
2020 volume 14 issue 1

2020 volume 14 issue 1

Editor-in-Chief
Lech Madeyski (Lech.Madeyski@pwr.edu.pl, http://madeyski.e-informatyka.pl)
Editor-in-Chief Emeritus
Zbigniew Huzar (Zbigniew.Huzar@pwr.edu.pl)

Department of Software Engineering, Faculty of Computer Science and Management,
Wrocław University of Science and Technology,
50-370 Wrocław, Wybrzeże Wyspiańskiego 27, Poland

e-Informatica Software Engineering Journal
www.e-informatyka.pl, DOI: 10.37190/e-inf
Editorial Office Manager: Wojciech Thomas
Typeset by Wojciech Myszka with the LATEX 2ε Documentation Preparation System

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
transmitted in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior written permission of the publishers.

© Copyright by Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2020

OFICYNA WYDAWNICZA POLITECHNIKI WROCŁAWSKIEJ
Wybrzeże Wyspiańskiego 27, 50-370 Wrocław
www.oficyna.pwr.edu.pl;
e-mail: oficwyd@pwr.edu.pl; zamawianie.ksiazek@pwr.edu.pl

ISSN 1897-7979

Print and binding: beta-druk, www.betadruk.pl

http://madeyski.e-informatyka.pl
http://www.e-informatyka.pl
http://dx.doi.org/10.37190/e-inf
http://www.oficyna.pwr.edu.pl
mailto:oficwyd@pwr.edu.pl
mailto:zamawianie.ksiazek@pwr.edu.pl
http://www.betadruk.pl

Editorial Board
Editor-in-Chief

Lech Madeyski (Wrocław University of Science and Technology, Poland)

Editor-in-Chief Emeritus

Zbigniew Huzar (Wrocław University of Science and Technology, Poland)

Editorial Board Members

Pekka Abrahamsson (NTNU, Norway)
Apostolos Ampatzoglou (University of
Macedonia, Thessaloniki, Greece)
Sami Beydeda (ZIVIT, Germany)
Miklós Biró (Software Competence Center
Hagenberg, Austria)
Markus Borg (SICS Swedish ICT AB Lund,
Sweden)
Pearl Brereton (Keele University, UK)
Mel Ó Cinnéide (UCD School of Computer
Science & Informatics, Ireland)
Steve Counsell (Brunel University, UK)
Maya Daneva (University of Twente The
Netherlands)
Norman Fenton (Queen Mary University
of London, UK)
Joaquim Filipe (Polytechnic Institute
of Setúbal/INSTICC, Portugal)
Thomas Flohr (University of Hannover,
Germany)
Francesca Arcelli Fontana (University
of Milano-Bicocca, Italy)
Félix García (University of Castilla-La
Mancha, Spain)
Carlo Ghezzi (Politecnico di Milano, Italy)
Janusz Górski (Gdańsk University
of Technology, Poland)
Tracy Hall (Lancaster University, UK)
Andreas Jedlitschka (Fraunhofer IESE,
Germany)
Barbara Kitchenham (Keele University,
UK)
Stanisław Kozielski (Silesian University
of Technology, Poland)
Ludwik Kuźniarz (Blekinge Institute
of Technology, Sweden)

Pericles Loucopoulos (The University
of Manchester, UK)
Kalle Lyytinen (Case Western Reserve
University, USA)
Leszek A. Maciaszek (Wrocław University
of Economics, Poland
and Macquarie University Sydney, Australia)
Jan Magott (Wrocław University of Science
and Technology, Poland)
Zygmunt Mazur (Wrocław University
of Science and Technology, Poland)
Bertrand Meyer (ETH Zurich, Switzerland)
Matthias Müller (IDOS Software AG,
Germany)
Jürgen Münch (University of Helsinki,
Finland)
Jerzy Nawrocki (Poznan University
of Technology, Poland)
Mirosław Ochodek (Poznan University
of Technology, Poland)
Janis Osis (Riga Technical University, Latvia)
Mike Papadakis (Luxembourg University,
Luxembourg)
Kai Petersen (Hochschule Flensburg,
University of Applied Sciences, Germany)
Łukasz Radliński (West Pomeranian
University of Technology in Szczecin, Poland)
Guenther Ruhe (University of Calgary,
Canada)
Krzysztof Sacha (Warsaw University
of Technology, Poland)
Martin Shepperd (Brunel University
London, UK)
Rini van Solingen (Drenthe University,
The Netherlands)
Miroslaw Staron (IT University
of Göteborg, Sweden)

Tomasz Szmuc (AGH University of Science
and Technology Kraków, Poland)
Iwan Tabakow (Wrocław University
of Science and Technology, Poland)
Guilherme Horta Travassos (Federal
University of Rio de Janeiro, Brazil)
Adam Trendowicz (Fraunhofer IESE,
Germany)
Burak Turhan (University of Oulu, Finland)
Rainer Unland (University
of Duisburg-Essen, Germany)
Sira Vegas (Polytechnic University of Madrit,
Spain)

Corrado Aaron Visaggio (University
of Sannio, Italy)
Bartosz Walter (Poznan University
of Technology, Poland)
Dietmar Winkler (Technische Universität
Wien, Austria)
Bogdan Wiszniewski (Gdańsk University
of Technology, Poland)
Marco Zanoni (University of Milano-Bicocca,
Italy)
Jaroslav Zendulka (Brno University
of Technology, The Czech Republic)
Krzysztof Zieliński (AGH University
of Science and Technology Kraków, Poland)

Contents

What Support do Systematic Reviews Provide for Evidence-informed Teaching
about Software Engineering Practice?

David Budgen, Pearl Brereton, Nikki Williams, Sarah Drummond 7
Technical Debt Aware Estimations in Software Engineering: A Systematic Mapping
Study

Paweł Klimczyk, Lech Madeyski . 61
SIoT Framework: Towards an Approach for Early Identification of Security
Requirements for Internet-of-things Applications

Ronald Jabangwe, Anh Nguyen-Duc . 77
Extending UML Use Case Diagrams to Represent Non-Interactive Functional
Requirements

Saqib Iqbal, Issam Al-Azzoni, Gary Allen, Hikmat Ullah Khan 97
System performance requirements: A standards-based model for early identification,
allocation to software functions and size measurement

Khalid T. Al-Sarayreh, Kenza Meridji, Alain Abran, Sylvie Trudel 117

e-Informatica Software Engineering Journal, Volume 14, Issue 1, 2020, pages: 7–60, DOI 10.37190/e-Inf200101

What Support do Systematic Reviews Provide
for Evidence-informed Teaching

about Software Engineering Practice?

David Budgen∗, Pearl Brereton∗∗, Nikki Williams∗∗∗, Sarah Drummond∗∗∗∗
∗Department of Computer Science, Durham University

∗∗School of Computing and Maths, Keele University
∗∗∗Centre for Electronic Warfare, Information and Cyber, Cranfield University

∗∗∗∗Department of Computer Science, Durham University
david.budgen@durham.ac.uk, o.p.brereton@keele.ac.uk, nikki.williams@cranfield.ac.uk,

Abstract
Background: The adoption of the evidence-based research paradigm by software engineering
researchers has created a growing knowledge base provided by the outcomes from systematic
reviews.
Aim: We set out to identify and catalogue a sample of the knowledge provided by systematic
reviews, to determine what support they can provide for an evidence-informed approach to teaching
about software engineering practice.
Method: We undertook a tertiary study (a mapping study of systematic reviews) covering the
period to the end of 2015. We identified and catalogued those reviews that had findings or made
recommendations that were considered relevant to teaching about industry practice.
Results: We examined a sample of 276 systematic reviews, selecting 49 for which we could clearly
identify practice-oriented findings and recommendations that were supported by the data analysis
provided in the review. We have classified these against established software engineering education
knowledge categories and discuss the extent and forms of knowledge provided for each category.
Conclusion: While systematic reviews can provide knowledge that can inform teaching about
practice, relatively few systematic reviews present the outcomes in a form suitable for this purpose.
Using a suitable format for presenting a summary of outcomes could improve this. Additionally,
the increasing number of published systematic reviews suggests that there is a need for greater
coordination regarding the cataloguing of their findings and recommendations.
Keywords: Systematic review, education, provenance

1. Introduction

Over the half-century since software engineering
became recognised as a distinct sub-discipline of
computing [1], a degree of consensus has emerged
about what it encompasses [2], as well as about
the skills and knowledge that are needed by soft-
ware engineers. For the latter, the ACM and
IEEE produced a set of curriculum guidelines in
2004 aimed at consolidating ideas about what

a software engineer should acquire from an un-
dergraduate education, and this was updated in
2015 after wide consultation across academia and
industry [3].

However, although there is fairly general
agreement about what a software engineer should
know, much less attention has been given to how
that knowledge might be obtained. Indeed, much
of our knowledge is still based upon “expert opin-
ion”, and although this is largely derived from

The work reported in this paper was partly undertaken when Nikki Williams was employed by Keele University.

Submitted: 23 August 2019; Revised: 16 January 2020; Accepted: 17 January 2020; Available online: 13 February 2020

8 David Budgen et al.

experience, it lacks rigour as the foundation for
what aspires to be an engineering discipline [4].
And, even when more systematically-acquired
evidence is available, this does not necessarily
mean that it will be readily accepted or adopted
by practitioners [5, 6].

This raises two related questions. The first is
concerned with how rigorous knowledge about
the effectiveness of software engineering proce-
dures might be derived (that is, how can we
identify what works or doesn’t work, and under
what conditions?). And then when we have such
knowledge, how can it most usefully be used for
educating students?

In many disciplines, the major source of such
knowledge is practice-related research, which is
usually derived from “field studies” of the effects
that arise from the use of some intervention. (For
software engineering, the interventions might be
the introduction of innovative technologies or
processes, such as the use of agile practices.)

In software engineering research, there has
been increasing use of empirical studies as
a means of obtaining knowledge about software
engineering practice. A comparison of the char-
acteristics of papers submitted to, and accepted
by, the ICSE conferences in 2002 and 2016 shows
a significant increase in the reporting of empirical
studies and the use of empirical models [7]. In
particular, while no papers reporting empirical
studies were accepted in 2002, this category made
up 30% of the accepted papers in 2016.

