e-Informatica Software Engineering Journal, Volume 12, Issue 1, 2018, pages: 9-26, DOI 10.5277/e-Inf180101

A Graphical Modelling Editor for STARSoC
Design Flow Tool Based on Model Driven
Engineering Approach

Elhillali Kerkouche*, El Bay Bourennane**, Allaoua Chaoui***

*Department of Computer Science, Mohamed Seddik Ben Yahia University, Jijel, Algeria
**LE2I Laboratoire, , University of Bourgogne, Dijon, France
=+ MISC' Laboratory, Department of Computer Science and its Applications, Faculty of IT,
Abdelhamid Mehri University, Constantine, Algeria

elhillalik@yahoo.fr, ebourenn@u-bourgogne.fr, a_chaoui2001@yahoo.com

Abstract

Background: Due to the increasing complexity of embedded systems, system designers use higher
levels of abstraction in order to model and analyse system performances. STARSoC (Synthesis Tool
for Adaptive and Reconfigurable System-on-Chip) is a tool for hardware/software co-design and
the synthesis of System-on-Chip (SoC) starting from a high level model using the StreamsC textual
language. The process behaviour is described in the C syntax language, whereas the architecture
is defined with a small set of annotation directives. Therefore, these specifications bring together
a large number of details which increase their complexity. However, graphical modelling is better
suited for visualizing system architecture.

Objectives: In this paper, the authors propose a graphical modelling editor for STARSoC design
tool which allows models to be constructed quickly and legibly. Its intent is to assist designers
in building their models in terms of the UML Component-like Diagram, and in the automatic
translation of the drawn model into StreamsC specification.

Methods: To achieve this goal, the Model-Driven Engineering (MDE) approach and well-known
frameworks and tools on the Eclipse platform were employed.

Conclusion: Our results indicate that the use of the Model-Driven Engineering (MDE) approach
reduces the complexity of embedded system design, and it is sufficiently flexible to incorporate
new design needs.

Keywords: embedded systems, hardware/software co-design, STARSoC tool, UML,
model-driven engineering, Eclipse modelling project

1. Introduction

The increasing complexity of embedded system
designs calls for high level specification languages
(like StreamsC [1] or others C/C++ based ex-
tensions), and for automated transformations
towards lower level descriptions. These languages
allow to create high level models quickly, run sim-
ulations, optimize designs and investigate the ef-
ficiency of different algorithms and architectures
before generating their corresponding low level
implementations. The automatic generation of

low level implementation drastically reduces the
amount of code to be written by designers, which
saves time to market and reduces fabrication
costs compared to hand-tuned implementations
[2]. For these reasons, the design tools are widely
adopted by the embedded system designers’ com-
munity [3]. The specification of the applications
becomes easier at high abstraction levels, since
the implementation details are hidden from the
designer.

The Synthesis Tool for Adaptive and Recon-
figurable System-On-Chip(STARSoC) [4] is one

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_12/eInformatica2018Art1.pdf

10

Elhillali Kerkouche, El Bay Bourennane, Allaoua Chaoui

of those design tools that allow hardware-soft-
ware co-design, design space exploration and high
level synthesis from a StreamsC textual specifi-
cation. The StreamsC language [5] permits the
modelling of the architecture and the behaviour
of a complex embedded system containing both
Hardware and Software communicating processes.
In StreamsC textual models, the architecture of
the system is defined with a collection of annota-
tion directives which are used to declare processes
and communication between them, whereas pro-
cesses’ behaviours are described in the C pro-
gramming language. Therefore, these specifica-
tions allow for gathering a lot of details (system
architecture and processes’ behaviours) which
increase their length and their complexity, and
consequently decrease their legibility.

It is well known that graphical specification
is better suited for describing the system com-
ponents and their relationships, whereas compo-
nents’ behaviours are generally expressed in tex-
tual notations (like the C programming language)
which allow their reuse as building blocks in new
designs. The optimal modelling solution consists
in combining textual notations with graphical
notations in order to accumulate their advan-
tages. Thereby, every system aspect is provided
with the most suitable view (textual/graphical).
UML Component Diagrams [6] are widely used
to define the structure of a system. A Component
Diagram provides a clear view of the organization
and the dependency among components in a sys-
tem, including their contents (source code, binary
code or executable) and their interfaces through
which they interact with one another. In this
work, the Authors propose to develop a graphical
modelling editor for the STARSoC design tool.
More precisely, it is an approach and a tool sup-
port to allow a high-level graphical specification
of embedded systems which combines the archi-
tectural and behavioural aspects of a system in
one model. The architectural aspect is expressed
with a UML Component-like Diagram which is an
adaptation of the UML Component Diagram to
the structural concepts of the StreamsC language,
whereas the behavioural aspect is specified in the
C programming language. From the graphical
specification of a system, this approach permits

to automatically generate a clean and correct
SteamsC specification. In order to achieve this
objective, it is proposed to use the Model-Driven
Engineering (MDE) [7] approach which is based on
meta-modelling and Model Transformations, and
to employ well-known frameworks and tools under
the Eclipse platform to in this automatic approach.

The rest of the paper is organized as follows.
Section 2 outlines the major related works. In Sec-
tion 3, some concepts of the StreamsC language
are presented. Section 4 presents the STARSoC
Tool. In Section 5, an overview of the Eclipse
Modelling Project is given. In Section 6, the
approach is presented and it is applied on an ex-
ample in Section 7. The last section concludes the
paper and gives some perspectives of this work.

2. Related works

In the literature, several research works have
been done on the automatic code generation tools
for Multi-Processor Systems-on-Chip (MPSoCs)
in order to facilitate and to accelerate the design
process.

In addition to STARSoC, there are several
code generation tools for MPSoCs which use the
textual specification of the whole system as input.
From this high level specification containing var-
ious system parameters, the tools generate a low
level description of the system and perform their
functionalities which are necessary in the design
process, such as simulation, design space explo-
ration, performance evaluation, etc. For exam-
ple, xENOC [8] is an automatic environment for
hardware/software design of Network-on-Chip
(NoC)-based MPSoC architectures. xENoC is
based on a tool, called NoCWizard which uses
an eXtensible Markup Language (XML) specifi-
cation (including NoC features, Intellectual Prop-
erties (IPs) and mapping) to generate many types
of NoC instances by using Verilog language [9].
In addition to NoC instances generation, xNoC
also includes an Embedded Message Passing In-
terface (eMPI) supporting parallel task communi-
cation. SystemCoDesigner [10] is another design
environment for high-level system modelling and
simulation, automatic design space exploration

A Graphical Modelling Editor for STARSoC Design Flow Tool Based on Model Driven Engineering Approach 11

and automatic hardware/software synthesis from
abstract model to final implementation. In Sys-
temCoDesigner, the input model is given using
SystemC textual language [11] which describes
the structural and behavioural aspects of the sys-
tem. In addition to academic environments, some
commercial design environments support the cre-
ation of MPSoCs. The most popular are Altera
System on a Programmable Chip (SoPC) [12]
and Xilinx Embedded Development Kit (EDK)
[13]. In these environments, the hardware part
description and the hardware-software integra-
tion of the final system are strongly automated
using an extensive IP cores library. Although tex-
tual notations better describe system parameters
and aspects for the design and implementation,
these notations increase the complexity of system
specifications.

