e-Informatica Software Engineering Journal, Volume 13, Issue 1, 2019, pages: 63-103, DOI 10.5277/e-Inf190103

Representation of UML Class Diagrams in OWL 2

on the Background of Domain Ontologies

Matgorzata Sadowska*, Zbigniew Huzar*
*Faculty of Computer Science and Management, Wroclaw University of Science and Technology

m.sadowska@pwr.edu.pl, zbigniew.huzar@pwr.edu.pl

Abstract

Background: UML class diagrams can be automatically validated if they are compliant with
a domain knowledge specified in a selected OWL 2 domain ontology. The method requires
translation of the diagrams into their OWL 2 representation.

Aim: The aim of this paper is to present transformation and verification rules of UML class
diagrams to their OWL 2 representation.

Method: The analysis of the results of the systematic literature review on the topic of transfor-
mation rules between elements of UML class diagrams and OWL 2 constructs. The purpose of the
analysis is to present the extent to which state-of-the-art transformation rules cover the semantics
expressed in class diagrams. On the basis of the analysis, new transformation rules expressing the
semantics not yet covered but expected from the point of view of domain modelling pragmatics
have been defined.

Results: The first result is the revision and extension of the transformation rules identified in
the literature. The second original result is a proposition of verification rules necessary to check if
a UML class diagram is compliant with the OWL 2 domain ontology.

Conclusion: The proposed transformations can be used for automatic validation of compliance

of UML class diagrams with respect to OWL 2 domain ontologies.

Keywords: UML, OWL 2, transformation rules, verification rules

1. Introduction

In [1], we presented an idea of a method for se-
mantic validation of Unified Modeling Language
(UML) class diagrams [2] with the use of OWL 2
Web Ontology Language (OWL 2) [3] domain
ontologies. While UML has been known for many
years, OWL is a much younger formalism and its
main purpose is to represent knowledge in the
Semantic Internet. The choice of OWL is justified
by the fact that knowledge, and in particular on-
tologies collected on the Internet, will be increas-
ingly used in business modelling as the first stage
of software development. The proposed approach
[1] requires a transformation of an UML class
diagram constructed by a modeller into its seman-
tically equivalent OWL 2 representation. Despite

Submitted: 6 June 2018; Revised: 7 October 2018;

Accepted: 7 November 2018;

the fact that there are many publications which
define some UML to OWL 2 transformations, to
the best of the authors’ knowledge, no study has
investigated a complete mapping covering all di-
agram elements emphasized by pragmatic needs.
This paper seeks to contribute in this field with
a special focus on providing a full transformation
of elements of an UML class diagram which are
commonly used in business and conceptual mod-
elling. All the transformations described in this
paper and the method of validation explained
in [1], have been implemented in a tool whose
prototype was presented in [4]. On the basis of
the proposed UML-OWL transformations, the
tool has been further extended. Currently, the
tool offers validation of the modified diagram,
and can automatically suggest how the diagram

Available online: 14 December 2018

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_13/eInformatica2019Art03.pdf

64

Malgorzata Sadowska, Zbigniew Huzar

should be corrected on the basis of the ontology.
A necessary requirement before the UML class
diagram can be validated with the use of OWL
domain ontology is that the diagram and the
ontology must follow one agreed domain vocab-
ulary. Moreover, the domain ontology must be
consistent because it is the knowledge base for
the area.

Our research is limited to the static elements
of UML class diagrams — the behavioural aspect
represented by class operations is omitted. This
is due to the fact that the semantics of UML op-
erations cannot be effectively expressed with the
use of OWL 2 constructs, which do not represent
behaviour. In order to identify which transforma-
tion rules of UML class diagrams into OWL con-
structs have already been proposed, we have per-
formed a systematic review of literature. The ex-
tracted rules have been analysed, compared and
extended. The resulting findings of how to con-
duct the transformation of UML class diagram to
its OWL 2 representation are described further
in this paper. In the rest of this paper, OWL
always means OWL 2, if not stated otherwise.

Besides the transformation rules, the method
of semantic validation of UML class diagrams re-
quires the so called verification rules. This aspect
is an original element of this research. Transform-
ing the UML elements to OWL may introduce
some new properties that may be in conflict with
the ontology. The verification rules are specified
in the form of either OWL verification axioms or
verification queries.

It is then checked that the verification axioms
are not present in the domain ontology because,
if they are included, the diagram is contradictory
to the domain knowledge. In other words, we
can say that the verification axioms detect if the
semantics of the diagram transformation is com-
pliant with the axioms included in the domain
ontology. Considering the inverse transformation
(from the ontology to the diagram), the presence
of the verification axioms in the domain ontol-
ogy means that the reengineering transformation
would remain in conflict with the semantics of
the UML class diagram. In [1], we presented some
examples of the consequences of a reengineering

transformation of OWL to UML which does not
take into account the verification rules.
Verification queries are used for extracting
information from a domain ontology, the kind of
information that could not be provided through
inspecting the class diagram itself. The domain
ontology can have more information regarding
the elements of a UML class diagram, which
is not explicitly expressed on the diagram. For
example, the ontology can contain information
about individuals. To give a more detailed per-
spective, the verification queries are used for: (a)
checking if the classes denoted as abstract in the
UML class diagram do not have any individuals
assigned in the OWL domain ontology, (b) verify-
ing if the multiplicity (of both the attributes and
the association ends) is not violated on the side
of the OWL domain ontology, and (c) checking
if the user-defined list of literals of the specified
enumerations on the UML class diagram is com-
pliant with those defined in the OWL domain
ontology. Technically, all verification queries are
defined with the use of SPARQL! language.
The verification of UML class diagrams with
the use of the proposed method is possible thanks
to the initial normalization of the domain ontol-
ogy and the normalization of the transformation
axioms. The concept of OWL ontology normal-
ization is our proposition [5]. Any input OWL 2
DL ontology after normalization is presented in
a new but semantically equivalent form because
the normalization rules only change the structure
but do not affect the semantics of axioms or ex-
pressions in the OWL 2 ontology. The normalized
OWL 2 DL ontologies have a unified structure of
axioms so that they can be algorithmically com-
pared without the need to conduct additional
complex calculations. The extensive details of
conducting the transformation of OWL 2 ontolo-
gies to their normalized form are described in [5].
In the rest of the paper OWL domain ontology is
understood as OWL domain ontology after nor-
malization (it should be done only once). Before
comparison of axioms, all transformation axioms
are also normalized (tool automatically saves
transformation axioms also in the normalized
form so that no additional delay is needed in

'SPARQL Query Language: https://www.w3.org/TR/sparqlll-overview/

https://www.w3.org/TR/sparql11-overview/

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 65

the verification algorithm). For the purpose of
being compliant with the literature and for the
potential use of transformation axioms for other
purposes, all transformation axioms presented
in this paper are not normalized. On the other
hand, due to the fact that verification axioms are
our proposition preliminary designed to support
verification of UML class diagrams, some rules
for verification axioms are already defined in the
normalized form in order to reduce the number
of unnecessary redundant verifications, the rest
rules for verification axioms are not yet normal-
ized for the purpose of clarity for readers but
the tool also automatically saves the verification
axioms directly as normalized.

In practical use of UML to OWL transforma-
tion, the initial phase involving modeller’s atten-
tion is required. The modeller has to assure that
all class attributes and association end names in
one UML class are uniquely named. Otherwise,
the transformation rules may generate repeating
OWL axioms which may lead to inconsistencies
or may be semantically incorrect.

The remainder of this article is organized
as follows. Section 2 summarizes related works.
Section 3 outlines which elements of UML class
diagrams are commonly used in business and
conceptual modelling. Section 4 describes the
process and the results of the conducted sys-
tematic literature review which was focused on
identifying the state-of-the-art transformation
rules for translating UML class diagrams into
their OWL representation. Section 5 presents
the revised and extended transformation rules
and proposes the verification rules. Section 6
summarises some important differences between
OWL 2 and UML languages and their impact on
transformation. Section 7 illustrates application
of transformation and verification rules to exam-
ple UML class diagrams. Section 8 is dedicated
to the tool that implements the transformations.
Finally, Section 9 concludes the paper.

2. Class diagrams in business
and conceptual modelling

The UML specification [2] does not strictly spec-
ify which elements of UML class diagrams should

or should not be included in the specific diagrams

and this decision is always left to modellers. How-

ever, not all model elements are equally useful in
the practice of business and conceptual modelling
with UML class diagrams.

In [6], it is suggested that a full variety of
UML constructs is not needed until the imple-
mentation phase and it is practiced that a subset
of diagram elements useful for conceptual mod-
elling in the business context is selected. The
following static elements of UML class diagrams
are suggested in literature as the most important
in business and conceptual modelling [7, 8]:
named classes,

— attributes of classes with types (either primi-
tive or structured datatypes),

— associations between the classes (including
aggregation) with the specified multiplicity
of the association ends,

— generalization relationships.

Modelling a complex business requires using
several views, each of which focuses on a partic-
ular aspect of business. Following [7], there are
four commonly used Business Views: Business
Vision View, Business Process View, Business
Structure View and Business Behaviour View.
The UML class diagrams are identified as useful
[7] in Business Vision View and Business Struc-
ture View.

The UML class diagrams in a Business Vi-
sion View [7] are used to create conceptual mod-
els which establish a common vocabulary and
demonstrate relationships among different con-
cepts used in business. The important elements of
UML class diagrams in the conceptual modelling
are named classes and associations between the
classes as they define concepts. The classes can
have attributes as well as a textual explanation
which together constitute a catalogue of terms.
The textual descriptions may not be necessar-
ily visible on the UML diagram but should be
retrievable with the help of modelling tools. In
the conceptual modelling with UML, attributes
and operations of classes are not so much im-
portant [7] (can be defined only if needed) but
relationships among the classes should be already
correctly captured in models.

The UML class diagrams in a Business Struc-
ture View [7] are focused on presenting a struc-

66

Malgorzata Sadowska, Zbigniew Huzar

ture of resources, products, services and infor-
mation regarding the business including the or-
ganization of the company. The class diagrams
in this view often include classes containing at-
tributes with types and operations, as well as
generalizations and associations with the speci-
fied multiplicity.

In [8], modelling business processes with UML
class, activity and state machine diagrams is sug-
gested. UML class diagrams with a number of
predefined classes are used to describe process en-
tity representatives (activities, agents, resources
and artefacts). The examples in [8] present a busi-
ness process at the level of the UML class dia-
gram as consisting of classes with attributes, class
generalizations, associations between the classes
(including aggregation) with a specified multiplic-
ity of the association ends. The class attributes
are typed with either primitive or structured
datatypes.

We have not found further recommendations
for using additional static UML class diagram
elements in the context of business or conceptual
modelling in other reviewed literature positions.
If the selected UML class diagram is compliant
with the domain, it is reasonable to examine
the diagram further. For example, the question
outside the scope of this research is about the role
of OCL? in business and conceptual modelling
with UML class diagrams. Some other works
investigate this aspect, e.g. in [9] an approach to
translate OCL invariants into OWL 2 DL axioms
can be found.

3. Review process

Kitchenham and Charters in [10] provide guide-
lines for performing systematic literature review
(SLR) in software engineering. Following [10],
a systematic literature review is a means of eval-
uating and interpreting all available research
relevant to a particular research question, and
aims at presenting a fair evaluation of a re-
search topic by using a rigorous methodology.
This section describes the carried out review
aimed at identifying studies describing mappings

of UML class diagrams to their OWL represen-
tations.

3.1. Research question

The research question is:

RQ: “What transformation rules between ele-
ments of UML class diagrams and OWL con-
structs have already been proposed?”

3.2. Data sources and search queries

In order to make the process repeatable, the de-
tails of our search strategy are documented below.
The search was conducted in the following online
databases: IEEE Xplore Digital Library, Springer
Link, ACM Digital Library and Science Direct.
These electronic databases were chosen because
they are commonly used for searching literature
in the field of Software Engineering. Additional
searches with the same queries were conducted
through ResearchGate and Google scholar in or-
der to discover more relevant publications. These
publication channels were searched to find pa-
pers published in all the available years until
May 2018. The earliest primary study actually
included was published in 2006.

For conducting the search, the following key-
words were selected: “transformation”, “trans-
forming”, “mapping”, “translation”, “OWL”,
“UML” and “class diagram”. The keywords are
alternate words and synonyms for the terms used
in the research question, which aimed to mini-
mize the effect of differences in terminologies. Pilot
searches showed that the above keywords were too
general and the results were too broad. Therefore,
in order to obtain more relevant results, the search
queries were based on the Boolean AND to join
terms:

— “transformation” AND “OWL” AND “UML”,

— ‘“transforming” AND “OWL” AND “UML”,

— ‘“mapping” AND “OWL” AND “UML”,

— “translation” AND “OWL” AND “UML”,

— ‘“transformation” AND “OWL” AND “class
diagram”,

— “transforming” AND “OWL” AND “class di-

7
agram”,

2Object Constraint Language (OCL): http://www.omg.org/spec/OCL/

http://www.omg.org/spec/OCL/

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 67

— “mapping” AND “OWL” AND “class dia-
gram”,

— “translation” AND “OWL” AND “class dia-
gram”.

3.3. Inclusion and exclusion criteria

The main inclusion criterion was that a paper pro-
vides some transformation rules between UML
class diagrams and OWL constructs. Addition-
ally, the study had to be written in English and
be fully accessible through the selected online
libraries. Additionally, there was a criterion for
excluding a paper from the review results if the
study described transformation rules between
other types of UML diagrams to OWL represen-
tation or described transformation rules to other
ontological languages.

3.4. Study quality assessment

The final acceptance of the literature was done
by applying the quality criteria. The criteria were
assigned a binary “yes”/“no” answer. In order
for a work to be selected, it needed to provide

“yes” answer to both questions from the checklist:

1. Are the transformation rules explicitly de-
fined? For example, a paper could be excluded
if it only reported on a possibility of specify-
ing transformation rules for the selected UML
elements, but such transformations were not
provided.

2. Do the proposed transformation rules pre-
serve the semantics of the UML elements?
For example, a paper (or some selected trans-
formation rules within the paper) could be
excluded if the proposed rules in the trans-
formation to OWL 2 did not preserve the
semantics of the UML elements.

3.5. Study selection

During the search, the candidate papers for full
text reading were identified by evaluating their
titles and abstracts. The literature was included
or excluded based on the selection criteria. The
goal was to obtain the literature that answered
the research question. The candidate papers, af-

ter eliminating duplicates, were fully read. After
positive assessment of the quality of the litera-
ture items, they were added to the results of the
systematic literature review.

