
e-Informatica Software Engineering Journal, Volume 12, Issue 1, 2018, pages: 51–78, DOI 10.5277/e-Inf180103

Knowledge Management in Software Testing:
A Systematic Snowball Literature Review

Krzysztof Wnuk∗, Thrinay Garrepalli∗
∗Software Engineering Research Group, Department of Software Engineering,

Blekinge Institute of Technology, Karlskrona, Sweden
krw@bth.se, thga14@student.bth.se

Abstract
Background: Software testing benefits from the usage of Knowledge Management (KM) methods
and principles. Thus, there is a need to adopt KM to the software testing core processes and
attain the benefits that it provides in terms of cost, quality, etc. Aim: To investigate the usage and
implementation of KM for software testing. The major objectives include 1. To identify various
software testing aspects that receive more attention while applying KM. 2. To analyse multiple
software testing techniques, i.e. test design, test execution and test result analysis and highlight KM
involvement in these. 3. To gather challenges faced by industry due to the lack of KM initiatives
in software testing.
Method: A Systematic Literature Review (SLR) was conducted utilizing the guidelines for
snowballing reviews by Wohlin. The identified studies were analysed in relation to their rigor and
relevance to assess the quality of the results.
Results: The initial resulting set provided 4832 studies. From these, 35 peer-reviewed papers
were chosen among which 31 are primary, and 4 are secondary studies. The literature review
results indicated nine testing aspects being in focus when applying KM within various adaptation
contexts and some benefits from KM application. Several challenges were identified, e.g., improper
selection and application of better-suited techniques, a low reuse rate of software testing knowledge,
barriers in software testing knowledge transfer, no possibility to quickly achieve the most optimum
distribution of human resources during testing, etc.
Conclusions: The study brings supporting evidence that the application of KM in software testing
is necessary, e.g., to increase test effectiveness, select and apply testing techniques. The study
outlines the testing aspects and testing techniques that benefit their users.

Keywords: KM, software testing, knowledge, systematic literature review

1. Introduction

Software testing is a complex task and re-
quires various activities, techniques, tools,
and resources [1]. Knowledge Management
(KM) is extensively used in software test-
ing and influences software testing processes,
methods and models [1]. KM helps to
capture, share, distribute, and understand
knowledge that helps to create a compet-
itive advantage for organizations [2], e.g.,
by utilizing previous project experience or

sharing testing experience between team
members [3–6].

The increasing complexity of software sys-
tems combined with the advent of distributed
development models put more pressure on soft-
ware organizations to manage organizational
knowledge and intellectual capital. Also, there
is a significant loss of intellectual capital due
to staff turnover, restricted or limited knowl-
edge [6–8]. The adoption of KM principles can
help software testing experts to advance knowl-
edge reuse and to encourage management discus-

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_12/eInformatica2018Art3.pdf


52 Krzysztof Wnuk, Thrinay Garrepalli

sions across the organization. There are numer-
ous benefits of applying KM in software testing
such as [3, 4, 8–11]:
– increasing test effectiveness,
– decreasing costs, time and effort,
– determination and application of more suited

testing techniques,
– determination and application of more suited

testing techniques,
– enhancing the quality of results,
– supporting decision-making process.
Explicit knowledge testing can be documented
and accessed by multiple individuals, e.g., in test
manuals, procedures, test artifacts, test planning,
test design specifications, testing logs [12, 13].
Tacit testing knowledge is subjective and hard
to document [12] as it mainly forms test execu-
tion experiences and discussions with software
testers etc. [14]. Insufficient KM during software
testing leads to several negative consequences,
e.g., low reuse of software testing knowledge,
barriers in software testing knowledge adaption,
a poor sharing environment of software testing
knowledge, difficulties in optimal planning re-
sources [1, 4].

This study focuses on testing aspects as activ-
ities during the testing process and the resulting
artefacts, i.e. test planning, execution and test re-
sult analysis [5–7,15,16], test case design [9,17,18]
and testing phases [14, 19]. It also focuses on
testing techniques used to execute a software
system and find errors [20]. The aim is to focus
on the importance of KM in various software
testing aspects as the literature lacks studies
which focus on identifying the testing techniques
that benefit from KM application. Therefore, this
work concentrates on identifying the test design,
execution, and analysis techniques that help from
the KM application. It also explores the related
challenges resulting from insufficient KM.

The paper is organized as follows: Section 2
focuses on giving the necessary theoretical back-
ground about KM and software testing and their
corresponding practices along with its potential
contribution to this study. Section 3 provides
the research design details and objectives of this
study and the addressed research questions. Sec-
tion 4 contains the details of the research method-

ology, including considered methodologies and
the conducted data analysis. Section 5 depicts
the process of conducting the snowballing iter-
ations while Section 6 analyses the results of
the literature review. Section 7 lists the iden-
tified challenges and implications for research
and practice, while Section 8 discusses the limi-
tations of the study. The conclusions are formed
in Section 9.

2. Background and related work

2.1. KM in software testing

Testing experience, as well as testing knowledge,
are needed to gain a deeper understanding of
the used testing techniques [21, 22]. However,
testers do not tend to share the knowledge or
information that they gain when using various
testing techniques [7]. This implies that they miss
an opportunity of sharing experiences and learn-
ing from each other, which limits their overall
knowledge.

Many testers are self-educated and have lim-
ited education on the subject [23]. They require
additional training [24]. This limited knowledge
also results in a limited view about software
testing techniques [25]. Technology transfer be-
tween research and industry is often limited, in
consequence, not all new testing techniques are
directly applied in industry [26].

Testers gain various types of knowledge and
experiences from their work in software projects.
Sharing this knowledge can help to avoid mak-
ing similar mistakes and optimize testing activi-
ties. Efficient organizational knowledge sharing
requires establishing efficient KM practices for
knowledge creation, documentation, and man-
agement.

The primary objective of KM in software
testing is to transfer testing knowledge and ex-
perience between individuals in the same way as
testing documentation as well as utilizing tacit
knowledge for supporting test design, execution,
and interpretation. KM supports test planning,
test result analysis and test outcomes [27]. The
test design phase is also heavily dependent on



Knowledge Management in Software Testing: A Systematic Snowball Literature Review 53

KM as it involves findings the test conditions and
objectives and choosing the relevant information
to implement planned test cases. Knowledge also
helps to establish the satisfaction criteria against
the testing outcomes.

KM supports testing techniques selection as
it is often based on testers’ experience and intu-
ition, gained from various sources, such as testing
the previous versions of the system, involvement
in analysing and fixing the defects, working on
development and maintenance as well as working
with similar software systems [27]. Finally, KM
strategies help to increase the effectiveness and
efficiency of product testing [28]. Applying KM
in software testing is essential to increase the
testing level and enhance software quality [26].

2.2. Related work

Several studies looked into the state of the art
solutions and practice of utilizing KM for soft-
ware testing, e.g., [26]. Desai et al. [6] outlined
the challenges faced due to the lack of KM, such
as less re-use of software testing knowledge, bar-
riers in the transfer of software testing knowl-
edge, difficulties in achieving the most optimum
distribution of human resources, etc. Taipale et
al. [29] discussed KM practices in software testing
and how to enhance the testing practices using
KM strategies in organizational units. Wei et
al. [14] discussed the implementation of the KM
framework in mobile software systems testing
and how it benefits the organization concern-
ing decreased costs and increased productivity.
Beer et al. [27] stressed that exploratory testing
(described as simultaneous learning, test design,
and test execution) requires substantial experi-
ence. De Souza et al. [1] discussed KM about
software testing aspects, testing processes, test
phases, test cases and testing techniques, etc. In
a similar way, aspects that are related to KM
practices are discusse, they encompass, e.g., KM
model, knowledge capturing, knowledge elicita-
tion, knowledge retrieval, knowledge dissemina-
tion. KM has been investigated for two decades
and many tools and techniques were suggested,
e.g., methods, tools, techniques, knowledge on-
tologies, knowledge maps, intranets, just to name

a few. Most of the studies focus on storing ex-
plicit rather than tacit knowledge and only some
studies provide empirical evidence [4, 6, 7, 29, 30],
e.g., storage and re-use of test cases [1]. At
the same time, many studies focus on imple-
menting a KM framework to strengthen soft-
ware testing process [5, 7]. From the surveyed
papers, the following research gaps were identi-
fied:
– storing tacit knowledge and using appropriate

testing aspects and techniques,
– focusing on the testing aspects and testing

techniques and their importance in utilizing
KM practices.
To summarize, so far no study has focused on

identifying what type of knowledge is required
to perform a particular kind of software testing
techniques. This paper fills this research gap
by explicitly focusing on finding out the testing
techniques and the testing aspects that benefit
from KM.

3. Research questions

This study has two goals: 1) to investigate which
software testing aspects and techniques receive
more attention when applying KM and 2) to
identify the challenges faced due to the lack of
KM practices.

These goals are detailed into the three re-
search questions:
– RQ1: What are the KM and testing aspects

that receive more attention while applying
KM in software testing literature?
Motivation: RQ1 is inspired by De Souza
et al. [1] who conducted a systematic map-
ping to find out the studies related to KM
in software testing. De Souza stated various
testing aspects that get attention while ap-
plying KM in software testing literature but
lacked the analysis of the importance of each
testing aspect for KM. This paper focuses on
identifying which testing aspects investigated
in the literature in empirical studies.

– RQ2: What software testing techniques ben-
efit most from the application of KM prac-
tices?



54 Krzysztof Wnuk, Thrinay Garrepalli

Motivation: RQ2 is partly based on the
work of de Souza et al. [1] and Beer and
Ramler [27], who claimed that exploratory
and Ad-hoc testing techniques benefit from
the application of KM. The paper further
explores De Souza’s findings as well explores
more techniques which might be considered
as important in the context of KM.

– RQ3: What are the challenges faced due to
the lack of KM practices in software testing?
Motivation: RQ3 is inspired by Liu et
al. [30] who identified the challenges that
are faced due to the lack of KM. This article
further explores their findings and identifies
additional challenges that are faced due to
the lack of KM.

4. Research design and methodology

Many authors stressed the importance of utiliz-
ing systematic approaches for building knowl-
edge through literature, such as evidence-based
software engineering [31], information systems re-
search [32] and results from synthesis [33]. A sys-
tematic literature review study was performed
for the needs of this article in which the snow-
balling literature review method suggested by
Wohlin [34] was used, rather than a database
search based review because 1) it was difficult
to formulate a precise search creating the risk
of receiving many irrelevant and superfluous pa-
pers [34–36], 2) the interdisciplinary nature of the
studied area makes the database selection and
the search string construction challenging [34,37],
3) snowballing is comparable to the multiple
database searches and 4) it is suitable for expand-
ing existing literature reviews with new aspects.

The principle benefits of utilizing snowballing
are that it focuses on the cited or referenced
papers, which in comparison with the database
approach reduces the noise. Moreover, it is usu-
ally true that new studies cite one article among
the previous pertinent studies or a systematic
literature review study already done in a specific
area [34].

