, 2000.

L. Cai and D. Gajski, “Transaction level mod-
eling: An overview,” in Proceedings of the 1st
IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Syn-
thests. Newport Beach, CA, USA: ACM, 2003,
pp- 19-24.

Eclipse Modelling Project (EMP). [Online].
http://www.eclipse.org/modeling/ [Accessed
2016].

R.C. Gronback, Eclipse Modeling Project: A Do-
main-Specific Language (DSL) Toolkit, 1st ed.
Addison-Wesley Professional, 2009.

Eclipse Modelling Framework (EMF). [Online].
https://eclipse.org/modeling/emf/ [Accessed
2016].

D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks, EMF: Eclipse Modeling Framework
2.0, 2nd ed. Addison-Wesley Professional, 2009.
Graphical Editing Framework (GEF). [Online].
http://www.eclipse.org/gef/ [Accessed 2016].
Graphical Modelling Framework (GMF)).
[Online]. http://www.eclipse.org/modeling/
gmp/ [Accessed 2016].

User Guide, Version 3.1.0, The Eclipse Foun-
dation, 2011. [Online|. http://www.eclipse.org/
acceleo/support/

MOF Model to Text Transformation Language,
Version 1.0, Object Management Group, 2008,
OMG Document Number: formal/2008-01-16.
[Online]. http://www.omg.org/spec/ MOFM2T/
The EMF Validation Framework project
(EMF-VF). [Ounline]. http://www.eclipse.org/
modeling/emf/?project=validation [Accessed
2016].

OCLinEcore Editor. [Online]. https://wiki.
eclipse.org/MDT/OCLinEcore [Accessed 2016].

e-Informatica Software Engineering Journal, Volume 12, Issue 1, 2018, pages: 27-49, DOI 10.5277/e-Inf180102

An Empirical Study on the Factors Affecting
Software Development Productivity

Luigi Lavazza®, Sandro Morasca®, Davide Tosi*
* Dipartimento di Scienze Teoriche e Applicate, Universita degli Studi dell’Insubria

luigi.lavazza@uninsubria.it, sandro.morasca@uninsubria.it, davide.tosi@uninsubria.it

Abstract

Background: Software development productivity is widely investigated in the Software Engi-
neering literature. However, continuously updated evidence on productivity is constantly needed,
due to the rapid evolution of software development techniques and methods, and also the regular
improvement in the use of the existing ones.

Objectives: The main goal of this paper is to investigate which factors affect productivity. It
was also investigated whether economies or diseconomies of scale exist and whether they may be
influenced by productivity factors.

Method: An empirical investigation was carried out using a dataset available at the software
project repository ISBSG. The major focus was on factors that may affect productivity from
a functional point of view. The the conducted analysis was compared with the productivity data
provided by Capers Jones in 1996 and 2013 and with an investigation on open-source software by
Delorey et al.

Results: This empirical study led to the discovery of interesting models that show how the
different factors do (or do not) affect productivity. It was also found out that some factors appear
to allow for economies of scale, while others appear to cause diseconomies of scale.
Conclusions: This paper provides some more evidence about how four factors, i.e., programming
languages, business areas, architectural types, and the usage of CASE tools, influence productivity
and highlights some interesting divergences in comparison with the results reported by Capers
Jones and Delorey et al.

Keywords: effort, function point, empirical study, ISBSG dataset, factors, development,

productivity

1. Introduction

Productivity is one of the crucial aspects in soft-
ware development, as it is intrinsically related to
software costs. Improvements in software develop-
ment productivity may come from the industrial
use of novel techniques constantly introduced
in Software Engineering. Also, software devel-
opment productivity may improve because of
the ever increasing knowledge and experience
acquired on existing software engineering tech-
niques, which, in addition, are becoming more
and more consolidated over time. However, it
needs to be checked if this potential improve-

ment in productivity actually takes place and, if
so, to what extent and under what conditions,
so that conditions favoring productivity can be
created and maintained in the software industry.

Many factors are believed to significantly in-
fluence productivity [1], so identifying relation-
ships between factors and productivity is no sim-
ple matter. In addition, Software Engineering is
still a relatively recent discipline and its empirical
laws still need to be accurately described and
validated. Moreover, Software Engineering is very
human-intensive, thus productivity is certainly
affected by factors that may not be easy to quan-
tify and control. The human-intensive nature of

28

Luigi Lavazza, Sandro Morasca, Davide Tosi

software development may also imply that there
are intrinsic limits to potential improvements in
productivity.

This paper reports on an empirical study
which was carried out to investigate whether
and to what extent productivity is influenced
by a number of factors, namely, the primary
programming language used to develop each soft-
ware project, the business area addressed by the
project, the architectural type adopted by the
project, and the use of CASE (Computer-Aided
Software Engineering) tools. It was also inves-
tigated whether economies or diseconomies of
scale (i.e. the cost disadvantages that companies
accrue due to an increase in company size or
output resulting in the production of services at
increased per-unit costs) may exist and whether
they depend on the factors that influence pro-
ductivity.

The data used in this empirical study
came from projects in the ISBSG (Inter-
national Software Benchmarking Standards
Group)! dataset [2], one of the most extensive
datasets containing data on software develop-
ment projects, and especially effort data, span-
ning 25 years. The ISBSG dataset contains data
from a few thousand projects. Even though this is
a fairly large amount of data, the ISBSG dataset
represents a limited sample of the software de-
velopment projects that have been and still are
being carried out worldwide. Moreover, its data
are provided on a voluntary basis by different
types of software developers. As a result, ISBSG
data may be only partially representative of all
current software development practices. At any
rate, ISBSG data are about projects with the
same or similar characteristics as a fairly large
part of current software development projects.

The main focus was on productivity from
a functional point of view, so the functional size
of product is measured (in Function Points [3,4]),
rather than the physical size (e.g. measured in
Lines of Code — LoC).

The set of factors investigated in this paper
extends the set of factors studied in the authors’
previous work [5], in which they were only inter-

ested in understanding the effect of the primary
programming language on software productivity.
In the work documented in this paper, more fac-
tors are investigated, as described in the following
research question.

RQ1: Which factors influence productivity?
Specifically: Does the primary programming lan-
guage factor affect productivity (i.e. does pro-
ductivity increase or decrease with the adopted
programming language)? Does the business area
factor affect productivity? Does the type of ar-
chitecture factor affect productivity? Does the
use of CASE tools affect productivity?

Also, the following additional research ques-

tion, related to whether a factor may determine
software development economies or diseconomies
of scale, are addressed here.
RQ2: Which factors influence economies and dis-
economies of scale? Specifically: Does the choice
of the primary programming language determine
a relation between size and development effort
characterized by economies (or diseconomies) of
scale? Similarly, do the business area, the type of
architecture or the use of CASE tools determine
a relation between size and development effort
characterized by economies (or diseconomies) of
scale?

Several different analyses were carried out.
Firs a “naive” analysis was carried out, by look-
ing at the mean, median, and variance of the pro-
ductivity for the projects in the ISBSG dataset
and assessing differences across different sub-
sets of projects, grouped according to the pro-
gramming language and the other factors men-
tioned above. Then the productivity level of each
programming language was compared with the
data reported by Capers Jones [6,7] and De-
lorey et al. [8], to investigate whether our pro-
ductivity data are aligned with these reference
data. To investigate the existence of economies
and diseconomies of scale, regression models
that correlate size and effort for each value of
a productivity-influencing factor were built to
highlight the dependence of productivity on size
[1,9] (see Section 7). All of the analyses done
in the paper address both the complete ISBSG

"Most of the Repository Field Descriptions of the ISBSG dataset are available at: http://isbsg.org/2016,/04,/06/what-
you-can-find-in-the-2016-r1-isbsg-development-enhancement-repository/.

An Empirical Study on the Factors Affecting Software Development Productivity 29

data set and the “new development” and “en-
hancement” projects subsets separately.

The main contributions of our work with re-
spect to the existing literature mainly lie in the
fact that our study:

— is based on the analysis of a large, public
dataset, namely the ISBSG dataset;

— provides up-to-date indications by analyzing
recent software project data;

— addresses several factors that are believed to
affect productivity;

— uses a rigorous statistical approach.

The remainder of the paper is organized as
follows: Section 2 describes the analysis method
used. Sections 3-6 report the analysis of produc-
tivity versus the considered factors. Section 7
discusses how each factor may contribute to the
software development of economies of scale or
diseconomies in software development. Section 8
lists possible threats to the validity of this work.
Section 9 reviews related work. The conclusion
are presented in Section 10.

2. Analysis method

2.1. Software development productivity

The adopted definition of productivity was very
simple: the functional size of software developed
divided by the amount of effort employed in the
development process.

Size of developed software

Productivity = Software development effort
In this paper, the preferred size measures are the
functional ones, mainly the Unadjusted Func-
tion Points (UFP) [4], although occasionally the
lines of code (LoC) were used to compare these
findings with those of other authors who used
LoC measures. The amount of effort spent on
developing software is given by the total number
of person-hours or person-months spent in the
development process.

2.2. The ISBSG dataset

The study reported here is based on the analysis
of data from the ISBSG dataset release R12 [2].

The ISBSG dataset supports the definition of pro-
ductivity given above. Specifically, many of the
projects in the ISBSG dataset were measured by
means of IFPUG (International Function Point
Users Group) Function Points [4] or other essen-
tially equivalent functional size measures, like
NESMA (Netherlands Software Metrics users
Association) Function Points [10]. The ISBSG
dataset also contains development effort data,
normalized to take into account possible differ-
ences in development processes.

The ISBSG dataset provides several product
and process measures and characteristics that
can be useful in a productivity study [11]. Among
these, the programming language, the business
area, the architecture and the usage of CASE
tools are considered and analysed as factors that
may affect productivity in this paper.

To study the effect of these factors on pro-
ductivity, the authors selected and grouped data
samples concerning projects with the same pro-
gramming language, business area, architecture,
or decision whether to use CASE tools.

2.2.1. New developments vs. enhancements

The ISBSG dataset contains data concerning
both new developments and enhancements of
software projects. To deal with enhancements, it
is necessary to take into account the following
issues.

— The size of an enhancement is defined dif-
ferently than the size of development from
scratch, as their measurement processes are
different [12].

— The size of an enhancement in Function
Points actually measures the size of the part
of application in which the change occurs, not
the size of the change [4,12]. For instance,
the introduction ofa new transaction has the
same size as making a small change in an
existing transaction, provided that the two
transactions have the same complexity.

— A model stating that Effort = f(functional
size of the enhancement) is, therefore, a sim-
plification since enhancement effort depends
on both the size of the change and the over-
all size of the product being changed. For

30

Luigi Lavazza, Sandro Morasca, Davide Tosi

Table 1. New development projects from the ISBSG
dataset: descriptive statistics

Size Effort Productivity
[UFP] [PH] [UFP/PH]
Mean 616 6766 0.176
Median 322 3226 0.110
Stdev 776 10497 0.253
Min 51 320 0.006
Max 7400 134211 3.960

instance, after an enhancement, a system test
must be carried out, and the effort required
for this type of testing is related to the entire
application size, rather than the size of the
enhancement alone. Unfortunately, building
a model of the Effort=f(functional size of the
application, functional size of the enhance-
ment) type is not possible, since the ISBSG
database does not provide the sizes of the
enhanced applications,only the size of the
enhancements.
Because of the differences in the development
from scratch and enhancement processes, the
effects of programming languages, business areas,
architectural types, and usage of CASE tools are
investigated on new developments and enhance-
ment projects separately.

2.2.2. Data selection

Not all ISBSG projects were suitable for this
analysis. Data samples were selected according
to the following criteria:

— Only projects measured in IFPUG or NESMA
FP and provided with both size and effort
data were selected.

— Only data concerning projects with a speci-
fied primary programming language, business
area, architecture, and usage of CASE tools
were selected.

— The projects in the ISBSG dataset are char-
acterized by different quality levels. The se-
lected projects had their data quality rated ‘A’
or ‘B’, i.e., those with good quality of data in
the ISBSG dataset. Similarly, the UFP rating
(i.e. quality of functional size measurement)
of the selected projects was ‘C’ or greater.

Table 2. Enhancement projects from the ISBSG
dataset: descriptive statistics

Size Effort Productivity
[UFP] [PH] [UFP/PH]
Mean 293.7 4073.5 0.1
Median 167.5 2188 0.079
Stdev 403.7 6479.6 0.1
Min 50 322 0.004
Max 7134 109271 1.5

This is consistent with the previous studies
of the ISBSG dataset.

— New development projects concerning appli-
cations smaller than 50 UFP were not con-
sidered. For such small projects, it is likely
that specific effects — such as the usage of
simplified life cycles — can dramatically af-
fect productivity, thus making them hardly
comparable with larger projects.

— Similarly, projects greater than 10,000 UFP
or requiring more than 150,000 person-hours
were not considered. There were only
4 projects with such characteristics, so they
can very well be considered outliers.

2.3. Descriptive statistics
2.3.1. New development projects

Out of about 6000 ISBSG projects, 989 data
points concerning new developments satisfy the
selection requirements described in Section 2.2.2.
The descriptive statistics are given in Table 1
(where PH indicates person-hours).

Figure 1 shows the distribution of the pro-
ductivity data of the selected projects (the grey
diamond is the mean value). Projects with pro-
ductivity greater than 1 UFP/PH are not shown,
to preserve the readability of the figure.

2.3.2. Enhancement projects

Out of about 6,000 ISBSG projects, 1570 data
points concerning enhancements satisfy the se-
lection requirements described in the previous
section. The descriptive statistics are presented
in Table 2.

An Empirical Study on the Factors Affecting Software Development Productivity 31

0.6 0.8 1.0
WO O 000 Om

04

0.2

0.0

Figure 1. Distribution of productivity of
new development projects

Figure 2 shows the distribution of the produc-
tivity data of the selected projects (the grey dia-
mond is the mean value). Projects with produc-
tivity greater than one UFP/PH are not shown,
to preserve the readability of the figure.

As the first result of the analysis, one can note
that productivity varies widely (the maximum
observed value is 2.250% the mean and 66,000%
the minimum observed value) and that the pro-
ductivity of enhancement projects tends to be
lower than that of new development projects,
but with a smaller variance. This may appear
to be somewhat surprising, since the value of
UFP for an enhancement project is the size of
the part of the application where the enhance-
ment takes place, regardless of the size of the
change itself. Therefore, the result shows that, on
average, more effort is used in an enhancement
project than in a new development project with
the same functional size. This is probably due
to the fact that maintenance is more challenging
than development from scratch.

2.4. Data analysis techniques

We applied several statistical data analysis tech-
niques. The Shapiro-Wilks test was used to
check whether specific distributions are normal,
and the nonparametric Kruskal-Wallis [13] and
Mann—Whitney tests [9] to check if a nominal
independent variable affects productivity.

o
- o
(o]
8
@ _j o
@]
<
(=]
o | |
o
°
o |
o
Figure 2. Distribution of productivity of
enhancement projects
Power law models, i.e. models of the kind
Effort = eUFP’, were used to investigate

whether a statistical relationship exists between
UFP and Effort. Ordinary Least Square (OLS)
regression techniques were used after applying
logarithmic transformations to both UFP and
Effort, because the assumptions about the nor-
mality of distributions do not hold for UFP and
Effort. Power-law models are used to investigate
the existence of economies or diseconomies of
scale.

In the paper, the statistical significance
threshold is set to 0.05, as customary in
Empirical Software Engineering studies. All
of the statistical results reported in the pa-
per are statistically significant, i.e. they have
p-value < 0.05.

3. Effects of primary programming
language on productivity

The impact of the programming language pri-
marily used to develop the project was analysed.
Different programming languages call for differ-
ent development processes, skills, data structures,
methods, testing activities, and so on. It is thus
reasonable to expect that the productivity of
software development may depend on the pro-
gramming language.

32

Luigi Lavazza, Sandro Morasca, Davide Tosi

08 — a ©°
o
o g
05 8)
o
o o
[
| o e o
04 o : o © &
o 1 5 6 ©
o ' —
8 ; o 1 —
o [' o
g - — T
02 — - 3 1 H
H i
| - J 23 T
SR
00 gt - 2 sl - —_ = SR
I I
g °
(3]

saL
=
ASP -

ABAP

T
@
g
<

COBOL ~
Java —f
Visual Basic —
LowsNoles —

Figure 3. Distributions of new development
productivity per programming language

3.1. New development projects

Table 3 gives a few descriptive statistics of new
development projects grouped by the program-
ming language. The median productivity greatly
changes from a minimum of 0.044 UFP/PH for
C# projects to a maximum of 0.425 UFP/PH
for access projects. This reinforces the idea that
productivity may depend on the programming
language.

The distributions of the productivity of
projects grouped by language are shown in Fig-
ure 3. As the figure shows, the distributions are
far from symmetrical, so the “distribution-free”
nonparametric Kruskal-Wallis rank sum test [13]
was used to assess whether the difference between
groups is significant. The results (x? = 291.66,
df = 70, p-value < 10~'%) confirm that the pri-
mary programming language has a significant
effect on productivity.

The authors proceeded to study the effect
of the programming languages on productivity
for pairs of different programming languages, us-
ing the Mann—Whitney test, to check if there
was a statistically significant order relationship
between the subsets of projects with different
pairs of languages. The results are reported
in Table 4. The symbol ‘>’ denotes that the
projects with the programming language re-

08 °
o
g °
[+
o o
Lo
LTI G
° g o
o o 9 o
o
8 °
Q o
- o 8 o i
04 a i
o o <
g]] =} o
: g 9 2
T - i = 1T 8§ i __ 3
02 ' ; : : o : e
| ; : ! : .
° : ll - °
‘
s | T e e s I
T 1 | I T
g ° & 4 3 %
@ © @ a
8 -

Java —
Visual Basic =

Figure 4. Distributions of enhancement project
productivity per programming language

ported in the row of a cell have higher produc-
tivity (in a statistically significant sense) than
those with the programming reported in the
column. Likewise, the symbol ‘<’ denotes the
opposite relationship. The symbol ‘=’ denotes
that no statistically significant difference was
found.

The projects based on the language used in
Access appear to be the most productive ones,
followed by those based on Lotus Notes. Surpris-
ingly, the productivity of C# projects appears to
be the worst one, followed by ABAP, and C++.
There is no empirical evidence on the reasons
why Access appears very productive while the
productivity of C# development appears very
low. It can be argued that high-level languages,
such as Access, are more productive since they
are used in simpler projects and business pro-
cesses than more complex languages (such as
C+#) that are generally used in more complex
projects of several kinds of application areas.

3.2. Enhancement projects

Table 5 gives a few descriptive statistics for en-
hancement projects, grouped by their program-
ming language. Note that the languages that
appear in Table 5 are not the same as those
appearing in Table 3, because in Table 5 the

An Empirical Study on the Factors Affecting Software Development Productivity 33

Table 3. Summary data of new development projects

grouped by programming language

Table 4. Relations between new development
productivity of programming languages

Median Median

Language N

Median
Size [UFP] Effort [PH] [UFP/PH]

COBOL 174 286 4333.5 0.063
Java 114 281.5 3394.5 0.103
Visual Basic 145 327 2760 0.145
C 48 479 4712 0.098
C++ 37 312 5100 0.083
SQL 48 615.5 5662.5 0.144
Lotus Notes 16 275.5 1117 0.223
C# 22 285.5 6859.5 0.044
ASP 14 282.5 1957 0.150
Access 24 359.5 845 0.425
ABAP 17 279 6051 0.060

COBOL
A | Java
A A | Visual Basic

vV IIA|lC
I
ABAP

C++
A A | SQL

Language

COBOL
Java

Visual Basic
C

C++

SQL

Lotus Notes
C#

\
v

I
N
A A A A A A | Lotus notes

VVVVYVYVYV C#
1 AAIAA| ASP
ANNANNANANANANANA]| Access

N

languages with too few data to support any sta-
tistically significant analysis were omitted. The
median productivity varies much less than for
new development projects, from a minimum of
0.051 UFP/PH for C++ projects to a maxi-
mum of 0.116 UFP/PH for NATURAL projects,
with the next ones equal to 0.083 UFP/PH for
SQL, C#, and ABAP projects. Thus, produc-
tivity may depend less on the programming lan-
guage for enhancement than for new develop-
ments.

The distributions of the productivity of
projects grouped by programming language are
shown in Figure 4.

The comparison of Figures 3 and 4 seems
to confirm that the productivity of enhance-
ment projects appears much less dependent on
programming languages than the productivity
of new development projects. Moreover, it ap-
pears that for several languages the produc-
tivity in enhancements is substantially lower
than the productivity of new developments.
The projects based on the NATURAL Ilan-
guage [14] are associated with higher produc-
tivity than the projects based on other lan-
guages. However, in Table 6 the sign ‘=’
curs more frequently than in Table 4, indicating
that the productivities of several language are
statistically not discriminated in enhancement
projects.

ocC-

ASP
Access
ABAP

Vv VvVAVVIVVYV
ANV VAV VI

ANV IEAVIEANAN

ANV VAV I

Vv VAVYV
ANV I AV

ANV IEA

v Vv

AV
VVIVVIVYVVI

<

3.3. Comparison with Capers Jones
productivity evaluations

Capers Jones [6] studied the relation between
the language “level” and its productivity [6].
The language level is defined according to the
LoC/FP ratio: the larger the number of lines
of code needed to code a Function Point, the
lower the level of the language. For example,
COBOL requires about 105 statements per FP
and is classified as a level 3 language [6]. Table 7
lists the average LoC per FP, the language level,
and the average productivity in FP/PM (where
PM denotes person-months) according to Jones.
In this paper, PM = PH/160, where 160 is ob-
tained by multiplying 20 working days per month
and 8 working hours per day); the reported data
are the result of an analysis concerning software
developed up till 1996. To be able to compare our
results with those by Capers Jones, the produc-
tivity of projects carried out up till 1996 was anal-
ysed separately (in columns “Pre” in the tables of
this paper) and after 1996 (in columns “Post”).

Descriptive statistics are given in Table 8 and
Table 9.

These results seem to indicate that there has
been a decrease in the productivity for both new
developments and enhancements. In the opin-
ion of the authors, the most likely cause is that
software complexity has considerably grown, so

34 Luigi Lavazza, Sandro Morasca, Davide Tosi

Table 6. Relations between enhancement

Table 5. Summary data of enhancement projects grouped project productivity of programming
by programming language languages
Language N Median Median Median Prod. % A
Size [UFP] Effort [PH] [UFP/PH] R =5

COBOL 306 179 2583 0.070 8 o § + 3 E " %

Java 271 142 2026 0.077 Longuage O S 2003 2 0 2

Visual Basic 132 217.5 3154 0.075

C 113 181 2705 0.072 COBOL ===>=<==

CH++ 79 141 3810 0.051 Java = =>=< ==

SQL 59 142 1837 0.083 Visual Basic = = = > = < = =

NATURAL 55 214 1694 0.116 C === == <= =

C# 30 258.5 2728.5 0.083 C++ < < < = < < <<

ABAP 45 249 3069 0.083 SQL ====> <==
NATURAL > > > > > > > >
C# ====>= < >
ABAP = === > = < <

Table 8. New development projects from the ISBSG
Table 7. Programming language productivity dataset: descriptive statistics (Pre: up to 1996,
according to Jones (before 1996) Post: after 1996)

Language LoC/FP Level V& (NG Size [UFP] Effort [PH] [7ER000

ABAP 16 20.0 15 to 30 Pre Post Pre Post Pre Post

Access 38 8.5 16 to 23 Mean 734 583 7319 6607 0.209 0.166

C 128 2.5 5 to 10 Median 415 303 3703 3074 0.121 0.108

C++ 53 6.0 10 to 20 Stdev 822 759 10162 10592 0.342 0.221

COBOL 107 3.0 5 to 10 Min 53 51 326 320 0.01 0.006

DELPHI 29 11.0 16 to 23 Max 4943 7400 66600 134211 3.96 2.581

Java 53 6.0 10 to 20

SQL 13 25.0 30 to 50

Visual Basic 40 8.0 10 to 20

Table 9. Enhancement projects from the ISBSG
dataset: descriptive statistics (Pre: up till 1996,
Post: after 1996) Table 10. Comparison with Jones (before 1996)

Size [UFP] Effort [PH] Productivity C. Jones [6] Our analysis

[UFP/PH] Language Mean Prod. Mean Prod. Stdev/
Mean 348 290 3750 4098 0.166 0.117 [FP/PM] [FP/PM] Mean
Median 248 161 2104 2193 0.114 0.078 C 5 to 10 27 226%
Stdev 376 406 6980 6441 0.155 0.128 COBOL 5 to 10 23 130%
Min 52 50 339 322 0.021 0.004 SQL 30 to 50 33 106%

Max 2983 7134 61891 109271 0.939 1.51

An Empirical Study on the Factors Affecting Software Development Productivity 35

Table 11. Comparison with Jones
(project data up to 2013)

C. Jones [7] Our analysis

Language Mean Prod. Mean Prod. Stdev/

[FP/PM] [FP/PM] Mean
C 5.62 16.9 99%
COBOL 6.38 15.2 100%
ABAP 7.69 12.4 50%
C++ 9.68 13.8 97%
Java 9.68 14.7 66%
C# 9.88 11.7 78%
Visual Basic 13.04 21.8 76%
ASP 13.40 24.1 53%
SQL 15.92 17.3 62%

many technological and methodological advances
were “absorbed” by additional difficulty. In fact,
the notion of productivity is based on functional
size: it is quite possible that modern software
has to satisfy more non-functional requirements
than old-time software (for instance of security
requirements). These additional non-functional
requirements certainly require some development
effort, which is not explained by the sheer imple-
mentation of the required functionality.

In the ISBSG dataset, only three languages
were found with enough data points to support
a reasonably reliable comparison of productivity
before 1996 and after 1996. The comparison —
illustrated in Table 10 — is thus limited to these
three languages. The columns on the right lists
the so-called coefficient of variation, which is
the ratio of the standard deviation to the mean,
respectively.

Table 10 shows that data from the ISBSG
dataset confirm Jones’s findings concerning SQL,
but indicate that the mean development pro-
ductivity achieved when using C or COBOL is
definitely higher than that found by Jones. It can
also be observed that C programming involves
a great variability of the productivity level that
can be achieved. This is actually not surpris-
ing, given that C was used for a wide range of
applications and in very different domains.

Table 11 reports an updated set of Jones’s
productivity data concerning project carried out
until 2013 [7].

Table 11 shows that the found mean produc-
tivities are greater than those found by Jones.

Unfortunately, the authors have no means of
explaining this difference. However, there are
some similarities between our results and those
obtained by Jones: Visual Basic, ASP and SQL
appear more productive then the other languages.
The main difference is that C appears quite
productive according to ISBSG data, while it
was ranked as the least productive language
by Jones.

It is also possible to observe that the pro-
ductivity of C programming was less variable
after 1996 than earlier. This is probably due
to the fact that after 1996 programmers could
choose from among so many languages that a rel-
atively low-level language, such as C, is used
only in well characterized domains (system-level
programming, real-time, etc.).

3.4. Comparison with open-source
software development productivity

Delorey et al. analysed 9,999 open-source
projects hosted on SourceForge.net to study the
productivity of 10 of the most popular program-
ming languages in use in the open-source com-
munity [8]. Table 12 reports the data about the
languages analysed both in [8] and in this study.
The central column in Table 12 provides the data
derived from [8] (expressed in Function Points
per PH).

With respect to the study by Delorey et
al., the data from the ISBSG dataset indicate
much higher productivity for all languages. Al-
though this indication is fairly consistent for

36

Luigi Lavazza, Sandro Morasca, Davide Tosi

Table 12. Comparison with [8]

Delorey et al. [8]

Our analysis

Language Mean Prod. = Mean Prod.

[FP/PH] [FP/PH] Stdev/Mean
C 0.013 0.120 99%
C# 0.035 0.083 78%
C++ 0.032 0.098 97%
Java 0.030 0.105 66%

Table 13. Summary data by business area for new development projects

Median Size Median Effort Median Prod.

Business area N [UFP] [PH] [UFP/PH]
Engineering 18 549.5 1464.5 0.257
Accounting 19 418 4111 0.135
Financial (excl. Banking) 29 327 3123 0.125
Telecommunications 52 262.5 2574.5 0.118
Inventory 12 574 7434.5 0.114
Manufacturing 25 315 3565 0.097
Insurance 38 261 2806.5 0.087
Banking 69 214 2761 0.064

all languages, there is a noticeable difference
concerning the C language: while it appears
as the least productive language in [8], C ap-
pears to be the most productive according to the
ISBSG data (in the set of languages considered
in Table 12).

4. Effects of business areas on
productivity

The previous work [1] reports that the business
area can influence development productivity. Ac-
cordingly, the dependence of productivity on busi-
ness areas were analysed here. Projects were thus
grouped per business area and only groups of
twenty or more projects were kept for statistical
analysis.

4.1. New development projects

Table 13 gives the descriptive statistics of
new development projects grouped by busi-
ness areas. The median productivity greatly
changes from a minimum of 0.064 UFP/PH
for banking projects to a maximum of 0.257
UFP/PH for engineering projects — i.e. the

projects supporting various types of activities
(design, simulation, etc.) in various engineer-
ing areas (civil engineering, electrical engineer-
ing, etc.) — approximately four times the min-
imum. Thus, it can be hypothesized that pro-
ductivity may depend on the business area.
Quite interestingly, the low productivity of in-
surance projects was already detected in [1] and
in [12].

The distributions of the productivity of
projects grouped by business area are shown
in Figure 5 (where projects with productivity
greater than 1 FP/PH are not shown, to preserve
the readability of the figure). Since distributions
are not symmetrical, the “distribution-free” non-
parametric Kruskal-Wallis rank sum test [13]
was used to assess whether the difference be-
tween groups is significant. The results (x? =
116.93, df = 76, p-value = 0.0018) confirm
that the business area has a significant effect on
productivity.

Since the Kruskal-Wallis test only indicates
that in at least one case the business area
affects the productivity, in this research the
Mann—Whitney test was used to study the effect
of the business area on productivity for all pairs
of different business areas.

An Empirical Study on the Factors Affecting Software Development Productivity 37

1.0 o) o]
(o]
08 — o o)
06 - ; T
; } o
04 - | 3 o o —
& © o E
Q - .
° 0 T :
02 1 B e P
- T -]
I = = == == ;
0.0 - I
T T \ T T T T T
o = (] oD [7)]
g c 8’ g’ o g‘ c c
E £ § £ s £ 35 2
C . — -.(-é
s & £ & 3 2z 8§ &
¢ 2 2 £ = 3 5
<C W © = =
= g =
[1}]
= 3
]
c (S
=
L

Figure 5. Distributions of new development project productivity per business area

The results of the Mann—Whitney tests are
reported in Table 14, with the same conventions
as the ones used in Table 6.

The projects belonging to the engineering
business area appear to be the most productive
ones (as for new developments), followed by those
belonging to accounting and financial business
areas.

4.2. Enhancement projects

Table 15 gives the descriptive statistics of en-
hancement projects, grouped by business area.
Note that the programming languages that ap-
pear in Table 15 are not the same as those ap-
pearing in Table 13, because different numbers of
data points were available for new developments
and enhancement projects and, hence, the areas
with too few data to support any statistically
significant analysis were excluded from the anal-
ysis. The business area with the highest median
productivity (Legal — see Fig. 6) has a produc-
tivity that is a bit less than five times the lowest
median productivity, obtained for Quality. This
suggests that productivity may depend on the
business area.

The nonparametric Kruskal-Wallis method
[13] was used to assess whether the difference
between groups was significant. For enhance-
ment projects, the result (x? = 119.974, df = 44,
p-value < 1078) confirms that the business
area has a statistically significant effect on
productivity.

Since the Kruskal-Wallis test only indicates
that in at least one case the business area af-
fects the productivity, in these investigations the
Mann—Whitney test was used to study the effect
of the business area on productivity for all pairs
of different business areas. The results of the
Mann—Whitney tests are reported in Table 16
for enhancement projects.

On the one hand, the legal and insurance
projects have the highest enhancement produc-
tivity. The insurance projects have high enhance-
ment productivity, while they have quite low
development productivity. No data were avail-
able to support this kind of analysis, but it can
be argued that new insurance projects are less
productive since a lot of rules and laws regu-
late the insurance domain. This requires a lot
of effort during the initial phases of the develop-
ment process, while this effort decreases over time

38

Luigi Lavazza, Sandro Morasca, Davide Tosi

Table 14. Relations between productivities
per business area (new developments)

Business area,

Accounting

Banking

Engineering

Financial (excl. Banking)
Insurance

Inventory

Manufacturing
Telecommunications

=
g
= m
< =]
M S
~ @
3 3]
£ g g
=0} éﬁ ~ E' =
= 2 o= 9 B g
= g S 9 = Q E
2 4 3 8 5 8 &
5 g0 2 @ €8 = 9Q
o ~ .A = = g = 5]
o g & § =2 ¢ <
o & g .= ‘é E < 3
<mOHA&SS=2H
> == > = = =
< << == =<
= > = > > > >
= = < = = = =
= =K< = = = =

Table 15. Summary data by business area for enhancement projects

Median Size Median Effort Median Prod.

Business area N [UFP] PH] [UFP/PH]
Legal 12 419.5 1485 0.248
Insurance 38 315.5 1679 0.181
Financial (excl. Banking) 44 237.5 1881 0.112
Inbound Logistics 47 106 907 0.093
Outbound Logistics 46 120 1639 0.077
After Sales & Services 26 107 1362.5 0.076
Banking 33 198 2070 0.072
Manufacturing 47 192 3048 0.058
Quality 21 233 3487 0.051
Sales 34 190.5 2609 0.070
Telecommunications 181 142 2151 0.077

whenever legal aspects are well managed. On the
other hand, the banking projects confirm their
low productivity (for both new developments and
enhancements).

5. Effects of architecture on
productivity

Different types of architecture call for different de-
velopment processes, skills and methods. It is thus
reasonable to expect that development productiv-
ity depends on system architecture. Accordingly,
the projects were grouped per architecture and
the distributions of productivity were analysed.

5.1. New development projects

The descriptive statistics of the new development
project groups characterized by the same archi-
tecture are reported in Table 17. Systems with
Multi-tier /client-server architecture are charac-
terized by the highest productivity, a bit more
than twice the productivity of systems with
client-server architecture, the ones with the low-
est productivity.

The distributions of the productivity of
projects grouped by architecture are shown in
Figure 7. The differences in the boxplots do
not appear to be large. Since distributions are
not symmetrical, the “distribution-free” non-

39

An Empirical Study on the Factors Affecting Software Development Productivity

oo

0.7

06

05 -

04

SUONEDIUNLILLIDS|8]

sales

Aireno

sonsifio punoging

Buumoenuepy

leban

aoueinsuy|

sonsiBo punoqu

(Bupueg -joxa) [eroueuly

Bunjueg

S80IAIBS 3 Soes JoUY

Figure 6. Distributions of enhancement project productivity per business area

Table 16. Relations between business areas (enhancements)

SUOT)ROTUNUITIOND[A],
soreg

Lyirenty

SO1SI30T punoqinQ
suLmoRMURN

eS8

fouRINSU]

SO1)SISOT punoquy
(Bunjueg '[oxo) TeIOURUL]
sunjueq

SOOTAIOG 29 SO[RS IO Y

Business area

After Sales Services

Banking

Financial (excl. Banking) > >

Inbound Logistics
Insurance
Legal

> > > > >
> > > > >

> > > >

> > > >

Manufacturing

Outbound Logistics

Quality
Sales

Telecommunications

40

Luigi Lavazza, Sandro Morasca, Davide Tosi

parametric Kruskal-Wallis rank sum test [13]
was used to assess whether the difference be-
tween groups is significant. The results (x? =
60.45, df = 6, p-value < 107'°) confirm that
the architecture has a significant effect on pro-
ductivity.

Here again, the ISBSG dataset does not pro-
vide any support for explaining, even tentatively,
these results.

Since the Kruskal-Wallis test only indicates
that in at least one case the business area affects
the productivity, the Mann—Whitney test was
used to study the effect of the architecture on
productivity for all pairs of different architec-
tures.

The results of the Mann—Whitney tests are
reported in Table 18, with the same conventions
as the ones used in Table 6.

5.2. Enhancement projects

Table 19 gives a few descriptive statistics of
enhancement projects, grouped by architecture.
The ratio between the highest and the lowest me-
dian productivity is slightly smaller than three.
The distributions of the productivity of projects
grouped by architecture are shown in Figure 8.
The differences in the boxplots do not appear to
be large.

The nonparametric Kruskal-Wallis method
[13] was used to assess whether the difference
between groups was significant. For enhance-
ment projects, the results (x? = 45.06, df = 6,
p-value < 1077) confirm that the architecture
has a significant effect on productivity also
for this type of projects. The effect of the ar-
chitecture on productivity for pairs of differ-
ent architectures was also studied using the
Mann—Whitney test. The results are reported
in Table 20.

Multi-tier projects are the least productive
for both new development and enhancement
projects, while multi-tier with web public inter-
face projects appear to be the most productive
just for enhancement projects. Multi-tier/Client
server projects are the most productive for
new developments, and they maintain high

productivity also in the case of enhancement
projects.

6. Effects of case tool usage on
productivity

The use of CASE tools has long been advocated
to improve the productivity of software develop-
ment processes. While traditionally CASE tools
were essentially diagramming/modelling tools,
which adopted some sort of a semi-formal de-
sign language, such as E/R or Data Flow Di-
agrams, today the concept embraces all sorts
of computer-based tools that are meant to sup-
port software development activities. Quite no-
ticeably, some tools are meant to support ag-
ile development. For instance, there are tools
for writing and managing user stories and
tools for writing wire frames and GUI mock-
ups, etc. So, in the ISBSG dataset, “CASE”
equates to any computer-based tool supporting
software development. However, it can be ex-
pected that, in most cases represented in the
ISBSG dataset, the used CASE tools are tradi-
tional.

Although the wusage of CASE (Com-
puter-Aided Software Engineering) tools in soft-
ware development is conceptually a Boolean vari-
able, in the ISBSG dataset there are four possible
values: Yes, No, Don’t know and Null (i.e. no
value was provided). In the analysis of the effects
of CASE tool usage on productivity, the projects
for which there is no clear indication of whether
CASE tools were used or not were neglected.
That is, only the projects having “CASE tool
usage” field equal to Yes (497 projects) or No
(851 projects) were retained.

As in the previous cases, the nonparametric
Kruskal-Wallis [13] was used to assess whether
the difference between groups was significant.
The results do not support the hypothesis that
the usage of CASE tools has a significant effect
on productivity for either new development or
enhancement projects.

This result is confirmed by the Mann—Whit-
ney tests on pairs.

An Empirical Study on the Factors Affecting Software Development Productivity 41

Table 17. Summary data of new development projects grouped by architecture

Median Size Median Effort Median Prod.

Business area N [UFP] [PH] [UFP/PH]
Multi-tier/Client server 113 410 2519 0.184
Multi-tier with web public interface 46 169 1470 0.140
Stand alone 234 308.5 3047.5 0.114
Multi-tier 24 479 6496 0.094
Client server 223 350 4628 0.079
1.0 - o 1.0 -
[o]
Q
Q
08 — o 0.8 -
e Q
R g : ; :
0.6 — o _é_ 8 ° 0.6 o 8
o 1 ° o : T
0.4 g g _ 0.4 g
e | H -
RIECE= ===l g =S R ==
—o— <
EaE=d : . = s i —
0.0 | — — — I — 0.0 - —_ e —_ —_
T T T | | T I | I
g 3 8 £83 2 3 3 5 £8 o
= = = = E B = = = FE B
] o =0 8 o o S0 8
5] 23 @ o S 23 @
. o — o
2 o 2 o
- [} : 2
= H g H]
= =

Figure 7. Distributions of productivity
per architecture type (new developments)

7. Productivity and economies of
scale

The question whether software development ex-
hibits economies (or diseconomies) of scale has
been much debated (see Section 9). In general,
economies of scale are apparent when it is pos-
sible to relate effort and size via models of type
Effort = aSize®, with b < 1.

In fact, Effort = aSize® implies that
Productivity = S%ek, where k =1 —0b;if b < 1,
then k£ > 0, and the larger the size, the higher
the productivity, as by definition of the economy
of scale. On the contrary, if b > 1, then k < 0,
and the larger the size, the smaller the produc-
tivity, as in diseconomies of scale. Some studies
showed that software development exhibits disec-
onomies of scale: for instance, this is the case in the
well-known COCOMO model [9]. On the contrary,
other studies (like [1]) found economies of scale.

Figure 8. Distributions of enhancement project
productivity per architecture type

To further explore this issue, the existence of
Effort = aSize’ models based on ISBSG data was
investigated. This type of models is derived by ap-
plying the OLS regression after the log-log trans-
formation of data samples. The log-log transfor-
mation was used in this research because the
data did not comply with the preconditions of
OLS about normal distributions.

No statistically significant model could be
derived for all new developments, nor for all
enhancement projects. Therefore, the economies
of scale were studied on data subsets obtained
by grouping projects by programming language,
business areas, architecture and usage of CASE
tools. Grouping project data by these criteria
resulted in sufficiently homogeneous datasets,
which allowed for the derivation of statistically
significant models of effort vs. size.

In the derivation of models, outliers, identi-
fied based on Cook’s distance, following a consol-

42

Luigi Lavazza, Sandro Morasca, Davide Tosi

Table 18. Relations between productivities
per architecture (new developments)

Architecture

Client server
Multi-tier
Multi-tier/Client server

Multi-tier with web public interf.

Stand alone

—

5}

>

)

2 8

458

o o
5} O B¢ o
Zow ool 8
v L9y g g9 =
rEREDS
HEEE 822 F
T == =3
22 EEE S
O=2=2=23aan

= < < <

— < = =
> > > >
> = < =
> =< =

Table 19. Summary data by architecture type
for enhancement projects

Medians
Architecture N Size Effort Prod.
[UFP] [PH] [UFP/PH]
Client server 443 168 2109 0.078
Multi-tier 45 139 4259 0.049
Multi-tier/Client server 78 339 2860 0.091
Multi-tier with web public interface 51 124 940 0.141
Stand alone 451 175 2096 0.083

idated practice [15] were excluded. The results
found are described in the “Outl” column of the
tables in the following subsections.

A few statistically significant models featur-
ing quite small adjusted R? were found these
models are not very interesting, because a small
value of R? indicates that effort depends mainly
on factors other than size and the considered
specific characteristics (language, business area,
etc.). Accordingly, in the following sections only
models featuring adjusted R? not less than 0.5
are reported.

7.1. Effect of programming language
on economies of scale

By applying the OLS regression after log-log
transformation to data samples obtained by
grouping new development projects by primary
programming language, the models summarized
in Table 21 were obtained.

For new development projects that use Java
and Visual Basic, the exponent is less than one
with 95% confidence: these languages seem to
allow for economies of scale. For other languages,
it is not possible to decide with 95% confidence
if the exponent is less or greater than one, that
is, these languages do not cause either economies
or diseconomies of scale. It was impossible to
obtain statistically significant models only for
enhancement projects using PL/1 and ABAP,
these are described in Table 22.

PL/I enhancement projects exhibit a disec-
onomy of scale. Instead, for ABAP enhancement
projects no conclusion with 95% confidence could
be drawn.

7.2. Effect of business area on economies
of scale

By applying OLS regression after log-log trans-
formation to data samples obtained by grouping

An Empirical Study on the Factors Affecting Software Development Productivity

Table 20. Relations between productivities
per architecture (enhancement projects)

-
(<]
>
—
x
= =
o
i 6 oo
e X P32
— — — = @)
D 0 O O a =
R A
EEZ =%
2B B B = &8
Architecture O===2axn
Client server > < < =
Multi-tier < < < <
Multi-tier/Client server > > = =
Multi-tier with web public interf. > > = >
Stand alone = > = <

Table 21. Effort models for new development projects grouped by
programming languages

Language Model Exponent confidence Adj. R? Outl.
C 7.7 UFP*032 0.837-1.226 0.762 3/40
C++ 15.6 UFP°-992 0.657-1.268 0.622 5/31
Java 37.9 UFpPY"% 0.656-0.882 0.682 21/107
Oracle 2.8 UFP* 0.912-1.271 0.852 8/36
SQL 12.0 UFPY-93! 0.677-1.184 0.549 0/45
Visual Basic 12.8 UFP°®7" 0.775-0.979 0.714 15/131

Table 22. Effort models for enhancement projects grouped by
programming languages

Language Model Exponent confidence Adj. R?> Outl.

ABAP 7.8 UFP*"% 0.909-1.229 0.827 6/45
PL/I 5.7 UFp'19° 1.028-1.351 0.658 12/123

Table 23. Effort models for new development projects grouped by business area

Business Area Model Exponent confidence Adj. R?> Outl.

Financial (no Banking) 8.6 UFP"?% 0.672-1.239 0.635 0/28
Telecommunications ~ 12.3 UFP"?1 0.675-1.156 0.563 1/47

44

Luigi Lavazza, Sandro Morasca, Davide Tosi

new development projects per business area, the
models summarized in Table 23 were obtained.

The only two statistically significant mod-
els found indicate that both economies or disec-
onomies of scale may occur. The characteristics of
effort models for enhancement projects grouped
by business area are given in Table 24.

New developments concerning the financial
area (excluding banking) appear to allow for
economies of scale.

7.3. Effect of architecture on economies
of scale

By grouping new development projects per archi-
tecture type it was possible to obtain the models
summarized in Table 25.

For new development projects, there is no ev-
idence that architectural types lead to economies
or diseconomies of scale. By grouping enhance-
ment projects per architecture type, it was possi-
ble to obtain the models summarized in Table 26.

Client server and Stand-alone enhancement
projects exhibit economies of scale. Although it is
not possible to make statements about multi-tier
projects with 95% confidence, stil one can ob-
serve that the exponent range is mainly less than
one in the 95% confidence range, thus it is likely
that economies of scale also exist for multi-tier
projects.

7.4. Effect of CASE tools on economies
of scale

After grouping projects by the usage of CASE
tools, the authors were able to find just one
model, concerning enhancement projects with
the use of CASE tools. The model is described
in Table 27.

No economy or diseconomy of scale is apparent.

8. Threats to validity

Construct validity. The definition of produc-
tivity is always a sensitive issue and no universally
accepted notion of productivity exists. A fairly
widely used notion of productivity was chosen for

the research, based on the amount of delivered
functionality, quantified via UFP, the most widely
used functional size measure. Functional size mea-
sures, however, may have some weaknesses [16,17],
including: (1) the apparent arbitrariness in the
selection of the “complexity” weights used to ob-
tain the value of UFP starting from the Base
Functional Components (Internal Logical Files,
External Interface Files, External Input, External
Outputs, and External Queries); (2) the subjec-
tivity inherent to the counting process; (3) the
redundancies of the counted elements. As for (1),
the weights are based on an initial study by Al-
brecht [3]. Although they may need to be updated,
they are now a part of the standard definition
used by ISO for FP [10, 12]. With reference to
(2), the International Function Point Users Group
periodically issues new guidelines to reduce the
amount of uncertainty in the counting process
[4]. Finally, the redundancies may affect the ef-
ficiency and cost-effectiveness of measuring and
using UFP, but are not a real construct threat.
However, UFP somehow (and imperfectly) cap-
tures the amount of functionality delivered, unlike
such measures as LoC which quantify the amount
of code delivered and are not available early in
the life cycle, but only after coding, when it is
too late to make any useful predictions. Also,
just because a measure is objectively quantifi-
able does not mean that it adequately captures
a specific software attribute or is useful in prac-
tice.

The main threat with this type of studies is
the fact that while there are standard definitions
of functional size measures, there is hardly any
standard definition of how development (or en-
hancement) effort should be measured. Therefore,
different authors may use differently measured
effort data. This may lead to different values for
productivity.

Therefore, when considering the comparisons
reported in Section 4 the reader should take into
account the possible differences in effort mea-
sures. For instance, the fact that in Table 12 the
found productivity values are all greater than
those found by Delorey et al. [8] might be due
to different effort measurement criteria. In fact,
Delorey et al. [8] collected productivity data by

An Empirical Study on the Factors Affecting Software Development Productivity 45

Table 24. Effort models for enhancement projects grouped by business area

Business Area Model

Exponent confidence Adj. R? Outl.

After Sales & Services

Inbound Logistics

31.3 UFP"™
Financial (no Banking) 110.7 UFP%5%°
14.5 UFP*'°

0.474 -1.116 0.512 1/26
0.35-0.729 0.524 13/44
0.665-1.155 0.574 5/47

Table 25. Effort models for new development projects grouped by architecture

Architecture Model Exponent confidence Adj. R? Outl
Multi-tier 26.1 UFP"®? 0.489-1.155 0.548 2/24
Multi-tier Client server 3.5 UFpP'9° 0.927-1.188 0.746 24/113
Multi-tier with web public interf. 3.2 UFP'*° 0.880-1.523 0.626 11/46

Table 26. Effort models for enhancement projects grouped by

architecture
Architecture Model Exponent confidence R? Outl.
Client server 30.4 UFP®®? 0.752-0.898 0.576 77/443
Multi-tier ~ 49.4 UFP%8 0.618-1.062 0.597 5/45
Stand alone 19.3 UFP%*° 0.819-0.987 0.539 65/451

analysing the effort devoted by single program-
mers to single code changes, while the ISBSG
collected data concerning whole projects. At any
rate, the relative ranking among the various pro-
ductivities depending on the programming lan-
guage according to the study of Delorey et al. and
according to this study may still be considered
valid.

Finally, an intrinsic limit of the analysis is

due to the usage of functional size measures to
size software. In fact, these measures do not rep-
resent the non-functional parts of requirements.
So, developing a project with a relatively small
functional requirement but huge non-functional
requirements (entailing security, reliability, ro-
bustness, portability, etc.) may appear unduly
characterized by low productivity.
External validity. The obtained results are
based on one of the largest datasets publicly
available, with projects coming from many differ-
ent organizations and countries, so they should
be fairly representative of the population of new
and enhancements projects.

Even though the ISBSG dataset contains
a large number of projects, some skew is possible.
For instance, some self-selection phenomenon,
e.g. only well-organized projects may report their
data to the ISBSG dataset, may not be excluded.

However, this is a threat that is hard to eliminate
for all datasets that collect data on a voluntary
basis.

It is true, however, that a large part of the
projects in the ISBSG dataset are representative
of consolidated practices and languages, instead
of innovative ones. The ISBSG dataset does con-
tain data on projects that are recent and inno-
vative, but not enough to allow for a sensible
statistical analysis. However, there is a suspi-
cion that innovative applications will always be
in the minority in these datasets, given their
recentness. It shouldalso be pointed out that
a large number of projects are still carried out
with consolidated techniques and languages. For
instance, in https://www.tiobe.com/tiobe-index/
the top 50 most popular programming languages
are listed, and Java, C and C++ are the top 3.
Internal validity. A possible threat to internal
validity may come from the fact that these results
are based on projects in which data are collected
and later reported to ISBSG. This may not be
the case for all projects, but this is a threat for
all studies of this kind. To mitigate the possible
threat due to the way data are collected and
reported to ISBSG, only data of the best two
categories were used in the research. Moreover,
standard data analysis techniques were used. The

46

Luigi Lavazza, Sandro Morasca, Davide Tosi

Table 27. Effort models for enhancement projects grouped by
the usage of CASE tools

CASE tools used Model

Exponent confidence Adj. R?

Outl.

Yes 17.0 UFP®94

0.843-1.037 0.605 45/285

use of log-log transformations may be a possible
threat, because the Least Square Regression is
carried out with a different figure of merit than
the one it would have without the log-log transfor-
mation. However, this transformation was useful
because the original data did not comply with the
assumptions of the Least Square Regression. Also,
log-log transformations are quite common in the
Empirical Software Engineering, and specifically
in the study of Effort models.

9. Related work

A substantial amount of work was carried out
to study the main factors affecting software pro-
ductivity by proposing and analysing processes,
methods, tools, and best practices [18-21]. To the
best of the knowledge of the authors, there are
three literature reviews on productivity factors
in software engineering available in the litera-
ture [18,21,22]. These works focus on the main
dimensions of the product, personnel, project,
and process. Each of these dimensions is then
characterized by sub-factors: product is related
to a specific characterization of software, such as
domain, requirements, architecture, code, doc-
umentation, interface, size, etc. Personnel fac-
tors involve team member capabilities, experi-
ence, and motivation. Project factors encompass
management aspects, resource constraints, sched-
ule, team communication, staff turnover, etc.
Process factors include software methods, tools,
customer participation, software lifecycle, and
reuse. In this paper, the authors do not focus
on a specific dimension, but span their empir-
ical study on the main factors reported in the
ISBSG dataset (i.e. primary programming lan-
guage used to develop each software project, the
business area addressed by the project, the archi-
tectural type adopted by the project and the use
of CASE tools).

Directly referring to the factors analysed in
this paper, several studies addresses the relation
between programming languages and productivity.
For example, in [6,8,23-25] different programming
languages are studied to investigate their relation
with different code aspects such as program
length, programming effort, run-time efficiency,
memory consumption, and reliability. In [26],
the authors explain productivity in the banking,
insurance, manufacturing, wholesale/retail, and
public administration sectors, limiting their sta-
tistical analysis to 206 business software projects
from 26 Finnish companies. In [27], software
productivity is studied with a dataset on Chinese
software companies. Two research question in this
study specifically focus on how the business areas
and the primary programming language impact
productivity, respectively. As for business areas,
low productivity is associated to Telecom and Fi-
nance areas, while high productivity is associated
to Public Administration, Manufacturing and
Energy. In this study, financial projects have high
productivity, while manufacturing ones have low
productivity. In any case, these results cannot be
compared with their outputs since in this study
two different datasets were analysed (both for
the releases and for geographical locations of the
projects). As for the programming language, in
[27] it is reported that high level programming
languages are found to be more productive (the
most productive are ASP, C# and Visual Basic,
with a median productivity of 34.68, 18.68, and
9.94 size/effort, respectively).

There has also been a considerable debate
regarding economies and diseconomies of scale
in software development [9,28-34]. These stud-
ies highlighted that it is quite difficult to deter-
mine which factors contribute to producing an
overall economy or diseconomy of scale; in fact,
different dataset provided different indications.
Comstock et al. analysed the ISBSG dataset to
derive a model that includes both economies and

An Empirical Study on the Factors Affecting Software Development Productivity 47

diseconomies of scale, and can help managers
maximize productivity by determining the opti-
mal project size within a particular environment
[35]. They considered the same factors as the
ones considered in this paper, but with a few
important differences: programming languages
were considered only in terms of “3rd genera-
tion”, “4th generation” and “application gener-
ators”; moreover, the team size was included
in the independent variables of the effort esti-
mation models. This makes the interpretation
of the results provided in [35] somewhat prob-
lematic as far as (dis)economies of scales are
concerned, Productivity is seen there as depen-
dent on size but also on team size, which in it
turn is likely to be determined by the size of
the program to be developed. As the authors of
that work state, “the very presence of Team Size
represents a diseconomy of scale: AFP (the size
in Function points) relates to the achievement;
Team Size relates to the resources consumed”
[35]. In fact, the authors conclude that “devel-
opment exhibits a strong economy of scale with
respect to project size, and a similar diseconomy
of scale with respect to team size” [35]. This
type of finding is consistent with the goals of
Comstock et al., but it is of little help for the
goals of this study. So, based on the assumption
that the team size is chosen to maximize pro-
ductivity, or to satisfy possible local needs and
constraints, the team size is excluded from the in-
dependent variables of effort models. In this way,
the model of type Effort = aSize® is obtained
for every factor, thus highlighting the role of the
considered factor in determining (dis)economies
of scale.

10. Conclusion and future work

Software development productivity is an impor-
tant subject that has often proven to be quite
complex to understand and analyse. This paper
highlights a few statistically significant results.
These results can be considered reliable, since they
are based on the analysis of a large public data
repository, which is generally considered to be
representative of software development practices.

Specifically, it was found out that the primary
programming language had a significant effect
on productivity of new development projects. On
the contrary, the productivity of enhancement
projects appears much less dependent on pro-
gramming languages. The business area and the
architecture have a significant effect on produc-
tivity of both new development and enhancement
projects. No evidence of the impact of the use of
CASE tools on productivity was found, for either
new developments or enhancement projects.

In addition, it was found that the produc-
tivity of new development projects tends to be
higher than that of enhancement projects. Also,
the results of our analyses show productivity
values obtained that are higher, for each pro-
gramming language, than those of the reference
works on the subject, carried out by Jones, and
for open-source software, as reported by De-
lorey et al.

It was also analysed what factors seem to
have an impact on the presence of economies and
diseconomies of scale. For instance, economies of
scale for new development projects using Java or
Visual Basic were found and also diseconomies of
scale for enhancement projects concerning appli-
cations written in PL/1, while neither economies
or diseconomies of scale could be found for other
projects. Economies of scale were also found for
enhancement projects in the financial area (ex-
cluding banking), and for enhancement projects
concerning application featuring stand alone or
client server architectures.

Future work will focus on:

— investigating whether other factors may in-
fluence productivity and the existence of
economies or diseconomies of scale;

— carrying out analysis on additional datasets;

— using different measures of productivity, for
instance, based on different functional size
measures.

Acknowledgments
This work has been partially supported by the

“Fondo di ricerca d’Ateneo” funded by the Uni-
versita degli Studi dell’Insubria.

48

Luigi Lavazza, Sandro Morasca, Davide Tosi

References

1]

R. Premraj, M. Shepperd, B. Kitchenham, and
P. Forselius, “An empirical analysis of software
productivity over time,” in Proceedings of the
11th IEEE International Software Metrics Sym-
posium, ser. METRICS ’05. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 37-37.
ISBSG, “International Software Benchmarking
Standards Group — Worldwide software develop-
ment: The benchmark, release 12,” 2015.

A. Albrecht, “Measuring application devel-
opment productivity,” in Joint SHARE/
GUIDE/IBM Application Development Sympo-
stum. IBM, 1979.

Function Point Counting Practices Manual — Re-
lease 4.2, International Function Point Users
Group, 2004

L. Lavazza, S. Morasca, and D. Tosi, “An empiri-
cal study on the effect of programming languages
on productivity,” in Proceedings of the 81st An-
nual ACM Symposium on Applied Computing,
ser. SAC ’16. New York, NY, USA: ACM, 2016,
pp. 1434-1439.

C. Jomnes, Programming Languages Table.
Release 8.2, Software Productivity Research,
Inc., 1996. [Online]. https://engenhariasoftware.
files.wordpress.com/2008 /06 /conversao.pdf

C. Jones, “Function points as a universal soft-
ware metric,” SIGSOFT Software Engineering
Notes, Vol. 38, No. 4, 2013, pp. 1-27.