Next, if the paper was included, its reference
list was additionally scanned in order to iden-
tify potential further relevant papers (backward
search). Later, the paper selection has addition-
ally been extended by forward search related to
works citing the included papers. In both back-
ward search and forward search the papers for
full text reading were identified based on reading
title and abstract.

3.6. Threats to validity

We have identified threats to the validity of the
conducted SLR, grouped in accordance with the
categories presented in [11]. Wherever applica-
ble, we included the applied mitigating factors
corresponding to the identified threats.

Construct Validity: The specified search
queries may not be able to completely cover all
adequate search terms related to the research
topic. As a mitigating factor, we used alternate
words and synonyms for the terms used in the
research question.

Internal Validity: The identified treats to
internal validity relate to search strategy and
further steps of conducting the SLR, such as
selection strategy and quality assessment:

1. A threat to validity was caused by lack of
assurance that all papers relevant to answer-
ing the research question were actually found.
A mitigating factor to this threat was con-
ducting a search with several search queries
and analyzing the references of the primary
studies with the aim of identifying further
relevant studies.

2. Another threat was posed by the selected
research databases. The threat was reduced
by conducting the search with the use of six
different electronic databases.

3. A threat was caused by the fact that one
researcher conducted SLR. A mitigating fac-
tor to the search process and the study se-
lection process was that the whole search
process was twice reconducted in April 2018

68

Malgorzata Sadowska, Zbigniew Huzar

and May 2018. The additional procedures did

not change the identified studies.

FExternal Validity: External validity concen-
trates on the generalization of findings derived
from the primary studies. The carried search was
aimed at identifying transformation rules of ele-
ments of UML class diagram to their OWL 2 rep-
resentation. Some transformation rules could be
formulated analogically in some other ontological
languages, e.g. DAMLA4-OIL, etc. Similarly, some
transformation rules could be formulated analog-
ically in some modelling languages or notations
different then UML class diagrams, e.g. in En-
tity Relationship Diagram (ERD), EXPRESS-G
graphical notation for information models, etc.
A generalization of findings is out of scope of this
research.

Conclusion Validity: The search process was
twice reconducted and the obtained results have
not changed. However, non-determinism of some
database search engines is a threat to the re-
liability of this and any other systematic re-
view because the literature collected through
non-deterministic search engines might not be
repeatable by other researchers with exactly the
same results. In particular it applies to the re-
sults obtained with the use of Google scholar and
ResearchGate.

4. Related work

4.1. Search results

In total, the systematic literature review identi-
fied 18 studies. 14 literature positions were found
during the search: [12-26]. Additional 30 studies
were excluded based on the quality assessment
exclusion criterion.

Additional 3 studies were obtained through
the analysis of the references of the identified
studies (the backward search): [27-29].

The forward search has not resulted in any
paper included. The majority of papers had al-
ready been examined during the main search and
had already been either previously included or
excluded. In the forward search, three papers de-
scribing transformation rules have been excluded
because they were not related to UML. Most

other papers have been excluded because they
have not described transformation rules. Two
papers have been excluded because the transfor-
mation rules were only mentioned but not de-
fined. A relatively large number (approximately
20%) of articles has been excluded based on the
language criterion — they had not been written in
English (the examples of the observed repetitive
languages: Russian, French, Turkish, Chinese,
and Spanish).

The results of the search with respect to data
sources are as follows (data source — number
of selected studies): ResearchGate — 6; Springer
Link — 3; IEEE Xplore Digital Library — 2;
Google Scholar — 2; ACM Digital Library — 1;
Science Direct — 1. In order to eliminate dupli-
cates that were found in more than one electronic
database, the place where a paper was first found
was recorded.

Table 1. Search results versus years of publication

Year of publication Resulting papers

2006 23]

2008 [14,16,21,27]
2009 [13]

2010 [26]

2012 [12,17,20,22, 25]
2013 19,24, 28]

2014 [29]

2015 [18]

2016 [15]

To summarize, the identified studies include:
3 book chapters, 8 papers published in journals,
5 papers published in the proceedings of confer-
ences, 1 paper published in the proceedings of
a workshop and 1 technical report. The identified
primary studies were published in the years be-
tween 2006-2016 (see Table 1). What can be ob-
served is that the topic has been gaining greater
attention since 2008. It should not be a surprise
because OWL became a formal W3C recommen-
dation in 2004.

4.2. Summary of identified literature

Most of the identified studies described just a few
commonly used diagram elements (i.e. UML class,
binary association and generalization between

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 69

the classes or associations) while some other di-
agram elements obtained less attention in the
literature (i.e. multiplicity of attributes, n-ary
association or generalization sets). For some class
diagram elements the literature offers incom-
plete transformations. Some of the transforma-
tion rules defined in the selected papers are ex-
cluded from the findings based on the quality cri-
teria defined in Section 3.4. The state-of-the-art
transformation rules were revised and extended.
Section 5 contains detailed references to the lit-
erature related to relevant transformations. The
following is a short description of the included
studies:

The work presented in [18] transforms into
OWL some selected elements of UML models
containing multiple UML class, object and state-
chart diagrams in order to analyze consistency
of the models. A similar approach is presented in
[19], which is focused on detecting inconsistency
in models containing UML class and statechart
diagrams.

The papers [15,17,29] investigate the differ-
ences and similarities between UML and OWL
in order to present transformations of selected
(and identified as useful) elements of UML class
diagram. In [29], the need for UML-OWL trans-
formation is additionally motivated by not re-
peating the modelling independently in both lan-
guages.

In [14], a possible translation of few selected
elements of several UML diagrams to OWL is
presented. The paper takes into account a set
of UML diagrams: use case, package, class, ob-
ject, timing, sequence, interaction overview and
component. The behavioural elements in UML
diagrams in [14] are proposed to be translated
to OWL with annotations.

The work of [26] focuses on representing
UML and MOF-like metamodels with the use of
OWL 2 language. The approach includes propo-
sition of transforming Classes and Properties.

The paper [27] compares OWL abstract syn-
tax elements to the equivalent UML features
and appropriate OCL statements. The analysis
is conducted in the direction from OWL to UML.
For every OWL construct its UML interpretation
is proposed.

The article [20] describes transformation rules
for UML data types and class stereotypes se-
lected from UML profile defined in ISO 19103.
A full transformation for three stereotypes is
proposed. The article describes also some addi-
tional OWL-UML mappings. The focus of [28] is
narrowed to transformation of data types only.

Some works are focused on UML-OWL trans-
formations against the single application domain.
The paper [21] depicts the applicability of OWL
and UML in the modelling of disaster manage-
ment processes. In [16], transportation data mod-
els are outlined and the translation of UML
model into its OWL representation is conducted
for the purpose of reasoning.

The works presented in [12,13,23] are focused
on extracting ontological knowledge from UML
class diagrams and describe some UML-OWL
mappings with the aim to reuse the existing
UML models and stream the building of OWL
domain ontologies. The paper [12] from 2012
extends and enhances the conference paper [13]
from 2009. Both papers were analysed during the
process of collecting the data in case of detection
of any significant differences in the description
of transformation rules.

In [22], UML classes are translated into OWL.
Finally, [24,25] present a few transformations of
class diagram elements to OWL.

5. UML class diagram and its OWL 2
representation

This section presents transformation rules
(TR) which seek to transform the elements of
UML class diagrams to their equivalent repre-
sentations expressed in OWL 2. Some of the
transformation rules come from the literature
identified in the review (e.g. TR1 in Table 2).
Another group of rules have their archetypes
in the state-of-the-art transformation rules but
we have refined them in order to clarify their
contexts of use (e.g. TRA, TR in Section 6.2),
or extend their application to a broader scope
(e.g. TR1 in Table 5). The remaining transfor-
mation rules are our new propositions (e.g. TR5
in Table 7).

70

Malgorzata Sadowska, Zbigniew Huzar

In contrast to the approaches available in
the literature, together with the transformation
rules we define the verification rules (VR) for
all elements of a UML class diagram wherever
applicable. The need for specifying verification
rules results from the fact that we would like to
check the compliance of the OWL representation
of UML class diagram with the OWL domain
ontology. The role of verification rules is to de-
tect if the semantics of a diagram is not in con-
flict with the knowledge included in the domain
ontology.

All the transformation and verification rules
are presented in Tables 2-21. We took into con-
sideration all the static elements of UML class
diagrams, which are important from the point of
view of pragmatics (see Section 2). To summarize
the results, most of the UML elements which are
recommended [7, 8] in business or conceptual
modelling with UML class diagrams are fully
transformable to OWL 2 constructs:

— Class (Table 2),

— attributes of the Class (Table 4),

— multiplicity of the attributes (Table 5),

— Dbinary Association — both between two differ-
ent Classes (Table 6) as well as from a Class

to itself (Table 7),

— multiplicity of the Association ends (Table 9),
— Generalization between Classes (Table 12),
— Integer, Boolean and UnlimitedNatural prim-

itive types (Table 18),

— structured DataType (Table 19),
— Enumeration (Table 20),
— Comments to the Class (Table 21),

We additionally fully translated into OWL 2
the following UML elements which have not been
identified among recommended for business or
conceptual modelling but can be used in further
stages of software development:

— Generalization between Associations (Ta-

ble 13),

— GeneralizationSet with constraints (Tables

14-17),

— AssociationClass (Table 10 and Table 11),

The UML and OWL languages have different
expressing power. We consider also the partial
transformation, which is possible for:

— String and Real primitive types because
they have only similar but not equivalent
to OWL 2 types (Table 18),

— aggregation and composition can be trans-
formed only as simple associations (Tables
6-7)

— n-ary Association — OWL 2 offers only binary
relations, a pattern to mitigate the problem of
transforming n-ary Association is presented
(Table 8),

— AbstractClass — OWL 2 does not offer any
axiom for specifying that a class must not
contain any individuals. Although, it is im-
possible to confirm that the UML abstract
class is correctly defined with respect to the
OWL 2 domain ontology, it can be detected
if it is not (Table 3).

The tables below present for each UML ele-
ment its short description, a graphical symbol,
transformation rules, verification rules, expla-
nations or comments, limitations of the trans-
formations (if any) and the works related for
the transformation rules (if any). Additionally,
some tables include references to Section 7, where
examples of UML-OWL transformations are pre-
sented.

The convention for transformation and veri-
fication rules presentation is semi-formal, simi-
lar to the convention used in other publication
presenting transformation rules e.g. [17,20]. It
seems to be more readable than a strict formal
presentation. However, a formal presentation is
implicitly defined in the programming tool which
transforms any UML class diagram into a set of
OWL axioms.

All OWL 2 constructs are written with the
use of a functional-style syntax [30]. Additionally,
the following convention is used:

— C - indicates an OWL class;

— CE (possibly with an index) — indicates
a class expression;

— OPE (possibly with an index) — indicates an
object property expression;

— DPE (possibly with an index) — indicates
a data property expression;

— «a = 8 — means textual identity of o and 3
OWL 2 constructs;

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 71

— «a # [— means textual difference of a and
OWL 2 constructs;

— The elements of UML meta-model, UML
model, and OWL entities or literals named
in the UML model are written with the use

of italic font;

— The OWL 2 constructs (axioms, expressions
and datatypes) and SPARQL queries are writ-

ten in bold.

PREFIX rdf: <http://www.w3.0rg/1999/02/22-
rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/

owl#>
PREFIX xsd: <http://www.w3.org/2001/
XMLSchema#>

PREFIX rdfs: <http://www.w3.org/2000/01/
rdf-schema#>
PREFIX : <http://...selected ontology>

All presented SPARQL queries use the fol-

lowing prefixes:

5.1. Transformation of UML classes with attributes

Table 2. Classes and the defined rules

UML element

Class

Description of UML
element

Symbol of UML

element

Transformation rules
Verification rules

Comments to the rules

Related works
Example

In UML, a Class [2] is purposed to specify a classification of objects.

ClassMame

TR1: Specify declaration axiom for UML Class as OWL Class:

Declaration(Class(:ClassName))
VR1: Check if : ClassName class has the HasKey axiom defined in the domain
ontology. HasKey(: ClassName(OPE;.. OPE,,) (DPE;.. DPE,))
1. Regarding VR1: The OWL HasKey axiom assures [30,31] that if two named
instances of a class expression contain the same values of all object and data
property expressions, then these two instances are the same. This axiom is in
contradiction with the semantics of UML class because UML specification allows
for creating different objects with exactly the same properties.
In [12-23,25-27], UML class is transformed to OWL with the use of TR1 axiom.
Section 7 example 1, 2 and 3

Table 3. Abstract classes and the defined rules

UML element

Abstract Class

Description of UML
element

Symbol of UML

element

Transformation rules

Verification rules

In UML, an abstract Class [2] cannot have any instances and only its subclasses
can be instantiated.
AbstractClass

Not possible. The UML abstract classes cannot be translated into OWL
because OWL does not offer any axiom for specifying that a class must not
contain any individuals.
VRI1: Check if the domain ontology contains any individual specified for the
:AbstractClass.

SELECT (COUNT (DISTINCT ?ind) as ?count)

WHERE {?ind rdf:type :AbstractClass}

http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/2002/07/owl#
http://www.w3.org/2002/07/owl#
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2001/XMLSchema#
http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#
http://...

72

Malgorzata Sadowska, Zbigniew Huzar

Comments to the rule

Related works

If the : AbstractClass does not contain any individual specified in the domain
ontology, the SPARQL query returns zero:

"0" " <http://www.w3.0org/2001/XMLSchema#integer>
OWL follows the Open World Assumption [30], therefore, even if the ontology
does not contain any instances for a specific class, it is unknown whether the
class has any instances. We cannot confirm that the UML abstract class is
correctly defined with respect to the OWL domain ontology, but we can detect if
it is not (VR checks if the class specified as abstract in the UML class diagram
is indeed abstract in the domain ontology).
In [17,20,29], UML abstract class is stated as not transformable into OWL. In
[17,20], it is proposed that DisjointUnion is used as an axiom which covers
some semantics of UML abstract class. However, UML specification does not
require an abstract class to be a union of disjoint classes, and the
DisjointUnion axiom does not prohibit creating members of the abstract
superclass, therefore, it is insufficient.

Table 4. Attributes and the defined rules

UML element

Attributes

Description of UML
element

Symbol of UML
element

Transformation rules

Verification rules

The UML attributes [2] are Properties that are owned by a Classifier, e.g. Class.