On the other hand, several research works
have been proposed to adapt the UML notation
to the modelling of embedded systems. The ad-
vantage of UML is that it can be extended to
any particular domain by defining profiles which
introduce additional domain-specific modelling
concepts and constraints. In this context, many
profiles have been proposed for embedded sys-
tems design. The SysML (System Modelling Lan-
guage) profile [14] reuses a subset of UML nota-
tion and provides additional extensions needed in
system engineering. It offers graphical modelling
support for the specification, analysis, design,
verification and validation of complex heteroge-
neous systems that may combine hardware and
software components. The MARTE (Modelling
and Analysis of Real-time and Embedded Sys-
tems) profile [15] is another UML profile which
adds capabilities to UML for the development
of Real Time and Embedded Systems (RTES).
This extension provides support for specification,
design and verification/validation phases. In ad-
dition, it defines a common way of modelling
both the hardware and software aspects of sys-
tems (such as the representation of repetitive
structures) in order to improve communication
between developers. In order to cope with the
design complexities of intensive signal and image
data processing applications, the DaRT (Data-
parallelism for Real-Time) team [16] of LIFL (the

Computer Science Laboratory of Lille University,
French) developed a design flow methodology and
a tool labelled GASPARD?2 [17]. Using a subset of
MARTE Profile, GASPARD?2 follows the Model
Driven Architecture (MDA) [18] principles to de-
scribe systems at different level of abstractions. It
emphasizes system level co-modelling (hardware
and software), simulation, models refinement,
automatic code generation and IPs integration.
The UML-SystemC profile [19] is proposed to
take advantages of both UML and the SystemC
language. It captures both the structural and the
behavioural features of the SystemC language
and allows high level modelling of systems with
straightforward translation to the SystemC code.
In [20], the authors proposed an UML-based
design environment, called Koski, for MPSoCs
implementations of wireless sensor network ap-
plications. It provides a complete design flow
covering the design phases from system level
modelling to the FPGA (Field Programmable
Gate Array) prototyping. Note that only the rel-
evant profiles have been given here. Many other
works which combine the UML modelling with
embedded system design flow exist in the litera-
ture. However, they rarely cover all design phases
from requirement modelling to implementation
and validation.

In this work, the Authors intend to introduce
a straightforward graphical modelling layer for
the STARSoC tool. The proposed graphical mod-
elling editor increases flexibility by integrating
the UML notation (UML Component Diagram
notation) to the STARSoC input specification
language (StreamsC). Furthermore, it takes ad-
vantages of the MDE approach to rapidl design
systems and integrates new design needs.

3. StreamsC language

The StreamsC language is a parallel program-
ming language following the communicating pro-
cess model [5]. The language is a small set of di-
rectives and library functions callable from a con-
ventional C program. The directives are used
to declare three distinguished objects: process,
stream or signal, whereas the library functions

12

Elhillali Kerkouche, El Bay Bourennane, Allaoua Chaoui

/// PROCESS FUN <function name>

/// IN_STREAM <stream element_data_type> <stream_name>

/// OUT_STREAM <stream element_data_type> <stream_name>
/// IN_SIGNAL <signal element_data_type> <signal name>
/// OUT_SIGNAL <signal element_data_type> <signal name>
/// PROCESS _FUN BODY

. C code ...
/// PROCESS FUN_END

Figure 1. Format of the PROCESS FUN directive

/// PROCESS <process_name> PROCESS FUN <process_fun name> [TYPE [SP | HP]] <on_spec>

Figure 2. Format of a process directive

are used to communicate stream data between
processes. In the StreamsC programming model
a process is an independently executing object
with a process body. The process body is writ-
ten in a subset of C syntax and uses intrinsic
functions to perform stream or signal operations.
A process may be either software or hardware.
All declared processes are initiated when the
program begins and runs until their subroutine
bodies complete their tasks/functions.

In the following, the directives format is re-
called for describing processes, streams and sig-
nals that a StreamsC program uses. These direc-
tives are embedded in specially formatted blocks.
Each directive must be on one line and prepended
by “///” followed by a keyword identifying the
directive and optional parameter(s) [1].

The first set of directives describes the run
function of a process. This is the body of code
that gets executed when the associated process
is initiated. The PROCESS FUN directive gives
a name to the run function, input and output
streams and signal parameters, followed by an
optional parameter to be passed to the process
when it is initiated. After the parameter, the
body of the function appears as a normal C code,
usually containing variable declarations, stream
and/or signal communication, and computation.
Finally, a keyword directive is used to mark the
end of the run function. The format of the PRO-
CESS FUN directive is shown in Figure 1.

The stream and signal names can be used
within stream operations within the body of

the process. The data type of stream or signal
elements precedes the name of the stream or
signal. StreamsC provides predefined unsigned
and signed integer data types of stream or signal
elements for selected bit lengths ranging from 1
to 64. The supported bit lengths are 1, 2, 4, 6,
8, 12, 16, 18, 20, 24, 32, 40, 48, 64, 128. A sim-
ple convention is used to name these predefined
types. The signed types have the name sc__int
<bit length>. The unsigned types have the
name sc__uint<bit length>.

To describe a process to StreamsC, the PRO-
CESS directive is used. A process has an asso-
ciated run function and it is an SP (software
process) or HP (hardware process) type. If omit-
ted, SP is assumed. Figure 2 shows the format
of the PROCESS directive.

The last directive CONNECT is used to con-
nect processes via streams and signals. To con-
nect two processes, the name of one process’s
stream or signal is associated with the name of
another process’s stream or signal. In Figure 3,
the stream or signal formal parameter defined
in the PROCESS FUN directive is generically
referred to as a port. The CONNECT directive
must be specified from “source” to “destination”
(see Figure 3).

Note that the connections between processes
must be one-to-one. Broadcast patterns and
many-to-one connections are not supported.

An example of the use of these directives to
declare and connect processes is shown in Fig-
ure 4. There are two software processes called

A Graphical Modelling Editor for STARSoC Design Flow Tool Based on Model Driven Engineering Approach 13

/// CONNECT <process__name>.<port> <process_name>.<port>

Where: <port> ::= stream or

signal name from a PROCESS FUN directive

Figure 3. Format of a StreamsC CONNECT directive

//
// Process Functions definitions
//
/1!
/11
/1]

/11
/11l
/1]
/1]

/1l
/11
/1]
/1]
/1]

/1!
/!

// Process definitions

PROCESS_FUN setup_ run
OUT STREAM sc_uint4 data
PROCESS FUN BODY

. C code
PROCESS_FUN__END
PROCESS FUN finish run
IN_STREAM sc_ uint4 processed_ data
PROCESS_FUN_BODY

. C code
PROCESS_FUN_END
PROCESS_FUN p_ run
IN STREAM sc_uint4 strl
OUT STREAM sc_ uint8 str2
PROCESS_FUN_BODY

. C code
PROCESS_FUN_END

/// PROCESS setup PROCESS FUN setup_run
/// PROCESS p_1 PROCESS FUN p_ run TYPE HP
/// PROCESS p_2 PROCESS_FUN p_run TYPE HP
/// PROCESS finish PROCESS_FUN finish_run
//

// Connections

//

/// CONNECT setup.data p_1.strl

/// CONNECT p_1.str2 p_2.strl

/// CONNECT p_2.str2 finish.processed_data

Figure 4. CONNECT directives example

setup and finish, and two hardware processes
which are instances of the p process. The first
instance of the p process (p_1) receives stream
data from the setup process. The second instance
of the p process (p_2) receives data from the
previous instance and outputs data to the finish
process.