D.P. Delorey, C.D. Knutson, and S. Chun,
“Do programming languages affect productiv-
ity? A case study using data from open source
projects,” in Proceedings of the First Interna-
tional Workshop on Emerging Trends in FLOSS
Research and Development, ser. FLOSS ’07.
Washington, DC, USA: IEEE Computer Society,
2007, pp. 8-8.

B.W. Boehm, Software Engineering Economics,
1st ed. Upper Saddle River, NJ, USA: Prentice
Hall PTR, 1981.

Software Engineering NESMA Functional Size
Measurement Method, Version 2.1, Definitions
and counting guidelines for the application of
Function Point Analysis, International Organi-
zation for Standardization, ISO Std. ISO/IEC
24 750:2005, 2005.

“The performance of real-time, business appli-
cation and component software projects,” The
Common Software Measurement International
Consortium & The International Software Bench-
marking Standards Group, Tech. Rep., 2011.

[12]

[13]

[16]

[17]

Software engineering — IFPUG 4.1. Unad-
justed functional size measurement method —
Counting Practices Manual, ISO Std. ISO/IEC
20926:2003, 2003.

W.H. Kruskal and W.A. Wallis, “Use of
ranks in one-criterion variance analysis,” Jour-
nal of the American Statistical Association,
Vol. 47, No. 260, 1952, pp. 583-621. [Online].
http://www.jstor.org/stable/2280779

B.A. Myers, J.F. Pane, and A. Ko, “Natural pro-
gramming languages and environments,” Com-
mun. ACM, Vol. 47, No. 9, 2004, pp. 47-52.

L. Lavazza and S. Morasca, “Software effort es-
timation with a generalized robust linear regres-
sion technique,” in 16th International Conference
on Fvaluation Assessment in Software Engineer-
ing (EASE 2012), 2012, pp. 206-215.

B. Kitchenham, “The problem with function
points,” IEEE Software, Vol. 14, No. 2, 1997, pp.
29-31.

B. Kitchenham, S.L. Pfleeger, and N. Fenton,
“Towards a framework for software measurement
validation,” IEEE Transactions on Software En-
gineering, Vol. 21, No. 12, 1995, pp. 929-944.
B.W. Boehm, “Improving software productivity,”
Computer, Vol. 20, No. 9, 1987, pp. 43-57.

A. Trendowicz and J. Munch, “Factors in-
fluencing software development productivity —
state-of-the-art and industrial experiences,” Ad-
vances in Computers, Vol. 77, 2009, pp. 185-241.
J. Vosburgh, B. Curtis, R. Wolverton, B. Al-
bert, H. Malec, S. Hoben, and Y. Liu,
“Productivity factors and programming envi-
ronments,” in Proceedings of the 7Tth Inter-
national Conference on Software Engineering,
ser. ICSE ’84. Piscataway, NJ, USA: IEEE
Press, 1984, pp. 143-152. [Online]. http:
//dl.acm.org/citation.cfm?id=800054.801963
K.D. Maxwell, L. Van Wassenhove, and S. Dutta,
“Software development productivity of european
space, military, and industrial applications,”
IEEE Transactions on Software Engineering,
Vol. 22, No. 10, 1996, pp. 706-718.

S. Wagner and M. Ruhe, “A structured review
of productivity factors in software development,”
Institut fiir Informatik, Technische Universitéit
Miinchen, techreport TUMI0832, 2008.

L. Prechelt, “An empirical comparison of seven
programming languages,” Computer, Vol. 33,
No. 10, 2000, pp. 23-29.

K. Kennedy, C. Koelbel, and R. Schreiber,
“Defining and measuring the productivity of pro-
gramming languages,” The International Jour-

An Empirical Study on the Factors Affecting Software Development Productivity

49

[25]

[26]

[27]

[28]

[29]

nal of High Performance Computing Applica-
tions, Vol. 18, No. 4, 2004, pp. 441-448.

R. Klepper and D. Bock, “Third and fourth
generation language productivity differences,”
Communications of the ACM, Vol. 38, No. 9,
1995, pp. 69-79.

K.D. Maxwell and P. Forselius, “Benchmarking
software-development productivity,” IEEE Soft-
ware, Vol. 17, No. 1, 2000, pp. 80-88.

M. He, M. Li, Q. Wang, Y. Yang, and K. Ye, “An
investigation of software development productiv-
ity in China,” in International Conference on
Software Process. Springer, 2008, pp. 381-394.
D.L. Nazareth and M.A. Rothenberger, “As-
sessing the cost-effectiveness of software reuse:
A model for planned reuse,” Journal of Systems
and Software, Vol. 73, No. 2, 2004, pp. 245-255.
R.D. Banker and C.F. Kemerer, “Scale
economies in new software development,” IEEFE
Tramsactions on Software Engineering, Vol. 15,
No. 10, 1989, pp. 1199-1205.

J.E. Matson, B.E. Barrett, and J.M. Mellichamp,
“Software development cost estimation using

[31]

32]

function points,” IEEE Transactions on Software
Engineering, Vol. 20, No. 4, 1994, pp. 275-287.
B.A. Kitchenham, “The question of scale
economies in software-why cannot researchers
agree?” Information and Software Technology,
Vol. 44, No. 1, 2002, pp. 13-24.

R.D. Banker, H. Chang, and C.F. Kemerer, “Ev-
idence on economies of scale in software devel-
opment,” Information and Software Technology,
Vol. 36, No. 5, 1994, pp. 275-282.

B. Kitchenham and E. Mendes, “Software pro-
ductivity measurement using multiple size mea-
sures,” IEEE Transactions on Software Engi-
neering, Vol. 30, No. 12, 2004, pp. 1023-1035.
F.P. Brooks, Jr. Boston, MA, USA:
Addison-Wesley Longman Publishing Co.,
Inc., 1995.

C. Comstock, Z. Jiang, and J. Davies,
“FEconomies and diseconomies of scale in software
development,” Journal of Software Maintenance
and Fvolution, Vol. 23, No. 8, 2011, pp. 533-548.

e-Informatica Software Engineering Journal, Volume 12, Issue 1, 2018, pages: 51-78, DOI 10.5277/e-Inf180103

Knowledge Management in Software Testing:
A Systematic Snowball Literature Review

Krzysztof Wnuk*, Thrinay Garrepalli*

*Software Engineering Research Group, Department of Software Engineering,
Blekinge Institute of Technology, Karlskrona, Sweden

krw@bth.se, thgal4@student.bth.se

Abstract

Background: Software testing benefits from the usage of Knowledge Management (KM) methods
and principles. Thus, there is a need to adopt KM to the software testing core processes and
attain the benefits that it provides in terms of cost, quality, etc. Aim: To investigate the usage and
implementation of KM for software testing. The major objectives include 1. To identify various
software testing aspects that receive more attention while applying KM. 2. To analyse multiple
software testing techniques, i.e. test design, test execution and test result analysis and highlight KM
involvement in these. 3. To gather challenges faced by industry due to the lack of KM initiatives
in software testing.

Method: A systematic literature review (SLR) was conducted utilizing the guidelines for snow-
balling reviews by Wohlin. The identified studies were analysed in relation to their rigor and
relevance to assess the quality of the results.

Results: The initial resulting set provided 4832 studies. From these, 35 peer-reviewed papers
were chosen among which 31 are primary, and 4 are secondary studies. The literature review
results indicated nine testing aspects being in focus when applying KM within various adaptation
contexts and some benefits from KM application. Several challenges were identified, e.g., improper
selection and application of better-suited techniques, a low reuse rate of software testing knowledge,
barriers in software testing knowledge transfer, no possibility to quickly achieve the most optimum
distribution of human resources during testing, etc.

Conclusions: The study brings supporting evidence that the application of KM in software testing
is necessary, e.g., to increase test effectiveness, select and apply testing techniques. The study
outlines the testing aspects and testing techniques that benefit their users.

Keywords: KM, software testing, knowledge, systematic literature review

1. Introduction sharing testing experience between team
members [3-6].
Software testing is a complex task and re- The increasing complexity of software sys-

quires various activities, techniques, tools, tems combined with the advent of distributed
and resources [1]. Knowledge Management development models put more pressure on soft-
(KM) is extensively used in software test- ware organizations to manage organizational
ing and influences software testing processes, knowledge and intellectual capital. Also, there
methods and models [1]. KM helps to is a significant loss of intellectual capital due
capture, share, distribute, and understand to staff turnover, restricted or limited knowl-
knowledge that helps to create a compet- edge [6-8]. The adoption of KM principles can
itive advantage for organizations [2], e.g., help software testing experts to advance knowl-
by utilizing previous project experience or edge reuse and to encourage management discus-

52

Krzysztof Wnuk, Thrinay Garrepalli

sions across the organization. There are numer-
ous benefits of applying KM in software testing
such as [3,4,8-11]:
— increasing test effectiveness,
— decreasing costs, time and effort,
— determination and application of more suited
testing techniques,
— determination and application of more suited
testing techniques,
— enhancing the quality of results,
— supporting decision-making process.
Explicit knowledge testing can be documented
and accessed by multiple individuals, e.g., in test
manuals, procedures, test artifacts, test planning,
test design specifications, testing logs [12, 13].
Tacit testing knowledge is subjective and hard
to document [12] as it mainly forms test execu-
tion experiences and discussions with software
testers etc. [14]. Insufficient KM during software
testing leads to several negative consequences,
e.g., low reuse of software testing knowledge,
barriers in software testing knowledge adaption,
a poor sharing environment of software testing
knowledge, difficulties in optimal planning re-
sources [1,4].

This study focuses on testing aspects as activ-
ities during the testing process and the resulting
artefacts, i.e. test planning, execution and test re-
sult analysis [5-7,15,16], test case design [9,17,18]
and testing phases [14, 19]. It also focuses on
testing techniques used to execute a software
system and find errors [20]. The aim is to focus
on the importance of KM in various software
testing aspects as the literature lacks studies
which focus on identifying the testing techniques
that benefit from KM application. Therefore, this
work concentrates on identifying the test design,
execution, and analysis techniques that help from
the KM application. It also explores the related
challenges resulting from insufficient KM.

The paper is organized as follows: Section 2
focuses on giving the necessary theoretical back-
ground about KM and software testing and their
corresponding practices along with its potential
contribution to this study. Section 3 provides
the research design details and objectives of this
study and the addressed research questions. Sec-
tion 4 contains the details of the research method-

ology, including considered methodologies and
the conducted data analysis. Section 5 depicts
the process of conducting the snowballing iter-
ations while Section 6 analyses the results of
the literature review. Section 7 lists the iden-
tified challenges and implications for research
and practice, while Section 8 discusses the limi-
tations of the study. The conclusions are formed
in Section 9.

2. Background and related work

2.1. KM in software testing

Testing experience, as well as testing knowledge,
are needed to gain a deeper understanding of
the used testing techniques [21,22]. However,
testers do not tend to share the knowledge or
information that they gain when using various
testing techniques [7]. This implies that they miss
an opportunity of sharing experiences and learn-
ing from each other, which limits their overall
knowledge.

Many testers are self-educated and have lim-
ited education on the subject [23]. They require
additional training [24]. This limited knowledge
also results in a limited view about software
testing techniques [25]. Technology transfer be-
tween research and industry is often limited, in
consequence, not all new testing techniques are
directly applied in industry [26].

Testers gain various types of knowledge and
experiences from their work in software projects.
Sharing this knowledge can help to avoid mak-
ing similar mistakes and optimize testing activi-
ties. Efficient organizational knowledge sharing
requires establishing efficient KM practices for
knowledge creation, documentation, and man-
agement.

The primary objective of KM in software
testing is to transfer testing knowledge and ex-
perience between individuals in the same way as
testing documentation as well as utilizing tacit
knowledge for supporting test design, execution,
and interpretation. KM supports test planning,
test result analysis and test outcomes [27]. The
test design phase is also heavily dependent on

Knowledge Management in Software Testing: A Systematic Snowball Literature Review 53

KM as it involves findings the test conditions and
objectives and choosing the relevant information
to implement planned test cases. Knowledge also
helps to establish the satisfaction criteria against
the testing outcomes.

KM supports testing techniques selection as
it is often based on testers’ experience and intu-
ition, gained from various sources, such as testing
the previous versions of the system, involvement
in analysing and fixing the defects, working on
development and maintenance as well as working
with similar software systems [27]. Finally, KM
strategies help to increase the effectiveness and
efficiency of product testing [28]. Applying KM
in software testing is essential to increase the
testing level and enhance software quality [26].

2.2. Related work

Several studies looked into the state of the art
solutions and practice of utilizing KM for soft-
ware testing, e.g., [26]. Desai et al. [6] outlined
the challenges faced due to the lack of KM, such
as less re-use of software testing knowledge, bar-
riers in the transfer of software testing knowl-
edge, difficulties in achieving the most optimum
distribution of human resources, etc. Taipale et
al. [29] discussed KM practices in software testing
and how to enhance the testing practices using
KM strategies in organizational units. Wei et
al. [14] discussed the implementation of the KM
framework in mobile software systems testing
and how it benefits the organization concern-
ing decreased costs and increased productivity.
Beer et al. [27] stressed that exploratory testing
(described as simultaneous learning, test design,
and test execution) requires substantial experi-
ence. De Souza et al. [1] discussed KM about
software testing aspects, testing processes, test
phases, test cases and testing techniques, etc. In
a similar way, aspects that are related to KM
practices are discusse, they encompass, e.g., KM
model, knowledge capturing, knowledge elicita-
tion, knowledge retrieval, knowledge dissemina-
tion. KM has been investigated for two decades
and many tools and techniques were suggested,
e.g., methods, tools, techniques, knowledge on-
tologies, knowledge maps, intranets, just to name

a few. Most of the studies focus on storing ex-
plicit rather than tacit knowledge and only some
studies provide empirical evidence [4,6,7,29,30],
e.g., storage and re-use of test cases [1]. At
the same time, many studies focus on imple-
menting a KM framework to strengthen soft-
ware testing process [5,7]. From the surveyed
papers, the following research gaps were identi-
fied:

— storing tacit knowledge and using appropriate
testing aspects and techniques,

— focusing on the testing aspects and testing
techniques and their importance in utilizing
KM practices.

To summarize, so far no study has focused on
identifying what type of knowledge is required
to perform a particular kind of software testing
techniques. This paper fills this research gap
by explicitly focusing on finding out the testing
techniques and the testing aspects that benefit
from KM.

3. Research questions

This study has two goals: 1) to investigate which
software testing aspects and techniques receive
more attention when applying KM and 2) to
identify the challenges faced due to the lack of
KM practices.

These goals are detailed into the three re-
search questions:

— RQI1: What are the KM and testing aspects
that receive more attention while applying
KM in software testing literature?
Motivation: RQ1 is inspired by De Souza
et al. [1] who conducted a systematic map-
ping to find out the studies related to KM
in software testing. De Souza stated various
testing aspects that get attention while ap-
plying KM in software testing literature but
lacked the analysis of the importance of each
testing aspect for KM. This paper focuses on
identifying which testing aspects investigated
in the literature in empirical studies.

— RQ2: What software testing techniques ben-
efit most from the application of KM prac-
tices?

54

Krzysztof Wnuk, Thrinay Garrepalli

Motivation: RQ2 is partly based on the
work of de Souza et al. [1] and Beer and
Ramler [27], who claimed that exploratory
and Ad-hoc testing techniques benefit from
the application of KM. The paper further
explores De Souza’s findings as well explores
more techniques which might be considered
as important in the context of KM.

— RQ3: What are the challenges faced due to
the lack of KM practices in software testing?
Motivation: RQ3 is inspired by Liu et
al. [30] who identified the challenges that
are faced due to the lack of KM. This article
further explores their findings and identifies
additional challenges that are faced due to
the lack of KM.

4. Research design and methodology

Many authors stressed the importance of utiliz-
ing systematic approaches for building knowl-
edge through literature, such as evidence-based
software engineering [31], information systems re-
search [32] and results from synthesis [33]. A sys-
tematic literature review study was performed
for the needs of this article in which the snow-
balling literature review method suggested by
Wohlin [34] was used, rather than a database
search based review because 1) it was difficult
to formulate a precise search creating the risk
of receiving many irrelevant and superfluous pa-
pers [34-36], 2) the interdisciplinary nature of the
studied area makes the database selection and
the search string construction challenging [34,37],
3) snowballing is comparable to the multiple
database searches and 4) it is suitable for expand-
ing existing literature reviews with new aspects.

The principle benefits of utilizing snowballing
are that it focuses on the cited or referenced
papers, which in comparison with the database
approach reduces the noise. Moreover, it is usu-
ally true that new studies cite one article among
the previous pertinent studies or a systematic
literature review study already done in a specific
area [34].

Snowballing involves deriving the tentative
start set of papers and conducting forward and

backward snowballing in iterations. Wohlin pro-
posed to use Google Scholar to discover the
start set of papers and to evade the publisher
bias [37]. However, in certain circumstances,
Google Scholar provides significant noise and
low certainty in terms of academic quality [38].
Thereby, the Engineering Village database was
selected as the start set identification. Knisley
recommended the Engineering Village as a prior
database to search for papers in comparison with
other databases [38]. Also, it was discovered that
the Engineering Village offers auto stemming
and related papers availability as additional fea-
tures.

4.1. Data analysis

The qualitative data collected during the liter-
ature review were analysed using the narrative
analysis technique that helps to create the narra-
tive summary of the resulting studies for synthe-
sis purposes [39]. The narrative analysis does not
focus on one specific theme and therefore helps
to discover recurring themes from the obtained
data. The narrative analysis was used to develop
the paper categorization presented in Section 6.1
and the testing aspect and techniques listed in
Sections 6.4 and 6.5 The first and the second
authors iteratively analysed the results and de-
veloped the themes.

The authors also applied grounded the-
ory analysis [40,41] mainly because they had
pre-considered thought regarding the information
they needed, contrary to what is recommended
by Glaser and Strauss [42]. In the same vein,
thematic analysis was excluded as an alterna-
tive analysis approach because it searches for
the repetitions of themes within the accessible
information [43].

4.2. Snowballing procedure

4.2.1. Deriving the tentative start set of paper

Step 1: Search string and database selec-
tion. Getting a representative and precise start
set of papers is equally challenging for snowball
as it is for the database searches [35]. A compre-

Knowledge Management in Software Testing: A Systematic Snowball Literature Review 99

hensive search string was developed avoid the
problem of inconsistent terminology.

The search string was formulated based
on the research questions and the keywords
derived from them, including the synonyms
and alternatives. It was iteratively developed
and it constantly enhanced available knowledge
when relevant papers identified manually were
read. When there was agreement and confi-
dence that the search string covered the aspects
that were the goal of the study, a pilot search
was performed in which the Engineering Vil-
lage database was queried and the first 500 re-
sults were analysed. Both authors screened these
results independently and later compared and
discussed relevance. The resulting search string
terms are outlined in Table 1 and grouped into
the two categories connected with the Boolean
operators.

Table 1. The keywords used to

query the Engineering Village

database and identify the start
set papers

Software testing keywords

Software testing — Al
Software test — A2

KM related keywords

KM - B1

Tacit knowledge — B2
Explicit knowledge — B3
Knowledge creation — B4
Knowledge acquisition — B5
Knowledge sharing — B6
Knowledge retention — B7
Knowledge valuation — B8
Knowledge use — B9
Knowledge discovery — B10
Knowledge Integration — B11
Knowledge theory — B12
Knowledge — B13

Knowledge engineering — B14
Experience transfer — B15
Technology transfer — B16

The search string run in the Engineering Vil-
lage database was composed of the following
Boolean formula: (“A1” OR “A2”) AND (“B1”
OR “B2” OR “B3” OR “B4” OR “B5” OR “B6”

OR “B7” OR “B8” OR “B9” OR “B10” OR “B11”
OR “B12” OR “B13” OR “B14” OR “B15” OR
“B16”7).

Step 2: Tentative start set of papers. The

search string was executed in the Engineering

Village database and resulted in 4832 hits. Next,

the inclusion criteria outlined below were ap-

plied, including only the papers written in En-
glish (IC1), which resulted in 2774 candidates
and additional 85 were removed as they were
not peer-reviewed (IC2). Next, the 2689 can-
didates were screened and 2404 were excluded
based on title screening (IC4). The abstracts
for the remaining 285 candidates were read and
63 papers were accepted. Later the introduction
and conclusion sections of the 63 papers were
read and as a result, 32 candidates were kept. Fi-
nally, the full papers were read and independent
judgments regarding if they should be included
or not were performed. The application of all
inclusion criteria and the full read resulted in 16
candidate papers. These were analysed looking
at their authors and publication venues. There
were 3 papers which were excluded because they
had a low number of references or citations and
were less relevant for the scope of this study. As

a result, the 13 papers that were left were heav-

ily cited and had the most relevant references

that increased the likelihood of better coverage
of relevant studies [34]. The following inclusion
criteria were used:

— IC1: Articles that are written in English and
are published between 2003-2015. The pri-
mary reason behind choosing papers from
2003 or later is that KM initiatives in soft-
ware testing were established around 2003 [1],

— 1C2: Peer-reviewed articles published in rele-
vant venues (conferences, workshops or jour-
nals in software engineering, software test-
ing and knowledge management, computer
science, information technology and science,
computing and computer applications)

— IC3: Articles available in full text

— IC4: Articles that focus on KM practices used
for supporting software testing (design, ex-
ecution, and analysis) and/or deal with the
industrial challenges due to the lack of KM
under software testing.

56

Krzysztof Wnuk, Thrinay Garrepalli

4.2.2. Forward and backward snowballing
in iterations

On the start set of 13 papers [1,3-7,9, 14, 27—
30,44], five iterations of backward and forward
snowballing were performed, see Table 2 for de-
tails. Backward snowballing was conducted by
looking at the references of each paper in parallel
with forward snowballing by looking at citations.
Google scholar was used to extract the citations
for each of the papers. Both references and cita-
tions were inserted in an Excel file where both
titles and abstracts were collected. The second
author screened these citations and references
in each of the iterations and categorized them
into NO, MAYBE and YES categories. Next,
the first author screened the MAYBE and YES
papers and used his judgment whether they were
relevant. After a discussion and reaching an agree-
ment, the relevant candidates were included in
the next iteration. The same inclusion criteria
were used for all snowballing iterations.

4.3. Data extraction and synthesis

The data extraction properties outlined in Ta-
ble 2 were derived during several discussions be-
tween the authors. The data were extracted into
a spreadsheet where categories are mapped to the
research questions. The data analysis checklist
was also developed where the fulfillment of each
of the aspects could be partial or full.

The second author performed the data extrac-
tion, supported by the discussion with the first
author. The extracted data were synthesized by
performing a narrative analysis as per the guide-
lines provided by Cruzes et al. [39] and Rodgers
et al. [45]. Patterns in data were identified, and
these patterns were grouped into various themes.
To strengthen reliability, rigor and relevance cri-
teria were applied for each paper, see Section 4.4.

4.4. Quality assessment based on rigor
and relevance

The rigor and relevance assessment method was
utilized according to the guidelines provided
by Ivarsson and Gorschek [46]. Previous au-

thors [47,48] demonstrated that rubrics built
the unwavering quality of the assessments as per
the terms of inter-rater agreement among the
researchers. The second author performed the
data extraction supported by the first author who
evaluated the results with objectivity in mind.
Each paper was allotted with a score utilizing
the objective criteria, customized for this study.
No significant changes to the rigor and relevance
scores suggested by Ivarsson and Gorschek were
made, see Table A in Appendix A.

The secondary studies (literature reviews)
were evaluated using different criteria. Firstly,
it was evaluated if the motivation behind con-
ducting the literature review was clearly stated.
Secondly, the review process was examined, and
a search for the precise descriptions of the search
strategies and search strings, clear definition of
acceptance criteria and unambiguous judgments
of the validity of the identified studies was con-
ducted. There was also a search for methodologi-
cal flaws [49]. Finally, the empirical support for
the claims provided by the secondary papers was
sought and it was checked how well the empirical
data were analysed. The fulfillment of each of
the criteria was estimated as Yes, No, Maybe.

5. Results of the snowballing
iterations

As a result of the above examination 13 pa-
pers (marked as P1 [5], P2 [3], P3 [4], P4 [6],
P5 [14], P6 [1], P7 [29], P8 [9], P9 [30], P10 [27],
P11 [28], P12 [7], P13 [44]) were chosen for the
start-set from the 4832 candidate papers ob-
tained from the Engineering Village database.
Table 3 presents the summary of the snowballing
iterations regarding the number of references and
citations screened in each iteration.

Based on backward snowballing in five itera-
tions, 843 references were thoroughly examined
and evaluated among which 137 were removed
based on the publication type, 7 did not match
the Language criteria, 40 were duplicates, 323
were dismissed based on title screening, 84 were
dismissed based on the year of publication, 202
were dismissed after reading the abstract, 11

Knowledge Management in Software Testing: A Systematic Snowball Literature Review

o7

Table 2. Data extraction strategy

Category

Data properties

Mapping to
research questions

General information

Type of Study

Research methods

Study aims research
outcomes

Data analysis

Author(s), Title, Publication Year, Abstract, Conclusions

Evaluation study, Validation study, Proposing a solution,
Opinion papers, Personal experience papers, Observational
research

Case study, Survey, Mapping study, Experiment, Grounded
theory, Action research, Unclear

Does the study specify aspects of software testing that
receive more attention while KM is applied?

Does the study specify any software testing techniques i.e.,
test design, test execution, test result analysis that benefit
from the application of KM in Software testing?

Does the study provide any problems or challenges reported
due to lack of KM practices in software testing?

Aspects of software testing that receive more attention while
KM is applied in software testing are properly specified
(yes/no/partially)

Software testing techniques that benefit from the application

RQ1, RQ2, RQ3

RQ1, RQ2, RQ3

RQL, RQ2, RQ3

RQ1

RQ2

RQ3

RQL

Data analysis

Data analysis

of KM are properly specified (yes/no/partially)

Problems or challenges faced due to lack of KM practices in
software testing explained (yes/no/partially)

RQ2

RQ3

were excluded after reading the full text and 26
were dismissed as their full text was not avail-
able. Finally, 12 papers were obtained based on
backward snowballing in five iterations.

During forward snowballing, 614 citations
were analysed in five iterations among which 43
turned out to be duplicates, 89 citations were
removed based on the publication type, 248 were
excluded based on the title, 203 were removed
after reading the abstract, 7 were omitted based
on the language in they were published, i.e. other
than English, 13 papers were removed after read-
ing the full text and 2 were removed due to the
unavailability of a full text. Finally, 10 papers
were selected.

6. Literature review results analysis

35 papers were identified in five snowballing it-
erations among which 31 were primary and 4
were secondary studies. Figure 3 depicts the pa-
per distribution over the years. Only five papers
were written between 2003 and 2005 indicating

that the research in KM in software testing be-
came more common after 2003. Much of the
work under KM in software testing was done
during 2006-2009 meaning that the organiza-
tions started taking interest in utilizing KM in
software testing to gain benefits and overcome
the issues associated with software testing due to
the lack of KM. Still, we see no clear increasing
trend in Figure 1.

Out of 35 analysed papers 21 studies are con-
ference articles indicating that conferences are
the primary venue for communicating research in
KM for software testing. Journals correspond to
34% of the studies (14 out of 35). Table A in Ap-
pendix A provides the list of publication venues.
It appears to be clear that not only software en-
gineering venues are utilized for communicating
research about KM in software testing.

Next, it was analysed which of the three RQs
each of the papers addressed. It turned out that
23 out of 35 studies reported various KM aspects
(RQ1) during software testing, 12 papers dis-
cussed challenges (RQ3) faced due to the lack of
KM practices in software testing, while ten stud-

58

Krzysztof Wnuk, Thrinay Garrepalli

Table 3. The summary of the number of citations and references screened in each snowballing iteration.

I — Iteration, F'S: Forward Snowballing, BS: Backward Snowballing, D — Duplicate, T — Based on Type,

N — Based on Name, Y — Based on Year, L — Based on Language, EA — Excluded after reading the abstract,
EF — Excluded after reading the full text, FN — Full text not available, IA — Included after reading Abstract,
IF — Included after reading full text

It- FS/BS Papers rejected Papers rejected from BS Papers Papers
era- from FS and why and why considered from considered from
tion FS and why BS and why
I1 140/346 D: 6, T: 19, N: 41, T: 51, L: 5, D: 16, N: 105, TA: 4, IF: 2 TA: 4, 1F: 2
EA: 66, L: 3 Y: 44, EA: 87, EF: 11,
FN: 20
12 164/262 D: 13, T: 31, N: 55, N: 135, D:5,Y: 21, T: 37, IA:2 IF:1 IF: 4
L:4, EA: 54, EF: 4 1.2, FN: 5, EA: 53
I3 294/178 D: 19, T: 39, T: 44, D: 13, N: 61, Y: 14, IF:1 TA: 1
N: 145, FN: 2, EA: 44, FN: 1
EA: 79, EF: 9
14 12/50 D: 4, N: 5, EA: 3 D:4,N: 19, T: 5, Y: 5, - IF: 1
EA: 16
15 4/7 D:1,N: 2, EA: 1 D: 2, N: 3, EA: 2 - -

N W R LY N

—_

OII||II ||I|II

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
B Number of Publications

Figure 1. Publications over the years

ies focused on KM in testing techniques (RQ2)
and helping testers to select better testing tech-
niques.

6.1. Categorization of papers based on
research methodology and
studytype

In the analysed group 31 studies were primary
studies and four were secondary studies (two
systematic literature reviews and two systematic
mapping studies). The 31 primary studies were
categorized according to the research methodol-
ogy (i.e. case study, survey, experiment, etc. as

defined by Runeson et al. [50] and the type of
study (i.e. evaluation, proposal, solution, opinion,
experience based, etc. and constraints as defined
by Wieringa et al. [51].

Evaluation research which utilized the case
study research method dominated among the
chosen papers — 16 articles [P2, P3, P4, P5,
P8, P11, P12, P13, P18, P20, P25, P30, P31,
P33, P34, P35] of which 3 were interview stud-
ies [P2, P11, P31], categorized as qualitative
case studies. Evaluations using frameworks were
found in 5 papers [P9, P14, P15, P27, P29].
The framework-proposal category encompassed
4 papers [P17, P22, P23, P26]. Two papers

Knowledge Management in Software Testing: A Systematic Snowball Literature Review 59

Solution 1‘/ \.|
l‘\\‘-_//‘
ik
y P
p Validation e)
€
o
f _—
S £ __‘\ n/ \v
Proposal {) |)
t \'-s.,_./’ \ /
u i -
d N PpuR
y [.’ \ P 4 BN
Evaluation \ / A J l\ |
A A
Case study Survey Framework Tool Proposal
Research Methodology

Figure 2. Categorization based on the type of the study and the research methodology aspects

were classified as case study-validation [P7, P10]
and two papers as the tool a proposal-solution
[P21, P32]. Finally, the categories such as case
study-proposal [P19] and survey-evaluation [P1]
received only one paper, see Figure 2 for de-
tails.

6.2. Quality assessment based on rigor
and relevance

Figure 3 depicts the Rigor and Relevance analysis

results where the primary studies are categorized

into four quadrants (A, B, C and D) according
to their rigor and relevance scores. The process
of classification is detailed below.

— Papers which fall under the score from (0-1.5)
are categorized as low rigor and those that
fall in between the score of 2 as high rigor.

— Papers with the score from (0-2) are consid-
ered to have low relevance and the papers
that fall score 2.5 or above are considered to
have high relevance.

Altogether 13 studies were characterised as hav-

ing high rigor and high relevance, quadrant A in

Figure 3, and these outcomes are the most reli-

able. Also, 12 studies were classified under quad-

rant C with high relevance and low rigor. Six
papers fell under category D, which means they
were characterised by low rigor and low relevance,
where relevance scores prevail over rigor scores,
see Table B in Appendix B for rigor and relevance
scores.

6.2.1. Quality assessment of secondary studies

Table 4 shows the results of the quality assess-
ment of secondary studies [P6, P16, P24, P28|.
It was concluded that the four identified sec-
ondary studies present high quality and therefore
trustable literature reviews.

6.3. KM aspects discussed in the
selected studies (RQ1)

The subject of 23 studies were KM aspects which
testers focus on during software testing, see Ta-
ble 5. It occurred that 13 studies focused on
knowledge representation while 12 studies fo-
cused on knowledge capturing. There were 8 pa-
pers which focused on knowledge management
systems and 8 papers presented knowledge man-
agement models.

60 Krzysztof Wnuk, Thrinay Garrepalli
Category A
P (271
3.0 | Category B 1.31)
25
20 B
R |
i
g
o| 15 Category D o Category C P348,
7 i 8 9,12,33
21
10 P_(13,
19.27)
P_(21
P17 22,23, e
05 26, 32)
0 05 10 15 2.0 2.5 30 3.5 40
Relevance
Figure 3. Rigor and relevance analysis results
Table 4. Quality assessment for secondary studies
Quality assessment question P6 P16 P24 P28
Is the motivation behind conducting systematic literature review and mapping Yes Yes Yes Yes
clearly expressed and defined?
Is the process of conducting systematic literature review or mapping clearly Yes Yes Yes Partial
stated?
Is there any empirical evidence for the stated systematic literature review or Yes Yes Yes Yes

mapping study?

KM systems (KMS) are necessary to enable
successful KM. Huseman and Goodman [52] con-
sider KMS as an essential source for competitive
advantage while Rajiv and Sarvary [53] claim
that organizations without strong KM systems
work inefficiently, which consequently influences
their quality of work.

Eight studies [P1*, P3, P4, P5* P8, P9, P12,
P19] (in this notation an asterisk (*) indicates
a paper with high rigor and relevance scores)
proposed various KMSs and discussed their im-
portance for software testing. KMS were used to
store, manage, search and share various kinds of
knowledge with the help of knowledge documents
[P3, P4, P9, P19], to store tacit knowledge to
be reused by searching the relevant documents

and resolve any raising issues [P12] or store and
maintain daily and weekly tester discussions in
a knowledge map [P8] or, also, store the experi-
ence gained in earlier testing cycles [P5%].

KMS provide several benefits, e.g., they help
to reduce effort during testing, increase software
quality [P1*, P5*], help the organizations adapt
to turnover and faster respond to changes and
downsize by making an experience of each in-
dividual widely accessible [P4]. It is interest-
ing to note that all the eight papers focused
on the importance of KMS and their benefits,
rather than the details of how these systems
are built and what strategies were used dur-
ing their development. Thus, future research
should focus on the strategies to be used to

Knowledge Management in Software Testing: A Systematic Snowball Literature Review 61

Table 5. Research Focus on KM aspects over the years

KM aspect 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
KM System = - = P12 P5* P19 P3 - P1* PS8 = - =
(KMS) P9 P4
KM Models P27 - = - = P19 P3 — P1* P8 P2* - =
P9 P25*
Knowledge = P15* P14* P18 P5* P19 P3 - P34 PS8 P32 P22 -
Representa- P29 P9 P33
tion
Knowledge = P15* P14* P18 P5* P19 P3 P26 P1* - P2* P21 -
capturing P9 P35*
P35*
Knowledge = P15* P14* P18 P5* P19 P3 - = - P2* - =
retrieval P9
Knowledge - - - P23 - - - P1* - P2* P21 -
dissemination
Knowledge P27 - - - P5* - - - - P2* | - -
elicitation
Knowledge - P15* P14* P18 - - - P1* - - - -
packaging
Knowledge = P15* P14* P18 - = — = P8 = - =
evolution
Knowledge = - = P29 - = - = - P32 P21 -
acquisition P2*
General® P17 P28 — - P6 P10* P13 - = — P16 P6 P31*
PT* P20* P11*
P30* P24

“Not focusing on any KM aspects but provides tools that support KM and knowledge or just defining KM aspects

without implement them.

build an effective KMS and its usage in case
study context.

KM models are models used for knowledge
management and knowledge process aspects,
such as knowledge carriers and knowledge tech-
nologies. Eight studies [P1*, P2* P3, PS,
P9, P19, P25* P27] focused on KM models.
Three studies [P3, P9, P19] used communication
databases enriched by knowledge maps and test-
ing knowledge databases. KM models can also be
created based on reusable test case repositories
extracted from similar projects or individuals’
tacit knowledge and testing projects data by test
specialists [P8].

KM models bring several benefits, e.g., in-
crease test case reuse [P8], increase quality and
decrease development time [P1*], develop testing
lesson learned systems [P2*], or identify gaps in
KM practices and fill in these gaps with potential
solutions [P27].

Two models for building KM models were
identified. The first model contains four phases:
1) absorption is related to acquiring new knowl-
edge from the external environment of the or-
ganization, i.e., experts are brought into the
organization, 2) diffusion concerns the dissem-
ination of knowledge among individuals in the
organization, i.e., these issues which are mostly
resolved in email/discussion lists, search engines,
best practices, 3) generation involves the improve-
ment of new knowledge and the procedure of
turning tacit knowledge into explicit information,
i.e. through brainstorming sessions, joint design
and source studies, 4) exploitation is referred
to as the commercialization of knowledge [P27].
The second model contains five steps: 1) identify
knowledge needs, 2) create knowledge, 3) store
knowledge, 4) organize knowledge and 5) share
knowledge [P25*].

62

Krzysztof Wnuk, Thrinay Garrepalli

The identified KM models focus on acquir-
ing, improving, disseminating and storing testing
knowledge. These findings may help to under-
stand that KM models contributed to the in-
crease in the reuse of testing knowledge in some
papers [P25% P27, P3, P9, P18].

Knowledge representation focuses on repre-

senting test knowledge through various tools that

support knowledge storage, e.g., ontologies, Soft-
ware Requirement Specifications (SRSs), Test

Procedure Specifications (TPSs), etc. Thirteen

studies [P3, P5*, P8, P9, P14* P15* P18, P19,

P22, P29, P32, P33, P34] focused on knowledge

representations which were categorized into:

— Ontologies [P3, P8, P9, P19, P22, P29, P32],
TPSs and SRSs as explicit knowledge repre-
sentations. Ontologies serve as a medium in
describing relative concepts, attributes and
relations connected with knowledge [P3, P9,
P19], they are also used to generate test cases
for GUI testing [P34], or as the knowledge
representation for performance testing [P22].
Ontologies were also used as knowledge rep-
resentations for test case reuse [P8] and for
supporting acquisition, organization, reuse
and sharing testing knowledge [P29, P32].
Testing activities can be performed based
on the ontologies associated with a software
project [P29, P32]. Ontologies support test
case generation from various artefacts in dis-
similar domains [P33] or for organizational
discussions [P2]. These results suggest that
developing an ontology that possesses all of
the above characteristics could result in gen-
erating productive testing outcomes. It is also
worth exploring how to use these ontologies
and strategies rather than how to develop
them [P3, P9, P19, P22, P29, P32].

— Characterization schema [P14*] that contains
test objectives, test scope, required testing
technique, test case generations, and test
tools is applied in post-project evaluations
and summaries of experiences from testing
activities. A characterization schema is a tool
that supports knowledge representation. Ve-
gas et al. developed and empirically evaluated
the schema for assisting testing technique se-
lection that generates a valid test case for

a given project [P14%*]. This study suggests

effective schema generation for test design

technique selection.
Knowledge capturing includes codifying and
documenting analytical testing knowledge in
a manner that individuals can adapt and re-use
for specific purposes. 13 studies [P1*, P2*, P3,
P5*, P9, P14*, P15*, P18, P19, P21, P26, P33,
P35*] focus on capturing testing knowledge in
terms of using: 1) lessons learned, experiences,
successes and failures [P2*], 2) knowledge of in-
dividuals from discussion forums and documents
[P3, P9, P19], 3) external knowledge and its
relation to internal knowledge [P1*], 4) feedback
given by both producers and consumers using
characterization schemata [P14* P15* P18],
5) experience and knowledge gained from ap-
plying various testing techniques [P26]. Three
papers specified capturing general testing knowl-
edge, e.g., knowledge and experience are recorded
and represented to as a substantial quantity
of component sequence in an XML file [P35*],
recorded into a formal form (issue spreadsheet)
[P5*] or in wikis [P21].

What is surprising is that the identified stud-
ies focus on Externalization (tacit to explicit),
Internalization (explicit to tacit) aspects leaving
aside Socialization (tacit to tacit) and combina-
tion (grouping all the explicit knowledge).
Knowledge acquisition is the focus of four
studies [P2, P21, P29, P32] with the help of wikis
[P21], ontologies [P29, P32] or lessons learned
[P2]. Surprisingly, the studies do not outline any
process that needs to be executed while defin-
ing the rules unlike [P14*] which outlined such
a 10-step process for knowledge capture. It can
thus be concluded that researchers should fo-
cus on knowledge acquisition processes and tech-
niques.

Knowledge elicitation is the focus of three
papers [P2*, P5* P27]. They utilized: 1) an ar-
chitectural model for knowledge elicitation based
on the lesson learned systems (a KM manager as
well as expert testers verify the elicited knowl-
edge) [P2*], 2) eliciting expert knowledge when-
ever it is required and capturing it in spread-
sheets [P5*] or 3) acquiring knowledge from
the external environment during the absorption

Knowledge Management in Software Testing: A Systematic Snowball Literature Review 63

phase [P27]. The architectural model presented
by Andrade et al. [P2*] focuses on 1) defining
the structure of software testing lessons learned,
2) setting up the procedures for the management
of lessons learned and 3) supporting the design
of tools that manage lessons learned. Despite
promising results, papers [P5%, P27] proposed
only the knowledge elicitation tools and failed to
provide the processes for knowledge elicitation.
Knowledge dissemination covers disseminat-
ing testing knowledge through various KM prac-
tices, such as internalization, externalization,
combination, and socialization. Only four studies
[P1*, P2* P21, P23] focused on the ways to dis-
seminate testing knowledge. In two studies [P1%*,
P21], knowledge is available in a useful, readable
format to the individuals who need it. Andrade
et al. used active knowledge dissemination, where
the software testing lesson learned systems dis-
seminate the lessons learned as per various pa-
rameters (e.g., scattering of conceivably helpful
lessons learned towards the beginning of every
testing activity using a testing activity descrip-
tor). The second way is passive knowledge dis-
semination where the user is responsible for com-
municating the software testing lessons learned
system and asking for the conveyance of lessons
learned [P2*]. Lee developed a KM framework
with seven cyclic steps for disseminating testing
knowledge: identify relevant knowledge, collect
the knowledge that is needed, adapt knowledge,
organize knowledge in a readable format and
apply the knowledge assets to situations where
there is a need for it [P23].

Knowledge retrieval covers returning testing
information in a structured format contrary to
just capturing the knowledge. Eight studies [P2*,
P3, P5* P9, P14*, P15* P18, P19] focused on
knowledge retrieval mechanisms and tools or arte-
facts that support them. Three studies [P14%*,
P15*, P18] provided a systematic structured for-
mat of storing the knowledge regardless of the
testing technique.

Knowledge packing covers strategies or meth-
ods used in packing captured knowledge, e.g.,
knowledge databases. In [P14* P15* P18],
a characterization schema encompassing various
attribute levels, such as tactical, operational and

historical, was developed for packaging the expe-
rience of individuals for various testing activities.
In [P1], knowledge packing is done with the aid
of a KM System by following the knowledge
lifecycle from acquisition to an application.
Knowledge evolution covers evolution aspects,
such as the evaluation and maintenance of test-
ing knowledge. There were four studies [P8, P14,
P15, P18] covering this aspect. Three studies
propose a characterization schema [P14*, P15*
P18] where a librarian maintains the repository
by taking care of the coherence of the infor-
mation it contains and updates the repository
based on the feedback provided by consumers
and producers. In one study, a knowledge an-
alyst is assigned to analyse conducted discus-
sions and update the knowledge repository [P8§].
Three studies consider knowledge evaluation as
the most important element [P14* P15* P18]
but fail to provide methods, steps and strate-
gies for supporting knowledge evolution and
thereby recommendations for software organi-
zations.

6.4. Software testing aspects that benefit
from the application of KM
practices (RQ1)

In the studied group 9 studies [P2, P3, P6, P9,
P16, P19, P23, P24, P27] provide only a general
discussion about KM and how to apply knowl-
edge in software testing, however, they lack dis-
cussions on specific testing aspects. Two studies
[P5, P7] focused on dealing with KM applied in
a project where testing is outsourced to a third
party (this is not considered a testing aspect).
The only difference is that the process is carried
out elsewhere but all the activities of this process
are similar. The remaining papers are analysed
according to the following testing aspects that are
summarized in Table 6 and the research focus on
the testing aspects over the years is summarized
in Table 7.

Testing process. Seven studies [P1*, P4, P12,
P21, P25*, P29, P32] focus on KM in the con-
text of a testing process (test planning, test case
design, test execution and test result analysis),
see Table 7.

64 Krzysztof Wnuk, Thrinay Garrepalli

Table 6. Description of the testing aspects analysed in the study

Testing aspect KM utilization

Testing process Test planning: The main aim is to manage knowledge in the context of test scenario
(7 studies) creation, test cases design, data preparation as well as a test environment.
Test execution: the goal is to manage knowledge during test execution, in a number
of test cycles on the basis of the project. For example, most of the projects run two test
cycles by adhering to time and cost conditions.
Test result analysis: The aim is to manage knowledge during test result analysis.
Test cases and ~ Manage knowledge about the test cases. For example: reusing the test cases
code (3 studies) Manage knowledge about the test code (which takes into account test scripts and drivers)
Testing phases Apply KM strategies to phases in software testing such as unit testing, component

(2 studies) testing, integration testing, system testing, acceptance testing, alpha testing, beta
testing.

Testing Manage knowledge on testing techniques, to help testers to choose a better suited testing

techniques technique for designing test cases, executing and analysing the tests.

(10 studies)

Testing types Manage knowledge in a specific software testing type such as GUI, load testing etc.
(6 studies)

Testing Manage knowledge about usage of testing tools or resources.

resources and

tools (2 studies)

Table 7. Research focus on testing aspects over the years

KM aspect 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Testing = - = P12 - — = - P1* P25* P32 P21 -
process P29 P4
Test case and = — — - - — - P35* P26 - P8 - - -
code
Test levels - - - P29 P5* - - - - - - - -
and testing
phases
Testing P17 P15* P14* P18 - P10* P13 - = - P11* - =
technique P28 P20*
P30*
Testing type = - = P12 - - P33 - P34 - = P22 P31*
P35*
Testing - B P29 - P10* -~ - = -
resource
General P27 - - P23 P5* P19 P3 - - - P2* P6 -
PT* P9 P16

P24

Knowledge Management in Software Testing: A Systematic Snowball Literature Review 65

Abdullah et al. [P1*] focus on utilizing a com-
munity of practice for managing testing knowl-
edge. Their model involves community of prac-
tice, KMS functionality in software testing and
KMS architecture. The software testing process
structures the testing knowledge, i.e. it begins
with the system requirements for product specifi-
cation and development, which comprises system
design and coding, and proceeds to the verifica-
tion and validation of product.

Desai et al. [P4] reported that KMS inte-
grated with software testing, data warehousing,
and mining helps to store and retrieve relevant
knowledge and to discover different modules
which are scattered along memory locations. This
improves the software testing process, including
test planning, test case development, test execu-
tion, test result analysis and reporting.

Nogeste et al. [P12] concluded that apply-
ing KM improves test planning and increases
tacit knowledge capturing for subjects not expe-
riences in KM. Abdou et al. [P21] advocate that
a software testing process should be enriched
with solutions used by Open Source Software
communities regarding test planning, forming
test design, considering test specifications, test
implementation, deriving test cases or test suites,
test execution, accepting test results.

Sirathienchai et al. [P25*] proposed three
models for test planning, test preparation and
test reporting which leverage on KM. Firstly,
cost assessment is performed, followed by the
performance evaluation of the software testing
process performed by different experienced per-
sonnel utilizing the project duration, cost, and
quality. Finally, a comparative financial anal-
ysis is done to find the best solution by re-
turn on investment, payback, and benefit cost
ratio. The findings from the case study re-
vealed that the long-term continuous investment
on KM can improve the testing process per-
formance more efficiently than the short-term
counterpart.

Barbosa [P29] defined a testing process based
on an ontology that combines the development
paradigm and the testing strategy. This ontology
(Reference Ontology on Software Testing) cap-
tures the relevant testing knowledge and stores

it in a repository. Individuals can use the stored
knowledge during testing. The main difference be-
tween ROost and other ontologies is that ROost
was developed mainly following a well-established
method named SABiO, which was used in several
ontology development efforts [54]. ROost covers
aspects related to the software testing process
and its activities, artefacts that are utilized and
produced by the activities, testing techniques for
test case design and test environment including
human, software and hardware resources similar
to OntoTest [P29] with a prime motive to manage
testing knowledge.

Test case and test code. Three studies [P8,
P26, P35*] discussed the use of KM in test cases
and test code reuse. Li et al. used an ontology
representation and a knowledge model [P8] for
test case reuse. Upheld by the management level,
a testing center built a reusable test case reposi-
tory with more than 12,000 cases, complemented
with an organizational exchange library. The case
study results demonstrate that the effectiveness
and efficiency of the test case design and the work
circumstances of test engineers and managers
were improved.

Nasser et.al [P26] suggested a knowledge-based
software test generation framework that permits
to characterize the domain and system specific
coverage criteria for different software artefacts
and domains, specifically concentrating on test
cases. By utilizing the custom coverage criteria,
test specialists can control what tests are to
be incorporated in generated test suites. For
this reason, the framework used reasoning with
ontologies to address the test case selection issue
for re-use. Based on the ontology, test individuals
can choose and select relevant previous test cases
for a given project.

Li [P35%] presented a test case generation
model based on test code reuse for GUI testing.
The testers experience is recorded and repre-
sented as extensive segments in an XML docu-
ment, where segments are the instances defined
in a GUI ontology. Next, all components that
are related to data elements are distinguished
and marked in a sequence which is connected
to data elements. In step 4, for each sequence
set, data dependent elements among user related

66

Krzysztof Wnuk, Thrinay Garrepalli

components are recorded. In step 5, for every sort
of knowledge components, the outcomes with
comparative sensible relations are figured out,
and if the recurrence of a legitimate connection
surpasses the normal level, they are concluded
as a rule for test case generation. This approach
was evaluated in a case study which indicated
that test case generation for GUI testing was
found more efficient.

Test levels or testing phase. Two studies
[P5*, P29] focused on the application of KM at
a specific testing level or phases such as unit,
integration or system testing. Wei and Ying
[P5*] emphasizes that to deliver high quality
and high productivity of testing during system
testing, a KM framework should be integrated
into the organization in such a way that test
knowledge can be shared between individuals in
the organization to sustain the system test and
maintain the quality of testing. Barbosa et al.
[P29] suggested an ontology which captures all
the relevant knowledge that takes place during
the testing phases and stores it in the reposi-
tory.

Testing techniques. Ten studies [P10*, P11%*,
P13, P14*, P15* P17, P18, P20*, P28, P30*|
discussed KM and software testing techniques.
Test case generation is one of the leading as-
pects of software testing and is closely linked
to the selection of testing techniques [55]. Vegas
and Basili [P14*, P15*] proposed a characteri-
zation schema that includes comprehensibility,
the maturity level of the individuals performing
testing, cost of application, inputs, dependencies,
repeatability, software type, experience required
to use a given technique and knowledge required
to apply this technique. Beer and Ramler [P10*]
claimed that ad hoc testing, subsuming casual
testing methodologies and exploratory testing, is
benefited through the application of KM prac-
tices, where test case design and execution are
interwoven to design new test using the informa-
tion and experience gained constantly.

Itkonen et al. [P11*] suggested that ex-
ploratory testing techniques benefit from adapt-
ing KM practices. Knowledge in exploratory test-
ing can be utilized as data to guide exploratory
test design and to perceive failures, e.g., as a test

oracle to differentiate between an expected cor-
rect outcome and an incorrect defective out-
come [56]. Moreover, knowledge together with
the observed actual behavior of the tested system
can be utilized to make new better tests during
exploratory testing. The authors also found that
as the domain knowledge, the system knowledge
and generic knowledge are required to recognize
failures.

Koznov et al. [P13] claimed that one of the
main obstacles in transferring formal methods to
industry is a lack of KM methods in this area and
focusing on explicit rather than tacit knowledge,
e.g., model based testing needs well defined and
documented requirements which are not set in
industrial projects. Tinkham and Kaner [P17]
listed the factors which contribute to a tester’s
choice of exploration style, such as tester’s skills,
experience, detailed knowledge on the usage of
a technique and personality (including learning
style). All these factors are essentially for a per-
fect utilization of exploratory testing which hap-
pens through capturing, storing testing knowl-
edge which, in turn, can be done through KM
practices. Itkonen et al. [P20*] indicated that
knowledge engineering techniques play a crucial
role for more effective use of testing techniques.
Testing type. It deals with selecting software
aspects to be tested, while the testing techniques
deal with how a specific part of the software will
be tested. Six studies [P12, P22, P31*, P33, P34,
P35*] focused on managing knowledge in a spe-
cific software testing type, such as performance,
GUI, endurance testing.

Nogeste and Walker [P12] conducted a case
study which proved that a KM based regression
process is necessary since regression testing is
heavily dependent on tacit and explicit knowl-
edge identification, collection, sharing and docu-
mentation.

Frietas and Vieria [P22] developed an on-
tology for the core knowledge used for perfor-
mance testing. Since ontologies serve as the rep-
resentation of domain knowledge that empow-
ers knowledge sharing among different applica-
tions, the paper investigated the impact of on-
tologies on performance testing. The results in-
dicate that this ontology can also be extended

Knowledge Management in Software Testing: A Systematic Snowball Literature Review 67

to endurance and stress testing both of which
are subclasses of performance testing for better
results.

Valeh et al. [P33] applied knowledge manage-
ment techniques in automated software testing
to enhance the control over test generation. The
results indicate that the use of ontology brings
benefits for the automated testing specification
of extensible test oracles which can model test
specialists’ mental model and lend themselves
to define custom coverage criteria. The system
grants control to a test specialist to determine
or indicate which test cases ought to be pro-
duced and generated to increase the quality of
test suites. Moreover, the produced test suite
ontology is programming language independent
and can be deciphered into various languages
and reused.

Gentry and Shirazi [P31*] discovered that
Canadian software development organizations
utilize in-house manual software testers when
tacit knowledge is obliged to successfully test
a software application. Software development
companies will probably keep manual testing
in-house, since the relationships between testers
and other internal employees may build the via-
bility of testing. Software development organiza-
tions are more averse to outsource manual testing
when domain specific knowledge is essential to
test the product.

Nasser et al. [P34] proposed ontology-based
test case generation to facilitate GUI testing and
produce test cases from the users’ viewpoint. GUI
testing is knowledge-intensive and requires both
the knowledge of GUI systems and extensive
experience, hence a knowledge-based technique
was suggested.

Li et al. [P35*] proposed an ontology based
semi-automatic approach to generate test cases
using testers’ experience. The approach is based
on a GUI testing ontology and examines the
source code with reverse engineering techniques.
Secondly, the test case generation rules are ex-
tracted from the testers’ experience. The evalua-
tion results indicate that the usage of knowledge
representations and management provides sup-
port in test case generation for GUI testing in
terms of greater efficiency.

Testing resources or tools. They represent
resources that can be humans (testers, test man-
agers or test analysts) or hardware (equipment,
software, testing tools or supporting systems).
Hardware and software resources are character-
ized as the testing environment which can be
utilized to automate the testing methods. Two
studies [P10*, P29] discuss KM concerning test-
ing tools and resources. Beer and Ramler [P10%]
focus on experience with tools when planning
test case automation. Extensive experience with
the setup and the utilization of tools was required
and indicated as a critical issue for producing
reliable test results. Barbosa et al. [P29] classi-
fied the software resources needed to perform
testing (including testing tools) into primary,
organizational and supporting tools.

6.5. Software testing techniques that
benefit from the application of KM
practices (RQ2)

Model-based testing benefits from the applica-
tion of KM practices [P13]. Exploratory (ad hoc)
testing is mentioned as a testing type in a few
papers such as [P17], but it is also called as
a testing technique in a few papers such as [P6,
P10*, P16] and a testing approach also in a few
papers [P11*]. In this study exploratory testing
is considered as a testing technique because it is
recognized as test design by [57,58].

7. Challenges due to lack of KM
practices

Twelve papers [P1*, P3, P4, P6, P7*, P9, P16,
P19, P20*, P22, P25*, P32] discussed challenges
faced due to the lack of KM practices, they are
outlined in Table 8.

CH1: Low software testing knowledge reuse rate
[P1*, P3, P4, P6, P9, P19] due to the lack of
KM practices, learning and knowledge reuse are
limited. Failure to capture individual knowledge
and experience leads to repeating the same mis-
takes even though there are individuals in the
organization rectify mistakes or prevent them
from reoccurring. Low testing knowledge reuse

68

Krzysztof Wnuk, Thrinay Garrepalli

Table 8. Challenges faced due to lack of KM in software testing

Challenges faced

P1*

P3

P4 P6

pP7*

P9 P16 P19 P20* P22 P25* P32

CH1: Low reuse rate of software
testing knowledge

CH2: Barriers in Software testing
knowledge transfer

CH3: Poor knowledge sharing
environment

CH4: A serious loss of software testing
knowledge

CHb5: Optimal distribution of human
resources quickly

CHG6: Determining if adequate testing
has been performed

CHYT: Difficulties in achieving test
coverage

CHS: Determining if the outputs are
correct

CH9: Documentation is not being
updated

CH10: Troubleshooting documentation
was inaccurate

CH11: Insufficient schedule and release
information

CH12: Define satisfaction criteria.
CH13: Increase in cost and time
CH14: Decreasing test effectiveness
CH15: Lacked practices for logging
and tracking in testing

CH16: Knowledge exchange

CH17: Identify whether the most
critical aspects of test components are
tested

CH18: Less support for decision
making

CH19: Testing knowledge not
considered in planing

CH20: Lacking skills

CH21: Missing high severity defects

Knowledge Management in Software Testing: A Systematic Snowball Literature Review 69

also increases the effort to accomplish a task
in software testing. Even if an organization has
a few testing knowledge databases, most of the
staff neglect to use them without the aid of KM
practices, which contributes to low test knowl-
edge reuse.

CH2: Barriers in software testing knowledge
transfer [P1*, P3, P4, P6, P9, P19] and knowl-
edge transfer without the proper application of
KM practices are challenging. Also, individuals
always search for the knowledge that they require
and do not search the entire repository. Yellow
pages can serve as a medium for rectifying this
problem. Moreover, I'T staff is not able to under-
stand new testing knowledge without the aid of
KM practices. The reason for this is that most of
the knowledge in organizations is tacit, obtained
through experience and difficult to articulate.
KM representation technologies help to overcome
this challenge.