Student
name : FullName
index : String
year : Integer
faculty : Faculty

TR1: Specify declaration axiom(s) for attribute(s) as OWL data or object
properties respectively
Declaration(ObjectProperty(:name))
Declaration(DataProperty(:indez))
Declaration(DataProperty(:year))
Declaration(ObjectProperty(:faculty))
TR2: Specify data (or object) property domains for attribute(s)
ObjectPropertyDomain(:name :Student)
DataPropertyDomain(:index :Student)
DataPropertyDomain(:year :Student)
ObjectPropertyDomain(:faculty :Student)
TR3: Specify data (or object) property ranges for attribute(s) (for
transformation of UML Primitive Types refer to Table 18, for transformation of
UML structure Data Types to Table 19)
ObjectPropertyRange(:name :FullName)
DataPropertyRange(:index xsd:string)
DataPropertyRange(:year xsd:integer)
ObjectPropertyRange(:faculty : Faculty)
VR1: Check if the domain ontology contains ObjectPropertyDomain (or
DataPropertyDomain) axiom specified for OPE (or DPE) where CE is
specified for a different than given UML Class (here :Student)
ObjectPropertyDomain(:name CE), where CE # :Student
DataPropertyDomain(:index CE), where CE # :Student
DataPropertyDomain(:year CE), where CE # :Student
ObjectPropertyDomain(:faculty CE), where CE # :Student
VR2: Check if the domain ontology contains ObjectPropertyRange (or
DataPropertyRange) axiom specified for OPE (or DPE) where CE is

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 73

specified for a different than given UML structure Data Type (or DR is specified
for a different than given UML Primitive Type)
ObjectPropertyRange(:faculty CE), where CE # : Faculty
DataPropertyRange(:indez DR), where DR # xsd:string
DataPropertyRange(:year DR), where DR # xsd:integer
ObjectPropertyRange(:name CE), where CE # :FullName
Comments to the rules 1. Both UML attributes and associations are represented by one meta-model
element — Property. OWL also allows one to define properties. A transformation
of UML attribute to OWL data property or OWL object property bases on its
type. If the type of the attribute is Primitive Type it should be transformed into
OWL DataProperty. However, if the type of the attribute is a structured
DataType,it should be transformed into an OWL ObjectProperty.
2. VR1 checks whether or not the object properties (or respectively data
properties) indicate that the UML attributes are specified for given UML Class.
3. VR2 checks whether or not the object properties (or respectively data
properties) indicate that the UML attributes of the specified UML Class have
specified given types, either Primitive Types or structured DataTypes.

Related works TR1-TR3 are proposed in [15-17,20]. In [12-14,18,19,21-24], all UML
attributes are translated into data properties only.
Example Section 7 example 2 and 3

Table 5. Multiplicity of attributes and the defined rules

UML element Multiplicity of attributes

Description of UML In [2], multiplicity bounds of MultiplicityElement are specified in the form of

element <lower-bound> “.” <upper-bound>. The lower-bound is of a non-negative
Integer type and the upper-bound is of an UnlimitedNatural type. The strictly
compliant specification of UML in version 2.5 defines only a single value range
for MultiplicityElement. However, in practical examples it is sometimes useful
not limit oneself to a single interval. Therefore, the below UML to OWL
mapping covers a wider case — a possibility of specifying more value ranges for
a multiplicity element. Nevertheless, if the reader would like to strictly follow the
current UML specification, the particular single lower..upper bound interval is
therein also comprised.
In comparison to UML, the OWL specification [30] defines three class
expressions ObjectMinCardinality, ObjectMaxCardinality and
ObjectExactCardinality for specifying the individuals that are connected by
an object property to at least, at most or exactly to a given number
(non-negative integer) of instances of the specified class expression. Analogically,
DataMinCardinality, DataMaxCardinality and DataExactCardinality
class expressions are used for data properties.

ScrumTeam
Symb01 of UML scrumhdaster | Employee[1]
element developer | Employee]3..9]

Transformation rules TRI1: If UML attribute is specified with the use of OWL ObjectProperty, its
multiplicity should be specified analogously to TR1 from Table 9 (multiplicity
of association ends). If UML attribute is specified with the use of OWL
DataProperty, its multiplicity should be specified with the use of axiom:
SubClassOf(: ClassName multiplicityExpression)

We define multiplicityFxpression as one of class expressions: A, B, C or D:

A. a DataExactCardinality class expression if UML MultiplicityElement has
lower-bound equal to its upper-bound, e.g. “1..1”, which is semantically
equivalent to “17”.

74

Malgorzata Sadowska, Zbigniew Huzar

Verification rules

Comments to the rules

B. a DataMinCardinality class expression if UML MultiplicityFElement has
lower-bound of Integer type and upper-bound of unlimited upper-bound,

e.g. “2.*7,

C. an ObjectIntersectionOf class expression consisting of
DataMinCardinality and DataMaxCardinality class expressions if UML
MultiplicityElement has lower-bound of Integer type and upper-bound of Integer
type, e.g. “4..6".

D. an ObjectUnionOf class expression consisting of a combination of
ObjectIntersectionOf class expressions (if needed) or
DataExactCardinality class expressions (if needed) or one
DataMinCardinality class expression (if the last range has unlimited
upper-bound), if UML MultiplicityElement has more value ranges specified, e.g.
“2,4..6, 8.9, 15..%".

The following is the result of application of TR1 to the above diagram:

SubClassOf(:ScrumTeam
ObjectExactCardinality(1 :scrumMaster : Employee))

SubClassOf(:ScrumTeam ObjectIntersectionOf(
ObjectMinCardinality(3 :developer : Employee)
ObjectMaxCardinality(9 :developer : Employee)))

VRI1: Regardless of whether or not the UML attribute is specified with the use
of OWL DataProperty or ObjectProperty, the verification rule is defined
with the use of the SPARQL query (only applicable for multiplicities with
maximal upper-bound not equal “*7).

SELECT ?vioIlnd (count (?range) as 7n)

WHERE {?violInd :leaf 7range } GROUP BY ?vioInd

HAVING (?n > mazUpperBoundValue)

where mazUpperBoundValue is a maximal upper-bound value of the multiplicity
range. If the query returns a number greater than 0, it means that UML
multiplicity is in contradiction with the domain ontology (?vioInd lists
individuals that cause the violation).

The following is the result of definition of VR1 to the above diagram:
mazxUpperBoundValue for scrumMaster: 1

SPARQL query for scrumMaster:

SELECT ?violnd (count (?range) as 7n)

WHERE { ?violnd : scrumMaster range } GROUP BY ?violnd

HAVING (n > 1)

mazxUpperBound Value for developer: 9
SPARQL query for developer:

SELECT ?violnd (count (?range) as 7n)

WHERE { ?violnd : developer range } GROUP BY ?violnd

HAVING (n>9)

VR2: Check if the domain ontology contains SubClassOf axiom, which
specifies CE with different multiplicity of attributes than it is derived from the
UML class diagram.

SubClassOf(:ScrumTeam CE)

1.1t should be noted that upper-bound of UML MultiplicityElement can be
specified as unlimited: “*”. In OWL, cardinality expressions serve to restrict the
number of individuals that are connected by an object property expression to
a given number of instances of a specified class expression [30]. Therefore, UML
unlimited upper-bound does not add any information to OWL ontology, hence
it is not transformed.

2. Regarding TR1: the rule relies on the SubClassOf(CE; CE,) axiom,
which restricts CE; to necessarily inherit all the characteristics of CEo, but not
the other way around. The difference of using EquivalentClasses(CE; CE;)

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 75

Related works

Example

axiom is that the relationship is implied to go in both directions (and the
reasoner would infer in both directions).

3. Regarding VR1: As motivated in [17], reasoners that base on Open World
Assumption can detect a violation of an upper limit of the cardinality
restrictions only. This is caused by the fact that in Open World Assumption it is
assumed that there might be other individuals beyond those that are already
presented in the ontology. The verification rules for the cardinality expressions
are defined with the use of SPARQL queries, which are aimed to verify whether
or not the domain ontology does have any individuals that are contradictory to
TR1 axiom. Therefore, the VR1 verifies the existence of individuals that are
connected to the selected object property a number of times that is greater than
the specified UML multiplicity.

4. The rule VR2 verifies if the ontology contains axioms which describe
multiplicity of Attributes different than the multiplicity specified in the UML
class diagram.

The related works present only partial solutions for multiplicity of attributes.
In [29], a solution for a single value interval is proposed. In [17], multiplicity
associated with class attributes is transformed to a single expression of exact,
maximum or minimum cardinality. In [24], multiplicity is transformed only into
maximum or minimum cardinality.

Section 7 example 2

5.2. Transformation of UML associations

Table 6. Binary Associations between two different Classes and the defined rules

UML element

Binary Association (between two different Classes)

Description of UML
element

Symbol of UML
element

Transformation rules

Following [2], a binary Association specifies a semantic relationship between two
memberEnds represented by Properties. Please note that in accordance with
specification [2], the association end names are not obligatory. In the method of
validation and the prototype tool we followed the same convention which is
adopted for all metamodel diagrams throughout the specification ([2, page 61]):
If an association end is unlabeled, the default name for that end is the name of
the class to which the end is attached, modified such that the first letter is

a lowercase letter. Due to the fact that our method of transformation requires
additionally unique names, either the modeller has to rename the names, or the
tool in such cases automatically adds subsequent numbers to the names.

For transformation of UML multiplicity of the association ends, refer to Table 9.

Player goalie team Taam

TR1: Specify declaration axiom(s) for object properties
Declaration(ObjectProperty(:team))
Declaration(ObjectProperty(:goalie))
TR2: Specify object property domains for association ends (note: if the
association contains an AssociationClass, the domains should be transformed in
accordance with TR1 from Table 10)
ObjectPropertyDomain(:team :Player)
ObjectPropertyDomain(:goalie : Team)
TR3: Specify object property ranges for association ends
ObjectPropertyRange(:team : Team)
ObjectPropertyRange(:goalie : Player)

76

Malgorzata Sadowska, Zbigniew Huzar

Verification rules

Comments to the rules

Limitations of the
mapping

Related works

Example

TRA4: Specify InverseObjectProperties axiom for the association
InverseObjectProperties(:team :goalie)
VR1: Check if AsymmetricObjectProperty axiom is specified for any of
UML association ends.
AsymmetricObjectProperty(:goalie)
AsymmetricObjectProperty(:team)
VR2: Check if the domain ontology contains ObjectPropertyDomain
specified for the same OPE but different CE than it is derived from the UML
class diagram.
ObjectPropertyDomain(:team CE), where CE # : Player
ObjectPropertyDomain(:goalie CE), where CE % : Team
VR3: Check if the domain ontology contains ObjectPropertyRange axiom
specified for the given OPE but different CE than it is derived from the UML
class diagram.
ObjectPropertyRange(:team CE), where CE # : Team
ObjectPropertyRange(:goalie CE), where CE # : Player
1. TRA is specified to state that both resulting object properties are part of one
UML Association.
2. Regarding VR1: A binary Association between two different Classes may not
be asymmetric. Please refer to Table 7 for explanation of asymmetric binary
Association from a Class to itself.
3. Regarding VR2: If the domain ontology contains ObjectPropertyDomain
specified for the same OPE but different CE than it is derived from the UML
class diagram, the Association is defined in the ontology but between different
Classes.
4. Regarding VR3: If the domain ontology contains ObjectPropertyRange
axiom specified for the given OPE but different CE than it is derived from the
UML class diagram, the Association is defined in the ontology but between
different Classes.
1. UML Association has two important aspects. The first is related to its
existence and it can be transformed to OWL. It should be noted that UML
introduces an additional notation related to communication between objects.
The second one concerns navigability of the association ends which is
untranslatable because OWL does not offer any equivalent concept.
2. Both UML aggregation and composition can be only transformed to OWL as
regular Associations. This approach loses the specific semantics related to the
composition or aggregation, which is untranslatable to OWL.
In [14-22,25,27], TR1-TR3 rules for the transformation of UML binary
association to object property domain and range are proposed. In [15, 20, 26],
TRA4 rule is additionally proposed.
In [17,20], a unidirectional association is transformed into one object property
and a bi-directional association into two object properties (one for each
direction). This interpretation does not seem to be sufficient because if an
association end is not navigable in UML 2.5, access from the other end may be
possible, but it might not be efficient ([2, page 198]).
Section 7 example 1 and 3

Table 7. Binary Association from the Class to itself and the defined rules

UML element
Description of UML
element

Binary Association from a Class to itself
A binary Association [2] contains two memberEnds represented by Properties.
For transformation of multiplicity of the association ends, refer to Table 9.

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 77

Symbol of UML

element

Transformation rules

Verification rules

Comments to the rules

Limitations of the

mapping
Related works

Example

isDividedinto | g_*

ProductCategory | .1
isPartOf

TR1-TR4: The same as TR1-TR4 from Table 6. TR5: Specify
AsymmetricObjectProperty axiom for each UML association end
AsymmetricObjectProperty(:isPartOf)
AsymmetricObjectProperty(:isDividedInto)
VRI1 is the same as VR2 from Table 6.
VR2 is the same as VR3 from 6.
1. In TR2 domain and range of binary association is the same UML class. VR4
checks if the domain ontology does not specify a different domain or range for
the Association.
2. In TR5 object property OPE is defined as asymmetric. In OWL, if an
individual x is connected by OPE to an individually, then y cannot be connected
by OPE to x.
The same as presented in Table 6.

For TR1-TRA4 related works are analogous as in Table 6, while TR5 is our
new proposition. In [15], the UML binary association from the Class to itself is
converted to OWL with the use of two ReflexiveObjectProperty axioms. We
do not share this approach because a specific association may be reflexive but in
the general case it is not true. The ReflexiveObjectProperty axiom states
that each individual is connected by OPE to itself. In consequence, it would
mean that every object of the class should be connected to itself. The UML
binary Association has a different meaning where the association ends have
different roles.

Section 7 example 2

Table 8. N-ary associations and the defined rules

UML element
Description of UML
element

Symbol of UML
element

Transformation rules

N-ary Association

UML n-ary Association [2] specifies the relationship between three or more
memberEnds represented by Properties. For transformation of UML multiplicity
of the association ends refer to Table 9.

Course

Student Lecturer

Not possible to directly represent UML n-ary associations in OWL 2. The
following is a partial transformation based on the pattern presented in [32]. The
pattern requires creating a new class and N new properties to represent the n-ary
association. The figure below shows the corresponding classes and properties.

Schedule

stude coulrsea turer

k.