4. STARSoC design tool

STARSoC [4] is a framework for hard-
ware/software co-design, design space explo-
ration and rapid prototyping on an FPGA

(Field Programmable Gate Array) platform for
Multi-Processor Systems on Chip (MPSoCs).
The overall design flow of the STARSoC tool
is summarized in Figure 5.

The design methodology in the STARSoC
tool starts from a global model of an applica-
tion which is a set of communicating processes
described in the StreamsC textual language. In
the StreamsC model, a process may be either
a software process (SP) or a hardware process
(HP). Software and hardware processes represent
the software and hardware part of the system, re-
spectively. The hardware and software partitions
are defined by the user. Note that this design

14

Elhillali Kerkouche, El Bay Bourennane, Allaoua Chaoui

_ Specification model
> StreamsC language
HWSW
> Partitioning
SoftWare HardWare
Partition (*.C) Partition (*.C)
PE-assembly [TT~-o___
- modd | TTm=al_
Bus-arbitration Transaction-Level Modelling
I model Co-simulation
Cycle/time accurate
Computation model 4
High Level Synthesis
Accelerators

Figure 5. STARSoC design flow [21]

flow is based mainly on reusing open source Intel-
lectual Properties (IPs) for both hardware and
software parts.

After hardware-software partitioning, the
hardware part is synthesized in Register-Transfer
Level (RTL) re-using the StreamsC compiler [22].
In addition, the hardware interface allowing the
two partitions, i.e. hardware and software, to
communicate is also generated in the RTL code.
The obtained RTL code is then downloaded to
the FPGA. The software part will be compiled
and re-instrumented to generate the machine
code of the software processes. This machine
code is then downloaded into the program mem-
ory of each available processor in the gener-
ated MPSoC platform. As a result, STARSoC
generates a bus-based MPSoC platform from
a high-level application specification.

Before building a prototype for an applica-
tion, the STARSoC performs a hardware/soft-
ware co-simulation to validate the behaviour for
both hardware and software components and
also the interaction between them. In addition,
co-simulation permits the performance analy-
sis and rapid exploration of several solutions
containing different descriptions of the system
components. For this purpose, The STARSoC
tool uses Transaction-Level Modelling (TLM)
framework [23] which is commonly used for the

fast simulation and design exploration of a com-
plex System on Chips (SoCs) at several levels
of abstraction and detail. TLM proposes four
well-defined transaction level abstraction mod-
els that can be independently validated, simu-
lated and estimated. In these models, the ap-
plication is represented as a set of communi-
cating processes where the communication and
the computation are explicitly separated. These
processes perform computations and communi-
cate with other processes through an abstract
channel.

On the basis of the specification model which
describes system functionality without any ar-
chitecture details (obtained from process codes),
the STARSoC tool performs co-simulation by
using the following TLM model levels shown in
Figure 5:

— PE-assembly model: it is made up with mul-
tiple processing elements (PEs) connected by
channels.

— Bus-arbitration model: it represents a refined
PE-assembly model in the communication
part.

— Cycle/time-accurate computation model:
It contains cycle accurate computation
and approximate-timed communication.
This model can be generated from the
bus-arbitration model.

A Graphical Modelling Editor for STARSoC Design Flow Tool Based on Model Driven Engineering Approach 15

The advantage of this approach is that it
allows designers to exploit the platform at the
earlier stages of the design flow.

5. Eclipse modelling project —
overview

The Eclipse Modelling Project [24] is a collection
of frameworks and tools for the Model Driven
Engineering on the Eclipse platform. In short,
they provide a wide range of solutions for vari-
ous aspects of model driven development, from
language definition, generative development of
language editors to code generation as well as
model verification and validation [25]. In the fol-
lowing, some of the tools from Eclipse Modelling
Project that have been used in this work are
introduced. These tools are specifically recom-
mended as a basis for developing a graphical
editor for the STARSoC tool.

5.1. Eclipse Modelling Framework
(EMF)

The Eclipse Modelling Framework [26] forms the
basis for all Eclipse Modelling Project tools. It
represents the modelling framework and the code
generation facility for specifying meta-models
and managing model instances. More precisely,
EMF includes its own meta-modelling language
called Ecore which is used for defining the ab-
stract syntax of modelling languages [27]. From
a modelling language specification defined by
the Ecore meta-model, EMF generates a sim-
ple tree-based editor that enables viewing and
editing the instances of the modelling language.
In addition, EMF comes with a set of related
frameworks for validating models, creating and
executing queries against EMF models as well as
model transactions.

5.2. Graphical Editing Framework
(GEF)

Although EMF is able to generate tree-based edi-
tors for model instances of existing meta-models,
these editors do not suffice since models are

better rendered in a true graphical way. The
Graphical Editing Framework [28] provides tech-
nology to aid developers in creating rich graph-
ical editors, which are not easily built using
native widgets found in the base Eclipse plat-
form. It contains the entire set of tools to de-
fine a graphical concrete syntax for each entity
of the meta-model according to its appropriate
graphical notation. In addition, GEF employs
a Model-View-Controller (MVC) architecture
which is used to interconnect the graphical part
of an editor with the model elements. Thereby, it
permits changes to be applied to the model from
the view [25]. Although EMF and GEF can be
used separately, building a graphical editor re-
quires both of them. In this sense, GEF provides
the graphical support required for building a di-
agram editor on the top of the EMF framework.

5.3. Graphical Modelling Framework
(GMF)

The Graphical Modelling Framework [29] pro-
vides a generative component and runtime infras-
tructure for developing graphical editors based on
EMF and GEF. In other words, it provides a gen-
erative bridge between the EMF (that allows the
meta-model definition) and GEF (a lightweight
graphical framework, based on MVC architec-
ture) to help developers creating enhanced graph-
ical editors [25]. Using this framework, one can
define graphical notations for existing EMF
meta-models.

5.4. Acceleo language

Acceleo is a model-to-text transformation frame-
work that generates text from models [30]. It has
been in development since 2006, and was incorpo-
rated into the Eclipse M2T project in 2009 [24].
Its purpose is to implement code generators with
an easy to use language (according to Object
Management Group’s MOF model to text trans-
formation language standard [31]) and a good
enough tool support (IDE, syntax highlighting,
error reporting and debugging features). An Ac-
celeo program requires a meta-model and a model
compliant with this meta-model, from which it

16

Elhillali Kerkouche, El Bay Bourennane, Allaoua Chaoui

generates a text or a code. The meta-model and
the model are defined using the EMF framework,
which makes Acceleo compatible with other tools
based on EMF.