Snowballing involves deriving the tentative
start set of papers and conducting forward and

backward snowballing in iterations. Wohlin pro-
posed to use Google Scholar to discover the
start set of papers and to evade the publisher
bias [37]. However, in certain circumstances,
Google Scholar provides significant noise and
low certainty in terms of academic quality [38].
Thereby, the Engineering Village database was
selected as the start set identification. Knisley
recommended the Engineering Village as a prior
database to search for papers in comparison with
other databases [38]. Also, it was discovered that
the Engineering Village offers auto stemming
and related papers availability as additional fea-
tures.

4.1. Data analysis

The qualitative data collected during the liter-
ature review were analysed using the narrative
analysis technique that helps to create the narra-
tive summary of the resulting studies for synthe-
sis purposes [39]. The narrative analysis does not
focus on one specific theme and therefore helps
to discover recurring themes from the obtained
data. The narrative analysis was used to develop
the paper categorization presented in Section 6.1
and the testing aspect and techniques listed in
Sections 6.4 and 6.5 The first and the second
authors iteratively analysed the results and de-
veloped the themes.

The authors also applied grounded the-
ory analysis [40, 41] mainly because they had
pre-considered thought regarding the information
they needed, contrary to what is recommended
by Glaser and Strauss [42]. In the same vein,
thematic analysis was excluded as an alterna-
tive analysis approach because it searches for
the repetitions of themes within the accessible
information [43].

4.2. Snowballing procedure

4.2.1. Deriving the tentative start set of paper

Step 1: Search string and database selec-
tion. Getting a representative and precise start
set of papers is equally challenging for snowball
as it is for the database searches [35]. A compre-



Knowledge Management in Software Testing: A Systematic Snowball Literature Review 55

hensive search string was developed avoid the
problem of inconsistent terminology.

The search string was formulated based
on the research questions and the keywords
derived from them, including the synonyms
and alternatives. It was iteratively developed
and it constantly enhanced available knowledge
when relevant papers identified manually were
read. When there was agreement and confi-
dence that the search string covered the aspects
that were the goal of the study, a pilot search
was performed in which the Engineering Vil-
lage database was queried and the first 500 re-
sults were analysed. Both authors screened these
results independently and later compared and
discussed relevance. The resulting search string
terms are outlined in Table 1 and grouped into
the two categories connected with the Boolean
operators.

Table 1. The keywords used to
query the Engineering Village
database and identify the start

set papers

Software testing keywords

Software testing – A1
Software test – A2

KM related keywords

KM – B1
Tacit knowledge – B2
Explicit knowledge – B3
Knowledge creation – B4
Knowledge acquisition – B5
Knowledge sharing – B6
Knowledge retention – B7
Knowledge valuation – B8
Knowledge use – B9
Knowledge discovery – B10
Knowledge Integration – B11
Knowledge theory – B12
Knowledge – B13
Knowledge engineering – B14
Experience transfer – B15
Technology transfer – B16

The search string run in the Engineering Vil-
lage database was composed of the following
Boolean formula: (“A1” OR “A2”) AND (“B1”
OR “B2” OR “B3” OR “B4” OR “B5” OR “B6”

OR “B7” OR “B8” OR “B9” OR “B10” OR “B11”
OR “B12” OR “B13” OR “B14” OR “B15” OR
“B16”).
Step 2: Tentative start set of papers. The
search string was executed in the Engineering
Village database and resulted in 4832 hits. Next,
the inclusion criteria outlined below were ap-
plied, including only the papers written in En-
glish (IC1), which resulted in 2774 candidates
and additional 85 were removed as they were
not peer-reviewed (IC2). Next, the 2689 can-
didates were screened and 2404 were excluded
based on title screening (IC4). The abstracts
for the remaining 285 candidates were read and
63 papers were accepted. Later the introduction
and conclusion sections of the 63 papers were
read and as a result, 32 candidates were kept. Fi-
nally, the full papers were read and independent
judgments regarding if they should be included
or not were performed. The application of all
inclusion criteria and the full read resulted in 16
candidate papers. These were analysed looking
at their authors and publication venues. There
were 3 papers which were excluded because they
had a low number of references or citations and
were less relevant for the scope of this study. As
a result, the 13 papers that were left were heav-
ily cited and had the most relevant references
that increased the likelihood of better coverage
of relevant studies [34]. The following inclusion
criteria were used:
– IC1: Articles that are written in English and

are published between 2003–2015. The pri-
mary reason behind choosing papers from
2003 or later is that KM initiatives in soft-
ware testing were established around 2003 [1],

– IC2: Peer-reviewed articles published in rele-
vant venues (conferences, workshops or jour-
nals in software engineering, software test-
ing and knowledge management, computer
science, information technology and science,
computing and computer applications)

– IC3: Articles available in full text
– IC4: Articles that focus on KM practices used

for supporting software testing (design, ex-
ecution, and analysis) and/or deal with the
industrial challenges due to the lack of KM
under software testing.



56 Krzysztof Wnuk, Thrinay Garrepalli

4.2.2. Forward and backward snowballing
in iterations

On the start set of 13 papers [1, 3–7, 9, 14, 27–
30,44], five iterations of backward and forward
snowballing were performed, see Table 2 for de-
tails. Backward snowballing was conducted by
looking at the references of each paper in parallel
with forward snowballing by looking at citations.
Google scholar was used to extract the citations
for each of the papers. Both references and cita-
tions were inserted in an Excel file where both
titles and abstracts were collected. The second
author screened these citations and references
in each of the iterations and categorized them
into NO, MAYBE and YES categories. Next,
the first author screened the MAYBE and YES
papers and used his judgment whether they were
relevant. After a discussion and reaching an agree-
ment, the relevant candidates were included in
the next iteration. The same inclusion criteria
were used for all snowballing iterations.

4.3. Data extraction and synthesis

The data extraction properties outlined in Ta-
ble 2 were derived during several discussions be-
tween the authors. The data were extracted into
a spreadsheet where categories are mapped to the
research questions. The data analysis checklist
was also developed where the fulfillment of each
of the aspects could be partial or full.

The second author performed the data extrac-
tion, supported by the discussion with the first
author. The extracted data were synthesized by
performing a narrative analysis as per the guide-
lines provided by Cruzes et al. [39] and Rodgers
et al. [45]. Patterns in data were identified, and
these patterns were grouped into various themes.
To strengthen reliability, rigor and relevance cri-
teria were applied for each paper, see Section 4.4.

4.4. Quality assessment based on rigor
and relevance

The rigor and relevance assessment method was
utilized according to the guidelines provided
by Ivarsson and Gorschek [46]. Previous au-

thors [47, 48] demonstrated that rubrics built
the unwavering quality of the assessments as per
the terms of inter-rater agreement among the
researchers. The second author performed the
data extraction supported by the first author who
evaluated the results with objectivity in mind.
Each paper was allotted with a score utilizing
the objective criteria, customized for this study.
No significant changes to the rigor and relevance
scores suggested by Ivarsson and Gorschek were
made, see Table A in Appendix A.

The secondary studies (literature reviews)
were evaluated using different criteria. Firstly,
it was evaluated if the motivation behind con-
ducting the literature review was clearly stated.
Secondly, the review process was examined, and
a search for the precise descriptions of the search
strategies and search strings, clear definition of
acceptance criteria and unambiguous judgments
of the validity of the identified studies was con-
ducted. There was also a search for methodologi-
cal flaws [49]. Finally, the empirical support for
the claims provided by the secondary papers was
sought and it was checked how well the empirical
data were analysed. The fulfillment of each of
the criteria was estimated as Yes, No, Maybe.

5. Results of the snowballing
iterations

As a result of the above examination 13 pa-
pers (marked as P1 [5], P2 [3], P3 [4], P4 [6],
P5 [14], P6 [1], P7 [29], P8 [9], P9 [30], P10 [27],
P11 [28], P12 [7], P13 [44]) were chosen for the
start-set from the 4832 candidate papers ob-
tained from the Engineering Village database.
Table 3 presents the summary of the snowballing
iterations regarding the number of references and
citations screened in each iteration.

Based on backward snowballing in five itera-
tions, 843 references were thoroughly examined
and evaluated among which 137 were removed
based on the publication type, 7 did not match
the Language criteria, 40 were duplicates, 323
were dismissed based on title screening, 84 were
dismissed based on the year of publication, 202
were dismissed after reading the abstract, 11



Knowledge Management in Software Testing: A Systematic Snowball Literature Review 57

Table 2. Data extraction strategy

Category Data Properties Mapping to
Research Questions

General information Author(s), Title, Publication Year, Abstract, Conclusions RQ1, RQ2, RQ3

Type of Study
Evaluation study, Validation study, Proposing a solution,
Opinion papers, Personal experience papers, Observational
research

RQ1, RQ2, RQ3

Research methods Case study, Survey, Mapping study, Experiment, Grounded
theory, Action research, Unclear RQ1, RQ2, RQ3

Study aims research
outcomes

Does the study specify aspects of software testing that
receive more attention while KM is applied? RQ1

Does the study specify any software testing techniques i.e.,
test design, test execution, test result analysis that benefit
from the application of KM in Software testing?

RQ2

Does the study provide any problems or challenges reported
due to lack of KM practices in software testing? RQ3

Data analysis
Aspects of software testing that receive more attention while
KM is applied in software testing are properly specified
(yes/no/partially)

RQ1

Data analysis Software testing techniques that benefit from the application
of KM are properly specified (yes/no/partially) RQ2

Data analysis Problems or challenges faced due to lack of KM practices in
software testing explained (yes/no/partially) RQ3

were excluded after reading the full text and 26
were dismissed as their full text was not avail-
able. Finally, 12 papers were obtained based on
backward snowballing in five iterations.

During forward snowballing, 614 citations
were analysed in five iterations among which 43
turned out to be duplicates, 89 citations were
removed based on the publication type, 248 were
excluded based on the title, 203 were removed
after reading the abstract, 7 were omitted based
on the language in they were published, i.e. other
than English, 13 papers were removed after read-
ing the full text and 2 were removed due to the
unavailability of a full text. Finally, 10 papers
were selected.

6. Literature review results analysis

35 papers were identified in five snowballing it-
erations among which 31 were primary and 4
were secondary studies. Figure 3 depicts the pa-
per distribution over the years. Only five papers
were written between 2003 and 2005 indicating

that the research in KM in software testing be-
came more common after 2003. Much of the
work under KM in software testing was done
during 2006–2009 meaning that the organiza-
tions started taking interest in utilizing KM in
software testing to gain benefits and overcome
the issues associated with software testing due to
the lack of KM. Still, we see no clear increasing
trend in Figure 1.

Out of 35 analysed papers 21 studies are con-
ference articles indicating that conferences are
the primary venue for communicating research in
KM for software testing. Journals correspond to
34% of the studies (14 out of 35). Table A in Ap-
pendix A provides the list of publication venues.
It appears to be clear that not only software en-
gineering venues are utilized for communicating
research about KM in software testing.