Researchers have also adopted the evidence-
based paradigm as a means of aggregating the
knowledge available from a set of “primary” stud-
ies that investigate a given topic, based upon the
use of the systematic review as its main tool [8].
This in turn has helped to create a growing knowl-
edge base of research findings about software
engineering procedures that should potentially
be able to inform teaching (and hence, implic-
itly, inform practitioners). In [8], the authors
suggested that adopting evidence-based software
engineering (EBSE) would potentially provide:
– “A common goal for individual researchers

and research groups to ensure that their re-
search is directed to the requirements of in-
dustry and other stakeholder groups.”

– “A means by which industry practitioners
can make rational decisions about technology
adoption.”

For the study reported here we consider teach-
ers and students to be additional stakeholders.
Teachers can be regarded as being direct benefi-
ciaries, as such knowledge can lend appropriate
authority to reinforce teaching about software
engineering topics. We view students as being
indirect stakeholders, largely benefiting through
the material presented by their teachers, rather
than through direct use of the findings from
systematic reviews.

To set this paper into context, we explain
here how it originated and how it relates to other
analyses that we have published. As experienced
teachers, we wondered whether knowledge de-
rived from the use of EBSE might be used in
support of our teaching about software develop-
ment practices. We envisaged that this support
would have a number of forms, but our main
expectation was that they might provide some
authoritative support for the use of particular
practices, or at least, an indication of when these
were likely to be effective (or otherwise). In ad-
dition we expected that we might obtain some
examples from experience about how or when to
adopt new technologies.

In order to identify the extent and forms of
knowledge about practice that was available, we
originally undertook a study of a sample of the
systematic reviews that were available up to the
middle of 2011, selected on the basis that their
topics related to practice, with our findings being
reported in [9]. Although that study identified
a set of potentially useful systematic reviews, in
trying to use these to inform our teaching, we re-
alised that they rarely presented their findings in
a readily-usable form. So, beginning in 2016, we
undertook a further study (reported here) that
extended the earlier one in two ways. Firstly,
we included systematic reviews published to the
end of 2015, so including more reviews that were
undertaken when their form had become more
established. Secondly, we have performed a more
comprehensive process of selection and analysis,
requiring that a review should not only cover
a topic relevant to practice, but also provide

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 9

topic-related findings that were supported by its
analysis of the available data.

While conducting this review, the problems
encountered in identifying both relevant informa-
tion about the processes followed in the reviews,
as well as about their findings, led us to use our
material to analyse and report on the ways that
systematic reviews in software engineering were
being reported [10] before writing a summary of
our findings (this paper). Our aim was to per-
suade authors and reviewers of the urgent need
to improve the quality of published reviews.

A separate question that arose was how ex-
tensively practitioners formed the participants in
the primary studies used in our set of 49 system-
atic reviews and to what extent these were con-
ducted in an industry setting (“field studies”)?
Addressing this involved further additional data
extraction, with the outcomes reported in [11].
We do discuss some of the findings from this anal-
ysis later, as they provide useful supplemental
information about the context of the knowledge
available from the systematic reviews.

We begin by examining the evidence-based
paradigm and the way that this has been employed
by other disciplines. We then examine how its use
has been adopted in software engineering; identify
the forms of knowledge systematic reviews can
provide; describe the design and conduct of our
own study; and report our findings. We also
examine the ways that other disciplines have used
such knowledge to inform their teaching, and
what we might learn from their experiences.

2. The evidence-based paradigm
and software engineering

Use of the evidence-based paradigm originated
in what has become known as Evidence-Based
Medicine (EBM), by which a medical practitioner
can draw upon the findings and recommendations
from systematic reviews to aid them in making
decisions about how to treat individual patients.
Some of its success, in terms of its widespread
adoption, derives from the nature of the clinical
studies used in the reviews. While these are
human-centric, the participants are usually recip-

ients of the treatment being studied, and so any
variation in the outcomes is likely to occur mainly
because of physiological differences among the
participants. This, together with the extensive use
of Randomised Controlled Trials (RCTs) – which
are field experiments with rigorous controls, allows
the findings from a set of primary studies to be
synthesised using statistical meta-analysis [12].
Use of such forms of analysis makes it possible to
assign a high level of confidence to the outcomes.

The evidence-based paradigm has also been
successfully adapted to the needs of other “so-
cial” disciplines (in which humans interact with
each other), including management, education
and psychology as well as to more general social
and health-related fields [13–15]. For these, other
forms of synthesis that may be more appropriate
to particular forms and mixes of primary studies
have been developed. An overview of the forms
that are potentially useful for software engineer-
ing is provided in [16], and in addition, a form
of synthesis that can aggregate qualitative and
quantitative evidence has been proposed for use
in software engineering research [17].

While the term evidence-based software en-
gineering (EBSE) is often used in analogy with
evidence-based medicine (EBM), this can lead
to inflated expectations. Rather than RCTs, em-
pirical research in software engineering employs
a mix of primary study forms that is actually
more typical of the social sciences. In addition,
the “treatment” used in software engineering
studies usually involves participants in actively
performing creative tasks related to software de-
velopment, rather than being passive recipients.
Since these tasks are likely to differ in detail
between studies, this makes it more difficult to
synthesise the data using forms such as statistical
meta-analysis. (Comparison with a number of
other disciplines using systematic reviews sug-
gests that the discipline most similar to software
engineering is that of Nursing and Midwifery
[18], which helps to highlight the “social” nature
of software engineering, where humans both in-
teract with each other, and also with (or via)
technology.)

For many disciplines, systematic reviews, are
apt to be commissioned by policy-makers and

10 David Budgen et al.

research agencies, and hence the topics studied
are likely to be ones considered to be of strategic
importance to that discipline and its practition-
ers. In addition, the task of searching for primary
studies will often be performed by trained librar-
ians [15]. In contrast, for systematic reviews on
software engineering topics:
– coverage of key topics is uneven (see Ap-

pendix B) and the choice of topics appears
to be almost entirely researcher-driven, with
little to indicate that professional bodies, re-
search agencies or industry have so far taken
much interest in identifying suitable topics;

– the quality of reviews is apt to be uneven, par-
ticularly with regard to the rigour with which
the primary studies are selected, categorised
and synthesised [19].

– reporting is apt to be poorly structured and
findings are not presented clearly [10];

– many studies use unnecessarily weak forms
of synthesis [16];

Together, these influence the form and quality
of the available knowledge.

3. The nature of software engineering
knowledge

In this section we consider what forms of knowl-
edge useful for teaching about software engineer-
ing practice can be provided from systematic
reviews.

3.1. The nature of the knowledge
provided from systematic reviews

The knowledge provided from any systematic
review can be expected to be organised around
the research question that the review is seeking
to answer, as well as whether this question is
concerned with issues related to research or to
practice. Three important aspects of this knowl-
edge are: the form in which the findings are
presented; the strength of evidence supporting
these findings; and how useful they are.

In terms of their usefulness for teaching, in
examining the reviews we selected, we have ob-
served that systematic reviews commonly provide

knowledge about practice in three different forms
(and obviously, the findings of any review may
consist of a mix of these).

The first way in which the presentation of the
findings is structured is concerned with knowl-
edge that has been derived from the experiences
of others, in the form of lessons that have been
derived about particular software engineering
activities. The investigation of the effects of user
participation in software development reported
in [20] offers a good example of a topic where
presenting qualitative knowledge about the ex-
periences of others may well be the most useful
form of knowledge to provide. Pedagogically, this
can be viewed as providing broader knowledge
about software engineering activities than can
usually be provided in the classroom, or through
practical exercises.

A rather different way of presenting knowl-
edge that has been derived from experience is to
provide a list of factors that should be considered
when undertaking some task or adopting a tech-
nique. A good example is provided by [21], where
the authors identify the factors that can make
for the effective adoption of global software de-
velopment practices. This type of knowledge can
provide more directly useable guidance, possibly
in the form of checklists, and hence can usefully
be used to supplement classroom teaching about
a given topic.

The third way to present knowledge is largely
concerned with providing guidance about choices
between different techniques. Such knowledge is
more quantitative in its nature, and may well be
involve ranking the different options in some way.
A good example of using such a form is provided in
the review by Dieste and Juristo [22] that assesses
the effectiveness of different requirements elicita-
tion techniques. From a pedagogical perspective,
where the findings are organised in this form, they
can be used to provide an authoritative basis for
choosing to use particular practices.

The usefulness of any systematic review is also
dependent upon the provenance for its findings
– that is, how far we can be confident that the
original primary studies are reliable and relevant.
One reason for systematic reviewers to perform
a quality check on the primary studies when per-

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 11

forming a systematic review is to help make some
assessment of their reliability, in order to inform
the process of synthesis. If they conclude that
a primary study was conducted well, this provides
some reassurance that including its findings in
a synthesis procedure will help with producing
sound findings from that process. This in turn pro-
vides scope for assessing the strength of evidence
supporting the findings from a review [23].

The issue of the relevance of the findings from
the primary studies used in a review is more chal-
lenging. In [24] this is defined as the “potential
impact the research has on both academia and
industry”, and the authors observe that the long
maturation period for technology makes it “infea-
sible to use the actual uptake of research results by
industry” as an evaluation tool. They propose an
evaluation model for relevance that is based upon
“potential for impact” and that uses four aspects:
subjects; context; scale; and research method.
Unfortunately, the reports of systematic reviews
rarely provide much detail about these charac-
teristics of the primary studies, and particularly
about their context and scale, so we were not able
to apply this model retrospectively in our analysis.

From the perspective of the teacher wishing
to use the findings as supplemental material,
the first aspect should require little more than
explaining to students about the nature of a sys-
tematic review, in order for them to understand
the nature of the evidence. An appreciation of
the second (and to some extent the third) as-
pect may require a rather fuller explanation of
the forms and limitations of empirical software
engineering studies. However, since few software
engineering systematic reviews provide any infor-
mation about the strength of evidence, our own
experiences suggest that this explanation need
not be particularly detailed or extensive.

3.2. Categorising software engineering
knowledge

Categorising and organising software engineering
knowledge has been the goal of a number of ini-
tiatives. ACM and IEEE have jointly sponsored
two that are relevant to this paper.