CH3: Poor sharing environment for software
testing knowledge [P1*, P3, P4, P6, P9, P19],
the lack of a formally established, unique and
sorted knowledge sharing environment negatively
impacts communication. A knowledge sharing
model as indicated by Sirathienchei [16] has to be
accumulated within an organization to overcome
this issue.

CHA4: Serious loss of software testing knowledge
[P3, P4, P6, P9, P19], the insufficient applica-
tion of KM practices leads to knowledge and
experience accumulation around only a few mem-
bers of staff. Therefore, maintaining knowledge
repositories and databases that store individual
knowledge and make use of it is required. Also,
a sudden staff turnover leads to the loss of testing
knowledge.

CHS5: No possibility to quickly achieve the most
optimum distribution of human resources [P3,
P4, P6, P9, P19], KM helps to integrate humans,
processes, and technology. In a situation when
management does not have any idea about the
staff’s knowledge level, even an ideal team will
not be optimally formed in testing projects which
have negative impact on achieving the optimum
distribution of human resources [4].

CHB6: Determination whether adequate testing
is done [P4], the application of knowledge as

a test oracle gives answers to the question when
testing should be stopped and points out whether
adequate testing is done or not. Therefore, with
the help of KM practices, this issue can be re-
solved [6].

CHY7: Difficulties in achieving test coverage [P4],
the lack of KM practices hinders the identifica-
tion of the untested parts of the code base. More-
over, another challenge is the fact that reusable
test cases may be neglected and not stored
in the repository, which increases the testing
effort.

CHS8: Determination whether the outputs are
correct or not [P4], knowledge can be used as
a test oracle to identify whether the obtained
code execution results acomply with the expected
outcomes [17]. Thereby, the lack of KM prac-
tices may have a negative impact on determining
whether the outputs are correct because relevant
knowledge is neglected.

CH9: Documentation is not updated [P7*], up-
dating knowledge repositories is rarely done,
which results in outdated repositories and relying
on them when a problem occurs provides inaccu-
rate results [29]. In such a case, knowledge evolu-
tion and maintenance methods help to allocate
knowledge analysts or a specially selected person,
e.g., a librarian who maintains the repository by
taking care of the coherence of the information
it contains and updates the repository regularly
as indicated by Vegas et al. [59].

CH10: Troubleshooting documentation is inac-
curate [P7*], knowledge documents that retrieve
human knowledge, such as expert knowledge,
are not efficiently maintained [29]. Knowledge
managers and experts are to be allocated to
check knowledge databases as well as to verify
the knowledge that is accumulated and stored in
the repository and rectify occurring problems as
indicated by Andrade et al. [3].

CH11: Schedule and release of information from
the testing organization to development are
found to be insufficient [P7*], the documentation
was not up-to-date and insufficient for planning.
CH12: Determination what decision should be
made about the software when testing is com-
pleted, whether to proceed further and develop
satisfaction criteria [P4].

70

Krzysztof Wnuk, Thrinay Garrepalli

CH13: Increase in cost and time [P32] due to
the lack of relevant knowledge.

CH14: Decreasing test effectiveness [P32] be-
cause essential testing knowledge is not available.
CH15: Less support for decision making [P22] as
critical knowledge is not available when needed.
CH16: Testing knowledge not adequately con-
sidered for test planning [P6] and test execution.
CH17: Insufficient test technique skills [P25%]
since the test team consists of several roles which
encompass different responsibilities and knowl-
edge that needs to be communicated and shared.
CH18: No high severity defect detection is an-
other challenge faced due to the lack of KM
practices in software testing [P25%].

CH19: No methods for logging in and tracking
testing activities based on experience [P20%].
CHZ20: Transfer of the required knowledge to
testers and utilizing it [P20%*].

CH21: Focusing testers’ attention to ensure that
the most important aspects of the tested features
are tested [P20*].

7.1. Implications for research
and practice

The analysis of the KM aspects discussed in
the selected studies (RQ1) brings several im-
plications for research and practice. Firstly, there
appears to be a lot of focus on knowledge repre-
sentation and knowledge capturing. This focus
is unsurprising as it results in a rather technical
focus on KM application, creating or managing
knowledge databases or repositories or building
additional tools into the testing environment,
which allows for the development of enhanced
knowledge documentation. Secondly, knowledge
acquisition or elicitation received little attention
in the surveyed papers. This has implications for
software testing, especially for software compa-
nies that base their products on the OSS code
or other external sources. These companies need
to be more active in knowledge acquisition or
elicitation since extensive knowledge is available
in OSS communities (also testing experience or
competence). Thirdly, knowledge dissemination
(especially outside the testing teams) received
little attention. However, the authors believe this

aspect will be dominant in the successful testing
of software products that are greatly based on
open source software or external sources. For ex-
ample, efficient testing knowledge dissemination
with other companies involved in OSS communi-
ties can help to reduce testing costs and efforts
as the communities can take over large parts
of testing responsibilities. Fourthly, not much
e attention was devoted to understanding how
testing knowledge was created, especially tacit
knowledge. Since many software companies work
in Agile-inspired environments, it is believed that
focusing on tacit knowledge management remains
critical here. Fifthly, most of the papers [P1, P2,
P3, P6, P9 and P19] identified or discussed some
testing aspects but failed to discuss their impor-
tance, or connected these aspects (e.g., test case
and testing phase) to testing processes (e.g., test
planning, test case design, test execution and
test result analysis) [1]. It is postulated that
researchers should adjust the focus of research
endeavors and introduce some of these aspects
into exploring KM for software testing.
Looking at the importance of additional
testing techniques and types (RQ1 and
RQ2), a possible implication from these results
is that the suggested techniques and types are
seldom validated. Moreover, it remains greatly
unclear which testing methods to use in each
of the software testing activities. Therefore, re-
searchers should focus more on creating opera-
tional guidelines regarding which testing meth-
ods to use for which activities. Next, regression
testing and GUI testing are considered to gain
strong benefits from using the ontologies or KM
models. More research needs to be conducted to
provide similar analysis and clearly identify what
testing techniques require what type of knowl-
edge and how much these testing techniques are
sensitive to, e.g., eliciting or creating tacit knowl-
edge. Most of the studies have not specified and
have not focused on the knowledge relevant for
a specific testing technique. The taxonomy that
summarizes the types of knowledge that support
various testing techniques and their types is what
is clearly missing in the current literature.
Focusing on tacit knowledge remains impor-
tant since no study has focused on identifying the

Knowledge Management in Software Testing: A Systematic Snowball Literature Review 71

importance of tacit knowledge management for
software testing. It is also important to explore
the importance of tacit knowledge and how to
identify it, capture it and store it. In addition,
there is a need to explore testing aspects as well
as determine what testing types are dependent
on efficient tacit knowledge management.
Identify mitigation strategies for the iden-
tified challenges (RQ3), there is a need to
identify the mitigation strategies concerning each
of the identified challenges and provide tools, rec-
ommendations, and techniques to overcome those
challenges. The most distinct challenges are asso-
ciated with knowledge reuse, knowledge transfer
or knowledge sharing (CH1, CH2, CH3), and they
clearly show that more research focus should be
given to these areas. From the point of view
of software companies, these areas will become
dominant in the next years as more software is
co-created in open source software communities
or externally acquired from external software
organizations. Moreover, insufficient knowledge
sharing or transfer often results in losing the
knowledge that is critical and therefore substan-
tial additional costs are borne when restoring this
knowledge. Thus, it is postulated that researchers
in KM and testing should broaden their focus
areas and expand the technical aspects by adding
human aspects, knowledge reuse topics as well
as organizational aspects that lead to increased
knowledge sharing.

8. Validity threats

Validity threats under the snowballing phase of
the thesis are discussed according to the four va-
lidity categories suggested by Wohlin et al. [60].
Internal validity threats are minimized by cre-
ating and maintaining a review protocol which en-
compassed the details of the search string formu-
lation and start set identification, inclusion and
exclusion criteria used, the quality assessment
being carried out, etc. The risk for judgment
error was minimized by performing the indepen-
dent evaluation of the two authors who later
compared and discussed the results. Both au-
thors worked closely together and discussed any

questionable cases. Moreover, internal validity
threats are mitigated by following the mapping
guidelines provided by Petersen et al. [61] and
quality assessment criteria as per the guidelines
provided by Ivarsson and Gorschek [46]. Finally,
there is still some risk that the studied positive
testing outcomes are the result of other aspects
than applying KM techniques. It is planned to
explore this aspect in future work when these
relationships are explored in detail.

Construct validity focuses on various poten-
tial confounding factors regardless of whether
a study could capture the intended knowledge,
i.e. to achieve the aims and objectives. One of
the main concerns for this research is multiple
definitions of KM. This threat was mitigated
by adopting the well cited definition by Daven-
port [2]. As indicated by Kaner [62], construct
validity depends on the question of "How does
one recognize that they are measuring what they
usually think they are measuring against?". The
search string structure could be one of the con-
struct validity threats in this study. Therefore,
the search string was iteratively formulated with
extensive discussions between the authors. Next,
data extraction could also be the source of valid-
ity threats. To avoid these threats, supervisor’s
assistance was accepted and all updates at each
step were sent for approval.

External validity considers the capability to
generalize results outside the studied context.
Most of the studies fall under the case study
research category with high rigor and relevance
scores as most of them were conducted in in-
dustrial contexts. Thus, the outcomes can be
considered industry pertinent and are more gen-
eralized. For the studies that received low rigor
and relevance scores, it remains to be determined
if the ideas suggested in these studies have high
generalizability.

Reliability considers the degree of repeatability
and whether the data and analysis depend on
a specific researcher. To strengthen reliability,
each step of the snowballing process was doc-
umented, including the database search. The
same applies to each step of data collection and
analysis and they can be backtracked, if needed.
The quality assessment of the chosen papers was

72

Krzysztof Wnuk, Thrinay Garrepalli

ensured by using rigor and relevance criteria
according to objective assessment criteria. The
properties and aspects identified from the pa-
pers were mapped with the research questions to
achieve the objectives of the study.

9. Conclusions

Software testing is knowledge-intensive and the
use of KM practices and tools provides a wide
range of benefits regarding the increase in capital
and quality [1]. This paper focuses on the im-
plementation of KM in software testing and on
exploring the importance of KM in each of the
software testing aspects and testing techniques.
Also, the paper presents the challenges faced due
to the lack of KM in software testing. The topic
is explored in a systematic literature review.

Looking at the testing aspects identified in
the study (RQ1), the results indicated that KM is
mainly used to support the selection or execution
of testing techniques (10 studies) or optimization
of the testing processes (7 studies). At the same
time, managing testing resources or knowledge
about test cases or the test code has been greatly
underrepresented. Knowledge elicitation, dissem-
ination, acquisition, evolution and packaging re-
ceive little attention in the surveyed literature
indicating that knowledge is mainly managed
during software testing within a project or an
organization and less attention is devoted to fur-
ther knowledge sharing. Knowledge management
system, models, representation, capturing and re-
trieval are the main KM areas that the surveyed
literature focuses on.

Looking at the testing techniques that bene-
fit from the application of KM practices (RQ2)
the results indicate that ad hoc and exploratory
testing gain more benefits from utilizing KM tech-
niques than model-based testing techniques. This
appears to be logical since model-based testing
operates on highly formalized knowledge (mod-
els) where extensive reasoning can frequently be
applied. Ad hoc or exploratory techniques rely
more heavily on tacit knowledge and therefore
demand more KM techniques.

This study identifies 21 challenges faced due
to the lack of KM practices in software engineer-
ing (RQ3) and the most frequently mentioned
challenges are associated with testing knowledge
reuse, transfer, and sharing. Moreover, the risk
of losing testing knowledge appears to be one
of the prominent challenges. To summarize, this
paper has made the following contributions:

— Exploring various testing aspects that are
focused on while KM is applied in software
testing literature. Moreover, the importance
of each of the software testing aspect concern-
ing KM was explored.

— Discovering that each of the testing aspects is
focused on while KM is applied, albeit few of
them are very important in the KM context.

— Determining the importance of each of the
software testing techniques (i.e. design, exe-
cution and result analysis techniques) in the
KM context along with obtaining the knowl-
edge which is required for each technique so
as to provide recommendations to store the
tacit knowledge just in case any technique
turns out to be important in the context of
KM and utilize tacit knowledge.

— Uncovering various challenges that are faced
due to the lack of KM in software testing
literature

In future work, the authors plan to conduct case
studies and investigate how KM is utilized during
software testing by software-intensive organiza-
tions. There are also plans to explore the en-
abling factors that allow achieving good testing
coverage without KM techniques. It is planned
to study what modeling framework and models
can support software testing tacit knowledge cap-
ture, analysis, storing and reuse. Finally, tacit
knowledge management in software testing will
also become the focus of further studies.

Acknowledgments

This work is supported by the IKNOWDM
project from the Knowledge Foundation in Swe-
den (20150033).

Knowledge Management in Software Testing: A Systematic Snowball Literature Review

73

References

1]

E.F. de Souza, R. de Almeida Falbo, and N.L. Vi-
jaykumar, “Knowledge management initiatives
in software testing: A mapping study,” Infor-
mation and Software Technology, Vol. 57, 2015,
pp. 378-391. [Online]. http://www.sciencedirect.
com/science/article/pii/S0950584914001335
T.H. Davenport and L. Prusak, Working knowl-
edge: How organizations manage what they know.
Harvard Business Press, 1998.

J. Andrade, J. Ares, M.A. Martinez, J. Pa-
zos, S. Rodriguez, J. Romera, and S. Suérez,
“An architectural model for software testing les-
son learned systems,” Information and Software
Technology, Vol. 55, No. 1, 2013, pp. 18-34.

Y. Liu, J. Wu, X. Liu, and G. Gu, “Investigation
of knowledge management methods in software
testing process,” in International Conference on
Information Technology and Computer Science,
Vol. 2. IEEE, 2009, pp. 90-94.

R. Abdullah, Z.D. Eri, and A.M. Talib, “A model
of knowledge management system in managing
knowledge of software testing environment,” in
5th Malaysian Conference in Software Engineer-
ing (MySEC). IEEE, 2011, pp. 229-233.

A. Desai and S. Shah, “Knowledge management
and software testing,” in Proceedings of the Inter-
national Conference €& Workshop on Emerging
Trends in Technology. ACM, 2011, pp. 767-770.
K. Nogeste and D.H. Walker, “Using knowl-
edge management to revise software-testing pro-
cesses,” Journal of Workplace Learning, Vol. 18,
No. 1, 2006, pp. 6-27.

L. Xu-Xiang and W.N. Zhang, “The
PDCA-based software testing improvement
framework,” in International Conference on
Apperceiving Computing and Intelligence
Analysis (ICACIA). IEEE, 2010, pp. 490-494.
X. Li and W. Zhang, “Ontology-based testing
platform for reusing,” in Sixth International Con-
ference on Internet Computing for Science and
Engineering (ICICSE). IEEE, 2012, pp. 86-89.
J. Kajihara, G. Amamiya, and T. Saya, “Learn-
ing from bugs (software quality control),” IEEE
Software, Vol. 10, No. 5, 1993, pp. 46-54.

C. O’Dell and C. Jackson Grayson Jr, “Knowl-
edge transfer: discover your value proposition,”
Strategy € Leadership, Vol. 27, No. 2, 1999, pp.
10-15.

I. Nonaka and H. Takeuchi, The knowledge-cre-
ating company: How Japanese companies create
the dynamics of innovation. Oxford University
Press, 1995.

[13]

[14]

[15]

[16]

A.D. Marwick, “Knowledge management tech-
nology,” IBM Systems Journal, Vol. 40, No. 4,
2001, pp. 814-830.

O.K. Wei and T.M. Ying, “Knowledge man-
agement approach in mobile software system
testing,” in IEEE International Conference on
Industrial Engineering and Engineering Manage-
ment. IEEE, 2007, pp. 2120-2123.

T. Abdou and P. Kamthan, “A knowledge man-
agement approach for testing open source soft-
ware systems,” in International Performance
Computing and Communications Conference
(IPCCC). IEEE, 2014, pp. 1-2.

J. Sirathienchai, P. Sophatsathit, and
D. Dechawatanapaisal, “Simulation-based
evaluation for the impact of personnel capability
on software testing performance,” Journal of
Software Engineering and Applications, Vol. 5,
No. 08, 2012, p. 545.

V.H. Nasser, W. Du, and D. Maclsaac, “An
ontology-based software test generation frame-
work.” in The 22nd International Conference on
Software Engineering and Knowledge Engineer-
ing, SEKFE, 2010, pp. 192-197.

H. Li, F. Chen, H. Yang, H. Guo, W.C.C. Chu,
and Y. Yang, “An ontology-based approach for
gui testing,” in 33rd Annual IEEE International
Computer Software and Applications Conference,
Vol. 1. IEEE, 2009, pp. 632-633.

E.F. Barbosa, E.Y. Nakagawa, and J.C. Maldon-
ado, “Towards the establishment of an ontology
of software testing.” in International Conference
on Software Engineering & Knowledge Engineer-
ing, 2006, pp. 522-525.

N. Juristo, A.M. Moreno, and S. Vegas, “Review-
ing 25 years of testing technique experiments,”
Empirical Software Engineering, Vol. 9, No. 1,
2004, pp. 7-44.

A.C.C. Natali, A.R.C. da Rocha, G.H. Travas-
sos, and P.G. Mian, “Integrating verification and
validation techniques knowledge into software en-
gineering environments,” Proceedings of 4as Jor-
nadas Ibeoamericanas de Ingenieria del Software
e Ingenieria del Conocimiento, JIISIC, Vol. 4,
2004, pp. 419-430.

N. Juristo, A.M. Moreno, and S. Vegas, “Towards
building a solid empirical body of knowledge in
testing techniques,” ACM SIGSOFT Software
Engineering Notes, Vol. 29, No. 5, 2004, pp. 1-4.
R.L. Glass, R. Collard, A. Bertolino, J. Bach,
and C. Kaner, “Software testing and industry
needs,” IEEE Software, Vol. 23, No. 4, 2006, pp.
55-57.

74

Krzysztof Wnuk, Thrinay Garrepalli

[24]

[31]

R. Jain and S. Richardson, “Knowledge parti-
tioning and knowledge transfer mechanisms in
software testing: An empirical investigation,” in
Proceedings of the 1st Workshop on Advances
and Innovations in Systems Testing, 2007.

S. Vegas, “Identifying the relevant information
for software testing technique selection,” in In-
ternational Symposium on Empirical Software
Engineering, ISESE. IEEE, 2004, pp. 39-48.

X. Liu, G. Gu, L. Yongpu, and W. Ji, “Research
and application of knowledge management model
oriented software testing process,” in 11th Joint
International Conference on Information Sci-
ences. Atlantis Press, 2008.

A. Beer and R. Ramler, “The role of experience
in software testing practice,” in 34th Euromicro
Conference Software Engineering and Advanced
Applications. IEEE, 2008, pp. 258-265.

J. Ttkonen, M.V. Méntyld, and C. Lassenius,
“The role of the tester’s knowledge in exploratory
software testing,” IEEFE Transactions on Soft-
ware Engineering, Vol. 39, No. 5, 2013, pp.
T707-724.

O. Taipale, K. Karhu, and K. Smolander, “Ob-
serving software testing practice from the view-
point of organizations and knowledge manage-
ment,” in First International Symposium on Em-
pirical Software Engineering and Measurement.
IEEE, 2007, pp. 21-30.

L. Xue-Mei, G. Guochang, L. Yong-Po, and
W. Ji, “Research and implementation of knowl-
edge management methods in software testing
process,” in WRI World Congress on Computer
Science and Information Engineering, Vol. 7.
IEEE, 2009, pp. 739-743.

B.A. Kitchenham, T. Dyba, and M. Jorgensen,
“Evidence-based software engineering,” in Pro-
ceedings of the 26th International Conference on
Software Engineering. IEEE Computer Society,
2004, pp. 273-281.

J. Webster and R.T. Watson, “Analyzing the
past to prepare for the future: Writing a litera-
ture review,” MIS quarterly, 2002, pp. xiii—xxiii.
W. Hayes, “Research synthesis in software engi-
neering: a case for meta-analysis,” in Sizth In-
ternational Software Metrics Symposium. IEEE,
1999, pp. 143-151.

C. Wohlin, “Guidelines for snowballing in
systematic literature studies and a replica-
tion in software engineering,” in Proceedings
of the 18th International Conference on
Evaluation and Assessment in Software FEn-
gineering, ser. EASE ’14. New York, NY,
USA: ACM, 2014, pp. 38:1-38:10. [Online].
http://doi.acm.org/10.1145/2601248.2601268

[35]

36

[45]

[46]

B. Kitchenham, O.P. Brereton, D. Budgen,
M. Turner, J. Bailey, and S. Linkman, “System-
atic literature reviews in software engineering
— a systematic literature review,” Information
and software technology, Vol. 51, No. 1, 2009, pp.
7-15.

B. Kitchenham, R. Pretorius, D. Budgen, O.P.
Brereton, M. Turner, M. Niazi, and S. Linkman,
“Systematic literature reviews in software engi-
neering — a tertiary study,” Information and
Software Technology, Vol. 52, No. 8, 2010, pp.
792-805.

B. Kitchenham and S. Charters, “Guidelines for
performing systematic literature reviews in soft-
ware engineering,” Keele University & Univer-
sity of Durham, EBSE Technical Report EBSE
2007-01, 2007.

C.W. Knisely and K.I. Knisely, Engineering com-
munication. Cengage Learning, 2014.

D.S. Cruzes and T. Dyba, “Research synthesis
in software engineering: A tertiary study,” Infor-
mation and Software Technology, Vol. 53, No. 5,
2011, pp. 440-455.

C. Goulding, Grounded theory: A practical
guide for management, business and market re-
searchers. Sage, 2002.

R. Hoda, J. Noble, and S. Marshall, “Using
grounded theory to study the human aspects
of software engineering,” in Human Aspects of
Software Engineering. ACM, 2010, p. 5.

B.G. Glaser, A.L. Strauss, and E. Strutzel, “The
discovery of grounded theory; strategies for quali-
tative research.” Nursing research, Vol. 17, No. 4,
1968, p. 364.

M. Dixon-Woods, S. Agarwal, D. Jones,
B. Young, and A. Sutton, “Synthesising qual-
itative and quantitative evidence: a review of
possible methods,” Journal of Health Services
Research € Policy, Vol. 10, No. 1, 2005, pp.
45-53.

D. Koznov, V. Malinov, E. Sokhransky, and
M. Novikova, “A knowledge management ap-
proach for industrial model-based testing,” in
Proceedings of the International Conference on
Knowledge Management and Information Shar-
ing, 2009, pp. 200-205.

M. Rodgers, A. Sowden, M. Petticrew, L. Arai,
H. Roberts, N. Britten, and J. Popay, “Testing
methodological guidance on the conduct of narra-
tive synthesis in systematic reviews: effectiveness
of interventions to promote smoke alarm owner-
ship and function,” Fvaluation, Vol. 15, No. 1,
2009, pp. 49-73.

M. Ivarsson and T. Gorschek, “A method for
evaluating rigor and industrial relevance of tech-

Knowledge Management in Software Testing: A Systematic Snowball Literature Review

75

[47]

(48]

[52]

[53]

[54]

[55]

[56]

[57]

nology evaluations,” Empirical Software Engi-
neering, Vol. 16, No. 3, 2011, pp. 365-395.

A. Jonsson and G. Svingby, “The use of scoring
rubrics: Reliability, validity and educational con-
sequences,” Fducational Research Review, Vol. 2,
No. 2, 2007, pp. 130-144.

B. Moskal, K. Miller, and L. King, “Grading
essays in computer ethics: rubrics considered
helpful,” ACM SIGCSE Bulletin, Vol. 34, No. 1,
2002, pp. 101-105.

A. Vickers, “Ensuring scientific rigour in litera-
ture review,” Acupuncture in Medicine, Vol. 13,
No. 2, 1995, pp. 93-96.

P. Runeson, M. Host, A. Rainer, and B. Reg-
nell, Case study research in software engineering:
Guidelines and erxamples. John Wiley & Sons,
2012.

R. Wieringa, N. Maiden, N. Mead, and C. Rol-
land, “Requirements engineering paper classifi-
cation and evaluation criteria: A proposal and
a discussion,” Requirements Engineering, Vol. 11,
No. 1, 2006, pp. 102-107.

P. Goodman Jon and C. Huseman Richard, Lead-
ing with Knowledge: The Nature of Competition
in the 21st Century. Sage, London, 1999.

L. Rajiv and M. Sarvary, “KM and competition
in the consulting industry,” 1999, p. 485.

R. de Almeida Falbo, “Experiences in using a
method for building domain ontologies,” in The
16th International Conference on Software FEn-
gineering and Knowledge Engineering, SEKE,
2004, pp. 474-477.

S. Vegas and V. Basili, “A characterisation
schema for software testing techniques,” Empir-
ical Software Engineering, Vol. 10, No. 4, 2005,
pp. 437-466.

A. Abran, P. Bourque, R. Dupuis, and J.W.
Moore, Guide to the software engineering body
of knowledge — SWEBOK. IEEE Press, 2001.
M. Cataldo, P.A. Wagstrom, J.D. Herbsleb, and
K.M. Carley, “Identification of coordination re-
quirements: implications for the design of collab-
oration and awareness tools,” in Proceedings of
the 2006 20th Anniversary Conference on Com-
puter Supported Cooperative Work. ACM, 2006,
pp. 353-362.

D. Graham, E. Van Veenendaal, and I. Evans,
Foundations of software testing: ISTQB certifi-
cation. Cengage Learning EMEA, 2008.

S. Vegas, N. Juristo, and V.R. Basili, “A pro-
cess for identifying relevant information for
a repository: A case study for testing techniques,”
in Managing Software Engineering Knowledge.
Springer, 2003, pp. 199-230.

[60]

[61]

[62]

[63]

C. Wohlin, P. Runeson, M. Hést, M.C. Ohlsson,
B. Regnell, and A. Wesslén, Ezperimentation in
software engineering. Springer Science & Busi-
ness Media, 2012.

K. Petersen, R. Feldt, S. Mujtaba, and M. Matts-
son, “Systematic mapping studies in software
engineering.” in EASE, Vol. 8, 2008, pp. 68-77.
C. Kaner and W.P. Bond, “Software engineer-
ing metrics: What do they measure and how
do we know?” in In METRICS 2004. IEEE CS.
Citeseer, 2004.

E.F. de Souza, R. de Almeida Falbo, and N.L.
Vijaykumar, “Knowledge management applied
to software testing: A systematic mapping,” in
The 25th International Conference on Software
Engineering and Knowledge Engineering, SEKFE,
Boston, USA, 2013, pp. 562-567.

A. Tinkham and C. Kaner, “Learning styles
and exploratory testing,” in Proceedings of the
Pacific Northwest Software Quality Conference,
2003.

S. Vegas, N. Juristo, and V. Basili, “Packaging
experiences for improving testing technique selec-
tion,” Journal of Systems and Software, Vol. 79,
No. 11, 2006, pp. 1606-1618.

J. Ttkonen, M.V. Mantyla, and C. Lassenius,
“How do testers do it? An exploratory study
on manual testing practices,” in Proceedings of
the 3rd International Symposium on Empirical
Software Engineering and Measurement. IEEE
Computer Society, 2009, pp. 494-497.

A. Freitas and R. Vieira, “An ontology for guid-
ing performance testing,” in Proceedings of the
2014 IEEE/WIC/ACM International Joint Con-
ferences on Web Intelligence (WI) and Intelli-
gent Agent Technologies (IAT), Vol. 1. IEEE
Computer Society, 2014, pp. 400-407.

T.E. Lee, “Applying knowledge management ap-
proach for software testing,” in Advances and
Innovations in Systems Testing, 2007.

E.F. de Souza, R. de Almeida Falbo, and N.L. Vi-
jaykumar, “Ontologies in software testing: A sys-
tematic literature review,” in VI Seminar on
Ontology Research in Brazil, 2013, p. 71.

C. Kerkhof, J. van den Ende, and I. Bogenrieder,
“Knowledge management in the professional or-
ganization: a model with application to CMG
software testing,” Knowledge and Process Man-
agement, Vol. 10, No. 2, 2003, pp. 77-84.

S. Vegas, N. Juristo, and V.R. Basili, “Matur-
ing software engineering knowledge through clas-
sifications: A case study on unit testing tech-
niques,” IEEE Transactions on Software Engi-
neering, Vol. 35, No. 4, 2009, pp. 551-565.

76

Krzysztof Wnuk, Thrinay Garrepalli

[72]

[73]

R. Gentry and F. Shirazi, “A knowledge man-
agement analysis of an in-house manual software
testing,” International Journal of Computer Ap-
plication, Vol. 1, No. 5, 2015, pp. 13-37.

E.F. de Souza, R. de Almeida Falbo, and
N.L. Vijaykumar, “Using ontology patterns for
building a reference software testing ontology,”
in 17th IEEFE International FEnterprise Dis-
tributed Object Computing Conference Work-
shops (EDOCW). IEEE, 2013, pp. 21-30.

[74]

V.H. Nasser, W. Du, and D. Maclsaac,
“Knowledge-based software test generation.” in
The 21st International Conference on Software
Engineering and Knowledge Engineering, SEKE,
2009, pp. 312-317.

H. Li, H. Guo, F. Chen, H. Yang, and Y. Yang,
“Using ontology to generate test cases for GUI
testing,” International Journal of Computer Ap-
plications in Technology, Vol. 42, No. 2-3, 2011,
pp. 213-224.

Knowledge Management in Software Testing: A Systematic Snowball Literature Review

7

Appendix A. Publication venue for the selected papers

Table A. Publication venue for the selected papers

Publication Type ID
Malaysian Conference in Software Engineering (MySEC) Conference P1 [5]
Information and Software Technology Journal P2 [3]
International Conference on Information Technology and Computer Science Conference P3 [4]
International Conference and Workshop on Emerging Trends in Technology Conference P4 [6]
(ICWET)

International Conference on Industrial Engineering and Engineering Management Conference P5 [14]
Information and Software Technology Journal P6 [1]
International Symposium on Empirical Software Engineering and Measurement Conference P7 [29]
International Conference on Internet Computing for Science and Engineering Conference P8 [9]
(ICICSE)

WRI World Congress on Computer Science and Information Engineering Conference P9 [30]
Euromicro Conference on Software Engineering and Advanced Applications Conference P10 [27]
IEEE Transactions on Software Engineering Journal P11 [28]
Journal of Workplace Learning Journal P12 [7]
International Conference on Knowledge Management and Information Sharing Conference P13 [44]
Empirical Software Engineering Journal P14 [55]
International Symposium on Empirical Software Engineering, ISESE Conference P15 [25]
International Conference on Software Engineering and Knowledge Engineering Conference P16 [63]
Pacific Northwest Software Quality Conference Conference P17 [64]
Journal of Systems and Software Journal P18 [65]
Joint International Conference on Information Sciences Conference P19 [26]
International Symposium on Empirical Software Engineering and Measurement — Conference P20 [66]
International Performance Computing and Communications Conference (IPCCC) Conference P21 [15]
International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Conference P22 [67]
Technologies (IAT)

Information Systems Research Conference P23 [68]
Seminar on Ontology Research in Brazil Conference P24 [69]
Journal of Software Engineering and Applications Journal P25 [16]
International Conference on Software Engineering and Knowledge Engineering Conference P26 [17]
Knowledge and Process Management Journal P27 [70]
Empirical Software Engineering Journal P28 [20]
International Conference on Software Engineering and Knowledge Engineering Conference P29 [19]
Software Engineering Journal Journal P30 [71]
International Journal of Computer Application Journal P31 [72]
International Enterprise Distributed Object Computing Conference Workshops Conference P32 [73]
(EDOCW)

International Conference on Software Engineering and Knowledge Engineering Conference P33 [74]
International Journal of Computer Applications in Technology Journal P34 [75]
Computer Software and Applications Conference (COMPSAC) Conference P35 [18]

78 Krzysztof Wnuk, Thrinay Garrepalli

Appendix B. Quality assessment based on rigor and relevance

Table B. Quality assessment based on rigor and relevance

Paper Context Study Validity Rigor Subjects Scale Research Context Relevance

design sum method- sum
ology

P1 1 1 0 2 1 1 1 1 4
P2 1 1 1 3 1 1 1 1 4
P3 1 0.5 0 1.5 1 1 1 1 4
P4 1 0.5 0 1.5 1 1 1 1 4
P5 1 1 0 2 1 1 1 1 4
P7 1 1 1 3 1 1 1 1 4
P8 1 0.5 0 1.5 1 1 1 1 4
P9 1 0.5 0 1.5 1 1 1 1 4
P10 1 1 0 2 1 1 1 1 4
P11 1 1 1 3 1 1 1 1 4
P12 1 0.5 0 1.5 1 1 1 1 4
P13 0.5 0.5 0 1 1 1 1 1 4
P14 1 1 0 2 1 1 1 1 4
P15 1 1 0 2 1 1 1 1 4
P17 0 0.5 0 0.5 0 1 0 0 1
P18 1 0.5 0 1.5 0.5 1 0 1 2.5
P19 0.5 0.5 0 1 1 1 1 1 4
P20 1 1 0 2 1 1 1 1 4
P21 0 0.5 0 0.5 0 1 1 0 2
P22 0 0.5 0 0.5 0 1 1 0 2
P23 0.5 0 0 0.5 0 1 1 0 2
P25 1 1 0 2 1 1 1 1 4
P26 0 0.5 0 0.5 0 1 1 0 2
P27 0.5 0.5 0 1 1 1 1 1 4
P28 0.5 0.5 0 1 1 0.5 0.5 1 3
P29 0 0.5 0 0.5 1 1 1 1 4
P30 1 1 0 2 1 1 1 1 4
P31 1 1 1 3 1 1 1 1 4
P32 0 0.5 0 0.5 0 1 1 0 2
P33 1 0.5 0 1.5 1 1 1 1 4
P34 1 0.5 0 1.5 1 1 1 1 4
P35 1 1 0 2 1 1 1 1 4

e-Informatica Software Engineering Journal, Volume 12, Issue 1, 2018, pages: 79-115, DOI 10.5277/e-Inf180104

Tool Features to Support Systematic Reviews

in Software Engineering — A Cross Domain Study

Chris Marshall*, Barbara Kitchenham**, Pearl Brereton™*

*York Health Economics Consortium Ltd., University of York
**School of Computing and Mathematics, Keele University

chris.marshall@york.ac.uk, b.a.kitchenham@keele.ac.uk, o.p.brereton@keele.ac.uk

Abstract

Context: Previously, the authors had developed and evaluated a framework to evaluate systematic
review (SR) lifecycle tools.

Goal: The goal of this study was to use the experiences of researchers in other domains to further
evaluate and refine the evaluation framework.

Method: The authors investigated the opinions of researchers with experience of systematic
reviews in the healthcare and social sciences domains.

They used semi-structured interviews to elicit their experiences of systematic reviews and SR
support tools.

Results: Study participants found broadly the same problems as software engineering (SE)
researchers with the SR process. They agreed with the tool features included in the evaluation
framework. Furthermore, although there were some differences, the majority of the importance
assessments were very close.

Conclusions: In the context of SRs, the experiences of researchers in other domains can be useful
to software engineering researchers. The evaluation framework for SR lifecycle tools appeared quite
robust.

Keywords: software engineering, systematic review tools, cross-domain survey, qualitative

analysis

1. Introduction

A systematic review (SR) is a formal, repeatable
method for identifying, evaluating and interpret-
ing all available research regarding a particular
problem or topic of interest. The rigorous and
impartial nature of a systematic review increases
the scientific value of its findings in comparison
with expert-based literature reviews [1-3], which
makes it an important tool for obtaining and
appraising evidence in a reliable, transparent
and objective way. Systematic reviews were first
established in Clinical Medicine [4,5]. Medical
researchers defined the systematic review process
to help mitigate the drawbacks of a conventional
literature review [1]. A cautionary note needs
to be added here that systematic reviews have
received some criticism, in particular, that they

are sometimes of quite poor quality and can reap
high rewards in terms of citation counts despite
biases and vested interests [6]. Also, the syn-
thesis of outcomes, particularly in the software
engineering field, can be problematic [7].

With a growing emphasis on empirical soft-
ware engineering research, the popularity and
importance of systematic reviews has grown con-
siderably [8,9]. Despite their potential usefulness
and importance to empirical software engineer-
ing research, undertaking a systematic review
remains a highly manual and labour intensive
process resulting in the possibility of process
errors (such as misclassifying primary studies or
wrongly excluding a primary study). In particu-
lar, there are challenges concerning the study
selection, data extraction and data synthesis
stages, amongst other collaborative activities

80

Chris Marshall, Barbara Kitchenham, Pearl Brereton

[10-14]. Furthermore, systematic reviews have
only recently been adopted by software engineer-
ing researchers, and, as a result, there have been
problems surrounding the provision of appropri-
ate support for novices [11-14]. These drawbacks,
along with others, make the systematic review
methodology a prime candidate to benefit from
an automated tool support [12-16].

In our experience, it is certainly possible to
undertake a systematic review without too much
automation. Furthermore, Kitchenham and Brere-
ton were involved in the revision of the systematic
review guidelines that emphasised human pro-
cesses and decision making [17]. Thus, the authors
believe it is important to have a balanced view of
the benefits of automating the systematic review
process. In this study, attitudes to automation
in domains that have more practical experience
of systematic reviews and their automation than
software engineering were investigated.

In earlier research, the authors developed
and validated a framework for evaluating tools
intended to support the full systematic review
process [18]. The framework was based on a set
of tool features identified as important for sys-
tematic reviews in software engineering based on
the SR guidelines, the authors experiences, and
the experiences of other SE researchers reported
in the literature. This paper reports on the re-
sults of a cross-domain study of researchers who
undertake systematic reviews as part of their
normal research practice, which was intended to
further validate our framework.

Some of this research has already been re-
ported [19], however, this paper provides a more
detailed analysis of our study results relating
to the impact of participant’s experience level
and the identification of trends among their com-
ments (the additional analyses are itemized in
Section 4.2.3).

Section 2 describes the evaluation framework
and explains particular interest in systematic
review lifecycle tools. Section 3 discusses SE re-
search that used results from other disciplines,
that investigated benefits and problems with the
SR process, and discussed tools to support the
SR process. Section 4 discusses the goals of the
study and the methodology used to address these

goals. Section b presents the results of the cross
domain study. Section 6 discusses the results and
conclusions are presented in Section 7.

2. Framework for evaluating
systematic review lifecycle tools

The developed evaluation framework was aimed
at evaluating tools that support the full SR
process in contrast to tools that assist a spe-
cific process or task. The reasons why the au-
thors concentrated on these tools and developed
a multi-criteria decision making framework are:
1. Large SRs are complex and hard to manage.
In order to support the production and up-
date of large scale (possibly distributed) SRs,
standard tools such as reference managers
and spread sheets become increasingly cum-
bersome and error prone. The developers of
the SLuRp tool say “Our experience is that in
order to produce reliable valid results, more
than one reviewer is required. Maintaining
large amounts of data in a team with several
reviewers is time-consuming and error-prone.
These errors are difficult to identify and elim-
inate without the use of a specific SLR tool
like SLuRp.” [20].

2. SR lifecycle tools cannot be easily evaluated.
Tools that support a specific process or task
can be evaluated in isolation using experi-
ments or small case studies, in contrast SR
lifecycle tools are more difficult to evaluate
because they span the entire lifecycle of a re-
view from initial planning to final reporting
and even subsequent updating. This lifecycle
process is made up of a series of individual
processes that interact with one another and
require validation and sometimes reworking.
To maintain clarity within this paper we shall
refer to these tools as SRLC (Systematic Re-
view LifeCycle) tools.

3. Currently, there is interest among software
engineering research groups in building SRLC
tools. The initial search found four such
tools [21] and later another one was found [22].
This interest suggests it is an appropriate
time to consider how to evaluate such tools.

Tool Features to Support Systematic Reviews in Software Engineering — A Cross Domain Study 81

4. Adopting such tools is a major commitment.
Research groups need to have some confi-
dence that any tool they adopt will be able
to support the sort of systematic reviews they
perform and the way in which they manage
their systematic review process.

The evaluation framework was based on fea-
ture analysis as proposed by the DESMET
project [23]. Feature analysis is a type of
multi-criteria decision analysis. It is a subjective
method of evaluation. It is intended to provide
a means of organising a subjective evaluation of
a tool and making the components of that evalu-
ation clear to, and auditable by other potential
tool users.

In the context of SRLC tools, members of the
same software engineering research group were
expected to be other potential users. Thus, the
authors envisage that our framework would pro-
vide a means by which researchers could make an
informed, defensible decision together. One par-
ticular benefit of the DESMET feature analysis
method is that it requires the users of the method
to refine the evaluation process depending on
their own requirements. Specifically it involves
users of the feature analysis defining what they
require of an acceptable tool with respect of each
feature. So the users of the framework do not
just evaluate a tool against a set of features,
they also need to define the importance of each
feature in terms of its importance to them. This
means that although an evaluation exercise could
involve a series of different candidate SRLC tools,
the tools are not so much compared with each
other as with the research group’s specific set
of requirements. This provides a feature analy-
sis with a built-in element of flexibility, which
allows users to tailor an evaluation to their own
circumstances. The details of the initial version
of the framework and its evaluation can be found
in [18].

3. Related work
In 2004, Kitchenham et al. [24] introduced the

concept of Evidence-Based Software Engineering
(EBSE) as an approach to integrate academic re-

search with industry needs and improve decision
making regarding the development and main-
tenance of software. This initiative was based
on the concept of Evidence-Based Medicine.
Kitchenham et al. recommended the use of sys-
tematic reviews to support EBSE. Subsequently,
Kitchenham [25] developed a set of guidelines for
undertaking systematic reviews based on health
care guidelines, which were updated in 2007 [3].
The 2007 guidelines were influenced both by
a study of the use of systematic reviews in other
disciplines and by guidelines developed for the
social sciences [26], and were adapted to better
reflect the use of systematic reviews in software
engineering. A further update to the guidelines
was released in 2015 (see Section III of [17]).
This version of the guidelines was strongly ori-
ented to addressing software engineering issues.
In particular, it included more information about
managing the collaboration aspects of systematic
reviews and methods for synthesizing the results
of quantitative and qualitative studies.

Since the release of the original guidelines and
the publication of systematic reviews in software
engineering journals, there has been substantial
literature discussing how the software engineer-
ing community performs systematic reviews and
how the process could be made more efficient.
Kitchenham and Brereton [9] summarized this
literature in a systematic review that included
45 papers published between January 2005 and
June 2012. This study summarized the perceived
benefits of doing SRs, problems SE researchers
had found when undertaking SRs and the advice
and techniques intended to assist in perform-
ing SR tasks. However, most of this work was
fairly inward looking with relatively few papers
discussing ideas from outside the software engi-
neering community. The main exceptions were:
Torres et al. [27] who trialled the methods of
sentence classification used in scientific papers
on SE data; Felizardo et al. [28] who undertook
a cross-discipline mapping study to investigate
the use of visual data mining techniques to sup-
port SRs; Ramampiaro et al. [16] who discussed
the use of techniques from information retrieval
and text mining to support the development of
meta-searcher capabilities.

82

Chris Marshall, Barbara Kitchenham, Pearl Brereton

Since 2012, there have been two initiatives to
investigate tools to support systematic reviews in
software engineering undertaken independently
by two groups of researchers:

1. Marshall and Brereton [21] performed a map-
ping study to identify tools available to support
SRs in the SE community and identified 13
different tools of which three were intended to
support the full lifecycle (i.e. were SRLC tools).
They also introduced the systematic review
toolbox which is a catalogue of tools to support
systematic reviews [29]. All three authors of
this paper presented an evaluation framework
intended to assess SRLC tools and reported the
results of using the evaluation framework to
evaluate four different SRLC tools developed
in the software engineering community [18].
They also published a preliminary analysis of
data from our study of researchers in health
care and social science [19].

2. Carver et al. [14] reported barriers to the SR
process based on 52 responses to an online sur-
vey sent to authors who published SRs in SE
venues and qualitative experiences from eight
PhD students. Hassler et al. [30] reported the
result of a community workshop that identi-
fied and ranked 37 barriers to the SR process
that could be grouped into themes related to
the SR process, primary studies, the practi-
tioner community and tooling. Subsequently,
Hassler et al. [31] reported a workshop-based
study of SR tool needs based on informa-
tion provided by 16 software engineering re-
searchers. They compared the result of their
study with the published preliminary results
of our study of tool features [19].

4. Goals and methodology of
the cross-domain study

4.1. Goals

The objective was to see if the experiences of
researchers from domains that have more exten-
sive experience in the use of systematic reviews
would be valuable to software engineering (SE)
researchers and SR tool designers. In particular,
the goals of this study were:

1. To assess whether the SR experiences of re-
searchers in other domains are relevant to
those of SE researchers.

2. To explore what tools were currently avail-
able and used to support systematic reviews
in other domains.

3. To compare the features and importance lev-
els identified by the participants with those
in this SRLC tool evaluation framework.
These goals could best be addressed by

a qualitative study aimed at eliciting the experi-

ences of systematic reviewers on other domains.

For this reason, Marshall undertook a series of

cross-domain, semi-structured interviews, which

were designed to explore the experiences and
opinions of systematic reviewers in other domains

(outside of software engineering) about support

tools.

It should be noted that, as is common with
qualitative studies, the goals are fairly general
and do not map to detailed research questions
and hypotheses. They exist to scope the qualita-
tive study not to define questions and metrics.

4.2. Methodology of the cross-domain
study

This section reports on the research strategy and
research process.

4.2.1. Research strategy

Semi-structured interviews were used to elicit the
opinions of researchers about systematic review
support tools. This means that a number of ques-
tions were identified to ask the participants and
also to encourage a discussion about the issues to
follow the directions that the participants wanted.

Semi-structured interviews were selected instead

of a self-administered questionnaire for two main

reasons:

1. The awareness that terminology differs be-
tween different domains and that face-to-face
interviews would allow potential misunder-
standings to be identified and resolved.

2. The need for certainty that the identified
participants had appropriate experience.
Since the study was qualitative, no detailed

research questions or research hypotheses were

Tool Features to Support Systematic Reviews in Software Engineering — A Cross Domain Study 83

derived, data collection and analysis procedures

arose from the research goals and resulted from

the expectations that:

— Viewpoints of researchers working in domains
where systematic reviews are well-understood
and considered a standard research practice
would be valuable to software engineering
researchers.

— Viewpoints of novices and experts would dif-
fer.

— Tool feature preferences of participants would
be influenced by the type of systematic review
they undertook.

Thus, the selected study participants covered
various domains, different levels of researcher
experience and different systematic review types.
The aim was to interview both senior and ju-
nior researchers from several different domains.
Originally, six topic areas were considered: Clin-
ical Medicine, Criminology, Education, Empiri-
cal Psychology, Nursing & Midwifery, and Pri-
mary Care, however, in practice two high level
domains became the focus: social sciences and
health care. No restriction was placed on whether
the researchers had performed quantitative or
qualitative reviews. The goal was to interview
researchers with experience of both types of re-
view because issues related to data extraction
and aggregation are very different for qualitative
and quantitative reviews.

The inclusion criteria for participants were
as follows:

— Researchers used systematic reviews as part
of their standard research process.

— Researchers had a wide range of roles and
responsibilities.

Initially it was planned to provide a theoretical
sample covering the six topic areas. The theoreti-
cal sample is a type of purposeful sampling where
researchers are seeking incidents/reports of the
phenomenon they are studying which will supply
useful data [32]. However, after the data was col-
lected and tabulated, it was found out that the
coverage of three dimensions had been achieved:
— The two domains (health care and social sci-

ences).

— Three experience levels corresponding to 1-5
SRs (i.e. Low), 6-15 SRs (i.e. Medium), and
> 15 SRs (i.e. High)!.

— Types of SRs performed: Quantitative and
Qualitative.

This coverage of three important dimensions al-

lowed to extend the analysis of the study results.

4.2.2. Research process

Marshall developed the semi-structured inter-
view plan after discussions with Kitchenham and
Brereton. He, then, piloted the semi-structured
interview procedure with a PhD student who had
undertaken two SRs. This led to some changes to
the delivery and sequencing of questions and also
confirmed the expectation that interviews would
take approximately 45 minutes. The interview
plan included questions related to four concerns:
— Group 1: questions relating to the partici-
pant’s background and domain.
— Group 2: questions about the participant’s
experience of undertaking systematic reviews.
— Group 3: questions about the participant’s
use of systematic review tools.
— Group 4: questions about SRLC tool features
and their importance levels.
The detailed interview questions are reported in
Appendix A.

In the research a combination of convenience
and snowballing sampling techniques was used
to identify 49 potential participants. Finally, 13
researchers from six institutions agreed to take
part. Marshall carried out the interviews between
June 2014 and September 2014. Prior to the in-
terview, each participant was sent an Interview
Preparation Form (see Appendix B). This doc-
ument outlined the main themes to be covered
during the interview, the expected duration, and
measures which would be taken to ensure privacy
and confidentiality. All interviews were carried
out face-to-face and recorded using a digital au-
dio recorder. Marshall took notes throughout
each interview. The shortest interview took 32
minutes and the longest interview lasted 68 min-
utes, with an average of 45 minutes.

'For some analyses, only two experience levels were used: low corresponding to 1-5 SRs and high corresponding to
6+ SRs, giving us six relative novices and 7 relatively highly experienced participants.

84

Chris Marshall, Barbara Kitchenham, Pearl Brereton

Marshall processed the raw data (i.e. record-
ings, field notes) prior to analysis. The field notes
were reviewed and full transcriptions of each in-
terview were produced. For this study, transcripts
aimed to reflect a straightforward summary of the
main ideas, which were presented by a fluently spo-
ken participant. The transcripts did not include
any mispronunciations, pauses or word emphases
which might have occurred during the interview.
In total, the interviews generated approximately
10 hours of audio recordings, each taking between
five and six hours to fully transcribe.

4.2.3. Data analysis

Marshall conducted the initial analysis concur-

rently with data collection, as recommended by

Miles et al. [33]. The initial analysis was based

on tabulating responses in order to identify:

— Challenges participants faced when doing sys-
tematic reviews.

— Tools used by participants.

— Positive and negative experiences of tools.

— Participant opinions of the importance of the
features included in the evaluation framework
compared with the importance assigned to
them.

Kitchenham and Brereton reviewed all the
tables for consistency. Initially, comments were
tabulated verbatim (as reported in [19]). Sub-
sequently, all three authors reviewed the initial
analyses and realized from the biographical data
that the actual sample included participants
with a range of experiences that would enable
additional analyses of the data. This resulted
in Kitchenham and Brereton undertaking addi-
tional analyses (beyond those reported in [19])
that are reported in this paper and which are
described below:

1. A summary of the general problems/issues re-
ported by participants and cross-referenced to
the SE literature in order to identify similari-
ties and differences between the SE domain
and health care and social services domains.

2. An analysis of the comments by individual
participants concerning general systematic

review tools and systematic review lifecycle
tools. This was intended to give a balanced
view of the advantages and disadvantages of
automating the SR, process.

3. A thematic analysis of the comments related
to systematic review lifecycle tool features
to provide some quantification of trends. De-
tails of the coding process and an example of
how the codes were established is provided
in Appendix C.

4. An investigation of whether participants’ re-
sponses were influenced by their experience
of undertaking systematic reviews.

5. An investigation of whether participants’ re-
sponses were influenced by the type of sys-
tematic review they performed.

6. An investigation of the importance of factors
related to the usability and ease of installa-
tion. This was intended to clarify the features
required to represent tool usability.

7. A comparison of our results with other related
SE studies. This was intended to highlight
similarities and differences between the SE
domain and health care and social services
domains, particularly in the context of par-
ticipant experience.

5. Results of the cross-domain study

The details of the participants’ roles, research
domains and SR experience are given in Table 1.
The participants covered a range of disciplines,
including nursing, psychology and education in
the domains of health care and social sciences,
and a variety of roles, including research asso-
ciate?, lecturer, senior lecturer®, information of-
ficer /specialist and professor. The term informa-
tion officer/specialist is used to identify some-
one whose main role is to provide support for
the search process of systematic reviews. This
job title confirms the importance of systematic
reviews in the health care and social sciences
domains.

The group of 13 participants in this study
had experience of different types of a system-

2Usually a post-doctoral researcher working on a funded project and employed on a fixed-term contract.
3An academic position in the UK corresponding to an Associate or Assistant Professor in the USA.

Tool Features to Support Systematic Reviews in Software Engineering — A Cross Domain Study 85

Table 1. Cross domain study participant information

ID Role Domain No. of SRs Type of SR

P01 Research Associate Health care (Primary Care) 6-10 (Medium) Both

P02 Research Associate Health care 1-5 (Low) Quantitative

P03 PhD Student Health care (Physiotherapy) 1-5 (Low) Qualitative

P04 Senior Lecturer Health care (Health Psychology) 1-5 (Low) Qualitative

P05 Information Officer Health care 11-15 (Medium) Quantitative

P06 Lecturer Health care (Nursing) 1-5 (Low) Quantitative

P07 Lecturer Social Science (Educational Psychol- 1-5 (Low) Quantitative
ogy)

P08 Information Officer Social Science > 15 (High) Both

P09 Professor Social Science > 15 (High) Both

P10 Systematic Reviewer Social Science (Public Health) 6-10 (Medium) Both

P11 Research Associate Social Science (Education Technology) 1-5 (Low) Both

P12 Professor Social Science (Education & Child Psy- > 15 (High) Qualitative
chology)

P13 Information Specialist Health care > 15 (High) Both

atic review, different levels of experience, and

different domains of interest. Specifically:

— In the health care domain, there were seven
participants; two concentrated on qualitative
reviews, three on quantitative reviews, and
two conducted both types of review. Four of
the participants were relative novices who
had conducted 1-5 reviews, but of the re-
maining three, one had performed 6-10 re-
views, one 11-15 reviews and one > 15 re-
views.

— In the social science domain, there were six
participants; one concentrated on qualitative
reviews, one on quantitative reviews and four
conducted both types of reviews. Two of the
participants were relative novices (1-5 re-
views), one had conducted 6-10 reviews and
three had conducted > 15 reviews.

Thus, there was a good coverage of the factors
expected to influence the participants’ responses
in these semi-structured interviews: domain, ex-
perience and type of review.

5.1. Issues faced by researchers
in other domains

An important issue when evaluating the partici-
pants’ answers was to determine whether their
experiences were relevant to software engineer-
ing researchers. In order to investigate this issue
the participants were asked about the main chal-

lenges and specific problems they had faced when
conducting systematic reviews.

Table 2 summarizes the challenges and issues
mentioned by the participants. In columns three
and four, it was identifies whether these issues
had been raised in the SE literature. Column 3
refers to issues that are general problems and
identifies whether they are raised in [9] or in [14].
Column 4 refers to process factors discussed in
the recent SE related text book which [17] in-
cludes an update of guidelines for systematic
reviews in software engineering. Column 5 iden-
tifies the participants who made a comment and
Column 6 specifies their experience.

Table 2 identifies three high level concerns
(i.e. those unrelated to specific SR activities)
that were mentioned 11 times by six different
participants. It is interesting that none of those
participants had the highest level of experience.
Possibly after doing many SRs, researchers over-
come their initial perception of the difficulty of
SRs, or, in the case of perceiving SRs to be Time
Consuming, become inured to the issue.

In the case of the challenges related to spe-
cific SR processes, Management issues produced
the most comments, both in terms of unique
issues raised (of which there were seven), and
in terms of the total number of comments (of
which there were 13) which were made by eight
different participants. It is interesting that the
SE literature on SR challenges summarized by

86

Chris Marshall, Barbara Kitchenham, Pearl Brereton

Table 2. Challenges and specific issues reported in interviews

Main Challenges Interview Specific Issues Discussed in [9] Discussed in Id Experience
or [14] [17]

Search Process Search String translation Yes No POl M
Inconsistency with termi- Yes No P01, P06, P09, M, L, H,L M
nology P10
Time consuming Yes No P03 L
Developing the search No Yes P04, P08, P10, L, H, M, H
strategy P13

Time consuming General Yes No P02, P03, P04, L, L, L, M, L, L

P05, P07, P11

No Standardiza- General Yes No P02 L

tion

High Difficulty General Yes No P02, P03, P07, L, L, L, LL

P11

Management Managing large-scale SRs No Yes P04, P05, P09 L, M, H
Transparency No Yes (reporting) P05 M
Handling duplicates Yes Yes P06, PO7 L, L
Collaboration Yes Yes Po6, PO7, P12, L, L, H, H

P13
Negotiating with policy No No P10 L
makers
Relationships between No Yes P12 H
studies & papers
Version control No No P12 H

Analysis Qualitative Analysis Yes Yes P05 H
Meta-analysis No Yes P06, P10 L, M

Study selection Resolving disagreements Yes Yes P06 L

& screening
Managing the criteria ~ Yes Yes P12 H
Criteria consistency Yes Yes P12, P13, H, H
across multiple coders
General Yes Yes P05, P08 M, H

Quality Resolving disagreements No Yes P06 L

assessment &

critical appraisal
Managing the criteria Yes Yes P12 H
Criteria consistency over Yes Yes P12, P13 H, H
multiple coders
Assessing quality of Yes Yes P12 H
study not the paper
General Yes Yes P11 L

Protocol Devel- Developing research Yes Yes P08, P10 H, M

opment questions
General Yes Yes P10 M

Producing Formatting references No No P13 H

Report
General No Yes P10 M

Validation Knowing when to check No Yes P12 H

for consistency

Tool Features to Support Systematic Reviews in Software Engineering — A Cross Domain Study 87

Kitchenham and Brereton [9] did not concen-
trate on these issues, although they feature more
extensively in Hassler et al. [31] and in the latest
SR guidelines [17]. This might reflect the greater
maturity in the health care and social sciences
domains and allows to identify an area which will
become more important for SE researchers in the
future. Other activities that attracted numerous
comments are:

— The search process, with a total of 10 com-
ments about four different issues which were
made by eight different participants of all
experience levels.

— The study selection and screening process,
with a total of six comments consisting of
four different issues made by five different
participants but including only one comment
from a participant with low experience levels.

— The quality assessment and critical appraisal
process, with a total of six comments about
five different issues made by four participants
including two low experience and two high
experience participants.

These issues were discussed in the SE literature

and the number of high experience participants

that mentioned these issues suggests that they re-
main a challenge irrespective of experience levels.
Three challenges that had no overlap with

SE challenges or guidelines are:

1. Negotiating with policy makers. Re-
searchers in other domains are often com-
missioned to do systematic reviews and may,
therefore, need to negotiate with the policy
makers who commissioned the study. In SE,
there are no policy makers who commission
systematic reviews, so currently this is not
an issue.