Next, it was analysed which of the three RQs
each of the papers addressed. It turned out that
23 out of 35 studies reported various KM aspects
(RQ1) during software testing, 12 papers dis-
cussed challenges (RQ3) faced due to the lack of
KM practices in software testing, while ten stud-



58 Krzysztof Wnuk, Thrinay Garrepalli

Table 3. The summary of the number of citations and references screened in each snowballing iteration.
I – Iteration, FS: Forward Snowballing, BS: Backward Snowballing, D – Duplicate, T – Based on Type,

N – Based on Name, Y – Based on Year, L – Based on Language, EA – Excluded after reading the abstract,
EF – Excluded after reading the full text, FN – Full text not available, IA – Included after reading Abstract,

IF – Included after reading full text

It-
era-
tion

FS/BS Papers rejected
from FS and why

Papers rejected from BS
and why

Papers
Considered from
FS and why

Papers
Considered from
BS and why

I1 140/346 D: 6, T: 19, N: 41,
EA: 66, L: 3

T: 51, L: 5, D: 16, N: 105,
Y: 44, EA: 87, EF: 11,
FN: 20

IA: 4, IF: 2 IA: 4, IF: 2

I2 164/262 D: 13, T: 31, N: 55,
L: 4, EA: 54, EF: 4

N: 135, D: 5, Y: 21, T: 37,
L: 2, FN: 5, EA: 53

IA: 2, IF: 1 IF: 4

I3 294/178 D: 19, T: 39,
N: 145, FN: 2,
EA: 79, EF: 9

T: 44, D: 13, N: 61, Y: 14,
EA: 44, FN: 1

IF: 1 IA: 1

I4 12/50 D: 4, N: 5, EA: 3 D: 4, N: 19, T: 5, Y: 5,
EA: 16

– IF: 1

I5 4/7 D: 1, N: 2, EA: 1 D: 2, N: 3, EA: 2 – –

Figure 1. Publications over the years

ies focused on KM in testing techniques (RQ2)
and helping testers to select better testing tech-
niques.

6.1. Categorization of papers based on
research methodology and
studytype

In the analysed group 31 studies were primary
studies and four were secondary studies (two
systematic literature reviews and two systematic
mapping studies). The 31 primary studies were
categorized according to the research methodol-
ogy (i.e. case study, survey, experiment, etc. as

defined by Runeson et al. [50] and the type of
study (i.e. evaluation, proposal, solution, opinion,
experience based, etc. and constraints as defined
by Wieringa et al. [51].

Evaluation research which utilized the case
study research method dominated among the
chosen papers – 16 articles [P2, P3, P4, P5,
P8, P11, P12, P13, P18, P20, P25, P30, P31,
P33, P34, P35] of which 3 were interview stud-
ies [P2, P11, P31], categorized as qualitative
case studies. Evaluations using frameworks were
found in 5 papers [P9, P14, P15, P27, P29].
The framework-proposal category encompassed
4 papers [P17, P22, P23, P26]. Two papers



Knowledge Management in Software Testing: A Systematic Snowball Literature Review 59

Figure 2. Categorization based on the type of the study and the research methodology aspects

were classified as case study-validation [P7, P10]
and two papers as the tool a proposal-solution
[P21, P32]. Finally, the categories such as case
study-proposal [P19] and survey-evaluation [P1]
received only one paper, see Figure 2 for de-
tails.

6.2. Quality assessment based on rigor
and relevance

Figure 3 depicts the Rigor and Relevance analysis
results where the primary studies are categorized
into four quadrants (A, B, C and D) according
to their rigor and relevance scores. The process
of classification is detailed below.
– Papers which fall under the score from (0–1.5)

are categorized as low rigor and those that
fall in between the score of 2 as high rigor.

– Papers with the score from (0–2) are consid-
ered to have low relevance and the papers
that fall score 2.5 or above are considered to
have high relevance.

Altogether 13 studies were characterised as hav-
ing high rigor and high relevance, quadrant A in
Figure 3, and these outcomes are the most reli-
able. Also, 12 studies were classified under Quad-

rant C with high relevance and low rigor. Six
papers fell under category D, which means they
were characterised by low rigor and low relevance,
where relevance scores prevail over rigor scores,
see Table B in Appendix B for rigor and relevance
scores.

6.2.1. Quality assessment of secondary studies

Table 4 shows the results of the quality assess-
ment of secondary studies [P6, P16, P24, P28].
It was concluded that the four identified sec-
ondary studies present high quality and therefore
trustable literature reviews.

6.3. KM aspects discussed in the
selected studies (RQ1)

The subject of 23 studies were KM aspects which
testers focus on during software testing, see Ta-
ble 5. It occurred that 13 studies focused on
knowledge representation while 12 studies fo-
cused on knowledge capturing. There were 8 pa-
pers which focused on knowledge management
systems and 8 papers presented knowledge man-
agement models.



60 Krzysztof Wnuk, Thrinay Garrepalli

Figure 3. Rigor and relevance analysis results

Table 4. Quality assessment for secondary studies

Quality assessment question P6 P16 P24 P28

Is the motivation behind conducting systematic literature review and mapping
clearly expressed and defined?

Yes Yes Yes Yes

Is the process of conducting systematic literature review or mapping clearly
stated?

Yes Yes Yes Partial

Is there any empirical evidence for the stated systematic literature review or
mapping study?

Yes Yes Yes Yes

KM Systems (KMS) are necessary to enable
successful KM. Huseman and Goodman [52] con-
sider KMS as an essential source for competitive
advantage while Rajiv and Sarvary [53] claim
that organizations without strong KM systems
work inefficiently, which consequently influences
their quality of work.

Eight studies [P1*, P3, P4, P5*, P8, P9, P12,
P19] proposed various KMSs and discussed their
importance for software testing. KMS were used
to store, manage, search and share various kinds
of knowledge with the help of knowledge docu-
ments [P3, P4, P9, P19], to store tacit knowledge
to be reused by searching the relevant documents
and resolve any raising issues [P12] or store and
maintain daily and weekly tester discussions in

a knowledge map [P8] or, also, store the experi-
ence gained in earlier testing cycles [P5*].

KMS provide several benefits, e.g., they help
to reduce effort during testing, increase software
quality [P1*, P5*], help the organizations adapt
to turnover and faster respond to changes and
downsize by making an experience of each in-
dividual widely accessible [P4]. It is interest-
ing to note that all the eight papers focused
on the importance of KMS and their benefits,
rather than the details of how these systems
are built and what strategies were used dur-
ing their development. Thus, future research
should focus on the strategies to be used to
build an effective KMS and its usage in case
study context.



Knowledge Management in Software Testing: A Systematic Snowball Literature Review 61

Table 5. Research Focus on KM aspects over the yearsa

KM aspect 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

KM System
(KMS)

– – – P12 P5* P19 P3
P9

– P1*
P4

P8 – – –

KM Models P27 – – – – P19 P3
P9

– P1* P8
P25*

P2* – –

Knowledge
Representa-
tion

– P15* P14* P18
P29

P5* P19 P3
P9

– P34 P8 P32
P33

P22 –

Knowledge
capturing

– P15* P14* P18 P5* P19 P3
P9
P35*

P26
P35*

P1* – P2* P21 –

Knowledge re-
trieval

– P15* P14* P18 P5* P19 P3
P9

– – – P2* – –

Knowledge
dissemination

– – – P23 – – – – P1* – P2* P21 –

Knowledge
elicitation

P27 – – – P5* – – – – – P2* – –

Knowledge
packaging

– P15* P14* P18 – – – – P1* – – – –

Knowledge
evolution

– P15* P14* P18 – – – – – P8 – – –

Knowledge ac-
quisition

– – – P29 – – – – – – P32
P2*

P21 –

Generalb P17 P28 – – P6
P7*

P10* P13
P20*
P30*

– – – P16
P11*
P24

P6 P31*

aAn asterisk (*) indicates a paper with high rigor and relevance scores.
bNot focusing on any KM aspects but provides tools that support KM and knowledge or just defining KM aspects

without implement them.

KM Models are models used for knowledge
management and knowledge process aspects,
such as knowledge carriers and knowledge tech-
nologies. Eight studies [P1*, P2*, P3, P8,
P9, P19, P25*, P27] focused on KM models.
Three studies [P3, P9, P19] used communication
databases enriched by knowledge maps and test-
ing knowledge databases. KM models can also be
created based on reusable test case repositories
extracted from similar projects or individuals’
tacit knowledge and testing projects data by test
specialists [P8].

KM models bring several benefits, e.g., in-
crease test case reuse [P8], increase quality and
decrease development time [P1*], develop testing
lesson learned systems [P2*], or identify gaps in
KM practices and fill in these gaps with potential
solutions [P27].

Two models for building KM models were
identified. The first model contains four phases: 1)
absorption is related to acquiring new knowledge
from the external environment of the organization,
i.e., experts are brought into the organization, 2)
diffusion concerns the dissemination of knowledge
among individuals in the organization, i.e., these is-
sues which aremostly resolved in email/discussion
lists, search engines, best practices, 3) generation
involves the improvement of new knowledge and
the procedure of turning tacit knowledge into
explicit information, i.e. through brainstorming
sessions, joint design and source studies, 4) ex-
ploitation is referred to as the commercialization
of knowledge [P27]. The second model contains
five steps: 1) identify knowledge needs, 2) cre-
ate knowledge, 3) store knowledge, 4) organize
knowledge and 5) share knowledge [P25*].



62 Krzysztof Wnuk, Thrinay Garrepalli

The identified KM models focus on acquir-
ing, improving, disseminating and storing testing
knowledge. These findings may help to under-
stand that KM models contributed to the in-
crease in the reuse of testing knowledge in some
papers [P25*, P27, P3, P9, P18].
Knowledge Representation focuses on repre-
senting test knowledge through various tools that
support knowledge storage, e.g., ontologies, Soft-
ware Requirement Specifications (SRSs), Test
Procedure Specifications (TPSs), etc. Thirteen
studies [P3, P5*, P8, P9, P14*, P15*, P18, P19,
P22, P29, P32, P33, P34] focused on knowledge
representations which were categorized into:
– Ontologies [P3, P8, P9, P19, P22, P29, P32],

TPSs and SRSs as explicit knowledge repre-
sentations. Ontologies serve as a medium in
describing relative concepts, attributes and
relations connected with knowledge [P3, P9,
P19], they are also used to generate test cases
for GUI testing [P34], or as the knowledge
representation for performance testing [P22].
Ontologies were also used as knowledge rep-
resentations for test case reuse [P8] and for
supporting acquisition, organization, reuse
and sharing testing knowledge [P29, P32].
Testing activities can be performed based
on the ontologies associated with a software
project [P29, P32]. Ontologies support test
case generation from various artefacts in dis-
similar domains [P33] or for organizational
discussions [P2]. These results suggest that
developing an ontology that possesses all of
the above characteristics could result in gen-
erating productive testing outcomes. It is also
worth exploring how to use these ontologies
and strategies rather than how to develop
them [P3, P9, P19, P22, P29, P32].

– Characterization schema [P14*] that contains
test objectives, test scope, required testing
technique, test case generations, and test
tools is applied in post-project evaluations
and summaries of experiences from testing
activities. A characterization schema is a tool
that supports knowledge representation. Ve-
gas et al. developed and empirically evaluated
the schema for assisting testing technique se-
lection that generates a valid test case for

a given project [P14*]. This study suggests
effective schema generation for test design
technique selection.