– The Software Engineering Body of Knowledge
(SWEBoK) [2].

– The software engineering undergraduate cur-
riculum guidelines (SE2014), and within this,
the Software Engineering Education Knowl-
edge (SEEK) categorisation of relevant knowl-
edge [3].

The first of these is largely concerned with iden-
tifying the topics that collectively comprise the
activities that make up software engineering
practices, and where possible, identifying good
sources of material related to these. So it can be
considered to provide an expert interpretation
of the nature of software engineering itself.

The second is concerned with identifying
what an undergraduate studying software en-
gineering should know, and hence the SEEK has
been used in this paper to categorise the system-
atic reviews identified within the tertiary study.
Even where a student is not studying software
engineering as the major element of a degree,
these are still topics that they need to be aware
of, although perhaps in less detail than would be
appropriate for a specialist course.

Table 1. Knowledge Areas used to categorise the
SEEK

Knowledge Area Key
Computing Essentials CMP
Mathematical and Engineering Fundamen-
tals

FND

Professional Practice PRF
Software Modelling and Analysis MAA
Requirements Analysis and Specification REQ
Software Design DES
Software Verification and Validation VAV
Software Process PRO
Software Quality QUA
Security SEC

As a framework, while the SEEK can appear
to be organised around technology issues rather
than “social” issues, this impression is misleading.
Table 1 lists the major Knowledge Areas (KAs)
used to structure the 2014 version of the SEEK.
Each Knowledge Area is organised as a set of
Knowledge Units (KUs) and both in these and in
the guidelines there is quite extensive emphasis

12 David Budgen et al.

upon the importance of more “social” aspects
of software engineering such as the human in-
teractions that occur in agile development and
groupwork. Also, as emphasised in the Curricu-
lum Guidelines, the Knowledge Areas are not
meant to be templates for modules.

4. Research method

In order to answer the question posed in the title
of this paper, we divided this into two separate,
but linked, research questions, as follows.
RQ1: Which systematic reviews published up to

the end of 2015 produced findings that were
relevant to teaching about practice in software
engineering?

RQ2: What guidance did each systematic review
provide that could help a student (or practi-
tioner) to understand how to make an effective
choice or use of a technology or practice?

To answer RQ1, we conducted a systematic map-
ping study of published systematic reviews (a ter-
tiary study). We then used the Knowledge Areas
from the SEEK to categorise those that were
selected as being relevant. To answer RQ2, we
analysed the outcomes from each of the system-
atic reviews that we included, in order to identify
relevant findings and explicit recommendations.
As a point of clarification regarding RQ2, we
did expect that for students, the process of un-
derstanding this guidance was something that
would usually be mediated by a teacher. Indeed,
for both students and practitioners, we expected
that the findings of a review would mainly pro-
vide “help” by identifying those circumstances
where a technique or practice might be most
effectively employed (or where it would be inap-
propriate to employ it).

In the rest of this section, we explain our
choices for the procedures required to answer these
two questions, and then the following section de-
scribes how these procedures were implemented.

4.1. Scope of the study

For a systematic review, the aim should be to
find all of the primary studies that can provide
findings relevant to the topic of the review, in

order to avoid bias. Because a mapping study has
the purpose of creating a “map” of the knowledge
available about a topic, rather than synthesising
its inputs, it does not usually need to be quite
as comprehensive. Our aim, as posed in the title
and RQ1, is concerned with establishing whether
teaching about practice could be supported by
the findings of systematic reviews. We therefore
considered that our question could be answered
from a suitably large sample of systematic reviews.

We also restricted the scope of our study to
those systematic reviews for which the findings
were published in journals. The page constraints
of conference proceedings often means that re-
ports of systematic reviews have to omit impor-
tant details. Additionally, while many systematic
reviews are first reported in conference proceed-
ings, it is quite common for a later and fuller ver-
sion to also be published as a journal paper. Since
we were concerned with finding those systematic
reviews that were reported in sufficient detail to
be of use in making decisions and choices, we felt
that it was appropriate to constrain our study
to reviews published in journals. It was also con-
sidered that this would make our final selection
more readily accessible for teachers, students and
practitioners.

For the period to the end of 2009, we se-
lected the journal papers from three existing
“broad” tertiary studies to form our set of can-
didate systematic reviews [25–27]. These studies
used a mix of manual and electronic searching
to achieve a comprehensive degree of coverage
for that period. As no equivalent sources were
available for the period January 2010 to end 2015
and the number of published systematic reviews
was rapidly increasing, we searched five major
software engineering journals for those system-
atic reviews published in this later period. These
were IEEE Transactions on Software Engineer-
ing, Empirical Software Engineering, Information
and Software Technology, Journal of Systems and
Software, and Software Practice and Experience.

Our choice of these journals was made on the
basis that these were major publishers of sys-
tematic reviews addressing software engineering
practices. One of the journals (Information and
Software Technology) also had a special section
for systematic reviews.

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 13

4.2. The inclusion/exclusion criteria

We required that any reviews included in our
study should address a topic relevant to practice
(rather than research) and that these topics should
also be relevant to “introductory” – as opposed to
“advanced postgraduate” – teaching. (Since our
model for this was based on the SEEK, it could be
considered to cover anything that would be ma-
terial for an undergraduate degree programme.)
In addition the review needed to provide some
knowledge about practice that was explicitly
supported by a synthesis of the findings of the pri-
mary studies. The resulting inclusion/exclusion
criteria for the study are described in Table 2.

To be included, a systematic review needed to
meet all of the inclusion criteria, while it could be
excluded if it met any of the exclusion criteria. Us-
ing the SEEK gave us a reasonably clear measure
of the set of topics that we considered appropriate
for answering our research question. In particular,
even where a review might meet all of the inclu-
sion criteria, if we considered its topic as inappro-
priate for an introductory course, it could still be
excluded (Excl-4). Typically such reviews were on
relatively advanced topics that combined differ-
ent aspects of software engineering, such as “secu-
rity in process-aware information systems” [28].

4.3. Searching for systematic reviews

Our decisions about scope, as described above,
meant that the searching process was relatively
straightforward. The set of 120 papers from the

three broad tertiary studies were listed in the re-
ports, and for the journals we employed a manual
search of index sections. We complemented the
manual search by using an electronic search to
check for any systematic reviews that might have
been missed (not all systematic reviews have titles
that explicitly identify them as being reviews).

4.4. Quality assessment

Quality assessment of systematic reviews is com-
monly performed by using the DARE criteria
(Database of Attributes of Reviews)1 that were
originally devised for use in clinical medicine. In
its current form, the DARE assessment is based
upon the following five questions.
1. Are the review’s inclusion and exclusion cri-

teria described and appropriate?
2. Is the literature search likely to have covered

all relevant studies?
3. Did the reviewers assess the quality/validity

of the included studies?
4. Were basic data/studies adequately de-

scribed?
5. Were the included studies synthesised?

For this study we adopted the use of DARE
as a means of providing an assessment of how
thoroughly each systematic review had been per-
formed, and hence some indication of how reliable
the findings from it might be. (This was also em-
ployed in the three broad tertiary studies.) In
doing so we also adopted the widely-used conven-
tion of scoring each question using a three-point
scale: yes (1); partly (0.5); no (0), with the max-

Table 2. The Inclusion and exclusion criteria adopted for this study

Criteria
Inc-1 The paper is published in a journal and either included in the three broad tertiary studies or in

one of the five journals (depending on publication date).
Inc-2 The topic of the paper is related to practice and is considered appropriate for use with introductory

teaching of SE, as defined by the SEEK.
Inc-3 The paper contains findings and/or recommendations that are explicitly supported by the

reviewers’ analysis.
Excl-1 Systematic reviews addressing research trends.
Excl-2 Systematic reviews addressing issues related to research methodology.
Excl-3 Mapping studies with no synthesis of data.
Excl-4 Systematic reviews that address topics not considered to be relevant for introductory teaching

of SE.

1http://www.crd.york.ac.uk/CRDWeb/AboutPage.asp.

14 David Budgen et al.

Table 3. Interpretation of the DARE Criteria used for the tertiary study

Criterion Score Interpretation
Inclusion and exclusion yes The criteria used are explicitly defined in the paper.

partly The inclusion/exclusion criteria are implicit.
no The criteria are not defined and cannot be readily inferred.

Search coverage yes The authors have searched four or more digital libraries and included
additional search strategies OR identified and referenced all journals
addressing the topic of interest.

partly Searched three or four digital libraries with no extra search strategies
OR searched a defined but restricted set of journals and conference
proceedings.

no Searched up to two digital libraries or an extremely restricted set of
journals.

Assessment of quality yes The authors have explicitly defined quality criteria and extracted them
from each primary study.

partly The research question involved quality issues that are addressed by the
study.

no No explicit quality assessment of individual papers has been attempted.
Study description yes Detailed information is presented about each study.

partly Only summary information is presented about the studies.
no Details of the studies are not provided.

Synthesis of studies yes The authors have performed a meta-analysis or used another form of
synthesis for all the data of the study.

partly Synthesis has been performed for some of the data from some of the
primary studies.

no No explicit synthesis has been performed (as in a mapping study).

imum score then being 5.0. Table 3 explains how
the scoring was interpreted for the DARE criteria
in the case of this study.

For each of the DARE questions, a score of
“no” was awarded where there was an absence of
information (apart from “search coverage” where
we had defined a lower bound). Likewise, a “yes”
indicated that the description or related opera-
tions for that criterion exceeded some threshold.
A score of “partly” indicated that, while some-
thing was provided, it might only be for some of
the primary studies (say), or that it was provided
in some aggregate form. Hence a rating of “partly”
could be interpreted as “present but incomplete”.

We should also note that DARE is only con-
cerned with the systematic review process and
whether these activities have been performed,
rather than how well they have been done. How-
ever, until we have better reporting of systematic

reviews performed in software engineering, it does
not seem practical to employ some of the other
forms of assessment discussed in [23] and [29].