Student Course Lecturer

78

Malgorzata Sadowska, Zbigniew Huzar

Verification rules
Limitations of the

mapping

Related works

TR1: Specify declaration axiom for the new class which represent the n-ary
association (declaration axioms for other classes are added following Table 2)
Declaration(Class(:Schedule))
TR2: Specify declaration axiom(s) for object properties
Declaration(ObjectProperty(:student))
Declaration(ObjectProperty(:course))
Declaration(ObjectProperty(:lecturer))
TR3: Specify object property domains for association ends
ObjectPropertyDomain(:student :Student)
ObjectPropertyDomain(:course : Course)
ObjectPropertyDomain(:lecturer : Lecturer)
TRA4: Specify object property ranges for association ends
ObjectPropertyRange(:student :Schedule)
ObjectPropertyRange(:course :Schedule)
ObjectPropertyRange(:lecturer :Schedule)
TR5: Specify SubClassOf(CE;ObjectSomeValuesFrom(OPE CE;))
axioms, where CE; is a newly added class, OPE are properties representing the
UML Association and CEq are corresponding UML Classes
SubClassOf(:Schedule ObjectSomeValuesFrom(:student :Student))
SubClassOf(:Schedule ObjectSomeValuesFrom(:course : Course))
SubClassOf(:Schedule ObjectSomeValuesFrom(:lecturer : Lecturer))
None
Properties in OWL 2 are only binary relations. Three solutions to represent an
n-ary relation in OWL are presented in W3C Working Group Note [32] in a form
of ontology patterns. Among the proposed solutions for n-ary association, we
selected one the most appropriate to UML and we supplemented it by adding
unlimited “*” multiplicity at every association end of the UML n-ary association.
The transformation rules (TR1, TR2, TR5) of a n-ary association base on the
pattern proposed in [32]. TR3, TR4 complement the rules, analogically as it is
in binary associations. In [15], a partial transformation for n-ary association is
proposed, but one rule should be modified because an object property expression
is used in the place of a class expression.

Table 9. Multiplicity of association ends and the defined rules

UML element
Description of UML
element

Symbol of UML
element

Transformation rules

Multiplicity of Association ends

Description of multiplicity is presented in Table 5 (multiplicity of attributes). If
no multiplicity of association end is defined, the UML specification implies

a multiplicity of 1.

Flower 1 2.4.6 Leaf

flower leaf

Wk

TR1: For each association end with the multiplicity different than specify
axiom:

SubClassOf(: ClassName multiplicityExpression)
We define multiplicityExpression as one of class expressions: A, B, C or D:
A. an ObjectExactCardinality if UML MultiplicityElement has lower-bound
equal to its upper-bound, e.g. “1..1”, which is semantically equivalent to “1”.
B. an ObjectMinCardinality class expression if UML MultiplicityElement
has lower-bound of Integer type and upper-bound of unlimited upper-bound,
e.g. “2.7%7.
C. an ObjectIntersectionOf consisting of ObjectMinCardinality and
ObjectMaxCardinality class expressions if UML MultiplicityElement has
lower-bound of Integer type and upper-bound of Integer type, e.g. “4..6”.

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 79

Verification rules

Comments to the rules

D. an ObjectUnionOf consisting of a combination of ObjectIntersectionOf
class expressions (if needed) OR ObjectExactCardinality class expressions
(if needed) OR one ObjectMinCardinality class expression (if the last range
has an unlimited upper-bound), if UML MultiplicityElement has more value
ranges specified, e.g. “2, 4..6, 8..9, 15..*”,

The following is a result of application of TR1 to the above diagram:
SubClassOf(:Leaf ObjectExactCardinality(1 :flower :Flower))
SubClassOf(: Flower ObjectUnionOf(

ObjectExactCardinality(2 :leaf : Leaf)
ObjectIntersectionOf(ObjectMinCardinality(4 :leaf : Leaf)
ObjectMaxCardinality(6 :leaf :Leaf))))
TR2: Specify FunctionalObjectProperty axiom if a multiplicity of the
association end equals 1.
FunctionalObjectProperty(:flower)

VR1: The rule is defined with the use of the SPARQL query (only applicable

for multiplicities with maximal upper-bound not equal “*7).
SELECT ?violnd (count (?range) as 7n)

WHERE { ?violnd :leaf 7range } GROUP BY ?violnd
HAVING (?n > mazUpperBoundValue)

where maxUpperBoundValue is a maximal upper-bound value of the multiplicity

range. If the query returns a number greater than 0, it means that UML

multiplicity is in contradiction with the domain ontology (?vioInd lists
individuals that cause the violation).

The following is a result of application of VR1 to the above diagram:

maxUpperBound Value for flower: 1

SPARQL query for flower:
SELECT ?violnd (count (?range) as 7n)
WHERE { ?violnd :flower range } GROUP BY ?violnd
HAVING (Tn > 1)

mazUpperBound Value for leaf: 6

SPARQL query for leaf:
SELECT ?vioInd (count (range) as 7n)
WHERE { ?violnd :leaf 7range } GROUP BY ?violnd
HAVING (n > 6)

VR2: Check if the domain ontology contains SubClassOf axiom, which

specifies CE with different multiplicity of association ends than is derived from

the UML class diagram.
SubClassOf(:Leaf CE)
SubClassOf(: Flower CE)

1. The TR1, TR2 and VR1 rules are explained in Table 5.

2. Regarding TR2: The FunctionalObjectProperty axiom states that each

individual can have a maximum of one outgoing connection of the specified

object property expression.

3. The rule VR2 verifies whether or not the ontology contains axioms, which

describe multiplicity of association ends different than multiplicity specified in

the UML class diagram.

4. We have considered one additional validation rule for checking if the domain

ontology contains FunctionalObjectProperty axiom specified for the

association end which multiplicity is different from 1:
FunctionalObjectProperty(:leaf)

However, after analyzing of this rule, it would never be triggered. This is caused

by the fact that the violation of cardinality is checked by TR1 rule. And

specifying FunctionalObjectProperty axiom in the ontology along with the
transformation axiom describing cardinality different than 1, makes the ontology
inconsistent.

80

Malgorzata Sadowska, Zbigniew Huzar

Related works

Example

The related works present partial solutions for multiplicity of association ends.
In [14,18,19,26], the multiplicity of an association end is mapped to
SubClassOf axiom containing a single ObjectMinCardinality or
ObjectMaxCardinality class expression. In [17], ObjectExactCardinality
expression is also considered and TR2 rule is additionally proposed. In
[12,13,15,21,22,24], multiplicity is only suggested to be transformed into OWL
cardinality restrictions.

Section 7 example 1, 2 and 3

Table 10. Association class (the association is between two different classes) and the defined rules

UML element
Description of UML
element

Symbol of UML

element

Transformation rules

Verification rules

AssociationClass (the Association is between two different Classes)
AssociationClass [2] is both an Association and a Class, and preserves the
semantics of both. Table 11 presents AssociationClass in the case when
association is from a UML Class to itself.

Parson - 1.7 | Company

PEFSON | Company
i
i

Job
salary : Salary

The binary association between Person and Company UML classes should be
transformed to OWL in accordance with the transformations TR1, TR3—TR4
from Table 6. The object property ranges should be specified in accordance with
TR2 from Table 6. The transformation of object property domains between
Person and Company UML classes should be transformed with TR1 rule below.
Transformation of multiplicity of the association ends are specified in Table 9.
The attributes of the UML association class :Job should be specified in
accordance with the transformation rules presented in Table 4. If multiplicity of
attributes is specified, it should be transformed in accordance with the guidelines
from Table 5. TR1: Specify object property domains for Association ends
ObjectPropertyDomain(:person ObjectUnionOf(: Company :Job))
ObjectPropertyDomain(:company ObjectUnionOf(: Person :Job))
TR2: Specify declaration axiom for UML association class as OWL Class:
Declaration(Class(:Job))
TR3: Specify declaration axiom for object property of UML AssociationClass
Declaration(ObjectProperty(:job))
TRA4: Specify object property domain for UML AssociationClass
ObjectPropertyDomain(:job ObjectUnionOf(: Person :Company))
TRS5: Specify object property range for UML association class
ObjectPropertyRange(:job :Job)
VR1: Check if :Job class has the HasKey axiom defined in the domain
ontology.
HasKey(:Job (OPE;...OPE,,) (DPE;...DPE,))
VR2: Check if the domain ontology contains ObjectPropertyDomain axiom
specified for a given OPE (from Association ends and AssociationClass) but
different CE than is derived from the UML class diagram.
ObjectPropertyDomain(:personCE),
where CE # ObjectUnionOf(: Company :Job),
ObjectPropertyDomain(:company CE),
where CE # ObjectUnionOf{(: Person :Job)
ObjectPropertyDomain(:job CE),
where CE # ObjectUnionOf(: Person : Company)

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 81

Comments to the rules

Related works

Example

VR3: Check if the domain ontology contains ObjectPropertyRange axiom
specified for the same object property of UML association class but different CE
than it is derived from the UML class diagram.

ObjectPropertyRange(:job CE), where CE # :Job
1. The proposed transformation of UML association class covers both the
semantics of the UML class (TR1-TR2, plus the transformation of attributes
possibly with multiplicity), as well as UML Association (TR3—TRS5, plus the
transformation of multiplicity of Association ends).
2. Regarding TR1 and TR3: The domain of the specified property is restricted
to those individuals that belong to the union of two classes.
3. Explanation of VR1 is analogous to VR1 from Table 2.
4. VR2 checks if the UML Association and AssociationClass is specified
correctly with respect to the domain ontology. VR3 checks if the domain
ontology does not specify a different range for the AssociationClass.
TR1, TR3-TRS5 transformation rules of the UML association class to OWL
are original propositions and the proposed transformations to OWL cover full
semantics of the UML AssociationClass.
The literature [14,15,25] present only partial solutions for transforming UML
association classes. In [14], it is only suggested that UML AssociationClass be
transformed with the use of the named class (here: Job) and two functional
properties that demonstrate associations (here: Job—Person and Job—Company).
In [15,25] some rules are with an unclear notation, more precisely
AssociationClass is transformed to OWL with the use of TR2 rule and a set of
mappings which base on a specific naming convention.
Section 7 example 3

Table 11. Association class (the Association is from a UML Class to itself) and the defined rules

UML element
Description of UML
element

Symbol of UML

element

Transformation rules

Verification rules

AssociationClass (the Association is from a UML Class to itself)
AssociationClass [2] is both an Association and a Class, and preserves the
semantics of both. Table 10 presents AssociationClass in the case when
association is between two different classes.

Employment

Job 0.*

worker

All comments presented in Table 10 in TR section are applicable also for
AssociationClass where association is from a UML Class to itself. Additionally,
TRS5 from Table 7 has to be specified.
Transformation rules TR1, TR2, TR3 and TR5 are the same as TR1, TR2,
TR3 and TRS5 from Table 10. Except for TR4, which has form:
TRA4: Specify object property domain for UML AssociationClass
ObjectPropertyDomain(:employment :Job)
VR1 and VR3: The same as VR1 and VR3 from Table 10.
VR2: Check if the domain ontology contains ObjectPropertyDomain axiom
specified for a given OPE (from Association ends and AssociationClass)
but different CE than is derived from the UML class diagram.
ObjectPropertyDomain(:boss CE),
where CE # ObjectUnionOf(:Job : Employment),
ObjectPropertyDomain(:worker CE),
where CE # ObjectUnionOf(:Job : Employment)
ObjectPropertyDomain(:employment CE), where CE # :Job

82

Malgorzata Sadowska, Zbigniew Huzar

Comments to the rules

Related works

The same as presented in Table 10.
The same as presented in Table 10.

5.3. Transformation of UML generalization relationship

Table 12. Generalization between classes and the defined rules

UML element
Description of UML
element

Symbol of UML

element

Transformation rules

Verification rules

Related works

Example

Generalization between Classes

Generalization [2] defines specialization relationship between Classifiers. In case
of UML classes it relates a more specific Class to a more general Class.

Employese Manager

TR1: Specify SubClassOf(CE; CE5) axiom for the generalization between
UML classes, where CE; represents a more specific and CE5 a more general
UML Class.
SubClassOf(: Manager : Employee)
VR1: Check if the domain ontology contains SubClassOf(CE; CE;) axiom
specified for classes, which take part in the generalization relationship, where
CE; represents a more specific and CEs a more general UML Class.
SubClassOf(: Employee : Manager)
In [15,17-19,21-23,25-27,29] TR1 is specified. In [12,13], generalizations are
only suggested to be transformed to OWL with the use of SubClassOf axiom.
Section 7 example 1 and 2.

Table 13. Generalization between associations and the defined rules

UML element
Description of UML
element

Symbol of UML

element

Transformation rules

Verification rules

Related works

Example

Generalization between Associations

Generalization [2] defines specialization relationship between Classifiers. In case
of the UML associations it relates a more specific Association to more general
Association.

Company |works employee Person
[1.*
0. |manages boss | 1

TR1: Specify two SubObjectPropertyOf(OPE; OPE;) axioms for the
generalization between UML Association, where OPE; represents a more specific
and OPEs a more general association end connected to the same UML Class.
SubObjectPropertyOf(:manages :works)
SubObjectPropertyOf(:boss :employee)
VR1: Check if the domain ontology contains SubObjectProperty Of(OPE,
OPE;) axiom specified for associations, which take part in the generalization
relationship, where OPE; represents a more specific and OPE; a more general
UML association end connected to the same UML Class.
SubObjectPropertyOf(:works :manages)
SubObjectPropertyOf(:employee :boss)
In [15,17,18,26,27,29], TR1 rule is proposed additionally with two
InverseObjectProperties axioms (one for each association). This table does
not add a transformation rule for InverseObjectPropertie axioms because
the axioms were already added while transforming binary associations (see
Tables 6, 7.
Section 7 example 1

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 83

Table 14. GeneralizationSet with {incomplete, disjoint} constraints and the defined rules

UML element
Description of UML
element

Symbol of UML

element

Transformation rules

Verification rules

Comments to the rules

Related works

GeneralizationSet with {incomplete, disjoint} constraints

UML GeneralizationSet [2] groups generalizations; incomplete and disjoint
constraints indicate that the set is not complete and its specific Classes have no
common instances.

Pat
{incomplete, disjoint}
Dog Cat

TR1: Specify DisjointClasses axiom for every pair of more specific Classes in
the Generalization.

DisjointClasses(:Dog : Cat)
VR1: Check if the domain ontology contains any of SubClassOf(CE; CE;)
or SubClassOf(CE, CE;) axioms specified for any pair of more specific
Classes in the Generalization.

SubClassOf(:Dog : Cat)

SubClassOf(: Cat :Dog)
1. TR and VR for Generalization between UML Classes are specified in
Table 12.
2. Regarding TR1: the DisjointClasses(CE; CEs) axiom states that no
individual can be at the same time an instance of both CE; and CE, for CE; #
CE,.
In [15,17,29], TR1 rule is proposed.