Knowledge Capturing includes codifying and
documenting analytical testing knowledge in
a manner that individuals can adapt and re-use
for specific purposes. 13 studies [P1*, P2*, P3,
P5*, P9, P14*, P15*, P18, P19, P21, P26, P33,
P35*] focus on capturing testing knowledge in
terms of using: 1) lessons learned, experiences,
successes and failures [P2*], 2) knowledge of in-
dividuals from discussion forums and documents
[P3, P9, P19], 3) external knowledge and its
relation to internal knowledge [P1*], 4) feedback
given by both producers and consumers using
characterization schemata [P14*, P15*, P18], 5)
experience and knowledge gained from applying
various testing techniques [P26]. Three papers
specified capturing general testing knowledge,
e.g., knowledge and experience are recorded and
represented to as a substantial quantity of com-
ponent sequence in an XML file [P35*], recorded
into a formal form (issue spreadsheet) [P5*] or
in wikis [P21].

What is surprising is that the identified stud-
ies focus on Externalization (tacit to explicit),
Internalization (explicit to tacit) aspects leaving
aside Socialization (tacit to tacit) and combina-
tion (grouping all the explicit knowledge).
Knowledge Acquisition is the focus of four
studies [P2, P21, P29, P32] with the help of wikis
[P21], ontologies [P29, P32] or lessons learned
[P2]. Surprisingly, the studies do not outline any
process that needs to be executed while defin-
ing the rules unlike [P14*] which outlined such
a 10-step process for knowledge capture. It can
thus be concluded that researchers should fo-
cus on knowledge acquisition processes and tech-
niques.
Knowledge Elicitation is the focus of three
papers [P2*, P5*, P27]. They utilized: 1) an ar-
chitectural model for knowledge elicitation based
on the lesson learned systems (a KM manager as
well as expert testers verify the elicited knowl-
edge) [P2*], 2) eliciting expert knowledge when-
ever it is required and capturing it in spread-
sheets [P5*] or 3) acquiring knowledge from
the external environment during the absorption



Knowledge Management in Software Testing: A Systematic Snowball Literature Review 63

phase [P27]. The architectural model presented
by Andrade et al. [P2*] focuses on 1) defining
the structure of software testing lessons learned,
2) setting up the procedures for the management
of lessons learned and 3) supporting the design
of tools that manage lessons learned. Despite
promising results, papers [P5*, P27] proposed
only the knowledge elicitation tools and failed to
provide the processes for knowledge elicitation.
Knowledge Dissemination covers disseminat-
ing testing knowledge through various KM prac-
tices, such as internalization, externalization,
combination, and socialization. Only four studies
[P1*, P2*, P21, P23] focused on the ways to dis-
seminate testing knowledge. In two studies [P1*,
P21], knowledge is available in a useful, readable
format to the individuals who need it. Andrade
et al. used active knowledge dissemination, where
the software testing lesson learned systems dis-
seminate the lessons learned as per various pa-
rameters (e.g., scattering of conceivably helpful
lessons learned towards the beginning of every
testing activity using a testing activity descrip-
tor). The second way is passive knowledge dis-
semination where the user is responsible for com-
municating the software testing lessons learned
system and asking for the conveyance of lessons
learned [P2*]. Lee developed a KM framework
with seven cyclic steps for disseminating testing
knowledge: identify relevant knowledge, collect
the knowledge that is needed, adapt knowledge,
organize knowledge in a readable format and
apply the knowledge assets to situations where
there is a need for it [P23].
Knowledge Retrieval covers returning test-
ing information in a structured format contrary
to just capturing the knowledge. Eight studies
[P2*, P3, P5*, P9, P14*, P15*, P18, P19] focused
on knowledge retrieval mechanisms and tools or
artefacts that support them. Three studies [P14*,
P15*, P18] provided a systematic structured for-
mat of storing the knowledge regardless of the
testing technique.
Knowledge Packing covers strategies or meth-
ods used in packing captured knowledge, e.g.,
knowledge databases. In [P14*, P15*, P18],
a characterization schema encompassing various
attribute levels, such as tactical, operational and

historical, was developed for packaging the expe-
rience of individuals for various testing activities.
In [P1], knowledge packing is done with the aid
of a KM System by following the knowledge
lifecycle from acquisition to an application.
Knowledge Evolution covers evolution as-
pects, such as the evaluation and maintenance
of testing knowledge. There were four studies
[P8, P14, P15, P18] covering this aspect. Three
studies propose a characterization schema [P14*,
P15*, P18] where a librarian maintains the repos-
itory by taking care of the coherence of the in-
formation it contains and updates the reposi-
tory based on the feedback provided by con-
sumers and producers. In one study, a knowl-
edge analyst is assigned to analyse conducted
discussions and update the knowledge reposi-
tory [P8]. Three studies consider knowledge eval-
uation as the most important element [P14*,
P15*, P18] but fail to provide methods, steps
and strategies for supporting knowledge evolu-
tion and thereby recommendations for software
organizations.

6.4. Software testing aspects that benefit
from the application of KM
practices (RQ1)

In the studied group 9 studies [P2, P3, P6, P9,
P16, P19, P23, P24, P27] provide only a general
discussion about KM and how to apply knowl-
edge in software testing, however, they lack dis-
cussions on specific testing aspects. Two studies
[P5, P7] focused on dealing with KM applied in
a project where testing is outsourced to a third
party (this is not considered a testing aspect).
The only difference is that the process is carried
out elsewhere but all the activities of this process
are similar. The remaining papers are analysed
according to the following testing aspects that are
summarized in Table 6 and the research focus on
the testing aspects over the years is summarized
in Table 7.
Testing process. Seven studies [P1*, P4, P12,
P21, P25*, P29, P32] focus on KM in the con-
text of a testing process (test planning, test case
design, test execution and test result analysis),
see Table 7.



64 Krzysztof Wnuk, Thrinay Garrepalli

Table 6. Description of the testing aspects analysed in the study

Testing Aspect KM Utilization

Testing process
(7 studies)

Test planning: The main aim is to manage knowledge in the context of test scenario
creation, test cases design, data preparation as well as a test environment.
Test execution: the goal is to manage knowledge during test execution, in a number
of test cycles on the basis of the project. For example, most of the projects run two test
cycles by adhering to time and cost conditions.
Test result analysis: The aim is to manage knowledge during test result analysis.

Test cases and Manage knowledge about the test cases. For example: reusing the test cases
code (3 studies) Manage knowledge about the test code (which takes into account test scripts and drivers)
Testing phases
(2 studies)

Apply KM strategies to phases in software testing such as unit testing, component
testing, integration testing, system testing, acceptance testing, alpha testing, beta
testing.

Testing
techniques
(10 studies)

Manage knowledge on testing techniques, to help testers to choose a better suited testing
technique for designing test cases, executing and analysing the tests.

Testing types
(6 studies)

Manage knowledge in a specific software testing type such as GUI, load testing etc.

Testing
resources and
tools (2 studies)

Manage knowledge about usage of testing tools or resources.

Table 7. Research Focus on testing aspects over the yearsa

KM aspect 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Testing
process

– – – P12
P29

– – – – P1*
P4

P25* P32 P21 –

Test case and
code

– – – – – – P35* P26 – P8 – – –

Test levels
and testing
phases

– – – P29 P5* – – – – – – – –

Testing
technique

P17 P15*
P28

P14* P18 – P10* P13
P20*
P30*

– – – P11* – –

Testing type – – – P12 – – P33
P35*

– P34 – – P22 P31*

Testing
resource

– – – P29 – P10* – – – – – – –

General P27 – – P23 P5*
P7*

P19 P3
P9

– – – P2*
P16
P24

P6 –

aAn asterisk (*) indicates a paper with high rigor and relevance scores.



Knowledge Management in Software Testing: A Systematic Snowball Literature Review 65

Abdullah et al. [P1*] focus on utilizing a com-
munity of practice for managing testing knowl-
edge. Their model involves community of prac-
tice, KMS functionality in software testing and
KMS architecture. The software testing process
structures the testing knowledge, i.e. it begins
with the system requirements for product specifi-
cation and development, which comprises system
design and coding, and proceeds to the verifica-
tion and validation of product.

Desai et al. [P4] reported that KMS inte-
grated with software testing, data warehousing,
and mining helps to store and retrieve relevant
knowledge and to discover different modules
which are scattered along memory locations. This
improves the software testing process, including
test planning, test case development, test execu-
tion, test result analysis and reporting.

Nogeste et al. [P12] concluded that apply-
ing KM improves test planning and increases
tacit knowledge capturing for subjects not expe-
riences in KM. Abdou et al. [P21] advocate that
a software testing process should be enriched
with solutions used by Open Source Software
communities regarding test planning, forming
test design, considering test specifications, test
implementation, deriving test cases or test suites,
test execution, accepting test results.

Sirathienchai et al. [P25*] proposed three
models for test planning, test preparation and
test reporting which leverage on KM. Firstly,
cost assessment is performed, followed by the
performance evaluation of the software testing
process performed by different experienced per-
sonnel utilizing the project duration, cost, and
quality. Finally, a comparative financial anal-
ysis is done to find the best solution by re-
turn on investment, payback, and benefit cost
ratio. The findings from the case study re-
vealed that the long-term continuous investment
on KM can improve the testing process per-
formance more efficiently than the short-term
counterpart.

Barbosa [P29] defined a testing process based
on an ontology that combines the development
paradigm and the testing strategy. This ontology
(Reference Ontology on Software Testing) cap-
tures the relevant testing knowledge and stores

it in a repository. Individuals can use the stored
knowledge during testing. The main difference be-
tween ROost and other ontologies is that ROost
was developed mainly following a well-established
method named SABiO, which was used in several
ontology development efforts [54]. ROost covers
aspects related to the software testing process
and its activities, artefacts that are utilized and
produced by the activities, testing techniques for
test case design and test environment including
human, software and hardware resources similar
to OntoTest [P29] with a prime motive to manage
testing knowledge.
Test case and test code. Three studies [P8,
P26, P35*] discussed the use of KM in test cases
and test code reuse. Li et al. used an ontology
representation and a knowledge model [P8] for
test case reuse. Upheld by the management level,
a testing center built a reusable test case reposi-
tory with more than 12,000 cases, complemented
with an organizational exchange library. The case
study results demonstrate that the effectiveness
and efficiency of the test case design and the work
circumstances of test engineers and managers
were improved.

Nasser et.al [P26] suggested a knowledge-based
software test generation framework that permits
to characterize the domain and system specific
coverage criteria for different software artefacts
and domains, specifically concentrating on test
cases. By utilizing the custom coverage criteria,
test specialists can control what tests are to
be incorporated in generated test suites. For
this reason, the framework used reasoning with
ontologies to address the test case selection issue
for re-use. Based on the ontology, test individuals
can choose and select relevant previous test cases
for a given project.