The Acceleo language is a template based
approach wherein the text or code to be gener-
ated from models are specified as a set of text
templates that are parameterized with model el-
ements. More precisely, Acceleo scans the source
model according to its meta-model and defines
a textual template in the relevant syntax for
each text fragment to be generated. The vari-
able parts in the text fragment are specified
over model elements. An advantage of this sit-
uation is the fact that the structure of the Ac-
celeo templates will directly reflect the struc-
ture of the generated text. Thus, the destina-
tion text is directly generated, with no need for
post-processing. The main feature of Acceleo is
that the generated text is mixed with Acceleo
syntax.

6. Graphical modelling editor for
STARSoC

As it was mentioned earlier, the STARSoC tool
starts from a StreamsC textual specification
which consists of the architecture and behaviour
of a complex embedded system. Gathering all
system aspects in StreamsC textual specifications
increase their complexity, decrease their readabil-
ity, and make their understanding and mainte-
nance more difficult. To remedy this, the authors
propose to develop a graphical modelling editor
for the STARSoC design tool which combines
the architectural and behavioural aspects of the
system in one model. The architectural aspect is
expressed with a UML Component-like Diagram
serving this purpose, whereas the behavioural
aspect is specified in the C syntax. From this
whole model, the StreamsC specification can be
generated and all STARSoC design flow activities
can be performed.

This section provides the outline of, the pro-
cess of building the proposed graphical modelling
editor using the well-known frameworks defined
in MDE approach on the Eclipse platform. The

presented approach consists of a process with

two steps:

1. The first step consists of specializing UML
Component Diagram [6] into StreamsC struc-
tural concepts. For this purpose a meta-model
for the specialised UML Component Dia-
gram is proposed and a graphical modelling
editor is built according to the proposed
meta-model.

2. The second step encompasses defining the
code generation of StreamsC specification. In
order to obtain the automatic and correct
process of the code generation, the authors
propose to use an Acceleo template language
to define and implement the transformation.

6.1. Specializing UML Component
Diagram into StreamsC structural
concepts

To define a new modelling language or to extend
and adapt an existing one, it is necessary to
provide an abstract syntax (i.e. a meta-model de-
noting constructs, their attributes, relationships
and constraints) as well as concrete graphical
syntax information (the appearance of constructs
and relationships in the graphical editor). In this
work, the authors prefer to adapt an existing
modelling language rather than to develop a new
modelling language for specifying systems on the
STARSoC tool.

Since StreamsC specification consists of a set
of communicating parallel software and hardware
processes described with a high level textual lan-
guage and each process may be linked to a con-
nector by an input port or an output port, the au-
thors propose a modelling language adapted from
UML Component Diagram [6] which meets ad-
ditional needs for specifying embedded systems.
UML Component Diagrams are widely used to
define the architecture and the structure of a sys-
tem. A Component Diagram shows components,
their contents (source code, binary code or exe-
cutable one), required interfaces, ports and rela-
tionships between them. For this purpose, the au-
thors proposed to meta-model the structural as-
pect of StreamsC language expressed in the UML
Component-like Diagram with the meta-model

A Graphical Modelling Editor for STARSoC Design Flow Tool Based on Model Driven Engineering Approach 17

¥ DataType € ProcessType

- sc_uintl - Sp & Port

- sc_int2 - HP oo

- scunt2 = DataType
sc_int4
sc_uint4
sc_int6
sC_uinté
sc_int8
= sc_uint8
- sc_int12
= sC_uintl12
- s¢_int16
- sC_uint16 ’2
- sc_int18
- sC_uint18
- sc_int20
sC_uint20
sc_int24
sC_uint24
s¢_int32
sC_uint32
sc_int40
sc_uint40
sc_int48
sC_uint48
- sC_int64
= sC_uint64
- sC_int128
- SC_uint128

I B B |

HasOutputPort
0..1

& OutputPort { InputPort

U B B B

I B |

& Process
) name

HasinputPort

& ProcessFun
> FunCode

& Applcation
) name

ContansProcessFun ContainsConnectors
0. 0.*

ContainsProcessCal
0.~

& ProcessCal & Connector

= ProcessType
InstanceOf

1..1
TolnputPort
1..1

FromOutputPort

1..1

Figure 6. Proposed meta-model in Ecore

shown in Figure 6. In EMF, a meta-model is
created and defined in the Ecore format, which
is basically a sub-set of UML Class Diagrams.
The proposed Ecore model is composed by the
following classes:

The Application class (attribute name: name)
represents the application. It contains all the ele-
ments used in the application which are process
function definitions (ProcessFun), process defi-
nitions (ProcessCall) and connections between
processes (Connector). The containment rela-
tions between the Application class and these
elements are specified with Composition relations
as shown in Figure 6.

The ProcessFun class represents the run func-
tions of processes. It has a String attribute named
FunCode containing the function code that gets
executed when the associated process is initiated.

The ProcessCall class represents initiated pro-
cesses in the application. Each process has an
associated run function which is specified with
an Instanceof association, and a ProcessType
attribute to indicate the type of the process. The

ProcessType attribute takes its value from Pro-
cess Type enumeration class which is SP (Software
Process) or HP (Software Process).

The Connector class represents the connec-
tions between processes via Ports. A connector
has two associations with two other classes called
OutputPort and InputPort, which are sub-classes
of the Port class.

The OutputPort class describes the output
ports of source processes, whereas the InputPort
class represents the input ports of destination
processes. QutputPort and InputPort classes in-
herit two attributes from the Port class: the name
of the port and the data type of the stream or
signal which takes its value from the DataType
enumeration class.

In addition, QutputPort and InputPort
classes are contained in the Process class which is
the abstract class of ProcessFun and ProcessCall
classes.

Despite its expressiveness, Ecore cannot cover
all modelling constraints for a modelling language
using only graphical elements. Usually, OCL is

18 Elhillali Kerkouche, El Bay Bourennane, Allaoua Chaoui

import ecore : 'http://vvwv.eclipse.org/emf/2002/Ecoref/"': -

package STARSoC :
{

STARSoC = 'http://STARSoC/'

class Application

{
attribute name : String[?] = 'MyApplication';
property ContainsConnectors : Connector(*) { composes }:;
property ContainsProcessCall ProcessCall[*] { composes };
property ContainsProcessFun : ProcessFun([*] { composes }:;

}

class Connector

{
invariant Connector_Must_Connect_Iwo_Ports_of The Same Datalype:
self.ToInputPort.DataType = self.FromOutputPort.DataType:;
property TolInputPort : InputPort[?]:
property FromOutputPort CutputPort(?]):;

}

class ProcessCall extends Process

{
invariant ProcessCall InPort_DataType Is As ProcessFun InPort_DataType:
self.HasInputPort.DataType = self.InstanceOf.HasInputPort.DataType;
invariant ProcessCall_ outPort_DataType_Is_As_ ProcessFun outPort_DataType:
self . HasOutputPort.DataType = self.InstanceOf.HasOutputPort.DataType;

attribute type : ProcessType[?]:

property InstanceQOf : ProcessFun([l]:
}
* class ProcessFun extends Process(]
2 class Process[]
+ class Port(]

class InputPort extends Port;
class OutputPort extends Port:
* enum ProcessType[]
* enum DataType[]

Figure 7. Corresponding OCL invariants of the rules

employed to define additional constraints as the
so-called well-formedness rules. These rules are
implemented in OCL as invariants which are
attached to meta-model classes in order to de-
scribe properties that should always be satisfied
for every model. Thus, the invariant constraints
are defined on the meta-model and validated on
the model level using the EMF Validation Frame-
work [32]. By introducing the OCL invariants for
meta-model classes, a modelling language is more
precisely defined leading to models with higher
quality.