4.5. Data extraction

Our inclusion criteria, as summarised in Table 2,
required that we should be able to identify find-
ings and recommendations for any systematic
review that was to be included. This stemmed
from a concern that, to be of use, a study had
to present results that end-users could readily
employ. For the purpose of data extraction, we
used the following descriptions.
– A finding provides knowledge about the topic

that an end-user might find useful in order
to gain knowledge about the topic2. However
it is not of such a nature, or accompanied by
such a degree of confidence, as to be able to

2In [10] we used the term “conclusion” rather than “finding”. Upon reflection, we felt that this could be ambiguous
in this context, and so have adopted the use of “finding” in this paper.

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 15

Table 4. Core data extraction from systematic reviews

Item Description
1. Bibliographic information (title, authors, publication details).
2. Our scores for the DARE criteria. (As interpreted in Table 3).
3. Data about any quality assessment performed in the systematic review for the primary studies,

including details about any checklist used for this.
4. Details of how the quality scores from Item 3 were actually used in the systematic review.
5. The size and nature of the body of evidence used in the review (numbers and types of primary

study).
6. The context relating to the body of evidence: details of participant types, period covered by the

searching, search engines used, details of any manual searches, use of snowballing, number of studies
retained at each stage of inclusion/exclusion.

7. Any findings that are reported, or that could be derived from the later sections of the paper.
8. Any recommendations reported or that could be derived.

act as the source of explicit advice about good
or undesirable practice related to that topic.

– A recommendation provides an operationali-
sation of a finding that provides deeper under-
standing and that can be taken into consider-
ation when making decisions about practice.
So if possible, a recommendation should be
accompanied by some measure of its strength,
derived from the evidence available from the
systematic review.
Because the presence of these could only be de-

termined with certainty at the stage of data extrac-
tion, we accepted that some decisions about exclu-
sion would occur during data extraction. The data
extracted from each study is itemised in Table 4.

5. Conduct of the study

The study was conducted according to the plan,
and this section provides some details about the
procedures followed as well as the outcomes.

Because there was some overlap between the
set of systematic reviews selected for our earlier
study [9], for brevity when comparing the two
studies, we refer to that study as EPTS1 (Edu-
cation and Practice Tertiary Study 1), and refer
to this study as EPTS2.

5.1. Study identification

As the set of papers found by the three broad
tertiary studies was already determined, search-
ing was only necessary for the papers from the

five journals published in the period 2010–2015.
The manual search process was conducted by
one of the authors (DB) and involved reading
through the contents pages of the five journals
examining titles of papers, and where necessary,
also inspecting the abstracts.

To complement the manual search, an elec-
tronic search was also performed by an inde-
pendent researcher. This was undertaken in two
stages. In the first of these, covering the period
2010–2014, the Scopus digital library was used
to perform a forward citation analysis of six pa-
pers that discussed the principles of EBSE and
systematic reviews (listed in Table 5). This was
performed in April 2016. The papers identified
as being systematic reviews or mapping studies
and published in the five journals were compared
with the papers that had been found by man-
ual search. However, this identified a large num-
ber of false positives, and for papers published
in 2015, this problem became much greater. So
for the second stage (period) for 2015, Scopus
was searched using the terms: TITLE-ABS-KEY
(“systematic literature review” OR “systematic
review” OR “systematic mapping study” OR
“mapping study”) AND DOCTYPE (ar OR re)
AND PUBYEAR = 2015 AND (LIMIT TO (SUB-
JAREA, “COMP”)). The results from this were
sub-setted to select studies from each of the five
journals and the papers that were identified as
being mapping studies and systematic reviews
were compared with the papers found by the
manual search. This second search took place
in May 2016.

16 David Budgen et al.

Table 5. Papers used for forward citation analysis in Scopus

Title Reference
Evidence-Based Software Engineering [8]
Evidence-Based Software Engineering for Practitioners [30]
Procedures for Undertaking Systematic Reviews [31]
Guidelines for Performing Systematic Literature Reviews in Software Engineering [32]
Lessons from Applying the Systematic Literature Review Process within the Software Engi-
neering Domain

[33]

Systematic Review in Software Engineering [34]

The manual search identified 140 papers and
the electronic search added a further 16, giving
a total of 156 systematic reviews from searching
the journals. All studies were allocated an index
number, those from the broad tertiary studies
being numbered #1–120, and those from the
journals #121–276.

Our sources are described in Table 6. For ease
of reference, we have labelled these as Source-set1
and Source-set2. We have also indicated the num-
ber of papers obtained from each of these sources.

Table 6. Details of the sources used

Period Sources Count
2004–2009 TS1: Tertiary Study 1 [25] 20
(Source-set1) TS2: Tertiary Study 2 [26] 33

TS3: Tertiary Study 3 [27] 67
120

2010–2015 IEEE Transactions on
S/W Eng.

13

(Source-set2) Empirical Software Engi-
neering

10

Information and Software
Technology

97

Journal of Systems and
Software

31

Software Practice and Ex-
perience

5

156

5.2. The inclusion-exclusion process

The process of inclusion/exclusion was performed
in two stages. This was because the relevance of
the topic could be fairly easily determined from
the title and abstract, whereas determining the
availability of appropriate findings and recom-

mendations (Inc-3) did require that the complete
paper had to be read.

In the first stage the two criteria used were
whether or not a study was a systematic review,
published in a journal, that addressed a potentially
relevant topic (Inc-1 and Inc-2). The studies that
had earlier been included in EPTS1, published in
the period up to mid-2011 and described in [9],
had already been identified as meeting the second
criterion, and so the only action required was
to remove those published in conferences. Hence
a full selection process was only performed for the
studies with index values #146–276, which were
those published from mid-2011 onwards and hence
had not been used in EPTS1. This was performed
by all four authors, working in different pairings
that were allocated on a random basis. The only
exceptions were the papers for which two of us (DB
and PB) were authors, which were assessed by the
other two reviewers. If the reviewers were unable
to agree on exclusion of a paper, it was retained for
the second stage. Using the Fleiss’ Kappa [35] to as-
sess the level of rater agreement for this first stage,
as we were using multiple raters, produced a score
of 0.490, which indicates moderate agreement,
falling into the band of values usually considered
as being acceptable (“fair to good”) [36].

The second stage was combined with the pro-
cess of data extraction, which was based upon
the data extraction model described in Table 4.
This was applied to all of the reviews identified
from the first stage, and all data extractions were
performed by two members of the team, working
independently, who then resolved any differences
to produce an agreed dataset for a review.

Studies were only retained at this stage if we
could identify clear findings and/or recommenda-
tions that could be linked to the data extracted
as part of the systematic review (criterion Inc-3).

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 17

Source-set1

Source-set2

Tertiary Studies

TS1

TS2

TS3

120

156Manual search
+

Electronic check

Selection
performed
for EPTS1

Remove
conference

papers

Data
extraction
and further
check for
relevance

Dataset1

11
43 18

Selection
based on
potential

relevance

Data extraction
and further
check for
relevance

Dataset2

37
74

11

37

2004-2009

2010-2015

Figure 1. The overall selection process (TS1–TS3 are the three tertiary studies)

Some papers originally included in EPTS1 were
excluded in this stage, on the basis that they had
inadequate findings or recommendations. Figure 1
provides an overview of the overall process and
resulting numbers. We have referred to the reviews
selected from Source-set1 as Dataset1, and those
from Source-set2 as Dataset2.

Because identification of the findings and
recommendations from the systematic reviews
was often a complex process (elements of these
were apt to be spread around the final sections
of a paper), we performed a further check upon
the reliability of our interpretation. For each
systematic review we tried to contact the desig-
nated corresponding author by e-mail and asked
them to comment on our interpretation of the
outcomes.. Where this was no longer a valid
address, we then tried contacting any of the
authors for whom we could find a suitable e-mail
address. In only two cases were we unable to trace
any of the authors. We received 27 responses,
all of which were generally in agreement with
our interpretation, with 16 of them suggesting
changes of wording, with all of these being minor.

The final set used in this study (EPTS2) con-
tained 49 reports of systematic reviews, listed in
Appendix A. Because the data for one system-
atic review was used for two analyses (#54 and
#118), both of which met the inclusion criteria,
there were actually 48 sets of primary studies.

5.3. Quality assessment

An assessment against the DARE criteria, using
the interpretations provided in Table 3 was per-

formed as part of the process of data extraction,
and using the same randomly-allocated pairings
of reviewers.

5.4. Categorisation against the SEEK

To categorise the systematic reviews against the
SEEK two of the reviewers (DB and PB) per-
formed another analysis of the reviews after all of
the data extractions had been completed. Again,
our argument for doing this as a separate analysis,
as against performing it as part of data extraction,
was largely a matter of ensuring greater consis-
tency of interpretation. It was considered that
this would be more easily achieved if the whole
set of studies was categorised in a single process.

For each study we determined both the most
appropriate Knowledge Area (summarised in Ta-
ble 1) and also what we considered to be a suitable
assignment to the more detailed Knowledge Unit
within this. While for some studies the most appro-
priate KA and KU values were relatively obvious,
many did require quite extensive discussion to
determine an appropriate allocation as inevitably,
the topic of a systematic review and its findings
may well span more than one KA or KU. Indeed,
the nature of the findings may be more important
than the topic of the review in terms of determining
how it should most appropriately be categorised.

5.5. Further data extraction

As noted in Section 1, we have performed further
analyses of the 49 systematic reviews. These are
reported in [10] and [11] and involved some addi-

18 David Budgen et al.

Table 7. Additional data extraction from systematic reviews

Item Description
9. Whether and how any quality scores derived for the primary studies were used (if at all).

10. The form(s) of synthesis used in the study, and whether these classifications were made by the
authors of the systematic review or by us. Categories used were: meta-analysis, narrative synthesis,
meta-ethnography, grounded theory, cross-case analysis, thematic analysis, vote counting, and
“other”. The definitions of these were taken from [16].

11. The forms of primary studies used, where the primary studies were performed; who conducted
these, and who formed the participants (students or industry practitioners) or what sources of data
were used (industry or artificial).

tional data extractions. These were performed by
two of us (DB and PB) and are summarised in
Table 7. Some of this supplemental information is
included in Appendix B. We should note that for
both of these, the process of study selection was
as reported here. So, while they investigated fur-
ther questions about reporting and provenance,
their analyses were limited to providing answers
related to studies about software engineering
practice.