Li [P35*] presented a test case generation
model based on test code reuse for GUI testing.
The testers experience is recorded and repre-
sented as extensive segments in an XML docu-
ment, where segments are the instances defined
in a GUI ontology. Next, all components that
are related to data elements are distinguished
and marked in a sequence which is connected
to data elements. In step 4, for each sequence
set, data dependent elements among user related



66 Krzysztof Wnuk, Thrinay Garrepalli

components are recorded. In step 5, for every sort
of knowledge components, the outcomes with
comparative sensible relations are figured out,
and if the recurrence of a legitimate connection
surpasses the normal level, they are concluded
as a rule for test case generation. This approach
was evaluated in a case study which indicated
that test case generation for GUI testing was
found more efficient.
Test levels or testing phase. Two studies
[P5*, P29] focused on the application of KM at
a specific testing level or phases such as unit,
integration or system testing. Wei and Ying
[P5*] emphasizes that to deliver high quality
and high productivity of testing during system
testing, a KM framework should be integrated
into the organization in such a way that test
knowledge can be shared between individuals in
the organization to sustain the system test and
maintain the quality of testing. Barbosa et al.
[P29] suggested an ontology which captures all
the relevant knowledge that takes place during
the testing phases and stores it in the reposi-
tory.
Testing techniques. Ten studies [P10*, P11*,
P13, P14*, P15*, P17, P18, P20*, P28, P30*]
discussed KM and software testing techniques.
Test case generation is one of the leading as-
pects of software testing and is closely linked
to the selection of testing techniques [55]. Vegas
and Basili [P14*, P15*] proposed a characteri-
zation schema that includes comprehensibility,
the maturity level of the individuals performing
testing, cost of application, inputs, dependencies,
repeatability, software type, experience required
to use a given technique and knowledge required
to apply this technique. Beer and Ramler [P10*]
claimed that ad hoc testing, subsuming casual
testing methodologies and exploratory testing, is
benefited through the application of KM prac-
tices, where test case design and execution are
interwoven to design new test using the informa-
tion and experience gained constantly.

Itkonen et al. [P11*] suggested that ex-
ploratory testing techniques benefit from adapt-
ing KM practices. Knowledge in exploratory test-
ing can be utilized as data to guide exploratory
test design and to perceive failures, e.g., s a test

oracle to differentiate between an expected cor-
rect outcome and an incorrect defective out-
come [56]. Moreover, knowledge together with
the observed actual behavior of the tested system
can be utilized to make new better tests during
exploratory testing. The authors also found that
as the domain knowledge, the system knowledge
and generic knowledge are required to recognize
failures.

Koznov et al. [P13] claimed that one of the
main obstacles in transferring formal methods to
industry is a lack of KM methods in this area and
focusing on explicit rather than tacit knowledge,
e.g., model based testing needs well defined and
documented requirements which are not set in
industrial projects. Tinkham and Kaner [P17]
listed the factors which contribute to a tester’s
choice of exploration style, such as tester’s skills,
experience, detailed knowledge on the usage of
a technique and personality (including learning
style). All these factors are essentially for a per-
fect utilization of exploratory testing which hap-
pens through capturing, storing testing knowl-
edge which, in turn, can be done through KM
practices. Itkonen et al. [P20*] indicated that
knowledge engineering techniques play a crucial
role for more effective use of testing techniques.
Testing type. It deals with selecting software
aspects to be tested, while the testing techniques
deal with how a specific part of the software will
be tested. Six studies [P12, P22, P31*, P33, P34,
P35*] focused on managing knowledge in a spe-
cific software testing type, such as performance,
GUI, endurance testing.

Nogeste and Walker [P12] conducted a case
study which proved that a KM based regression
process is necessary since regression testing is
heavily dependent on tacit and explicit knowl-
edge identification, collection, sharing and docu-
mentation.

Frietas and Vieria [P22] developed an on-
tology for the core knowledge used for perfor-
mance testing. Since ontologies serve as the rep-
resentation of domain knowledge that empow-
ers knowledge sharing among different applica-
tions, the paper investigated the impact of on-
tologies on performance testing. The results in-
dicate that this ontology can also be extended



Knowledge Management in Software Testing: A Systematic Snowball Literature Review 67

to endurance and stress testing both of which
are subclasses of performance testing for better
results.

Valeh et al. [P33] applied knowledge manage-
ment techniques in automated software testing
to enhance the control over test generation. The
results indicate that the use of ontology brings
benefits for the automated testing specification
of extensible test oracles which can model test
specialists’ mental model and lend themselves
to define custom coverage criteria. The system
grants control to a test specialist to determine
or indicate which test cases ought to be pro-
duced and generated to increase the quality of
test suites. Moreover, the produced test suite
ontology is programming language independent
and can be deciphered into various languages
and reused.

Gentry and Shirazi [P31*] discovered that
Canadian software development organizations
utilize in-house manual software testers when
tacit knowledge is obliged to successfully test
a software application. Software development
companies will probably keep manual testing
in-house, since the relationships between testers
and other internal employees may build the via-
bility of testing. Software development organiza-
tions are more averse to outsource manual testing
when domain specific knowledge is essential to
test the product.

Nasser et al. [P34] proposed ontology-based
test case generation to facilitate GUI testing and
produce test cases from the users’ viewpoint. GUI
testing is knowledge-intensive and requires both
the knowledge of GUI systems and extensive
experience, hence a knowledge-based technique
was suggested.

Li et al. [P35*] proposed an ontology based
semi-automatic approach to generate test cases
using testers’ experience. The approach is based
on a GUI testing ontology and examines the
source code with reverse engineering techniques.
Secondly, the test case generation rules are ex-
tracted from the testers’ experience. The evalua-
tion results indicate that the usage of knowledge
representations and management provides sup-
port in test case generation for GUI testing in
terms of greater efficiency.

Testing resources or tools. They represent
resources that can be humans (testers, test man-
agers or test analysts) or hardware (equipment,
software, testing tools or supporting systems).
Hardware and software resources are character-
ized as the testing environment which can be
utilized to automate the testing methods. Two
studies [P10*, P29] discuss KM concerning test-
ing tools and resources. Beer and Ramler [P10*]
focus on experience with tools when planning
test case automation. Extensive experience with
the setup and the utilization of tools was required
and indicated as a critical issue for producing
reliable test results. Barbosa et al. [P29] classi-
fied the software resources needed to perform
testing (including testing tools) into primary,
organizational and supporting tools.

6.5. Software testing techniques that
benefit from the application of KM
practices (RQ2)

Model-based testing benefits from the applica-
tion of KM practices [P13]. Exploratory (ad hoc)
testing is mentioned as a testing type in a few
papers such as [P17], but it is also called as
a testing technique in a few papers such as [P6,
P10*, P16] and a testing approach also in a few
papers [P11*]. In this study exploratory testing
is considered as a testing technique because it is
recognized as test design by [57,58].

7. Challenges due to lack of KM
practices

Twelve papers [P1*, P3, P4, P6, P7*, P9, P16,
P19, P20*, P22, P25*, P32] discussed challenges
faced due to the lack of KM practices, they are
outlined in Table 8.
CH1: Low software testing knowledge reuse rate
[P1*, P3, P4, P6, P9, P19] due to the lack of
KM practices, learning and knowledge reuse are
limited. Failure to capture individual knowledge
and experience leads to repeating the same mis-
takes even though there are individuals in the
organization rectify mistakes or prevent them
from reoccurring. Low testing knowledge reuse



68 Krzysztof Wnuk, Thrinay Garrepalli

Table 8. Challenges faced due to lack of KM in software testing

Challenges faced P1* P3 P4 P6 P7* P9 P16 P19 P20* P22 P25* P32

CH1: Low reuse rate of software
testing knowledge X X X X X X

CH2: Barriers in Software testing
knowledge transfer X X X X X X X

CH3: Poor knowledge sharing
environment X X X X X X

CH4: A serious loss of software testing
knowledge X X X X X

CH5: Optimal distribution of human
resources quickly X X X X

CH6: Determining if adequate testing
has been performed X

CH7: Difficulties in achieving test
coverage X

CH8: Determining if the outputs are
correct X

CH9: Documentation is not being
updated X

CH10: Troubleshooting documentation
was inaccurate X

CH11: Insufficient schedule and release
information X

CH12: Define satisfaction criteria. X
CH13: Increase in cost and time X X
CH14: Decreasing test effectiveness X
CH15: Lacked practices for logging
and tracking in testing X

CH16: Knowledge exchange X X
CH17: Identify whether the most
critical aspects of test components are
tested

X

CH18: Less support for decision
making X

CH19: Testing knowledge not
considered in planing X

CH20: Lacking skills X
CH21: Missing high severity defects X



Knowledge Management in Software Testing: A Systematic Snowball Literature Review 69

also increases the effort to accomplish a task
in software testing. Even if an organization has
a few testing knowledge databases, most of the
staff neglect to use them without the aid of KM
practices, which contributes to low test knowl-
edge reuse.
CH2: Barriers in software testing knowledge
transfer [P1*, P3, P4, P6, P9, P19] and knowl-
edge transfer without the proper application of
KM practices are challenging. Also, individuals
always search for the knowledge that they require
and do not search the entire repository. Yellow
pages can serve as a medium for rectifying this
problem. Moreover, IT staff is not able to under-
stand new testing knowledge without the aid of
KM practices. The reason for this is that most of
the knowledge in organizations is tacit, obtained
through experience and difficult to articulate.
KM representation technologies help to overcome
this challenge.
CH3: Poor sharing environment for software
testing knowledge [P1*, P3, P4, P6, P9, P19],
the lack of a formally established, unique and
sorted knowledge sharing environment negatively
impacts communication. A knowledge sharing
model as indicated by Sirathienchei [16] has to be
accumulated within an organization to overcome
this issue.
CH4: Serious loss of software testing knowledge
[P3, P4, P6, P9, P19], the insufficient applica-
tion of KM practices leads to knowledge and
experience accumulation around only a few mem-
bers of staff. Therefore, maintaining knowledge
repositories and databases that store individual
knowledge and make use of it is required. Also,
a sudden staff turnover leads to the loss of testing
knowledge.
CH5: No possibility to quickly achieve the most
optimum distribution of human resources [P3,
P4, P6, P9, P19], KM helps to integrate humans,
processes, and technology. In a situation when
management does not have any idea about the
staff’s knowledge level, even an ideal team will
not be optimally formed in testing projects which
have negative impact on achieving the optimum
distribution of human resources [4].
CH6: Determination whether adequate testing
is done [P4], the application of knowledge as

a test oracle gives answers to the question when
testing should be stopped and points out whether
adequate testing is done or not. Therefore, with
the help of KM practices, this issue can be re-
solved [6].
CH7: Difficulties in achieving test coverage [P4],
the lack of KM practices hinders the identifica-
tion of the untested parts of the code base. More-
over, another challenge is the fact that reusable
test cases may be neglected and not stored
in the repository, which increases the testing
effort.
CH8: Determination whether the outputs are
correct or not [P4], knowledge can be used as
a test oracle to identify whether the obtained
code execution results acomply with the expected
outcomes [17]. Thereby, the lack of KM prac-
tices may have a negative impact on determining
whether the outputs are correct because relevant
knowledge is neglected.
CH9: Documentation is not updated [P7*], up-
dating knowledge repositories is rarely done,
which results in outdated repositories and relying
on them when a problem occurs provides inaccu-
rate results [29]. In such a case, knowledge evolu-
tion and maintenance methods help to allocate
knowledge analysts or a specially selected person,
e.g., a librarian who maintains the repository by
taking care of the coherence of the information
it contains and updates the repository regularly
as indicated by Vegas et al. [59].
CH10: Troubleshooting documentation is inac-
curate [P7*], knowledge documents that retrieve
human knowledge, such as expert knowledge,
are not efficiently maintained [29]. Knowledge
managers and experts are to be allocated to
check knowledge databases as well as to verify
the knowledge that is accumulated and stored in
the repository and rectify occurring problems as
indicated by Andrade et al. [3].
CH11: Schedule and release of information from
the testing organization to development are
found to be insufficient [P7*], the documentation
was not up-to-date and insufficient for planning.
CH12: Determination what decision should be
made about the software when testing is com-
pleted, whether to proceed further and develop
satisfaction criteria [P4].