For this purpose, the proposed Ecore model
was enriched with three OCL invariant con-
straints. These invariants allow the user to check
the correctness of the described models with re-
spect to their construction rules as stated in the
StreamsC language. In the following part, these
rules are described in a natural language, and

subsequently the corresponding OCL invariants
in the OCLinEcore text editor [33], which embeds
the OCL expressions directly into Ecore models
by annotating the relevant classes, are shown in
Figure 7.

Rule 1: The two end ports of the Connector
must have the same data type to assure their
compatibility.

Rule 2: ProcessCall must have the data type
of the input port as declared in the input port
of its corresponding ProcessFun.

Rule 3: ProcessCall must have the data type
of the output port as declared in the output port
of its corresponding ProcessFun.

EMF from the proposed Ecore model was
used to generate a simple tree-based editor for
the modelling language that enables editing and
viewing model instances. To develop its graphical
modelling editors, both GEF and GMF were used

A Graphical Modelling Editor for STARSoC Design Flow Tool Based on Model Driven Engineering Approach 19

4 ¢ Canvas STARSoC
4 < Figure Gallery Default

< Figure Descriptor ConnectorFigure

4 < Figure Descriptor ProcessCallFigure
4 4 Rectangle ProcessCallFigure
4 Flow Layout false

Foreground: {68,54,16}
Background: {199,240,225}
Maximum Size: [120,60]
Minimum Size: [120,60]
Preferred Size: [120,60]
Margin Border
Label ProcessCallINameFigure
Label ProcessCallTypeFigure

te++o4 44

Figure definitions
P

< Figure Descriptor ProcessFunFigure
< Figure Descriptor InputPortFigure
< Figure Descriptor OutputPortFigure
< Figure Descriptor InputPortNameFigure
< Figure Descriptor OutputPortNameFigure
< Figure Descriptor InputPortTypeFigure
& < Figure Descriptor OutputPortTypeFigure
4 % Node ProcessCall (ProcessCallFigure)
4 4 Default Size Facet
<4 [120,60]
4 Node ProcessFun (ProcessFunFigure)
4 Node InputPort (InputPortFigure)
4 Node OutputPort (QutputPortFigure)
<4 Connection Connector
<4 Connection ProcessCalllnstanceOf
<4 Diagram Label ProcessCallName
<4 Diagram Label ProcessCallType
<4 Diagram Label ProcessFunName
<4 Diagram Label ProcessFunPathToFile
<4 Diagram Label InputPortName
<4 Diagram Label OutputPortName
<4 Diagram Label InputPortType
<4 Diagram Label OutputPortType

Connections Nodes

Labels

PN platform:,r’resource/STARSoCMM/model/STAFiSoC.gmfgraph

< Child Access getFigureProcessCallNameFigure
< Child Access getFigureProcessCallTypeFigure

ProcessCall Figure definition

Figure 8. Graphical concrete syntax definition

to define the Graphical model and the Tooling
model and Mapping model, respectively.

The Graphical model defines the concrete
syntax of the modelling language according to
their appropriate graphical notations. It includes
information related to the graphical elements
(i.e. nodes, labels, connections and decorations
for connection ends) that will appear in the ed-
itor. The Graphical Model contains also a Fig-
ure Gallery that contains figures which are used
to define shapes. The elements that define the
nodes, connections and labels are under the Fig-
ure Gallery root in the graphical model. Figure 8
shows the graphical definition model for the pro-
posed Ecore model. For example, the ProcessCall
node uses the rectangle shape defined under Pro-

cessCallFigure Figure Descriptor. The rectangle
sizes, colours, borders and labels are described
separately as rectangle attributes. Similarly, each
node element of the Ecore model references the
corresponding Figure Descriptor.

The Tooling model defines the toolbar, menus
to be used and other periphery to facilitate the
management of the model content in the ed-
itor. The main focus of the Tooling model is
the toolbar definition. The toolbar is defined
within a Palette and contains Tool Groups which
contain the Tools. In Figure 9, the Tooling def-
inition model for this editor consists of three
Tool Groups, namely Processes, Ports and Con-
nectors. The Processes Tool Group contains the
ProcessFun and ProcessCall tools for creating the

20

Elhillali Kerkouche, El Bay Bourennane, Allaoua Chaoui

4 2 platform:/resource/STARSoCMM/model/STARSoC.gmftool

4 ¥ Tool Registry

4 P Palette STARSoCPalette
4 4 Tool Group Processes

4 Creation Tool ProcessFun
<4 Creation Tool ProcessCall

4 4 Tool Group Ports

4 Creation Tool InputPort

<% Creation Tool OutputPort
4 4 Tool Group Connectors

4 Creation Tool Connector

Figure 9. Tooling definition model

4 [platform:/resource/STARSOCMM/model/STARSoC.gmfmap
4 4 Mapping

¥ Top Node Reference <ContainsProcessFun:ProcessFun/ProcessFun>
4)] Top Node Reference <ContainsProcessCall:ProcessCall/ProcessCall>

4 [T Node Mapping <ProcessCall/ProcessCall>
Ab Feature Label Mapping false
Ab Feature Label Mapping false

4 K Child Reference <HasInputPort|HasInputPort:InputPort/InputPort>

IT Node Mapping <InputPort/InputPort>

4 1] Child Reference <HasOutputPort|HasOutputPort:OutputPort/OutputPort>

IT Node Mapping <OutputPort/OutputPort>

< Link Mapping <Connector{Connector.FromOutputPort:OutputPort-> Connector.TolnputPort:InputPort}/Connector>

[0 Canvas Mapping
platform:/resource/STARSoCMM/model/STARSoC.ecore

¢ platform:/resource/STARSoOCMM/model/STARSoC.gmfgraph

&2 platform:/resource/STARSoCMM/model/STARSoC.gmftool

Figure 10. Mapping definition model

ProcessFun and ProcessCall elements. The Ports
Tool Group includes InputPort and OutputPort
tools for creating the Input Port and Output
Port elements. The last tool group concerns the
creation of Connectors in the models.