6. The findings – What knowledge
is available?

To present the outcomes from the process de-
scribed in the previous sections, we begin by
providing an overview of all of the studies. We
also look at some of the supplementary infor-
mation about these, with particularly regard to

such aspects as provenance. We then look at
the studies in more detail, and in particular,
present the findings and recommendations that
were extracted for each one. These are grouped
under the different SEEK headings, enabling us
to also comment on the extent of the available
knowledge for each heading.

6.1. Summary of the systematic reviews

As the total number of studies is quite large, we
have presented the summary of the findings for
the two datasets separately in Tables 8 and 9.
This is largely a convenience for presentation,
although it also helps distinguish the reviews
that were undertaken when the practices for sys-
tematic reviews in software engineering were less
well established. Both are described using the
same format. Each entry is described in terms
of its index number (#1–#276) as used in this

Table 8. Details of the systematic reviews included in this study: Dataset1 (2004–2009)

No. Period Topic and Citation SEEK DARE Primary
covered KA Studies

ind. total
52 unclear Motivations for adopting CMM-based SPI [37] FND 2.5 49 49
54 1980–6/2006 Motivation in software engineering [38] PRF 5.0 79

118 (as 54) Models of motivation [39] PRF (as 54) (79)
15 1992–2002 Capture-recapture in s/w inspections [40] VAV 1.5 1 25
66 1996–2007 Search-based non-functional testing [41] VAV 4.5 17 35
82 1969–2006 Regression test selection techniques [42] VAV 4.5 4 36
8 to 2006 Estimation of s/w development work effort [43] PRO 1.0 14 16

22 unclear Assessment of development cost uncertainty [44] PRO 2.5 40
39 1994–2005 Benefits of software reuse [45] PRO 3.5 11 11
50 1996–3/2006 SPI in small and medium s/w enterprises [46] PRO 4.0 45 45
84 to 2007 Effectiveness of pair programming [47] PRO 4.0 5 19

102 1995–2005 Managing risks in distributed s/w projects [48] PRO 2.5 72 72

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 19

Table 9. Details of the systematic reviews included in this study: Dataset2 (2010–2015)

No. Period Topic and Citation SEEK DARE Primary
covered KA Studies

ind. total
135 1980–2008 Antecedents to personnel’s intention to leave [49] PRF 3.0 72 72
246 2003–4/13 Newcomers on OSS projects [50] PRF 3.5 20 20
167 2006–2011 Evaluating cloud services [51] VAV 4.0 82 82
197 to 10/2011 Software fault prediction metrics [52] VAV 4.5 81 106
205 2000–2011 Test-Driven Development [53] VAV 4.5 22 41
252 2002–2013 Metrics in Agile/Lean development. [54] VAV 3.5 30 30
124 1970–2007 Characterising s/w architecture changes [55] DES 3.5 130
130 1997–2008 Aspect-oriented programming [56] DES 4.5 6 22
154 1995–2009 Software design patterns [57] DES 2.0 11 18
123 unclear Domain analysis tools [58] MAA 3.5 7 19
126 1989–2006 Does the TAM predict actual use? [59] MAA 5.0 79
146 2000–2010 Dependency analysis solutions [60] MAA 2.5 38 65
155 2000–2010 Fault prediction performance [61] MAA 4.5 35 36
134 to 3/2005 Elicitation techniques [22] REQ 5.0 7 32
161 1993–2011 Stakeholders for requirements elicitation [62] REQ 4.5 42 42
259 1992–2/14 Use case specifications research [63] REQ 4.0 27 119
219 to 2012 OO measures and quality [64] QUA 4.5 33 99
121 2000–2007 Global software engineering [21] PRO 3.0 37 56
138 to 2009 Measuring and predicting software productivity [65] PRO 4.5 25 38
150 to 6/2010 Agile product line engineering [66] PRO 3.5 14 39
157 to 2/2011 Test-Driven Development [67] PRO 4.0 10 37
160 to 4/2009 Reconciling software development methods [68] PRO 2.5 42 42
174 unclear Industrial use of software process simulation [69] PRO 3.5 87 87
175 to mid-2008 Selecting outsourcing vendors [70] PRO 3.5 77 77
193 to 7/2010 Social software for global software dev. [71] PRO 4.0 61 84
215 to 12/2013 Software development in start-ups [72] PRO 4.5 30 43
217 1997–2011 Influence of user participation [20] PRO 3.5 82 82
222 1990–2012 The Kanban approach [73] PRO 4.0 37 37
228 1997–1/08 Software process assessment [74] PRO 2.5 22 22
236 2001–2013 Global team dispersion [75] PRO 4.5 40 43
239 to 2011 Using CMMI with Agile [76] PRO 4.5 59 60
241 1980–2012 User-involvement and success [77] PRO 4.5 87 87
244 1990–2012 Development effort estimation [78] PRO 5.0 61 61
249 2002–10/12 User-centred agile development [79] PRO 4.5 26 83
260 to 5/15 Use of SE practices in science [80] PRO 2.5 43
268 1996–2/08 Product derivation support [81] PRO 2.0 118
276 1996–10/13 Adopting SPL [82] PRO 3.0 31 31

study, the period covered by the search in the
systematic review, its topic, and reference. The
tables also provide some of the key information
about each review: the SEEK Knowledge Area
(KA) it has been assigned to (the keys we use
were provided in Table 1); the DARE score we
derived for the study; the number of primary
studies that we could identify as being either
explicitly or implicitly conducted in an industry
setting or making use of industry participants;
and the total number of primary studies.

The issue of the provenance of the primary
studies is discussed in more detail in [11], where
we have categorised the context for the primary
studies used in each systematic review as far as
we were able, based upon the available informa-
tion. Two key points from this are worth repeat-
ing here. The first is that for those systematic
reviews where we could not determine whether
some of the primary studies were explicitly or
implicitly conducted in an industrial setting, it is
highly probable that many of these were actually

20 David Budgen et al.

Table 10. Counts of reviews for each Knowledge Area

KA Topic Dataset 1 Dataset2 Total
(up to 2009) (2010–2015)

FND Fundamentals 1 – 1
PRF Professional Practice 2 2 4
VAV Verification and Validation 3 4 7
DES Design – 3 3
MAA Modelling and Analysis – 4 4
REQ Requirements Analysis/Specification – 3 3
QUA Software Quality – 1 1
PRO Software Process 6 20 26
Totals 12 37 49

Table 11. Forms of guidance provided by reviews

Type Systematic Reviews
FND PRF VAV DES MAA REQ QUA PRO

Experience – – #167,
#252

#124,
#154

#123,
#146 #259 – #39, #50, #174, #193, #222,

#239, #260, #102

Lists of Factors #52
#54,
#118,
#135

– – #155 – –
#160, #276, #84, #215, #236,
#241, #121, #244

Comparisons – –
#15,
#66,
#197

#130 – #134 #219 #8

industry-related, but the lack of detail meant that
we simply could not tell. The second point is that
what was considered to be an acceptable primary
study in terms of the inclusion/exclusion criteria
used in the review, and the way that these were
interpreted, did vary quite considerably. Some re-
views included a number of non-empirical reports
among the primary studies, as well as papers
that were classified as “opinion”, “experience”
and even “theory”. So while other characteristics
such as DARE scores might usefully be compared
across a set of systematic reviews, it is definitely
not appropriate to make comparisons between
the numbers for each type of primary study as
reported by different systematic reviews.

The answer to RQ1 (which systematic reviews
produced findings relevant to teaching about
practice?) is provided by the entries in Tables 8
and 9. Overall, as indicated, we were able to iden-
tify 49 systematic reviews (from 276) that con-
tained findings considered to be of use in teaching
about software engineering. In the tables, the
systematic reviews have been grouped under the
SEEK Knowledge Areas, which also highlights

the uneven distribution of reviews across the
KAs. Table 10 gives the counts of the reviews
categorised under each KA. The large proportion
categorised as PRO arises in part because much
of what we do in software engineering involves
processes. Many of the systematic reviews can be
described as investigating “best practice”, where
this may relate to testing, design, etc., and these
ended up being categorised as PRO wherever
we concluded that the emphasis was more upon
practice rather than the technology involved.

The answer to RQ2 (what guidance did each
systematic review provide?) is contained in the
fuller descriptions of the findings and recom-
mendations, together with their context, pro-
vided in Appendix B. As discussed earlier, we
observed that systematic reviews provide guid-
ance in a number of forms, largely depending
upon the research question being addressed by
the review. In Table 11 we identify those reviews
providing each of the three types of guidance
(experience, lists of factors, and comparisons).
Inevitably, the findings of reviews do not always
fall exactly into one of these categories, and so

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 21

we have only included the 35 systematic reviews
where we collectively felt that the findings mainly
fitted one category. What Table 11 does show
though is that few reviews provided comparative
findings. VAV was the only KA for which there
was more than one systematic review (3 from 5)
providing comparative findings, largely because
these were comparing testing practices that pro-
duced deterministic outcomes concerned with
whether or not a test was successful. (Many as-
pects of software engineering, such as analysis
and design, address “ill-structured” problems
[83], and so rarely provide true-false results when
comparisons are being made.)

6.2. The findings and recommendations
for each review

In this subsection we present the material that
helps answer RQ2 (guidance “that could help
a student (or practitioner) to understand how to
make an effective choice or use of a technology
or practice”). For each review, we excluded any
findings that were related to research issues or
future developments. (Almost every systematic
review identifies a need for more and better pri-
mary studies.) Where possible, we have taken
the wording for the findings and recommenda-
tions directly from the systematic reviews. One
consequence of this is that the findings from differ-
ent systematic reviews are apt to be formulated
at different levels of granularity. However, given
the heterogeneity of the reviews, we considered
that it was impractical to present the findings in
a uniform matter.

In reporting the findings, we have also pro-
vided information about their provenance, wher-
ever this was available. This information is pro-
vided to aid the reader to make some assess-
ment of the confidence that they might choose
to place in the findings. However, as noted ear-
lier, the variation in different reviews between
the way that primary study types were inter-
preted, as well as in the inclusion/exclusion cri-
teria used, means that this information should
only be treated as indicative.