70 Krzysztof Wnuk, Thrinay Garrepalli

CH13: Increase in cost and time [P32] due to
the lack of relevant knowledge.
CH14: Decreasing test effectiveness [P32] be-
cause essential testing knowledge is not available.
CH15: Less support for decision making [P22] as
critical knowledge is not available when needed.
CH16: Testing knowledge not adequately con-
sidered for test planning [P6] and test execution.
CH17: Insufficient test technique skills [P25*]
since the test team consists of several roles which
encompass different responsibilities and knowl-
edge that needs to be communicated and shared.
CH18: No high severity defect detection is an-
other challenge faced due to the lack of KM
practices in software testing [P25*].
CH19: No methods for logging in and tracking
testing activities based on experience [P20*].
CH20: Transfer of the required knowledge to
testers and utilizing it [P20*].
CH21: Focusing testers’ attention to ensure that
the most important aspects of the tested features
are tested [P20*].

7.1. Implications for research and
practice

The analysis of the KM aspects discussed in
the selected studies (RQ1) brings several im-
plications for research and practice. Firstly, there
appears to be a lot of focus on knowledge repre-
sentation and knowledge capturing. This focus
is unsurprising as it results in a rather technical
focus on KM application, creating or managing
knowledge databases or repositories or building
additional tools into the testing environment,
which allows for the development of enhanced
knowledge documentation. Secondly, knowledge
acquisition or elicitation received little attention
in the surveyed papers. This has implications for
software testing, especially for software compa-
nies that base their products on the OSS code
or other external sources. These companies need
to be more active in knowledge acquisition or
elicitation since extensive knowledge is available
in OSS communities (also testing experience or
competence). Thirdly, knowledge dissemination
(especially outside the testing teams) received
little attention. However, the authors believe this

aspect will be dominant in the successful testing
of software products that are greatly based on
open source software or external sources. For ex-
ample, efficient testing knowledge dissemination
with other companies involved in OSS communi-
ties can help to reduce testing costs and efforts
as the communities can take over large parts
of testing responsibilities. Fourthly, not much
e attention was devoted to understanding how
testing knowledge was created, especially tacit
knowledge. Since many software companies work
in Agile-inspired environments, it is believed that
focusing on tacit knowledge management remains
critical here. Fifthly, most of the papers [P1, P2,
P3, P6, P9 and P19] identified or discussed some
testing aspects but failed to discuss their impor-
tance, or connected these aspects (e.g., test case
and testing phase) to testing processes (e.g., test
planning, test case design, test execution and
test result analysis) [1]. It is postulated that
researchers should adjust the focus of research
endeavors and introduce some of these aspects
into exploring KM for software testing.

Looking at the importance of additional
testing techniques and types (RQ1 and
RQ2), a possible implication from these results
is that the suggested techniques and types are
seldom validated. Moreover, it remains greatly
unclear which testing methods to use in each
of the software testing activities. Therefore, re-
searchers should focus more on creating opera-
tional guidelines regarding which testing meth-
ods to use for which activities. Next, regression
testing and GUI testing are considered to gain
strong benefits from using the ontologies or KM
models. More research needs to be conducted to
provide similar analysis and clearly identify what
testing techniques require what type of knowl-
edge and how much these testing techniques are
sensitive to, e.g., eliciting or creating tacit knowl-
edge. Most of the studies have not specified and
have not focused on the knowledge relevant for
a specific testing technique. The taxonomy that
summarizes the types of knowledge that support
various testing techniques and their types is what
is clearly missing in the current literature.
Focusing on tacit knowledge remains impor-
tant since no study has focused on identifying the



Knowledge Management in Software Testing: A Systematic Snowball Literature Review 71

importance of tacit knowledge management for
software testing. It is also important to explore
the importance of tacit knowledge and how to
identify it, capture it and store it. In addition,
there is a need to explore testing aspects as well
as determine what testing types are dependent
on efficient tacit knowledge management.
Identify mitigation strategies for the iden-
tified challenges (RQ3), there is a need to
identify the mitigation strategies concerning each
of the identified challenges and provide tools, rec-
ommendations, and techniques to overcome those
challenges. The most distinct challenges are asso-
ciated with knowledge reuse, knowledge transfer
or knowledge sharing (CH1, CH2, CH3), and they
clearly show that more research focus should be
given to these areas. From the point of view
of software companies, these areas will become
dominant in the next years as more software is
co-created in open source software communities
or externally acquired from external software
organizations. Moreover, insufficient knowledge
sharing or transfer often results in losing the
knowledge that is critical and therefore substan-
tial additional costs are borne when restoring this
knowledge. Thus, it is postulated that researchers
in KM and testing should broaden their focus
areas and expand the technical aspects by adding
human aspects, knowledge reuse topics as well
as organizational aspects that lead to increased
knowledge sharing.

8. Validity threats

Validity threats under the snowballing phase of
the thesis are discussed according to the four va-
lidity categories suggested by Wohlin et al. [60].
Internal validity threats are minimized by cre-
ating and maintaining a review protocol which en-
compassed the details of the search string formu-
lation and start set identification, inclusion and
exclusion criteria used, the quality assessment
being carried out, etc. The risk for judgment
error was minimized by performing the indepen-
dent evaluation of the two authors who later
compared and discussed the results. Both au-
thors worked closely together and discussed any

questionable cases. Moreover, internal validity
threats are mitigated by following the mapping
guidelines provided by Petersen et al. [61] and
quality assessment criteria as per the guidelines
provided by Ivarsson and Gorschek [46]. Finally,
there is still some risk that the studied positive
testing outcomes are the result of other aspects
than applying KM techniques. It is planned to
explore this aspect in future work when these
relationships are explored in detail.
Construct validity focuses on various poten-
tial confounding factors regardless of whether
a study could capture the intended knowledge,
i.e. to achieve the aims and objectives. One of
the main concerns for this research is multiple
definitions of KM. This threat was mitigated
by adopting the well cited definition by Daven-
port [2]. As indicated by Kaner [62], construct
validity depends on the question of "How does
one recognize that they are measuring what they
usually think they are measuring against?". The
search string structure could be one of the con-
struct validity threats in this study. Therefore,
the search string was iteratively formulated with
extensive discussions between the authors. Next,
data extraction could also be the source of valid-
ity threats. To avoid these threats, supervisor’s
assistance was accepted and all updates at each
step were sent for approval.
External validity considers the capability to
generalize results outside the studied context.
Most of the studies fall under the case study
research category with high rigor and relevance
scores as most of them were conducted in in-
dustrial contexts. Thus, the outcomes can be
considered industry pertinent and are more gen-
eralized. For the studies that received low rigor
and relevance scores, it remains to be determined
if the ideas suggested in these studies have high
generalizability.
Reliability considers the degree of repeatability
and whether the data and analysis depend on
a specific researcher. To strengthen reliability,
each step of the snowballing process was doc-
umented, including the database search. The
same applies to each step of data collection and
analysis and they can be backtracked, if needed.
The quality assessment of the chosen papers was



72 Krzysztof Wnuk, Thrinay Garrepalli

ensured by using rigor and relevance criteria
according to objective assessment criteria. The
properties and aspects identified from the pa-
pers were mapped with the research questions to
achieve the objectives of the study.

9. Conclusions

Software testing is knowledge-intensive and the
use of KM practices and tools provides a wide
range of benefits regarding the increase in capital
and quality [1]. This paper focuses on the im-
plementation of KM in software testing and on
exploring the importance of KM in each of the
software testing aspects and testing techniques.
Also, the paper presents the challenges faced due
to the lack of KM in software testing. The topic
is explored in a systematic literature review.

Looking at the testing aspects identified in
the study (RQ1), the results indicated that KM is
mainly used to support the selection or execution
of testing techniques (10 studies) or optimization
of the testing processes (7 studies). At the same
time, managing testing resources or knowledge
about test cases or the test code has been greatly
underrepresented. Knowledge elicitation, dissem-
ination, acquisition, evolution and packaging re-
ceive little attention in the surveyed literature
indicating that knowledge is mainly managed
during software testing within a project or an
organization and less attention is devoted to fur-
ther knowledge sharing. Knowledge management
system, models, representation, capturing and re-
trieval are the main KM areas that the surveyed
literature focuses on.

Looking at the testing techniques that bene-
fit from the application of KM practices (RQ2)
the results indicate that ad hoc and exploratory
testing gain more benefits from utilizing KM tech-
niques than model-based testing techniques. This
appears to be logical since model-based testing
operates on highly formalized knowledge (mod-
els) where extensive reasoning can frequently be
applied. Ad hoc or exploratory techniques rely
more heavily on tacit knowledge and therefore
demand more KM techniques.

This study identifies 21 challenges faced due
to the lack of KM practices in software engineer-
ing (RQ3) and the most frequently mentioned
challenges are associated with testing knowledge
reuse, transfer, and sharing. Moreover, the risk
of losing testing knowledge appears to be one
of the prominent challenges. To summarize, this
paper has made the following contributions:
– Exploring various testing aspects that are

focused on while KM is applied in software
testing literature. Moreover, the importance
of each of the software testing aspect concern-
ing KM was explored.

– Discovering that each of the testing aspects is
focused on while KM is applied, albeit few of
them are very important in the KM context.

– Determining the importance of each of the
software testing techniques (i.e. design, exe-
cution and result analysis techniques) in the
KM context along with obtaining the knowl-
edge which is required for each technique so
as to provide recommendations to store the
tacit knowledge just in case any technique
turns out to be important in the context of
KM and utilize tacit knowledge.

– Uncovering various challenges that are faced
due to the lack of KM in software testing
literature

In future work, the authors plan to conduct case
studies and investigate how KM is utilized during
software testing by software-intensive organiza-
tions. There are also plans to explore the en-
abling factors that allow achieving good testing
coverage without KM techniques. It is planned
to study what modeling framework and models
can support software testing tacit knowledge cap-
ture, analysis, storing and reuse. Finally, tacit
knowledge management in software testing will
also become the focus of further studies.

Acknowledgments

This work is supported by the IKNOWDM
project from the Knowledge Foundation in Swe-
den (20150033).



Knowledge Management in Software Testing: A Systematic Snowball Literature Review 73

References

[1] E.F. de Souza, R. de Almeida Falbo, and N.L. Vi-
jaykumar, “Knowledge management initiatives
in software testing: A mapping study,” Informa-
tion and Software Technology, Vol. 57, 2015, pp.
378 – 391. [Online]. http://www.sciencedirect.
com/science/article/pii/S0950584914001335

[2] T.H. Davenport and L. Prusak, Working knowl-
edge: How organizations manage what they know.
Harvard Business Press, 1998.