The Mapping model maps graphical elements
from the graphical definition model and creation
tools from the tooling definition model to the
language constructs from the meta-model. The
Mapping model consists of several Top Node Ref-
erences, each of which contain one Node Mapping.
The Node Mapping is used to map an element
in the graphical model to both the construct
in the meta-model and to the creation tool. In
addition, it is within the Node Mapping that
the Label Mappings and Child References are
defined. Label Mappings map a Diagram Label
in the graphical Model to an attribute in the
meta-model class that is referenced by the en-
closing Node Mapping. Child References allow

meta-model elements to have children, where
each child contains an inner Node Mapping. In
addition to Top Node References, Link Mapping
is used to specify information about a link. It
contains information about a source feature, tar-
get feature, graphical representation, creation
tool, and many other properties. For instance,
according to the mapping model in Figure 10,
ProcessCall elements (Fig. 6) are created by
means of the Creation Tool ProcessCall (Fig. 9)
and the graphical representation for them is the
ProcessCall Figure definition (Fig. 8). For each
ProcessCall the corresponding “name” and “Pro-
cessType” attributes are also visualized because
of the specified Feature Label Mappings which
relate the attribute “name” (resp. the attribute
“ProcessType”) of the ProcessCall class with the
diagram label ProcessCallName (resp. Process-
CallProcessType) defined in the graphical defini-
tion model.

A Graphical Modelling Editor for STARSoC Design Flow Tool Based on Model Driven Engineering Approach 21

id) STARSoC Specification.starsoc_diagram &2
D

sc_unt8

input_stream

= OutputPort
ProcessCall_

sc_uint8

output_stream

. -
InputPort ,J (&5 ProcessCall

SP

sc_uint1 sc_uint1

__ Properties (-
& ProcessCall

Property Value

Instance Of (=) Process Fun ProcessFun

Core

Appearance
'= ProcessCall

% HP

Name
Type

* | ss Palette
R@QQAD~
(= Processes
53 ProcessFun
(& ProcessCall

(= Ports

\!i 5 @ inputPort
H
| et sy | QOutputPort
(= Connectors
HConnedor
(B

Figure 11. Generated editor for STARSoC

Finally, the Mapping model is transformed
into a diagram generator model from which a di-
agram editor can be generated. Figure 11 shows
the graphical modelling editor generated form
EMF and GMF models defined for specifying
systems on the STARSoC design tool. The edi-
tor shows the graphical elements in the diagram
and the tools in the palette. Furthermore, GMF
provides more advanced features such as anno-
tating, zooming and layouting for the generated
editor. The properties of a graphical element can
be accessed through the properties view.

6.2. Code generation of StreamsC
specification

The next step is the transformation of the graph-
ical specification of a system into its equivalent
StreamsC specification using the Acceleo trans-
formation language. In order to do that, the pre-
ceding transformation was composed with a set of
Acceleo templates (see Figure 12) that traverses
the elements of the source model (instances of
meta-models) and generates the corresponding
StreamsC code.

The first Acceleo template ToStreamsC (App :
Application) is the main template. It creates the
file of the StreamsC specification and takes the
only instance of the Application class which con-
tains all model elements as a parameter. Using
this parameter (App), it scans the contained

elements and for each element type produces
the corresponding StreamsC code. To achieve
this, the ToStreamsC template uses three others
templates defined for the ProcessFun, Process-
Call and Connector meta-model elements. For
example, the template GenProcessFun(pf : Pro-
cessFun) takes ProcessFun pf as a parameter
and writes the run function description of pf,
which contains the PROCESS FUN directive,
the name of the run function, the input and the
output streams, the body of the function and the
PROCESS_FUN_END directive, to the output
file.

7. Case study

To evaluate the practical usefulness of the pro-
posed graphical editor, a simple application of
image processing involving the horizontal edge
detection of an image of 256 X 256 pixels coded
out of 8 bits was considered. The edge detection
is a preliminary step in most image processing
techniques. Figure 13 presents the model created
in this editor.

The application is defined through two differ-
ent processes. The first one is a software process,
it allows to send the original image, through
its output stream, in the direction of the input
stream of the second process which is a hardware
process. The hardware process performs edge

22 Elhillali Kerkouche, El Bay Bourennane, Allaoua Chaoui

[comment encoding UTF-8 /]
[module generate (’http://STARSoc/’)]
[template public ToStreamsC (App : Application)]
[comment @main /]
[file (App.name.concat(’.sc’), false, 'UTF-8’)
/* [App.name /] .
Automatically generated streamsc specification

//

// Process Functions definitions

//

[for (processFun : ProcessFun| App.ContainsProcessFun)]
[GenProcessFun (processFun) /]

[/ for]

//

// Process definitions

//

[for (processCall : ProcessCall| App.ContainsProcessCall)]
[GenProcessFun (processCall)/]

[/ for]

//

// Connections

//

[for (connector : Connector| App.ContainsConnectors)]
[GenConnector (connector , App)/]

[/ for]

[/ file]

[/ template]

[template private GenProcessFun(pf : ProcessFun)]
/// PROCESS_FUN |[pf.name/]
/// IN_STREAM [pf.HasInputPort.DataType/] [pf.HasInputPort.name/
/// OUT_STREAM |[pf.HasOutput Port.DataType/] [pf.HasOutputPort.name/]
/// PROCESS FUN BODY
[pf.FunCode /]
/// PROCESS _FUN_END
[/ template]

[template private GenProcessCall(pc : ProcessCall)]
/// PRoCESS [pc.name/] PROCESS FUN [pc.InstanceOf.name/] TYPE [pc.ProcessType/]
[/ template]

[template private GenConnector(c : Connector, App:Application)]
[for (pc :ProcessCall| App.ContainsProcessCall)]
[if (pc.HasOutputPort=c.FromOutputPort)] [pc.name/][/ if]
[/ for]
.[c¢.FromOutputPort .name /]
[for (pc :ProcessCall| App.ContainsProcessCall)]
[if (pc.HasInputPort=c.TolnputPort)][pc.name/][/ if]
[/ for]
.[c.TolnputPort.name/]
[/ template]

Figure 12. Acceleo Templates for StreamsC code generation

A Graphical Modelling Editor for STARSoC Design Flow Tool Based on Model Driven Engineering Approach 23

% Essaistarsoc

4. Essaistarsoc_diagram (.

o Palette
sc_unt : sc_uint8 " sc_uint8 ® <
- [51 5 Image_processing_App SCUE | £ HorizontalEdgeDetection —
nput_stream output_stream input_stream output_stream 3 ProcessFun
3 ProcessCall
&> Ports
I’anutpcn
OutputPort
sc_unt3 # 3 Image_Processing_Process E]sc_unts sc_unt8 [% 339 HorizontalEdgeDetection_Process Fsc_unt?, &> Connectors
S Connector
input_stream | SP output_stream input_stream| HP output_stream

Figure 13. Graphical specification of the application

detection image and returns the resulting image
to the software process.

The edge detection algorithm calculates the
absolute value of the difference between two con-
secutive pixels arriving on the data bus of the
input streams. The equation of the horizontal
edge detection filter is as follows:

y(x) = [z(n) —z(n —1)] (1)

Only one hardware process is sufficient to
perform this calculation. The algorithm of hor-
izontal edge detection is described below (see
Figure 14).

Its equivalent StreamsC description is gen-
erated from the graphical specification of the
application. To generate StreamsC specification
in this approach, it is necessary to execute the
Acceleo template defined in the previous section.
The automatic generated file Essai.sc, which con-
tains the specification, is shown in Figure 15.

This StreamsC specification of the whole ap-
plication is the basis on which all STARSoC de-
sign activities can be performed. Figure 16 shows
the development environment for STARSoC tool.