Table 15. GeneralizationSet with {complete, disjoint} constraints and the defined rules

UML element
Description of UML
element

Symbol of UML
element

Transformation rules

Verification rules

GeneralizationSet with {complete, disjoint} constraints

UML GeneralizationSet [2] is used to group generalizations; complete and
disjoint constraints indicate that the generalization set is complete and its
specific Classes have no common instances.

Person
{complete, disjoint)
Man Woman

TR1: Specify DisjointUnion axiom for UML Classes within the
GeneralizationSet.

DisjointUnion(: Person :Man : Woman)
VR1: Check if the domain ontology contains SubClassOf(CE; CE;) or
SubClassOf(CE; CE;) axioms specified for any pair of more specific Classes
in the Generalization.

SubClassOf(:Man : Woman)

SubClassOf(: Woman :Man)
VR2: Check if the domain ontology contains DisjointUnion(C CE;.. CEy)
axiom specified for the given more general UML Class (here : Person) and at
least one more specific UML Class different than those specified on the UML
class diagram.

84

Malgorzata Sadowska, Zbigniew Huzar

Comments to the rules

Related works
Example

DisjointUnion(: Person CE;.. CEy)
1.TR and VR for Generalization between UML Classes are specified in
Table 12.
2. VR2 checks if the GeneralizationSet with {complete, disjoint} constraints is
defined correctly with respect to domain ontology.
In [15,17,29], TR1 is proposed.
Section 7 example 2

Table 16. GeneralizationSet with {incomplete, overlapping} constraints and the defined rules

UML element
Description of UML
element

Symbol of UML

element

Transformation rules
Verification rules

Comments to the rules

Related works

GeneralizationSet with {incomplete, overlapping} constraints

UML GeneralizationSet [2] is used to group generalizations; incomplete and
overlapping constraints indicate that the generalization set is not complete and
its specific Classes do share common instances. If no constraints of
GeneralizationSet are specified, {incomplete, overlapping} are assigned as default
values ([2, p. 119]).

Movie

[inc% plete, overdapping}

ActionMovie HorrorMovie

None

VR1: Check if the domain ontology contains DisjointClasses(CE; CE;)

axiom specified for any pair of more specific Classes in the Generalization.
DisjointClasses(: ActionMovie : HorrorMovie)

1. TR and VR for Generalization between UML Classes are specified in

Table 12.

2. OWL follows Open World Assumption and by default incomplete knowledge

is assumed, hence the UML incomplete and overlapping constraints of

GeneralizationSet do not add any new knowledge to the ontology, so no TR are

specified.

3. UML overlapping constraint states that specific UML Classes in the

Generalization do share common instances. Therefore, the DisjointClasses

axiom is a verification rule VR1 for the constraint (the axiom assures that no

individual can be at the same time an instance of both classes).

None

Table 17. GeneralizationSet with {complete, overlapping} constraints and the defined rules

UML element
Description of UML

element

GeneralizationSet with {complete, overlapping} constraints

UML GeneralizationSet [2] is used to group generalizations; complete and
overlapping constraints indicate that the generalization set is complete and its
specific Classes do share common instances.

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 85

Symbol of UML
element

Transformation rules

Verification rules

Comments to the rules

Related works

User
[mEplme, overlapping}
Roat RegularUser

TR1: Specify EquivalentClasses axiom for UML Classes within the
GeneralizationSet.
EquivalentClasses(: User ObjectUnionOf(: Root : RegularUser))
VR1: Check if the domain ontology contains DisjointClasses(CE; CE;)
axiom specified for any pair of more specific Classes in the Generalization.
DisjointClasses(:Root : RegularUser)
VR2: Check if the domain ontology contains EquivalentClasses axiom
specified for the given more general UML Class (here : User) and
ObjectUnionOf containing at least one UML Class different than specified on
the UML class diagram for the more specific classes.
EquivalentClasses(: User ObjectUnionOf(CE;..CEy)), where
ObjectUnionOf(CE;..CEy) # ObjectUnionOf(: Root : RegularUser)
1. TR and VR for Generalization between UML Classes are specified in
Table 12.
2. Explanation for VR1 is presented in Table 16.
3. VR2 checks if the GeneralizationSet with {complete, overlapping} constraint
is compliant with the domain ontology.
In [15], TR1 rule is defined with additional DisjointClasses(:Dog : Cat)
axiom. However, the DisjointClasses axiom should not be specified for the
UML Classes which may share common instances.

5.4. Transformation of UML data types

Table 18. Primitive types and the defined rules

UML element
Description of UML
element

Symbol of UML
element

Transformation rules

Primitive Type

The UML Primitive Type [2] defines a predefined Data Type without any

substructure. The UML specification [2] predefines five primitive types: String,

Integer, Boolean, UnlimitedNatural and Real.

<<primitives>
Integar

It is impossible to define unambiguously the transformation of UML String and
UML Real type, therefore, the decision on the final transformation is left to the
modeller. The proposed transformations for the two types base on their
similarity in UML 2.5 and OWL 2 languages.

The transformation between UML predefined primitive types and OWL 2
datatypes:

TR1: UML String has only a similar OWL 2 type: xsd:string

String types in the sense of UML and OWL are countable sets. It is possible to
define an infinite number of equivalence functions, which is left to the user,
wherein, the UML is imprecise as to what the accepted characters are.

TR2: UML Integer has an equivalent OWL 2 type: xsd:integer

TR3: UML Boolean has an equivalent OWL 2 type: xsd:boolean

TR4: UML Real has two similar OWL 2 types: xsd:float and xsd:double
Both UML and OWL 2 languages describe types that are subsets of the set of

86

Malgorzata Sadowska, Zbigniew Huzar

Verification rules
Comments to the rules

Related works

Example

real numbers. The subsets are countable. If one accepts a 32 or 64-bit precision
of UML Real type, they will obtain an appropriate compatibility with OWL 2
xsd:float or xsd:double types.
TRS5: UML UnlimitedNatural can be explicitly defined in OWL 2 as:
DatatypeDefinition(: Unlimited Natural
DataUnionOf(xsd:nonNegativelnteger
DataOneOf(""" xsd:string)))
None
The UML specification [2] on page 717 defines the semantics of five predefined
Primitive Types. The specification of OWL 2 [30] also offers predefined datatypes
(many more than UML).
TR1: An instance of UML String [2] defines a sequence of characters. Character
sets may include non-Roman alphabets. On the other hand, OWL 2 supports
xsd:string defined in XML Schema [33]. The value space of xsd:string [33] is
a set of finite-length sequences of zero or more characters that match the Char
production from XML, where Char is any Unicode character, excluding the
surrogate blocks, FFFE, and FFFF. The cardinality of xsd:string is defined as
countably infinite. Due to the fact that the ranges of characters differ, UML
String and OWL 2 xsd:string are only similar datatypes.
TR2: An instance of UML Integer [2] is a value in the infinite set of integers
(...,—2,-1,0,1,2,...). OWL 2 supports xsd:integer defined in XML Schema
[33]. The value space of xsd:integer is an infinite set {...,—-2,—-1,0,1,2,...}.
The cardinality is defined as countably infinite. The UML Integer and OWL 2
xsd:integer types can be seen as equivalent.
TR3: An instance of UML Boolean [2] is one of the predefined values: true and
false. OWL 2 supports xsd:boolean defined in XML Schema [33], which
represents the values of two-valued logic :{true, false}. The lexical space of
xsd:boolean is a set of four literals: 'true’, ’false’, ’1’ and ’0’ but the lexical
mapping for xsd:boolean returns true for ’true’ or '1’, and false for ’false’ or ’0’.
Therefore the UML Boolean and xsd:boolean types can be seen as equivalent.
TRA4: An instance of UML Real [2] is a value in the infinite set of real numbers.
Typically [2] an implementation will internally represent Real numbers using
a floating point standard such as ISO/IEC/IEEE 60559:2011, whose content is
identical [2] to the predecessor IEEE 754 standard. On the other hand, OWL 2
supports xsd:float and xsd:double, which are defined in XML Schema [33].
The xsd:float [33] is patterned after the IEEE single-precision 32-bit floating
point datatype IEEE 754-2008 and the xsd:double [33] after the IEEE
double-precision 64-bit floating point datatype IEEE 754-2008. The value space
contains the non-zero numbers m x 2¢, where m is an integer whose absolute
value is less than 2°% for xsd:double (or less than 22* for xsd:float), and e is
an integer between —1074 and 971 for xsd:double (or between —149 and 104
for xsd:float), inclusive. Due to the fact that the value spaces differ, UML Real
and OWL 2 xsd:double (or xsd:float) are only similar datatypes.
TR5: An instance of UML UnlimitedNatural [2] is a value in the infinite set of
natural numbers (0, 1, 2...) plus unlimited. The value of unlimited is shown
using an asterisk (‘“*’). UnlimitedNatural values are typically used [2] to denote
the upper-bound of a range, such as a multiplicity; unlimited is used whenever
the range is specified as having no upper-bound. The UML UnlimitedNatural can
be defined in OWL and added to the ontology as a new datatype (TR5).
The related works are not precise with respect to the transformation of primitive
types. In [17,27-29], some mappings of UML and OWL types are only
mentioned.
Section 7 example 2

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 87

Table 19. Structured data types and the defined rules

UML element
Description of UML
element

Symbol of UML

element

Transformation rules

Verification rules

Comments to the rules

Limitations of the
mapping

Related works

Structured DataType
The UML structured DataType [2] has attributes and is used to define complex
data types.

==dataType>=
FullMame
firstName : String
secondMame © String

TR1: Specify declaration axiom for UML data type as OWL class:
Declaration(Class(:FullName))
TR2: Specify declaration axiom(s) for attributes — as OWL data or object
properties respectively (see Table 4 for more information regarding attributes)
Declaration(DataProperty(:firstName))
Declaration(DataProperty(:secondName))
TR3: Specify data (or object) property domains for attributes
DataPropertyDomain(:firstName :FullName)
DataPropertyDomain(:secondName :FullName)
TRA4: Specify data (or object) property ranges for attributes (OWL 2 datatypes
for UML primitive types are defined in Table 18)
DataPropertyRange(:firstName xsd:string)
DataPropertyRange(:secondName xsd:string)
TR5: Specify HasKey axiom for the UML data type expressed in OWL with
the use of a class uniquely identified by the data and/or object properties.
HasKey(:FullName () (:firstName :secondName))
VR1: Check if the domain ontology contains DataPropertyDomain axiom
specified for DPE where CE is different than given UML structured DataType
DataPropertyDomain(:firstName CE), where CE # : FullName
DataPropertyDomain(:secondName CE),
where CE # : FullName
VR2: Check if the domain ontology contains DataPropertyRange axiom
specified for DPE where CE is different than given UML Primitive Type
DataPropertyRange(:firstName DR), where DR # xsd:string
DataPropertyRange(:secondName DR),
where DR # xsd:string
1. UML DataType [2] is a kind of Classifier, whose instances are identified only
by their values. All instances of a UML DataType with the same value are
considered to be equal [2]. A similar meaning can be assured in OWL with the
use of HasKey axiom. The HasKey axiom [30] assures that each instance of
the class expression is uniquely identified by the object and/or data property
expressions.
2. VR1 checks whether the data properties indicate that the UML attributes
are correct for the specified UML structured DataType.
3. VR2 checks whether the data properties indicate that the UML attributes of
the specified UML structured DataType have correctly specified Primitive Types.
Due to the fact that we define the UML structure DataType as an OWL Class
and not as an OWL Datatype (see Section 6.3 for further explanation), the
presented transformation results in some consequences. A limitation is posed by
the fact that the instances of the UML Data Type are identified only by their
value [2], while the TR1 rule opens a possibility
of explicitly defining the named instances for the Entity in OWL.
In [28,29] TR1-TRS5 rules and in [15] TR2-TRS5 rules are proposed for the
transformation of UML structured DataType. In [17], it is only noted that UML
DataTypes can be defined in OWL with the use of DatatypeDefinition axiom

88

Malgorzata Sadowska, Zbigniew Huzar

Example

but no example is provided. The related works specify exclusively the data
properties as attributes of the structured data types in TR2. We extend the
state-of-the-art TR2 transformation rule by the possibility of defining also
object properties, wherever needed (see Table 4).

Section 7 example 2

Table 20. Enumeration and the defined rules

UML element
Description of UML
element

Symbol of UML
element

Transformation rules

Verification rule

Limitations of the
mapping

Related works

Enumeration
UML Enumerations [2] are kinds of DataTypes, whose values correspond to one
of user-defined literals.

<<gnumeration=>
VisibilityKind

public

private

protected

package

TRI1: Specify declaration axiom for UML Enumeration as OWL Datatype:
Declaration(Datatype(: VisibilityKind))
TR2: Specify DatatypeDefinition axiom including the named Datatype
(here : VisibilityKind) with a data range in a form of a predefined enumeration of
literals (DataOneOf).
DatatypeDefinition(: VisibilityKind
DataOneOf("public" "private” "protected” "package"))
VR1: Check if the list of user-defined literals in the Enumeration on the class
diagram is correct and complete with respect to the OWL datatype definition for
:VisibilityKind included in the domain ontology.
The SPARQL query:
SELECT “literal { : VisibilityKind owl:equivalentClass ?dt.
?7dt a rdfs:Datatype ;
owl:oneOf/rdf:rest+/rdf:first ?literal }
returns a list of literals of the enumeration from the domain ontology. The list of
literals should be compared with the list of user-defined literals on the class
diagram if the UML FEnumeration includes a correct and complete list of literals.
Enumerations [2] in UML are specializations of a Classifier and therefore can
participate in generalization relationships. OWL has no construct allowing for
generalization of datatypes. See Section 6.3 for further explanation.
In [17,20,28,29], UML Enumeration is transformed to OWL with the use of
TR1-TR2 rules.

5.5. Transformation of UML comments

Table 21. Comment and the defined rules

UML element
Description of UML

element

Comment to the Class

In accordance with [2], every kind of UML Element may own Comments which
add no semantics but may represent information useful to the reader. In OWL it
is possible to define the annotation axiom for OWL Class, Datatype,
ObjectProperty, DataProperty, AnnotationProperty and
NamedIndividual. The textual explanation added to UML Class is identified
as useful for conceptual modelling [7], therefore the Comments that are
connected to UML Classes are taken into consideration in the transformation.

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 89

Symbol of UML

element

Class

Class
- - - description

Transformation rules

TRI1: Specify annotation axiom for UML Comment

AnnotationAssertion(rdfs:comment

: Class
Verification rule Not applicable

Comments to the rule

"Class description

"Nxsd:string)

As UML Comments add no semantics, they are not used in any method of

semantic validation [1]. In OWL the AnnotationAssertion [30] axiom does
not add any semantics either, and it only improves readability.

Related works

The transformation of UML Comments in the context of mapping to OWL has
not been found in literature.