2. Version control. Systematic reviews in SE
are usually considered one-off pieces of re-
search, so are not generally concerned about
version control. Researchers in other domains
produce reports for policy makers and may
need to update those reports periodically, so
version control is more important.

3. Formatting references in the final re-
port. Although not mentioned as a specific
issue in SE papers, it is certainly the case that
outputs from different digital libraries are not

usually equivalent and can be difficult to inte-
grate, unless converted into an intermediate
format compatible with reference manager
systems such as EndNote or BibTeX.
These challenges were each mentioned only once.
Overall the results in Table 2 suggest that
researchers in other domains face many of the
same issues as software engineering researchers.
It can be concluded, therefore, that their expe-
riences of tool support for SRs are relevant to
those of researchers in software engineering. Fur-
thermore, these results suggest that challenges
remain even for highly experienced researchers
and, in particular, management issues should
be expected to become more important as SE
researchers become more experienced. This is
likely to happen because as researchers become
more experienced with the SR methodology, they
will be tempted to take part in more complex
and larger scale SRs.

5.2. Tools used in other domains

Table 3 shows the tools that participants re-
ported using to assist their SRs. All but three of
the participants (i.e. P10, P11 and P12) reported
using reference managers, with RefWorks and
EndNote being the most frequently used ones.
Six participants used tools that assist analysis
including Microsoft Excel, statistical software,
meta-analysis tools, and textual analysis tools.
Seven participants used SR lifecycle tools: four
used RevMan and three used EPPI-reviewer.
Table 4 reports the positive comments partic-
ipants made about the tools, other than SRLC
tools, they used. Both RefWorks and EndNote
attracted a large number of positive comments,
seven and nine, respectively. However, the com-
ments were generated by three of the four Ref-
Works users but only two of the five EndNote users.
On the negative side, as shown in Table 5, Re-
fWorks was criticised for its lack of a bulk export
feature (“you cannot export all your searches
in one go.”) and poor usability (“I don’t think
it’s easy to use at all. There are a lot of things
compacted onto one screen.”). The criticism of
EndNote was about whether it could effectively
handle large numbers of papers/studies (“people

88

Chris Marshall, Barbara Kitchenham, Pearl Brereton

Table 3. Use of SR lifecycle tools and other tools

1D SR lifecyle tool Other tools

RefMan, STATA, Microsoft Word
EndNote, NVivo, Microsoft Word

RefWorks, Federated Search Tool
Microsoft Excel,

Mplus, NVivo, Custom

Web-based coding tool, MetaFasy, MetaLight, SPSS

EndNote, ProCite, Microsoft Word

Microsoft Excel, NVivo, Altal.ti, Mendeley

P01 RevMan RefWorks

P02 RevMan

P03 None RefWorks

P04 None

P05 RevMan RefWorks, Endnote
P06 None

P07 RevMan Mendeley,

P08 EPPI-reviewer = EndNote, RIS conversion tool
P09 EPPI-reviewer

P10 EPPI-reviewer None

P11 None None

P12 None

P13 None

EndNote, Mendeley, PubReMiner, RefMan

are concerned that it doesn’t have the capacity
to deal with the huge numbers of references.”).

Table 6 reports the positive comments about
the SRLC tools. The version of EPPI-reviewer
current when the interviews took place was
EPPI-reviewer 4. It was a comprehensive single
or multi-user web-based system for managing
systematic reviews across health care and social
science domains. During the interviews, the par-
ticipants were very positive about the variety
of ways in which the tool can support the sys-
tematic review process (see Table 6). For exam-
ple, EPPI-reviewer’s support for study selection
uses text mining to prioritise the most relevant
studies, so those are viewed first. It allows the
review team to start the full data extraction
of the studies before finishing the screening. Its
support for thematic analysis uses visualisation
techniques to depict the relationships between
concepts.

On the negative side, as shown in Table 7,
the participants felt EPPI-Reviewer had a steep
learning curve (“It’s not something you can just
pick up and use instantly.”) and that it “takes
a while to learn all of the different things.” In
addition, two participants felt that training could
be improved.

RevMan primarily supports the preparation
and maintenance of Cochrane Reviews, although,
it can be used to support other reviews. As can be
seen in Table 6, the participants appreciated its
good support for statistical analysis techniques,

in particular meta-analysis and its support for
protocol development.

However, on the negative side some users
felt restricted by the tool at times, since some
of its features were not accessible unless it
was a Cochrane Review (“if your review is not
Cochrane commissioned then you can’t use that
feature of RevMan.”) (see Table 7). Other users
also felt confused by the tool and felt it was all
a bit too complicated.

Both tools exhibit features of particular rel-
evance to the domain they were developed for,
i.e. EPPI-reviewer was developed by social sci-
entists and, therefore, provides good support for
qualitative analysis. In contrast, RevMan was
developed by the Cochrane group primarily to
support reviews of randomised controlled trials
(RCTs), which are formal medical experiments
where experimental subjects are real patients
suffering from a specific illness. The reason why
RevMan is able to provide support for protocol
development is that primary studies should all
follow a similar RCT process. Similarly, most
RCTs are capable of being synthesized quanti-
tatively, which explains the support for formal
meta-analysis.

These results, together with those reported
in Table 3, suggest that the users of RevMan
may also need to use Reference Manager tools
and advanced analysis tools. Although two of the
users of EPPI-reviewer reported using other tools,
neither reported to need other advanced analysis

Tool Features to Support Systematic Reviews in Software Engineering — A Cross Domain Study 89

Table 4. Participants comments on tools — positives

Tool Comment Participant
RefWorks Okay (Better than doing them by hand) Po1
Helped manage the search process P03
Removes duplicates P03, P06
Useful for managing study selection P03, P06
Useful for traceability P03
Helped share the work load between multiple reviewers P03
Useful for handling large numbers of studies P03
Able to classify studies using folder P06
EndNote and Helps manage the search process Po4, P05
EndNote Web Links with several databases P04
Web-based allowing remote access P04
No financial payment required (for EndNote Web) P04
Can be used, unconventionally, to support study selection PO4
Easier to use than RefWorks P05
Handles duplicates effectively P05
Creates individual databases for each SR project P05
Help with search strategy P05
RefMan It was OK P02
Mendeley Supports collaboration PO7
Good support for version control P12
No financial payment required P13
Federated search tool Searches multiple sources P06
Useful for piloting search P06
PubReMiner Useful for developing protocol P13
Helps identify key journals P13
Custom web-based tool Supports multiple users (collaboration) Por
Exports data into other formats PO7
Supports role management PO7
STATA Good usability P02
Easier to use than RevMan P02
NVivo Helps find themes & trends across papers P04
MetaEasy Calculates effect sizes for individual studies Po7
Microsoft Excel Clear presentation of data Po7
Microsoft Word Supports protocol development P02, P04, P09

tools. Furthermore, one user of EPPI-reviewer of the social sciences domain to be readily usable
did not report using any other tool. Thus, it by software engineering researchers.
seems that EPPI-reviewer offers more complete

support for the systematic review lifecycle than ¢ g Importance of different features for

RevMan. SRLC tools
Of the two SRLC tools, EPPI-reviewer is

likely to be the most promising one for adoption Finally, the participants were presented with
by software engineers. However, it is possible a list of the features which had included in the
that it is too much oriented to the requirements evaluation framework for SRLC tools. The par-

90 Chris Marshall, Barbara Kitchenham, Pearl Brereton

Table 5. Participants comments on tools — negatives

Tool Comment Participant
RefWorks Problems with importing search results P01
Managing paper-study relationships is confusing POl
Not an ideal tool P03
Difficult for new users P03, P06
Poor usability, user interface P03, P06
Lost work P03, P06
Difficult to set up P03
One database for all reviews — so messy P05
Handles duplicates poorly P05
Less useful as number of papers increases P05
Poor export facility P05
Problems formatting references P06
Frequent major updates to user interface P06
Problems with search engine and database compatibility P06
EndNote and Not compatible with all databases P04
EndNote Web Extraction can be a bit clunky P04
Less useful as number of references increases P05, P13
Poor export facility P05
Trust issues (Web version is online and free) P13
RefMan Unnecessary for small numbers of papers P02
Problems formatting references P13
Problems with maintenance and support P13
Not very effective P13
Poor support for collaboration P13
Mendeley No version control PO7
Copyright concerns P13
Federated search tool Searches multiple sources P06
MetaEasy Poor tool integration PO7
MetalLight Difficult to use Po7
Microsoft Excel Not that useful Po7
No support for version control P12
Problems with interface P12
Doesn’t support complex SR tasks P12
Too generic P12

ticipants were asked to rate the features on a five 5. Not needed — meaning the feature is unnec-

point ordinal scale: essary and there is a danger that the feature
1. Mandatory — meaning that the feature was would increase the complexity of the tool
essential in any tool aiming to support the without adding any useful facilities.
SR lifecycle. The participants were also asked to identify any
2. Highly desirable — meaning that although important features which had been overlooked.
not mandatory, such a feature is extremely The counts of the importance ratings of the
important in a SRLC tool. features given by the 13 participants are pre-
3. Desirable — meaning that the feature would sented in Table 8, where the bold number is the
be useful for most researchers. modal response rating for the feature.
4. Nice-to-have — meaning the feature might be The points raised by the participants during

useful, but its omission would not seriously the discussion of the features are summarized
affect the tool’s value to its users.

Tool Features to Support Systematic Reviews in Software Engineering — A Cross Domain Study 91

Table 6. Participants comments on SR lifecycle tools — positives

Tool Comment Participant

RevMan Good support for statistics & meta-analysis P01, P05
Support for protocol development P01
Nice chart generation P05

EPPI-reviewer Supports the whole process P0o8
Good support for study selection P08, P09
Supports qualitative analysis (thematic analysis) P09
Helps manage the search process P08, P09
Generates tables and charts to be used in the report P08
Flexible coding system P09
Allows data extraction in tandem with study selection P09
Exports data into other formats P09
Supports basic meta-analysis P09
Supports role management P09
Customisable interfaces P09
Supports re-use of data from past SRs P09
Good support for “tedious” bits of SR process P10
Good support for document management P10
Supports inter-rater reliability P10
Easy to use P10

below. The features relating to the same overall
concern are grouped together.

5.3.1. Support for SR tasks

SRLC tool features related to the tasks needed to
be performed in a systematic review are labelled
SRT1 to SRT11 in Table 8.

Protocol management

Table 9 identifies the main issues participants
raised when discussing protocol development
and validation. The column labelled Participants
identifies the number of participants who made
comments related to each of them and the column
labelled Experience identifies the experience level
of the participants. This table includes the issue
referred to a Viability which was only mentioned
by one person in the context of protocol develop-
ment and validation. It was included here because
it referred to the concern that the feature might
not be capable of implementation, which was
mentioned by many other participants during
discussions of other SR support tools.

With respect to support for developing the
review protocol, participants’ views differed (see
Table 8 row SRT1). Four participants thought

it would be used particularly for version control,
while two felt it would be useful for complex
projects (i.e. large teams). Three participants,
however, were unsure of its usefulness since they
simply used Microsoft Word to track changes. An-
other participant pointed out that the Cochrane
Handbook assisted with protocol development.

Participants’ views also differed with respect
to the value of tool support for protocol validation
(see Table 8 row SRT2). The two modal responses
were Desirable (five participants) and Not needed
(five participants). Two participants thought it
would help avoid missing anything. However, two
other participants felt that introducing automa-
tion might be over-complicating the process. In
addition, two participants mentioned problems
with existing approaches to protocol validation
that enforced protocol standards in the context
of registering Cochrane reviews and submitting
proposals to professional bodies.

Search and study selection

Table 10 displays the main themes related to
Search and Study selection. Although none of the
participants felt that automated support for the
search process was Not needed (see Table 8 row
SRT3), the opinions about its importance were

92 Chris Marshall, Barbara Kitchenham, Pearl Brereton

Table 7. Participants comments on SR lifecycle tools — negatives

Tool Comment Participant
RevMan Most features locked out if not doing a Cochrane review PO1,
Not flexible enough P02, PO7
Doesn’t support many important aspects of SRs P05
Limited support for reporting phase P05
Confusing Po7
Over restrictive conceptual model P07
Expensive PO7
Limited support for developing the protocol Po7
Not nicely integrated Po7
EPPI-reviewer Problems importing search results P0o8
No support for searching P08
Difficult to learn P09
Limited training support for novices P09, P10
No support for protocol development P09
No support for network meta-analysis P09
Limited information about updates P10
Table 8. Importance of features
1D Feature Mandatory Highly Desirable Nice Not Our as-
desirable needed sessment
SRT1 Protocol 2 4 2 3 2 Desirable
development
SRT2 Protocol validation 1 1 5 1 5 Desirable
SRT3 Search process 3 4 3 3 0 Highly des.
SRT4 Study selection 5 6 2 0 0 Highly des.
SRT5 Quality assessment 5 7 1 0 0 Highly des.
SRT6 Data extraction 7 5 1 0 0 Highly des.
SRT7 Data synthesis 5 7 1 0 0 Highly des.
SRT8 Text analysis 0 3 2 5 3 Nice
SRT9 Meta-analysis 4 5 2 2 0 Nice
SRT10 Reporting 0 2 7 4 0 Nice
SRT11 Report validation 0 3 3 3 4 Nice
SRM1 Multiple users 9 2 2 0 0 Mandatory
SRM2 Document 6 4 2 1 0 Mandatory
management
SRM3 Security 6 2 1 3 1 Desirable
SRM4 Role management 3 3 2 4 1 Highly des.
SRM5 Reuse of past data 3 7 3 0 0 N/A
IS1 Ease of setup 6 5 1 1 0 Highly des.
IS2 Installation guide 4 5 1 3 0 Highly des.
1S3 Tutorial 4 4 3 2 0 Highly des.
IS4 Self-contained 0 6 6 0 1 Highly des.
E1l Free 0 5 3 1 4 Highly des.
E2 Maintained 6 7 0 0 0 Highly des.

Tool Features to Support Systematic Reviews in Software Engineering — A Cross Domain Study 93

Table 9. Comments about protocol development & validation

1D Feature Theme Participants Experience

SRT1 Protocol development Helps track changes 2 L(1), H(1)
Helps version control 4 L(1), M(1), H(2)
Existing tools 4 L(3), H(1)
Viability 1 L(1)
For complex projects 2 H(2)

SRT2 Protocol validation Bad experiences 2 L(1), H(1)
Over-complicating things 2 L(1), H(1)
Useful checklist 2 L(1), H(1)

Table 10. Comments about search & selection

1D Feature Theme

Participants Experience

SRT3 Search process Time saving

Viability

Help search strategy

3 L(2), H(1)

L(2), M(1), H(2)

SRT4 Study selection Time saving

Managing disagreements
Additional checking

)
M(1), H(1)
L(1), M(1)

L(2), H(1)
H(2)

L(1)

N W W | N Ot

divided among all the other importance levels.
Three participants commented that such support
would save them a lot of time. However, five
participants were concerned that it would be dif-
ficult to develop trustworthy automated support
(e.g. “It would be highly difficult to automate all
that.”). Two also mentioned the need for support
to help develop the search strategy (e.g. “The bit
where our time is most valuable is developing the
search strategy in the first place.”).

All participants felt that tool support for study
selection was useful (see Table 8 row SRT4), with
five participants regarding it as Mandatory and six
as Highly desirable. Three participants mentioned
the potential for saving time. Three thought the
facility would be useful for resolving disagreements
and two mentioned the opportunity to check that
things had not been missed. However, one par-
ticipant felt that a lot of what the feature was
targeting could be solved with a “quick conversa-
tion” between the members of the review team.

Quality assessment
and data extraction

Table 11 shows the main themes related to Qual-
ity Assessment and Data Extraction. Concerning

tool support for quality assessment (see Table 8

row SRT5), the majority of participants felt this

would be another useful feature since “all these

things otherwise require meetings and organisa-

tion”. Participants also suggested specific features

they would like to see:

— The ability to tailor quality criteria.

— The ability to link the quality assessment to
data analysis.

— The ability to compare independent assess-
ments and look for disagreements.

With regards to tool support for data extrac-
tion (see Table 8 row SRT6), all participants felt
that tool support would be useful, with seven par-
ticipants regarding it as Mandatory and five as
Highly desirable. In the context of an end-to-end
tool, one participant said it would make extracted
data ready to go “straight into the analysis”. Four
participants, however, were not sure how such
a tool could work particularly when handling
qualitative data.

Data analysis and synthesis
Table 12 shows the main themes related to

Data Analysis and Synthesis. Concerning au-
tomated support for data synthesis (see Ta-

94

Chris Marshall, Barbara Kitchenham, Pearl Brereton

Table 11. Comments about quality assessment & data extraction

1D Feature Theme Participants Experience

SRT5 Quality assessment Viability 2 L(1), H(1)
Managing disagreements 1 H(1)

SRT6 Data extraction Viability 4 L(3), M(1)

Table 12. Comments about data analysis & synthesis

1D Feature Theme Participants Experience
SRT7 Data synthesis Viability 2 L(1), H(1)
Time saving 3 L(2), H(1)
SRT8 Text analysis Viability 2 L(2)
Time saving 1 M(1)
Managing consistency 1 H(1)
SRT9 Meta-analysis Not always necessary 4 L(2), M(1), H(1)

ble 8 row SRT7), all participants felt this
would be useful, with five suggesting such
a feature should be Mandatory and seven sug-
gesting it was Highly desirable. Three partic-
ipants mentioned potential time saving. One
participant felt that “less experienced review-
ers would find [this feature] particularly use-
ful”. However, two participants mentioned fac-
tors that might make such a feature difficult to
implement (i.e. many different types of analysis
and new analysis methods being ahead of tool
support).

Overall support for a text analysis feature was
muted (see Table 8 row SRTS); the modal value
was Nice-to-have (five participants). Two partici-
pants mentioned difficulties implementing such
a tool (i.e. missing things and false positives).
However, one participant felt that text analysis
would become “increasingly more important as
the complexity of the literature increases”, while
another mentioned that the technology was now
getting to the stage where such a feature was
viable. In terms of possible benefits, one partic-
ipant thought that it would save time, another
that it could be used to check the consistency of
reviewers extractions.

The participants felt that tool support for
meta-analysis (see Table 8 row SRT9) was either
Mandatory (four participants) or Highly desir-
able (five), although four participants noted that
not all SRs require meta-analysis. One partici-

pant thought it would be useful for novices as,
“for a lot of people undertaking a SR for the first
time, meta-analysis is their biggest fear”.

Report writing and validation

Table 13 shows the main themes related to re-
port writing and report validation. With a modal
value of Desirable, most participants felt that
tool support for writing the report was not very
important (see Table 8 row SRT10). Three posi-
tive comments were that it would give reviewers
a starting point. In contrast to this, four par-
ticipants noted that there are many different
formats required by journals, meaning that full
support might be unrealistic. Two participants
also mention other existing tools (i.e. RevMan
for Cochrane reviews and Google Documents).

With regards to tool support for report vali-
dation (see Table 8 row SRT11), the modal value
was Not needed and the other responses were
spread across all the other levels excluding the
Mandatory level. Two participants mentioned
that there were other existing tools (i.e. Word
with track changes and PRISMA).

5.3.2. SR process management
SRLC tool features related to the management

of the SR process are labelled SRM1 to SRM5
in Table 8.

Tool Features to Support Systematic Reviews in Software Engineering — A Cross Domain Study 95

Table 13. Comments about report writing & validation

1D Feature Theme Participants Experience
SRT10 Report writing Time saving 1 H(1)
Viability 4 L(3), H(1)
Starting point 3 L(2), H(1)
Existing tools 2 L(1), H(1)
SRT11 Report validation Existing tools 2 L(1), M(1)
Table 14. Comments about SR process management
1D Feature Theme Participants Experience
SRM1 Multiple users Multiple-user process 5 L(1), M(2), H(3)
For complex projects 3 L(2), H1
SRM2 Document management Document integration 3 M(2), H(1)
SRM3 Security Already done 2 L(2)
Proprietary data 5 L(1), M(1), H(3)
SRM4 Role management Over-complicating things 1 L(1)
For complex projects 3 L(2), H(1)
For overseeing 2 M(1), L(1)
SRM5 Re-use For updates 2 L(1), H(1)
Use previous work 3 L(1), M(1), H(1)

Table 14 shows the major themes concerning
SR process management. The majority of partici-
pants felt support for multiple users within a tool
was really important with nine participants con-
sidering it Mandatory (see Table 8 row SRM1).
Five participants noted that people do not write
systematic reviews on their own, so such a facility
is mandatory. Three participants mentioned it
was appropriate for complex projects: one partic-
ipant thought “It should do for large projects”,
another “If I was working with people interna-
tionally”, and another mentioned the SRs are
generally “team collaboration type projects”.

Most participants felt that tool support for
document management would be a useful feature
(see Table 8row SRM2), with six participants re-
garding it as Mandatory and four as Highly desir-
able. In particular, three participants mentioned
the importance of being able to manage links
between primary studies and one mentioned “Go-
ing from a reference manager to a study-based
system”.

Most participants felt the feature which sup-
ports security, should be included in a tool (see
Table 8 row SRM3). Six participants regarded it

as Mandatory and two as Highly desirable. Five
participants (including one novice) mentioned
security was needed to address problems asso-
ciated with confidential information and intel-
lectual property rights. Two novice participants
argued, however, that since SRs deal with pub-
lished studies, security wouldn’t be necessary. It
is possible that systematic reviewers with more
experience are more likely to have come across
reviews where confidentiality was important.
The participants were divided as to the impor-
tance of tool support for role management (see
Table 8 row SRM4). Although three participants
regarded role management as Mandatory, the
modal value for this feature was Nice-to-have
which was the assessment made by four partici-
pants. Three participants felt it was important
for complex projects (large teams). Two other
participants thought that it would help to get an
overview of the whole team, one of them pointing
out that it was particularly important for the first
author. Another participant, pointed out that “it
does not necessarily mean that you don’t trust
people to do a good job, it would just cut down
the chances of a mistake”. One novice researcher

96

Chris Marshall, Barbara Kitchenham, Pearl Brereton

Table 15. Comments about ease of use

ID Feature Theme Participants Experience

IS1 Ease of setup Depends on tool 2 H(1), H(1)
Poor installation frustrates 2 M(1), H(1)
Job for IT staff 2 M(1), H(1)

IS2 Installation guide Job for IT staff 1 L(1)

IS3 Tutorial None n/a n/a

IS4 Self-contained Depends on tool 3 L(1), H(2)

mentioned that it might over-complicate the pro-

cess.

It is possible that systematic reviewers with-
out software engineering experience would not
appreciate it that in order to produce a software
tool that supports independent quality assess-
ment and data extraction of documents by two
or more researchers, it identifies disagreements
among their extractions and facilitates the pro-
duction of a final mediated extraction, a certain
kind of role management is essential.

All participants felt that tool support for
re-using data from past SRs would be useful (see
Table 8 row SRM5). Two participants mentioned
it was important for updating existing reviews.
Other participants mentioned possible uses of
such a feature:

— When using primary studies that were used in
a previous SR, the quality assessment could
be reused.

— The references for primary studies used in
previous SRs would be available.

— Using the search terms, you could automati-
cally identify papers that were used in previ-
ous SRs.

5.3.3. Ease of use

Features related to the setup of a SRLC tool are
labelled IS1 to IS4 in Table 8.

Most participants were in favour of tools that
were easy to setup (see Table 8 row IS1), and
included an installation guide (see Table 8 row
IS2) and a tutorial (see Table 8 row IS3). They
also felt having a self-contained tool* was either
Highly desirable (six participants) or Desirable
(six participants) (see Table 8 row IS4).

Table 15 identifies the main discussion themes
for ease of use features, identifying issues that
were mentioned more than once. With respect
to a simple setup accompanied by an installa-
tion guide, three participants mention IT staff
were available to handle installation issues. Two
participants felt that without a simple installa-
tion process, users would become frustrated with
a tool. Two participants, however, felt that “if
the tool is good enough”, then, “some people are
prepared to give [the difficult setup] a go”. These
features are discussed further in Section 5.6.

With respect to whether SR lifecycle tool
should be self-contained, three of the partici-
pants, felt it was not a really important issue,
since they would be quite satisfied to install other
packages if the tool “does stuff that nothing else
can do”.

5.3.4. Economic features

Economic features are labelled E1 and E2 in Ta-
ble 8. With regards to the cost of a tool, opinions
differed (see Table 8 row E1). At the extremes,
five participants thought free tools were Highly
desirable whereas four participants thought free
tools were not necessary.

Table 16 identifies the main discussion themes
for economic features. The discussion of the cost
of tools centred around the concern that it was
not possible to get good quality, trustworthy
tools that provided all required features without
payment. Nine participants mentioned that they
did not expect good tools to be free.

Three participants mentioned different li-
censes for different users would be a good idea, al-
lowing free systems for students or for private use.

41.e. a tool able to function, primarily, as a stand-alone application.

Tool Features to Support Systematic Reviews in Software Engineering — A Cross Domain Study 97

Table 16. Comments about economic features

ID Feature Theme Participants Experience

E1l Free Good tools aren’t free 9 L(4), M(1), H(4)
Different licences for differ- 3 L(1), M(1), H(1)
ent users

E2 Maintained Methods evolve 4 L(2), M(1), H(1)
Need defect management 2 L(1), H(1)

All participants felt post development main-
tenance of a tool (see Table 8 row E2) was ei-
ther Mandatory (six participants) or Highly de-
sirable (seven participants). The discussion of
this feature concerned the need for maintenance,
with four participants pointing out that meth-
ods evolve and two mentioning that such large,
complex systems would probably include defects
that would need to be corrected.

Overall trends

Several themes were identified against more than

two features:

— Viability (i.e. the concern that the feature
would be difficult to automate) was identified
against seven different features.

— Time saving (i.e. the potential for a feature
to substantially decrease the SR workload)
was identified against five features.

— Use other tools (i.e. the availability of other
tools to implement the feature requirements)
was identified against three features. The spe-
cific features were Protocol Development, Re-
porting and Report Validation.

— For complex projects (i.e. the feature was
considered appropriate for projects with large
or distributed teams) was identified against
three features. The specific features were Pro-
tocol Development, Multiple Users and Role
Management.

Table 17 shows the number of times partici-
pants mention the issues of Viability and time
saving for each SR process tool feature®. This
table suggests that participants were most con-
cerned about the viability of support for the
search process, data extraction and reporting. In
addition, participants identified time saving as

likely for search automation, selection and data
synthesis processes more often than for other
processes.

Table 18 shows the distribution of comments
concerning Viability and Time saving against
individual participants. It shows the number of
times each participant made a comment about
each issue. The table shows that concerns about
viability of tool support are spread across all
but one of the participants. On the other hand,
although only one participant with a high level
of experience mentioned time saving four times,
four out of six participants who mentioned time
saving had low levels of experience suggesting
the time taken to complete an SR is of more
importance to relative novices. This is consistent
with the results shown in Table 2, where five
out of six participants who mentioned that SRs
were generally time consuming had low levels of
experience.

5.3.5. Comparison of importance ratings

Table 8 presents the assessment of the impor-
tance of the features to SE researchers. No
assessment for the importance of reusing re-
sults from previous SRs was provided, because
the reuse of past project data is seldom per-
formed in SE systematic reviews, so there was
possibility of rating the importance of this
feature.

A comparison of the assessment results and
the study participants’ assessments shows that
for every feature, the majority of participants
agreed that it was important. Thus, the set of all
features that should be included in a SRLC tool
is quite robust to differences between domains.
As it was expected, there were differences in the

5Time saving and Viability were not mentioned against any other feature groups.

98

Chris Marshall, Barbara Kitchenham, Pearl Brereton

Table 17. Distribution of general comments
against features

Table 18. Distribution of general comments
against participants

Feature Viability Time saving Participant Experience Viability Time saving
Protocol development 1 0 PO1 M 1 1
Protocol validation 0 0 P02 L 1 0
Search process 5 3 P03 L 5 1
Study selection 0 3 P04 L 1 2
Quality assessment 2 0 P05 M 1 0
Data extraction 4 0 P06 L 3 1
Data synthesis 2 3 Po7 L 2 1
Text analysis 2 1 P08 H 0 0
Meta-analysis 0 0 P09 H 2 0
Reporting 4 1 P10 L 2 0
Report validation 0 0 P11 L 2 0
P12 H 1 0
P13 H 1 4

evaluation of the importance of features among

individual participants and among domains. How-

ever, there were also similarities.

For ten features, the modal response of par-
ticipants to the importance of the feature was
exactly the same as this assessment. In the case
of three other features, there were two modal
values for feature importance, and in both cases
one of the modal values was the same as ours.
In only three of the remaining features, did the
modal value of the participants scores differ by
more than one level from ours. The three features
with substantial disagreement were:

1. Security, regarded as Desirable by the au-
thors, had a modal value of Mandatory
among the interview participants.

2. Meta-analysis, which we regarded as
Nice-to-have, but which nine of the 13 in-
terview participants rated as Mandatory or
Highly desirable.

3. Role management, which was regarded as
Highly desirable, while the modal response of
the participants was Nice-to-have. However,
it should also be noted that six of the par-
ticipants rated this feature as Mandatory or
Highly desirable.

These results confirm that the importance
of various features is context dependent. For
example, meta-analysis is rarely undertaken in
SE research but is a normal part of health care
research, so it is much less important to SE re-
searchers than health care researchers. Nonethe-

less, although there are differences, it appears
that the importance of features is surprisingly
similar across the different domains. It should
also be noted that none of the participants sug-
gested any additional features which confirms
that the SR methodology is not radically differ-
ent in different domains.

5.4. The effect of experience on
perceptions of feature importance

There has been considerable discussion in SE
about the problems facing novice reviewers (see,
for example, [12] and [11]). Furthermore, this is-
sue was directly investigated by Hassler et al. [31].
Therefore the main interest was the investigation
whether relative novices had different perceptions
of the importance of tool features compared with
more experienced reviewers.

Table 19 addresses exactly this issue. The
column labelled Total % Score is the percentage
of the maximum importance score obtained for
a specific feature across all participants. The
score was obtained by mapping the ordinal scale
points for importance to numbers (i.e. Manda-
tory = 4, Highly desirable = 3, Desirable = 2,
Nice to have = 1 and Not needed = 0). The total
percentage importance score for a feature was
obtained as follows:

YjImportance; ;

TotalScore; = 100 J (1)
j(4)

Tool Features to Support Systematic Reviews in Software Engineering — A Cross Domain Study 99

Table 19. Relationship between features scores and experience

ID Feature Total % Score Low exp High exp Diff

SRM1 Multiple users 88.46 79.17 96.43 17.26
SRT6 Data extraction 86.54 79.17 92.86 13.69
E2 Maintained 86.54 75.00 96.43 21.43
SRT5 Quality assessment 82.69 79.17 85.71 6.55
SRT7 Data synthesis 82.69 70.83 92.86 22.02
SRT4 Study selection 80.77 70.83 89.29 18.45
1S1 Ease of Setup 80.77 70.83 89.29 18.45
SRM2 Document management 78.75 70.83 85.71 14.88
SRM5 Reuse of past data 75.00 66.67 82.14 15.48
SRT9 Meta-analysis 71.15 58.33 82.14 23.81
IS2 Installation guide 69.12 58.33 78.57 20.24
1S3 Tutorial 69.12 58.33 78.57 20.24
SRM3 Security 67.31 50.00 82.14 32.14
SRT3 Search process 65.38 79.17 53.57 -25.60
IS4 Self-contained 57.69 54.17 60.71 6.55
SRM4 Role management 95.77 33.33 75.00 41.67
SRT1 Protocol development 51.92 50.00 53.57 3.57
SRT10 Reporting 46.15 45.83 46.43 0.60
El Free 42.31 37.50 46.43 8.93
SRT2 Protocol validation 34.62 37.50 32.14 -5.36
SRT8 Text analysis 34.62 29.17 39.29 10.12
SRT11 Report validation 34.62 37.50 32.14 -5.36

where T'otalScore; is the percentage of the maxi-
mum score for feature ¢, and the maximum score
for a feature is ¥;(4), j = 1,...,13 is the number
of participants and Importance; ; is the impor-
tance score that participant j gave to feature 1.
The table is ordered on this column.

The column labelled Low exp reports the
percentage score for the six participants who had
performed between one and five SRs and the
column labelled High exp reports the percentage
score for the seven participants who had com-
pleted more than five SRs. The column labelled
Diff is the difference between the High exp score
and the Low exp score.

Table 19 shows that, in general, participants
with high levels of experience rated tool fea-
tures higher than relative novices, since only
three of the 22 features were scored higher by
the relative novices than by the experienced
participants.

It also seems that the relative importance
of tools is quite similar for both groups, since
the Pearson correlation between the scores for
relative novices and experienced staff was 0.76.
There are three features which exhibit extremely
anomalous values:

1. Search process support was scored much lower
by experienced participants than by relative
novices.

2. Role management support was scored much
higher by experienced participants than by
relative novices.

3. Security support was also scored much higher
by experienced participants than by relative
novices but is not such an extreme anomaly.

Excluding these feature increases the correlation

between the scores to 0.95.

5.5. The effect of SR type and domain

The authors hoped to assess whether the type
of systematic review researchers performed in-
fluenced their perception of the importance of
different framework features. For example, the
authors expected researchers who primarily un-
dertook quantitative systematic reviews to em-
phasise the importance of meta-analysis tools
and researchers who primarily undertook quali-
tative systematic reviews to emphasise the im-
portance of more general data synthesis facilities
and text analysis facilities. It was also expected
that social science researchers would undertake

100

Chris Marshall, Barbara Kitchenham, Pearl Brereton

Table 20. Experience and importance scores for analysis features

Experience SR type Domain Meta-analysis sygt?jsis ar?;el;;s
Low Quant HC 3 3 2
Low Qual HC 3 2 3
Low Qual HC 1 3 0
Low Quant HC 2 3 0
Low Quant SS 4 3 1
Low Both SS 1 3 1
High Both HC 4 4 0
High Both SS 4 4 3
High Quant HC 3 4 1
High Both SS 3 4 2
High Both SS 2 4 3
High Qual SS 3 3 1
High Both HC 4 3 1

Table 21. The impact of domain and SR type on scores for analysis features

- . Data Text

Factor Type Participants Meta-analysis synthesis analysis
Domain HC 7 71.43 78.57 25.00
SS 6 71.43 71.57 35.71
SR type Both 6 75.00 91.67 41.67
Qual 3 58.33 66.67 33.33
Quant 4 75.00 81.25 25.00

qualitative systematic reviews and health care re-
searchers would undertake primarily quantitative
systematic reviews.

The expectations of the authors were not
met. Table 20 shows the systematic review type,
Domain type of participants and their impor-
tance scores for meta-analysis, data synthesis
and text analysis. Four of the social science par-
ticipants and two from health care reported per-
forming both quantitative and qualitative sys-
tematic reviews. Of the remaining five health
care researchers, three concentrated on quantita-
tive systematic reviews and two on qualitative
systematic reviews. Of the remaining two social
sciences participants, one primarily undertook
qualitative studies and the other primarily un-
dertook quantitative studies. The impact of the
domain and SR type are summarized in Table 21.
In the case of tool support for meta-analysis
and data synthesis, Table 19 shows that more
experienced participants tended to regard such
a feature to be more important than the less

experienced ones, however, Table 21 suggests
that there is no domain effect.

With respect to SR type, Table 21 suggests
that participants doing qualitative studies may
regard support for meta-analysis and data syn-
thesis as less important than other subjects. How-
ever, this result may be confounded with expe-
rience since only two of the seven subjects who
concentrated on a single study type had high lev-
els of experience whereas five of the six subjects
who did both types of study had high levels of
experience.

5.6. Revising the setup
and installation features

During the previous validation of the SRLC tool
framework [18] it was difficult to distinguish be-
tween the three features related to installing and
using the SRLC tool and therewas an idea that
would be better to integrate the three features
into a single feature. The scores given by each

Tool Features to Support Systematic Reviews in Software Engineering — A Cross Domain Study

101

Table 22. Experience and importance scores for features related to installation

and set up
Experience Ease of set up Installation guide Tutorial
Low 4 1 2
Low 3 3 2
Low 3 3 3
Low 3 3 3
Low 1 1 1
Low 3 3 3
High 4 1 1
High 4 4 4
High 4 4 4
High 4 4 4
High 2 2 2
High 3 3 3
High 4 4 4

participant to each of the three features is shown
in Table 22. Across the three features, 10 of the
13 participants gave the same score for all three
features. Those that gave different scores, scored
the Installation guide and Tutorial lower than
Ease of Set up. This result supports the view that
only one high-level feature is needed to address
the set up and installation.

However, participants’ earlier comments re-
lating to the difficulty of using EPPI-reviewer
and RevMan (see Table 7) suggest that usability
is a significant issue to users. Therefore, a fea-
ture relating to provision of a Tutorial should
be included. However, it might be preferable to
generalise the feature and use the term Fase of
Use, with a tutorial as one way of implementing
such a feature.

6. Discussion

In this section the results of this cross-domain
study is discussed from the viewpoint of the
research goals.

6.1. The relevance of experiences from
other domains

The results show that there are some differences
between SE reviews and those in health care and
social sciences. For example, health care and so-
cial science researchers may undertake systematic

reviews commissioned by clients, whereas in SE
these are normally researchers that undertake sys-
tematic reviews to further their own research goals.

There were other differences which the au-
thors believe are likely to be due to the rela-
tive immaturity of systematic reviews in soft-
ware engineering. For example, in Hassler et al’s
study [31] researchers with a high level of expe-
rience were defined as those who had performed
three or more SRs, whereas in this study the
highest experience levels of more than 15 SRs
were categorized. In addition, reports from SE
researchers summarized in [9] concentrated on
technical processes which were emphasized in the
first two versions of the SE systematic review
guidelines. In contrast comments from the par-
ticipants of this study identified issues related
to review management not only issues related
to technical processes. This is consistent with
the results of Hassler et al’s study [31] in which
he noted that researchers with higher experience
levels voted for features that aided tactical ac-
tivities, whereas novices voted mainly for tools
supporting operational tasks. As researchers in
software engineering begin to perform more com-
plicated systematic reviews, both in terms of
SRs that involve many distributed researchers,
as well as studies that involve large numbers of
candidate primary studies, possibly of different
study types, it was expected that SE researchers
would experience more problems associated with
systematic review management.

102

Chris Marshall, Barbara Kitchenham, Pearl Brereton

Another difference was that there were two
additional challenges mentioned by study partic-
ipants that were not considered in the SE litera-
ture: version control and formatting references.
Both of these issues seem important in a com-
prehensive SRLC tool, so need to be considered
in any comprehensive evaluation framework for
SRLC tools.

We also observed some differences in the rat-
ings of importance of SLRC tool features, com-
pared with our assessment of the importance of
such features to SE researchers:

— Support for meta-analysis appeared to be
more important to participants than it was
assessed to be to SE researchers in this study.
This was true even for two of the three partic-
ipants who primarily undertook qualitative
reviews. It appeared that study participants
were well aware that meta-analysis tools are
essential for some quantitative studies, even
if they did not use such tools themselves.

— Support for security was more important in
the health care and social science domains
than it is in SE. In particular, more experi-
enced participants were very concerned about
restricting access to confidential information
(only one of the five participants who men-
tioned this was a relative novice), whereas
two relative novices felt that since they were
dealing with existing published papers confi-
dentiality was not an issue. In terms of SE
researchers, it would certainly be the case
that mapping studies were unlikely to have
any confidentiality issues.

— There was a lack of strong support for textual
analysis tools. Kitchenham and Brereton [9]
reported that there were a substantial num-
ber of software engineering studies addressing
textual analysis for systematic reviews and
Marshall and Brereton [9] identified the num-
ber of tools to support textual analysis, so
more enthusiasm was expected for such a fea-
ture. However, the modal response among
the 13 participants was that such a feature
was only “Nice-to-have”. Nonetheless, par-
ticipants were enthusiastic about other fea-
tures that could be implemented using tex-
tual analysis such as study selection (modal

response “Highly desirable”) and data synthe-

sis (modal response “Highly desirable”) and

one user of EPPI-reviewer pointed out that

EPPI-reviewer used textual analysis to imple-

ment a feature that finds the most relevant

studies. It was concluded that textual analy-
sis may be necessary in order to implement

SRLC tool features, but it may not be needed

as a top level feature available directly to tool

users.

Overall, it was concluded that there are com-
mon challenges among the different domains and
the results of this study could be used to to
evaluate and refine our evaluation framework.
Furthermore, since the domains have similar chal-
lenges, it is in the interest of software engineering
researchers to remain aware of innovations in
the systematic review methodology to avoid the
risks of both missing out on new methods or
re-inventing the wheel.

6.2. Tools used to support systematic
reviews

Participants identified 14 tools that they used
while doing systematic reviews. The most com-
monly used tools were reference manager tools
in particular RefWorks and EndNote. In ad-
dition, the participants mentioned two SRLC
tools: RevMan and EPPI-reviewer. However
some of the tools were general purpose tools
such as Microsoft Word and Excel, while oth-
ers were statistical software tools or bespoke
tools. The core set of ten tools that support
systematic reviews including reference managers,
SRLC tools and meta-analysis tools, together
with tools identified in Marshall and Brereton’s
mapping study [21] and tools identified from
other sources (i.e. [28,34], and the Cochrane
Collaboration website) were incorporated into
an online tool called SRToolbox [29]. This set
of tools has been substantially updated since
this research was completed, and the most
up-to-date categorized list can be found at the
website systematicreviewtools.com. This web-
site is maintained by Marshall and has re-
placed the Cochrane Collaboration web pages
on tools.

Tool Features to Support Systematic Reviews in Software Engineering — A Cross Domain Study

103

With respect to SRLC tools, EPPI-reviewer
was believed to be relevant to the needs of SE
researchers, however, it is unclear to what extent
it is tailored specifically to the needs of social
scientists, and it is not free.

In the context of features required in SRLC
tools, a common discussion point with our par-
ticipants was whether it was even possible to
automate some of the features. Participants of
all experience levels feared that advanced tools
might be untrustworthy, in particular that they
would miss things or make classification errors
or be incomplete. Thus, SRLC tool developers
need to have a sound rationale for the algorithms
they use to implement features, before their tools
are likely to be widely accepted. Furthermore
potential tool users in SE should appreciate the
difficulty of implementing some of the features
they might desire.

Another important issue was that most par-
ticipants did not expect good quality tools to
be free. Also the participants agreed that tools
needed to be maintained because methods evolve
and complex tools usually have residual errors
that need to be corrected.

6.3. The impact of participant
experience

Generally, more experienced participants rated
features of support tools as more important than
relatively inexperienced participants. It is likely
that the more experienced participants had taken
part in some large, complex systematic reviews
and have, therefore, experienced the problems
that such reviews can cause. Certainly, there
is some evidence that more experienced partici-
pants undertook more varied SRs. Table 1 shows
that five of the six relative novices undertook only
one type of SR (either qualitative or quantitative)
whereas only two of the seven more experienced
researchers performed only one type of study.
The implication for SE researchers is that the
need for SE tools in general, and SRLC tools in
particular, should be expected to increase as SE
researchers become more experienced with the
SR process, and attempt larger and more com-
plex systematic reviews. In particular, Table 2

and Table 8 indicate the importance of tools to
support SR process management in addition to
tools supporting specific SR tasks.

Throughout this study, the participants often
mentioned that the importance of tool features
depended on the size of the team and the com-
plexity of the SR. Thus, requirements for SRLC
tools should probably be elicited from researchers
who have experienced the problems of large-scale
SRs. In addition, the evaluations of such tools
should ideally involve experienced researchers
and large-scale SRs.

Also, since novice researchers usually under-
take relatively small reviews in small teams, they
might be best served by using a variety of tools,
including Microsoft Excel and Word and a ref-
erence manager system, that they are already
familiar with. It is unlikely that novices would
benefit from extensive automation if the over-
heads, such as the required learning time needed
to use a tool effectively, are significant.

6.4. Implications for the evaluation
framework

One of the main aims of the study was to pro-
vide some independent assessment of the SRLC
tool evaluation framework [18]. Kitchenham and
Brereton had been deeply involved in the adop-
tion of systematic reviews in SE. Originally, the
promoted process was developed from the health
care domain and the main focus was on on adapt-
ing the methodology to the SE domain. After
developing the evaluation framework based on
SE practice, it was thought that it would be
extremely valuable to investigate whether there
were more insights to be obtained from other
domains.

The discussion about the features of an SRLC
tool and the relative importance of such fea-
tures confirmed that all of the features and the
majority of the importance ratings were con-
sistent with the views of the health care and
social science researchers. In particular, none of
the features was considered completely unnec-
essary and only three features had importance
ratings very different from the ratings obtained
in this study.

104

Chris Marshall, Barbara Kitchenham, Pearl Brereton

However, some changes were made in the
evaluation framework as a consequence of the
study results:

1. Analysis of the three features related to the
ease of installation and setup confirmed the
view that it was better to have only one fea-
ture labelled Fase of Setup, where installation
guides are a means by which the feature can
be implemented. In addition, since several
participants commented that RevMan and
EPPI-reviewer were difficult to use, it was
recommended to replace the Tutorial feature
by the Fase of use feature, with a tutorial
as one means of assisting tool users to use
the tool effectively. The feature set should be
renamed as Usability.

2. The discussion about the importance of tex-
tual analysis convinced us that it was not
really a self-standing feature, but represented
a means of supporting various features such
as Data synthesis and Study selection. The
evaluation framework includes additional as-
sessment criteria to assist evaluating how well
each feature is implemented. Now the textual
analysis is included as one of the additional
criteria used to assess the support for these
features.

3. Three challenges that were mentioned by par-
ticipants but had not been discussed in the SE
literature were identified. One of them was
negotiating with policy makers which does
not appear to be an issue of relevance to soft-
ware engineering researchers, and indeed, may
only be of relevance in the UK to health care
and social science researchers. The other two
issues were version control and formatting
references. Both of these issues should be of
concern to software engineering researchers.
Version control was already mentioned in
the evaluation framework as an associated
assessment criteria for the protocol develop-
ment but it should also be included in the
associated evaluation criteria for report de-
velopment. Formatting references should be
included in the additional assessment criteria
of the Search process.

4. Importance level was not assigned to the
Reuse of Past Project Data. It was decided

to adopt the rating of Highly desirable which
was the modal value of the participants’ rat-
ings. However, the users of this evaluation
framework are expected to downgrade the
importance level if they do not plan to keep
their SR results up to date.

The changes have only a limited effect on the
evaluation framework. For example, the SLuRp
tool [20] would have scored 65% with the frame-
work as it was used before this study. The tool
score is the weighted sum of the score for each
feature set: where the weight for the SR activ-
ity feature set is 4, the weight for the Process
Management feature set is 3, the weight for the
Usability feature set is 2, and the weight for the
Economic feature set is 1:

Ei:17_”74FSWiFSS¢ ()
Ei:17._.,4FSWi

ToolScore =

where FSS; is the score for feature set ¢, and
FSW; is the weight for feature set .

The score for each feature set is the sum of
the score for the extent to which each feature is
supported (taking values 0, 0.5 and 1) multiplied
by the score of the importance of each feature.
This value is converted to the percentage of the
maximum score for the feature set:

1003,y 1 FI;FS;

FSS; =
! i1, kFI;

3)

where FSS; is score for feature set ¢, FI; is the

numerical importance for feature j in feature set

i and F'S; is the extent to which the feature is

supported in the tool being evaluated.

As a result of the changes introduced by this
study the score for SLuRp decreased to 63%
because:

— The feature Ease of Setup was scored as
partly true for SLuRp and was given an imple-
mentation value of 0.5, since an installation
guide was available.

— The feature Installation guide was removed as
a separate feature in the framework decreas-
ing the number of features in the Usability
feature set to four.

— The feature Ease of use was introduced
as a feature (to replace the Tutorial fea-
ture) with an importance of Highly desirable.

Tool Features to Support Systematic Reviews in Software Engineering — A Cross Domain Study

105

SLuRp scored the minimum value of zero for
the feature since there was no tutorial, nor
an online help facility, and the system is very
complex.

— The feature Re-use of past data was in-
cluded in the Process Management feature
set, with an importance level of Highly desir-
able. SLuRp maintains records of past SRs
and their results, so it scored the maximum
value of one for this feature.

— Text analysis on which SLuRp scored the
maximum value of one was removed as a fea-
ture in the SR activity support feature set.

6.5. Comparison with other results

As reported in Section 3, Hassler and his col-
leagues undertook a series of studies investigating
SR tool requirements. In contrast to the results
reported in this study, their studies concentrated
on the opinions and experiences of the SE com-
munity.

Carver et al. [14] investigated barriers to the
SR process. Many of the issues they mentioned
were discussed in Kitchenham and Brereton’s sys-
tematic review [9]. However, they also provided
a much more detailed discussion of the problems
with current SE databases including the necessity
to deal with duplicates, which was mentioned by
one of the participants in this study. They also
mentioned the issue of coordinating the reviewing
and selection of papers and associated issues for
team management and conflict resolution which
were mentioned by the participants of this study.

The participants in Carver et al’s study
ranked the SR processes as most in need of tool
support. They ranked Searching Databases as
most important followed by Selecting papers and
Extracting data. In contrast, this study rated
Data Extraction as the most important SR task
requiring support, followed by Quality Assess-
ment and Data Synthesis. This difference may be
caused by the concentration on mapping studies
in SE. Carver et al’s results suggested relatively
little support for issues related to protocol devel-
opment (i.e. Defining Research Question, Iden-
tifying Keywords, and Creating Search Strings),
which is consistent with the relatively low im-

portance given by our participants to automated
support for protocol development.

It is quite difficult to make detailed compar-
isons between Hassler et al’s study to identify
barriers to the SR process [30] and [31] this one,
because in each study, the terminology was based
on the terminology used by the participants. In
addition, when the participants of Hassler’s stud-
ies voted, their votes were constrained. They were
given a number of tokens (i.e. votes) and these
tokens were shared across all the features being
voted on and participants could give multiple
tokens to specific features. This process meant
that participants were prioritising across all the
possible tools. In this study the participants were
not asked to make any trade-off when they as-
sessed the importance of individual tool features.

Hassler et al. [30] identified barriers faced by
systematic reviewers related to the SR process,
primary studies, the practitioner community and
tooling. The comparison of the discussion points
in Hassler’s study with the results of this study
is shown in Table 23. Hassler identified the diffi-
culty of meta-analysis as a problem, but looking
at his comments it appears that data synthesis
rather than statistical meta-analysis was a prob-
lem, which is consistent with these results. Barri-
ers related to the practitioner community were not
mentioned as a problem in health care or social
science where the practitioner community may
be more accustomed to the need for systematic
reviews. Hassler’s participants identified barriers
related to tooling in terms of needing improved
search and retrieval facilities including addressing
the problem of rewriting search engine strings
which was mentioned as a challenge by one par-
ticipant. However, support for the search process
did not feature as one of the most important
features in Table 19. It is noticeable that support
for the search process is considered much more
important by relative novices than by experienced
researchers, so the difference between our result
and Hassler’s results may reflect the fact that there
are few researchers in SE that have completed
more than 5 systematic reviews. Hassler discussed
the need for support for data extraction and man-
agement. Our results strongly align with this re-
sult, since support for Data Extraction was the

106

Chris Marshall, Barbara Kitchenham, Pearl Brereton

Table 23. Comparison with barriers discussed in Hassler’s study [30]

Category Issue This study
SR process SR protocol is sequential, but process itera- Not mentioned
tive
Meta-analysis is difficult Need support for data synthesis
Lack of methods for result interpretation Not mentioned
Primary Title and abstracts misleading Not mentioned
studies Terminology not standardized Mentioned by four participants
Practitioner Difficulty relating to industry needs Not mentioned
community Difficulty justifying structured process Not mentioned
Tooling Electronic databases are inadequate for Problem with string translation mentioned

search and retrieval

Need data extraction and management tools

once
Strong support in this study

second most highly ranked feature by our partici-
pants and features related to Management issues,
such as Multiple Users, Document Management,
Role Management which were all highly ranked
particularly by more experienced researchers.

Hassler et al. undertook a second community
workshop to identify SR tool needs [31]. In this
workshop they had 16 participants of which 10
were categorized as “experts” because they had
completed at least three SRs. They compared
their results with those of Marshall et al. [19] In
this study this analysis was extended to consider
the impact of participant experience as shown in
Table 24. This table is ordered on the total score
for the features in this study. The order of the
total score for equivalent features in Hassler’s
study is shown in parenthesis after the name
of the feature. The experience scores for high
and low experience participants were included,
however, it is important to note that high expe-
rience was equated with completing more than
five SRs so the comparisons are not exact. One
change was introduced to Hassler et al’s table,
that is the Textual analysis feature was equated
to Hassler’s Automated Analysis rather than to
Statistical Analysis.

The most obvious area of agreement between
the study results is that, given that Multiple
Users and Collaboration are equivalent, they cor-
respond to the most important feature in this
study and the second most important in Has-
sler’s study, with importance rated more highly
by more experienced researchers.

However, there are major differences between
the ranking of tool features. The correlation be-
tween the total scores for this study and for
Hassler et al’s study is 0.44. Furthermore, the
correlation between the scores for participants
with low experience was 0.24, and between scores
for high experience participants was 0.25. In ad-
dition, the correlation between the high and low
experience participants’ votes in Hassler’s study
was only 0.45.

Differences between Hassler’s results and the
ones obtained in this study could be due to the
specific participants but it could also be caused
by domain differences, experience differences or
differences in the type of SRs in the SE domain.
It is suspected that a major issue is the difference
resulting from the prevalence of mapping stud-
ies in SE. Mapping studies are often confused
with SRs in the SE community. However, they
are often published in conferences and journals
implying that mapping studies are of value to
the SE community. This is not the case in health
care or social sciences. Concentrating on map-
ping studies can lead to SE researchers being
more interested in the search and selection pro-
cesses than researchers in other domains and
less concerned about data extraction and quality
assessment. Also a mapping study analysis is of-
ten concerned with the similarities between large
numbers of studies which is helped by visual
analysis and textual analysis techniques. Thus
the relevance of results from other domains may
depend on the extent to which systematic review

Tool Features to Support Systematic Reviews in Software Engineering — A Cross Domain Study

107

Table 24. Comparison of features scores and experience for this study and Hassler et al’s study [31]

Our study Hassler et al.
Feature Total Low High Feature Total Low High
exp exp exp exp

Multiple users 88.46 79.17 96.43 Collaboration (2) 10.7 4.9 13.3

Data extraction 86.54 79.17 92.86 Coding (= 8) 3.8 4.9 3.3

Quality assessment 82.69 79.17 85.71 Quality assessment (= 5) 5.3 2.4 6.7

Data synthesis 82.69 70.83 92.86 Automated analysis (= 5) 5.3 9.8 3.3

Study selection 80.77 70.83 89.29 Study selection (3) 6.9 9.8 5.6

Document management 78.75 70.83 85.71 Study storage (= 8) 3.8 24 4.4

Reuse of past data 75.00 66.67 82.14 Data maintenance (4) 6.1 7.3 5.6

Meta-analysis 71.15 58.33 82.14 Statistical analysis (11) 2.3 4.9 1.1

Search process 65.38 79.17 53.57 Integrated search (1) 11.5 9.8 12.2

Protocol development 51.92 50.00 53.57 Development & validation 0.8 0.0 1.1
(= 12)

Reporting 46.15 45.83 46.43 NA

Protocol validation 34.62 37.50 32.14 Development & validation 0.8 0.0 1.1
(12)

Text analysis 34.62 29.17 39.29 Automated analysis (= 5) 5.3 9.8 3.3

Report validation 34.62 37.50 32.14 Report validation (10) 3.1 24 44

approaches in SE continue to be dominated by
mapping studies.

Some differences may be caused by the rel-
atively low levels of experience among SE re-
searchers. The high and low experience partici-
pants in Hassler’s study are probably closer to
the low experience participants in our study. So
the differences between high and low studies in
Hassler’s study are more likely to be chance ef-
fects than those in this study.

6.6. Limitations

A major limitation of this cross-domain study is
that the use of systematic reviews was discussed,
however, mapping studies (or scoping studies
as they are often referred to in other domains)
were not explicitly discussed. Although the par-
ticipants did not raise the issue of such studies
themselves, it is possible that the assessment of
the importance of some SRLC tool features might
have changed if we had asked them to consider
the implications of the features for scoping stud-
ies. A particular issue for software engineering
SRLC tools is that textual analysis may well play
a more important role in managing the study se-
lection and data extraction for mapping studies
than it does for systematic reviews. However, we

would still expect textual analysis to be used
to implement various features rather than being
a tool feature in its own right.

Another important limitation is that there
were relatively few participants. Nonetheless, the
coverage of the three characteristics thought to
have some influence on participants’ experience
was good: domain, type of SRs they undertake,
and their level of experience. This means that the
group of participants was heterogeneous, which
is often considered the best approach to obtain
a theoretical sample for a qualitative study.

All of the study participants were UK-based,
so this might introduce some cultural bias into
the study. However, all versions of the SE sys-
tematic review guidelines were based primarily
on UK standards and they were widely adopted
among software engineers from many different
countries. Thus, our SR practices in software
engineering may already have a built-in UK cul-
tural bias.

Yet another limitation of this cross-domain
study are those related to the method of
semi-structured interviews and the experience of
the interviewer. Since this study was part of Mar-
shall’s PhD research, he performed all the reviews
himself. However, in general, interview-based
studies might be improved by the use of observer

108

Chris Marshall, Barbara Kitchenham, Pearl Brereton

triangulation. In addition, semi-structured inter-
views depend strongly on the communication
skills of the interviewer [35]. Marshall attempted
to address this issue by undertaking a pilot study.
Other risks are associated with the participants’
impression of the interviewer. Research suggests
that people respond differently depending on how
they perceive the interviewer (the interviewer ef-
fect [36]). Factors such as gender, age and the
ethnic origins of the interviewer have a bear-
ing on the amount of information people are
willing to contribute [36]. In addition, partici-
pants’ responses can be influenced by what they
think the situation requires [37]. Marshall did all
the interviews and made every effort to put the
participants at ease and to explain the purpose
of the interview. In addition, the fact that he
was reasonably knowledgeable about systematic
reviews and systematic review tools was found
useful in overcoming potential problems due to
his relatively junior level. Risks associated to
missing relevant questions as the participants
lead the flow of the interview were mitigated by
using a list of questions and key themes to check
the progress of the interview.