8. Conclusion

The paper presents some attempts to improve
the STARSoC design tool by taking advantage
of the Model Driven Engineering techniques.
More precisely, Eclipse Modelling Project frame-

works and tools (EMF, GEF, GMF, Acceleo,. . .),
which follow the principles of MDE approach,
were used to develop a graphical editor for the
STARSoC design tool. This editor supports the
graphical editing of embedded system models
in terms of UML Component-like Diagram and
generates the StreamsC textual specifications
of these models. The adapted UML Compo-
nent Diagram is defined in accordance with
the embedded system design needs using the
Ecore model, whereas the transformation pro-
cess is defined and executed using the Acceleo
framework. The resulting StreamsC specifica-
tions are used to perform all STARSoC de-
sign tool activities, such as hardware/software
co-design, design space exploration and high level
synthesis.

According to the authors this approach is suf-
ficiently flexible to incorporate new design needs.
Due to the employed Eclipse Modelling Project,
revisions of the meta-model almost automatically
yield an updated editor and the generation of
a text or code is supported as the coding of each
meta-model element is analysed separately.

Future work plans encompass the use and
adaptation of some UML behavioural diagrams
in order to depict the behavioural features of
embedded system processes. These behavioural
diagrams will be used to automatically generate
process codes. One promising direction is to com-
bine existing UML profiles for embedded systems
design, such as SysML and MARTE profiles. This

24

Elhillali Kerkouche, El Bay Bourennane, Allaoua Chaoui

sc_uint8 data_in, data_out, x, y;
sc_stream_ open (input_stream);

sc_stream_ open (output_stream);

while (!sc_stream — eos(input_stream)) {
#pragma SC pipeline

data_in = sc_stream_read (input_stream)
sc__stream_write (output_stream .data_ out
y = x — data_in;

x = data_in;

If (y >= 0) { data_out =y; }

Else { data _out =y * (—1); }

}

sc_stream_ close (input_stream);
sc_stream_close (output_stream);

)i

Figure 14. Horizontal edges detection algorithm

I Essai - Bloc-notes

Fichier Edition Format Affichage ?

/% _Essai.sc

Automatically generated StreamsC specification

'

;; Process Functions definitions

V// PROCESS_FUN Image_processing_App
/// IN_STREAM sc_uint8 input_stream
/// OUT_STREAM sc_uint8 output_stream
/// PROCESS_FUN_BODY

sc_uint8 data_in, data_out, x, y;
sc_str eam_opengi nput_stream);
sc_stream_open output_streamﬁ;

/% Application code ... %/

sc_stream_cl osegi nput_stream);
sc_stream_close(output_stream);
/// PROCESS_FUN_END

/// PROCESS_FUN HorizontaleEdgeDetection
/// IN_STREAM sc_uint8 input_stream
/// OUT_STREAM sc_uint8 output_stream
/// PROCESS_FUN_BODY

sc_uint8® data_in, data_out, X, Yy;
sc_str eam_open%i nput_stream);
sc_stream_open(output_stream);

while (!sc_stream-eos(input_stream)) {
pra?ma sC pipeline

pata_in = sc_stream_read(input_stream);
sc_stream_write(output_stream, data_out);
Y = x-data_in;

xf:(dataagr{wé }

I >= ata_out= y;

§1sey{data_out = y*(-iﬁ;}

sc_stream_close(input_stream);
sc_stream_close(output_stream);
/// PROCESS_FUN_END

/7, s
// Process definitions
//

//
// connections
//

/// CONNECT Hor

/// PROCESS Image_Processing_Process PROCESS_FUN Image_processing_App TYPE SP
/// PROCESS HorizontaleEdgeDetection_Process PROCESS_FUN HorizontaledgeDetection TYPE HP

/// CONNECT Ima?e_Pr ocessing_Process.output_stream HorizontaledgeDetection_Process. input_stream
zontaledgepetection_Process.output_stream Image_Processing_Process.input_stream

Figure 15. Generated StreamsC specification

A Graphical Modelling Editor for STARSoC Design Flow Tool Based on Model Driven Engineering Approach

25

C/C++ - essai.sc - STARSoC

File Edt Navigate Search Run Project Window Help
{Qv () B3 %v

L1 & &) low

v &% v @~

m stlessai.sc H - []essai_starsoc.vhd =]

& &

demg/essai.sc

% =0
— while (!sc_stream_eos(input_strean)) { [H An outline
& is not
% | B E‘ #pragma SC pipeline available.
< 1= de
i data_in = sc_stream_read(input_strean);
b 5 Includes x = data_in;
[Makefile y = x - data_in;
ir (y = [)) {da[a_ou[= y(}
|~ essai_starsoc.vhd else {data_out =y * (-1);}
b 1Sessail
D5 fast sc_stream write(output_stream, data out):
} [+
[¢] [*]
Problems | &l Console 22 " Properies 8 4|t 8~r=0
C-Build [demo]
§CZ_1.4DeTa/nin/Seqgen > essal_sTarsor,vha
< I /opt/oasys/sc2_1.4beta/src/synth/misc/scripts/makearch E
R e R T

Figure 16. The development environment for STARSoC tool

combination is possible since most of the profiles
are focused on the process paradigm.

References

[1] M. Gokhale, sc2 Reference Manual, Los Alamos
National Laboratory, Los Alamos, NM, USA,
2003.

[2] W. Meeus, K.V. Beeck, T. Goedemé, J. Meel,
and D. Stroobandt, “An overview of today’s
high-level synthesis tools,” Design Automation
for Embedded Systems, Vol. 16, No. 3, Aug. 2012,
pp. 31-51.

[3] J. Cong, B. Liu, S. Neuendorffer, J. Noguera,
K.A. Vissers, and Z. Zhang, “High-level synthe-
sis for FPGAs: From prototyping to deployment,”
IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 30, No. 4,
Apr. 2011, pp. 473-491.

[4] A.Samahi and E. Bourennane, “Automated inte-
gration and communication synthesis of reconfig-
urable MPSoC platform,” in Second NASA/ESA
Conference on Adaptive Hardware and Sys-
tems (AHS), University of Edinburgh. Scotland,
United Kingdom: IEEE Computer Society, Aug.
2007, pp. 379-385.

[5] M. B.Gokhale, J.M. Stone, J. Arnold, and
M. Kalinowski, “Stream-oriented FPGA com-
puting in the Streams-C high level language,”

8]

[10]

in Proceedings of the 2000 IEEE Symposium
on Field-Programmable Custom Computing Ma-
chines. Napa Valley, CA, USA: IEEE Computer
Society, Apr. 2000, pp. 49-56.

Unified Modeling Language, Version 2.5,
Object Management Group, 2015, OMG
Document Number: formal/15-03-01. [Online].
http://www.omg.org/spec/UML/2.5/PDF
AR. da Silva, “Model-driven engineering,”
Computer Languages, Systems and Structures,
Vol. 43, No. C, Oct. 2015, pp. 139-155.