6. Influence of UML-OWL differences
on transformations

Obviously, OWL 2 and UML 2.5 languages differ
from each other.

In general, notice that OWL ontologies are
based on the Open World Assumption while
UML class diagrams are based on Closed World
Assumption. We can compare a UML class dia-
gram to a given OWL ontology assuming that
this ontology is in a given state. Examining that
the UML class diagram conforms to the OWL on-
tology we transform the diagram into equivalent
OWL representation and check if this representa-
tion forms a subset of the ontology. So, the notion
of semantic equivalence relates only to the UML
class diagram and its OWL representation.

The further part of the section focuses exclu-
sively on two selected differences which influence
the form of transformations.

6.1. Instances

OWL 2 defines several kinds of axioms: declara-
tions, axioms about classes, axioms about objects
and data properties, datatype definitions, keys,
assertions (used to state that individuals are
instances of e.g. class expressions) and axioms
about annotations. What can be observed is that
the information about classes and their instances
(in OWL called individuals) coexists within a sin-
gle ontology.

On the other hand, in UML two different
kinds of diagrams are used in order to present the
classes and objects. UML defines object diagrams
which represent instances of class diagrams at

a certain moment in time. The object diagrams
focus on presenting attributes of objects and
relationships between objects.

Despite the fact that information about the
objects is not present in UML class diagrams,
verification rules in the form of SPARQL queries
take advantage of the knowledge about individu-
als in the domain ontology. The rules are useful in
validation of class diagrams against the selected
domain ontologies as they can check, for exam-
ple, if an abstract class is indeed abstract (does
not have any direct instances in ontology) or if
multiplicity restrictions are specified correctly.

6.2. Disjointness in OWL 2 and UML

In OWL 2 an individual can be an instance of
several classes [34]. It is also possible to state
that no individual can be an instance of selected
classes, which is called class disjointness. The
information that some specific classes are dis-
joint is part of domain knowledge which serves
a purpose of reasoning.

OWL specification emphasises [34]: In prac-
tice, disjointness statements are often forgotten
or neglected. The arguable reason for this could
be that intuitively, classes are considered dis-
joint unless there is other evidence. By omitting
disjointness statements, many potentially useful
consequences can get lost.

What can be observed in typical ex-
isting OWL ontologies, axioms of disjoint-
ness (DisjointClasses, DisjointObjectProp-
erties and DisjointDataProperties) are
stated for classes, object properties or data prop-
erties only for the most evident situations. If

90

Malgorzata Sadowska, Zbigniew Huzar

disjointness is not specified, the semantics of

OWL states that the ontology does not contain

enough information that disjointness takes place.

For example, it is possible that the information

is actually true but it has not been included in

the ontology.

On the other hand, in a UML class diagram
every pair of UML classes (which are not within
one generalization set with an overlapping con-
straint) is disjoint, where disjointness is under-
stood in the way that the classes have no common
instances. This aspect of UML semantics could be
mapped to OWL with the use of an extensive set
of additional transformations. The transforma-
tions would not be intuitive from the perspective
of OWL and should add a lot of unnecessary
information which might never be useful due to
the fact that e.g. one should consider every pair
of classes on the diagram and add additional
axioms for it.

For the purpose of completeness of our revi-
sion, below we present transformation rules also
for disjointness:

— Transformation rule for disjointness of UML
classes (TR): Specify DisjointClasses
axiom for every pair of UML Classes: CEq,
CEy where CE; # CE, and the pair is not
in the generalization relation or within one
generalization set with an overlapping con-
straint. Comment: The TR rule for classes
within a generalization relationship was orig-
inally proposed in [17,18,20]. We have re-
fined the rule in order to cover only the
pairs of classes which are not only in a direct
generalization relation but also not within
one GeneralizationSet with an overlapping
constraint. This is caused by the fact that
the GeneralizationSet with the overlapping
constraint (see Tables 16-17) defines spe-
cific Classes, which do share common in-
stances. Please note that UML Generaliza-
tionSet with disjoint constraint adds Dis-
jointClasses axioms — either directly or in-
directly through DisjointUnion axiom (see
Tables 14-15).

— Transformation rule for disjointness of UML
attributes (TRp): Specify DisjointObject-

Properties axiom for every pair OPEq,
OPEs where OPE; # OPE; of object prop-
erties within the same UML Class (domain
of both OPE; and OPE5 is the same OWL
Class) and specify DisjointDataProper-
ties axiom for every pair DPE;, DPEs where
DPE; # DPE, of object properties within
the same UML Class (domain of both DPE;
and DPE; is the same OWL Class)
Comment: The TRg rule is original proposi-
tion.

— Transformation rule for disjointness of UML

associations (TRc): Specify DisjointOb-
jectProperties axiom for every pair of asso-
ciation ends OPE; and OPEy where OPE; #
OPE, and OPE; is not generalized by OPE,
and OPEjy is not generalized by OPE; and
domain and range of OPE; and OPE, are
the same classes.
Comment: In [17,20], it is suggested that
DisjointObjectProperties and Disjoint-
DataProperties axioms for all properties
that are not in a generalization relationship
should be specified. In a general case this
suggestion is not clear, but we have modified
the rule to be applicable for UML associations
which are not in generalization relationship.
Even though the TR, TRp and TR rules
are reasonable from the point of view of cov-
ering semantics of a class diagram to OWL,
they have not been implemented in a tool
for validation of UML class diagram [4] due
to their questionable usefulness from the per-
spective of pragmatics. This is caused by the
fact that including these rules would lead
to a large increase in the number of axioms
in the ontology, which would increase the
computational complexity.

6.3. Concepts of class and datatype
in UML and OWL

OWL 2 allows specifying declaration axioms for
datatypes:
Declaration(Datatype(:DatatypeName))
However, the current specification of OWL 2
[30] does not offer any constructs neither to spec-

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 91

ify the internal structure of the datatypes, nor
the possibility to define generalization relation-
ships between the datatypes. Both are available
in UML 2.5.

Please note that the OWL HasKey, Data-
PropertyDomain and ObjectProperty-
Domain axioms can only be defined for the class
expressions (not for the data ranges). Therefore
the TR2-TRS5 rules in Table 19 can only be
specified if the UML structured DataType is
declared as an OWL Class. This transformation
has its consequences, which are presented in
Table 19.

If future extensions of the OWL language al-
low one to precisely define the internal structure
of datatypes, by analogy, as it is possible in UML,
the proposed transformation of UML structured
DataType presented in Table 19 should then be
modified. Additionally, if future extensions of the
OWL language allow one to define generalization
relationships between datatypes, the currently
valid limitation of the transformation of UML
Enumeration presented in Table 20 will no longer
be applicable.

7. Examples of UML-OWL
transformations

This section presents some examples of transfor-
mations of UML class diagrams to their equiv-

alent OWL representations. The UML class di-
agram examples are relatively small but cover
a number of different UML elements. For clarity
of reading, the examples include references to
tables from Section 5.

The order of transformations is arbitrary (the
resulting set of axioms will always be the same
despite the order) but we suggest to conduct the
transformations starting from Table 2 to Table 21.
In this way, all the classes with attributes will
be mapped to OWL first, then the associations
and generalization relationships and finally data
types and comments.

Each example includes two tables contain-
ing transformational and verificational part of
UML class diagram (e.g. in Example 1 there
are two tables: 22 and 23). Each verificational
part should be considered in the context of the
selected domain ontology. The Table 23 which
presents verificational part of the diagram from
Example 1 has been supplemented with addi-
tional comments of how each verificational ax-
iom or verificational query should be interpreted.
The comments and the ontological background
presented in Table 23 is also applicable to other
examples.

cR1 dRA1

Example 1
A
B 5 7.,10..12 c
b c

cR2

Z%‘dF{:z

Figure 1. Example 1 of UML class diagram (see Tables 22, 23)

92 Malgorzata Sadowska, Zbigniew Huzar

Table 22. Transformational part of UML class diagram from Example 1

Set of transformation axioms

Transformation rules

Transformation of UML Classes

Declaration(Class(:A))
Declaration(Class(:B))
Declaration(Class(:C'))
Declaration(Class(:D))

Table 2 TR1

Transformation of UML binary Associations between two different Classes

Declaration(ObjectProperty(:b))
Declaration(ObjectProperty(:c))
Declaration(ObjectProperty(:))
Declaration(ObjectProperty(:dR1))
Declaration(ObjectProperty(:))
Declaration(ObjectProperty(:dR2))
ObjectPropertyDomain(:b : C’)
ObjectPropertyDomain(:c
ObjectPropertyDomain(:)
ObjectPropertyDomain(:dR1 :C')
ObjectPropertyDomain(:)
ObjectPropertyDomaln()
ObjectPropertyRange(:b
ObjectPropertyRange(:c
ObjectPropertyRange(cR] :C
ObjectPropertyRange(:
ObjectPropertyRange(:
ObjectPropertyRange(:dR2 :D
InverseObjectProperties(:b :¢)
InverseObjectProperties(:cR1 :dR1)
InverseObjectProperties(:cR2 :dR2)

Table 6 TR1

Table 6 TR2

Table 6 TR3

Table 6 TR4

Transformation of UML multiplicity of Association ends

SubClassOf(:C ObjectExactCardinality(5 :b :B))

SubClassOf(: B ObjectUnionOf(ObjectExactCardinality(7 :c :C')
ObjectIntersectionOf(ObjectMinCardinality(10 :c :C')
ObjectMaxCardinality(12 :¢:C'))))
SubClassOf(:C ObjectExactCardinality
SubClassOf(:D ObjectExactCardinality
SubClassOf(:C ObjectExactCardinality
SubClassOf(:D ObjectExactCardinality
FunctionalObjectProperty(:dR1)
FunctionalObjectProperty(:cR1)
FunctionalObjectProperty(:dR2)
FunctionalObjectProperty(:cR2)

1
1:cR1:C
1
1

A~ N

Table 9 TR1

Table 9 TR2

Transformation of UML Generalization between Classes

SubClassOf(:B :A)

Table 12 TR1

Transformation of UML Generalization between Associations

SubObjectPropertyOf(:cR2 :cR1)
SubObjectPropertyOf(:dR2 :dR1)

Table 13 TR1

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies

93

Table 23. Verificational part of UML class diagram from Example 1

Verificational part of UML class diagram Verification rules

Transformation of UML Classes

If the domain ontology contains any HasKey axiom with any internal structure Table 2 VR1
(OPEy,..., DPE;...) defined for : A, :B, :C or :D UML Class, the element should be
UML structured DataType not UML Class.

HasKey(:4 (OPE;...OPE,,4) (DPE;...DPE,4))

HasKey(:B (OPE; ...OPE,,5) (DPE;...DPE,))

HasKey(:C (OPE; ...OPE,,¢) (DPE;...DPE,¢))

HasKey(:D (OPE;...OPE,,p) (DPE;...DPE,p))

Transformation of UML binary Associations between two different Classes

If the domain ontology contains any of below defined AsymmetricObjectProperty Table 6 VR1
axioms, the defined UML Association is incorrect.
AsymmetricObjectProperty(:b)
AsymmetricObjectProperty(:¢)
AsymmetricObjectProperty(:cR
AsymmetricObjectProperty(:dR
AsymmetricObjectProperty(:
AsymmetricObjectProperty(:dR2)
If the domain ontology contains any of the below-defined ObjectPropertyDomain Table 6 VR2
axioms where class expression is different than the given UML Class, the Association
is defined in the ontology but between different Classes, than it is specified on the
diagram.
ObjectPropertyDomain(:b CE), where CE#:C
ObjectPropertyDomain(:¢c CE), where CE #:B
ObjectPropertyDomain(:cR! CE), where CE #:D
ObjectPropertyDomain(:dR! CE), where CE#:C
ObjectPropertyDomain(:cR2 CE), where CE #:D
ObjectPropertyDomain(:dR2 CE), where CE #:C
If the domain ontology contains any of below-defined ObjectPropertyRange axioms Table 6 VR3
where the class expression is different than the given UML Class, the Association is
defined in the ontology but between different Classes.
ObjectPropertyRange(:b CE), where CE #:B
ObjectPropertyRange(:c CE), where CE#:C
ObjectPropertyRange(:cR1 CE), where CE+#:C
ObjectPropertyRange(:dR1 CE), where CE #:D
ObjectPropertyRange(:cR2 CE), where CE#:C
ObjectPropertyRange(:dR2 CE), where CE #:D

Transformation of UML multiplicity of Association ends

If the verification query returns a number greater than 0, it means that UML multiplicity Table 9 VR1
is in contradiction with the domain ontology (?violnd lists individuals that cause the
violation).

SELECT ?violnd (count (?range) as 7n)

WHERE { ?violnd :b ?range } GROUP BY ?vioInd

HAVING (Tn>5)

SELECT ?violnd (count (?range) as 7n)

WHERE { ?violnd :c ?range } GROUP BY ?violnd

HAVING (7n > 12)

SELECT ?violnd (count (?range) as ’n)

WHERE { ?violnd :dR1 ?range } GROUP BY ?vioInd

HAVING (> 1)

94 Malgorzata Sadowska, Zbigniew Huzar

SELECT ?vioInd (count (?range) as n)

WHERE { ?violnd :cRI "range } GROUP BY ?violnd

HAVING (Tn>1)

SELECT ?vioInd (count (?range) as n)

WHERE { ?violnd :dR2 ’range } GROUP BY ?vioInd

HAVING (Tn>1)

SELECT ?vioInd (count (?range) as n)

WHERE { ?vioInd :cR2 ’range } GROUP BY ?violnd

HAVING (Tn>1)
If the domain ontology contains FunctionalObjectProperty axiom specified for the Table 9 VR2
association end which multiplicity is different from 1, the multiplicity is incorrect.

FunctionalObjectProperty(:b)

FunctionalObjectProperty(:c)
If the domain ontology contains SubClassOf axiom, which specifies class expression Table 9 VR3
with different multiplicity of the association ends than is derived from the UML class
diagram, the multiplicity is incorrect.

SubClassOf(:C CE), where CE # ObjectExactCardinality(5 :b :B)

SubClassOf(:B CE), where

CE # ObjectUnionOf(ObjectExactCardinality(7 :c :C')

ObjectIntersectionOf(ObjectMinCardinality(10 :c :C')
ObjectMaxCardinality(12 :¢ :C')))

SubClassOf(:C CE), where CE # ObjectExactCardinality(1 :dR1 :D)
SubClassOf(:D CE), where CE # ObjectExactCardinality(1 :cR! :C')
SubClassOf(:C CE), where CE # ObjectExactCardinality(1 :dR2:D)
SubClassOf(:D CE), where CE # ObjectExactCardinality(1 :cR2 :C)

Transformation of UML Generalization between Classes

If the domain ontology contains the defined SubClassOf axiom specified for Classes, Table 12 VR1
which take part in the generalization relationship, the generalization relationship should
be inverted on the diagram.