The details for each systematic review are
provided in Appendix B. For each review we pro-
vide the following information (where available)
1. The main SEEK knowledge area and knowl-

edge unit identified as appropriate.
2. The title of the systematic review.
3. Citation details.
4. The DARE score, reported on a scale of 0–5.
5. Any information available that might provide

an assessment of the strength of evidence for
the findings. Where possible, we report this
for each finding.

6. The number of primary studies. Where pos-
sible, we included the following additional
information:
– The count of primary studies that we

could explicitly identify as being con-
ducted in an industry setting.

– The count of primary studies that were
implicitly conducted in an industry set-
ting, based upon comments in the text.

– The count of primary studies conducted
in an “academic” setting (such as experi-
ments that used student participants).

7. The form(s) of synthesis used in the study,
noting that some did use more than one form
to answer different research questions. (We
did not attempt to classify the forms of syn-
thesis used in the earlier studies (Dataset1).)

8. The findings from the study.
9. The recommendations from the study.
10. Information about any response from the

authors to our request for them to check the
accuracy of our extraction of the findings and
recommendations.
We have grouped the reviews according to

their assignment to SEEK Knowledge Areas.
For each review, we suggest the most rele-
vant Knowledge Area and Knowledge Unit, ac-
cepting that many reviews do not fit neatly
into the SEEK model. We have also noted
where there are Knowledge Units (other than
those dealing with issues such as “concepts”)
for which there are no systematic reviews,
in order to help illustrate the overall degree
of coverage.

22 David Budgen et al.

6.2.1. Findings – fundamentals (FND)

Perhaps not surprisingly, there is only one sys-
tematic review categorised under this heading.
The key details for this are provided in Table B1.
The reason for including this review under FND
was that we felt it best fitted the Knowledge
Unit engineering economics for software. (This
was the only heading for this KA that did not
address “foundations”.)

In this review, the conclusions about the rea-
sons for adopting SPI (Software Process Improve-
ment) largely reinforce the claims made in the
literature.

6.2.2. Findings – professional practice (PRF)

We classified four systematic reviews under
this heading, described in Tables B2, B3, B4
and B5. Two of these (#54 and #118) used
the same dataset, but performed quite differ-
ent analyses of the material. We were also un-
able to determine a specific Knowledge Unit
for those two analyses, due to the wide span
of issues that they address. There were no sys-
tematic reviews directly addressing the KUs
communications skills or professionalism, al-
though some other systematic reviews did in-
directly address issues related to team and group
communication.

The first two reviews (which share a dataset)
address issues around what motivates software
engineers and provide details of factors consid-
ered relevant. Study #135 is also related to staff
(de)motivation, providing a set of related recom-
mendations. The remaining study addresses the
role that group dynamics plays when participat-
ing in open source development.

6.2.3. Findings – software verification
and validation (VAV)

There were seven reviews included under this
heading. These are summarised in Tables B6–B12.
These reviews provide a set of findings that span
three of the four Knowledge Units making up the
VAV Knowledge Area. We have no reviews for
one KU, problem analysis and reporting.

These reviews span a range of issues. Most
are concerned with techniques for selecting or
evaluating tests (such as those used for regres-
sion testing) and provide rankings of different
approaches that are likely to be directly applica-
ble to practice.

6.2.4. Findings – software design (DES)

Software engineering can be considered as very
much a “design” discipline, with “design think-
ing” permeating many activities, including of
course, software design. However, the creative
element involved in designing also means that
this Knowledge Area forms a significant chal-
lenge for empirical studies. There are only three
systematic reviews in this group, summarised in
Tables B13–B15, although they do address three
separate Knowledge Units. KUs with no con-
tributions are design concepts, human-computer
interaction design and design evaluation.

None of the reviews offer very strong con-
clusions, and in the only one that offered more
specific guidance about design choices (#130),
it was noted that these were based upon a low
strength of evidence.

6.2.5. Findings – modelling and analysis (MAA)

The four systematic reviews under this heading
are all classified as belonging to the same Knowl-
edge Unit (types of models). Given that the other
two KUs address foundations and fundamentals,
this is perhaps not surprising. Tables B16–B19
provide a summary of these reviews.

The reviews span a range of issues including
model reliability (#126) and observations about
fault prediction (#155). Collectively they do pro-
vide helpful guidance about some specific models
that are used by software engineers.

6.2.6. Findings – requirements analysis
and specification (REQ)

The three systematic reviews addressing require-
ments, described in Tables B20–B22, cover two
of the four Knowledge Units making up the REQ
Knowledge Area. In particular, we have no re-

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 23

views that address the KU requirements valida-
tion.

All the reviews provide useful insight into the
approaches used in requirements engineering. Re-
view #134 particularly provides a useful rating
of different elicitation techniques, and all three
offer useful insight.

6.2.7. Findings – software quality (QUA)

There is only one systematic review categorised
under this heading. The key details for this are
provided in Table B23. This was categorised
against the KU product assurance, and there
were no reviews covering the KU process assur-
ance. The review does offer useful insight into
the relative merits of a range of object-oriented
measures.

6.2.8. Findings – software process (PRO)

By far the largest set of reviews fall into this
Knowledge Area (which does form something of
a “catch-all”). We have grouped these by Knowl-
edge Unit (KU), although we should note that
only three of the five knowledge units were cov-
ered. There were no reviews classified as con-
figuration management (PRO.cm) or evolution
processes and activities (PRO.evo). Table B24
onward provide the details for this set of reviews.

With so many reviews being classified as be-
longing to this KA, it is difficult to provide a con-
cise and general summary of what is useful for
practice and teaching. Many of the reviews clas-
sified against project planning and tracking offer
quite specific and detailed advice that is highly
relevant to both teaching and practice. In con-
trast, for process concepts many of the findings
tend to be more in the nature of observations,
with process implementation coming somewhere
between these. Overall though, this set of reviews
do provide a fertile source of experience for others
to draw upon.

7. Discussion

We first consider what the outcomes from our
study tell us about the knowledge available from

this set of systematic reviews, and what the limita-
tions on this knowledge are. We go on to consider
how this knowledge might be used to inform teach-
ing (and hence in the longer term, practice) by
looking at how such knowledge is used in other dis-
ciplines, and hence what lessons might be learned.
We then consider the threats to validity for this
study, since we need to determine how trustworthy
our findings are, both in terms of the selection of
the systematic reviews, and also the findings and
recommendations that we extracted from them.
Finally, we consider how such knowledge can be
gathered more effectively and completely in the
future, and in particular, how it might be possible
to avoid having to do this retrospectively (and
laboriously), as in this tertiary study.

7.1. How good is the knowledge available
from systematic reviews?

In answering RQ1, we can identify 49 (out of 276)
systematic reviews that provide knowledge about
software engineering practice and hence might be
used to support teaching about software engineer-
ing. The systematic reviews that we identified also
span a range of topics when matched against the
SEEK, although they are not evenly distributed
between the Knowledge Areas. The extent, qual-
ity, and form of the knowledge is also unevenly
distributed, with some reviews providing find-
ings that provide quite useful information about
practice, while others are rather less specific.

In addition, few reviews provided any indi-
cation of the strength of evidence available to
support their findings from the primary studies.
Examination of the 49 reviews shows that only two
of them (#130 and #239) made use of the GRADE
approach to assess the strength of evidence for
their findings [84], as recommended in [23]. A few
of the others (#008, #022, #039, #197, #215) did
also make assessments through unspecified means.
Where provided, such assessments tend to indicate
a strength of evidence for recommendations as
being “low” (#130 and #239) or “modest” (#008).
However, as noted in the revised guidelines on
conducting systematic reviews in software engi-
neering [29], empirical software engineers “must
often make do with much weaker forms of study”
(than those working in other disciplines).

24 David Budgen et al.

It is also worth noting that some of the
more qualitative reviews, such as those identi-
fying “factors relevant to the adoption of X”,
are unsuited to the use of an approach such as
GRADE. A number of these did provide tables
that listed and enumerated the primary studies
that identified a particular factor as being sig-
nificant, with examples of this occurring in #54,
#161 and #205.

To address this question, we have identified
the set of systematic reviews which we consider
offer both useful and usable guidance about prac-
tice. To select these, each of the authors was
asked to rate each review, using the information
presented in Appendix B, and assigning one of
the following values to it.

“y” if the review was one that could be read-
ily used as an example when teaching;
“p” for reviews that might be used;

“x” if the review should not be used as an
example.
In performing the rating, each author was

asked to consider the following three factors.
1. The usefulness of the review: such that its

outcomes relate to a reasonably “mainstream”
topic that might be included in an introduc-
tory course on software engineering.

2. The usability of the review’s findings, whereby
these can provide some element of guidance
about what a software engineer might be ad-
vised to do in practice.

3. The quality of the review, largely based upon
the DARE score. It was suggested that a score
of ≥3.5 would be acceptable, while also bear-
ing in mind that earlier reviews often had less
conventional reporting structures.

Each review was considered on its own merit,
and there was no constraint upon how many

Table 12. Findings considered most useful and usable

Score Review KA.KU Table Knowledge Summary

4.0

#134 REQ.er B20 comparison

Examines knowledge elicitation techniques. Unstruc-
tured interviews generally perform as well as or
better than other forms such as introspective tech-
niques when considering effectiveness, efficiency and
completeness.

#236 PRO.imp B40 list of factors

Assesses impact of global dispersion for development
process and product quality. Lists key effects and
recommends issues to consider for such projects.

3.5

#197 VAV.fnd B10 comparison
Assesses different metrics for their usefulness in
fault prediction. Recommendations relate to project
characteristics.

#84 PRO.imp B34 list of factors Provides guidance on when to employ pair program-
ming.

#241 PRO.imp B42 list of factors
Analyses how far system success is related to user
involvement in development and the forms that this
takes.

3.0

#82 VAV.tst B8 Assesses the effectiveness of test selection techniques
for regression testing.

#205 VAV.fnd B11 Examines studies of test-driven development
(TDD).

#39 PRO.con B24 experience Identifies the benefits of software reuse based upon
its use in industrial studies.