[3] J. Andrade, J. Ares, M.A. Martínez, J. Pa-
zos, S. Rodríguez, J. Romera, and S. Suárez,
“An architectural model for software testing les-
son learned systems,” Information and Software
Technology, Vol. 55, No. 1, 2013, pp. 18–34.

[4] Y. Liu, J. Wu, X. Liu, and G. Gu, “Investigation
of knowledge management methods in software
testing process,” in International Conference on
Information Technology and Computer Science,
Vol. 2. IEEE, 2009, pp. 90–94.

[5] R. Abdullah, Z.D. Eri, and A.M. Talib, “A model
of knowledge management system in managing
knowledge of software testing environment,” in
5th Malaysian Conference in Software Engineer-
ing (MySEC). IEEE, 2011, pp. 229–233.

[6] A. Desai and S. Shah, “Knowledge management
and software testing,” in Proceedings of the Inter-
national Conference & Workshop on Emerging
Trends in Technology. ACM, 2011, pp. 767–770.

[7] K. Nogeste and D.H. Walker, “Using knowl-
edge management to revise software-testing pro-
cesses,” Journal of Workplace Learning, Vol. 18,
No. 1, 2006, pp. 6–27.

[8] L. Xu-Xiang and W.N. Zhang, “The
PDCA-based software testing improvement
framework,” in International Conference on
Apperceiving Computing and Intelligence
Analysis (ICACIA. IEEE, 2010, pp. 490–494.

[9] X. Li and W. Zhang, “Ontology-based testing
platform for reusing,” in Sixth International Con-
ference on Internet Computing for Science and
Engineering (ICICSE). IEEE, 2012, pp. 86–89.

[10] J. Kajihara, G. Amamiya, and T. Saya, “Learn-
ing from bugs (software quality control),” IEEE
Software, Vol. 10, No. 5, 1993, pp. 46–54.

[11] C. O’Dell and C. Jackson Grayson Jr, “Knowl-
edge transfer: discover your value proposition,”
Strategy & Leadership, Vol. 27, No. 2, 1999, pp.
10–15.

[12] I. Nonaka and H. Takeuchi, The knowledge-cre-
ating company: How Japanese companies create
the dynamics of innovation. Oxford University
Press, 1995.

[13] A.D. Marwick, “Knowledge management tech-
nology,” IBM Systems Journal, Vol. 40, No. 4,
2001, pp. 814–830.

[14] O.K. Wei and T.M. Ying, “Knowledge man-
agement approach in mobile software system
testing,” in IEEE International Conference on
Industrial Engineering and Engineering Manage-
ment. IEEE, 2007, pp. 2120–2123.

[15] T. Abdou and P. Kamthan, “A knowledge man-
agement approach for testing open source soft-
ware systems,” in International Performance
Computing and Communications Conference
(IPCCC). IEEE, 2014, pp. 1–2.

[16] J. Sirathienchai, P. Sophatsathit, and
D. Dechawatanapaisal, “Simulation-based
evaluation for the impact of personnel capability
on software testing performance,” Journal of
Software Engineering and Applications, Vol. 5,
No. 08, 2012, p. 545.

[17] V.H. Nasser, W. Du, and D. MacIsaac, “An
ontology-based software test generation frame-
work.” in The 22nd International Conference on
Software Engineering and Knowledge Engineer-
ing, SEKE, 2010, pp. 192–197.

[18] H. Li, F. Chen, H. Yang, H. Guo, W.C.C. Chu,
and Y. Yang, “An ontology-based approach for
gui testing,” in 33rd Annual IEEE International
Computer Software and Applications Conference,
Vol. 1. IEEE, 2009, pp. 632–633.

[19] E.F. Barbosa, E.Y. Nakagawa, and J.C. Maldon-
ado, “Towards the establishment of an ontology
of software testing.” in International Conference
on Software Engineering & Knowledge Engineer-
ing, 2006, pp. 522–525.

[20] N. Juristo, A.M. Moreno, and S. Vegas, “Review-
ing 25 years of testing technique experiments,”
Empirical Software Engineering, Vol. 9, No. 1,
2004, pp. 7–44.

[21] A.C.C. Natali, A.R.C. da Rocha, G.H. Travas-
sos, and P.G. Mian, “Integrating verification and
validation techniques knowledge into software en-
gineering environments,” Proceedings of 4as Jor-
nadas Ibeoamericanas de Ingeniería del Software
e Ingeniería del Conocimiento, JIISIC, Vol. 4,
2004, pp. 419–430.

[22] N. Juristo, A.M. Moreno, and S. Vegas, “Towards
building a solid empirical body of knowledge in
testing techniques,” ACM SIGSOFT Software
Engineering Notes, Vol. 29, No. 5, 2004, pp. 1–4.

[23] R.L. Glass, R. Collard, A. Bertolino, J. Bach,
and C. Kaner, “Software testing and industry
needs,” IEEE Software, Vol. 23, No. 4, 2006, pp.
55–57.

http://www.sciencedirect.com/science/article/pii/S0950584914001335
http://www.sciencedirect.com/science/article/pii/S0950584914001335


74 Krzysztof Wnuk, Thrinay Garrepalli

[24] R. Jain and S. Richardson, “Knowledge parti-
tioning and knowledge transfer mechanisms in
software testing: An empirical investigation,” in
Proceedings of the 1st Workshop on Advances
and Innovations in Systems Testing, 2007.

[25] S. Vegas, “Identifying the relevant information
for software testing technique selection,” in In-
ternational Symposium on Empirical Software
Engineering, ISESE. IEEE, 2004, pp. 39–48.

[26] X. Liu, G. Gu, L. Yongpu, and W. Ji, “Research
and application of knowledge management model
oriented software testing process,” in 11th Joint
International Conference on Information Sci-
ences. Atlantis Press, 2008.

[27] A. Beer and R. Ramler, “The role of experience
in software testing practice,” in 34th Euromicro
Conference Software Engineering and Advanced
Applications. IEEE, 2008, pp. 258–265.

[28] J. Itkonen, M.V. Mäntylä, and C. Lassenius,
“The role of the tester’s knowledge in exploratory
software testing,” IEEE Transactions on Soft-
ware Engineering, Vol. 39, No. 5, 2013, pp.
707–724.

[29] O. Taipale, K. Karhu, and K. Smolander, “Ob-
serving software testing practice from the view-
point of organizations and knowledge manage-
ment,” in First International Symposium on Em-
pirical Software Engineering and Measurement.
IEEE, 2007, pp. 21–30.

[30] L. Xue-Mei, G. Guochang, L. Yong-Po, and
W. Ji, “Research and implementation of knowl-
edge management methods in software testing
process,” in WRI World Congress on Computer
Science and Information Engineering, Vol. 7.
IEEE, 2009, pp. 739–743.

[31] B.A. Kitchenham, T. Dyba, and M. Jorgensen,
“Evidence-based software engineering,” in Pro-
ceedings of the 26th International Conference on
Software Engineering. IEEE Computer Society,
2004, pp. 273–281.

[32] J. Webster and R.T. Watson, “Analyzing the
past to prepare for the future: Writing a litera-
ture review,” MIS quarterly, 2002, pp. xiii–xxiii.

[33] W. Hayes, “Research synthesis in software engi-
neering: a case for meta-analysis,” in Sixth In-
ternational Software Metrics Symposium. IEEE,
1999, pp. 143–151.

[34] C. Wohlin, “Guidelines for snowballing in
systematic literature studies and a replica-
tion in software engineering,” in Proceedings
of the 18th International Conference on
Evaluation and Assessment in Software En-
gineering, ser. EASE ’14. New York, NY,
USA: ACM, 2014, pp. 38:1–38:10. [Online].
http://doi.acm.org/10.1145/2601248.2601268

[35] B. Kitchenham, O.P. Brereton, D. Budgen,
M. Turner, J. Bailey, and S. Linkman, “System-
atic literature reviews in software engineering
– a systematic literature review,” Information
and software technology, Vol. 51, No. 1, 2009, pp.
7–15.

[36] B. Kitchenham, R. Pretorius, D. Budgen, O.P.
Brereton, M. Turner, M. Niazi, and S. Linkman,
“Systematic literature reviews in software engi-
neering – a tertiary study,” Information and
Software Technology, Vol. 52, No. 8, 2010, pp.
792–805.

[37] B. Kitchenham and S. Charters, “Guidelines for
performing systematic literature reviews in soft-
ware engineering,” Keele University & Univer-
sity of Durham, EBSE Technical Report EBSE
2007-01, 2007.

[38] C.W. Knisely and K.I. Knisely, Engineering com-
munication. Cengage Learning, 2014.

[39] D.S. Cruzes and T. Dybå, “Research synthesis
in software engineering: A tertiary study,” Infor-
mation and Software Technology, Vol. 53, No. 5,
2011, pp. 440–455.

[40] C. Goulding, Grounded theory: A practical
guide for management, business and market re-
searchers. Sage, 2002.

[41] R. Hoda, J. Noble, and S. Marshall, “Using
grounded theory to study the human aspects
of software engineering,” in Human Aspects of
Software Engineering. ACM, 2010, p. 5.

[42] B.G. Glaser, A.L. Strauss, and E. Strutzel, “The
discovery of grounded theory; strategies for quali-
tative research.” Nursing research, Vol. 17, No. 4,
1968, p. 364.

[43] M. Dixon-Woods, S. Agarwal, D. Jones,
B. Young, and A. Sutton, “Synthesising qual-
itative and quantitative evidence: a review of
possible methods,” Journal of Health Services
Research & Policy, Vol. 10, No. 1, 2005, pp.
45–53.

[44] D. Koznov, V. Malinov, E. Sokhransky, and
M. Novikova, “A knowledge management ap-
proach for industrial model-based testing,” in
Proceedings of the International Conference on
Knowledge Management and Information Shar-
ing, 2009, pp. 200–205.

[45] M. Rodgers, A. Sowden, M. Petticrew, L. Arai,
H. Roberts, N. Britten, and J. Popay, “Testing
methodological guidance on the conduct of narra-
tive synthesis in systematic reviews: effectiveness
of interventions to promote smoke alarm owner-
ship and function,” Evaluation, Vol. 15, No. 1,
2009, pp. 49–73.

[46] M. Ivarsson and T. Gorschek, “A method for
evaluating rigor and industrial relevance of tech-

http://doi.acm.org/10.1145/2601248.2601268


Knowledge Management in Software Testing: A Systematic Snowball Literature Review 75

nology evaluations,” Empirical Software Engi-
neering, Vol. 16, No. 3, 2011, pp. 365–395.

[47] A. Jonsson and G. Svingby, “The use of scoring
rubrics: Reliability, validity and educational con-
sequences,” Educational Research Review, Vol. 2,
No. 2, 2007, pp. 130–144.

[48] B. Moskal, K. Miller, and L. King, “Grading
essays in computer ethics: rubrics considered
helpful,” ACM SIGCSE Bulletin, Vol. 34, No. 1,
2002, pp. 101–105.

[49] A. Vickers, “Ensuring scientific rigour in litera-
ture review,” Acupuncture in Medicine, Vol. 13,
No. 2, 1995, pp. 93–96.