SubClassOf(:4 :B)

Transformation of UML Generalization between Associations

If the domain ontology contains the defined SubObjectPropertyOf axioms specified Table 13 VR1
for Association, which take part in the generalization relationship, the generalization
relationship should be inverted on the diagram.

SubObjectPropertyOf(:cR1 :cR2)

SubObjectPropertyOf(:dR1 :dR2)

Example 2
<<dataType==
aR2 T
A t1: String
al: Integer R 12 : Boolean
a2:T[2] a
{complete,
disjoint} A
B Cc D

Figure 2. Example 2 of UML class diagram (see Tables 24-25)

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies

95

Table 24. Transformational part of UML class diagram from Example 2

Set of transformation axioms

Transformation rules

Transformation of UML Classes

Declaration(Class(:A))
Declaration(Class(:B))
Declaration(Class(:C'))
Declaration(Class(:D))

Table 2 TR1

Transformation of UML attributes

Declaration(DataProperty(:al))
Declaration(ObjectProperty(:a2))
DataPropertyDomain(:al :A4)
ObjectPropertyDomain(:a2 :A)
DataPropertyRange(:a! xsd:integer)
ObjectPropertyRange(:a2:T)

Table 4 TR1

Table 4 TR2

Table 4 TR3
Table 18 TR2

Transformation of UML multiplicity of attributes

SubClassOf(:A ObjectExactCardinality(2 :a2:T)) Table 5 TR1
Transformation of UML binary Association from the Class to itself

Declaration(ObjectProperty(:aR1))

Declaration(ObjectProperty(:aR2)) Table 7 TR1
ObjectPropertyDomain(:aR1 :A4)

ObjectPropertyDomain(:aR2 :A) Table 7 TR2
ObjectPropertyRange(:aR1 :A)

ObjectPropertyRange(:aR2 :A4) Table 7 TR3
InverseObjectProperties(:aR1 :aR2) Table 7 TR4
AsymmetricObjectProperty(:aR1) Table 7 TR5
AsymmetricObjectProperty(:aR2)

Transformation of UML multiplicity of Association ends

SubClassOf(:A ObjectExactCardinality(1 :aR1:A)) Table 9 TR1
SubClassOf(:A ObjectExactCardinality(1 :aR2:A4))

FunctionalObjectProperty(:aR1) Table 9 TR2

FunctionalObjectProperty(:aR2)

Transformation of UML Generalization between Classes

SubClassOf(:B :A)
SubClassOf(:C :A)
SubClassOf(:D :A)

Table 12 TR1

Transformation of UML GeneralizationSet with {complete, disjoint} constraints

DisjointUnion(:A :B:C :D)

Table 15 TR1

Transformation of UML structured DataType

Declaration(Class(: 7))
Declaration(DataProperty(:t1))
Declaration(DataProperty(:t2))
DataPropertyDomain(:¢1 :T)
DataPropertyDomain(:t2:7T)
DataPropertyRange(:t1 xsd:string)
DataPropertyRange(:t2 xsd:boolean)

HasKey(:T () (:t1 :t2))

Table 19 TR1
Table 19 TR2

Table 19 TR3

Table 19 TR4
Table 18 TR1
Table 18 TR3
Table 19 TR5

96

Malgorzata Sadowska, Zbigniew Huzar

Table 25. Verificational part of UML class diagram from Example 2

Verificational part of UML class diagram

Verification rules

Transformation of UML Classes

HasKey(:A (OPE; ...OPE,,4) (DPE; ...DPE, 4)) Table 2 VR1
HasKey(:B (OPE; ...OPE,,5) (DPE; ... DPE,))

HasKey(:C (OPE; ...OPE,.c) (DPE; ... DPE,¢))

HasKey(:D (OPE; ...OPE,,p) (DPE;...DPE,p))

Transformation of UML attributes

DataPropertyDomain(:af CE), where CE#£ A Table 4 VR1
ObjectPropertyDomain(:a2 CE), where CE # A

DataPropertyRange(:al DR), where Table 4 VR2

DR # xsd:integer ObjectPropertyRange(:a2 CE), where
CE#:T

Table 18 TR2

Transformation of UML multiplicity of attributes

SELECT ?vioInd (count (“range) as 7n)
WHERE { ?violnd :a2 ?range } GROUP BY ?vioInd
HAVING (7n > 2)
SubClassOf(:A CE), where
CE # ObjectExactCardinality(2 :a2:T)

Table 5 VR1

Table 5 VR2

Transformation of UML binary Association from the Class to itself

ObjectPropertyDomain(:aR! CE), where CE#:4
ObjectPropertyDomain(:aR2 CE), where CE #:4
ObjectPropertyRange(:aR! CE), where CE #:4
ObjectPropertyRange(:aR2 CE), where CE#:4

Table 7 VR1

Table 7 VR2

Transformation of UML multiplicity of Association ends

SELECT ?vioIlnd (count (“range) as 7n)

WHERE { ?violnd :aR1 ?range } GROUP BY ?vioInd
HAVING (7 > 1)

SELECT ?violnd (count (?range) as 7n)

WHERE { ?violnd :aR2 ’range } GROUP BY ?vioInd
HAVING ("n > 1)

SubClassOf(:A CE), where CE # ObjectExactCardinality(1 :aR1 :A)
SubClassOf(:A CE), where CE # ObjectExactCardinality(1 :aR2:A4)

Table 9 VR1

Table 9 VR3

Transformation of UML Generalization between Classes

SubClassOf(:4 :B)
SubClassOf(:A :C')
SubClassOf(:A4 :D)

Table 12 VR1

Transformation of UML GeneralizationSet with {complete, disjoint} constraints

SubClassOf(:B :C')
SubClassOf(:C :B)
SubClassOf(:C':D)
SubClassOf(:D :C')
SubClassOf(:B :D)
SubClassOf(:D :B)

Table 15 VR1

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 97

Transformation of UML structured DataType

Check if the : T class is specified in the domain ontology as a subclass Table 19 VR1
(SubClassOf axiom) of any class expression, which does not have HasKey
axiom defined.

Example 3

aF--

Figure 3. Example 3 of UML class diagram (see Tables 26-27)

Table 26. Transformational part of UML class diagram from Example 3

Set of transformation axioms

Transformation rules

Transformation of UML Classes

Declaration(Class(:4)) Table 2 TR1
Declaration(Class(:B))

Transformation of UML attributes

Declaration(ObjectProperty(:d)) Table 4 TR1
ObjectPropertyDomain(:d :C) Table 4 TR2
ObjectPropertyRange(:d :D) Table 4 TR3
Transformation of UML binary Associations between two different Classes

Declaration(ObjectProperty(:a)) Table 6 TR1
Declaration(ObjectProperty(:b))

ObjectPropertyDomain(:¢ ObjectUnionOf(:B :C')) Table 6 TR2
ObjectPropertyDomain(:b ObjectUnionOf(:4 :C')) Table 10 TR1
ObjectPropertyRange(:a :A) Table 6 TR3
ObjectPropertyRange(:b :B)

InverseObjectProperties(:a :b) Table 6 TR4
Transformation of UML multiplicity of Association ends

SubClassOf(:A ObjectMinCardinality(2 :b :B)) Table 9 TR1

Transformation of UML AssociationClass

Declaration(Class(:C'))

Declaration(ObjectProperty(:c))
ObjectPropertyDomain(:c ObjectUnionOf(:4 :B))
ObjectPropertyRange(:c :C')

Table 10 TR2
Table 10 TR3
Table 10 TR4
Table 10 TR5

98 Malgorzata Sadowska, Zbigniew Huzar

Table 27. Verificational part of UML class diagram from Example 3

Verificational part of UML class diagram

Verification rules

Transformation of UML Classes

HasKey(:4 (OPE,...OPE,,) (DPE;...DPE,)) Table 2 VR1
HasKey(:B (OPE; ...OPE,,) (DPE;...DPE,))

Transformation of UML attributes

ObjectPropertyDomain(:d CE), where CE#:C Table 4 VR1
ObjectPropertyRange(:d CE), where CE #:D Table 4 VR2
Transformation of UML binary Associations between two different Classes
AsymmetricObjectProperty(:a) Table 6 VR1
AsymmetricObjectProperty(:b)

Transformation of UML multiplicity of Association ends

FunctionalObjectProperty(:a) Table 9 VR2
FunctionalObjectProperty(:b)

SubClassOf(:A CE), where CE # ObjectMinCardinality(2 :b :B) Table 9 VR3

SubClassOf(:B CE), where CE = any explicitly specified multiplicity

Transformation of UML AssociationClass

HasKey(:C (OPE; ...OPE,,) (DPE; ...DPE,))
ObjectPropertyDomain(:a CE), where CE # ObjectUnionOf(:B :C
ObjectPropertyDomain(:b CE), where CE # ObjectUnionOf(:A :C')
ObjectPropertyDomain(:¢ CE), where CE # ObjectUnionOf(:4 :B
ObjectPropertyRange(:¢c CE), where CE#:C

Table 10 VR1
) Table 10 VR2

)
Table 10 VR3

8. Tool support for validation
and automatic correction of
UML class diagrams

The transformation and verification rules pre-
sented in Section 5 have been implemented in
a tool. All the defined rules are proved to be fully
implementable. As a result, the tool allows one
to transform any UML class diagram built of dif-
ferent kinds of UML elements (listed in Section 5,
and selected based on their importance from the
perspective of pragmatics) to OWL 2 represen-
tation. In comparison to other available tools
which allow transforming UML class diagrams
to an OWL 2 representation, the range of the
transformed constructions is wider as it benefits
from the results of the conducted systematic
literature review and its analysis, revision and
extension.

Due to the fact that the tool is still un-
der development, the following webpage has
been created in which the tool with the in-

stallation instructions will be later accessi-
ble: https://sourceforge.net/projects/uml-class-
diagrams-validation/

After the development and experiment phases
are finished, the tool will be made available on-
line.

The tool has been tested with a number of
test cases aimed to determine whether the tool
fully and correctly implemented the transforma-
tion and verification rules, as well as the vali-
dation method. At least one test case has been
prepared for every normalization, transformation
and verification rule. Additionally, a number of
test cases have been prepared to cover popular
assemblies of UML elements, e.g. an association
from a class to itself, an association between two
classes, two associations between two classes, two
associations between three classes, etc. Each rule
has been independently checked if it returns the
expected result. In total, the number of test cases
was as follows:

1. 80 test cases for ontology normalization rules,

https://sourceforge.net/projects/uml-class-diagrams-validation/
https://sourceforge.net/projects/uml-class-diagrams-validation/

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies 99

2. 40 test cases for transformation rules,
3. 25 test cases for verification rules.
The tool passed all test cases.

The implementation of the transformation
and verification rules as well as the method of
validation explained in [1], resulted in a function-
ality of the tool allowing for validation if a UML
class diagram is compliant with the selected do-
main ontology. Furthermore, on the basis of the
result of validation, the tool automatically gen-
erates ontology-based suggestions for diagram
corrections. In [4], a few initial suggestions for
diagram corrections have been presented. The
initial list of suggestions has been revised and
extended, and currently the tool automatically
generates suggestions of two kinds:

1. What has to be corrected in the UML class
diagram in order for the diagram not to be

Example 4

2.

contradictory with the selected domain ontol-
ogy (approximately 30 types of suggestions —
one for violation of every verification rules
plus one general suggestion listing incorrect
UML elements if a transformation rule has
caused the inconsistency in the domain ontol-
ogy). This list of suggestions is reported by
the tool for the modeller and strongly advised
his or her attention (Example 4 and 5).
Based on the domain ontology of what might
be additionally included in the class diagram
(9 types of suggestions). Whether or not to
consider this list of proposed suggestions is
for the modeller to decide. Depending on the
specific requirements, the suggestions may be
incorporated in the diagram (Example 6).

Table 28. Example of what has to be corrected in the diagram based on the ontology:
abstract class verification

Suggestion: the class is not abstract

Axiom(s) in the OWL
domain ontology

Element on the Town

UML class diagram

Result of validation:

Declaration(Class(: Town))
ClassAssertion(: Town :Madrid)

€ validation of the UML class diagram with respect to travel.extended.owl OWL 2 domain ontology

| Incorrect UML elements | Transformation axioms | Summary|

c' List of INCORRECT diagram elements:

?count)
WHERE { ?ind rdf:type :Town }

UML element Reason of incorrectness Comments Suggested solution
Abstract Class: Town SPARQL querry: Individual(s) of the class: [Incorrect element: -
SELECT (COUNT (DISTINCT ?ind) as Madrid Class Town is not abstract

Result of validation: The diagram is CONTRADICTORY

Close

100 Malgorzata Sadowska, Zbigniew Huzar

Example 5

Table 29. Example of what has to be corrected in the diagram based on the ontology:
enumeration verification

Suggestion: the enumeration is incorrectly defined

Axiom(s) in the OWL DatatypeDefinition(: AccommodationRating
domain ontology DataOneOf("OneStarRating" "TwoStarRating" "ThreeStarRating"
"FourStarRating" "FiveStarRating"))
<<gnumeration==
AccommeodationRating

FourStarRating
Element on the OneStarRating
UML class diagram ThreeStarRating

TwoStarRating

Unranked
Result of validation:

€ Validation of the UML class diagram with respect to travel.extended.owl OWL 2 domain ontology ﬁ

| Incorrect UML elements | Transformation axioms | Summar‘,r|

c' List of INCORRECT diagram elements:

UML element Reason of incorrectness Comments Suggested solution

Enumeration: SPARQL querry: Incorrect list of literals of:|Literal(s) required to be removed: Unranked | «

‘AccommodationRating SELECT ?literal { \AccommodationRating Literal(s) not included: FiveStarRating
:AccommodationRating Enumeration

owl:equivalentClass ?dt .
?dt a rdfs:Datatype ;
owl:oneOf/rdf:rest™/rdf:first ?literal
}

Result of validation: The diagram is CONTRADICTORY

Close

Example 6

Table 30. Example of what may be incorporated in the diagram based on the ontology:
attribute verification

Suggestion: Insert missing attribute, missing type of attribute or missing multiplicity of attribute