7. Conclusions

The results of our cross-domain study suggest
that, in the context of systematic reviews, expe-
riences of researchers in other disciplines can be
valuable for SE researchers. The implications of
this are:

— Standalone tools used by systematic review-
ers in other domains may be of value to sys-
tematic reviewers in SE. We recommend SE
researchers, particularly those supervising ju-
nior researchers, to periodically consult the
SR Toolbox to keep track of available tools.

— SE researchers producing tools for systematic
reviews should also be aware of the currently
available tools and their features. In particu-
lar, in the context of SRLC tools, the features
available in the EPPI-reviewer tool might be
worth studying.

— SE researchers can benefit from keeping
abreast of systematic review developments in

other disciplines. This is important to avoid
a methodological drift. Researchers should
not want general scientific methods to start to
diverge across different domains. Nonetheless,
there are some differences between domains
that can impact the adoption of standards
or tools, such as the importance of map-
ping studies, which makes it useful for SE
researchers to continue to study SR method-
ology.

In terms of the impact of the results re-
ported in this paper, we made several changes to
our framework for evaluating SRLC tools. The
changes were easy to implement and overall it
appeared that the framework was quite robust
across different domains [38].

We intend to continue refining the evaluation
framework’s feature set and evaluation criteria
to accommodate the selection and assessment
of novel tools developed to support systematic
reviews. For example, a case study is currently
under way to compare and evaluate a selection of
tools that support network meta-analysis which
uses an expanded version of the evaluation frame-
work. Further refinements to the framework will
also be reflected as part of the ongoing devel-
opment of the Systematic Review Toolbox to
classify tools.

Acknowledgements

We would like to thank the participants in the
study for sharing their experiences with us and
the reviewers for their helpful comments on our
manuscript.

References

[1] C. Mulrow, “Rationale for systematic reviews,”
British Medical Journal, Vol. 309, No. 6954, 1994,
p- 597.

[2] D. Cook, C. Mulrow, and R. Hayes, “Systematic
reviews: synthesis of best evidence for clinical
decisions,” Annals of Internal Medicine, Vol. 126,
No. 5, 1997, pp. 376-380.

[3] B. Kitchenham and S. Charters, “Guidelines for
performing systematic literature reviews in soft-

Tool Features to Support Systematic Reviews in Software Engineering — A Cross Domain Study

109

[10]

[11]

[12]

[13]

[15]

ware engineering,” Keele University and Durham
University, Joint Report, 2007.

D.S.W. Rosenberg, J. Gray, R. Hayes, and
W. Richardson, “Evidence-based medicine: what
it is and what it isn’t,” British Medical Journal,
Vol. 312, No. 7023, 1996, p. 71.

J. Higgins, Cochrane Handbook for Systematic
Reviews of Interventions. Wiley-Blackwell, 2008.
J.P. Toannidis, “The mass production of redun-
dant, misleading and conflicted systematic re-
views and meta-analysis,” The Milbank Quar-
terly, Vol. 94, No. 3, 2016, pp. 485-514.

D.S. Cruzes and T. Dyba, “Research synthesis
in software engineering: A tertiary study,” Infor-
mation and Software Technology, Vol. 53, No. 5,
2011, pp. 440-455.

F.Q. da Silva, A.L. Santos, S. Soares, A.C.C.
Franca, C.V. Monteiro, and F.F. Maciel, “Six
years of systematic literature reviews in software
engineering: An updated tertiary study,” Infor-
mation and Software Technology, Vol. 53, No. 9,
2011, pp. 899-913.

B. Kitchenham and P. Brereton, “A systematic
review of systematic review process research in
software engineering,” Information and Software
Technology, Vol. 55, No. 12, 2013, pp. 2049-2075.
P. Brereton, B.A. Kitchenham, D. Budgen,
M. Turner, and M. Khalil, “Lessons from ap-
plying the systematic literature review process
within the software engineering domain,” Jour-
nal of Systems and Software, Vol. 80, No. 4, 2007,
pp. 571-583.

M. Babar and H. Zhang, “Systematic literature
reviews in software engineering: preliminary re-
sults from interview with researchers,” 2014, pp.
346-355.

M. Riaz, M. Sulayman, N. Salled, and E. Mendes,
“Experiences conducting systematic reviews from
novices’ perspective,” in Proceedings of the 2010
International Conference on Fvaluation and As-
sessment in Software Engineering, 2010.

S. Imitiaz, M. Bano, N. Ikram, and M. Niazi,
“A tertiary study: Experiences of conducting sys-
tematic literature reviews in software engineer-
ing,” in In Proceedings of the 2013 International
Conference on FEwvaluation and Assessment in
Software Engineering, 2013, pp. 177-182.

J. Carver, E. Hassler, E. Hernandes, and
N. Kraft, “Identifying barriers to the system-
atic literature review process,” in Proceedings of
the 13th International Symposium on Empirical
Software Engineering and Measurement, 2013.
M. Staples and M. Niazi, “Experience using
systematic review guidelines,” Journal of Sys-

[16]

[17]

[18]

[20]

[21]

tems and Software, Vol. 80, No. 9, 2007, pp.
1425-1437.

H. Ramampiaro, D. Cruzes, R. Conradi, and
M. Mendona, “Supporting evidence-based soft-
ware engineering with collaborative information
retreival,” in Proceedings of the 2010 Interna-
tional Conference on Collective Computing: Net-
working Applications and WorkSharing, 2010, pp.
1-5.

B.A. Kitchenham, D. Budgen, and P. Brereton,
Evidence-Based Software Engineering and Sys-
tematic Reviews. CRC Press, 2015.

C. Marshall, O.P. Brereton, and B.A. Kitchen-
ham, “Tools to support systematic literature
reviews in software engineering: A feature anal-
ysis,” in Proceedings of the 18th International
Conference on FEvaluation and Assessment in
Software Engineering (EASE’14). ACM Press,
2014, pp. 13:1-13:10.

C. Marshall, O.P. Brereton, and B.A. Kitchen-
ham, “Tools to support systematic literature
reviews in software engineering: A cross-domain
survey using structured interviews,” in Proceed-
ings of the 19th International Conference on
Evaluation and Assessment in Software Engi-
neering (EASE’15). ACM Press, 2015, pp. 26-31.
D. Bowes, T. Hall, and S. Beecham, “SLuRp: A
tools to help large complex systematic literature
reviews,” in Proceedings of the 2012 Interna-
tional Workshop on Evidential Assessment of
Software Technologies, 2012, pp. 33-36.

C. Marshall and P. Brereton, “Tools to support
systematic literature reviews in software engi-
neering: A mapping study,” in Proceedings of
ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement
(ESEM). IEEE Computer Society Press, 2013,
pp- 296-299.

J. Molleri and F. Benitti, “SEAR: A web-based
automated tool to support the systematic litera-
ture review process,” in Proceedings of the 2015
International Conference on Evaluation and As-
sessment, 2015, pp. 24-33.

B. Kitchenham, “Evaluating methods and tool
Part 1: The evaluation context and methods,”
ACM SIGSOFT Notes, Vol. 21, No. 1, 1996, pp.
11-14.

B. Kitchenham, T. Dyba, and M. Jgrgensen,
“Evidence-based software engineering,” in Pro-
ceedings of ICSE 2004. IEEE Computer Society
Press, 2004, pp. 273-281.

B. Kitchenham, “Procedures for undertaking
systematic reviews,” Keele and Durham Univer-
sities, Joint Technical Report, 2004.

110

Chris Marshall, Barbara Kitchenham, Pearl Brereton

[26]

[27]

[28]

[30]

[31]

M. Petticrew and H. Roberts, Systematic Re-
views in the Social Sciences: A Practical Guide.
Blackwell Publishing, 2006.

J.A.S. Torres, D.S. Cruzes, and L. Salvador, “Au-
tomatic results identification in software engi-
neering papers. Is it possible?” in Proceedings of
the 12th International Conference on Computer
Science and Its Applications, 2012.

K.R. Felizardo, S. MacDonell, E. Mendes, and
J. Maldonado, “A systematic mapping on the
use of visual data mining to support the con-
duct of systematic literature reviews,” Journal
of Systems and Software, Vol. 7, No. 2, 2012, pp.
450-461.

C. Marshall and O.P. Brereton, “Systematic re-
view toolbox: a catalogue of tools to support
systematic review,” in Proceedings of 19th Inter-
national Conference on Fvaluation and Assess-
ment in Software Engineering (EASE’15). ACM
Press, 2015, pp. 26-31.

E. Hassler, J.C. Carver, N.A. Kraft, and D. Hale,
“Outcomes of a community workshop to identify
and rank barriers to the systematic literatire re-
view process,” in Proceedings of the 18th Interna-
tional Conference on Fvaluation and Assessment
in Software Engineering, 2014.

E. Hassler, J.C. Carver, D. Hale, and
A. Al-Zubidyb, “Identification of SLR tool

needs-results of a community workshop,” Infor-
mation and Software Technology, Vol. 70, 2016,
pp. 122-129.

[32] D. Remenyi, Grounded Theory: A reader for Re-

searchers, Student, Faculty and Others, 2nd ed.
Academic Conferences and Publishing Interna-
tional Limited, 2014.

[33] M.B. Miles, A.M. Huberman, and J. Saldana,

Qualitative Data Analysis: A Methods Source-
book, 3rd ed. Sage Publications Inc., 2014.

[34] G. Tsafnat, P. Glasziou, M. Choong, A. Dunn,

F. Galgani, and E. Coiera, “Systematic review
automation technologies,” Systematic Reviews,
Vol. 3, No. 1, 2014, p. 74.

[35] P. Clough and C. Nutbrown, A student’s guide

to methodology, 3rd ed. SAGE, 2012.

[36] M. Denscombe, The good research guide: for

small-scale social research. Open University

Press, 2014.

[37] R. Gomm, Social Research methodology. Pal-

grave MacMillan, 2004.

[38] C. Marshall, Tool support for systematic re-

views in software engineering, Ph.D. dissertation,
School of Computer Science and Mathematics,
Keele University, 2016.

Tool Features to Support Systematic Reviews in Software Engineering — A Cross Domain Study

111

Appendix A. Interview guide

The interview guide was intended to help struc-
ture the interview and ensure that all relevant
points were covered. Since these interviews were
semi-structured, it might be the case that not all
questions were required. Similarly, supplementary
questions, not recorded in this guide, could be
asked, depending on the individual circumstances
of each interview. Questions have been classi-
fied into four groups; namely, Group 1: Subject
Context, Group 2: Personal Experience with Sys-
tematic Reviews, Group 3: Experience with Tools
to Support Systematic Reviews and Group 4: Fea-
tures for a Tool to Support Systematic Reviews.

Al. Introduction

Welcome the participant and ensure they are
suitably comfortable, etc. Explain the purpose of
the interview again so as to gather information
about tools to support systematic reviews.

A2. Group 1: G1 subject context

Questions in Group 1 will be asked about the
participants’ discipline. In particular, we are in-
terested in discovering how SRs are used within
the domain, the infrastructure provided when
undertaking a SR and any tools that are avail-
able to support the process. Four questions will
be asked.

G1-Q01. Could you tell me about your disci-
pline?

G1-QO02. How do systematic reviews play a role
within your discipline?

G1-Q03. What infrastructure does your disci-
pline provide to support reviewers when per-
forming an SR? (e.g. guidelines)

G1-Q04. What tools to support SRs are avail-
able within your discipline?

A3. Group 2: G2 personal experience
with systematic reviews

Questions in Group 2 will be asked about the par-
ticipants’ personal experience when performing
an SR. In particular, we are interested to learn

the extent of their experience, their thoughts on

the usefulness of SRs, what they believe to be

the main challenges and which aspects they feel

are most in need of support.

G2-Q01. How many SRs have you performed?

G2-Q02. Do you find SRs useful?

G2-Q03. What, in your opinion, are the main
challenges when undertaking a SR?

G2-Q04. In your experience, what are the key
aspects of the SR process that you feel are
most in need of automated tool support?

A4. Group 3: G3 experience with tools
to support systematic reviews

The questions asked in Group 3 will depend on
whether or not the participant has experience
using a tool to support them whilst undertaking
an SR. If the experience exists, the participant
will be asked about their experience using the
tool(s). If the participant has not used a tool
before, they will be asked why they haven’t and
whether they might consider using one in the
future. In addition, question G3-Q09 initiates
the snowballing sampling technique.

G3-Q01. Generally, do you feel the SR process
could benefit from automated support?

G3-Q02. Have you used a tool (or multiple
tools) to support yourself whilst undertaking
a SR?

If the participant has experience using a tool,

ask questions G3-Q003 to G3-Q06. If they have

no experience using a tool, advance to question

G3-QOr7.

G3-Q03. What is the tool called? (This might
have already been identified by question
G1-Q04.)

G3-Q04. In your opinion, what were the main
strengths of the tool?

G3-Q05. What were its key weaknesses?

G3-Q06. Overall, did you feel that using the
tool was useful? (i.e. did you feel sufficiently
supported?)

G3-Q07. Would you use the tool again?

G3-QO08. Is there a particular reason why you
haven’t used one? (e.g. don’t know enough
about them, don’t feel they are necessary,
etc.)

112

Chris Marshall, Barbara Kitchenham, Pearl Brereton

G3-Q09. Would you consider using one in the
future?

G3-Q10. Do you know someone who has used
one? (Snowball sampling.)

A5. Group 4: G4 features for a tool to
support systematic reviews

Questions in Group 4 involve a data collection
exercise. The interviewer will explain that a set
of features for a tool to support the overall SR
process has been developed. In their opinion, and
in the context of the SR process within their dis-
cipline, the participant will be asked to determine
whether each feature is considered “Mandatory
(M)”, “Highly desirable (HD)”, “Desirable (D)”
or “Nice-to-have (N)”. Alternatively, the partici-
pant can decide that a feature is “Not necessary
(NN)”. The interviewer will record the ratings
made by each participant using a form with a row
for each feature and a column for each rating
level.

A5.1. Feature Set 1 (F1): economic G4-F1

Questions relating to this feature set concern eco-
nomic factors relating to the initial cost of the
tool and the subsequent support for maintaining
(or upgrading) the tool. Three questions will be
asked.

G4-F1-QO01. How important is it that a tool
should not require financial payment to be
used?

G4-F1-Q02. How important is a well and freely
maintained tool?

G4-F1-Q03. Are there any features you can
think of that you might add to this feature
set?

A5.2. Feature Set 2 (F2): ease of introduction
and setup G4-F2

Questions relating to this feature set focus on

the level of difficulty inherent in setting up and

using the tool for the first time. Five questions

will be asked.

G4-F2-Q01. How important is a simple instal-
lation and setup procedure?

G4-F2-Q02. How important is the presence of
an installation guide?

G4-F2-Q03. How important is the presence of
a tutorial?

G4-F2-Q04. How important is it that the tool
is as self-contained as possible? (i.e. able to
function as a stand-alone application with
minimal requirements from other external
technologies.)

G4-F2-Q05. Are there any features you can
think of that you might add to this feature
set?

A5.3. Feature Set 3 (F3): SR activity support
G4-F3

Questions relating to this feature set relate to
how well the tool supports each of the three
main phases of an SR and the steps (or ac-
tivities) within these phases. Here 12 questions
will be asked. G4-F3-Q01 and G4-F3-Q02 con-
cern features that support the planning phase of
a SR. G4-F3-Q03 to G4-F3-Q09 relate to features
supporting the conduct phase. G3-F3-Q10 and

G3-F3-Q11 concern features that support the

report phase.

G4-F3-Q01. How important is a feature that
supports the development of a review proto-
col? (e.g. the tool provides support for col-
laboration using a template and control of
versions to keep track of any changes to the
protocol during its development.)

G4-F3-Q02. How important is a feature that
supports protocol validation? (e.g. enabling
evaluation checklists to be distributed to and
completed by members of the review team.)

G4-F3-Q03. How important is a feature that
provides support for the search process? (e.g.
performing an automated search from within
the tool which identifies duplicate papers and
handles them accordingly.)

G4-F3-Q04. How important is a feature that
provides support for study selection and val-
idation? (e.g. the tool provides support for
a multi-stage selection process, for multiple
users to apply the inclusion/exclusion crite-
ria independently and a facility to resolve
disagreements.)

Tool Features to Support Systematic Reviews in Software Engineering — A Cross Domain Study

113

G4-F3-Q05. How important is a feature that
provides support for quality assessment and
validation? (e.g. the tool enables the use of
a suitable quality assessment criteria, allows
multiple users to perform the scoring inde-
pendently and provides a facility to resolve
conflicts.)

G4-F3-Q06. How important is a feature that
provides support for data extraction? (e.g. the
tool provides support for the extraction and
storage of qualitative data using classification
and mapping techniques and, in addition, the
extraction of quantitative data, which man-
ages the specific numerical data reported in
a study, should also be supported.)

G4-F3-Q07. How important is a feature that
provides support for data synthesis? (e.g. the
tool provides automated analysis on extrac-
tion data such as table/chart generation.)

G4-F3-Q08. How important is a feature that
provides text analysis?

G4-F3-Q09. How important is a feature that
provides meta-analysis?

G4-F3-Q10. How important is a feature that
supports the report phase of a SR? (e.g. the
tool provides a template to assist the report
write-up.)

G4-F3-Q11. How important is a feature that
supports report validation? (e.g. automated
evaluation checklists similar to the example
given for protocol validation).

G4-F3-Q12. Are there any features you can
think of that you might add to this feature set?

Ab5.4. Feature Set 4: (F4) process management
G4-F4

Questions relating to this feature set relate to

the management of an SR. Six questions will be

asked.

G4-F4-QO01. How important is allowing multi-
ple users to work on a single review?

G4-F4-Q02. How important are document
management facilities? (e.g. in particular,
managing large collections of papers, studies
and the relationships between them.)

G4-F4-Q03. How important are security fea-
tures? (e.g. log-in or a similar system.)

G4-F4-Q04. How important is the feature that
provides support for role management? (e.g.
state which users will perform certain activ-
ities, such as study selection, quality assess-
ment, data extraction etc., and allocate pa-
pers accordingly.)

G4-F4-QO05. Is it important that the tool sup-
ports multiple projects? (i.e. the user can
perform multiple SR projects using the tool.)

G4-F4-Q06. Are there any features you can
think of that you might add to this feature
set?

Appendix B. Interview Preparation
Form

Each participant received the following informa-
tion, sent on Keele University headed paper:
Study Title Tool Support for Systematic Re-
views in Software Engineering

Aims of the Research The aim of this inter-
view is to gather information about the availabil-
ity, use, potential and effectiveness of automated
tools which provide support for systematic re-
views.

How long will the interview take? The in-
terview should take no more than one hour to
complete.

What will I be asked about? The interview
will focus on discussing your thoughts and ex-
perience using tools to support the conduct of
a systematic review. However, we are also inter-
ested in learning about the systematic review
process particularly within your discipline. Ques-
tions will be asked in the following topics: The
role of systematic reviews within your discipline.
Known tools that are used to support the con-
duct of systematic reviews within your domain.
Your personal experience undertaking systematic
reviews (with/without the help of tools.)

How will information about me be used?
The data collected will contribute towards the
development of a refined framework for an overall
tool to support SRs.

Who will have access to the information
about me? The only people who will have
access to the data collected are the members

114

Chris Marshall, Barbara Kitchenham, Pearl Brereton

of the research team conducting this study.
This include Christopher Marshall (PhD Re-
searcher), Prof Pearl Brereton (Lead Supervi-
sor) and Prof Barbara Kitchenham (Second
Supervisor). All data will be made anony-
mous during the analysis process for future re-
ports and research projects. Notes taken dur-
ing the interview process will be stored on
a password protected computer. Audio record-
ings (providing you have agreed for the inter-
view to be recorded) will be stored in a locked
filing cabinet.

Who is funding the research? This research
is partly supported by Keele University’s Envi-
ronmental, Physical Sciences and Applied Math-
ematics (EPSAM) Research Institute.

Appendix C. Coding participants
comments about the
lifecycle tool features

The mechanism used for coding the participants

comments about specific features was to tabu-

late the comments each participant made about

the feature. Then participant comments that

addressed a general issue were highlighted, in-

cluding comments:

— Identified benefits that the feature would de-
liver (Incl).

— Identified possible problems or limitations
associated with the feature (Inc2).

but excluding comments that:

— Restated or emphasized the participant’s rat-
ing of the importance of the feature (Excl).

— Discussed how the feature would work (Exc2).

— Restated some comment about the feature
that had already been coded for that partici-
pant (Exc3).

The highlighted comments were read and the
topics that addressed the same issue were identi-
fied and given a short description. The 22 features
were coded one feature at a time. However, the
use of codes was checked, so that if any similar
comments occurred in subsequent features, the
same terms were used. After the initial coding
of features was completed, we reviewed single
comments in each feature to investigate whether
such comments occurred for different features.

The coding process was performed by
Kitchenham using the comments tabulated by
Marshall and then validated by Brereton.

For example, for the comment for the Search
Process were as follows:

- Po1

— No comments.
- P02

— That would be absolutely fantastic. (Com-
ment ignored Excl — restated participants’
rating of feature.)

- P03

— That would save a lot of time. (Comment
Incl coded as Time Saving.)

— As long as the process is done thoroughly
and you’re not missing anything. (Com-
ment coded Incl as Viability defined as
‘will the feature work’?)

- P04

— That would be brilliant. (Comment ig-
nored Excl.)

— That would be time saving. (Comment
coded as Time Saving.)

— I’m not going to say anything is Manda-
tory I think, because I do them [SRs]
without [the features|. (Comment ignored
Excl.)

- P05

— I can see there might be problems with
that. (Comment Inc2 coded as Viability.)

— What might be good instead would be to
help build this search strategy. (Comment
Incl coded as Help Search Strategy.)

- P06

— I mean it sounds highly desirable, but it
sounds like quite a task. (Comment ig-
nored Excl.)

— I think that as a reviewer, you’d probably
want to see how they’d actually confirmed
that [that the feature worked]. (Comment
Inc2 coded as Viability.)

— I think if that was shown to be highly re-
liable it would be highly desirable. (Com-
ment ignored Exc3 — restated previously
coded comment.)

— These search engines are updated regu-
larly, These search engines are updated
regularly, constantly update it [the fea-
ture]. (Comment ignored Exc3.)

Tool Features to Support Systematic Reviews in Software Engineering — A Cross Domain Study 115

— It’s a big ask. (Comment ignored Exc3.)

P0O7

— That’s clearly mandatory in my book.
That would be amazing. (Comment ig-
nored Excl.)

P08

— I think it could be useful to give an idea
of the number of hits from each database.
(Comment ignored Exc2 — discussing how
the feature would work.)

— It would help for a pilot search. (Comment
ignored Exc2.)

— I wouldn’t want it to replace searching
each individual database. (Comment ig-
nored Exc2.)

— I’'m a bit against one search across all of
the databases, because you are not ac-
tually searching the databases properly;
you are not getting the best out of the
databases. (Comment ignored Exc2.)

— You would use different strategies for dif-
ferent databases for good reasons. (Com-
ment Inc2 coded as Viability.)

P09

— Well if it did it reliably. (Comment Inc2
coded as Viability.)

— The problem is you’ve got different con-
trolled vocabularies in different databases.
(Comment ignored Exc3.)

— It would be highly difficult to automate
all that. (Comment ignored Exc3.)

— I think there are too many things in the
way at the moment to be able to imple-
ment it. (Comment ignored Exc3.)

P10

— No comments.

P11

— No comments.

P12

— I would say highly desirable but I don’t
trust you’d do it. I think there would be
stuff missing. (Comment Inc2 coded as
Viability.)

P13

— Particularly about translating the search
strategy. (Code ignored Excl.)

— I'd say that’s highly desirable because it’s
the thing that is time consuming. (Com-
ment Inc2 coded as Time Saving.)

— The bit where our time is valuable is most
valuable is developing the search strategy
in the first place. That sort of translat-
ing bit is very time consuming but it does
not actually have to use that much exper-
tise really. (Comment Incl coded as Help
Search Strategy.)

e-Informatica Software Engineering Journal, Volume 12, Issue 1, 2018, pages: 117-131, DOI 10.5277/e-Inf180105

Are We Working Well with Others? How the
Multi Team Systems Impact Software Quality

Mathieu Lavallée*, Pierre N. Robillard*

*Département de génie informatique et génie logiciel, Polytechnique Montréal

mathieu.lavallee@polymtl.ca, pierre.robillard@polymtl.ca

Abstract

Background: There are many studies on software development teams, but few about the interac-
tions between teams. Current findings suggest that these multi-team systems may have a significant
impact on software development projects.

Aim: The objective of this exploratory study is to provide more evidence on multi-team systems
in software engineering and identify challenges with a potential impact on software quality.
Method: A non-participatory approach was used to collect data on one development project
within a large telecommunication organization. Verbal interactions between team members were
analyzed using a coding scheme following the Grounded Theory approach.

Results: The results show that the interactions between teams are often technical in nature,
outlining technical dependencies between departments, external providers, and even clients.
Conclusion: This article hypothesizes that managers of large software project should (1) identify
external teams most likely to interfere with their development work, (2) appoint brokers to redirect
external requests to the appropriate resource, and (3) ensure that there are opportunities to discuss
technical issues at the multi-team level. Failure to do so could results in delays and the persistence
of codebase-wide issues.

Keywords: multi team system, human interaction, quality management, team manage-

ment, industrial study

1. Introduction

Five hundred years ago, John Donne wrote that
“no man is an island”. Individuals achieve great
things by working together as a team. But many
projects require more than an individual team to
achieve success. “No team is an island” [1] would
be a better description of modern project and
organization management.

Teamwork has indeed long been identified as
important to project success [2-4]. Teamwork
in software development is no different, and
software engineering research also highlighted
the impacts that software development teams

can have. As Watts S. Humphrey wrote, “Sys-

tems development is a team activity, and the
effectiveness of the team largely determines the
quality of the engineering” [5, p. 51]. Teams

rarely work in isolation; teams are often in-
terdependent of each other and must work
together. Recent studies have shown the im-
portance of these interactions between teams,
whether on issues such as organization-wide
knowledge sharing [6], coordination of multiple
agile teams [7] or inter-team communication ef-
fectiveness [8].

This paper presents insights gained from
the analysis of data collected in an exploratory
study. These insights confirm the large amount
of inter-team interactions, and identifies which
teams were more closely connected to the develop-
ment team. It also shows the role the developers
play as middlemen between teams, for example
between clients and testers. Finally, this study
presents the importance of inter-team technical
coordination, which is difficult if the organization

118

Mathieu Lavallée, Pierre N. Robillard

Table 1. Software engineering publications related to MTS in chronological order

Title (publication year)

advantage? (2012)

(2015)

employing Agile (2016)

| Using open spaces to resolve cross team issue (2005)

] Implementing Scrum in a distributed software development organization (2007)

] Forming to performing: Transitioning large-scale project into Agile (2008)

| Fully distributed Scrum: Replicating local productivity and quality with offshore teams (2009)

] Moving back to Scrum and scaling to Scrum of Scrums in less than one year (2011)

] Scaling Scrum in a large distributed project (2011)

] Scrum practice mitigation of global software development coordination challenges: A distinctive

6] Coordination in co-located Agile software development projects (2012)

7] Practical Scrum-Scrum team: Way to produce successful and quality software (2013)

8] Coordination in large-scale Agile software development: A multiteam systems perspective (2014)
6] Fostering effective inter-team knowledge sharing in Agile software development (2015)

9] The effects of team backlog dependencies on Agile multiteam systems: A graph theoretical approach

A multiple case study on the inter-group interaction speed in large, embedded software companies

The architect’s role in community shepherding (2016)

only supports inter-team administrative coordi-
nation (i.e. resource planning and scheduling).

The next section presents the related work
(Section 2), with a focus on the organizational
psychology concept of multi-team systems and
how it applies to software engineering. The
methodology (Section 3) presents the context
of the study and how the data was collected and
analyzed. The results (Section 4) presents the
data analysis, while the discussion (Section 5)
presents our hypotheses and limitations to the
conclusions of the study. The conclusion (Sec-
tion 6) summarizes the hypotheses and presents
future avenues of research. Note that this paper
represents an extension of a previous shorter pub-
lication [22]. Some elements of the methodology
were reused here, but the results and analyses
are new.

2. Related work

The current software engineering literature uses
different terms to define the interactions be-
tween multiple teams: inter-team, multi-team,
cross-team, etc. However, these concepts are not
always clearly defined, leaving the exact inter-
pretation to the reader. The research field of
organizational psychology has fortunately stud-

ied this topic extensively, regrouping them under
the umbrella of multi-team systems, or MTS [23].
The MTS are defined as:
Two or more teams that interface directly
and interdependently in response to environ-
mental contingencies toward the accomplish-
ment of collective goals. MTS boundaries are
defined by virtue of the fact that all teams
within the system, while pursuing different
proximal goals (e.g. writing a specific code
module), share at least one common distal
goal (e.g. creating a complete working soft-
ware); and in so doing exhibit input, process,
and outcome interdependence with at least

one other team in the system [24].

Many studies have been published on sin-
gle team dynamics in recent decades. Addition-
ally, there is also a large body of knowledge on
global or distributed software engineering, that
is, multi-team systems spanning different sites
across the globe. However, as far as we could
find, there are few publications on the dynam-
ics between co-localized teams. What should
be done to make teams work together effec-
tively within the same site at the organizational
level?

What is required for success in these kinds

of MTSs is coordination both within and be-

tween teams [emphasis theirs]. That is, al-

Are We Working Well with Others? How the Multi Team Systems Impact Software Quality

119

though interventions designed to create a sys-

tem of strong, cohesive component teams

may maximize performance at the team level,
when ultimate system-level goals require syn-
chronization between teams, more is needed.

[...] MTS interventions must also address

interdependencies between teams if perfor-

mance across these kinds of complex systems

is to be maximized [25].

Studies observing MTS in software engi-
neering are still limited [18], with almost all
studies found limited to Agile contexts and
Scrum-of-Scrums meetings, as shown in Table 1.

Mike Cohn, an expert on the Scrum process,
recommends a specific point in the agenda of
“Scrum of Scrums” meeting, his version of MTS
status meetings. Cohn recommends the addition
of a question saying: “Are you about to put
something in another team’s way?” [26]. Cohn’s
recommendation outlines the importance of MTS
and the impact one team can have on another.
This recommendation was used in the field within
“Scrum-of-Scrums” meetings, but with limited
success [7]:

Both case projects started using a model in

which only one issue was discussed: imped-

iments. However, this solution did not turn
out well.[...] Both case projects still recog-
nized the need for project-wide inter-team
synchronization, but did not have any good

solutions to the problem [7].

This shows that while the challenges of M'TS
projects are beginning to be better known, work-
ing solutions are still being tested [21].

2.1. Known challenges of MTS projects

This section presents a non-exhaustive list of

challenges of MT'S projects, based on what could

be found in the literature. These three challenges

were found to be most prevalent in the context

of this study:

— Finding a compromise between team-level
goals and MTS-level goals.

— Enabling effective communications and tech-
nical knowledge exchange at the MTS level,

— Planning the work at the MTS level.

One of the main MTS challenge is related
to building a compromise between the objec-
tive of the local team goal and the overall goals
of the MTS. In one software engineering case,
the conflicting agendas of team members within
different departments led to the failure of the
project [13]. This challenge has a major impact on
resource allocation. Organizational psychology
researchers observed that “having to simultane-
ously work toward team-level goals along with
MTS-level goals creates a demanding work envi-
ronment” [25]. In software engineering, Santos et
al., reached a similar conclusion. They studied
knowledge sharing between teams in an Agile
context [6]. They noted that the introduction
of new MTS support practices requires more
resources, which must be provided by the orga-
nization, otherwise the practice, and potentially
the project, could fail.

Another challenge is the relative difficulty to
ensure efficient communications at the MTS level,
compared to communications within the team.
A survey conducted by Kiani et al. noted that
due to “lack of communication, almost fourth
of respondents complained that work items they
depended on have changed without any notifica-
tion” [27]. Some basic Agile principles are also af-
fected in MTS contexts. For example, face-to-face
communications are easy at the team level, but
are difficult to apply at the MTS level. It re-
quires the organization to mix people from one
team to another, which is not always possible
[28]. “Boundary spanning”, ensuring communi-
cations between the frontiers of the teams, is an
important challenge within MTS [16, 20].

In the same vein, dissemination of technical
information specific to a field of knowledge is also
difficult. Local teams accumulate a significant
amount of knowledge about the specific area in
which they work. How can this knowledge be
effectively communicated to the other teams in
the MTS? If the project is particularly complex,
it may also be difficult to get an overall view
of the project [14]. Each team knows its own
problems, which can be difficult to translate in
a form understandable by other teams that might
not have the same knowledge of the field.

120

Mathieu Lavallée, Pierre N. Robillard

A third challenge is related to how MTS co-
ordination should be planned. Lanaj et al. found
the following.

Decentralized planning has positive effects on

multiteam system performance, attributable

to enhanced proactivity and aspiration levels.

However, [...] the positive effects associated

with decentralized planning are offset by the

even stronger negative effects attributable
to excessive risk seeking and coordination

failures [29].

The study of MTS coordination has been
identified by one study as “underdeveloped” [18].
However, MTS is a concept defined within the
domain of organizational psychology. Research
in software development already has a large body
of knowledge pertaining to inter-team interac-
tions within the domain of global and distributed
software development [30]. While a global or dis-
tributed development team is a form of MTS,
some MTS can be collocated in the same building.
The team observed interacted with other teams
which were almost all collocated within the same
building. The context of this study is therefore
different from the study of global and distributed
software development, where the issues of geo-
graphical distance and temporal distance play
a large role.

3. Methods

3.1. Industrial context

The study was performed on a large telecommu-
nications organization with over forty years of
experience in the industry. Throughout the years,
the organization has developed a large codebase,
which must be constantly updated. This study
follows one such update project. The outcomes
of this study are based on ten months of obser-
vation of a software development team involved
in a two-year project for an internal client. The
project involved a complete redesign of an exist-
ing software package used in the organization’s
internal business processes.

The technical challenge of this update project
is that it requires the modification of COBOL

legacy software, Web interfaces, mobile device
integration and multiple databases. Its purpose
is to manage work orders. To do this, it needs to
extract data from multiple sources within the en-
terprise (employee list, equipment list, etc.) and
send it to multiple databases (payroll, quality
control, etc.).

The project was a second attempt to overhaul
this complex package. A first attempt had been
made between 2010 and 2012 but was abandoned
after the fully integrated software did not work.
Because this project was a second attempt, many
specifications and design documents could be
reused. Accordingly, the development followed
a traditional waterfall process, as few problems
were expected the second time around. This sec-
ond attempt began in 2013 and was successfully
deployed during October and November 2014.

The organization has no formal MTS coor-
dination practices in place. Coordination at the
MTS level is therefore mostly tacit. This means
that when a team needs information from an-
other team, a member of the first team has to
directly contact another member of the second
team. This causes some issues at the MTS level,
because most developers in the team observed
were new to the company [31] when the project
started, and in some cases did not know who
to contact in the other teams. Despite its tacit
nature, an MTS exists. The need for coordina-
tion between the projects means that interactions
between teams are required to perform the work.

This study observes a development team of
nine members: one manager, four senior devel-
opers, two junior developers and two contract
developers. The team was formed specifically
for this project, of which seven are new to the
organization (i.e. less than five years).

Note that the nature of this MTS is different
from an MTS where several teams are working
on the same project (e.g. a Scrum-of-Scrums
development project). In the MTS observed, all
teams had different projects, with their own goals
and objectives. The development project studied
was the responsibility of a single team, the team
observed. However, to perform that project, that
team could not do it alone, and had to seek help
from other teams.

Are We Working Well with Others? How the Multi Team Systems Impact Software Quality

121

The objective of this study is to understand
how a development team interacts with other
external team to do its work. Therefore, the fo-
cus is on the development team. Who does the
development team needs to talk to and why?

3.2. Study approach

The objective of the study was to identify the
cause behind the introduction of quality prob-
lems during software development. Given the
sensitive nature of problem identification within
a large organization, it was decided to opt for
a neutral approach. Data collection was to be
performed using a non-participatory approach,
to avoid organizational influence.

Data collection was limited to weekly sta-
tus meetings because that is the avenue used
by the organization to discuss and resolve M'TS
issues. Although there were certainly discussions
between teams outside these weekly status meet-
ings, the most important issues were discussed
at these meetings.

A qualitative approach was chosen to better
understand an area where many variables are
not fully identified. The approach of this study
uses the same rationale as Looney and Nissen:

The present research is exploratory in nature,

is not guided by extensive theory, and is ap-

proaching a “how” research question. Hence
qualitative field research reflects an appropri-

ate method [32].

3.3. Data collection methodology

This study is based on non-participant ob-
servation of the software development team’s
weekly status meetings. These meetings con-
sisted of mandatory all-hands discussions for
the eight developers assigned mostly full-time
to the project, along with the project man-
ager. These meetings included, as needed, de-
velopers from related external modules, testers,
database administrators, security experts, qual-
ity control specialists, etc. The meetings in-
volved up to 15 participants, and up to
five additional participants through conference
calls.

The team discussed the progress made during
the previous week, the work planned for the com-
ing week and obstacles to progress. The problems
raised concerned resources and technical issues.
Few decisions were taken at these meetings, the
purpose being to share the content of the pre-
vious week’s discussions between the different
teams.

A round-table format was used, where each
participant was asked to report on their activities.
The discussions were open and everyone was en-
couraged to contribute. When a particular issue
required too much time, participants were asked
to set another meeting to discuss it. Meetings
lasted about an hour.

The data presented in this study was col-
lected over seven months during the last phase of
the two-year project. It is based on 21 meetings
held between January and July 2014. The same
observer attended all the meetings and took note
of who was involved in each interaction, the topic
being discussed, and the outcome. A typical in-
teraction would last between 5 and 30 seconds.
The notes were then produced as quasi-verbatim
transcripts.

3.4. Coding methodology

Due to the large amount of data collected, it
is necessary to summarize the data obtained in
order to find patterns. This summarization was
performed using a coding methodology based on
the grounded theory approach [33].

Coding was performed after the observa-
tions were completed, based on the meeting
notes taken from February 27th, 2014 to July
31st, 2014. Since it can take time for the peo-
ple observed to be used to the presence of
the researcher [34], and for the researchers
themselves to fully understand the domain
knowledge of the project [35], the data from
the first two meetings were not kept for this
study.

Meetings taking place after July 31st were
also removed from this analysis. These last meet-
ings were mostly related to deployment activities
and featured very little development interactions.
While the analysis of the deployment activities

122

Mathieu Lavallée, Pierre N. Robillard

would be interesting, it was decided to keep the

development discipline and deployment discipline

separate, as the MTS requirements of both disci-
plines are quite different.

Coding schemes were developed following the
Grounded theory approach [33]. In summary,
coding was performed using the following steps:
1. Open coding of all entries, going over the

data as long as new codes can be added.

2. When no new codes can be added, similar
codes are grouped together.

3. Code groups are formalized into schemes.

4. Return to point (1) until no new codes are
added and no new schemes can be formed.
After multiple coding iterations, three coding

scheme emerged. The first scheme pertains to

whether the interaction observation is related to

a technical or administrative topic:

Technical: interactions related to technical is-
sues (requirements, bugs, data, etc.),

Administrative: interactions related to admin-
istrative issues (deadlines, resources, etc.).
The second scheme pertains to one of the four

types of interaction identified:

Team demands (inputs): These interactions
are requests made by team members to some-
one outside the development team.

Team commitments (outputs): These inter-
actions are requests made by someone outside
the development team to the team or a team
member.

Team coordination (in-out): These interac-
tions are related to meetings which had or
will take place between two or more teams
on a given issue.

Team liaison (brokering): These interactions
are information request to the development
team by someone outside the team. The de-
velopment team cannot answer themselves
and therefore act as knowledge brokers with
another team.

The third scheme pertains to the type of team
interacted with:

Client teams: These teams are responsible for
providing requirements and details on what
they need the software to do, along with vali-
dation of the final result.

3rd party teams: These teams represent the
3rd party library support teams, which per-
forms corrections on the software based on
the service-level agreement (SLA) their 3rd
party holds with the organization. Two inter-
nal module support teams are also included
here, as the interaction with these teams fol-
lowed a protocol similar to the interaction
with support teams outside the organization.

Quality teams: These teams are responsible
for quality assurance and quality control
within the organization.

Ancillary teams within the organization:
The organization has many departments, each
with their own expertise and technical compe-
tencies. For example, one ancillary team was
in charge of the creation and configuration
of the development and test environments.

In-house development teams: These teams
represent other development teams working
in parallel projects on the same codebase.

4. Analysis

Data collection returned a total of 464 topics
discussed within the 21 weekly status meetings
analysed. From these 464 topics, 294 were related
to external teams. Therefore, about 60% of all
topics discussed were related to requests to exter-
nal teams, commitments to fulfil for stakehold-
ers, and other interactions that involved external
team members.

Figure 1 presents the number of interactions
between the observed development team and all
external teams. The teams are split based on the
five team types presented in the previous section.
The closer a team is to the dark centre of Figure 1,
the more interactions they had with the observed
team, and the closer they were to them. Note
that since it was an internal development project
for an organization which does not sell software,
the actual clients of the package upgraded was
the Operations team. The Operations team is in
charge of creating and dispatching work orders.
Field workers receive the work orders and must
on occasion interact with the software. A total

Are We Working Well with Others? How the Multi Team Systems Impact Software Quality

123

CLIENT
TEAMS

1
) M
9

25+
Project-8, Project-E,
Project-CL, Project-CR,
Project-CO
Project-R

Vs Field Workers, Marketing

User Support

+Training

- Upper Management

IN-HOUSE] QUALITY
TEAMS Plr’?Jo?gE:tS-G TEAMS
_Quality Assurance
Security
Testing
Observed
development
team
2
. Library-T 35
Environment Library-S \ 16
Web, Databases, Workstations Module-SG
Network 1
Deployment
ANCILLARY 3rd PARTY
TEAMS TEAMS

Figure 1. Proximity of each external team with the observed development team.
The number of interactions are posted on the axes

of 29 different external teams were contacted
during the course of the study.

Table 2 presents the results of the number of
interactions with external team members accord-
ing to their activities, which outlines the amount
of interactions and the rationale for interaction
(to answer team needs, to fulfil team obligations,
etc.). While table 2 present the number of liai-
son interactions, more details are presented in
Figure 2. Table 2 shows that there are numerous
administrative as well as technical interactions
with all the team categories. Note that eight inter-
actions could not be assigned to a specific team,
bringing the total in Table 2 to 294 interactions.

Figure 2 shows the occurrences of liaison
interactions between two teams in which the
observed development team was involved. It
shows that the observed team is pivotal be-
tween the client and the quality group. These
interactions include requirement clarifications,
but also demands by testers to ensure that the

Client teams
3rd party teams @

Quality teams ‘ [J ‘

Ancillary teams [

In-house teams e

Client teams
3rd party teams
Ancillary teams
Quality teams
In-house teams

Figure 2. Liaison interactions (knowledge brokering)
between external team categories. Bubble size
represents the amount of liaison interactions (from
one to seven). Black colour represents technical
interactions, while grey colour represents
administrative interactions

initial data in the system are validated by the
clients before testing can start. More details

124

Mathieu Lavallée, Pierre N. Robillard

Table 2. Number of interactions with external teams per team category

Team Category Team Demands Team Commitments Team Coordination Team Liaison Total
Tech Admin Tech Admin Tech Admin Tech Admin

Client teams 22 21 19 11 8 7 8 5 101

3rd party teams 35 7 8 3 6 4 4 4 71

Quality teams 3 6 19 7 6 4 10 5 60

Ancillary teams 14 8 3 1 2 0 7 0 35

In-house teams 4 1 8 2 1 1 1 1 19

about the importance of the client/quality in-
teractions can be found in the next section.

4.1. Interaction purpose examples

Tables 3, 4, 5 and 6 present a glimpse of the rea-
sons through actual quotes from the development
team. Each table covers one of the four types
of interactions. The objective is to give an idea
how a topic was associated with the appropriate
interaction type and the appropriate external
team.

4.2. Failure of the first iteration
of the project

As stated earlier, the project observed had al-
ready been done once, but failed. A private com-
munication with a manager who witnessed the
failure of the first iteration but did not partic-
ipate in the second one provides some details
on the failure. According to the manager, the
following factors may have caused the failure of
the first iteration:

— Personality conflicts between the develop-
ment team, the client teams, and the other
3rd party teams. This can be related to “Orga-
nizational Skirmish” identified by Tamburri
et al. [36].

— Contractual issues between the organization
and 3rd party developers. Contract negoti-
ations dragged so long that the contracts
were signed moments before the code was
scheduled for production.

— Pressure from the project manager to filter
interactions with the development team. This
manager required that all requests had to
be submitted directly to her, resulting in
missed or misinterpreted messages. This can

be related to the “Radio-Silence” identified
by Tamburri et al. [36].

— Documentation mostly incomprehensible by
anyone outside the development team. Only
the client teams’ documentation could be
reused as is.

While this statement is only supported by
one witness, it still provides some insight as to
why the project initially failed.

5. Discussion

This section discusses the results and poses three
hypotheses to resolve the identified issues, along
with their potential impact on quality.

5.1. First hypothesis: Identification of
the critical teams and client
implication

This study shows that although interactions with
external teams are important, some teams are
more important than others. The frequency anal-
ysis shows that the interactions of the team
loosely follow a Pareto distribution. Approxi-
mately 78% of external interactions (229 of 294
interactions) are made from about 28% of all
teams contacted (8 of 29 teams). Based on the
data in Figure 1, the distribution of these eight
teams (categories of the corresponding team in
brackets) are:

Operations [client team]: 63 interactions.
Testing [quality team]|: 39 interactions.
Library-T [3rd party team]: 27 interactions.
Library-S [3rd party team]: 25 interactions.
Upper Management [client team]: 25 interac-
tions.

6. Security [quality team]: 18 interactions.

G e

Are We Working Well with Others? How the Multi Team Systems Impact Software Quality

125

Table 3. Example quotes related to team demands

Demands to

Quote

Client

Ancillary

In-House

“There is a problem with [the client]. We need the configuration data and we have no
answer from [the client]. I did some work on this, but I cannot finish by myself.” The
team had to ask the client again for the configuration data.

“FEverything has been settled, except for the database configuration. We do not have
the access rights [to the environment] to prepare this. [...] This configuration should be
done by default! It’s like buying a car and not having a key!” The team had to ask the
environment setup team for the rights to change the database configuration.

“We just receive an analysis from Project-G, which is about 60 pages. The analysis
is very badly written and is essentially incomprehensible.” The team had to ask the
Project-G team a clearer document in order to fulfil the analysis.

Table 4. Example quotes related to team commitments

Commitments to

Quote

Client

Quality

In-House

Upper Management has approved a new project with a high priority and a very
aggressive calendar. It is likely that some developers from the development team will be
assigned to this new project. The observed development team must finish their current
project as soon as possible, as delays will be unacceptable for upper management.
“What do we do if we find bugs?” Quality teams need development support during
the developers’ holiday, in August. The development team cannot go on holiday all at
once: someone must stay in place to correct the bugs found by quality teams.

The development team must replace a function so it can support true/false/maybe
values. This is in order to support Project-R, developed by another team, which will
be deployed shortly after their current project ends.

Table 5. Example quotes related to team coordination

Coordination with

Quote

Client

3rd Party

Quality

The development team needs the business processes from the client so they can code
the appropriate functionalities. But the client expects that the development team will
explain how the software will work, and therefore adjust their business process in
consequence. There is confusion as to whom is responsible for providing the business
processes.

The development team must discuss with Library-T support to determine which changes
will be covered under the current contract and which changes will be charged extra to
the project.

The development team pressures the testing team to start acceptance testing even
though integrated testing is not finished. The testing team disagrees: the two teams
will need to meet afterward in order to decide what to do. “How can I start acceptance
testing if integrated testing only reach 50% success?”

7. Environment [ancillary team]: 17 interac-

tions.

8. Module-SG [3rd party team]: 16 interactions.
While the other 21 teams have less than ten

interactions each.

munication channels with these teams are clear.
In the case observed, this issue was somewhat
alleviated by making the testing team sits in
the same room as the developers towards the
end of the project. They could not do the same

Therefore, project managers should try to
identify the teams most likely to have an impact
on the project beforehand, and ensure that com-

with their 3rd party developers, which resulted in
some serious issues. For example, communication
problems with 3rd party support teams, coupled

126

Mathieu Lavallée, Pierre N. Robillard

Table 6. Example quotes related to team liaison

Liaison between Quote

From client to quality

The clients need to provide a description of their workflow for the testing team.

The testing team are planning acceptance testing and want to design tests which
reflect what the client does in its day-to-day work.

From quality to client

A client was assigned to the testing team in order to assist them in their work.

However, the client assigned does not answer the telephone or email. The quality

team needs to talk to him.
The security team need access to the test environment in order to perform their

From quality to ancillary

tests. The Network team needs to open a port for the security team.

From in-house to quality

Testers need to know if they need to perform testing for the integration of

Project-G within the current project. So far, the in-house team developing
Project-G has not answered.

with poor service-level agreements (SLA), re-
quired multiple reworks of some simple change
requests, each taking one month to perform [22].

The Pareto analysis shows that the clients,
the Operations team, is by far the external
team most contacted. However, the development
project followed a waterfall approach, with fixed
requirements. Why so many interactions are
needed with the clients if the requirements are
fixed since the beginning? Many details and sub-
tleties became evident as the developers pro-
gressed into the project. Some requirements have
emerged or have changed very late during the
project. Some of these changes were client re-
quests, but others were tasks that the client
needed to do.

For example, since this project is related to
the update of an old package, some of the new
databases must be updated with the data already
in the old package. However, a lot of the data
in the old package are obsolete: dropdown menu
items are no longer used; database columns are
no longer filled, etc. The developers cannot know
these subtleties, and rely on clients to tell them
which data to port to the new package, and
which data to remove. In this case, the clients
did not have the resources to do this task for the
developers, which leads to multiple delays.

This shows that all projects, whether Agile
or disciplined, require continuous interactions
with stakeholders. But while Agile principles em-
phasize flexibility to clients’ needs (“our highest
priority is to satisfy the customer” [37]), this
study shows that the clients must also be flexible
to developers. Clients have obligations to fulfill.

The domain knowledge of the clients was very
important in this project. Some delays can be
attributed to the unavailability of the client or
to late responses to critical requests. The clients
were required to provide many details about what
the old package did, and why the old package
worked that way, and on what the client wants for
the new package. The clients’ technical expertise
was limited, but they knew very well their work-
flow and how they want the future application
to merge with this workflow.

For project managers, we propose that any
client/provider agreement ensures that the client
is willing to actively help developers. For ex-
ample, the simple task of seeding a database
with its initial dataset is difficult to plan ahead:
it can be done once the database structure is
completed, using data that is usually provided
by the client. In this study, delays in obtaining
clients responses have led to delays in database
configuration, which caused the tests to start
late, and ultimately to be shorter than planned.

Previous Agile studies have used client del-
egates to ensure coordination between the real
client and the development teams [11,14]. Dele-
gation of client duties can prevent constant inter-
ruption of the workflow of developers. One study
assigned each team with “a support person”.

Supporting the customer using all the so-

lutions that the team had to provide was

a critical task. This required a vast amount

of knowledge of all moving pieces. Before we

had the support person, the customers inter-
rupted subject matter experts [i.e. developers]
directly. The subject matter experts typically

Are We Working Well with Others? How the Multi Team Systems Impact Software Quality

127

Client
teams
43
d Quality
S 9 teams
teams
Nl 30 /
» DEVELOPMENT | 28
4 TEAM
Ancillary In-house
teams teams

Figure 3. Chain of commitments between teams. White arrows indicate answers to development team
demands. Grey arrows indicate team commitments that the development team must fulfil

dealt with too many support requests and

ended up context switching in and out of the

tasks at hand [11].

The impact on quality in the case observed
is mainly transcribed in terms of delays. The
failure to provide answers in a due manner to
the questions of the development team led to
multiple delays. In this case, these delays cause
the testing phase to be greatly reduced. In ad-
dition, some code written by 3rd parties could
not be reviewed in time for delivery and was
included in the codebase as-is. By the accounts
of the developers themselves, a lengthy support
process will be necessary post-delivery to ensure
that all the issues are sufficiently smoothed out.

5.2. Second hypothesis: Developers as
knowledge brokers within the MTS

Figure 3 illustrates the two-way interactions be-
tween external teams and the development team,
based on the team demands and team commit-
ments found in Table 2. For example, in the inter-
actions between the development team and the
client teams, the development team had 30 com-
mitments (grey arrow) toward the client teams,
while the client teams answered 43 demands
(white arrow) from the development team.

The left hand side of Figure 3 shows the team
categories with a majority of demands from the
development team (large white arrows), while the
right hand side shows the team categories with
a majority of commitments from the development

team (large grey arrows). The client teams, being
fairly balanced in demands and commitments,
remains in the middle. What should be seen from
Figure 3 is that demands flows from the left to
the right. Ancillary teams fulfil developers’ re-
quests, so that developers can fulfil quality teams’
requests.

Here is an example taken from the interac-
tions observed. The quality teams needed many
test environments in order to perform their work
(acceptance environment, load testing environ-
ment, etc.). The development team was therefore
committed into building these environments and
ensuring that they were coherent with the latest
available versions of the package and that they
were stable enough to support test activities.
While they could do some of the work them-
selves, they needed the support of the environ-
ment setup team, an ancillary team. However,
the environment setup team did not fulfil its
commitment appropriately, causing a number of
issues to the development team. These environ-
mental issues cause the development team to
fail in some of their commitments toward the
quality teams, causing delays and ultimately, the
cancellation of some of the test activities.

Some of these relationships might seem self-ev-
ident, but others might not be as well-known. As
presented in our previous paper [22], managers
should be wary of other projects imposing changes
to the current project. Project managers should
also ensure that all relevant teams (3rd party
teams, ancillary teams) are ready to help the

128

Mathieu Lavallée, Pierre N. Robillard

development team. In the case presented above,
many issues stemmed from poor communications
between the development team and the environ-
ment team.

The role of the development team in this case
is that of a broker. Developers need to redirect
the requests they receive to the appropriate team.
To take an analogy from the TCP/IP protocol,
the development team is the default gateway
for the external teams. External teams needing
something related to the project will ask the de-
velopers first, which will then redirect the team
to the appropriate resource when necessary.

This is especially true of the relationship be-
tween clients and testers. Clients and testers do
not know how the application was built, who
was contacted to code the software, what are
the dependencies. They are mostly conscious
on what they see on their end. When something
goes wrong, their only contact is the development
team. Clients and testers need some answers but
do not know who to ask; developers know and
must assist them.

For project managers, this study shows that
testers cannot work efficiently if they are kept
completely isolated from the development team.
Testers need to ask many questions in order to
perform their work, and these questions must
be efficiently relayed to the appropriate external
team. In the case studied, toward the end of
the project, management had the testing team
sits directly with the development team. Their
goal was to diminish bug resolution times, but
it also helped the testers in the setup of the
different testing phases and testing environment
(integration, acceptance, load, and deployment).
The same can be applied to clients. While it
might not make sense to put the client in con-
tact with every relevant external team, clients’
questions can be distributed by the developers
to the relevant external teams.

The need for knowledge brokers have been
identified in the literature [11,25,36]. It is some-
times identified as a “coordinator role” [16].

Brokers are those individuals who link discon-

nected subgroups. [Another study] found that

system-level coordination is achieved more
efficiently when certain key individuals con-

nect different subgroups as opposed to when

all individuals are directly connected to one

another. Complex MTSs may be more effi-
ciently coordinated if certain individuals act
as ambassadors by connecting their team to

others within the system [25].

The question of whom to assign to the role of
knowledge broker varies from study to study how-
ever. It should be someone who has a widespread
knowledge of the system [10,11]. It is, however,
unnecessary to have a broker between each team.
As presented in the previous section, teams with
a potential critical impact on the development
team’s work should be identified. Knowledge bro-
kers can therefore be assigned only for those
critical teams [38]. Minor teams and modules
could be more isolated from the development
team under study.

The impact on quality rests on the fact that
the development team does not work in isolation.
There are many other teams working indirectly
on the project which require adequate support
to perform their work. Here are a few examples:
— Testers need to obtain real data from the

clients in order to perform tests that can be

relatable to what goes on in reality.

— Testers need working testing environment
with an up-to-date code in order to perform
adequate tests.

— Third party support teams need to know the
type of tests to be performed in order to
ensure that their infrastructure will support
these tests (e.g. stress testing or security test-
ing cloud storage services).

Failure to relay the needs of one external
team to another can lead to the cancellation of
important activities.

5.3. Third hypothesis: Managing
technical and administrative
interactions

Before this study, the organization managers and
the development team were convinced that their
meetings were mostly administrative; discussing
deadlines, budget and resources. Observations
proved that most of these discussions were actu-
ally technical and involved bugs, issues, design,

Are We Working Well with Others? How the Multi Team Systems Impact Software Quality

129

solutions, etc. It is therefore not surprising that
most of the interactions with external teams are
also technical in nature.

But this information should not be ex-
changed only from one manager to another.
This study’s suggestion to project managers
is to make sure that developers in different
teams are able to talk to each other. Man-
agers have a tendency to protect their devel-
opers from outside interference, and it is good
to keep an eye on that, as this was an is-
sue with Upper Management in this case [22].
But developers also need to be able to obtain
technical information from other teams, and
to plan technical solutions and strategies to-
gether.

The literature recommends a layered struc-
ture where the lower levels are able to share
technical details, while the higher levels are able
to share the administrative big picture [10,11].

Cross team knowledge sharing is difficult.

[...] After 1.5 year into practicing Agile, we

found the best way to mitigate, is to have

weekly Scrum of Scrums (S2) meetings and
daily tech leads stand-up meeting. For the
stakeholders, Scrum of Scrums of Scrums

(S3) was very helpful to get things priori-

tized [11].

The impact on quality is that technical is-
sues facing the whole codebase are not discussed
anywhere. Individual teams might be aware of
the issues, but without a platform to discuss and
voice their concern, these issues remain latent
and unaddressed. Organizations have adminis-
trative strategies, where managers discuss future
plans and projects, but how many of them have
technical strategies, where engineers can discuss
future maintenance challenges and issues?

5.4. Threats to validity

A threat to the validity with the use of a single
study is the generalizability of its conclusions.
The objective of this study was however not to
build a theory applicable to all software devel-
opment projects, but to identify new potentially
interesting practices and issues from the industry.
While this study is limited to a single case, it

nonetheless presents new qualitative and quan-
titative data showing the role of clients during
development, the role of developers as knowl-
edge brokers, and the importance of technical
coordination at the MTS level.