J. Joven, O. Font-Bach, D. Castells-Rufas,
R. Martinez, L. Terés, and J. Carrabina, “xENoC
— an experimental network-on-chip environment
for parallel distributed computing on NoC-based
MPSoC architectures,” in 16th Furomicro In-
ternational Conference on Parallel, Distributed
and Network-Based Processing. Toulouse, France:
IEEE Computer Society, Feb. 2008, pp. 141-148.
D. Thomas and P. Moorby, The Verilog Hard-
ware Description Language, 3rd ed. Norwell, MA |
USA: Kluwer Academic Publishers, 1996.

J. Keinert, M. Streubuhr, T. Schlichter, J. Falk,
J. Gladigau, C. Haubelt, J. Teich, and M. Mered-
ith, “SystemCoDesigner — an automatic ESL syn-
thesis approach by design space exploration and
behavioral synthesis for streaming applications,”
ACM Transactions on Design Automation of
Electronic Systems, Vol. 14, No. 1, Jan. 2009, pp.
1-23.

http://www.omg.org/spec/UML/2.5/PDF

26

Elhillali Kerkouche, El Bay Bourennane, Allaoua Chaoui

[11]

[12]

[13]

[16]

[17]

[18]

[19]

[20]

T. Grotker, System Design with SystemC. Nor-
well, MA, USA: Kluwer Academic Publishers,
2002.

SOPC Builder User Guide, Version 1.0,
Altera Corporation, San Jose, CA, USA,
Dec. 2010, Document Number: UG-01096.

[Online]. http://www.altera.com/literature/ug/
ug_ SOPC_ builder.pdf

EDK Concepts, Tools, and Techniques: A
Hands-On Guide to Effective Embedded
System Design, Version 138.2, Xilinx
Online Documents, Jul. 2011, OMG
Document Number: UG683. [Online]. http:
//www.xilinx.com/support/documentation/
sw__manuals/xilinx13_2/edk__ctt.pdf

Systems Modeling Language (OMG SysML), Ver-
sion 1.4, Object Management Group, Sep. 2015,
OMG Document Number: formal/2015-06-03.
[Online]. http://www.omg.org/spec/SysML/1.
4/

A UML Profile for MARTE: Modeling and
Analysis of Real-Time FEmbedded systems,
Version Beta 2, Object Management Group, Jun.
2008, OMG Document Number: ptc/2008-06-09.
[Online]. http://www.omg.org/omgmarte/
Documents/Specifications/08-06-09.pdf

DaRT team: Dataparallelism for real-time.
[Online]. http://www.inria.fr/en/teams/dart/
[Accessed 2016].

GASPARD2 SoC framework. [Online]. http:
//www.gaspard2.org/ [Accessed 2016].

Model Driven Architecture Guide, Version
1.0, Object Management Group, 2003,
OMG Document Number: omg/2003-05-01.
[Online]. http://www.omg.org/mda/mda_ files/
MDA__ Guide_Versionl-0.pdf

UML Profile for System on a Chip
(SoC), Version 1.0.1, Object Manage-
ment Group, Aug. 2006, OMG Docu-
ment Number: formal/2006-08-01. [Online].

http://www.omg.org/spec/SoCP/1.0.1/PDF

T. Kangas, P. Kukkala, H. Orsila, E. Salminen,
M. Hannikédinen, T.D. Hamélédinen, J. Riihimaki,
and K. Kuusilinna, “UML-based multiprocessor
SoC design framework,” ACM Transactions on
Embedded Computing Systems, Vol. 5, No. 2,
May 2006, pp. 281-320.

[21]

S. Boukhechem and E. Bourennane, “SystemC
transaction-level modeling of an MPSoC plat-
form based on an open source ISS by using in-
terprocess communication,” International Jour-
nal of Reconfigurable Computing, Vol. 2008, Sep.
2008, pp. 1-10.

J. Frigo, sc2 Hardware Library Reference Man-
ual, Los Alamos National Laboratory, Los
Alamos, NM, USA, 2000.

L. Cai and D. Gajski, “Transaction level mod-
eling: An overview,” in Proceedings of the 1st
IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Syn-
thesis. Newport Beach, CA, USA: ACM, Oct.
2003, pp. 19-24.

Eclipse modelling project (EMP). [Online].
http://www.eclipse.org/modeling/ [Accessed
2016].

R.C. Gronback, FEclipse Modeling Project: A
Domain-Specific Language (DSL) Toolkit, 1st ed.
Addison-Wesley Professional, 2009.

Eclipse modelling framework (EMF). [On-
line]. https://eclipse.org/modeling/emf/ [Ac-
cessed 2016].

D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks, EMF: Eclipse Modeling Framework
2.0, 2nd ed. Addison-Wesley Professional, 2009.
Graphical editing framework (GEF). [Online].
http://www.eclipse.org/gef/ [Accessed 2016].
Graphical modelling framework (GMF)). [On-
line]. http://www.eclipse.org/modeling/gmp/
[Accessed 2016).

User Guide, Version 3.1.0, The Eclipse Foun-
dation, 2011. [Online|. http://www.eclipse.org/
acceleo/support/
MOF Model to Text Transformation
Language, Version 1.0, Object Manage-
ment Group, Jun. 2008, OMG Docu-
ment Number: formal/2008-01-16. [Online].
http://www.omg.org/spec/ MOFM2T/

The EMF validation framework project
(EMF-VF). [Online]. http://www.eclipse.org/
modeling/emf/?project=validation [Accessed
2016).

OCLinEcore editor. [Online]. https://wiki.
eclipse.org/MDT/OCLinEcore [Accessed 2016].

http://www.altera.com/literature/ug/ug_SOPC_builder.pdf
http://www.altera.com/literature/ug/ug_SOPC_builder.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/edk_ctt.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/edk_ctt.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_2/edk_ctt.pdf
http://www.omg.org/spec/SysML/1.4/
http://www.omg.org/spec/SysML/1.4/
http://www.omg.org/omgmarte/Documents/Specifications/08-06-09.pdf
http://www.omg.org/omgmarte/Documents/Specifications/08-06-09.pdf
http://www.inria.fr/en/teams/dart/
http:// www.gaspard2.org/
http:// www.gaspard2.org/
http://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf
http://www.omg.org/mda/mda_files/MDA_Guide_Version1-0.pdf
http://www.omg.org/spec/SoCP/1.0.1/PDF
http://www.eclipse.org/modeling/
https://eclipse.org/modeling/emf/
http://www.eclipse.org/gef/
http://www.eclipse.org/modeling/gmp/
http://www.eclipse.org/acceleo/support/
http://www.eclipse.org/acceleo/support/
http://www.omg.org/spec/MOFM2T/
http://www.eclipse.org/modeling/emf/?project=validation
http://www.eclipse.org/modeling/emf/?project=validation
https://wiki.eclipse.org/MDT/OCLinEcore
https://wiki.eclipse.org/MDT/OCLinEcore

	Introduction
	Related works
	StreamsC language
	STARSoC design tool
	Eclipse modelling project – overview
	Eclipse Modelling Framework (EMF)
	Graphical Editing Framework (GEF)
	Graphical Modelling Framework (GMF)
	Acceleo language

	Graphical modelling editor for STARSoC
	Specializing UML Component Diagram into StreamsC structural concepts
	Code generation of StreamsC specification

	Case study
	Conclusion
	References