Axiom(s) in the OWL Declaration(Class(:Contact))

domain ontology ObjectPropertyDomain(:person : Contact)
ObjectPropertyRange(:person : FullName)
Declaration(Class(: FullName))
DataPropertyDomain(:firstName :FullName)
DataPropertyRange(:firstName xsd:string)
DataPropertyDomain(:secondName : FullName)
DataPropertyRange(:secondName xsd:string)
HasKey/(:FullName () (:firstName :secondName))
Declaration(DataProperty(:hasEMail))
DataPropertyDomain(:hasEMail : Contact)
DataPropertyRange(:hasEMail xsd:string)

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies

101

Declaration(DataProperty(:hasStreet))
DataPropertyDomain(:hasStreet : Contact)
DataPropertyRange(:hasStreet xsd:string)
Declaration(DataProperty(:hasCity))
DataPropertyDomain(:hasCity : Contact)
DataPropertyRange(:hasCity xsd:string)
Declaration(DataProperty(:lastUpdate))
DataPropertyDomain(:lastUpdate : Contact)
DataPropertyRange(:lastUpdate xsd:dateTime)

SubClassOf(: Contact DataExactCardinality(1 :lastUpdate))

Contact
Element on the -
R person : FullName
UML class diagram hasCity : String

Q Extraction of elements of UML class diagram based on travel.extended.owl OWL 2 domain ontology ﬁ

| Classes I Generalizations | GeneralizationSets | Associations | Attributes | Enumerations | Structured Data'l'ypes|

Name of Classifier Name of Attribute Multiplicity of Attribute Type of Attribute Remarks on Type

Contact hasEMail String UML PrimitiveType -
Contact lastUpdate 1 xsd.dateTime The OWL 2 type is undefined in UML

Contact person Fulllame UML Structured DataType

Contact hasStrest String UML PrimitiveType

Contact hasCity String UML PrimitiveType

)
’ Add to the diagram ” Close
Legend:

white rows — suggestions of UML elements which might be included in the class diagram
grey rows — UML elements already included in the class diagram

9. Conclusions

The paper presents rules for transforming UML
class diagrams to their OWL 2 representations.
All the static elements of UML class diagrams
commonly used in business or conceptual mod-
elling have been considered. The vast majority of
the elements can be fully transformed to OWL 2
constructs. The presented transformation rules
result from an in-depth analysis and extension
of the state-of-the-art transformation rules iden-
tified through a systematic literature review. In
total, 41 transformation rules have been described
(not counting our complementation to the rules of
disjointness presented in Section 6). 25 transforma-
tion rules have been directly extracted from the lit-
erature, 8 rules originate in the literature but have
been extended by us in order to reflect the seman-
tics of UML elements in OWL more precisely, and
8 transformation rules are our new propositions.

In addition to the transformation rules, we
have defined all the presented verification rules
(26 in total). The verification rules are aimed
at checking the compliance of the OWL repre-
sentation of UML class diagram with the given
OWL domain ontology. The described transfor-
mation and verification rules are crucial in the
method of semantic validation of UML class dia-
grams [1]. The approach validates automatically
if a selected class diagram is compliant with the
selected OWL 2 domain ontology.

The developed method and the tool are
a pragmatic attempt of bringing together the
differences in the philosophy of UML and OWL 2
languages. In order to make the process auto-
matic, the tool has been supplemented with all
the transformation and verification rules, and
has been tested with a wide range of test cases.
The inclusions to the tool are the result of prag-
matic thinking. For example, the implementa-

102

Malgorzata Sadowska, Zbigniew Huzar

tion allowed observing that it is worth extend-
ing the tool so that it automatically generates
ontology-based suggestions for diagram correc-
tions.

The tool already offers a range of new possi-
bilities for practical application of domain ontolo-
gies. However, as a consequence, the proposed
approach creates a need for greater involvement
of domain ontologies in modeling.

The research background of our considera-
tions can be supported by other publications, e.g.
[35-37]. The potential of reusing domain ontolo-
gies for the purpose of validation is promising and
may help the modelers through automation. The
choice of OWL is justified by the growing number
of the already created ontologies in this language.
For future work, the development of the tool is
planned to be finished soon. The next step of
work is preparation of experiment aimed at val-
idation of the tool and the method in practice.
The experiment is aimed to state the practicality
of our proposal.

References

[1] M. Sadowska and Z. Huzar, “Semantic validation
of UML class diagrams with the use of domain
ontologies expressed in OWL 2,” in Software
Engineering: Challenges and Solutions. Springer
International Publishing, 2016, pp. 47-59.

[2] Unified Modeling Language, Version 2.5, OMG,
2015. [Online]. http://www.omg.org/spec/UML/
2.5

[3] OWL 2 Web Ontology Language Document
Overview (Second Edition), W3C, 2012. [Online].
https://www.w3.org/TR/owl2-overview/

[4] M. Sadowska, “A prototype tool for semantic
validation of UML class diagrams with the use
of domain ontologies expressed in OWL 2,” in
Towards a Synergistic Combination of Research
and Practice in Software Engineering. Springer
International Publishing, 2017, pp. 49-62.

[5] M. Sadowska and Z. Huzar, “The method of nor-
malizing OWL 2 DL ontologies,” Global Journal
of Computer Science and Technology, Vol. 18,
No. 2, 2018, pp. 1-13.

[6] A. Korthaus, “Using UML for business object
based systems modeling,” in The Unified Mod-
eling Language. Physica-Verlag HD, 1998, pp.
220-237.

[7] H.E. Eriksson and M. Penker, Business Model-
ing With UML: Business Patterns at Work. New
York, USA: John Wiley & Sons inc., 2000.

[8] E.D. Nitto, L. Lavazza, M. Schiavoni, E. Tra-
canella, and M. Trombetta, “Deriving executable
process descriptions from UML,” in Proceedings
of the 24th International Conference on Software
Engineering, ser. ICSE ’02. New York, NY, USA:
ACM, 2002, pp. 155-165.

[9] C. Fu, D. Yang, X. Zhang, and H. Hu, “An ap-
proach to translating OCL invariants into OWL
2 DL axioms for checking inconsistency,” Auto-
mated Software Engineering, Vol. 24, No. 2, 2017,
pp- 295-339.

[10] B. Kitchenham and S. Charters, “Guidelines for
performing systematic literature reviews in soft-
ware engineering,” Keele University & Univer-
sity of Durham, EBSE Technical Report EBSE
2007-01, 2007.

[11] X. Zhou, Y. Jin, H. Zhang, S. Li, and X. Huang,
“A map of threats to validity of systematic liter-
ature reviews in software engineering,” in 23rd
Asia-Pacific Software Engineering Conference
(APSEC). IEEE, 2016, pp. 153-160.

[12] Z. Xu, Y. Ni, W. He, L. Lin, and Q. Yan,
“Automatic extraction of OWL ontologies from
UML class diagrams: a semantics-preserving ap-
proach,” World Wide Web, Vol. 15, No. 5, 2012,
pp. 517-545.

[13] Z. Xu, Y. Ni, L. Lin, and H. Gu, “A seman-
tics-preserving approach for extracting OWL on-
tologies from UML class diagrams,” in Database
Theory and Application, ser. Communications
in Computer and Information Science. Berlin,
Heidelberg: Springer, 2009, pp. 122-136.

[14] M. Mehrolhassani and A. Elgi, “Developing on-
tology based applications of semantic web using
UML to OWL conversion,” in The Open Knowl-
ege Society. A Computer Science and Informa-
tion Systems Manifesto, ser. Communications
in Computer and Information Science. Berlin,
Heidelberg: Springer, 2008, pp. 566—577.

[15] O. El Hajjamy, K. Alaoui, L. Alaoui, and M. Ba-
haj, “Mapping UML to OWL2 ontology,” Jour-
nal of Theoretical and Applied Information Tech-
nology, Vol. 90, No. 1, 2016, pp. 126-143.

[16] C. Zhang, Z.R. Peng, T. Zhao, and W. Li,
“Transformation of transportation data models
from Unified Modeling Language to Web Ontol-
ogy Language,” Transportation Research Record:
Journal of the Transportation Research Board,
Vol. 2064, No. 1, 2008, pp. 81-89.

[17] J. Zedlitz, J. Jorke, and N. Luttenberger, “From
UML to OWL 2,” in Knowledge Technology, ser.

http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5
https://www.w3.org/TR/owl2-overview/

Representation of UML Class Diagrams in OWL 2 on the Background of Domain Ontologies

103

[18]

[19]

[22]

[23]

Communications in Computer and Information
Science. Berlin, Heidelberg: Springer, 2012, pp.
154-163.

A H. Khan and I. Porres, “Consistency of UML
class, object and statechart diagrams using on-
tology reasoners,” Journal of Visual Languages
& Computing, Vol. 26, 2015, pp. 42-65.

A H. Khan, I. Rauf, and I. Porres, “Consistency
of UML class and statechart diagrams with state
invariants,” in Proceedings of the 1st Interna-
tional Conference on Model-Driven Engineering
and Software Development, S. Hammoudi, L.F.
Pires, J. Filipe, and R.C. das Neves, Eds., Vol. 1.
SciTePress Digital Library, 2013, p. 1-11.

J. Zedlitz and N. Luttenberger, “Transforming
between UML conceptual models and OWL 2
ontologies,” in Terra Cognita 2012 Workshop,
Vol. 6, 2012, p. 15.

W. Xu, A. Dilo, S. Zlatanova, and P. van Oost-
erom, “Modelling emergency response processes:
Comparative study on OWL and UML,” in
Proceedings of the Joint ISCRAM-CHINA and
GI4DM Conference, Harbin, China, 2008, pp.
493-504.

N. Gherabi and M. Bahaj, “A new method
for mapping UML class into OWL ontology,”
International Journal of Computer Applications
Special Issue on Software Engineering, Databases
and Ezxpert Systems, Vol. SEDEXS, No. 1, 2012,
pp. 5-9. [Online]. https://research.ijcaonline.
org/sedex/numberl /sedex1002.pdf

H.S. Na, O.H. Choi, and J.E. Lim, “A method for
building domain ontologies based on the transfor-
mation of UML models,” in Fourth International
Conference on Software Engineering Research,
Management and Applications (SERA’06), D.K.
Baik, D. Primeaux, N. Ishii, and R. Lee, Eds.
IEEE, 2006, pp. 332-338.

M. Bahaj and J. Bakkas, “Automatic conversion
method of class diagrams to ontologies maintain-
ing their semantic features,” International Jour-
nal of Soft Computing and Engineering, Vol. 2,
No. 6, 2013, pp. 65-69.

A. Belghiat and M. Bourahla, “Transforma-
tion of UML models towards OWL ontologies,”
in 2012 6th International Conference on Sci-
ences of FElectronics, Technologies of Informa-
tion and Telecommunications (SETIT), 2012, pp.
840-846.

S. Hoglund, A.H. Khan, Y. Liu, and I. Porres,
“Representing and validating metamodels using
OWL 2 and SWRL,” in Proceedings of the 9th

[27]

[33]

[34]

Joint Conference on Knowledge-Based Software
Engineering, 2010.

K. Kiko and C. Atkinson, “A detailed com-
parison of UML and OWL,” University of
Mannheim, Fakultidt fir Mathematik und In-
formatik, Lehrstuhl fiir Softwaretechnik, Tech.
Rep. TR-2008-004, 2008.

J. Zedlitz and N. Luttenberger, “Data types in
UML and OWL-2,” in The Seventh International
Conference on Advances in Semantic Processing,
2013, pp. 32-35.

J. Zedlitz and N. Luttenberger, “Conceptual
modelling in UML and OWL-2,” International
Journal on Advances in Software, Vol. 7, No. 1
& 2, 2014, pp. 182-196.

OWL 2 Web Ontology Language Struc-
tural Specification and Functional-Style Syn-
tax (Second Edition), W3C, 2012. [Online].
https://www.w3.org/TR/owl2-syntax/

OWL 2 Web Ontology Language New Features
and Rationale (Second Edition), W3C, 2012.
[Online]. https://www.w3.org/TR/owl2-new-
features/

N. Noy and A. Rector, Defining N-ary Relations
on the Semantic Web, W3C, 2006. [Online]. https:
//www.w3.org/ TR /swbp-n-aryRelations/

W3C XML Schema Definition Language (XSD)
1.1 Part 2: Datatypes, W3C, 2012. [Online].
https://www.w3.org/TR/xmlschemall-2/
OWL 2 Web Ontology Language Primer
(Second Edition), W3C, 2012. [Online].
https://www.w3.org/TR /owl2-primer/

I. Dubielewicz, B. Hnatkowska, Z. Huzar, and
L. Tuzinkiewicz, “Domain modeling in the
context of ontology,” Foundations of Computing
and Decision Sciences, Vol. 40, No. 1, 2015,
pp. 3-15. [Online]. https://content.sciendo.com/
view/journals/fcds/40/1 /article-p3.xml

B. Hnatkowska, Z. Huzar, L. Tuzinkiewicz, and
I. Dubielewicz, “A new ontology-based approach
for construction of domain model,” in Intelli-
gent Information and Database Systems, N.T.
Nguyen, S. Tojo, L.M. Nguyen, and B. Trawinski,
Eds. Cham: Springer International Publishing,
2017, pp. 75-85.

I. Dubielewicz, B. Hnatkowska, Z. Huzar, and
L. Tuzinkiewicz, “Domain modeling based on
requirements specification and ontology,” in
Software Engineering: Challenges and Solutions,
L. Madeyski, M. Smialek, B. Hnatkowska, and
Z. Huzar, Eds. Cham: Springer International
Publishing, 2017, pp. 31-45.

https://research.ijcaonline.org/sedex/number1/sedex1002.pdf
https://research.ijcaonline.org/sedex/number1/sedex1002.pdf
https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/owl2-new-features/
https://www.w3.org/TR/owl2-new-features/
https://www.w3.org/TR/swbp-n-aryRelations/
https://www.w3.org/TR/swbp-n-aryRelations/
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/owl2-primer/
https://content.sciendo.com/view/journals/fcds/40/1/article-p3.xml
https://content.sciendo.com/view/journals/fcds/40/1/article-p3.xml

	Introduction
	Class diagrams in business and conceptual modelling
	Review process
	Research question
	Data sources and search queries
	Inclusion and exclusion criteria
	Study quality assessment
	Study selection
	Threats to validity

	Related work
	Search results
	Summary of identified literature

	UML class diagram and its OWL 2 representation
	Transformation of UML classes with attributes
	Transformation of UML associations
	Transformation of UML generalization relationship
	Transformation of UML data types
	Transformation of UML comments

	Influence of UML–OWL differences on transformations
	Instances
	Disjointness in OWL 2 and UML
	Concepts of class and datatype in UML and OWL

	Examples of UML–OWL transformations
	Example 1
	Example 2
	Example 3

	Tool support for validation and automatic correction of UML class diagrams
	Example 4
	Example 5
	Example 6

	Conclusions
	References