Proper case study practices recommend tri-
angulating the data, that is to obtain data from
different approaches in order to confirm the con-
clusions [39, p. 97]. For instance, conclusions
made through observations can be confirmed
with interviews and artefact analyses. In this
case, it was not possible to access any other
data source, limiting the work to an exploratory
study instead of a fully fledged case study. That
is why the recommendations are presented as
hypotheses to be tested, instead of solutions.

6. Conclusions and further works

This exploratory study shows the impact interac-
tions within the multi team system can have on
project success. Due to the single study nature
of this research, future research should look into
whether the three hypotheses presented herein
are relevant in other cases.

1. Identify the external teams most likely to
have an impact on the development project,
based on a Pareto analysis and ensure proper
communication channels with the most impor-
tant ones. Otherwise, slow communications
will cause delays during development, which
might result in rush development work and
shorter testing time.

2. Emnsure that knowledge brokers exist within
the development team to redirect requests
from one external team to the proper other
external team. Otherwise, some activities
with an indirect impact on the development
project (e.g. testing) might be in jeopardy.

3. Ensure that discussion platforms at the
multi-team level are not limited to administra-
tive issues. Technical solutions and strategies
must be discussed between teams. Otherwise
quality issues affecting the whole codebase
could remain unaddressed.

Project managers should be aware of the im-
pact of multi team systems on their projects.

130

Mathieu Lavallée, Pierre N. Robillard

From a disciplined, plan-driven approach, to an
Agile, people-driven approach, there is a need
for an integrated, organization-driven approach,
where the team is integrated within its organi-
zation. Teamwork experts have recommended
breaking the isolation between individuals in or-
der to ensure that the whole team works together.
We should now see if these recommendations hold
at the organization level, in order to ensure that
the whole organization works together. There
might be no “I” in “team”. But how much place
for “us” and “them” are we willing to work with
within the organization?

7. Acknowlegments

This research would not have been possible with-
out the agreement of the company in which it was
conducted, which prefers to stay anonymous, and
without the generous participation and patience
of the software development team members from
whom the data were collected. To all these people,
we extend our grateful thanks.

This work was supported by the Natural
Sciences and Engineering Research Council of
Canada, under grant number A-0141.

References

[1] J. Porck, No Team is an Island: An Integra-
tive View of Strategic Consensus between Groups,
Ph.D. dissertation, Erasmus University Rotter-
dam, 2013.

[2] F.Q. da Silva, A.C.C. Franga, M. Suassuna, L.M.
de Sousa Mariz, I. Rossiley, R.C. de Miranda,
T.B. Gouveia, C.V. Monteiro, E. Lucena, E.S.
Cardozo, and E. Espindola, “Team building crite-
ria in software projects: A mix-method replicated
study,” Information and Software Technology,
Vol. 55, No. 7, 2013, pp. 1316-1340.

[3] R.A. Guzzo and M.W. Dickson, “Teams in or-
ganizations: Recent research on performance
and effectiveness,” Annual Review of Psychology,
Vol. 47, 1996, pp. 307-338.

[4] R.A. Guzzo and E. Salas, Team Effectiveness
and Decision Making in Organizations. Wiley,
1995.

[5] W.S. Humphrey, “The Team Software Pro-
cess (TSP),” Software Engineering Insti-

[13]

[16]

tute, Pittsburgh, PA, USA, Tech. Rep.
ESC-TR~2000-023, 2000. [Online]. https:
//www.sei.cmu.edu/reports/00tr023.pdf

V. Santos, A. Goldman, and C.R.B. de Souza,
“Fostering effective inter-team knowledge shar-
ing in Agile software development,” Empirical
Software Engineering, Vol. 20, No. 4, 2015, pp.
1006-1051.

M. Paasivaara, C. Lassenius, and V.T. Heikkilé,
“Inter-team coordination in large-scale globally
distributed Scrum: Do Scrum-of-Scrums really
work?” in Proceedings of the ACM-IEEE Inter-
national Symposium on Empirical Software En-
gineering and Measurement, ser. ESEM ’12. New
York, NY, USA: ACM, 2012, pp. 235-238.

A. Martini, L. Pareto, and J. Bosch, Improv-
ing Businesses Success by Managing Interac-
tions among Agile Teams in Large Organizations.
Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 60-72.

C.M. Tartaglia and P. Ramnath, “Using open
spaces to resolve cross team issue [software de-
velopment],” in Agile Development Conference
(ADC’05), 2005, pp. 173-179.

H. Smits and G. Pshigoda, “Implementing scrum
in a distributed software development organiza-
tion,” in Agile 2007, 2007, pp. 371-375.

E.C. Lee, “Forming to performing: Transition-
ing large-scale project into Agile,” in Agile 2008
Conference, 2008, pp. 106-111.

J. Sutherland, G. Schoonheim, and M. Rijk,
“Fully distributed Scrum: Replicating local pro-
ductivity and quality with offshore teams,” in
2009 42nd Hawaii International Conference on
System Sciences, 2009, pp. 1-8.

R.P. Maranzato, M. Neubert, and P. Herculano,
“Moving back to Scrum and scaling to Scrum of
Scrums in less than one year,” in Proceedings of
the ACM International Conference Companion
on Object Oriented Programming Systems Lan-
guages and Applications Companion. New York,
NY, USA: ACM, 2011, pp. 125-130.

M. Paasivaara and C. Lassenius, “Scaling Scrum
in a large distributed project,” in 2011 Interna-
tional Symposium on Empirical Software Engi-
neering and Measurement, 2011, pp. 363-367.
P.L. Bannerman, E. Hossain, and R. Jeffery,
“Scrum practice mitigation of global software
development coordination challenges: A distinc-
tive advantage?” in 2012 45th Hawaii Interna-
tional Conference on System Sciences, 2012, pp.
5309-5318.

D.E. Strode, S.L. Huff, B. Hope, and S. Link,
“Coordination in co-located Agile software de-

Are We Working Well with Others? How the Multi Team Systems Impact Software Quality

131

[17]

[18]

[19]

[26]

[27]

velopment projects,” Journal of Systems and
Software, Vol. 85, No. 6, 2012, pp. 1222-1238,
special Issue: Agile Development.

A. Mundra, S. Misra, and C.A. Dhawale, “Prac-
tical Scrum-Scrum team: Way to produce suc-
cessful and quality software,” in 2013 13th Inter-
national Conference on Computational Science
and Its Applications, 2013, pp. 119-123.

A. Scheerer, T. Hildenbrand, and T. Kude, “Co-
ordination in large-scale Agile software devel-
opment: A multiteam systems perspective,” in
2014 47th Hawaii International Conference on
System Sciences, 2014, pp. 4780-4788.

A. Scheerer, S. Bick, T. Hildenbrand, and
A. Heinzl, “The effects of team backlog depen-
dencies on Agile multiteam systems: A graph
theoretical approach,” in 2015 48th Hawaii In-
ternational Conference on System Sciences, 2015,
pp. 5124-5132.

A. Martini, L. Pareto, and J. Bosch, “A mul-
tiple case study on the inter-group interaction
speed in large, embedded software companies
employing Agile,” Journal of Software: Evolu-
tion and Process, Vol. 28, No. 1, 2016, pp. 4-26,
jSME-14-0083.R3.

D.A. Tamburri, R. Kazman, and H. Fahimi,
“The architect’s role in community shepherding,”
IEEE Software, Vol. 33, No. 6, 2016, pp. 70-79.
M. Lavallée and P.N. Robillard, “Why good de-
velopers write bad code: An observational case
study of the impacts of organizational factors
on software quality,” in 2015 IEEE/ACM 37th
IEFEE International Conference on Software En-
gineering, Vol. 1, 2015, pp. 677-687.

M.A. Marks, L.A. DeChurch, J.E. Mathieu, F.J.
Panzer, and A. Alonso, “Teamwork in multiteam
systems,” Journal of Applied Psychology, Vol. 90,
No. 5, 2005, pp. 964-971.

J.E. Mathieu, M.A. Marks, and S.J. Zaccaro,
Multi-team systems. London: Sage, 2001, pp.
289-313.

R. Asencio, D.R. Carter, L.A. DeChurch, S.J.
Zaccaro, and S.M. Fiore, “Charting a course for
collaboration: A multiteam perspective,” Trans-
lational Behavioral Medicine, Vol. 2, No. 4, 2012,

pp. 487-494.
M. Cohn, Advice on Conducting the
Scrum of Scrums Meeting, 2007. [Online].

https: //www.scrumalliance.org/community /
articles/2007 /may/advice-on-conducting-the-
scrum-of-scrums-meeting Retrieved 2015-08-21.
Z.U.R. Kiani, D. Smite, and A. Riaz, “Measuring
awareness in cross-team collaborations — Dis-
tance matters,” in 2013 IEEE 8th International

[36]

Conference on Global Software Engineering, 2013,
pp. 71-79.

T. Chau and F. Maurer, Knowledge Sharing
in Agile Software Teams. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2004, pp. 173-183.
K. Lanaj, J.R. Hollenbeck, D.R. Ilgen, C.M.
Barnes, and S.J. Harmon, “The double-edged
sword of decentralized planning in multiteam sys-
tems,” Academy of Management Journal, Vol. 56,
No. 3, 2013, pp. 735-757.

J.M. Verner, O.P. Brereton, B.A. Kitchenham,
M. Turner, and M. Niazi, “Systematic literature
reviews in global software development: A ter-
tiary study,” in 16th International Conference on
Evaluation Assessment in Software Engineering
(EASE 2012), 2012, pp. 2-11.

M. Lavallée and P.N. Robillard, in 2015
IEEE/ACM 3rd International Workshop on Con-
ducting Empirical Studies in Industry, 2015, pp.
12-18.

J.P. Looney and M.E. Nissen, “Organizational
metacognition: The importance of knowing the
knowledge network,” in System Sciences, 2007.
HICSS 2007. 40th Annual Hawaii International
Conference on, 2007, p. 190c.

A L. Strauss, Qualitative Analysis for Social Sci-
entists. Cambridge University Press, 2003.

H.A. Landsberger, Hawthorne Revisited. Cornell
University, 1958.

T.C. Lethbridge, S.E. Sim, and J. Singer, “Study-
ing software engineers: Data collection tech-
niques for software field studies,” Empirical
Software Engineering, Vol. 10, No. 3, 2005, pp.
311-341.

D.A. Tamburri, P. Kruchten, P. Lago, and
H. van Vliet, “Social debt in software engineer-
ing: Insights from industry,” Journal of Internet
Services and Applications, Vol. 6, No. 1, 2015,
p. 10. [Online]. https://jisajournal.springeropen.
com/articles/10.1186/s13174-015-0024-6

P. Runeson, A. Stefik, and A. Andrews, “Varia-
tion factors in the design and analysis of repli-
cated controlled experiments,” Empirical Soft-
ware FEngineering, Vol. 19, No. 6, 2014, pp.
1781-1808.

R.B. Davison, J.R. Hollenbeck, C.M. Barnes,
D.J. Sleesman, and D.R. Ilgen, “Coordinated ac-
tion in multiteam systems,” Journal of Applied
Psychology, Vol. 97, No. 4, 2012, pp. 808-824.
R.K. Yin, Case Study Research: Design and
Methods, ser. Applied Social Research Methods,
L. Bichman and D.J. Rog, Eds. Thousand Oaks,
CA, USA: Sage, 2002, Vol. 5.

e-Informatica Software Engineering Journal, Volume 12, Issue 1, 2018, pages: 133-165, DOI 10.5277/e-Inf180106

A Systematic Mapping Study on Software
Measurement Programs in SMEs

Touseef Tahir*, Ghulam Rasool*;, Muhammad Noman*
*COMSATS Institute of IT, Department of Computer Science, Lahore, Pakistan.

touseeftahir@ciitlahore.edu.pk, grasool@ciitlahore.edu.pk, nomanyasir29@gmail.com

Abstract

Context: Software measurement programs are essential to understand, evaluate, improve and
predict the software processes, products and resources. However, the successful implementation of
software measurement programs (MPs) in small and medium enterprises (SMEs) is challenging.
Objective: To perform a detailed analysis of studies on MPs for highlighting the existing mea-
surement models, tools, metrics selection methods and challenges for implementing MPs in SMEs.
Methods: A Systematic Mapping Study (SMS) is conducted.

Results: In total, 35 primary studies are comprehensively analysed. We identified 29 software
measurement models and 4 tools specifically designed for MPs in SMEs. The majority of the
measurement models (51%) are built upon software process improvement approaches. With respect
to the measurement purposes of models, the distribution of MPs was identified as: characterization
(63%), evaluation (83%), improvement (93%) and prediction (16%). The majority of primary
studies discussed the use of measurement experts and experience (60%) followed by the use of
measurement standards (40%) and the use of automated tools (22%) for metrics selection in
MPs. It was found that the SMEs and large organizations face different challenges which was
shown in studies on challenges reported in SMEs reports . The challenges existed even before the
implementation of MPs and were connected with infrastructure and management processes in
SMEs. The challenges reported by studies in large organizations are mostly related to the issues
discovered while implementing MPs.

Conclusion: The analysis of measurement models, tools, metrics selection methods and challenges
of implementing MPs should help SMEs to make a feasibility study before implementing a MP.

Keywords: software measurement process, software measurement program, small and
medium enterprise (SME), software metrics, software measures, systematic mapping study,

GQM

1. Introduction

The number of Small and Medium Enterprises
(SMESs) in the software industry is rising quickly
and contributing significantly to the Gross Do-
mestic Product (GDP) [1]. The definition of
SMEs varies from country to country. According
to the European Union [2], “SMEs are those com-
panies which employ fewer than 250 employees
and which have an annual income not more than
50 million euro, and/or an annual balance sheet
total not more than 43 million euro” [3]. The

firms which employ fewer than 50 employees are
known as small enterprises and the firms which
employ a maximum of ten or in some situations
five workers are known as micro-enterprises [3].
SMEs play a very important role in supporting
the economy and growth of any country [4].
The software development organizations, just
like any other organization, aim to deliver prod-
ucts and services with expected quality by effec-
tively using resources within software develop-
ment processes. Software measurement is essen-
tial to characterize, evaluate, predict and improve

134

Touseef Tahir, Ghulam Rasool, Muhammad Noman

software products, processes and resources. Every
software development process either generates
or uses measurement data. The software mea-
surement domain presents various measurement
models, tools and practices to collect and analyse
measurement data to estimate, monitor, control
and improve software processes, products and
resources. Software development organizations
implement measurement programs (MPs) as part
of software measurement process [5].

It is discussed in a recent SLR [6] that most
of the MPs in large organizations fail to achieve
measurement objectives and usually they do not
sustain more than two years due to multiple rea-
sons [6]. The rate of failure in the successful im-
plementation of MPs is particularly exceptional
in the perspective of SMEs [7,8]. The MPs at
SMEs become challenging because they usually
do not have enough time, budget and resources
to implement measurement plans. Software mea-
surement knowledge is particularly poor in SMEs
[7,8]. The use of software measurement is lim-
ited in SMEs due to the lack of metric selection
methods [9], a different set of metrics used in
different SMEs [10], the lack of infrastructural
facilities, low measurement maturity level, small
development teams, higher workload [11] and
limited measurement planning [12,13].

A comprehensive Systematic Literature Re-
view was conducted on software MPs and it was
observed that there were fewer than 10 percent
primary studies on implementing MPs in SMEs
[6]. Therefore, this study presents a Systematic
Mapping Study (SMS), which specifically focuses
on measurement models, tools, metrics selection
methods, and challenges of implementation soft-
ware MPs at SMEs. Later, the measurement
models, tools, metrics selection methods, and
challenges in the implementation of MPs in SMEs
and large organizations [6] are also compared.
The measurement studies are analysed by an-
swering the following research questions (RQs).
There is no such study published with research
questions (presented below) to the best of our
knowledge.

RQ1: What measurement models, tools and
practices for implementing measurement pro-
grams in SMEs are discussed in literature?

RQ2: What are the problems, challenges and is-
sues of implementing measurement programs
in SMEs?

RQ3: What metrics selection techniques, meth-
ods and approaches are used for measurement
programs in SMEs?

This paper is organized as follows: Section 2
presents related work, Section 3 presents System-
atic Mapping Process, Section 4 presents results
and analysis and Section 5 presents conclusions.

2. Related work

Kitchenham [14] conducted a mapping study to
investigate the status of software measurement
research between 2000 and 2005. She identified
that software MPs were the most researched area
of the software measurement domain [14]. The
journal papers were found to be more influential
in measurement community than conference pa-
pers based on the numbers of citations. The study
concluded that the there is a need for compara-
tive studies and to serve this purpose empirical
datasets should be made public. The datasets
used among the primary studies were categorized
as public (31%), private (61%), partial (8%) and
unknown (1%). The primary studies lack the
discussion on lightweight measurement methods
for SMEs.

Gomez et al. [15] conducted an SLR to answer
fundamental questions of what, how and when
to measure. They analysed 78 primary studies.
The measurement aspects discussed among the
primary studies were categorized as project, pro-
cess and product. They established that most of
the primary studies discussed product metrics
(79%) followed by project (12%) and process (9%)
metrics. The software complexity and its size
were identified as the most frequently measured
attributes. The software metrics were mapped to
typical initial, intermediate and final phases of
a software project life cycle. Most of the metrics
were found to be utilized for the initial phase
(48%), followed by the intermediate (36%) and
final (16%) phase. They concluded that software
metrics need theoretical and empirical validation
before being used in a measurement process. The

A Systematic Mapping Study on Software Measurement Programs in SMFEs

135

discussion and primary studies on lightweight
measurement methods and measurements used
in SMEs are missing in the SLR.

The software measurement process has a key
objective of predicting the use of measurement
data and software defects as they are one of
the most predicted attributes [6,14]. Catal et al.
[16] conducted an SLR to analyse the software
defects prediction studies. They analysed 75 pri-
mary studies published between 1990 and 2009
and classified the primary studies according to
methods used for fault prediction, i.e. machine
learning methods/algorithms, statistical and ma-
chine learning methods and expert judgment.
The machine learning and statistics are found to
be the most widely used methods for software
measurement. Furthermore, fault prediction met-
rics were classified with respect to method, class,
component, file, process and quantitative-values
levels. They found out that 60% of studies used
method-level metrics and 24% of studies applied
class-level metrics and only 4% of studies have
used process-level metrics.

Malhotra [17] conducted an SLR on software
defect prediction studies published between 1991
and 2013. They found that most of the stud-
ies use size, effort and object oriented metrics
for prediction. Radjenovié et al. [18] conducted
an SLR on fault prediction studies which were
published between 1991 and 2011. They iden-
tified that object-oriented metrics (49%), tradi-
tional source code metrics (27%) and process
metrics (24%) are mostly used in fault predic-
tion studies. They found out that defect predic-
tion studies mostly used one type of metrics, e.g.
method-level, class-level, process-level, or source
code metrics or object-oriented metrics. Hall et al.
[19] conducted an SLR to analyse 208 fault pre-
diction studies that were published between 2000
and 2010. They established that studies which
used a combined approach (where more than one
type of metrics were used) performed better than
the studies which used a single type of metrics.
They found that the machine learning methods
were mostly discussed. These methods focused on
utilizing large amounts of data. They observed
that the machine learning methods outperform
the statistical methods because they overcome

the shortcomings of traditional statistical pro-
cesses. The discussion on lightweight prediction
methods, which consider the minimal budget,
time and resources of SMEs, are currently miss-
ing from the discussed SLRs.

Unterkalmsteiner et al. [20] conducted an
SLR to analyse measurements and evaluation
strategies, which are used to assess the software
process improvement (SPI) initiatives. They anal-
ysed 148 primary studies that were published
between 1991 and 2008. The studies were clas-
sified with respect to their measurement focus,
process quality, and prediction/estimation accu-
racy and software measurements (such as size,
effort and customer satisfaction). The SPI mod-
els are discussed and the capability maturity
model (CMMI) is identified as the most studied
model in the SPI domain. The primary studies
mainly focused on the measurement of quality
(39%), prediction accuracy (38%) and produc-
tivity (35%). Three levels of measurements are
explored, i.e. product, project and organization.
The measurement of SPI initiatives is mostly
done at project and project-product level. The
problems in SPI studies are discussed, e.g. more
than half of the studies do not completely de-
scribe the SPI context (organizational size, mea-
surements validity and scope of SPI activities,
etc.). They considered that the lack of context
description might hinder the reuse of learned
lessons and results in similar settings. This study
is different from this research in two ways; 1) it
does not discuss the role of MP for SPI and 2)
it mainly focuses on SPI for large companies as
there is no discussion and paper found on SMEs.

Touseef et al. [6] conducted an SLR on soft-
ware MPs by analysing 65 primary studies that
were published between 1997 and 2014. They
analysed 35 measurement planning models, 11
associated tools, and metrics selection meth-
ods, and success/failure factors for implementing
MPs. Most of the models and tools extended
goal-based measurement approaches. The mea-
surement studies are categorized with respect
to measurement purposes, i.e. characterization
(81%), evaluation (77%), prediction (28%) and
improvement (70%). The measurement planning
models and tools are categorized based on mea-

136

Touseef Tahir, Ghulam Rasool, Muhammad Noman

Process Steps

Definition of
Research Questions

Search Process

Screening of Papers

Keywording using
Abstracts

Data Extraction and
Mapping Process

v

v

v

v

!

Review Scope

All Papers

Relevant Papers

Classification

Systematic Map

Scheme

Outcomes

Figure 1. The systematic mapping study (SMS) process [21]

surement entities, i.e. processes (96%), products
(58%) and resources (40%). The success factors
for implementing MPs include organizational
adoption of an MP, and Integration of an MP
with SDLC, the synchronization of an MP with
an SPI. Most of the measurements planning mod-
els were evaluated in case studies. They found
that there are few measurement studies with the
comparisons and reusability of results and the
learned lessons of implementing MPs. The lack
of context description (e.g. organizational size,
measurement scope, and measurement analysis
methods) hinders the reusability and compara-
tive analysis of results among primary studies.
The metrics datasets used in MPs are not ex-
plicitly presented in the measurement studies. In
this study, only 3% of the studies discuss mea-
surement planning models and tools for SMEs.
Therefore, this SMS was conducted to specifi-
cally analyse measurement models, tools, and
metrics selection methods that are proposed for
SMEs while considering specific challenges in the
implementation of MPs in SMEs.

Sulayman et al. [22] conducted an SLR on
software process improvement (SPI) in small and
medium web companies. The aim of the study
was to specifically identify SPI models and tech-
niques for small and medium web companies.
They analysed only 4 primary studies after apply-
ing inclusion/exclusion criteria based on research
questions. They found the limitations of SMEs,
such as tight budget, ambitious deadlines and
short-term strategy. The success factors include
an increase in productivity, compliance with stan-
dards and overall operational efficiency. Pino et
al. [23] conducted an SLR to analyse SPI ap-
proaches in SMEs by analysing 45 primary stud-
ies published between 1996 and 2006. They found

CMM (38%) as the most discussed SPI standards
in primary studies. They found that other stan-
dards, such as ASSESSMENT SEI (16%), IDEAL
(13%), CMMI (9%), SPICE (13%), ISO/IEC
12207 (11%), GQM (2%) and PSM (2%), are
not frequently used in SMEs. They also estab-
lished that SPI is mostly measured in terms of
employee perception instead of a formal mea-
surement process. They claimed that the most
frequently used SPI model for SMEs is CMM
used as a reference model, ISO 15504 as a pro-
cess assessment model and the IDEAL model
for guiding improvement. It was also established
that SMEs found it hard to implement SEI and
ISO models. The RQs answered in these studies
([22,23]) do not discuss the role of MPs for SPI,
but rather the role of measurement for SPI. This
study provides an analysis of the implementation
of MPs in SMEs with respect to characterization,
evaluation, improvement and prediction.

3. Systematic mapping process

This section presents the planning of Systematic
Mapping Study (SMS) to analyse the existing lit-
erature regarding MPs at SMEs [21]. The overall
steps of an SMS process are presented in Figure 1.
The goal of this SMS is to systematically recog-
nize, explore, and classify the studies on software
MPs at SMEs and present the mapping of these
MPs to highlight their possible challenges and
the future scope of study [24]. The SMS was
performed following the guidelines in [25] and
implemented the systematic mapping process
proposed by Petersen et al. [21]. Each step of
the SMS process has an outcome and the overall
outcome of the process is a systematic map.

A Systematic Mapping Study on Software Measurement Programs in SMFEs

137

Table 1. Research questions of systematic mapping study

D Research question Motivation

RQ1 What measurement models, tools and prac- To understand the reported measurement mod-
tices for implementing measurement programs els, tools and practices developed in SMEs to
in SMEs are discussed in literature? implement software measurement programs.

RQ2 What are the problems, challenges and issues of To understand problems, limitations and chal-
implementing measurement programs in SMEs? lenges faced by SMEs during the implementation

of measurement programs.

RQ3 What metrics selection techniques, methods and To highlight the metric selection methods used
approaches are used for measurement programs in different SMEs for implementing their mea-
in SMEs? surement programs.

Table 2. Search string

Population Intervention

(software) AND (“measurement program” OR “mea-
surement process”) AND “small and medium enter-
prise” OR SME)

(metricx OR measurs OR model OR framework
OR tool OR challengx OR problem OR issue OR
improv OR goal)

3.1. Definition of research questions

The main objective of this mapping study is to
determine how software MPs are implemented
in small and medium enterprises (SMEs). To
answer this question, three research questions
(RQ) were defined, as presented in Table 1.

3.2. Search process

A search string is used to select a potentially
relevant set of primary studies. The lack of consis-
tency for measurement concepts and terminology
is a major threat to finding the relevant stud-
ies [26]. Therefore, initially the main concepts
and terminology in the software measurement
domain were reviewed and then the keywords
considering the RQs were identified. Then, the
synonyms and alternatives for each keyword were
checked. Finally, “AND” and “OR” operators
and wildcard character “x”
the search string. The “OR” operators were used
to combine synonyms. The wildcard character “x”
was used to represents zero, one, or multiple al-
phanumeric characters in the position it occupies.
The “AND” operator was used to combine the
search string between population and interven-
tion as shown in Table 2.

were used to create

Population: In software engineering, popula-
tion may refer to a particular software engi-
neering role, the category of software engineer,
an application area or an industry group [27].
In our perspective, the population is (software)
AND (“measurement program” OR “measure-
ment process”) AND (“small and medium en-
terprise” OR SME). In population, the key-
word “Software” is used to search studies re-
lated to software engineering only. The key-
words “measurement program” and “measure-
ment process” are used to search studies which
discuss a measurement program or a measure-
ment processes. The keyword “small and medium
enterprise” and SME cover small and medium
enterprises.

Intervention: In software engineering, inter-
vention refers to a software methodology, tool,
technology, or procedure. In this case the
intervention is clear according to the situ-
ation of this study, that is (metricxk OR
measurx OR model OR framework OR tool
OR challengx OR problem OR issue OR
improvx OR goal). The keywords “metric”
and “measur” refer to the metric/metrics and
measure,/measures/measuring/measurement, re-
spectively. The keyword “improvs” refers to
the variations of improve such as improv-

138

Touseef Tahir, Ghulam Rasool, Muhammad Noman

ing/improves/improved. The “challeng” refers
to the variations of challenge such as chal-
lenges/challenged /challenging.

The primary studies were selected by review-
ing the titles, abstracts and conclusions of the
search results obtained from different databases.
The databases were selected based on the experi-
ence reported by [6]. Table 3 presents the number
of search results per research database.

3.3. Screening of relevant papers

This step of SMS is completed by applying study

inclusion and exclusion criteria.

Study exclusion criteria:

The studies which do not conform with the
exclusion criteria were excluded:

— studies which are not reported in the English
language;

— studies which are not accessible in full-text;

— books and grey-literature;

— studies conducted in non-software companies.

Study inclusion criteria:

General criteria:

— a study is conducted in SMEs context;

— a study is in the area of software metrics and
software measurement programs/ processes;

— a study includes an empirical evaluation (ex-
periment, case study, survey, experience re-
port, and/or action research).

Criteria specific to research questions:

— a study presents discussion/analysis on soft-
ware measurement models or tools in SMEs
(RQ1);

— a study discusses challenges, issues, limita-
tions and problems that are related to soft-
ware measurements in SMEs (RQ2);

— a study discusses metric selection methods
for implementing software measurement pro-
grams in SMEs (RQ3).

Figure 2 presents the selection of the final set
of primary studies (35) after applying the search
process, exclusion/inclusion criteria, and snow-
ball tracking. The snowball tracking reviews the
references of every primary study with respect
to its relevance to research questions. Endnote,
a reference management tool, is used to remove
duplicates and to manage the large number of
references.

3.4. Keywording

The objective of keywording is to effectively pro-
duce a classification schema and ensure that all
the selected papers are relevant [21]. Figure 3
shows the systematic process that was followed
to create the classification schema.

The initial step comprised reviewing the ab-
stracts of primary studies and then allocating
them a number of keywords to recognize the
basic contribution topic of the article. After that,
all the keywords were consolidated to establish
the high-level of classification, and to understand
the area of research highlighted in the primary
studies. The schema experienced a continuous
improvement process by logically fitting the pa-
pers into classes for new data. The resulting
classification schema is presented below.

The primary studies are classified based on
the following schemas:

— Time of publication: to map the studies
based on the time of publication.

— Empirical research method: to map the
study according to the research method used.

— Contribution type: to map the outcomes
of different types of studies.

— Models/tools: to map the models, tools,
and measurement methods for building
software measurement processes in SMEs.

— Challenges: to map the studies, which
discussed challenges, issues, limitations re-
garding software measurements in SMEs.

— Metric selection criteria: to map the
studies which discussed metrics selection
methods and most commonly collected
metrics in SMEs.

The time of publication schema describes the
number of primary studies which are related to
research questions.

The empirical research method is the clas-
sification schema which categorizes the studies
based on their research methods as presented in
Table 4. The research methods are categorized
as a case study, survey, industrial report and
experiment.

The contribution type schema describes the
type of contribution by study. It is clas-
sified into models/tools, measurement meth-
ods in SMEs, metric selection methods, com-

A Systematic Mapping Study on Software Measurement Programs in SMFEs

139

Table 3. Number of studies retrieved per research database

Research resources used

Number of potential
primary studies

Search Engines

Google Scholar 1960
Wiley Interscience 34
Science Direct Journals 06
Springer 117
One Search (Search Tool) 2372
ACM 50
IEEE Xplore 99
Journal Databases

ACM Transactions on Software Engineering Methodology (TOSEM) 10
IEEE Transactions on Software Engineering (TSE) 2
IEEE Software 4
Software Quality Journal 3
Journal of Systems and Software 1
Empirical Software Engineering 38
Automated Software Engineering 0

Conference Databases

IEEE International Software Metrics Symposium (2000-2005) 3

IEEE International Conference on Software Engineering (ICSE) 0
Joint International Conference on Software Process and Product Measurement 5
(Mensura) and Workshop on Software Measurement (IWSM)

Empirical Software Engineering and Measurement (ESEM) (2007-2014) 0
Product Focused Software Process Improvement (PROFES) 11
Software Process and Product Measurement 0
Software Engineering and Advanced Applications (SEAA) 3
Pacific Industrial Engineering and Management Systems (APIEMS) 4
European conference on software process improvement (EuroSPI) 5
International Conference on empirical Assessment in Software Engineering (EASE) 0
International Symposium on Empirical Software Engineering and Measurement 0
(ESEM)

Information Technology: New Generations (ITNG) 0
International Conference on Emerging Technologies (ICET) 1
Total 4728

monly selected metrics and challenges related
to the implementation of MPs in SMEs. The
Model/tools are further categorized into ex-
tended goal question metric (GQM) method-
ology or software process improvements (SPI)
methodology or measurement process improve-
ment.

The metric selection criteria are also catego-
rized into three subclasses; use of standards, use
of measurement expert and experience and use
of automated tools. These three subclasses were

earlier defined based on the analysis of metrics se-
lection methods used in the measurement studies
in [6]. The mapping results of the classification
schema are analysed in Section 4.

3.5. Data extraction and mapping

A data extraction form was developed in MS
Excel (Table 5) to extract data from the pri-
mary studies for each RQ using the classification
schema.

140

Touseef Tahir, Ghulam Rasool, Muhammad Noman

Search String

Primary Search

SnowBalling

4 Studies Added

35 Primary Studies

4728 Studies Retrieved—»| Inclusion/Exclusion Criteria

[———— 31 Primary Studigs——F——

42 Potential Primary Studies

Whole Text Review of
Studies

Figure 2. Process of selecting primary studies

Update
Schema

Keywording

Abstract

Y Z %
/ Classification :
Schema / Article

Sort Articles
into Schema

Y

Systematic
Map

Figure 3. Creating the classification schema [21]

4. Results and analysis

In total, 35 measurement studies are analysed
in this section. First a short overview of the
studies is presented with respect to publication
year and research method. It is followed by the
presentation of results and analysis.

Publication year: The results of the systematic
mapping study are presented in this section. In
total, 35 primary studies are analysed and Fig-
ure 4 presents the numbers of primary studies
with respect to the year of publication. The num-
bers of primary studies on implementing MPs

in SMEs are smaller as compared to 65 primary
studies on implementing MPs in large organi-
zations in our previous study [6]. Therefore, it
is important to discuss the history of software
measurement domain and how it became critical
of SMEs.

Software measurement is a young discipline
as the history of software metrics dates back to
the late 1960s [31]. It is claimed in [31] that the
first book on software measurement [32] was pub-
lished in 1976 and the first comprehensive report
on implementing software MPs was published
by Grady and Caswell [33] in 1988. The widely

A Systematic Mapping Study on Software Measurement Programs in SMFEs

141

Table 4. Classification schema of research methods

Purpose Meta-data

Survey A research method designed and performed to observe the opinions of people in
a structured way [28]

Case study A research method considered and presented to examine the opinions of people in
an unstructured way [28, 29|

Experiment A research method designed and performed to work with one or more variables and

Industrial report

manage all other variables to measure results [30]
A research method used to evaluate the industrial experiences without clear research
questions and objectives [30]

Table 5. Data extraction form

Purpose

Meta-data,

General information
Specific information

Study title, authors’ names, date of publication and research methodology
Measurement models/tools at SMEs, metric selection methods, commonly selected
metrics and challenges/problems/limitations in the implementation of measurement

programs in SMEs

used Goal Question metrics (GQM) model [34]
was also introduced in 1988 and the first compre-
hensive guidebook on goal-oriented measurement
was published by Park in 1996 [35]. Software MPs
in large organizations have faced many challenges
over the last three decades [6,36].

The evolution of software engineering and
software industry includes interdependencies and
has impact on the emergence of SMEs. The SMEs
started to influence the software development in-
dustry following the advancements in microchip
technology and communication technologies (e.g.
the internet) and the unbundling of software
from hardware. According to [37], internet ser-
vices also affected SMEs based on four factors.
The first factor is access to global information
sources to enable extension in a business network.
The second factor is enabling faster document
transfer, online transactions and faster commu-
nication channels. The third factor is enabling
the search of low cost market, minimizing depen-
dency on a local market (e.g. outsourcing, crowd
sourcing and global software engineering). The
fourth factor is feedback by international clients
and adapting globally successful strategies.

Researchers and practitioners specifically
aimed to design software development pro-

cesses for SMEs during the mid-1990s. There
is a plethora of studies published between 1995
and 2000 to promote iterative and incremental
software development for the different structure
and limitation of SMEs [38]. Basili and Larman
claimed in their book ([38]) that the first book on
agile software development (e.g. SCRUM, XP)
was published by Cockburn [39] in 2002. SMEs
represent 99 percent of businesses in Europe!
with respect to the currently used definition of
SMEs that was legislated in 2003. This definition
is an updated version of the 1996 definition.

It might be argued based on the above dis-
cussion that software engineering research com-
munity initially focused on software development
processes (e.g. Waterfall, Spiral) and software
measurement processes in large companies. Later,
the research community focused on software de-
velopment processes (e.g. Agile, SCRUM) in
SMEs when these processes became operational
and popular, then they specifically focused on
software measurement processes for the charac-
terization, evaluation, prediction and improve-
ment of software development processes in SMEs.

The first study meeting the inclusion crite-
ria. was published in 2001. Therefore, this paper
presents the search period between 2001 and

"http://ec.europa.eu/growth/smes/business- friendly-environment /sme-definition__en

142

Touseef Tahir, Ghulam Rasool, Muhammad Noman

> 2 6 o A
TS

> O
N
AT PSS s

Industry report

Case Study

Experiment

Figure 5. Distribution of primary studies with respect to research methods

2017 in Figure 4. The research databases shown
in Table 3.

Research method: The most commonly used
research methods in selected studies are case
studies (51%) and surveys (25%). Some of the
studies used industrial reports (14%) and experi-
ments (8%) as shown in Figure 5.

RQ1: “What measurement models, tools
and practices for implementing measure-
ment programs in SMEs are discussed in
literature?”

Touseef et al. [6] conducted an SLR on software
MPs by analysing 65 primary studies, they studied
35 measurement planning models. In their study
[6], they found only 4 specifically defined mea-
surement models for SMEs. They observed that
83% (29 out of 35) measurement models extended
the goal-oriented approach or the goal question
metric model. The concept behind goal-based
approaches is to identify the measurement goals
of an organization and then the relevant metrics
to achieve measurement goals [34, 35]. In this

SMS, 29 software measurement models and 4
tools among 35 primary studies were identified.
Table 6 presents the “Base Measurement
Model”, of the “Measurement Model” and its
“Measurement Purpose” and “Implementation
Purpose”. The “base measurement model” in Ta-
ble 6 refers to the parent model of the identified
“Measurement model” for SMEs. The “implemen-
tation level” refers to the implementation levels
of MPs (i.e. project level and/or organization
level). The “measurement purpose” represents
the basic purpose/objective of MPs discussed
in the studies (i.e. to Evaluate (E), Improve (I),
Characterize (C) and/or Predict (P) the software
process, product or resource entities) [34,35].
Figure 6 presents the categorization of mea-
surement models. These models are categorized
among “goal oriented approach improvement
(GOAI)”, “software process improvement (SPI)”
and “measurement process improvement (MPI)”.
The PRISMS model is based on the
goal-oriented measurement and SPI. Similarly,

A Systematic Mapping Study on Software Measurement Programs in SMFEs

143

Table 6. Software measurement models for SMEs

ID Base Measurement model Implementation level Measurement
purpose
S16 GQM Light weight GQM Organization CEI
S2 GQIM, CMM MIS-PyME MCMM Project CEIP
S1 GQM, GQIM MIS-PyME Project CEIP
S5 GQM, GQIM MIS-PyME Organization CE
S3 GQIM Xéfﬂiﬁi\fiy Project, Organization CEI
S4 GQIM MIS-PyME Organization CEI
S6 CMMI 1.2 SQIP Project EI
S8 GQM, CMM PRISMS Project CEI
S9 CMM MESOPYME Project, Organization I
S10 QFD SPM Organization EI
S11 CMMI AAHA Organization I
S12 TQM LQIM Organization EI
S14 BSC HSC (Holistic Organization EI
Scorecard)
S15 No Base Model Pro Scrum Project I
520 GQM GQM-DSFMS Project CEI
S19 No Base Model Tarc Project C
521 GQM Four step framework Organization CI
S22 GQM OMSD Project CEIL
S23 GQM SPGQM Project CEI
S24 No Base Model SCAPT Organization CEI
S26 QIP, SME AM-QulICk Project, Organization EI
S27 S(I\J/I%IMPSP’ XP, ASPISME Project, Organization EI
S28 ISSC(;{/[IJFMC 12207:2008, ?;2%1;512%%;83! ISE(JJ%UM Project, Organization CEIP
S29 SWEBOK i&%%};tgg%iSO/IEC Project, Organization CEIP
ISO/IEC 15504,
S30 ISO/IEC 12207:2008 and Hybrid Process Model Project, Organization CEIP
CMMI
S31 GQM GQM Adaption for SPI Project, Organization EI
S32 ISO/IEC 12207:2008 COMPETISOFT Project, Organization CEP
S33 No Base Model PMS-IRIS Project, Organization EI
S35 CMMI, SCRUM CMMIbyScrum Project, Organization CEI

MIS-PyME, MCMM, and 4-step framework ex-
tend goal-oriented measurement and MPI. The
AAHA model is proposed to enable SPI and
MPI in SMEs. An interesting finding is that the
numbers of SMEs are increasing rapidly through-
out the world but there are limited numbers of
studies that present measurement models/tools
for small and medium enterprises as compared to
large organizations [6]. For instance, SMEs rep-
resent 99 percent of businesses in Europe? with

respect to the currently used definition of SMEs
that was legislated in 2003. SMEs face challenges
such as having limited resources, shorter time to
market, limited budget, and frequent changes in
customer requirements [S1, S2, S3, S4, S5]. There-
fore, there is a need for specific models/tools to
deal with particular challenges to the establish-
ment of MPs in SMEs. Pino et al. stated in an
SLR [23] that ISO and SEI standards for SPI are
not directly suitable for SMEs due to the com-

*http://ec.curopa.eu/growth/smes/business-friendly-environment /sme-definition_en

144

Touseef Tahir, Ghulam Rasool, Muhammad Noman

plexity of recommendations and the requirement
of large investment of time and resources. There-
fore, there is need for widely accepted strategies
to adapt these standards in SMEs [23]. It was
proposed to adapt the guidelines and methods
used in the measurement models that are al-
ready reported for large organizations in this
SMS [6,20]. The MIS-PyME [S2], SQIP [S6],
PRISMS [S8], MESOPYME [S9], AAHA [S11],
ASPISME [S27], and CMMIbyScrum [S35] mod-
els are proposed for the CMMI standard in SMEs.
Irrazabal et al. proposed guidelines to adapt
ISO/IEC 12207:2008 standard to SCRUM [S28]
and Maria et al. proposed guidelines to adapt
ISO/IEC 15939:2007, ISO/IEC 12207:2008 and
CMMI in SMEs [S29].

Goal-oriented approach improvement
(GOAI): In total, 29 measurement models
are identified in this SMS and 40 percent
of these models are proposed as the exten-
sion of goal-oriented approaches. For example,
lightweight GQM process [S16] is an enhance-
ment of the GQM model that is proposed to
decrease measurement overhead considering the
characteristics and limitations of small software
companies. The OMSD [S22] model is proposed
to select the optimum number of measures from
the available large set of measurements within
limited time and effort using meta-measures,
such as collection time, cost, priority, value, and
usage. The GQM model lacks a method to define
measurement goals and questions in a consis-
tent, complete, traceable and verifiable way [6].
Therefore, the SPGQM [S23] model extended the
GQM model to define measurement goals and
questions in a consistent, complete, verifiable
and traceable way. The SPGQM model also used
the OMSD model for the optimum number of
metrics selection in a case study. GQM-DSFMS
[S20] extended the GQM model to select the
optimum number of metrics based on time, the
cost and usage of metrics and the importance of
measurement goal. It also presented a method
to enable traceability among measurement goals,
questions and metrics. Jezreel et al. [S31] pro-
posed a method for applying the GQM model
in SPI by conducting structured interviews of
top management and operational management

to define measurement goals, and then iden-
tify questions and metrics to achieve the goals.
Similarly, the PRISMS model [S8] is proposed
to relate business goals and improvement goals
with measurement goals. Furthermore, the CMM
model is used as a reference model to plan
and implement MPs in SMEs. The MIS-PyME
MCMM model [S2] is proposed to define the
SMEs version of the CMM standard for SPI us-
ing the goal-oriented approach. The MIS-PyME
model and its extensions are proposed with case
studies to implement goal-oriented measurement
processes and measurement process improvement
in SMEs [S1, S3, S5].

Measurement process improvement
(MPI): In total, 13 models are developed for im-
provements in measurement processes in SMEs.
For example, the MIS-PyME [S1, S3, S4, S5]
framework is presented to define the software
MPs in SMEs. This model extended GQM and
GIQM [40] to implement and improve the mea-
surement process in small organizations. The
MIS-PyME measurement capability maturity
model [S2] was developed to support SMEs
in defining MPs with respect to measurement
maturity of the company and establishing a mech-
anism for the continuous improvement of MPs.

The LQIM [S12] model is presented based on
the Total Quality Management (TQM) paradigm
[41] to implement quality improvement plans in
SMEs in Pakistan. It is recommended to use it
with Deming”s Plan, i.e. Plan, Do, Act, Check
(PDAC) for continuous improvement in quality
processes. Caballero et al. [S15] present industrial
experience related to MPI using agile method-
ology in SMEs. The study showed that Scrum
might improve productivity without decreasing
product quality in SMEs. The study [S15] also
showed that Scrum is a good alternative for pro-
cess improvement in an organization with very
limited resources. A “four step framework” [S21]
was presented to implement MPI in those SMEs
which needed improvement in their development
processes.

There are four measurement models proposed
with the intentions of SPI and MPI simultane-
ously. AAHA [S11] is a lightweight method de-
veloped for SPI in SMEs, it is based on CMMI,

A Systematic Mapping Study on Software Measurement Programs in SMFEs

145

GOAl

Gam

MIS-PyME, MCMM,
4-Step Framework

MPI

AM-QuICK.

PRISMS) g

SPGQM, GaM ASPISME,
DS(::::DI:w Adaption adapting ISO/IEC

for SPI

LQIM, Pro SCRUM,
adapting ISO/IEC
15939:2007

SPI

SQIP, HSC,
MESOPYME, SPM,

12207:2008 for
SCRUM,
CMMIbyScrum

AAHA,
Hybrid
Process
Model,COMP
ETISOFT,PM
S-RIS

Figure 6. Categorization of measurement models with respect to goal-oriented approach (GOAI),
software process improvement (SPI) and measurement process improvement (MPT)

SPICE and agile practices. It is particularly de-
veloped to provide a low cost improvement in
the software development practices in SMEs. The
Hybrid measurement model [S30] is proposed to
adapt ISO/IEC 15504, ISO/IEC 12207:2008 and
CMMI Dev 1.3 for the maturity of a measure-
ment process and improvement in agile processes
in an organization.

The COMPETISOFT model [S32] is based
on the experience of using ISO/IEC 15504 and
ISO/IEC 12207:2008 in 20 SMEs. It defines four
steps of planning SPI, i.e. SPI definition, as-
sessment, measurement and establishment. The
improvement of documentation and project man-
agement processes is identified as the focus of most
SPI initiatives in 20 companies. The PMS-IRS
model [S33] proposed 9 steps of performance
measurement systems in SMEs, i.e. planning
the project, definition of enterprise environment,
designing key improvement processes, analysis and
design process, definition of measurement process
levels, validation of measurements, establishing
technological infrastructure, and human resource
management. It defines the performance manage-
ment system as a set of dynamic and integrated
metrics for the measurement and evaluation of busi-
ness operations enabling decision making for SPI.

There are ten key process areas and 3 themes
(measurement, quality and tools) of Software En-

gineering Body of Knowledge (SWEBOK) [42].
Abran et al. proposed extensions in the measure-
ment process of SWEBOK [43]. Maria et al. [S29],
further extended Abran’s proposal to adapt it
for SMEs. They extended the key process areas
of measurement by defining new measurement
processes for SME, i.e. “process and business as-
sessment”, “perform measurement process”, “and
evaluate measurement” and “experience factor”.
Software process improvement (SPI): Soft-
ware Process Improvement (SPI) is a system-
atic approach to continuously increase the effi-
ciency and effectiveness of processes in software
development companies [20]. The SPI models
proposed for establishing MPs in large organi-
zations are not considered suitable for SMEs
due to their complex nature and expensive cost
[44]. SPI is one of many factors that can affect
the success of software development organiza-
tions [S14]. There are multiple SPI models iden-
tified (e.g. CMMI, CMM, SPICE, PSP, TSP,
Six-Sigma, QIP, TQM) in an SLR [20]. The
CMM, Six-Sigma, and CMMI models are mostly
discussed for implementing measurement pro-
cesses in large organizations [20]. The ASPISME
model [S27] is proposed to adapt CMMI and PSP
for improving XP and SCRUM software develop-
ment processes in SMEs. The ASPISME model
contains guidelines for process improvement at

146

Touseef Tahir, Ghulam Rasool, Muhammad Noman

three levels, i.e. enabling individuals to under-
stand and practice SPI activities and enabling
SPI at the project level and organization level.
Similarly, Irrazabal et al. proposed guidelines to
adapt ISO/IEC 12207:2008 standard for SCRUM
based on experience in 25 SMEs.

On the other hand, there are fewer SPI mod-
els available for SMEs and they are not widely
used either. For example, the PRISMS model
[S8] uses the GQM model for software process
improvements. It also relates improvement goals
to business goals which help to choose and pri-
oritize key process areas for improvement. The
SQIP model [S6] is proposed to improve the
quality and reliability of a software development
process to achieve the business goals in SMEs.
Specific process improvement activities are used
in this project, such as requirements and change
management. SQIP adopted CMMI version 1.2
as the base model for the implementation and
evaluation of software process improvement in
SMEs.

The SPM [S10] model is based on QFD (qual-
ity function deployment) methodology. It is pro-
posed to define SPI plans and estimate the effect
of each SPI practice on a specific software process.
The MESOPYME model is proposed to improve
the quality and productivity of software devel-
opment processes using action package concept
(i.e. a method to help faster and inexpensive SPI
program implementation in SMEs). The HSC
model [S14] extended the BSC [45] model to
observe business success in software development
in SMEs by enabling synchronization between
software development processes and business op-
erations.

Ayed et al. [S26] proposed the AM-QuICK
model for improvement in agile methodologies
with the help of a measurement process. They
proposed customization of agile methodologies
for continuous SPI at multiple levels, i.e. orga-
nizational level, process management level and
product management level.

Figure 7 presents the distribution of the mea-
surement purposes of measurement models for
implementing MPs (i.e. evaluation, improvement,
characterization and prediction). Characteriza-
tion means that an MP is implemented to collect

the data about potential causes of a problem or
understand the state of processes, products or re-
sources (e.g. to understand the delays in product
delivery, MP implementation can help to collect
data about the number of bugs reported, the
number of change requests by customer). Evalua-
tion means that an MP is implemented to gauge
and analyse the gap between the planned and
actual state of processes, products and resources
(e.g. to analyse the difference between estimated
and actual effort). The prediction means that
an MP is implemented to use historical data to
make an estimation about software processes,
product and resources (e.g. to predict number of
bugs in a software product). The improvement
means taking actions to improve software pro-
cesses based on the measurement process. The
distribution of software MPs with respect to
their measurement purpose are: improvement
(86%), evaluation (80%), characterization (60%),
and prediction (20%). When a combination of
purposes (i.e. when more than one purpose was
mentioned by a primary study) was investigated,
it was found out that around 59% of the stud-
ies mentioned the purposes of characterization
and improvement while only 17% listed all four
purposes.

Figure 8 presents the distribution of the im-
plementation levels of measurement models for
implementing MPs (i.e. project and/or organi-
zation level). It was observed that most of the
MPs are implemented at the organization level
(45%) and the project level (45%) and only 10%
of MPs are implemented at both project and
organization levels.

RQ2: “What are the problems, challenges
and issues of implementing measurement
programs in SMEs?”

Table 7 presents the challenges of implement-
ing MPs in SMEs.

Low measurement maturity: The implemen-
tation of software measurements processes in
SMEs is limited due to low measurement matu-
rity [S2]. It is stated in [S1, S2, S3, S4, S8, S25,
S29, S30, S31, S32, S33, S35] that measurement
processes are either not defined at all or poorly
defined in SMEs, which hinders defining mea-
surement indicators and measurement goals in

A Systematic Mapping Study on Software Measurement Programs in SMFEs

147

Characterize + Evaluate + Predict

Characterize

Characterize + Improve

Characterize + Evaluate

Characterize = Evaluate + Improve =+ Predict

Evaluate + Improve

Improve

Characterize + Evaluate + Improve

Figure 7. Distribution of measurement purposes of measurement models for implementing MPs

Project + Organizaton

Organization

Project

11

Figure 8. Distribution of implementation levels of measurement models for implementing MPs

SMEs. The SMEs do not have enough resources
to promote serious MPI plans [S2, S9], [1,10,11].
All staff members are involved in the activities
related to managing daily work and have no extra
time for additional activities, such as implement-
ing MPs. The implementation of MPs face major
challenges such as limited resources to perform
MPT [S9, S29, S33, S34, S35] and the lack of
measurement experts [S12, S30, S32, S33, S35]
and the lack of time for accurate estimations
[S13, S29].

Poor software measurement knowledge:
SMEs have poor measurement culture due to
the lack of measurement knowledge, training and
the perceived importance by administrators in
SMEs [S12, S30, S32, S33, S35|. Therefore, a few
measures are collected in these companies [S2,
S21]. The lack of knowledge of measurement tech-
niques among the software developers [S17], [11]
also hinders the collection of measurement data.

Developers seem to be in a great confusion about
what to measure and how to measure [S17], [11].
They feel threatened by the possible adoption of
a metrics program, as they perceive it as a tool
that would be used for assessing their perfor-
mance. Most of the developers have an insuffi-
cient knowledge of tools widely discussed and
available in the literature. The management at
SMEs usually do not understand the importance
of a measurement process and the developers
are mostly fresh university graduates equipped
with insufficient knowledge about software qual-
ity and the importance of measurement [10,46].
The people that are involved in MPs are not
willing to use measurements due to their lack of
knowledge of measurement techniques [S2].

Lack of experienced professionals: The
stakeholders of the MPs including the measure-
ment analyst usually come from the company
implementing MPs. They usually have limited

148

Touseef Tahir, Ghulam Rasool, Muhammad Noman

Table 7. Challenges of implementing measurement programs at SMEs

Study ID Challenges

S1, S2, S3, S29, S30, S33

S4, S29, S30, S31, S32, $33, S35
S5, 525, 529
S6, S29, S33

S8, S25, $29, 33, S35
S9, S29, S33, S34, S35

Lack of measurement maturity for implementing software MPs
Lack of experience in using data collection tools

Lack of measurement maturity

Scope of databases containing indicators and measures is small
Formal process management techniques

Lack of measurement maturity

Lack of automated tool for data collection

Limited resources to perform measurement improvements

Lack of formal measurement approach for software process assess-

S11, S33 ment

Software process assessment is time consuming and costly at SMEs

S12, S30, S32, S33, S35
S13, S29
S15, S30

at SMEs

Lack of measurement experts
Lack of time for accurate estimation of projects
Selected metrics are not verified for implementing measurements

Use of metrics is limited due to unawareness of software measure-
ment techniques among the software developers
Measurement is considered a long-term activity

S17, S25, S29, S33

Short time-to-market

Use of metrics is limited due to lack of experienced professionals
Measurements are limited due to lack of knowledge of quality
issues in development process

Selected metrics are not validated for measurement and evaluation

The absence of automated tool for data collection

Projects have a limited budget for empirical data collection and

Cost management (time and resources needed for collection and

analysis of metrics)

Redundancy in metric selection process

S18, S33

of SPI
S19, S33

analysis
S20
S22, S23

S24, $29, S31, S33
S4, S25, S28, S29, S30, S33, S34, S35

Redundancy in metric collection

High effort required for metrics selection and collection
Unavailability of the required assessment data to measure

Lack of sync between measurement process and software develop-

ment life cycle

S25, S26, S27
S32, $33, S34, S35

Incorrect definition of measures
Lack of sync between business objectives/strategies and SPI

expertise in the measurement field [S1, S2]. The
SMEs should hire experienced professionals in
permanent positions to plan, organize, imple-
ment, evaluate and improve MPs [8,47]. A few
case studies (e.g. [S1, S2, S3, S29, S30, S33|)
showed that all of the measurement processes
proposed in measurement studies are not possi-
ble to implement yet due to poor measurement
maturity, poor measurement knowledge, and the
lack of experience in using data collection tools.
The SMEs face difficulties in hiring experienced

professionals, because the offered reward is lim-
ited. Once the developers gain some experience,
they seem to be inclined to migrate to larger com-
panies hoping for better career prospects [S12].
Time to market: The use of software metrics
is limited in SMEs due to challenging time to
market with tight timeframes [S17]. Software
developers in SMEs are always found battling
with time pressures [S13, S29]. Most of the SMEs
are aware that software measures are useful for
improving quality but they believe that it re-

A Systematic Mapping Study on Software Measurement Programs in SMFEs

149

quires more time to implement a MP in the
workplace [11].

Lack of measurement planning: Most of the
SMEs have poor strategic planning processes for
implementing their MPs due to barriers such as
unavailability of assessment data [S24, S29, S31,
S33], rapid application development [S13, S29],
lack of formal process management, measure-
ment management techniques and unwillingness
to share ideas with employees [S6, S11, S29, S33],
[46, 48, 49]. The lack of measurement planning
also hinders linking measurement processes with
business objectives and SPI [S32, S33, S34, S35].
Lack of automated tool support: The au-
tomated tools used in SMEs can be different
due to multiple reasons. They can be different
based on the implementation levels of MPs (i.e.
organizational and/or project level), types of soft-
ware entities to be measured (processes, products
and /or resources), type of software development
life cycle (e.g. agile, rapid application develop-
ment), measurement purpose (characterize, eval-
uate, predict and/or improve software entities)
and the business goals of software organization.
There is a lack of automated tools for imple-
menting software MPs in SMEs [11, 46, 50] as
there are only four tools reported among 35 pri-
mary studies in this SMS (i.e. Tarc [S9], SCAPT
[S24], SonarQube [S25], SPTALS [S35]). There
is an increasing need for well understood and
affordable tools that can select required metrics
to implement software MPs in SMEs [S8] [46].
The automated tools might also help to over-
come budget limitations, time and measurement
experts in SMEs [S12].

The databases in SMEs contain a small num-
ber of measures and indicators [S5, S25, S29]. The
small scope of measurement databases might be
due to the lack of synchronization between a mea-
surement process and a software development life
cycle [S4, 525, 528, 529, S30, S33, S34, S35]. The
lack of automation and small scope of databases
causes redundancy in metrics collection and high
effort is required for metrics collection [S22, S23].
Data collection problem: The unavailability
of the required assessment data [S19, S24] for
measurement tools is a critical challenge. This
problem might not only reduce the descriptive

power of the tool but also reflect company’s oper-
ational problems. The tools perform effectively if
the company has defined data collection and stor-
age procedures [S19, S24]. Furthermore, projects
have limited budget for empirical data collection
and analysis [S19, S33]. Therefore, there is a need
for automated tools, which can help to reduce
the overhead associated with data collection and
processing to perform measurements in SMEs
[S8]. The lack of budget, time and resources also
hinders the quality assurance process for the data
collection process [S15, S30] and the validation of
metrics for their suitability for SPI improvement
[S18, S19, S20, S25, S26, S27, S33].