#217 PRO.imp B38
Looks at the consequences of user participation and
involvement (UPI) in terms of project success in
industry projects.

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 25

reviews could be given a particular rating. (The
number of “y” ratings employed ranged between
10 and 17.)

Since our teaching experiences stemmed from
teaching different courses and we had different
interests within software engineering, we did not
expect to obtain close agreement from this process.
So a “score” for each review was computed by as-
signing each “y” to a value of 1.0, a “p” as 0.5, and
an “x” as 0.0, and then summing the four values.

Table 12 shows the index values for the
top-scoring reviews that emerged from this pro-
cess. We have also indicated the type of knowledge
provided by these reviews, where a single value
was available, and provided a summary of their
findings together with a reference to the Table in
the appendix where further details can be found.
While not too much weight should be placed upon
this relatively informal exercise, it is interesting
to note the predominance of reviews categorised
as VAV and PRO, as well as of reviews with
more “structured” findings in the form of lists
or comparisons. It does also indicate that, while
all 49 reviews were considered relevant enough
to be included in the tertiary study, few of them
achieved this quite basic quality threshold for the
three criteria, with “good” studies available for
only a few Knowledge Areas.

So, to answer the question posed in the head-
ing for the subsection (and RQ2), we can con-
clude that while suitable evidence-based material
is becoming available for use by teachers, only
a rather disappointingly small proportion of sys-
tematic reviews appear to have findings that can
readily be used.

However, there is one quite important caveat
that should be mentioned here. In the above
exercise we only considered direct use of this
material in teaching on introductory courses, en-
hancing what is covered in the textbooks. There
are however other ways of using this knowledge,
such as in course design (for example, using the
findings on the unsuitability of design patterns
for use by novices to determine how this topic
would be covered in a course). There is also scope
to use the findings differently on more advanced
courses, including postgraduate ones, or with

individual student projects. All of the 49 reviews
are viewed as having findings that are potentially
useful, but these may need to be used in different
ways. We address this issue further in the next
sub-section.

7.2. Using the findings to support
teaching and practice

Having identified a set of systematic reviews that
contain knowledge that is useful for teaching and
practice, this raises the question of how to use
this material? To help answer this we looked at
how other disciplines make use of such material.

Studies in education and healthcare have in-
vestigated how students and practitioners under-
stand and engage with the findings from em-
pirical research. This is relevant for software
engineering, since using the material from this
study would require familiarity with evaluation
practices and empirical studies.

In education, a ‘rapid evidence review’ inves-
tigated what is known about effective approaches
to school and teacher engagement with evidence
[85]. The report points out that knowledge mobil-
isation, the process of making research findings
more accessible and usable requires a supportive
infrastructure, including collaborations between
researchers and teaching professionals, interme-
diaries to translate evidence into tools and pro-
fessional bodies that provide leadership on the
use of evidence in education. Also, the review
suggests that evidence needs to be contextualised
and presented in clear and structured summaries
of effective approaches. This point is also made
by Goldacre3, who emphasises the need for better
support for the dissemination of research findings,
as well as by others, in relation to evidence based
healthcare, where structured abstracts and plain
language summaries are advocated [86, 87].

As well as learning the skills necessary to
acquire, appraise and apply evidence, students
and trainees can also benefit from acquiring an
awareness of ways to use this knowledge to bring
about change at the organisational level [88].
A discussion of this is beyond the scope of this
paper, however, desirable skills might include be-

3https://www.gov.uk/government/news/building-evidence-into-education

26 David Budgen et al.

ing able to identify where changes to guidelines
or to established practice are needed and where
change would be worthwhile.

The importance of leadership in enhancing
engagement with, and use of, research findings
is also a key message from a recent study on
evidence-informed teaching practice, published
by the UK’s Department of Education [89].

Viewed overall though, there seems to be little
guidance available on how to provide advice for
teachers about using empirical material such as
the knowledge-set from these systematic reviews
to support the way that software engineering
is taught. Clearly, as such knowledge accumu-
lates, this will present an increasingly important
pedagogical research question to be pursued.

7.3. Limitations of this study

We can identify a number of limitations upon the
outcomes from our tertiary study that stem from
the way that we performed the various elements
of the study. We discuss these here, together
with any factors that may help to alleviate their
effects.
1. One limitation is the way that we selected

the secondary studies (Dataset1 + Dataset2).
Since we were performing a mapping study,
we did not attempt to find all of the sys-
tematic reviews that were published during
the period covered by our tertiary study, and
confined ourselves to those reviews identified
in the three broad tertiary studies and then
the five software engineering journals, while
explicitly excluding any studies published as
conference papers. We did however conduct
a broad electronic search as a check that we
were not missing any significant source of sys-
tematic reviews, and we should observe that
eight of the 11 reviews included in Dataset1
were published in the five journals that we
used in the later part of the search.
Since we were investigating the use of system-
atic reviews in teaching, there was the pos-
sibility that relevant reviews could be found
in educational journals related to software
topics. A check of the papers published in
ACM Transactions on Computer Education

(TOCE) and IEEE Transactions on Educa-
tion (ToE) for the period 2004–2018 inclusive,
identified only five systematic reviews. All of
these were addressing pedagogical knowledge
rather than “topic’ knowledge and we could
not identify any papers related to the use of
evidence-based material in teaching.

2. In our original research protocol we selected
a cut-off date for inclusion as the end of 2015.
Because the processes of inclusion/exclusion
and data extraction were complicated by the
heterogenous nature of the selected set of
systematic reviews, and as changes in circum-
stances also meant that two members of the
team would not be available for this task, we
felt that we could not ensure that any ex-
tension would be consistent with the original
study, particularly regarding the interpreta-
tion for Inc-2 and Inc-3. As explained in §1
we also performed and published two other
analyses on this dataset, further delaying the
production of this paper. There is therefore
the possibility that in the time following our
cut-off date and submitting this paper, there
may have been some changes in the way that
systematic reviews have been reported, and
obviously, new topics will have been covered.
Informally, based upon our experiences over
this period reviewing systematic reviews as
well as performing some informal monitoring
of journal contents, we have not observed any
developments that would have significantly
affected our findings. It is also possible that
the balance of systematic reviews across the
SEEK KAs might have changed. However,
topics such as design and requirements elic-
itation still continue to present some real
challenges to conducting rigorous primary
studies [90], limiting the scope to perform
systematic reviews for those KAs.

3. When calculating the DARE score for a re-
view, our definition in Table 3 does not ad-
dress the question of whether or not the
search conducted by the reviewers was ade-
quate for the purpose of the systematic review.
While it would be desirable to make such an
assessment, we did not feel our knowledge
about the research areas related to the review

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 27

topics would allow us to do this in a consistent
manner.

4. The selection process that we used to iden-
tify relevant systematic reviews did require
an element of human interpretation, includ-
ing for inclusion criterion Inc-2 (relevance to
introductory teaching). We drew upon our
experience of teaching software engineering to
determine whether a review addressed a suit-
able topic, as well as using randomly allo-
cated pairs of team members for all aspects
of this part of the process, and discussing our
decisions.

5. Further interpretation was required for the
purpose of identifying the findings and recom-
mendations embodied in a review (criterion
Inc-3). The quality of reporting did not al-
ways assist with this [10], so as a check, we did
seek to consult the original authors wherever
possible. We received responses from approx-
imately half of these, with no-one suggesting
other than minor rewording or clarification,
which suggests that we managed to perform
this task fairly well.

6. Our supplementary data extractions were per-
formed by two of the authors, partly to ensure
consistency of interpretation. For our inter-
pretation of the synthesis methods adopted
in the 49 systematic reviews, we were able to
check a proportion of our decisions against
a baseline study [16].

7. For categorisation of the studies against the
SEEK we again used two members of the
team, to provide consistency in our alloca-
tions. Since many systematic reviews span
different knowledge areas, this is very much
an issue of interpretation, and we would cer-
tainly advise anyone seeking knowledge about
a topic to check that whether it appears as an
element in other studies (particularly those
categorised as PRO).

8. Our informal assessment of how “useful” re-
views were (summarised in Table 12) used
a simple ranking procedure as described in
Section 7.1. However, our individual assess-
ments, as indicated by the different numbers
of “y” rankings used by each assessor, were
inevitably influenced both by our own teach-

ing experience (as we note) and also possibly
by our familiarity with the topics of specific
reviews.

9. We were unable to obtain assessments of the
strength of evidence for the findings from
most of the reviews. Where an assessment was
available, the findings were generally rated
as being based on low or moderate strength
of evidence.
Hence there may be some variation in consis-

tency between different elements of our overall
dataset, particularly as regards the confidence
that we can place in the findings from each
systematic review.

7.4. The way ahead?

Conducting a tertiary study of this form requires
quite extensive interpretation of the reported
findings from a heterogeneous set of systematic
reviews. So an obvious question is whether this
knowledge, assuming it is considered to be useful
to the community, can be extracted from the re-
ports of systematic reviews by other (and better)
means in the future. In particular it would be
better if this avoided the need to perform studies
such as this one that involve retrospective analy-
sis, both because the distance from the original
study means that much of the knowledge about
how it was done may not be available, and also
because the original systematic reviewers can be
expected to possess greater expertise about the
topic of a review, as well as being better able to
assess the quality of the evidence [90].

A relatively simple and efficacious mecha-
nism for enabling this does exist, and is already
used in other disciplines [91]. In healthcare re-
search where the needs of policy-making may
go alongside those of practice, this consists of
requiring that a systematic review and its find-
ings are reported as a set of documents with
different lengths and levels of abstraction, in
order to meet different needs. The Canadian
Health Services Research Foundation describe
this as a 1-3-25 format, consisting of: a one-page
summary of “take-home” messages; a three-page
executive summary; and a more detailed report.
Like any such mechanism this is not infallible

28 David Budgen et al.

of course, and as Oliver and Dickson comment:
“some teams were better than others at producing
a policy-friendly report” [92].