[50] P. Runeson, M. Host, A. Rainer, and B. Reg-
nell, Case study research in software engineering:
Guidelines and examples. John Wiley & Sons,
2012.

[51] R. Wieringa, N. Maiden, N. Mead, and C. Rol-
land, “Requirements engineering paper classifi-
cation and evaluation criteria: A proposal and
a discussion,” Requirements Engineering, Vol. 11,
No. 1, 2006, pp. 102–107.

[52] P. Goodman Jon and C. Huseman Richard, Lead-
ing with Knowledge: The Nature of Competition
in the 21st Century. Sage, London, 1999.

[53] L. Rajiv and M. Sarvary, “KM and competition
in the consulting industry,” 1999, p. 485.

[54] R. de Almeida Falbo, “Experiences in using a
method for building domain ontologies,” in The
16th International Conference on Software En-
gineering and Knowledge Engineering, SEKE,
2004, pp. 474–477.

[55] S. Vegas and V. Basili, “A characterisation
schema for software testing techniques,” Empir-
ical Software Engineering, Vol. 10, No. 4, 2005,
pp. 437–466.

[56] A. Abran, P. Bourque, R. Dupuis, and J.W.
Moore, Guide to the software engineering body
of knowledge – SWEBOK. IEEE Press, 2001.

[57] M. Cataldo, P.A. Wagstrom, J.D. Herbsleb, and
K.M. Carley, “Identification of coordination re-
quirements: implications for the design of collab-
oration and awareness tools,” in Proceedings of
the 2006 20th Anniversary Conference on Com-
puter Supported Cooperative Work. ACM, 2006,
pp. 353–362.

[58] D. Graham, E. Van Veenendaal, and I. Evans,
Foundations of software testing: ISTQB certifi-
cation. Cengage Learning EMEA, 2008.

[59] S. Vegas, N. Juristo, and V.R. Basili, “A pro-
cess for identifying relevant information for a
repository: A case study for testing techniques,”
in Managing Software Engineering Knowledge.
Springer, 2003, pp. 199–230.

[60] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson,
B. Regnell, and A. Wesslén, Experimentation in
software engineering. Springer Science & Busi-
ness Media, 2012.

[61] K. Petersen, R. Feldt, S. Mujtaba, and M. Matts-
son, “Systematic mapping studies in software
engineering.” in EASE, Vol. 8, 2008, pp. 68–77.

[62] C. Kaner and W.P. Bond, “Software engineer-
ing metrics: What do they measure and how
do we know?” in In METRICS 2004. IEEE CS.
Citeseer, 2004.

[63] E.F. de Souza, R. de Almeida Falbo, and N.L.
Vijaykumar, “Knowledge management applied
to software testing: A systematic mapping,” in
The 25th International Conference on Software
Engineering and Knowledge Engineering, SEKE,
Boston, USA, 2013, pp. 562–567.

[64] A. Tinkham and C. Kaner, “Learning styles
and exploratory testing,” in Proceedings of the
Pacific Northwest Software Quality Conference,
2003.

[65] S. Vegas, N. Juristo, and V. Basili, “Packaging
experiences for improving testing technique selec-
tion,” Journal of Systems and Software, Vol. 79,
No. 11, 2006, pp. 1606–1618.

[66] J. Itkonen, M.V. Mantyla, and C. Lassenius,
“How do testers do it? An exploratory study
on manual testing practices,” in Proceedings of
the 3rd International Symposium on Empirical
Software Engineering and Measurement. IEEE
Computer Society, 2009, pp. 494–497.

[67] A. Freitas and R. Vieira, “An ontology for guid-
ing performance testing,” in Proceedings of the
2014 IEEE/WIC/ACM International Joint Con-
ferences on Web Intelligence (WI) and Intelli-
gent Agent Technologies (IAT), Vol. 1. IEEE
Computer Society, 2014, pp. 400–407.

[68] T.E. Lee, “Applying knowledge management ap-
proach for software testing,” in Advances and
Innovations in Systems Testing, 2007.

[69] E.F. de Souza, R. de Almeida Falbo, and N.L.
Vijaykumar, “Ontologies in software testing: a
systematic literature review,” in VI Seminar on
Ontology Research in Brazil, 2013, p. 71.

[70] C. Kerkhof, J. van den Ende, and I. Bogenrieder,
“Knowledge management in the professional or-
ganization: a model with application to CMG
software testing,” Knowledge and Process Man-
agement, Vol. 10, No. 2, 2003, pp. 77–84.

[71] S. Vegas, N. Juristo, and V.R. Basili, “Matur-
ing software engineering knowledge through clas-
sifications: A case study on unit testing tech-
niques,” IEEE Transactions on Software Engi-
neering, Vol. 35, No. 4, 2009, pp. 551–565.



76 Krzysztof Wnuk, Thrinay Garrepalli

[72] R. Gentry and F. Shirazi, “A knowledge man-
agement analysis of an in-house manual software
testing,” International Journal of Computer Ap-
plication, Vol. 1, No. 5, 2015, pp. 13–37.

[73] E.F. de Souza, R. de Almeida Falbo, and
N.L. Vijaykumar, “Using ontology patterns for
building a reference software testing ontology,”
in 17th IEEE International Enterprise Dis-
tributed Object Computing Conference Work-
shops (EDOCW). IEEE, 2013, pp. 21–30.

[74] V.H. Nasser, W. Du, and D. MacIsaac,
“Knowledge-based software test generation.” in
The 21st International Conference on Software
Engineering and Knowledge Engineering, SEKE,
2009, pp. 312–317.

[75] H. Li, H. Guo, F. Chen, H. Yang, and Y. Yang,
“Using ontology to generate test cases for GUI
testing,” International Journal of Computer Ap-
plications in Technology, Vol. 42, No. 2-3, 2011,
pp. 213–224.



Knowledge Management in Software Testing: A Systematic Snowball Literature Review 77

Appendix A. Publication venue for the selected papers

Table A. Publication venue for the selected papers

Publication Type ID

Malaysian Conference in Software Engineering (MySEC) Conference P1 [5]
Information and Software Technology Journal P2 [3]
International Conference on Information Technology and Computer Science Conference P3 [4]
International Conference and Workshop on Emerging Trends in Technology
(ICWET)

Conference P4 [6]

International Conference on Industrial Engineering and Engineering Management Conference P5 [14]
Information and Software Technology Journal P6 [1]
International Symposium on Empirical Software Engineering and Measurement Conference P7 [29]
International Conference on Internet Computing for Science and Engineering
(ICICSE)

Conference P8 [9]

WRI World Congress on Computer Science and Information Engineering Conference P9 [30]
Euromicro Conference on Software Engineering and Advanced Applications Conference P10 [27]
IEEE Transactions on Software Engineering Journal P11 [28]
Journal of Workplace Learning Journal P12 [7]
International Conference on Knowledge Management and Information Sharing Conference P13 [44]
Empirical Software Engineering Journal P14 [55]
International Symposium on Empirical Software Engineering, ISESE Conference P15 [25]
International Conference on Software Engineering and Knowledge Engineering Conference P16 [63]
Pacific Northwest Software Quality Conference Conference P17 [64]
Journal of Systems and Software Journal P18 [65]
Joint International Conference on Information Sciences Conference P19 [26]
International Symposium on Empirical Software Engineering and Measurement Conference P20 [66]
International Performance Computing and Communications Conference (IPCCC) Conference P21 [15]
International Joint Conferences on Web Intelligence (WI) and Intelligent Agent
Technologies (IAT)

Conference P22 [67]

Information Systems Research Conference P23 [68]
Ontology Research Journal Journal P24 [69]
Journal of Software Engineering and Applications Journal P25 [16]
International Conference on Software Engineering and Knowledge Engineering Conference P26 [17]
Knowledge and Process Management Journal P27 [70]
Empirical Software Engineering Journal P28 [20]
International Conference on Software Engineering and Knowledge Engineering Conference P29 [19]
Software Engineering Journal Journal P30 [71]
International Journal of Computer Application Journal P31 [72]
International Enterprise Distributed Object Computing Conference Workshops
(EDOCW)

Conference P32 [73]

International Conference on Software Engineering and Knowledge Engineering Conference P33 [74]
International Journal of Computer Applications in Technology Journal P34 [75]
Computer Software and Applications Conference (COMPSAC) Conference P35 [18]



78 Krzysztof Wnuk, Thrinay Garrepalli

Appendix B. Quality assessment based on rigor and relevance

Table B. Quality assessment based on rigor and relevance

Paper Context Study
design

Validity Rigor
sum

Subjects Scale Research
method-
ology

Context Relevance
sum

P1 1 1 0 2 1 1 1 1 4
P2 1 1 1 3 1 1 1 1 4
P3 1 0.5 0 1.5 1 1 1 1 4
P4 1 0.5 0 1.5 1 1 1 1 4
P5 1 1 0 2 1 1 1 1 4
P7 1 1 1 3 1 1 1 1 4
P8 1 0.5 0 1.5 1 1 1 1 4
P9 1 0.5 0 1.5 1 1 1 1 4
P10 1 1 0 2 1 1 1 1 4
P11 1 1 1 3 1 1 1 1 4
P12 1 0.5 0 1.5 1 1 1 1 4
P13 0.5 0.5 0 1 1 1 1 1 4
P14 1 1 0 2 1 1 1 1 4
P15 1 1 0 2 1 1 1 1 4
P17 0 0.5 0 0.5 0 1 0 0 1
P18 1 0.5 0 1.5 0.5 1 0 1 2.5
P19 0.5 0.5 0 1 1 1 1 1 4
P20 1 1 0 2 1 1 1 1 4
P21 0 0.5 0 0.5 0 1 1 0 2
P22 0 0.5 0 0.5 0 1 1 0 2
P23 0.5 0 0 0.5 0 1 1 0 2
P25 1 1 0 2 1 1 1 1 4
P26 0 0.5 0 0.5 0 1 1 0 2
P27 0.5 0.5 0 1 1 1 1 1 4
P28 0.5 0.5 0 1 1 0.5 0.5 1 3
P29 0 0.5 0 0.5 1 1 1 1 4
P30 1 1 0 2 1 1 1 1 4
P31 1 1 1 3 1 1 1 1 4
P32 0 0.5 0 0.5 0 1 1 0 2
P33 1 0.5 0 1.5 1 1 1 1 4
P34 1 0.5 0 1.5 1 1 1 1 4
P35 1 1 0 2 1 1 1 1 4


	Introduction
	Background and related work
	KM in software testing
	Related work

	Research questions
	Research design and methodology
	Data analysis
	Snowballing procedure
	Deriving the tentative start set of paper
	Forward and backward snowballing in iterations

	Data extraction and synthesis
	Quality assessment based on rigor and relevance

	Results of the snowballing iterations
	Literature review results analysis
	Categorization of papers based on research methodology and studytype
	Quality assessment based on rigor and relevance
	Quality assessment of secondary studies

	KM aspects discussed in the selected studies (RQ1)
	Software testing aspects that benefit from the application of KM practices (RQ1)
	Software testing techniques that benefit from the application of KM practices (RQ2)

	Challenges due to lack of KM practices
	Implications for research and practice

	Validity threats
	Conclusions
	Acknowledgments
	References

	Publication venue for the selected papers
	Quality assessment based on rigor and relevance