It was not possible to find any solution to the
problem of initiating the data collection process
in this mapping study, however, the SLR [6] re-
vealed that Iversen and Mattiassen [51] discussed
experiences in establishing an MP with the help
of incremental application of GQM and intelli-
gent collection and analysis of data. Therefore,
the automation of data collection process can
be incrementally implemented. The first step
may include the collection of data with manual
entries into measurement repository using a tool.
In the second step, data collection may also be
automated. This requires the integration of the
MP with the SDLC [S4, S25, S28, S29, S30, S33,
S34, S35]. There are both open source and com-
mercial tools to automate the data collection for
SDLC processes [52]. The use of automated tools
for characterization, evaluation, and prediction
of software processes, products and resources
becomes even more important in SMEs because
there is a shortage of time, human and financial
resources in SMEs.

RQ3: “What metrics selection techniques,
methods and approaches are used for mea-
surement programs in SMEs?”

Table 8 presents the most commonly used
metrics based on their frequency of being dis-
cussed among the primary studies. The Soft-
ware metrics/measurement-attributes/measures
are identified, collected and analysed based on
the definition of specific measurement objectives
(e.g. defect prediction, size estimation).

Goémez et al. [53] identified in a SLR that
complexity and size are most discussed metrics

150

Touseef Tahir, Ghulam Rasool, Muhammad Noman

Table 8. Types of metrics/measures in primary studies

Metric/Measurement-

attribute/Measure Definition Selected studies Frequency
Defects Errors or failures in a software S1, S2, S3, S4, S5, S6, S8, S12, 14
product. S17, 826, S27, S31, S33, S35
Productivity The speed of software production S1, S3, S4, S5, S17, S14, S15, S16, 15
in terms of effort and time. S22, 526, S28, S29, S30, S33, S34
Customer The expectation of customer S1, S3, S4, S5, S7, S10, S12, S14, 13
satisfaction about the performance of soft- S24, S31, S33, S34, S35
ware product.
Size The size of the product in the S2, S6, S13, S15, S21, S22, S27, 8
form of functional points or LOC. S33
Duration The time required to construct S1,S2,S3, S4, S5, S6, S7, S9, S22, 14
software product. S24, 526, S29, S33, S35
Effort The human effort to develop S1, S2, S3, S4, S5, S13, S15, S16, 13
a software product. S21, S22, S26, S29, S35
Reliability Number of error-free operations S1, S3, S4, S5, S24, S31 6
in a system under particular con-
ditions.
Traceability A measurement that counts the S6, S8, S18, S31, S33 5
software requirements that are
not traced to the system require-
ments.
Cyclomatic A measurement that shows the S2, S6, S8, S26 4
complexity complexity of software product.

Table 9. Metrics selection methods

Metrics selection methods Studies Frequency Percentage
Use of standards S2, S6, S11, S17, S19, S20, S22, S23, 14 40%
S28, 529, S30, S32, S33, S35
Use of measurement expert and expe- S1, S3, S4, S5, S7, S8, S9, S10, S12, 21 60%
riences S13, S15, S16, S18, S26, S27, S28, S31,
S32, S33, S34, S35
Use of automated tools S2, S9, S16, S19, S21, S25, S33, S35 8 22%

among primary studies on software measurement
process in software development life cycle. An
SLR [6] allowed to establish that defect, produc-
tivity and size are the most discussed metrics in
large organizations. On the other hand, produc-
tivity, defects, effort and customer satisfaction
are the most discussed metrics among primary
studies in this SMS. There is an increasing need
for a well understood and managed software mea-
surement model in SMEs, to select the correct,
relevant, timely, verifiable, cost-effective and valu-
able set of metrics [54].

In our previous study [6], metrics selection
methods are classified as (i) use of standards, (ii)

use of measurement experts and experience and
(iii) use of automated tools. The same classifi-
cation was used for metrics selection methods
in this SMS as shown in Table 9. In this SMS,
the use of a measurement expert and experience
is the most practiced method among primary
studies.

Use of standards: In an SLR on MPs [6], the
primary studies discussed the role of standards
such as ISO/IEC 15939:2007 [55], ISO/IEC 25000
[56], ISO/IEC 9126-x [57], ISO/IEC 14598-x [58],
ISO/IEC/IEEE 24765:2010 [59], CMMI [60,61],
ISO/IEC 25021 [62], and ISO 9126 standard fam-
ily [63-65] for the implementation of MPs.

A Systematic Mapping Study on Software Measurement Programs in SMFEs

151

In another SLR [20], the primary studies dis-
cussed the role of SPI models (SPICE, PSP, TSP,
Six-Sigma, QIP, TQM) [66] and standards (e.g.
CMMI, CMM, ISO 15504 [53] and ISO 9001 [53])
for the implementation of MPs. On the other
hand, Pino et al. in an SLR [23] considered that
ISO and SEI standards for SPI are not directly
suitable for SMEs due to the complexity of rec-
ommendations, and the requirement of a large
investment of time and resources. Therefore, they
considered a need for widely accepted strategies
to adapt these standards in SMEs and organiza-
tions. Furthermore, they considered that orga-
nizations which develop international Software
Engineering standards should separately consider
the measurement processes of SMEs [23].

In this SMS, multiple studies (e.g. [S2, S6,
S11, S17, S19, S20, S22, S23]) stated that mea-
surement standards (e.g. ISO/IEC 15504 [53],
ISO 9001 [67]) are used to select metrics in dif-
ferent SMEs. The primary studies proposed mul-
tiple models to adapt those measurement stan-
dards in SMEs which are reported for MPs in
large organizations. The MIS-PyME [S2], SQIP
[S6], PRISMS [S8], MESOPYME [S9], AAHA
[S11], ASPISME [S27], and CMMIbyScrum [S35]
models are proposed to adapt CMMI standard
to SMEs. Irrazabal et al. proposed guidelines to
adapt ISO/IEC 12207:2008 standard for SCRUM
[S28]. Similarly, Maria et al. proposed guide-
lines to adapt ISO/IEC 15939:2007, ISO/IEC
12207:2008 and CMMI in SMEs [S29].

In [S1, S2, S3, S4, S8, S25, S29, S30, S31, S32,
S33, S35], there is a proposal to implement MPs
in SMEs according to the maturity level of soft-
ware processes in the company. The MIS-PyME
measurement capability maturity model [S2] for
implementing MPs in SMEs uses ISO/IEC 15504
standard as a reference model [53]. The SPI
models use measurements as the key component
of their processes. For instance, the CMMI model
contains guidelines for defining the measurement
process and then using this process to monitor and
control software development processes. Later,
the collected measurement data is used for quanti-
tative management and continuous improvement.

In [S20, S22, S23], the idea of using a prede-
fined pool of standard metrics is proposed. The

software companies can choose metrics from this
pool based on their measurement goals using
meta-metrics (importance of metrics for mea-
surement goal, cost/time of metrics collection,
and frequency of metrics usage in measurement
project). The usage of a common set of metrics
for different projects which have similar goals,
might reduce the effort and cost of data collec-
tion.

Use of measurement experts and experi-

ence: Most of the SMEs use measurement ex-

perts and experiences to select metrics [S1, S3,

S4, S5, S7, S8, S9, S10, S12, S13, S15, S16, S18,

S26, S27, S28, S31, S32, S33, S34] [41].

It is challenging to implement MPs in SMEs
due to their limited resources [S13, S26, S27,
S28, S31, S32, S33, S34] [41]. Most of project
managers in SMEs perform measurement plan-
ning (e.g. estimating budget, schedule and effort)
based on their experience and knowledge from
previous projects [S4, S9, S18, S27, S32], [68].
Use of automated tools: In SLR on software
MPs [6], the automated tools are divided into
two main categories:

1. Tools that are specifically developed for mea-
surement processes. These tools (e.g. Step-
Counter, Workflow, Eclipse Metrics plug-in)
also help to provide data for effective mea-
surement implementation.

2. Tools that are a part of the processes of any
organization, e.g. project management, qual-
ity assurance. These tools are usually part of
the whole management information system.
The limitations of such tools include lack
of metrics data exchange formats, effective
usage of collected data to feed the decision
making process, and using collected data to
effectively monitor and control the software
development processes.

In [S19], project management officers used
Tarc (self-assessment tool) for the selection and
collection of metrics based on the predefined
data collection procedure. They defined 10 fun-
damental metrics and 7 derived metrics (e.g. pro-
ductivity, effort per day, review density, problem
density, test density, bug density) to measure size,
quality and effort attributes using Tarc [S19]. The
collected metrics were used for quality assurance.

152

Touseef Tahir, Ghulam Rasool, Muhammad Noman

The SCAPT tool [S24] measures the perfor-
mance of SMEs based on time, cost and relia-
bility of software production. SCAPT depends
upon the availability of the company’s own data
collection procedure. It is tested on 44 different
SMEs and it is observed that the unavailabil-
ity of assessment data is a major hindrance for
performance estimation.

The SonarQube tool is proposed to collect
and analyse measurement data on software qual-
ity assurance practices in SMEs [S25]. Its ob-
jective is to continuously monitor a source code
for problems such as code smells, antipatterns,
and unused methods. The best practices of soft-
ware quality assurance based on literature and
experiences are maintained in the tool.

The SPIALS tool [S35] is based on the Stan-
dard CMMI Appraisal Method for Process Im-
provement (SCAMPI). Its objective is to assess
SPI by using the lightweight CMMIbyScrum
model. It measures SPI by conducting a survey
with the help of a structured questionnaire that
is based on the CMMIbyScrum model.
Comparison of measurement programs in
SMEs and large organizations

In [6], the authors performed an SLR on soft-
ware MPs and observed that 4 out of 65 primary
studies focused on the MPs in SMEs. Therefore,
we conducted this SMS to analyse factors, such as
measurement models, challenges and metrics se-
lection methods for implementing MPs in SMEs.

In this section, a comparison between soft-
ware MPs in SMEs and large companies is pre-
sented. The SLR [6] identified 35 measurement
models and 11 tools and SMS identified 29 mea-
surement models and 4 tools. There are 4 mea-
surement models in SLR that are proposed for
SMEs, i.e. SPGQM [69], OMSD [9], MIS-PyME
[8], and GQM-DSFMS [70] and these four models
are identified as common between both studies.
All of these four models are based on goal-ori-
ented approaches.

The measurement models are categorized into
“goal oriented approach improvement (GOAI)”,
“software process improvement (SPI)” and “mea-
surement process improvement (MPI)” in both
studies. Figure 9 shows that the majority of mea-
surement models in the SLR are GOAI followed

by MPI and SPI. On the other hand, the majority
of measurement models in SMS are SPI followed
by GOAI and MPI.

The metrics selection methods are catego-
rized into “use of measurement standards”,
of measurement experts and experiences” and
“use of automated tools” in both studies. The
SLR [6] and SMS analysed a different number of
primary studies; therefore, the frequencies and
percentages of primary studies discussing these
standards are presented in Figure 10a and Fig-
ure 10b.

One of the reasons for the disparity in
the number of studies between SLR and SMS
might be the late evolution of SMEs industry
in the last two decades. The history of soft-
ware measurement and how it became critical of
SMEs is discussed at the beginning of Section 4.
The primary studies in the SLR [6] discussed
ISO/IEC 15939:2007 [55], ISO/IEC 25000 [56],
ISO/IEC 9126-x [57], and ISO/IEC 14598-x [58],
ISO/IEC/IEEE 24765:2010 [59], CMMI [60,61],
ISO/IEC 25021 [62], and ISO 9126 standard fam-
ily [63-65]. On the other hand, in this SMS there
were measurement models proposed to adapt
guidelines and methods of those measurement
models that are already reported for large orga-
nizations [6,20]. The MIS-PyME [S2], SQIP [S6],
PRISMS [S8], MESOPYME [S9], AAHA [S11],
ASPISME [S27], and CMMIbyScrum [S35] mod-
els should adapt the CMMI standard in SMEs.
Irrazabal et al. proposed guidelines to adapt
ISO/IEC 12207:2008 standard for SCRUM [S28]
and Maria et al. proposed guidelines to adapt
ISO/IEC 15939:2007, ISO/IEC 12207:2008 and
CMMI to SMEs [S29]. Pino et al. in an SLR [23]
considered that ISO and SEI standards for SPI
are not directly suitable for SMEs due to the
complexity of recommendations and the require-
ment of a large investment of time and resources.
Therefore, there is a need for widely accepted
strategies to adapt these standards in SMEs. The
organizations that develop international Soft-
ware Engineering standards should separately
consider implementing measurement processes
in SMEs [23].

An MP was divided into three phases for fur-
ther analysis. These phases are the pre-implemen-

use

A Systematic Mapping Study on Software Measurement Programs in SMEs

153

SMS mSLR
34%
MPI
51%
SPI
40%
GOAI

76%

Figure 9. Comparison of categories of measurement models between SLR and SMS

W SMS-Frequencey 1 SLR-Frequency
pil
14 15
7 -
Standards Measurement Expertsand ~ Automated Tool
Experience

(a) Metrics selection methods with respect to frequencies
of primary studies discussing metric selection methods

B SMS-Percentage 1 SLR-Percentage
60%
40%
23% 22%
1% 14%
Standards Measurement Experts and Automated Tool
Experience

(b) Metrics selection methods with respect to
percentages of primary studies discussing metric
selection methods

Figure 10. Metrics selection methods

tation, implementation and post-implementation
of a MP.

Table 10 presents measurement purposes with
respect to the phases of implementing an MP
as shown in Figure 9. The pre-implementation
phase of an MP starts with planning a software
development process. In this phase, historical
data from previous projects, measurement stan-
dards, measurement experts and experiences and
automated tools might be used to predict the at-
tributes of processes, products and resources (the
details are in the results and analysis of RQ3).
The implementation phase of an MP includes
the characterization of issues/problems during
software development life cycle and the continu-
ous evaluation of project progress with respect to

plans and predictions. The post-implementation
phase of an MP helps in software process im-
provement based on lessons learned during the
pre-implementation and implementation phase.
The improvements can be twofold: 1) improve-
ment in measurement processes, 2) improvement
in software development processes. The predic-
tion is the least utilized purpose among primary
studies of SMS and SLR as shown in Table 10.
The measurement models for SMEs are specif-
ically designed to implement the measurement
process keeping the basic limitations of SMEs,
such as budget, time, resources and low process
maturity, in view. The measurement models pro-
posed for large companies focus on broad issues,
such as the measurement of customer satisfaction,

154

Touseef Tahir, Ghulam Rasool, Muhammad Noman

Table 10. Purposes of measurement program

. Pre-implementation Implementation Post-implementation
Measurement studies _—
prediction characterization evaluation improvement
SLR 28% 81% 7% 70%
SMS 16% 63% 83% 93%

Table 11. Metrics discussed among primary studies of SMS and SLR

SMS SLR
Measurement Measurement Metrics Frequency Percentage Frequency Percentage
process attributes type

Pre-implementation Size Product 8 22.5% 10 15.4%
Duration Process 14 40% 7 10.7%
Effort Resource 13 37.1% 11 16.9%
Cost/Budget Process - - 4 6.1%
Time to market Product - - 3 4.6%

Implementation Productivity Resource 15 42.58% 11 16.9%
Traceability Product 5 14.2% - -
Cyclomatic complexity Product 4 11.4% - -
Employee Commitment Resource - - 8 12.3%

Post-implementation Return on investment Product - - 3 4.6%
Customer satisfaction Product 13 37.1% 8 12.3%
Defects Product 14 40% 25 38.5%
Reliability Product 6 17.1% - -

effectiveness of decisions taken based on MPs,
verification and validation of the metrics collec-
tion process, building an information system for
the measurement process, and the improvement
of software development processes [6].

Table 11 presents the most commonly used
metrics based on how frequently they are dis-
cussed in the primary studies in SMS and SLR.
Fenton and Bieman [5] distinguished three types
of measurement entities, i.e. process, product,
and resource. Table 11 shows that the product
metrics are mostly measures in the primary stud-
ies of SLR [6] and SMS. It also points out the
need for more utilization of process and resource
metrics for planning, organizing, monitoring, and
controlling the processes and resources.

In SLR [6], they found that there is a lack of
discussion of real-time metrics among primary
studies (e.g. cyclomatic complexity, dynamic
function calls, number of unused objects) to mon-
itor and control the actual software development
progress. Soini [71] conducted an empirical case
study in the Finnish software industry to evaluate

the actual use of software metrics. The software
metrics are categorized into real-time and lagging
metrics [71]. The real-time metrics help to moni-
tor and control the ongoing processes in software
organizations and provide indicators (e.g. cyclo-
matic complexity and traceability in this SMS).
The lagging metrics are collected at the comple-
tion of projects (e.g. return on investment and
customer satisfaction in this SMS). The balance
between real time and lagging metrics might assist
improvement in measurement processes [71].

Table 11 shows that all three types of metrics
(i.e. process, product and resource) are only dis-
cussed for the pre-implementation phase of MPs.
Furthermore, the process and product types of
metrics are discussed twice as resource metrics in
the pre-implementation phase. The resource and
product types of metrics are discussed for the
implementation phase of MPs and only product
type of metrics are discussed in the post-imple-
mentation phase. The measurement of software
defects is the most commonly discussed metric
in both studies.

A Systematic Mapping Study on Software Measurement Programs in SMFEs

155

Table 12. Comparison of the challenges of implementing measurement programs in this SMS and SLR [6]

Challenges reported in SMS

Challenges reported in SLR

Pre-implementation
— Lack of budget, time and resources allocated
for software measurement.
— Use of metrics is limited due to lack of experi-
enced professionals.
— Lack of measurement experts.
— Lack of measurement maturity for implement-
ing software MPs.
— Absence of documentation and formal process
management techniques.
— Lack of automated tools for data collection.
— Metrics are not validated for use in SMEs.
Implementation
— Scope of database containing indicators and
measures is small as limited number of metrics
are utilized in SMEs.
— Limited utilization of metrics due to lack of
defined process for management of quality issues
in development process.

Pre-implementation

— Lack of benchmarks.

— Heterogeneity of SDLCs, MPs, products, cul-
ture, and priorities.

Implementation

— Correctness of MPs objectives.

— Prioritisation of goals.

— Transition to measurement culture.

Construct validity issues of metrics.

— Lack of consistent definitions of measurement
entities, tasks and processes.

— Sync between MPs and SPI activities.

— Overlapping between the metrics types.

— Scalability issues in MPs.

— Identification of correct measurement instru-
ment.

— Completeness, integrity, consistency of measure-
ment data.

— Lack of suitable metrics selection methods.

— Lack of real time metrics (e.g. cyclomatic com-
plexity, dynamic function calls, no of unused
objects and variables) to monitor and control
the actual software development progress.

Post-implementation
— Sustainability of MPs.

Table 12 presents the challenges of imple-
menting MPs in SMEs and large organiza-
tions. The challenges are presented with re-
spect to pre-implementation, implementation
and post-implementation phases of an MP.
Pre-implementation challenges: The chal-
lenges which already exist in the software de-
velopment organization (e.g. lack of budget, and
time) or they exist in the software measurement
domain (e.g. inconsistent measurement termi-
nologies) before the implementation of MPs.
Implementation challenges: The challenges
which appear during the implementation of MPs.
Post-implementation challenges: The chal-
lenges which appear after the implementation
of MPs.

In the primary studies of SMS, most of the re-
ported challenges exist even before the implemen-
tation of MPs in SMEs. They are of fundamental
significance and encompass, e.g. lack of budget,
time and resources. The SMEs usually hire fresh
or less experienced graduates, which causes the

lack of understanding and attention towards soft-
ware quality and measurement issues [10,46]. The
lack of defined measurement processes results in
a situation when it is the higher management
to decide on the importance of MPs and conse-
quently the mechanism becomes people-oriented
instead of process-oriented [S9, S18, S27]. The
absence of formal documentation and automated
measurement tools also hinders measurement pro-
cesses because both are key sources to provide
data for measurement [S19, S24]. It is also critical
to learn whether the measured values are exactly
the ones that were to be measured [72,73]. The
lack of metrics validation also imposes a chal-
lenge, as metrics must be mathematically correct
and useful for decision-making [74], [S18, S19,
S20, S25, S26, S27, S33].

The challenges faced during the implemen-
tation of MPs in SMEs include a limited scope
of measurement repository (database) in terms
of using metrics for the characterization, evalu-
ation, prediction and improvement of software

156

Touseef Tahir, Ghulam Rasool, Muhammad Noman

entities at project and organization level [S5, S25,
S29]. There are only few fundamental metrics
which are used mostly by SMEs to plan, monitor
and control software entities such as processes,
products and resources [S22, S23].

The challenges reported by studies in large
companies are mostly related to the issues discov-
ered while implementing MPs [6]. The primary
studies in SLR [6], report the lack of measurement
benchmarks in terms of publically available mea-
surement datasets, measurement standards and
widely accepted measurement models and tools.

The heterogeneity of software organizations
might be a challenge for implementing MPs in
both SMEs and large organizations, e.g. in terms
of software development life cycle (waterfall, agile
etc.), size of organization (small, medium and
large), domain of software products (e-commerce,
mainframe systems, etc.), implementation levels
of MPs (project or organization-wide), measure-
ment purposes (characterize, evaluate, predict
and/or improve) and measurement culture [6,20].

Construct validity is also a key challenge
while implementing an MP, however, it was not
possible to find specific discussions or solutions
presented to address this challenge in SMEs.
Kaner defined construct validity as, “How do you
know that you are measuring what you think you
are measuring” [73]. The software measurement
is defined as the empirical, objective assignment
of numbers according to a theory or model, to
characterize the attribute of processes, products
and resources [73]. In an SLR on the validation
of software metrics [74], the word “construct” is
referred to as a tool, instrument or procedure
used to collect metrics. There are 47 validation
criteria of software metrics presented in the SLR
[74], however, they need further evaluations by
researchers and practitioners to select suitable
metrics validation criteria for measurement pro-
cesses in large and SMEs industry. In this study
53 citations of the SLR [74] using Google Scholar
were found, however, none of these specifically
focused on metrics validation for SMEs.

Table 13 presents the comparisons of the im-
plementation of MPs at project and organization
level in the measurement studies of SLR [6] and
SMS. According to both studies, it is challeng-

ing for software development organizations to
implement MPs at both levels [6]. It might be
due to the fact that most of the measurement
models are designed to solve a specific problem
at project level or organization level and their
implementation is usually limited to a specific
project. These factors might hinder the continu-
ity of MPs for a longer period of time and at
both implementation levels of MPs. Furthermore,
51% of the primary studies in SLR [6] and SMS
are case studies. It is considered in [6,20,23] that
there is a lack of comparative case studies of
MPs. One of the potential reasons might be the
fact that there is no clear context description in
the published case studies. The context descrip-
tion might include organizational context of case
studies, such as type and size of organization,
type of products, measurement stakeholders. The
description of the measurement process might
include the type of metrics collected and the
analysed, duration of measurement processes,
analysis methodologies, link between measure-
ment processes and improvement activities [6].
A comprehensive context description will help
practitioners and researchers to achieve the re-
peatability, extensibility, and comparisons of case
studies [6,20].
Table 13. Comparison of the implementation
levels of measurement programs

Implementation levels of MPs SLR ~ SMS
Project 58% 30%
Organization 28% 30%
Project AND Organization 14% 40%

The challenges faced during implementation
of MPs at SMEs include limited scope of measure-
ment repository (database) in terms of using met-
rics for characterization, evaluation, prediction
and improvement of software entities at project
and organization level [S5, S25, S29]. There are
only few fundamental metrics which are used
mostly by SMEs to plan, monitor and control
software entities such as processes, products and
resources [S22, S23]. These challenges exist even
before the implementation of MPs at SMEs.

In SLR [6], the incremental development of
MPs is also mentioned as a solution for software

A Systematic Mapping Study on Software Measurement Programs in SMFEs

157

organizations having no or partially defined MPs
[52]. It was not possible to find any solution to
the problem of initiating a measurement process
in this mapping study. However, it was found
in the SLR [6] that Iversen and Mattiassen [51]
discussed the experiences of establishing an MP
with the help of the incremental application of
GQM and the intelligent collection and analysis
of data. Therefore, the automation of the data
collection process can be implemented incremen-
tally. The first step may include the collection
of data with manual entries into a measurement
repository using a tool. In the second step, data
collection may also be automated. This requires
the integration of the MP with the SDLC [S4,
S25, 528, 529, S30, S33, S34, S35]. There are both
open source and commercial tools to automate
the data collection for SDLC processes [52]. The
use of automated tools for the characterization,
evaluation, and prediction of software processes,
products and resources becomes even more im-
portant in SMEs because there is a shortage of
time, human and financial resources.

Large organizations mostly report challenges
observed during the implementation of MPs
while SMEs report pre-implementation chal-
lenges (e.g. budget, time, lack of measurement
process maturity). The literature lacks challenges
and mitigation strategies while implementing
MPs at SMEs. Therefore, the SMEs can also
evaluate mitigation strategies for the challenges
presented in [6] according to their needs while
implementing MPs.

5. Conclusion

The systematic mapping process proposed by
Petersen et al. [21] is used to conduct this Sys-
tematic Mapping Study (SMS) [21]. The main
objective of this mapping study is to identify and
analyse the studies on software measurement pro-
grams (MPs) in small and medium enterprises
(SMEs). In total, 35 primary studies are analysed
to answer the following research questions:
RQ1: What measurement models, tools and
practices for implementing measurement pro-
grams in SMEs are discussed in literature?

RQ2: What are the problems, challenges and
issues of implementing measurement programs
in SMEs?

RQ3: What metrics selection techniques,
methods and approaches are used for measure-
ment programs in SMEs?

This SMS analyses 29 measurement models
and 4 tools. The measurement models are catego-
rized into “goal oriented approach improvement
(GOAI)”, “software process improvement (SPI)”
and “measurement process improvement (MPI)”.
The majority of the measurement models are
built upon SPI (51%) approaches followed by
GOAI (40%) and MPI (34%) approaches. As
for the implementation level of MPs, most mea-
surement models are implemented at both the
project and organization level (40%) followed by
project level (30%) and organization level (30%).
With respect to the measurement purposes of
models, the distribution of MPs is identified as:
characterization (63%), evaluation (83%), im-
provement (93%) and prediction (16%). When
the combination of purposes (i.e. when more
than one purpose was mentioned by a primary
study) was investigated, it was found out that
around 59% of the studies mentioned the pur-
poses of characterization and improvement while
only 17% referred to all four purposes. This sit-
uation might be due to the fact that prediction
based on historical data is possible if an MP lasts
longer than a single project.

The metrics selection methods in primary
studies are categorized into “use of measurement
standards”, “use of measurement experts and
experiences” and “use of automated tools”. The
majority of primary studies discussed the use
of measurement experts and experience (60%)
followed by the use of measurement standards
(40%) and the use of automated tools (22%). The
common types of metrics discussed in the pri-
mary studies include productivity (43%), defects
(40%), duration (40%), effort (37%), customer
satisfaction (37%), size (22%), and cyclomatic
complexity (11%). The most commonly used re-
search methods in primary studies are a case
study (51%) and a survey (25%). Most of the
primary studies (80%) were published between
2006 and 2013.

158

Touseef Tahir, Ghulam Rasool, Muhammad Noman

Most of the SMEs face challenges, such as
low measurement process maturity, limited re-
sources to develop MPs and short time-to-market.
Furthermore, the lack of measurement planning,
tool support for data collection and measurement
professionals are key challenges for the implemen-
tation of MPs.

In this study, the MPs in SMEs and large
organizations are also compared. Most of the
measurement models for SMEs are built upon
the software process improvement approach. On
the other hand, most of measurement models for
large organizations are built upon goal-oriented
approaches. The measurement models in SMS
and SLR [6] focus the least on using measurement
data for prediction. There is a lack of automated
tools support for implementing MPs as there are
11 and 4 tools identified for large organizations
and SMEs, respectively.

The SMEs and large organization face differ-
ent challenges as studies in SMEs report chal-
lenges that existed even before the implemen-
tation of MPs due to different infrastructure
and management processes of SMEs. Therefore,
lightweight measurement models are proposed
to cater for measurement processes while keep-
ing the limitations of SMEs, such as budget,
time and resources, in view. In this SMS, we
found the measurement models which are pro-
posed to adapt the guidelines and methods of
those measurement models that are already re-
ported for large organizations [6,20]. For instance,
the MIS-PyME [S2], SQIP [S6], PRISMS [Sg],
MESOPYME [S9], AAHA [S11], ASPISME [S27],
and CMMIbyScrum [S35] models are proposed
to adapt the CMMI standard in SMEs. On the
other hand, the challenges reported by studies in
large companies are mostly related to the issues
discovered while implementing MPs. These mea-
surement studies report challenges, such as lack
of measurement benchmarks in terms of measure-
ment datasets, standards and widely accepted
measurement models and tools. The challenges
also include the lack of synchronization among
measurement processes, software development
processes and software improvement processes,
and the adoption of measurement culture.

This SMS presented the findings from the
existing literature. We are currently conducting
online surveys in SMEs to validate the findings

of SMS.

References

[1] P. Cocca and M. Alberti, “A framework to
assess performance measurement systems in
SMEs,” International Journal of Productivity
and Performance Management, Vol. 59, No. 2,
2010, pp. 186—200.

[2] U. Loecher, “Small and medium-sized enter-
prises — Delimitation and the European defini-
tion in the area of industrial business,” Furo-
pean Business Review, Vol. 12, No. 5, 2000, pp.
261-264.

[3] M. Ayyagari, T. Beck, and A. Demirguc-Kunt,
“Small and medium enterprises across the globe,”
Small Business Economics, Vol. 29, No. 4, 2007,
pp. 415-434.

[4] M. Khalique, N. Bontis, J. Abdul Nassir bin
Shaari, and A. Hassan Md. Isa, “Intellectual
capital in small and medium enterprises in Pak-
istan,” Journal of Intellectual Capital, Vol. 16,
No. 1, 2015, pp. 224-238.

[5] N. Fenton and J. Bieman, Software metrics:
A rigorous and practical approach. CRC Press,
2014.

[6] T. Tahir, G. Rasool, and C. Gencel, “A system-
atic literature review on software measurement
programs,” Information and Software Technol-
ogy, Vol. 73, 2016, pp. 101-121.

[7] M. Diaz-Ley, F. Garcia, and M. Piattini, “Im-
plementing a software measurement program
in small and medium enterprises: A suitable
framework,” IET Software, Vol. 2, No. 5, 2008,
pp. 417-436.

[8] M. Diaz-Ley, F. Garcfa, and M. Piattini,
“MIS-PyME software measurement capability
maturity model — Supporting the definition of
software measurement programs and capabil-
ity determination,” Advances in Engineering
Software, Vol. 41, No. 10, 2010, pp. 1223-1237.

[9] A.M. Bhatti, HM. Abdullah, and C. Gencel,

“A model for selecting an optimum set of mea-

sures in software organizations,” in Furopean

Conference on Software Process Improvement.

Springer, 2009, pp. 44-56.

M.K. Sharma, R. Bhagwat, and G.S. Dangay-

ach, “Practice of performance measurement:

experience from indian SMEs,” International

A Systematic Mapping Study on Software Measurement Programs in SMFEs

159

[19]

[20]

Journal of Globalisation and Small Business,
Vol. 1, No. 2, 2005, pp. 183-213.

V. Claudia, M. Mirna, and M. Jezreel, “Char-
acterization of software processes improvement
needs in SMEs,” in International Conference on
Mechatronics, Electronics and Automotive En-
gineering (ICMEAE. IEEE, 2013, pp. 223-228.
I. Richardson and C.G. Von Wangenheim,
“Guest editors’ introduction: Why are small
software organizations different?” IEEFE Soft-
ware, Vol. 24, No. 1, 2007, pp. 18-22.

C.Y. Laporte, S. Alexandre, and R.V.
O’Connor, “A software engineering lifecycle
standard for very small enterprises,” Software
Process Improvement, 2008, pp. 129-141.

B. Kitchenham, “What’s up with software met-
rics? — a preliminary mapping study,” Journal
of Systems and Software, Vol. 83, No. 1, 2010,
pp. 37-51.

0. Gémez, H. Oktaba, M. Piattini, and F. Gar-
cia, “A systematic review measurement in soft-
ware engineering: State-of-the-art in measures,”
in International Conference on Software and
Data Technologies. Springer, 2006, pp. 165-176.
C. Catal and B. Diri, “A systematic review of
software fault prediction studies,” Expert Sys-
tems with Applications, Vol. 36, No. 4, 2009, pp.
7346-7354.

R. Malhotra, “A systematic review of machine
learning techniques for software fault predic-
tion,” Applied Soft Computing, Vol. 27, 2015,
pp- H04-518.

D. Radjenovi¢, M. Hericko, R. Torkar, and
A. Zivkovi¢, “Software fault prediction metrics:
A systematic literature review,” Information
and Software Technology, Vol. 55, No. 8, 2013,
pp. 1397-1418.

T. Hall, S. Beecham, D. Bowes, D. Gray, and
S. Counsell, “A systematic literature review on
fault prediction performance in software engi-
neering,” IEEFE Transactions on Software En-
gineering, Vol. 38, No. 6, 2012, pp. 1276-1304.
M. Unterkalmsteiner, T. Gorschek, A.M. Islam,
C.K. Cheng, R.B. Permadi, and R. Feldt, “Eval-
uation and measurement of software process
improvementoda systematic literature review,”
IEEFE Transactions on Software Engineering,
Vol. 38, No. 2, 2012, pp. 398-424.

K. Petersen, R. Feldt, S. Mujtaba, and
M. Mattsson, “Systematic mapping studies in
software engineering.” in FASE, Vol. 8, 2008,
pp. 68-77.

M. Sulayman and E. Mendes, “A systematic
literature review of software process improve-

[23]

[24]

[25]

[26]

[35]

ment in small and medium web companies,”
Advances in Software Engineering, 2009, pp.
1-8.

F.J. Pino, F. Garcia, and M. Piattini, “Soft-
ware process improvement in small and medium
software enterprises: A systematic review,” Soft-
ware Quality Journal, Vol. 16, No. 2, 2008, pp.
237-261.

A. Ahmad and M.A. Babar, “Software archi-
tectures for robotic systems: A systematic map-
ping study,” Journal of Systems and Software,
Vol. 122, 2016, pp. 16-39.

K. Petersen, S. Vakkalanka, and L. Kuzniarz,
“Guidelines for conducting systematic mapping
studies in software engineering: An update,”
Information and Software Technology, Vol. 64,
2015, pp. 1-18.

F. Garcia, M.F. Bertoa, C. Calero, A. Vallecillo,
F. Ruiz, M. Piattini, and M. Genero, “Towards
a consistent terminology for software measure-
ment,” Information and Software Technology,
Vol. 48, No. 8, 2006, pp. 631-644.

S. Keele et al., “Guidelines for performing sys-
tematic literature reviews in software engineer-
ing,” in Technical report, Ver. 2.8 EBSE Tech-
nical Report. EBSE. sn, 2007.

J.W. Creswell, Research design: Qualitative,
quantitative, and mizred methods approaches.
Sage Publications, 2013.

N. Mack, C. Woodsong, K.M. MacQueen,
G. Guest, and E. Namey, “Qualitative re-
search methods: A data collectors field guide.”
POPLine, 2005.

R. Conradi and A.I. Wang, Empirical methods
and studies in software engineering: experiences
from ESERNET. Springer, 2003, Vol. 2765.
N.E. Fenton and M. Neil, “Software metrics:
Successes, failures and new directions,” Journal
of Systems and Software, Vol. 47, No. 2, 1999,
pp. 149-157.

G. Tom, Software Metrics. Chartwell-Bratt,
1976.

R.B. Grady and D.L. Caswell, Software metrics:
Establishing a company-wide program. Prentice
Hall, 1987.

V.R. Basili, G. Caldiera, and H.D. Rombach,
“The goal question metric approach,” in Ency-
clopedia of Software Engineering. Wiley, 1994,
pp- H28-532.

R.E. Park, W.B. Goethert, and W.A. Florac,
“Goal-driven software measurement. A guide-
book,” Carnegie Mellon University, Pittsburgh,
PA, USA, Tech. Rep., 1996.

160

Touseef Tahir, Ghulam Rasool, Muhammad Noman

[36]

[44]

L.C. Briand, C.M. Differding, and H.D.
Rombach, “Practical guidelines for measure-
ment-based process improvement,” Software
Process Improvement and Practice, Vol. 2, No. 4,
1996, pp. 253-280.

@. Moen, M. Gavlen, and I. Endresen, “Interna-
tionalization of small, computer software firms:
Entry forms and market selection,” European
Journal of Marketing, Vol. 38, No. 9/10, 2004,
pp. 1236-1251.

C. Larman and V.R. Basili, “Iterative and in-
cremental developments. A brief history,” Com-
puter, Vol. 36, No. 6, 2003, pp. 47-56.

A. Cockburn, Agile software development.
Addison-Wesley Boston, 2002, Vol. 177.

A. Boyd, “The goals, questions, indicators, mea-
sures (GQIM) approach to the measurement
of customer satisfaction with e-commerce Web
sites,” in Aslib proceedings, Vol. 54. MCB UP
Ltd, 2002, pp. 177-187.

J. Motwani, “Critical factors and performance
measures of TQM,” The TQM magazine,
Vol. 13, No. 4, 2001, pp. 292-300.

A. Abran, J.W. Moore, P. Bourque, and
R. Dupuis, Eds., Guide to the Software En-
gineering Body of Knowledge (SWEBOK-200/
Version). IEEE Computer Society, 2004.

A. Abran, L. Buglione, and A. Sellami, “Soft-
ware measurement body of knowledge — ini-
tial validation using Vincenti’s classification
of engineering knowledge types,” in Software
Measurement Conference, 2004, pp. 1-16.

S. Alexandre, A. Renault, and N. Habra,
“POWPL: A gradual approach for software
process improvement in SMEs,” in 82nd EU-
ROMICRO Conference on Software Engineer-
ing and Advanced Applications. IEEE, 2006, pp.
328-335.

A H. Lee, W.C. Chen, and C.J. Chang, “A fuzzy
AHP and BSC approach for evaluating perfor-
mance of IT department in the manufacturing
industry in Taiwan,” FExpert Systems with Ap-
plications, Vol. 34, No. 1, 2008, pp. 96-107.

P. Garengo, S. Biazzo, and U.S. Bititci, “Perfor-
mance measurement systems in SMEs: A review
for a research agenda,” International Journal
of Management Reviews, Vol. 7, No. 1, 2005,
pp- 25-47.

O.T. Pusatli, “Software measurement activities
in small and medium enterprises: An empiri-
cal assessment,” Acta Polytechnica Hungarica,
Vol. 8, No. 5, 2011, pp. 21-42.

C. Wang, E. Walker, and J. Redmond, “Explain-
ing the lack of strategic planning in SMEs: The

importance of owner motivation,” International
Journal of Organisational Behaviour, Vol. 12,
No. 1, 2007, pp. 1-16.

J. Chen, “Development of Chinese small and
medium-sized enterprises,” Journal of Small
Business and Enterprise Development, Vol. 13,
No. 2, 2006, pp. 140-147.

M. Hudson, A. Smart, and M. Bourne, “Theory
and practice in SME performance measurement
systems,” International Journal of Operations
& Production Management, Vol. 21, No. 8, 2001,
pp- 1096-1115.

J. Iversen and L. Mathiassen, “Cultivation and
engineering of a software metrics program,” In-
formation Systems Journal, Vol. 13, No. 1, 2003,
pp. 3-19.

B. Daubner, “Empowering software develop-
ment environments by automatic software mea-
surement,” in 11th International Symposium
Software Metrics. IEEE, 2005, p. 3.

A. Coletta, “An industrial experience in as-
sessing the capability of non-software processes
using ISO/TEC 15504,” Software Process: Im-
provement and Practice, Vol. 12, No. 4, 2007,
pp. 315-319.

H. Abushama, M. Ramachandran, and P. Allen,
PRISMS: an approach to software process im-
provement for small to medium enterprises.
UOFK, 2016.

Systems and software engineering — Mea-
surement process, International Organiza-
tion for Standardization Standard ISO/IEC
15939:2007, 2007.

Systems and software engineering — Systems
and software Quality Requirements and Fvalu-
ation (SQuaRE) — Quality measure elements,
International Organization for Standardization
Standard ISO/TEC 25021:2012, 2012.

Product quality — Part 1: Quality model, In-
ternational Organization for Standardization
Standard ISO/IEC 9126-1:2001, 2001.
Information Technology — Software Product
Evaluation — Parts 1-6, International Organi-
zation for Standardization Standard ISO/IEC
14598, 2001.

Systems and software engineering — Vocabulary,
International Organization for Standardization
Standard ISO/IEC/IEEE 24 765:2010, 2010.
“Capability maturity model integration
(CMMI) (continuous representation),”
Carnegie Mellon University, Tech. Rep.
ICMU/SEI-2002-TR-011, 2002. [Online].
https://resources.sei.cmu.edu/asset files/Tec
hnicalReport/2002_005_001_14039.pdf

A Systematic Mapping Study on Software Measurement Programs in SMFEs

161

[61]

[62]

“Capability ~ maturity = model integra-
tion (CMMI) (staged representation),”
Carnegie Mellon University, Tech. Rep.

CMU/SEI-2002-TR-012, SEI, 2002. [Online].
https://www.sei.cmu.edu/reports/02tr029.pd
f

Software engineering: Software product quality
requirements and evaluation (square) quality
measure elements, International Organization
for Standardization Standard ISO/IEC 2502-1,
2005.

Product quality — Part 2: Quality model, In-
ternational Organization for Standardization
Standard ISO/IEC 9126-2:2001, 2001.
Product quality — Part 3: Quality model, In-
ternational Organization for Standardization
Standard ISO/IEC 9126-3:2001, 2001.
Product quality — Part 4: Quality model, In-
ternational Organization for Standardization
Standard ISO/IEC 9126-4:2001, 2001.

F.G. Wilkie, D. McFall, and F. McCaffery, “An
evaluation of CMMI process areas for small-to
medium-sized software development organisa-
tions,” Software Process: Improvement and
Practice, Vol. 10, No. 2, 2005, pp. 189-201.
J.A. Williams, “The impact of motivating fac-
tors on implementation of ISO 9001:2000 regis-
tration process,” Management Research News,
Vol. 27, No. 1/2, 2004, pp. 74-84.

M. Jgrgensen, “A review of studies on expert es-
timation of software development effort,” Jour-
nal of Systems and Software, Vol. 70, No. 1,
2004, pp. 37-60.

T. Tahir and C. Gencel, “A structured goal
based measurement framework enabling trace-
ability and prioritization,” in 6th International
Conference on Emerging Technologies (ICET).
IEEE, 2010, pp. 282-286.

C. Gencel, K. Petersen, A.A. Mughal, and M.I.
Igbal, “A decision support framework for met-
rics selection in goal-based measurement pro-
grams: GQM-DSFMS,” Journal of Systems and
Software, Vol. 86, No. 12, 2013, pp. 3091-3108.
J. Soini, “A survey of metrics use in finnish
software companies,” in International Sympo-
sium on Empirical Software Engineering and
Measurement (ESEM). IEEE, 2011, pp. 49-57.
P. Carbone, L. Buglione, L. Mari, and D. Petri,
“A comparison between foundations of metrol-
ogy and software measurement,” IEEE Trans-
actions on Instrumentation and Measurement,
Vol. 57, No. 2, 2008, pp. 235-241.

C. Kaner et al., “Software engineering metrics:
What do they measure and how do we know?”

[74]

[81]

[82]

in 10th International Software Metrics Sym-
posium, METRICS. IEEE Computer Society,
2004.

A. Meneely, B. Smith, and L. Williams, “Vali-
dating software metrics: A spectrum of philoso-
phies,” ACM Transactions on Software Engi-
neering and Methodology (TOSEM), Vol. 21,
No. 4, 2012, p. 24.

M. Diaz-Ley, F. Garcia, and M. Piattini, “Im-
plementing software measurement programs in
non mature small settings,” Software Process
and Product Measurement, 2008, pp. 154-167.
M. Diaz-Ley, F. Garcia, and M. Piattini, “Soft-
ware measurement programs in SMEs—defining
software indicators: A methodological frame-
work,” Product-Focused Software Process Im-
provement, 2007, pp. 247-261.

M. Diaz-Ley, F. Garcia, and M. Piattini,
“MIS-PyME software measurement maturity
model-supporting the definition of software
measurement programs,” Product-Focused Soft-
ware Process Improvement, 2008, pp. 19-33.
A. Tosun, A. Bener, and B. Turhan, “Imple-
mentation of a software quality improvement
project in an SME: A before and after compari-
son,” in 35th Euromicro Conference on Software
Engineering and Advanced Applications. IEEE,
2009, pp. 203-2009.

E. Amrina and S.M. Yusof, “A proposed man-
ufacturing performance measures for small and
medium-sized enterprises (SMEs),” in Proceed-
ings of the 10th Asia Pacific Industrial Engi-
neering and Management Systems (APIEMS)
Conference, 2009, pp. 623-629.

J.A.C.M. Villalén, G.C. Agustin, T.S.F. Gi-
labert, A.D.A. Seco, L.G. Sanchez, and M.P.
Cota, “Experiences in the application of soft-
ware process improvement in SMEs,” Soft-
ware Quality Journal, Vol. 10, No. 3, 2002, pp.
261-273.

I. Richardson and K. Ryan, “Software process
improvements in a very small company,” Soft-
ware Quality Professional, Vol. 3, No. 2, 2001,
pp- 23-35.

F. McCaffery, M. Pikkarainen, and I. Richard-
son, “AHAA—-Agile, hybrid assessment method
for automotive, safety critical SMEs,” in Pro-
ceedings of the 30th International Conference on
Software Engineering. ACM, 2008, pp. 551-560.
F.T. Shah, S. Shamail, and N. Ahmad Akhtar,
“Lean quality improvement model for quality
practices in software industry in Pakistan,”
Journal of Software: Evolution and Process,
Vol. 27, No. 4, 2015, pp. 237-254.

162

Touseef Tahir, Ghulam Rasool, Muhammad Noman

[84]

[88]

[89]

[91]

[92]

S. Bibi, I. Stamelos, G. Gerolimos, and V. Kol-
lias, “BBN based approach for improving the
software development process of an SME —
A case study,” Journal of Software: Evolution
and Process, Vol. 22, No. 2, 2010.

P. Clarke and R.V. OiConnor, “The meaning of
success for software SMEs: An holistic scorecard
based approach,” in Furopean Conference on
Software Process Improvement. Springer, 2011,
pp. 72-83.

E. Caballero, J.A. Calvo-Manzano, and
T. San Feliu, “Introducing scrum in a very
small enterprise: A productivity and quality
analysis,” Systems, Software and Service Pro-
cess Improvement, 2011, pp. 215-224.

C.G. von Wangenheim, T. Punter, and A. Ana-
cleto, “Software measurement for small and
medium enterprises,” in Proceeding 7th Inter-
national Conference on Empirical Assessment
in Software Engineering (EASE), 2003.

M. Sulayman, C. Urquhart, E. Mendes, and
S. Seidel, “Software process improvement suc-
cess factors for small and medium Web com-
panies: A qualitative study,” Information and
Software Technology, Vol. 54, No. 5, 2012, pp.
479-500.

N. Ohsugi, K. Fushida, N. Inoguchi, H. Arai,
H. Yamanaka, T. Niwa, M. Fujinuki, M. To-
mura, and T. Kitani, “Using trac for empiri-
cal data collection and analysis in developing
small and medium-sized enterprise systems,” in
ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement
(ESEM). IEEE, 2015, pp. 1-9.

H.M. Haddad and D.E. Meredith, “Instituting
software metrics in small organizations: A prac-
tical approach,” in Eighth International Con-
ference on Information Technology: New Gen-
erations (ITNG). IEEE, 2011, pp. 227-232.

A. Potter, P. Childerhouse, R. Banomyong, and
N. Supatn, “Developing a supply chain per-
formance tool for SMEs in Thailand,” Supply
Chain Management: An International Journal,
Vol. 16, No. 1, 2011, pp. 20-31.

A. Janes, V. Lenarduzzi, and A.C. Stan, “A con-
tinuous software quality monitoring approach
for small and medium enterprises,” in Proceed-
ings of the 8th ACM/SPEC on International
Conference on Performance Engineering Com-
panion. ACM, 2017, pp. 97-100.

H. Ayed, N. Habra, and B. Vanderose,
“AM-QulCk: A measurement-based framework
for Agile methods customisation,” in Software

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

Measurement and the 2013 Eighth International
Conference on Software Process and Prod-
uct Measurement (IWSM-MENSURA). IEEE,
2013, pp. 71-80.

S. Suwanya and W. Kurutach, “Applying agility
framework in small and medium enterprises,”
Advances in Software Engineering, 2009, pp.
102-110.

E. Irrazabal, F. Vasquez, R. Diaz, and
J. Garzas, “Applying ISO/IEC 12207:2008 with
SCRUM and Agile methods,” Software Pro-
cess Improvement and Capability Determina-
tion, 2011, pp. 169-180.

M. Diaz, F. Garcia, and M. Piattini, “Defining,
performing and maintaining software measure-
ment programs: State of the art,” in IV Simpo-
sio Internacional de Sistemas de Informacione,
2006, p. 13.

J.C. Ruiz, Z.B. Osorio, J. Mejia, M. Munoz,
A.M. Ch, B.A. Olivares et al., “Definition of
a hybrid measurement process for the mod-
els ISO/IEC 15504 — ISO/IEC 12207:2008
and CMMI Dev 1.3 in SMEs,” in FElectronics,
Robotics and Automotive Mechanics Conference
(CERMA). IEEE, 2011, pp. 421-426.

M. Jezreel, M. Mirna, N. Pablo, O. Edgar,
G. Alejandro, and M. Sandra, “Identifying
findings for software process improvement in
SMEs: An experience,” in Ninth FElectronics,
Robotics and Automotive Mechanics Conference
(CERMA). IEEE, 2012, pp. 141-146.

F.J. Pino, F. Garcia, and M. Piattini, “Key pro-
cesses to start software process improvement in
small companies,” in Proceedings of the 2009
ACM symposium on Applied Computing. ACM,
2009, pp. 509-516.

R. Chalmeta, S. Palomero, and M. Matilla,
“Methodology to develop a performance mea-
surement system in small and medium-sized en-
terprises,” International Journal of Computer
Integrated Manufacturing, Vol. 25, No. 8, 2012,
pp. 716-740.

M. Lepmets and T. McBride, “Process improve-
ment for the small and agile,” in Furopean
Conference on Software Process Improvement.
Springer, 2012, pp. 310-318.

D. Homchuenchom, C. Piyabunditkul,
H. Lichter, and T. Anwar, “SPIALS:
A light-weight software process improve-

ment self-assessment tool,” in 5th Malaysian
Conference in Software Engineering (MySEC).
IEEE, 2011, pp. 195-199.

A Systematic Mapping Study on Software Measurement Programs in SMFEs

163

Appendix. List of selected studies

Paper
ID

Title

Empirical
method

Year

S1 [7]

S2 [8]

S3 [75]

S4 [76]

S5 [77]

S6 [78]

ST [79]

S8 [54]

S9 [80]

S10 [81]

S11 [82]

S12 [83]

S13 [84]

M. Diaz-Ley, F. Garcia, and M. Piattini, “Implementing a software
measurement program in small and medium enterprises: A suitable
framework,” IET Software, Vol. 2, No. 5, 2008, pp. 417-436.

M. Diaz-Ley, F. Garcia, and M. Piattini, “MIS-PyME software
measurement capability maturity model-supporting the definition of
software measurement programs and capability determination,” Ad-
vances in Engineering Software, Vol. 41, No. 10, 2010, pp. 1223-1237.
M. Diaz-Ley, F. Garcia, and M. Piattini, “Implementing software
measurement programs in non mature small settings,” Software
Process and Product Measurement, 2008, pp. 154-167.

M. Diaz-Ley, F. Garcia, and M. Piattini, “Software measurement
programs in SMEs—defining software indicators: A methodological
framework,” Product-Focused Software Process Improvement, 2007,
pp. 247-261.

M. Diaz-Ley, F. Garcia, and M. Piattini, “MIS-PyME software
measurement maturity model-supporting the definition of software
measurement programs,” Product-Focused Software Process Improve-
ment, 2008, pp. 19-33.

A. Tosun, A. Bener, and B. Turhan, “Implementation of a software
quality improvement project in an SME: A before and after compar-
ison,” in 35th Furomicro Conference on Software Engineering and
Advanced Applications. IEEE, 2009, pp. 203—-209.

E. Amrina and S.M. Yusof, “A proposed manufacturing perfor-
mance measures for small and medium-sized enterprises (SMEs),”
in Proceedings of the 10th Asia Pacific Industrial Engineering and
Management Systems (APIEMS) Conference, 2009, pp. 623—629.
H. Abushama, M. Ramachandran, and P. Allen, PRISMS: an ap-
proach to software process improvement for small to medium enter-
prises. UOFK, 2016.

J.A.C.M. Villalén, G.C. Agustin, T.S.F. Gilabert, A.D.A. Seco, L.G.
Sanchez, and M.P. Cota, “Experiences in the application of software
process improvement in SMEs,” Software Quality Journal, Vol. 10,
No. 3, 2002, pp. 261-273.

I. Richardson and K. Ryan, “Software process improvements in a
very small company,” Software Quality Professional, Vol. 3, No. 2,
2001, pp. 23-35.

F. McCaffery, M. Pikkarainen, and I. Richardson, “AHAA—Agile,
hybrid assessment method for automotive, safety critical SMEs,”
in Proceedings of the 30th International Conference on Software
Engineering. ACM, 2008, pp. 551-560.

F.T. Shah, S. Shamail, and N. Ahmad Akhtar, “Lean quality improve-
ment model for quality practices in software industry in Pakistan,”
Journal of Software: Evolution and Process, Vol. 27, No. 4, 2015, pp.
237-254.

S. Bibi, I. Stamelos, G. Gerolimos, and V. Kollias, “BBN based
approach for improving the software development process of an SME
— A case study,” Journal of Software: Evolution and Process, Vol. 22
No. 2, 2010.

Case study

Case study

Industry report

Industry report

Case study

Industry report

Survey

Survey

Experiment

Survey

Industry report

Survey

Case study

2008

2010

2008

2007

2008

2009

2009

2016

2002

2001

2008

2015

2010

164 Touseef Tahir, Ghulam Rasool, Muhammad Noman

Paper . Empirical
D Title method Year
S14 [85] P. Clarke and R.V. OiConnor, “The meaning of success for soft- Survey 2011
ware SMEs: An holistic scorecard based approach,” in Furopean
Conference on Software Process Improvement. Springer, 2011, pp.
72-83.
S15 [86] E. Caballero, J.A. Calvo-Manzano, and T. San Feliu, “Introducing Experiment 2011
scrum in a very small enterprise: A productivity and quality analy-
sis,” Systems, Software and Service Process Improvement, 2011, pp.
215-224.
S16 [87] C.G. von Wangenheim, T. Punter, and A. Anacleto, “Software Experiment 2003

measurement for small and medium enterprises,” in Proceeding 7th
International Conference on Empirical Assessment in Software En-
gineering (EASE), 2003.
S17 [47] O.T. Pusatli, “Software measurement activities in small and medium Survey 2011
enterprises: An empirical assessment,” Acta Polytechnica Hungarica,
Vol. 8, No. 5, 2011, pp. 21-42.
S18 [88] M. Sulayman, C. Urquhart, E. Mendes, and S. Seidel, “Software Case study 2012
process improvement success factors for small and medium Web com-
panies: A qualitative study,” Information and Software Technology,
Vol. 54, No. 5, 2012, pp. 479-500.
S19 [89] N. Ohsugi, K. Fushida, N. Inoguchi, H. Arai, H. Yamanaka, T. Niwa, Case study 2015
M. Fujinuki, M. Tomura, and T. Kitani, “Using trac for empirical
data collection and analysis in developing small and medium-sized
enterprise systems,” in Empirical Software Engineering and Mea-
surement (ESEM), 2015 ACM/IEEE International Symposium on.
IEEE, 2015, pp. 1-9.
S20 [70] C. Gencel, K. Petersen, A.A. Mughal, and M.I. Igbal, “A decision Case study 2013
support framework for metrics selection in goal-based measurement
programs: GQM-DSFMS,” Journal of Systems and Software, Vol. 86,
No. 12, 2013, pp. 3091-3108.
S21 [90] H.M. Haddad and D.E. Meredith, “Instituting software metrics in Industry report 2011
small organizations: A practical approach,” in Information Technol-
ogy: New Generations (ITNG), 2011 Eighth International Conference
on. IEEE, 2011, pp. 227-232.
S22 [9] A M. Bhatti, HM. Abdullah, and C. Gencel, “A model for selecting Survey 2009
an optimum set of measures in software organizations,” in Furopean
Conference on Software Process Improvement. Springer, 2009, pp.
44-56.
S23 [69] T. Tahir and C. Gencel, “A structured goal based measurement Case study 2010
framework enabling traceability and prioritization,” in 6th Interna-
tional Conference on Emerging Technologies (ICET). IEEE, 2010,
pp. 282-286.
S24 [91] A. Potter, P. Childerhouse, R. Banomyong, and N. Supatn, “Devel- Survey 2011
oping a supply chain performance tool for smes in thailand,” Supply
Chain Management: An International Journal, Vol. 16, No. 1, 2011,
pp- 20-31.
S25 [92] A. Janes, V. Lenarduzzi, and A.C. Stan, “A continuous software Case study 2017
quality monitoring approach for small and medium enterprises,” in
Proceedings of the 8th ACM/SPEC on International Conference on
Performance Engineering Companion. ACM, 2017, pp. 97-100.

A Systematic Mapping Study on Software Measurement Programs in SMFEs

165

Paper
ID

Title

Empirical
method

Year

26 [93]

S27 [94]

28 [95]

$29 [96]

S30 [97]

S31 [98]

$32 [99)

$33 [100]

$34 [101]

S35 [102]

H. Ayed, N. Habra, and B. Vanderose, “AM-QulCk: A measure-
ment-based framework for Agile methods customisation,” in Soft-
ware Measurement and the 2013 Eighth International Conference on
Software Process and Product Measurement (IWSM-MENSURA),
2013. IEEE, 2013, pp. 71-80.

S. Suwanya and W. Kurutach, “Applying agility framework in small
and medium enterprises,” Advances in Software Engineering, 2009,
pp. 102-110.

E. Irrazabal, F. Vésquez, R. Diaz, and J. Garzas, “Applying ISO/IEC
12207:2008 with SCRUM and Agile methods,” Software Process
Improvement and Capability Determination, 2011, pp. 169-180.

M. Diaz, F. Garcia, and M. Piattini, “Defining, performing and
maintaining software measurement programs: State of the art,” in
IV Simposio Internacional de Sistemas de Informacione, 2006, p. 13.
J.C. Ruiz, Z.B. Osorio, J. Mejia, M. Munioz, A.M. Ch, B.A. Oli-
vares et al., “Definition of a hybrid measurement process for the
models ISO/IEC 15504 — ISO/IEC 12207:2008 and CMMI Dev
1.3 in SMEs,” in Electronics, Robotics and Automotive Mechanics
Conference (CERMA). IEEE, 2011, pp. 421-426.

M. Jezreel, M. Mirna, N. Pablo, O. Edgar, G. Alejandro, and M. San-
dra, “Identifying findings for software process improvement in SMEs:
An experience,” in Ninth Electronics, Robotics and Automotive Me-
chanics Conference (CERMA). IEEE, 2012, pp. 141-146.

F.J. Pino, F. Garcia, and M. Piattini, “Key processes to start software
process improvement in small companies,” in Proceedings of the 2009
ACM symposium on Applied Computing. ACM, 2009, pp. 509-516.
R. Chalmeta, S. Palomero, and M. Matilla, “Methodology to develop
a performance measurement system in small and medium-sized enter-
prises,” International Journal of Computer Integrated Manufacturing,
Vol. 25, No. 8, 2012, pp. 716-740.

M. Lepmets and T. McBride, “Process improvement for the small and
agile,” in Furopean Conference on Software Process Improvement.
Springer, 2012, pp. 310-318.

D. Homchuenchom, C. Piyabunditkul, H. Lichter, and T. An-
war, “SPIALS: A light-weight software process improvement
self-assessment tool,” in 5th Malaysian Conference in Software En-
gineering (MySEC). IEEE, 2011, pp. 195-199.

Case study

Case study

Case study

Survey

Case study

Case study

Case study

Case study

Case study

Case study

2013

2009

2011

2006

2011

2012

2009

2012

2012

2012

e-Informatica Software Engineering Journal, Volume 12, Issue 1, 2018, pages: 167-198, DOI 10.5277/e-Inf180107

The Role of Organisational Phenomena in
Software Cost Estimation: A Case Study of
Supporting and Hindering Factors

Jurka Rahikkala*, Sami Hyrynsalmi**, Ville Leppanen***, Ivan Porres™**

*Vaadin Ltd
** Pervasive Computing, Tampere University of Technology
*** Department of Future Technologies, University of Turku
=% Department of Information Technologies, Abo Akademi University

jurka.rahikkala@vaadin.com, sami.hyrynsalmi@tut.fi, ville.leppanen@utu.fi,
ivan.porres@abo.fi

Abstract

Context: Despite the fact that many researchers and practitioners agree that organisational
issues are equally important as technical issues from the software cost estimation (SCE) success
point of view, most of the research focus has been put on the development of methods, whereas
organisational factors have received surprisingly little academic scrutiny.

Objective: This study aims to identify organisational factors that either support or hinder mean-
ingful SCE, identifying their impact on estimation success. Top management’s role is specifically
addressed.

Methods: The study takes a qualitative and explorative case study based approach. In total, 18
semi-structured interviews aided the study of three projects in three organisations. Hence, the
transferability of the results is limited.

Results: The results suggest that the role of the top management is important in creating prereq-
uisites for meaningful estimation, but their day-to-day participation is not required for successful
estimation. Top management may also induce undesired distortion in estimation. Estimation
maturity and estimation success seem to have an interrelationship with software process maturity,
but there seem to be no significant individual organisational factors, which alone would make
estimation successful.

Conclusion: Our results validate several distortions and biases reported in the previous studies,
and show the SCE research focus has remained on methodologies and technical issues.

Keywords: software cost estimation, project management, project success, top man-
agement, organisational factors, software improvement, software process maturity, case
study

1. Introduction

Most software projects still suffer from budget
and schedule overruns [1-4]. Regardless of the
high price of software projects that bring hun-
dreds of billions of euros in losses annually [5-7],
there are still severe deficiencies in the proper
application of software cost estimation method-
ologies in organisations [8-13].

Systematic overruns have continued for
decades, although researchers and practitioners
have developed hundreds of estimation method-
ologies [13, 14]. However, the reason for the
overruns may not reside only in the estimation
methodologies as they are shown to be able to
produce accurate results when used properly
[15,16]. Thus, the problems that result in es-
timation errors may occur because estimation

168

Jurka Rahikkala et al.

methodologies are used ineffectively by organi-
sations [9, 11, 14]. Consequently, organisational
inhibitors [10], top management focus [17] and
the sources of distortions [9,12] have become the
focus of recent studies.

While most SCE does not use a proper
methodology, the situation is considerably bet-
ter in the area of project management (PM) as,
according to Fortune and White [18], only 5% of
projects do not use any PM tools. Considering
the fact that cost estimation is an inseparable
part of all projects [19], and that the cause of
overruns in software projects may reside in soft-
ware cost estimation (SCE), project management
(PM) or other areas [20—-22], the difference in the
extent of the use of methodologies between soft-
ware project management and management of
other types of projects is surprising. Especially,
because commonly used industrial project man-
agement and process improvement frameworks,
such as CMMI [23], PMBOK [19] and IPMA
ICB [24], promote the importance of estimation
and the use of methodologies. The use of proper
methodologies is proven to have a positive effect
on the outcome of both SCE and PM [18,25,26],
nevertheless only PM professionals utilise these
valuable tools and methods to any great extent.

As scientific literature or industrial advice
does not provide a clear explanation for the gap
in the extent of the use of methodologies between
SCE and PM, one assumption is that the differ-
ence arises from organisational priorities and
does not seem to be related to the availability
of proven cost estimation methodologies. Project
management is widely linked to the execution of
the corporate strategy [27-29], but SCE seems to
have very little visibility among top management.
Also, while project management research paid
close attention to non-technical factors, such as
top management support, communication, skills
and learning [18, 30], SCE research mostly fo-
cused on developing and improving estimation
techniques [14]. This is an important observation,
indicating that the explanation for the difference
in the extent of use of SCE and PM method-
ologies could reside within the research areas
omitted from the study of SCE.

The goal of this study is to identify organisa-
tional factors that either support or hinder mean-
ingful SCE, and to establish their impact on es-
timation success. The study takes a holistic view
with special attention on top management par-
ticipation. A qualitative, exploratory case study
approach is employed, using interviews as the
primary data collection method. In total, three
projects were studied and 18 semi-structured
interviews were conducted.

Some research papers addressing SCE from
the organisational rather than technical view-
point have been published recently [9,10,17,31].
This paper continues on this highly relevant
path but diverges from previous studies by
studying the impact of organisational factors
related to software process or project process
on the effectiveness of the use of estimation
methodologies. Improving the understanding of
the real-world dynamics related to the effec-
tive use of estimation methodologies may pro-
vide practitioners with valuable tools for im-
proving SCE in organisations. Especially, the
gap between the advice provided by the indus-
trial project management frameworks and the
low extent of use of methodologies could be
narrowed. This study may also provide further
evidence that organisational issues are equally
important as technical ones for effective SCE,
and generate new theories about the reasons
for why the extent of use of methodologies is
low regardless of the experienced importance of
SCE and industrial advise. This would justify
further study on the organisational dimension
of SCE.

The remaining part of the paper is struc-
tured as follows: Section 2 presents related work
focusing on four areas: software cost estimation,
project management, top management involve-
ment and software cost estimation in industrial
frameworks. Section 3 presents the research ques-
tions. Section 4 introduces the case companies
and projects, and Section 5 elaborates on the
research design. Section 6 presents the results of
the case study and is followed by a discussion of
the key findings in Section 7. Section 8 concludes
the study.

The Role of Organisational Phenomena in Software Cost Estimation

169

Table 1. Distribution of research topics in software cost estimation.
A single study can belong to multiple categories. Adapted from [14]

1990- 2000-

Perspective 1989 1999 2004 Total
Estimation method 3% 59% 58% 61%
Size measures 12% 24% 16% 20%
Organisational issues 22% 15% 14% 16%
Uncertainty assessment 5% 6% 13% 8%

Calibration of models
Production function

Measures of estimation performance

Data set properties
Other

7% 8% 4% %
20% 4% 3% 6%
5% 5% 6% 5%
0% 1% 2% 1%
0% 2% 1% 1%

2. Related work

In the following subsections, top management’s
relationship to SCE and PM is reviewed and the
focus areas of earlier research on these subjects
is summarised.

2.1. Software cost estimation

Software cost estimation is an activity that aims
to produce a prediction of the effort required to
build a software component. As most costs in soft-
ware development projects are personnel costs,
‘cost’ and ‘effort’ are often used interchangeably.
The literature that studies and develops meth-
ods to estimate costs in software projects be-
gan in the 1960s [32,33]. However, despite five
decades of research and hundreds of studies [14,
34], software projects still exceed their budgets
and timetables.

Jorgensen and Shepperd [14] conducted the

most recent systematic literature review of SCE.

In total, they selected 304 journal articles for
their study and identified eight active research
topics in SCE:

Estimation methods: the key issues include
formal estimation models, expert estimation
processes, decomposition based estimation
processes and combinations of those three.

Production function: the key issues are the
linear versus nonlinear relationship between
effort and size, and the relationship between
effort and schedule compression.

Calibration of models: the key issue is the
calibration of estimation models, e.g. studies
on local versus multi-organisational data and

the calibration of the COCOMO model for

certain types of projects.

Size measures: the key issues include validity
and improvements in the size measures that
are important in estimation models, e.g. the
inter-rater validity of function point counting.

Organisational issues: the key issues are es-
timation processes in a wide organisational
context, e.g. estimation practice, the reasons
for cost overruns, the impact of estimates on
project work, and estimation in the general
context of project management.

Effort uncertainty assessment: the key is-
sue is the uncertainty of effort or size esti-
mates, e.g. methods providing minimum-max-
imum intervals for effort.

Measures of estimation performance: the
key issues include the evaluation and selection
of estimation methods, e.g. how to measure
estimation accuracy or how to compare esti-
mation methods.

Data set properties: the key issue is how to
analyse data sets for the purpose of estima-
tion methods, e.g. data sets with missing
data.

Other: unclassified topics.

The distribution of the topics is presented in

Table 1.

As shown in Table 1, all other categories ex-
cept ‘Organisational issues’ and ‘Other’ focus on
estimation methodologies or other formal meth-
ods for improving the estimation of size, effort
or schedule. Only 16% of the articles discussed
issues other than non-technical issues, i.e. or-
ganisational issues. Thus, SCE research strongly
focuses on formal and technical issues and has

170

Jurka Rahikkala et al.

relatively little focus on non-technical topics. Fur-
thermore, the share of the articles focusing on
organisational issues seems to be decreasing, it
was only 14% during the period from 2000 to
2004. The recent study of SCE research trends
shows also that the research focus has remained
consistently on estimation methodologies and
techniques between 1996 and 2016, the emerged
research areas being ‘size metrics’, ‘estimation by
analogy’, ‘tools for estimation’, ‘soft computing
techniques’ and ‘expert judgement’ in five topic
solution [35].

Estimation methodologies produce good re-
sults when applied properly [15, 16]. Regardless
of this, overruns still continue. While an obvious
research topic should be the effective application
of estimation methodologies, 84% of the articles
still focus on improving methodologies. Hihn and
Habib-agahi noticed already in 1991 that only
17% of the estimators used proper estimation
methodologies [36]. This, however, seems not to
have affected the research focus either. Also ac-
cording to our experiences, the basic problem of
SCE is that the estimation methodologies are not
applied properly; researchers and practitioners
largely agree on this point [13,14]. Furthermore,
Jorgensen and Shepperd’s [14] review reports
that only eight articles out of 304 were in-depth
case studies and only three evaluated the back-
ground to the estimation processes. This, to-
gether with the technical focus of the research,
confirms that concentrating on real-world issues
that prevent the effective use of SCE methods
is justified as a systematic improvement in SCE
success that can only be realised through the
successful application of estimation methods in
real-world situations.

2.2. Project management

The share of work organised as projects is very
high in organisations, and the results of such
projects are critical for the success of an organi-
sation [37,38]. Due to the significance of PM, the
topic has been broadly studied and the body of
knowledge on it is extensive. Several different cat-
egorisations of PM research areas exist and the

following six perspectives have been presented

by Kolltveit, Karlsen and Grgnhaug [30]:

The task perspective: key issues include the
scope of project management for a task,
project targets, project results and planning
and control.

The leadership perspective: key issues are
leadership, communication, uncertainty and
learning

The system perspective: key issues are sys-
tems, elements of systems, boundaries and
dynamics.

The stakeholder perspective: key issues in-
clude stakeholders, communication, negotia-
tion, relationships, influence and dependence.

The transaction cost perspective: key is-
sues are transactions, transaction costs, pro-
duction costs, and governance structure.

The business by project perspective: key
issues include business, project results,
project success, strategy, profit and benefits.
In their article, Kolltveit et al. [30] identified

562 articles published in International Journal

of Project Management and classified them into

the six above mentioned categories (see Table 2).
Once again, when dividing the areas or as-

pects into technical and non-technical, the task

and transaction cost perspectives can be seen
as technical. The other four can be seen as
non-technical, or at least having most of their key
issues beyond the purely technical focus. As Ta-
ble 2 shows, the focus of the project management
research was shifting from the task perspective
towards the leadership and business perspectives.
This can be seen from the table as with the above
classification into technical and non-technical
aspects, the share of technical perspectives de-
creased from 68% to 18% between the first and
the last period, respectively. This shift of focus
seems reasonable since organisational issues are
reported to be even more important factors in

project success than technical ones [25,39-41].

Top management support (TMS) was even sug-

gested as the most important factor affecting

project success [42], which corresponds well with
the largest share of the leadership perspective
related papers.

The Role of Organisational Phenomena in Software Cost Estimation

171

Table 2. The distribution of research perspectives in project management.
A single study can belong to multiple categories. Adapted from [30]

Perspective 1983— 1988— 1993— 1998- 2003 Total
1987 1992 1997 2002 2004
Task 49% 34% 32% 23% 12% 29%
Leadership 8% 16% 25% 28% 33% 23%
System 23% 25% 18% 19% 15% 20%
Stakeholder 1% 3% 1% 5% 6% 3%
Transaction 19% 9% 6% 10% 6% 10%
Business 0% 13% 17% 15% 29% 15%

In comparison to SCE research, PM research
underwent a major shift from task oriented
or technical topics towards people oriented or
non-technical ones, whereas the SCE research
focus remains on task oriented subjects. Thus, it
is also reasonable to assume that the focus of PM
research has placed more focus on how methods
are applied by people and therefore increased
the awareness, effectiveness and extent of use of
the methods. The mere existence of a method
seldom leads to its success.

2.3. Top management focus

Top management support has been found to be
one of the most important critical success factors
for project success in several studies [40,42,43|
and few would doubt the need for TMS [44]. Also,
top management’s interest in PM is increasing
along with the number of PM related articles pub-
lished in top management and business journals
[45]. However, top managers are generally more
interested in non-technical issues of a strategic
nature [46,47].

The practices through which TMS is demon-
strated for a project have been extensively stud-
ied. Garrity [48] recommends top management
review plans and monitor results. Beath [49]
found that top managers are able to make or-
ganisational changes, while Morton [50] notes
top managers — as project champions — have the
skills to mobilise public opinion, resolve conflicts
between stakeholders and win the hearts and
minds of project teams. Zwikael [25] identified
a list of 10 critical top management support pro-

cesses that influence a project’s success, including
appropriate PM assignment, project manager in-
volvement during the initiation stage and the use
of standard PM software.

TMS was not studied widely in the scope
of SCE. However, Rahikkala et al. [17] found
that top management pays attention to SCE and
recognises that good estimates are critical for an
organisation’s success, as well as for understand-
ing the consequences of an erroneous estimate.
In general, there is very little information about
TMS in SCE. This suggests that the actual top
management focus on SCE is low. Regardless of
the reported attention, the limited use of SCE
methodologies supports this assumption.

2.4. Software cost estimation
in industrial frameworks

Many of the commonly used project manage-
ment frameworks, standards and other related
guidelines address cost estimation. Project Man-
agement Institute’s PMBOK Guide [19], as well
as its Software Extension [51], give detailed guid-
ance on preparing software cost estimates. An-
other popular framework, International Project
Management, Association’s Competence Base-
line [24], includes cost estimation as an impor-
tant step. Furthermore, PRINCE2! and ITIL v3
[52] frameworks emphasize estimation and cost
management, as well as the CMMI process im-
provement program [23] and the ISO 21500:2012
standard for project management [53]. Even the
U.S. Government Accountability Office (GAO)

published a 12 step guide for cost estimation?.

"https://www.axelos.com/qualifications/prince2-qualifications
*http://energy.gov /sites/prod/files/GAO%2012-Step%20Estimating%20Process. pdf

172

Jurka Rahikkala et al.

Finally, cost estimation is also covered by agile
methodologies [54].

3. Research questions

The literature review shows that SCE research
has been centred on methodology for decades
without a significant change. In contrast, PM
research is very broad and covers topics such
as methodologies, leadership and business. The
focus of research also shifted from methodologies
towards other areas, currently having a relatively
even distribution on a broad range of topics. In
particular, TMS was studied in the scope of PM
but not SCE. Hence, though SCE and PM belong
to software project delivery, the research focus
is different. In the industrial context, the impor-
tance of SCE is widely recognized, and practically
all major industrial bodies of knowledge provide
guidance for cost estimation.

The above, together with the argument that
proper cost estimation is often omitted [10, 36],
suggests that the accountability of the use of
meaningful estimation methodologies is unclear
in organisations. There are no reports that SCE
would be commonly omitted completely, rather
that it is not conducted in a meaningful way. The
previously reviewed project management and
process improvement frameworks define clearly
that project management is responsible for that
the estimation is done, but not specifically that
they would be responsible for how it is done.
This seems to leave a gap in the software pro-
cess, which may be one reason for malpractices
and overruns. This motivates our first initial
objective:

RQ1: What are the real-world factors concern-
ing the organisational context of SCE (or-
ganisational factors) that either support or
hinder the creation of a meaningful software
cost estimate?

In our study, the organisational context refers
widely to the properties and mechanisms of an
organisation, such as top management commit-
ment, leadership, organisational structure, com-
munication, monitoring, recognition and educa-
tion [55]. Effectively, the definition of the or-
ganisational context used in this study does

not exclude any properties or mechanisms of

an organisation, and we seek to identify the as-

pects affecting SCE that human subjects can

or are willing to tell us about the topic [56].

Additionally, although the organisational con-

text is the primary focus, biases emerging from

human behaviour, as human subjects are cen-
tric for the organisational context, are also
considered.

It has been found that technical issues are of
little interest to senior managers [46,47]. One rea-
son for the existence of the previously described
gap may be that SCE is perhaps perceived as too
technical and too specific to software develop-
ment to interest project managers. On the other
hand, although software developers traditionally
focus on technical topics and have little interest
in or power over non-technical issues, they may
not perceive SCE as a technical issue, and con-
sider it as belonging to the project management’s
domain. Technical experts may also be protective
of their domain in order to prevent loss of power
to outsiders [57], while the suspicious and nega-
tive attitudes of senior managers towards IT and
technical personnel [58] may hinder cooperation
further. Therefore, the second initial objective
of this study is to answer the second research
question:

RQ2: What is the impact of top management in
either supporting or hindering software cost
estimation practices?

Finally, this paper draws attention to the
difference between the extent of the use of SCE
and PM methodologies, as well as to the different
focus areas of research on SCE and PM. Addi-
tionally, the gap between the extensive amount
of industrial advice on cost estimation and the
low extent of the use of SCE methodologies is
addressed. An enhanced understanding of the
reasons behind these differences may help organ-
isations improve their SCE success, positively
affecting project success.

4. Case contexts
The topics covered in this paper have not been

widely addressed prior to this study and our
goal was to collect widely different perspectives

The Role of Organisational Phenomena in Software Cost Estimation

173

Table 3. Case study companies and projects

Company

Software Vendor

Service Provider

Tech Giant

Number of employees
Business area

Approximately 150
Software and services

Several thousands
Software and services

Several thousands
Software and services

Project

Initial/actual size of the
project

Initial/actual duration
of the project

Project type

Estimation methodology

Estimation responsible
Development
methodology

Result

Tool
12/44 person-months
3/11 months

Internal product devel-
opment

WBS and expert estima-
tion

Project Manager
Scrumbut: Waterfall (de-
sign) + Scrum (sprints)
Challenged

Operational Control
System
20/20 person-months

10/10 months

External product devel-
opment, i.e. tailored soft-
ware

WBS and expert esti-
mation, historical data,
peer review

Project Manager
Waterfall-like method

Successful

Network Management
System

Approx. 200/200
person-months

3/3 months

Continuous internal
product development

WBS and expert estima-
tion, historical data

Program Manager
Scrum

Successful

related to the organisational phenomena affect-
ing SCE, and especially top management’s role.
Thus, the cases were selected in such a way that
they would generate rich information about the
phenomena being studied. The authors focused
on large and small companies, selecting higher
and lower maturity organisations and exemplary
and challenged projects. The case companies
and projects are different in their industrial do-
mains, size, as well as in their processes. The
final decision of including a particular project
in the study was made based on a discussion
with a company representative, confirming that
the project was likely to add new perspectives in
the study. Table 3 depicts the characteristics of
the case study companies and the projects. The
companies wished to remain anonymous.

4.1. Case 1 — Software Vendor’s Tool
project

Software Vendor is a software producing company
of about one hundred and fifty people. Its main
line of business consists of selling consultancy and
support services as well as software products to
businesses. The company is global and has offices
in several countries. In this study the Software
Vendor’s Tool project, which aimed to produce
an application development tool, was analysed.

While the overall project was strictly planned
beforehand, the actual development work was di-
vided into sprints. The development work started
with a prototype version in which technical chal-
lenges were studied. The Product Owner and
Project Manager were named to the project
already in the prototype phase. The Product
Owner was responsible for creating a design doc-
ument for the product, whereas the Project Man-
ager, based on the design document, was respon-
sible for crafting a timetable and cost estimates.
Initially, the project was designed to take three
months with a team of four people. Based on the
estimate and design document, top management
approved and started the project.

The Tool project overran its schedule and
budget by over 200%. However, the project deliv-
ered the planned scope and the Senior Business
Manager reports that the outcome of the project
met his expectations and he attributes the over-
runs to estimation error and project performance
related issues.

4.2. Case 2 — service provider’s
operational control system project

Service Provider is a large software producing
company with thousands of employees, providing
tailor-made and package software, and consul-

174

Jurka Rahikkala et al.

tancy services for businesses in various sectors.
The company has premises in several countries.
For the purpose of this research the Operational
Control System project by Service Provider that
aims to produce custom software for a long-term
customer was studied. The Operational Control
System is used for reporting and analysing pro-
cess control data.

The project followed a Waterfall-like soft-
ware development process. The first stage of the
project was requirement elicitation and analysis.
After the specification was approved, the project
was estimated. The estimation was made by de-
velopers and testers, led by the project manager,
who had the overall responsibility of the cost
estimate. The estimate was a result of expert
estimates, placed into a software tool specifically
tailored for the application area.

The project was planned according to cer-
tain restrictions: the budget and the timetable
was fixed. The development started when the
customer and the vendor had agreed upon the
scope. There was a small number of unknown
features that needed further elaboration. The
development work continued straightforwardly
from design through implementation and testing
to delivery. The duration and effort of the project
was 10 months and 600 man-days, respectively.
Regardless of a significant rescoping during the
project, it concluded under budget and on sched-
ule with good customer satisfaction.

4.3. Case 3 — Tech Giant’s network
management system project

Tech Giant is a large company selling products
with software to global business-to-business mar-
kets. The company has tens of thousands of em-
ployees around the world. The Network Manage-
ment System project of Tech Giant was analysed
in this research. The project produced a new
release of a tool for managing the network. The
Network Management System has been in use
for several years.

The project was a part of a continuous de-
velopment cycle involving just under 100 people.
A new release of the system is developed every
three months. The development methodology it

used was based on Scrum with two week sprints.
The development teams were distributed over
several locations. The cost estimation was con-
ducted in two phases: firstly, rough planning
for the whole three month release in the prod-
uct management function. Secondly, the backlog
items were estimated in the Scrum teams, the
main responsible being the program manager.
The estimate for the whole release was based
on historical data about certain parts and the
estimates for those parts were prepared by re-
quirement engineers. The backlog items were
estimated by using an expert estimation. The
project concluded successfully and delivered over
85% of the planned scope, which is the goal for
all releases.

5. Case study design

The question of how the organisational phenom-
ena (RQ1) and specifically the actions of top
management (RQ2) affect SCE are investigated
through three case studies. Since this study deals
with contemporary phenomena in a real-world
context — over which the researcher has little
or no control — the case studies were chosen as
a suitable research approach [59]. This study is
exploratory, discovering what is happening, seek-
ing new ideas and generating hypotheses and
research areas [60]. The research uses a multiple
case study design and replication logic [59]. The
richness of the information is maximised by us-
ing both exemplary and average organisations
as cases [61]. The unit of analysis is a single
software cost estimate. The study focuses on the
experiences gained during the preparation of the
cost estimate and the related software process.
To facilitate the identification of organisa-
tional phenomena, it was decided to utilise the
concept of maturity. Software process maturity is
the extent to which a specific process is explicitly
defined, managed, measured, controlled and ef-
fective [62]. Paulk et al. [62] argue that maturity
implies the potential for growth in capability
and indicates both the richness of an organisa-
tion’s process and the consistency with which
it is applied in projects. Furthermore, mature

The Role of Organisational Phenomena in Software Cost Estimation

175

organisations provide training for processes and
the processes are monitored and improved. In
general, the concept of maturity measures organ-
isational capability, culture and consistency in
a holistic way, thus it can be expected to usefully
facilitate the discovery of organisational phenom-
ena. Thus the maturity of SCE and software
processes are assessed for this study.

5.1. Instrumentation of SCE maturity

To assess the maturity level of SCE in an organ-

isation, the definition of an ideal SCE procedure

was developed, it covered its most important

aspects as identified in [13]:

1. The use of an estimation methodology:
A clearly defined, established estimation
methodology is used to produce the estimate,
instead of making presumptions.

2. Proper communication of the estimate: The
assumptions, accuracy and intended use of an
estimate are communicated as part of the es-
timate, instead of being presented as a figure
lacking further explanation.

3. Planned re-estimation: An estimate is im-
proved systematically when information
about the assumptions behind an estimate is
increased and updated after the initial esti-
mate.

4. The use of a documented estimation proce-
dure: A documented procedure for producing
and communicating an estimate is followed,
instead of an ad-hoc procedure.

If the above-mentioned areas of SCE are prop-
erly covered, the estimation process should avoid
many of the worst pitfalls and the outcome will
have a fair chance of being useful for project
control. As demonstrated by Lederer and Prasad
[63], using guessing or intuition as an estimation
methodology is connected to budget and sched-
ule overruns. Also, the accuracy of an estimate
increases as a project progresses [64,65], which
encourages the re-estimation and good commu-
nication of an estimate. In addition, one poorly
estimated aspect can become an anchor and may
contaminate a whole project’s estimate [66,67].
Furthermore, a documented estimation proce-
dure protects organisations from poor estima-

tion practices and promotes good practices [13].
Standardised procedures have also been found
to improve the results in PM [19, 68], specifi-
cally in software development [15,69]. Thus, if
an estimate is the result of a rigorous procedure
covering the above mentioned aspects, it is more
likely to be useful.

5.2. Instrumentation of process maturity

In order to ensure that the relevant phenomena
are discovered, the scope of this investigation
will be extended outside the actual SCE and as-
sess the maturity of the software processes in the
studied organisations by using the Capability Ma-
turity Model (CMM) [62]. The CMM establishes
a set of publicly available criteria describing the
characteristics of mature organisations. CMM
presents the process maturity of an organisation
in a scale from 1 (low maturity) to 5 (high ma-
turity). For the CMM assessment the general
characterisations of maturity levels presented by
Paulk et al. and [62, pp. 9-14] key software pro-
cess area goals [62, pp. 59-64] are used. Together,
the CMM characteristics and goals cover a wide
range of process areas, so it is probable that
reviewing these items will facilitate the discovery
of organisational factors affecting SCE, helping
to answer RQ1 and RQ2. While CMM is rather
old, it still describes well the relevant properties
and mechanisms of an organisation, making it
a relevant tool for discovering phenomena in the
organisational context.

Higher maturity organisations have been
found to perform better in software development
[70,71]. The maturity assessment is also related
to process areas rather than to techniques, to
what rather than to how, making it agnostic to
any specific development methodology. There-
fore, the software development and estimation
maturities are relevant to the discussion of organ-
isational phenomena. The CMM is also specifi-
cally intended to be used for software process as-
sessment and software capability evaluations [62].

The CMM evaluation for the case study com-
panies was made by the researchers during the
interviews and documentation review. We would
like to point out that we followed good audit-

176

Jurka Rahikkala et al.

Table 4. Interviewees and their role in the projects

Software Vendor Service Provider

Tech Giant

Product Owner (key informant)

Senior Business Manager
Senior Technology Manager
Project Manager

Testing Manager

Project Manager (key informant)
Business Manager

Requirements Engineer
Software Developer

Program Manager (key infor-
mant)

Line Manager

Senior Manager

Requirements Engineer

Head of Product Management
Head of Programs

ing practices and the main author had over five
years of experience of auditing and holds an ISO
9001:2008 Lead Auditor certificate. Therefore, we
believe that the CMM requirements conformance
evaluations conducted as part of the research
are valid and we gained a good overall under-
standing of an organisation’s CMM level, even
though the focus was still primarily on SCE. In
this study the main interest were SCE related
topics and CMM acted only as a facilitating
instrument.

5.3. Subject selection

The subject sampling strategy was to interview
the management and representatives about other
roles related to the case projects. In total 15
people were interviewed in 18 interviews (key
informants were interviewed twice), as presented
in Table 4. All participants attended interviews
voluntarily and anonymously and the collected
data is treated confidentially.

5.4. Data collection procedures

The data for this study was collected within seven
weeks. The primary data collection methods were
semi-structured interviews [60] and a review of
documentation. In total 15 people were inter-
viewed and 18 documents reviewed. The docu-
ments included typical project documentation,
such as cost estimates, project plans, meeting
minutes and status reports, to gain a better un-
derstanding of the procedures and SCE methods
used. The case studies were completed one at
a time to allow the reflection and refinement of
the research and interview questions [72]. All the
interviews (but not key informant interviews)

related to a single case study were conducted
on the same day, with the exception of one in-
terview for the last case study. Each interview
lasted approximately one hour. Each interview
day was preceded by a key informant interview
day during which background information about
the case was collected from a person in a central
role in the case study area. The key informant
interviews addressed the following topics:
Project background, size, status and success.
Project team members and their roles.
Estimation methodology and success.
Software development methodology.
Software process maturity, capabilities and
track record.
The semi-structured interviews were based
on a predefined list of questions. Any interest-
ing facts and observations that were mentioned
led to additional questions being asked on that
subject. The interview instrument was developed
by three researchers and adapted slightly for the
individual case studies. All the interviews were
conducted by two researchers, who interviewed
one subject at a time. The interview instrument
is provided in Appendix A, it consists of the
following main areas:
1. Introduction.
2. Personal, team and project background.
3. Current state of SCE in the organisation.
4. Experiences of the organisational phenomena
affecting SCE.
5. Ending (uncovered topics).

O o=

5.5. Data analysis procedures

The primary steps for deriving conclusions from
the experiences of the study subjects included
1) semi-structured interviews, which were sound

The Role of Organisational Phenomena in Software Cost Estimation

177

recorded, 2) collection of documentation, 3) tran-
scription of the interviews, 4) the coding of tran-
scripts and documents, 5) grouping the coded
pieces of text, and 6) making conclusions. The
NVivo 10 application was used for aiding the
process, and special care was taken to maintain
a clear chain of evidence. The overall process of
analysis was conducted as outlined by [73].

During the coding phase, each interview tran-
script and collected document was reviewed state-
ment by statement, and statements containing
information about organisational factors (RQ1)
or top management participation (RQ2) were as-
signed a code representing the findings category.
After that, readily coded main categories were
reviewed statement by statement to identify sub-
categories. The subcategories were also identified
from the original transcripts. After a couple of
iterations, the subcategories emerged from these
two approaches. The performed analysis was of
the inductive type, meaning that the patterns
and categories of the analysis come from the
data, instead of being pre-defined. Themes that
were often raised in the interviews were identi-
fied and coded. The application used for coding
(NVivo 10) maintained the evidence trail from
the coded pieces of text back to the documents,
transcripts and interviewees automatically. The
coding of the texts was primarily conducted by
one of the researchers. Another researcher con-
ducted a shorter coding of the data, with fewer
iterations, independently, to validate the results
of the coding. Any differences were discussed
and resolved, and the categorisation was refined.
The final categorisation formed a structure for
reporting the findings of the study.

After the coding of the data, the coded state-
ments were grouped together to form initial hy-
pothesis, or candidates, for conclusions. The pro-
cess progressed iteratively, and was, once again,
conducted primarily by one of the researchers,
while another researcher conducted an indepen-
dent analysis with fewer iterations to validate
and refine the results. After a certain number
of iterations, and until the end of analysis, the
analysis of the statements was conducted by two
researchers together. The other two researchers
reviewed and validated the results. During the

process of forming a hypothesis, interviewees
were asked clarifying or additional questions,
where deemed necessary, to resolve any unclar-
ities and to provide additional confidence for
the hypothesis. The traceability was secured by
marking all statements used for forming the hy-
pothesis with identification codes, enabling back
tracing to the coded statements.

In addition to the interview data and docu-
mentation, the researchers’ memos written dur-
ing the interviews were used as information
sources and as part of the data analysis. The
collected project documentation provided mostly
background data for the case projects, and to
some extent, information regarding top manage-
ment’s participation in different phases of the
projects. From the organisational context point
of view, the documentation provided some infor-
mation about the software process and related
decision making. The role of the collected doc-
umentation was mostly to provide background
information and to support statements made by
the interviewees.

5.6. Validity procedures

The qualitative case study methodology involves
the researchers themselves as the instrument of
the research, which poses a risk that the results
are biased by the researchers’ subjective opinions.
More generally speaking, Robson [60] identified
three types of threats to validity: reactivity, re-
searcher bias and respondent bias. Reactivity
means that the presence of the researcher may in-
fluence the study, and particularly the behaviour
of the study objects. Researcher bias refers to
the preconceptions of the researcher, which may
influence how questions are asked and answers
are interpreted. Finally, respondent bias origi-
nates from the respondents’ attitudes towards
the research, which may lead, for example to
withholding information or giving answers the
respondents think the researcher is looking for.
Because of the researcher related threat to va-
lidity, a discussion of the effects of the involvement
of particular researchers is appropriate [60]. The
main author of this article has been involved in
professional software development since 1996, in-

178

Jurka Rahikkala et al.

cluding companies from start-ups to international

giant corporations. Additionally, he has been con-

ducting academic research within the area of SCE
since 2012, holds an ISO 9001:2008 Lead Auditor
certificate, and has over seven years of experience
of quality management system audits. The other
authors are from academia, having their main
focus in software process, software development
methodologies and software economy. Together
they have published hundreds of research papers,
and used different methodologies extensively in
their research, including qualitative case studies.

The reactivity, researcher bias and respon-
dent bias threats to the validity of the study
were addressed through six strategies provided by

[60]: prolonged involvement, triangulation, peer

debriefing, member checking, negative case anal-

ysis and audit trail. The summary of the taken
countermeasures to negate the validity threats
are summarised below:

Prolonged involvement: While the study ob-
servations were completed during a short pe-
riod of time, all the researchers had followed
the case study companies for at least two
years and were intimately aware of recent
developments in the software development
methodologies being used. All case organisa-
tions had participated in a national research
programme, Need4Speed (www.nds.fi), en-
abling the confidential sharing of informa-
tion between the organisations and the re-
searchers.

Data source triangulation: Multiple data
sources were used, including interviews with
persons in different roles, project documenta-
tion and informal observations.

Observer triangulation: Interviews were con-
ducted by two researchers together. This also
reduced the strain caused by conducting up
to six interviews during one day. Additionally,
the interviewees had a short break before each
interview, and a longer break in the middle
of the day. Important analysis steps were con-
ducted by two researchers independently, and
emerging issues were discussed and refined.

Methodological triangulation: The data
analysis included qualitative interviews and
the analysis of project documentation.

Theory triangulation: Several perspectives
were considered for interpreting the results,
including the perspectives of the subjects,
researchers and other peer group members.

Peer debriefing: Peers, including practitioners
and researchers, reviewed the research in dif-
ferent research phases. One research paper
based on the conducted research has already
been published [17]. The results of this re-
search have been reviewed by the Need4Speed
research programme steering group.

Member checking: Interviewees reviewed
both transcripts and analysis, providing feed-
back and commentary.

Negative case analysis: Elements that seemed
to contradict the conclusions of the analysis
were identified and alternative explanations
discussed.

Audit trail: Strict scrutiny was practiced to
maintain a clear audit trail from data collec-
tion to the final conclusions. All interviews,
transcripts, codings and other analysis are
archived.

Considering that this study is based on three
projects, exploratory of nature, and that the
study topic has not been widely explored prior
to this study, generalizability of results is low.
However, the study consists of three case compa-
nies and 15 interviewees with different roles, and
it provides in-depth findings and detailed infor-
mation of the study itself. Thus, transferability
of the study should be fair, although case studies
are always coloured by their specific context.

6. Results

The following sections present the findings re-
lated to organisational phenomena (RQ1) and
top management actions (RQ2) affecting SCE.
The findings are divided into four main cate-
gories (the role of management, communication,
process maturity and attitudes) that were found
in the analysis and classification of the results
by the authors. Additionally, the main categories
are divided into subsections as appropriate. The
main observations related to the second research
question are located in Section 6.1 whereas the

The Role of Organisational Phenomena in Software Cost Estimation

179

Table 5. Summary of management role findings

Case 1 Case 2 Case 3
Company Software Vendor Service Provider Tech Giant
Project Tool Operational Control System Network Management Sys-
tem
Estimate Ensuring the resources, Preparing an offer for a cus- Ensuring the resources,
purpose scope and schedule balance, tomer scope and schedule balance
ensuring the minimum
viable scope and fast
delivery
Participation = The project plan contain- The estimate reviewed on The estimate reviewed on

in estimation

ing the estimate studied at
a summary level, manage-
ment not aware of the esti-
mation practices

Resource Estimators had enough time
provisioning for preparing the estimate,
prototypes used for support-
ing estimation
Demonstrated Estimates considered as im-
importance portant, confirmed by inter-

Goal setting

Other

viewees

Goals perceived as realistic,
realism pursued, no support
for realism from historical
data, clear expectations of
the scope and schedule, pres-
sure to fit the estimate to
expectations

No shared project vision

a summary level, manage-
ment aware of the estima-
tion practices, the project
manager scrutinized the es-
timate

Estimators had enough time
for preparing the estimate

Estimates considered as im-
portant, confirmed by inter-
viewees, importance linked
to customer promises

Goals perceived as realis-
tic, realism pursued, hun-
dreds of annually delivered
projects supported realism

a summary level, manage-
ment not aware of the esti-
mation practices, the prod-
uct owner scrutinized the es-
timate

Estimators wished to have
more time, prototypes used
for supporting estimation

Estimates considered as im-
portant, confirmed by inter-
viewees, importance linked
to customer promises

Goals perceived as realistic,
realism pursued, four annual
releases for the same prod-
uct supported realism

sections 6.2—6.3 contribute the first research ques-
tion.

6.1. Management role

Findings related to the management’s role are
presented in the following sections. Table 5 sum-
marises the findings.

6.1.1. Estimate visibility and purpose

In Case 1, the Tool project, Senior Business Man-
ager studied the project plan containing the es-
timate considering the strategic importance of
the project to the company. In Case 2, the Op-
erational Control System project, the business
manager responsible for the important customer

relationship reviewed the estimate. Practically,
the visibility of the estimate correlated with the
ownership of the project and the daily involve-
ment of the managers with the project domain.
There was no visibility of the estimate beyond
the review as the project was no longer part of
the manager’s daily responsibilities. In Case 3,
the Network Management System project, the
most senior manager aware of the estimate was
the manager of the whole product family. There
are roughly 1,000 experts involved in the sys-
tem development, so the estimate was visible to
relatively senior managers.

In Case 2, the estimate was used for preparing
an offer for a customer and planning the project,
while in Case 1 and Case 3, the managers re-
ported that they needed the estimate to ensure

180

Jurka Rahikkala et al.

that the resources, scope and schedule were in
balance with each other. In Case 1, the Senior
Business Manager reported that the estimate was
needed to ensure the project scope was the mini-
mum viable and that the project would deliver
the results as soon as possible.

6.1.2. Participation in estimation

None of the managers studied the estimate in
detail. In Case 1, the Senior Business Manager
reviewed the estimate only as part of the project
plan. In Case 2 and Case 3, the managers re-
viewed the estimates on a summary level. None
of the managers participated in the estimation
work, and the managers in Case 1 and Case 3
were not aware of the estimation practices. In
Case 2, the manager was aware of the practices
because cooperation with the customer was said
to be very intense; the customer wanted to dis-
cuss processes related to daily cooperation. While
the managers were not involved in estimation on
a practical level, the managers in cases 2 and 3
stated that they challenged the estimate when
necessary. Also, in these two cases, the Project
Manager and Product Owner, respectively, scru-
tinized the estimate. An awareness of such scruti-
nizing allowed the managers to have greater trust
in the estimate. That is, there was no need for
them to personally study the estimate in detail.

6.1.3. Resource provisioning

In Case 1 and Case 2, the Tool and Operational
Control System projects, the estimators reported
that they had enough time to prepare the esti-
mates. In Case 3, the Network Management Sys-
tem project, the estimators wished to have more
time. However, although the estimation work was
very time consuming and complex, when consid-
ering the previous good results, the time reserved
for estimation seems to have been reasonable.
The perceived lack of time was connected to the
complexity and size of the estimation domain.
Also, an estimator in Case 3 wondered whether
additional time would actually improve the esti-
mates. In Case 1 and Case 3, building prototypes
was also used as a method for acquiring addi-

tional information to use for estimation, which
supported the idea that management provided
adequate resources for the estimation work.

6.1.4. Demonstrated importance

In all cases the projects had strong support
from management, and the managers empha-
sized the importance of the estimates. In Case 2
and Case 3, the estimate was strongly linked to
keeping the promises given to customers. All the
interviewees concurred that management consid-
ered the estimates to be of high importance.

6.1.5. Goal setting

All interviewees reported that the project goals
seemed realistic and achievable at the beginning
of the project, and that everybody pursued re-
alistic estimates. In Case 2, Service Provider
delivers hundreds of projects yearly, while in
Case 3, Network Management System has four
releases per year, thus its management is likely
to have a realistic picture of its organisational
performance. This probably also supports the
setting of realistic and achievable goals for re-
leases and projects. In Case 1, the Tool project
was using a new development methodology for
the first time, meaning relevant historical data
about the process performance was lacking and
goal setting was unsupported.

In Case 1, Senior Business Manager expressed
the strategic importance of the project, which he
had initiated personally, prior to the estimation.
Also a roadmap vision, which presented a release
date, had been communicated for the product.
Furthermore, the scope of the project was con-
sidered to be the minimum viable, meaning that
the scope could not be reduced. As a result, the
estimator was facing a situation in which both
the scope and schedule were effectively set, which
is always a challenging situation from project
planning point of view. The estimator describes
having perceived pressure to fit the estimate to
these expectations and having started to doubt
the estimates when they did not match initial ex-
pectations. Case 1, the Tool project, thus seems
to have experienced the anchoring phenomena

The Role of Organisational Phenomena in Software Cost Estimation

181

[66,67], i.e. the estimate is affected by an ex-
pressed starting point. However, Senior Business
Manager of Case 1 points out that flexibility in
resources and schedule was emphasised prior to
estimation.

6.1.6. Provided direction

The interviewees in Case 1 report that there were
different expectations for its outcome: Senior
Business Manager expected a strong commercial
product, while others were building a pre-version,
which would contain the full scope of features but
not on the quality level expected of a commer-
cial product. The expectation of the rest of the
team was that the quality issue would have to
be addressed in the next version of the product.
This difference in the expectations was probably
a significant source of estimation error. Actions
for error detection and customer feedback collec-
tion add to the amount of work required, as do
fixing bugs and improving functionalities based
on customer feedback.

6.2. Communication

The role of the written documents, as required
by the processes, was significant in Case 1 and
Case 2, which followed Waterfall-like develop-
ment methods. The projects had significantly
invested in preparing the documents on which
the estimates were heavily reliant. Interviewees
from both projects reported that the documents
were detailed and of high quality. Also the Net-
work Management System team in Case 3 used
documentation as part of its estimation but — as
is typical of agile development — it did not have
an official role. The documents were prepared on
demand when necessary, including pre-studies,
memos, presentations and user stories. In ad-
dition to the documents, Software Vendor in
Case 1 had developed a prototype to get more
information on the application area. Prototypes
are artefacts, which are likely to support suc-
cessful estimation because they contain signif-
icant amounts of relevant information on the
estimated application area and answer many
questions relevant to estimation [74]. Tech Giant

in Case 3 also reports that it occasionally uses
prototypes, while the Business Manager from
Service Provider adds that prototypes would be
useful but are not utilised at the moment.

While the interviewees recognised the impor-
tance of the written documents, all the inter-
viewees in Case 2 and Case 3 emphasised that
the process of preparing an estimate is more im-
portant than the result itself. The Requirements
Engineer and the Project Manager in Case 3
describe the importance of mutual understand-
ing, and all reported that truly understanding
each other’s needs is crucial. The Requirements
Engineer pointed out that estimates become ever
more reliable through discussions and said that
he is satisfied when all the questions are answered.
The Requirements Engineer also highlighted the
fact that working together provides confidence
in each other. Group estimation sessions were
used regularly in both Case 2 and Case 3. The
Senior Manager in Case 3 concluded that a good
estimate is based on good skills in preparing
the specifications and having a broad knowledge
about the application area and software devel-
opment — the majority of the Network Manage-
ment System project team members in Case 3
had worked on the product for five or more years.
Communication seems to be central to estimation
in Case 3 because issues like multiple locations
and time zones hindering estimation were men-
tioned. Agile grooming was also mentioned as
an important forum for estimation and related
communication.

In Case 2, the Project Manager and Testing
Manager reported that good cooperation and fact
based communication with customers supported
estimation. They also emphasised the role of feed-
back. The interviewees at Case 2 described team
members as competent in their area of expertise,
stating that estimates were prepared together to
a large extent. The Testing Manager added that
the atmosphere was open in general. Peer esti-
mation was used on both the programming and
PM level. The Project Manager stated that being
able to receive consultation or a peer review from
another project manager is more important than
using information systems to support estimation.
The Business Manager added that the project’s

182

Jurka Rahikkala et al.

estimation succeeded because they understood
the customer’s needs. The Software Developer
expanded on that by saying the estimation suc-
ceeded because all the details relevant to the
case were found. The Testing Manager described
an estimation as meaningful if the right experts
were consulted and involved in discussions.

In Case 1, the communication relied more on
the documentation. The project manager who
prepared the estimate described it as being stored
on a shared folder, although no feedback was
received. The estimate was based on a design
document, which was prepared by the Product
Owner. The Project Manager revealed that there
had been some discussions with the Product
Owner to scope down certain features but the
Product Owner and the Senior Technical Man-
ager reported that the estimate had not been
challenged at any phase. However, they both
stated that they had been sceptical about the
estimate but could not point out exactly where
the problems resided, and therefore did not raise
their reservations. In general, the interviewees
reported very few occasions when the estimate
would have been discussed. The communication
relied mostly on documents prepared by individ-
uals. However, the Senior Technical Manager and
Product Owner reported that the atmosphere
was open and there was no pressure not to discuss
a topic.

6.3. Process maturity

6.3.1. Estimation maturity

All of the case study companies had a docu-
mented software process describing how estima-
tion was related to the whole and which docu-
ments were required, but only Service Provider
in Case 2 had a written procedure for the estima-
tion itself. However, Tech Giant in Case 3 had
established estimation procedures, although not
documented. Service Provider (Case 2) and Tech
Giant (Case 3) had used the same practices for
several years, whereas this was the first time for
Software Vendor (Case 1) using the estimation
procedure in question. The interviewees at Tech
Giant and Service Provider reported that they

had a history of making successful estimates,
while the interviewees at Software Vendor stated
that they tend to underestimate and have a poor
track record in estimation.

The progress of the project was monitored
from the estimation point of view in all case
projects. In Case 1, the estimate was presented
as a single point estimate. In Case 2, the esti-
mate was presented as a range, consisting of an
optimistic, pessimistic and nominal scenario. In
Case 3, the target was to deliver at least 85% of
the nominal estimate, which can also be seen as
a range. The actual project team was more or
less known in all projects at the time of estima-
tion. The interviewees in Cases 2 and 3 report
that the general estimation capabilities are good,
emphasising the importance of professional com-
petence in estimation. The interviewees in Case 1
reported that their estimation capabilities and
experience are low. There has also been training
related to estimation practices in Case 2 and
Case 3. In Case 2, at Service Provider, there
was a named person who was responsible for
developing estimation practices, which was not
the case at the other two companies.

Applying the CMM scale from 1 (low matu-
rity) to 5 (high maturity) and related behavioural
characteristics [62, pp. 9-14] to SCE maturity,
Service Provider (Case 2) was assessed as be-
ing on the highest level, level 5. Their estima-
tion procedures produce reliable results, which
are adjusted to specific application areas and
technologies and there is systematic work to
improve estimation practices. According to our
assessment, Tech Giant (Case 3) is on level 4,
meaning that while there is room for improve-
ment, the standard processes are defined and
established and produce reliable results. Finally,
Software Vendor (Case 1) is on level 2, meaning
that the processes are defined and may support
the production of consistent results. However, in
practice, the process discipline was low and the
defined practices cannot be applied in real-world
situations consistently and successfully.

Table 6 summarises the findings on the SCE
procedures used in our case projects; categorised
according to the SCE capability criteria defined in
Section 4.2. The SCE maturity, when set against

The Role of Organisational Phenomena in Software Cost Estimation

183

Table 6. Summary of SCE capability findings

Case 1 Case 2 Case 3
Company Software Vendor Service Provider Tech Giant
Project Tool Operational Control Network Management

System

System

Use of an estimation
methodology

Proper communication
Re-estimation and
follow-up

Documented estimation
procedure

Other

(—) No defined standard
practice

(+) Assumptions pre-
sented

(—) Single point

(4+) Regular follow-up

(—=) No documented or
established procedure

(=) Short experience,
low competence, poor
track record

(+) Work break-down,
historical data, software
tool

(+) Assumptions pre-
sented, range

(4+) Regular follow-up

(+) Documented proce-
dure adjusted for the ap-
plication area, improved
continuously

(+) Long experience,
high competence, good
track record

(+) Agile grooming,
work break-down,
historical data
(+) Assumptions pre-
sented, range

(4+) Regular follow-up

(+) Established, but (—)
Not documented

(+) Long experience,
high competence, good
track record

the criteria in Table 5, seems to correlate well
with the CMM maturity levels and the related
behavioural characteristics: Service Provider and
Tech Giant have practices in place for repeat-
ing processes and gaining predictable results.
This issue will be discussed more in Section 6.1.
There was no standard practices that support the
development of consistency at Software Vendor.

6.3.2. Software process maturity

In Case 1, the process used for Tool was relatively
new, implemented in the first half of 2014, and
was followed by an organisational change in the
second half of 2014. The company was adopting
Scrum methodology and abandoning the process
used in the case project. The Senior Technical
Manager of the company said that the primary
focus has always been on programming at the
cost of other things, such as leadership and PM.
The interviewees also referred to similar overruns
in projects resembling Tool.

In Case 2, the project manager reported that
they deliver hundreds of projects yearly using the
same delivery process as used in the case project.
The processes are stable and under constant devel-
opment. According to the Project Manager and
Business Manager, the results have been generally

good, which was also true of the case project.
There was also a training related to the different
aspects of the software project delivery model.

Also, Tech Giant in Case 3 has used the
current Scrum based process for approximately
seven years. According to the Line Manager, the
process was under constant development, which
was supported by comments from other inter-
viewees. However, the two representatives from
product management report that there is still
much room for improvement, especially regarding
the basing of estimates on current data instead of
historical data and the managing of dependencies.
Regardless of the pointers for improvement, the
product management representative, and other
interviewees, described the overall software de-
velopment performance as good.

To recapitulate, according to our assessment
of the overall software process maturity, Software
Vendor (Case 1), Service Provider (Case 2) and
Tech Giant (Case 3) are on the CMM levels 2, 5
and 4, respectively. A summary of the assessment
findings is presented in Appendix B.

6.3.3. Attitudes

All the interviewees in this study recognised the
importance of estimation. The reasons for the

184

Jurka Rahikkala et al.

experienced importance varied. In Case 3, the Se-
nior Manager argued that estimation facilitates
the planning process before the actual work, con-
necting work to reality. In Case 1, the Project
Manager stated that estimation is important
from the planning perspective and the Testing
Manager in Case 2 concurred. Nevertheless, es-
timation was experienced as a high importance
one. In all case projects, the project manager
had the overall responsibility for preparing the
estimate. All of the project managers reported
that their commitment to the estimate was high.

In Case 1, the general attitudes towards es-
timation were negative. For example the Se-
nior Technical Manager, Project Manager and
Product Owner argued that estimates were not
trusted because they were likely to fail. The
Senior Technical Manager stated that people
were indifferent to the estimates because the
usual reaction to overruns was just to continue
the project. The Project Manager reported that
he did not like giving an estimate and was
afraid that the estimate would be interpreted
as a commitment. During the re-estimation of
the functionalities, the Project Manager de-
scribed having given upper-bound estimates due
to the high level of uncertainty, which also
led to the implementation team’s reluctance
to estimate.

In Case 2, the Customer Manager describes
the general attitude towards estimation as good
and all the other interviewees agreed, reporting
that estimation was a meaningful and motivating
task. However, the Testing Manager and Software
Developer report that when they are asked for
quick and rough estimates, the work does not
feel meaningful. They felt that some experts in
their company, at Service Provider, take estima-
tion too lightly, not necessarily recognising it as
demanding and important work, although the
importance of an estimate is understood by all.
The Project Manager commented that estimates
are sometimes given reluctantly because they are
then interpreted as commitments. The Require-
ments Engineer reported that estimation was not
necessarily a pleasant task due to its difficulty.
However, the interviewees agreed that estimation
generally worked well.

In Case 3, the Requirements Engineer and
Project Manager stated that estimation was not
a pleasant task, though the discussions are seen
as meaningful and relevant. Like the two in-
terviewees in the Operational Control System
project, the Requirement Engineer in the Network
Management System project said making quick,
rough estimates was not motivating. The Line
Manager noted that estimators may be afraid
that the estimates may not be as desired or
that inaccurate estimates will lead to re-planning
and corrective actions in the later phases of
a project. Estimating was seen as an onerous
responsibility. The Senior Manager commented
that the development organisation should improve
their estimation practices in order to improve
the accuracy.

7. Discussion

The following Section 7.1 presents the key find-
ings of this study. The remainder of this sec-
tion will present the academic (Section 7.2) and
practical implications (Section 7.3) of this study,
addressing the study’s limitations and giving
pointers for future research (Section 7.4).

7.1. Key findings

This study focused on gaining insight into top
management’s role in SCE and discovering or-
ganisational phenomena that either support or
hinder successful SCE. There were two main re-
search questions: (RQ1) What are the real-world
organisational factors that either support or hin-
der the creation of a meaningful software cost
estimate? (RQ2) What is the impact of top man-
agement in either supporting or hindering soft-
ware cost estimation practices?

The primary findings of the study are sum-
marised in Table 7. It was demonstrated that
communication, attitudes and process matu-
rity seem to support and hinder the creation
of meaningful SCE (RQ1). Furthermore, top
management’s support and realism were found
to support the results of SCE, although an-
choring and the lack of a shared project vi-

The Role of Organisational Phenomena in Software Cost Estimation

185

Table 7. Summary of findings from the case projects by category

Case 1 Case 2 Case 3
Company Software Vendor Service Provider Tech Giant
Project Tool Operational Control Network Management
System System
Outcome Challenged Success Success
Management (+) Strong support, realism (+) Strong support, realism (+4) Strong support, realism
role pursued, enough resources pursued, enough resources pursued, enough resources
(=) Anchoring, no shared
project vision
Communication (+) Detailed plans and (+) Detailed plans and (+) Aide memoir documen-
specifications, prototype specifications, mutual un- tation, mutual understand-
(—) Estimate prepared by derstanding and insight ing and insight pursued, co-
one person, lack of discus- pursued, cooperation in- operation intensive process,
sions and cooperation tensive process, expertise expertise and competence
and competence empha- emphasised, shared project
sised, shared project vision vision
Process (+) Documented software (+) Documented software (+) Documented software
maturity process, regular follow-up process, documented esti- process, established pro-
(=) No documented estima- mation procedure, estab- cesses, continuous improve-
tion procedure, non-estab- lished processes, continuous ment, training, historical
lished processes, no continu- improvement, training, his- success, high estimation ex-
ous improvement, no train- torical success, high estima- perience and competence,
ing arranged, low estima- tion experience and compe- estimate as a range, regular
tion experience and com- tence, estimate as a range, follow-up
petence, no historical data regular follow-up (=) No documented estima-
used tion procedure
Attitudes (4) Importance recognised (+) Importance recognised, (4) Importance recognised,

(4+) Project manager com-
mitment high

estimation regarded as
meaningful and motivating,

(=) Generally not pleas- general opinion that
ant, generally negative at- estimation works well
titudes, indifference to fail- (4) Project manager

ure, reluctance

commitment high

(=) Quick, rough estimates
not motivating, sometimes
unpleasant because of diffi-
culty, some people do not
recognise its seriousness,

discussions regarded as
meaningful and motivating,
general opinion that estima-
tion works well

(+) Project manager com-
mitment high

(=) Generally not pleasant,
quick, rough estimates not
motivating, estimates in-
terpreted as commitments,
fear of failure, some reluc-

estimates interpreted as tance
commitments
sion were found to hinder SCE (RQ2). Fi- 7.2. Implications for theory

nally, many of the factors affecting SCE,
such as communication, providing resources
and shared vision, have been found to affect
project execution as well. This overlap is nat-
ural, since both SCE and project execution
are inseparable parts of a software project.
Our study, however, focuses on SCE influences,
and presents evidence on factors affecting SCE
specifically.

It has been argued that only a very few papers
examine the organisational context of SCE and
how its methodologies are applied in real-world
s