Adapting this model to the needs of soft-
ware engineering appears to be quite feasible. At
its most simple, it would consist of requiring,
as a condition of publication, that authors also
provide a one-page summary of their findings,
worded in a form that made them readily accessi-
ble to practitioners and students, and including
an estimate of the strength of the supporting
evidence. Appendix A provides two examples of
a one-page summary to illustrate this concept.
The first is a summary of this tertiary study,
while the second is a summary of a systematic
review from our set of 49, for which one of us
was an author (#154). When used for healthcare
reviews, the single page often consists of a brief
summary of the purpose of a study followed by
a set of bullets that summarise the key findings,
and we have largely adopted this model. However,
for teaching purposes this may need to be supple-
mented by a more effective visual structure such
as the one proposed for evidence briefings [93],
and our choice of layout has also been influenced
by that model.

There are obviously a number of practical
issues to address in creating such a mechanism
(including obtaining the cooperation of journal
editors). It would require reporting guidelines for
authors (we already have a set of these in [10]);
a means of checking that the summary was appro-
priate; and (preferably) some central means of
indexing the summaries. But in exchange, adopt-
ing such a system has the potential to make
it likely that future reviews had findings that
were translated for practice by the people most
familiar with the material. Prospective reviewers
would also be able to check more easily if there
was an existing systematic review addressing
their planned topic.

8. Reflections and conclusions

Our tertiary mapping study identified 49 system-
atic reviews, published in the period 2004–2015,
that contained findings and recommendations

considered to be useful for teaching about soft-
ware engineering (RQ1). Within these, we were
able to identify a smaller number that did provide
guidance and information that could be used to
help make “effective choices” (RQ2).

However, it is evident that useful findings are
available from only a small proportion of the
published systematic reviews that we surveyed.
There may be many reasons why this is so: one of
which may simply be that in software engineering
the role of the systematic review has so far been
mainly to be used as a tool to aid research and to
provide a useful training exercise and preparation
for PhD students.

This underlying emphasis upon research may
also explain many of the quality issues that have
been identified regarding the conduct and report-
ing of systematic reviews in software engineering.
Some may well arise because there is therefore
no requirement to report to an external sponsor,
others because the reviews are sometimes con-
ducted by relatively inexperienced researchers.
In contrast, other disciplines tend to use informa-
tion specialists to undertake much of the work
involved in searching and selecting material [15].

Following on from these conclusions, empiri-
cal researchers and others might wish to consider
how researchers can better provide information
about the outcomes from systematic reviews, so
that this is of greater use to others. From this
study, and from the other analyses we have per-
formed upon our data, we can suggest three mech-
anisms that could contribute towards achieving
this aim.
1. Providing better reporting of the conduct of

a systematic review. In our analysis of report-
ing quality [10] we identify 12 lessons about
reporting, and suggest a checklist that should
be used by reviewers (and authors). Better
reporting can help to establish the provenance
for the findings from a review, and so help
justify its publication.

2. Facilitating better reporting of the findings
from a study. In part this overlaps with item 1
above, in that the reporting of a review should
make its findings clear. This was only the
case for fewer than one in five of the 276 sys-
tematic reviews that we examined, and even

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 29

for the 49 included in the final set, we often
found it difficult to extract the findings and
recommendations, as these were sometimes
spread over different sections of a paper. In
addition, as discussed in the previous section,
making the provision of a summary of findings
a pre-requisite for publication will also help
to make the findings more widely and readily
available to others. This is clearly a concern
that is also shared by other disciplines, hence
the emphasis upon such mechanisms as the
1-3-25 model.

3. Creating the means to provide effective cu-
racy of the knowledge about and from sys-
tematic reviews, particularly as the number
of these increases. As a newcomer to the use
of systematic reviews, software engineering
has so far not embraced the idea of creat-
ing anything equivalent to the Cochrane and
Campbell collaborations that oversee and fa-
cilitate the conduct of systematic reviews in
clinical medicine and social science respec-
tively. These bodies play a number of roles,
including providing public information about
relevant findings from systematic reviews.
We see the first two mechanisms as needing

to be adopted in collaboration with those jour-
nals that publish systematic reviews. And all
three may need the involvement of the profes-
sional bodies. What is clear from our findings
though, is that without such interventions, sys-
tematic reviews in software engineering will very
likely remain a tool used mainly for academic
research rather than, as in other disciplines, form-
ing a valuable (and valued) source of knowledge
for software developers, teachers, and researchers.

Acknowledgements

Our thanks to Professor Barbara Kitchenham for
advice and observations, as well as for conducting
independent electronic searching for publications
that we might have missed. We would like to
thank the authors of the systematic reviews we
studied, especially those who were good enough
to check the accuracy of our extracted conclu-
sions and to pass comment on these. We are also

grateful to Professor Steve Higgins for inform-
ing us about current ideas about evidence-based
teaching in education. We also thank the anony-
mous reviewers for their comments and added
insight.

References

[1] P. Naur and B. Randell, Eds., Software Engi-
neering: Report on a Conference Sponsored by
the NATO Science Committee. NATO, 1968.

[2] P. Bourque and R.E. Fairley, Eds., Guide to the
Software Engineering Body of Knowledge (SWE-
BOK(R)): Version 3.0, 3rd ed. IEEE Computer
Society Press, 2014.

[3] M. Ardis, D. Budgen, G.W. Hislop, J. Offutt,
M. Sebern, and W. Visser, “SE2014: Curriculum
Guidelines for undergraduate degree programs in
software engineering,” IEEE Computer, Novem-
ber 2015, pp. 106–109.

[4] B. Kitchenham, D. Budgen, P. Brereton, M. Tur-
ner, S. Charters, and S. Linkman, “Large-Scale
Software Engineering Questions – expert opin-
ion or empirical evidence?” IET Software, Vol. 1,
No. 5, 2007, pp. 161–171.

[5] P. Devanbu, T. Zimmermann, and C. Bird, “Be-
lief and evidence in empirical software engineer-
ing,” in Proceedings of the 38th International
Conference on Software Engineering (ICSE).
ACM Press, 2016, pp. 108–119.

[6] E.M. Rogers, Diffusion of Innovations, 5th ed.
Free Press, New York, 2003.

[7] C. Theisen, M. Dunaiski, L. Williams, and
W. Visser, “Software engineering research at the
international conference on software engineer-
ing in 2016,” ACM Software Engineering Notes,
Vol. 42, No. 4, 2017, pp. 1–10.

[8] B. Kitchenham, T. Dyb̊a, and M. Jørgensen,
“Evidence-based software engineering,” in Pro-
ceedings of the 26th International Conference on
Software Engineering (ICSE). IEEE Computer
Society Press, 2004, pp. 273–281.

[9] D. Budgen, S. Drummond, P. Brereton, and
N. Holland, “What scope is there for adopt-
ing evidence-informed teaching in software en-
gineering?” in Proceedings of the 34th Inter-
national Conference on Software Engineering
(ICSE). IEEE Computer Society Press, 2012,
pp. 1205–1214.

[10] D. Budgen, P. Brereton, S. Drummond, and
N. Williams, “Reporting systematic reviews:
Some lessons from a tertiary study,” Informa-
tion and Software Technology, Vol. 95, 2018,

30 David Budgen et al.

pp. 62–74. [Online]. http://www.sciencedirect.
com/science/article/pii/S0950584916303548

[11] D. Budgen, P. Brereton, N. Williams, and
S. Drummond, “The contribution that empirical
studies performed in industry make to the findings
of systematic reviews: A tertiary study,” Infor-
mation and Software Technology, Vol. 94, 2018,
pp. 234–244. [Online]. http://www.sciencedirect.
com/science/article/pii/S0950584917303798

[12] J. Gurevitch, J. Koricheva, S. Nakagawa, and
G. Stewart, “Meta-analysis and the science
of research synthesis,” Nature, Vol. 555, 2018,
pp. 175–182.

[13] E. Barends and D.M. Rousseau, Evidence-Based
Management: How to use evidence to make better
organizational decisions. Kogan Page, 2018.

[14] M. Petticrew and H. Roberts, Systematic Re-
views in the Social Sciences A Practical Guide.
Blackwell Publishing, 2006.

[15] A. Booth, D. Papaioannou, and A. Sutton, Sys-
tematic Approaches to a Successful Literature
Review. Sage Publications, Ltd., 2012.

[16] D.S. Cruzes and T. Dyb̊a, “Research synthesis
in software engineering: A tertiary study,” Infor-
mation and Software Technology, Vol. 53, No. 5,
2011, pp. 440–455.

[17] S. Martinez-Fernandez, P.S.M. dos Santos,
G.P. Ayala, X. Franch, and G.H. Travassos, “Ag-
gregating empirical evidence about the benefits
and drawbacks of software reference architec-
tures,” in Proceedings of 2015 the Conference on
Empirical Software Engineering and Measure-
ment, 2015, pp. 154–163.

[18] D. Budgen, J. Bailey, M. Turner, B. Kitchenham,
P. Brereton, and S. Charters, “Cross-domain in-
vestigation of empirical practices,” IET Software,
Vol. 3, No. 5, 2009, pp. 410–421, eASE special
section.

[19] T.V. Ribeiro, J. Massollar, and G.H. Travassos,
“Challenges and pitfalls on surveying evidence in
the software engineering technical literature: an
exploratory study with novices,” Empirical Soft-
ware Engineering, Vol. 23, 2018, pp. 1594–1663.

[20] U. Abelein and B. Paech, “Understanding the
influence of user participation and involvement
on system success – A systematic mapping study,”
Empirical Software Engineering, Vol. 20, 2015,
pp. 28–81.

[21] D. Smite, C. Wohlin, T. Gorschek, and R. Feldt,
“Empirical evidence in global software engineer-
ing: a systematic review,” Empirical Software
Engineering, Vol. 15, 2010, pp. 91–118.

[22] O. Dieste and N. Juristo, “Systematic review and
aggregation of empirical studies on elicitation

techniques,” IEEE Transactions on Software En-
gineering, Vol. 37, No. 2, 2011, pp. 283–304.

[23] T. Dyb̊a and T. Dingsøyr, “Strength of evi-
dence in systematic reviews in software engineer-
ing,” in Proceedings of International Symposium
on Empirical Software Engineering and Metrics
(ESEM), 2008, pp. 178–187.

[24] M. Ivarsson and T. Gorschek, “A method for
evaluating rigor and industrial relevance of tech-
nology evaluations,” Empirical Software Engi-
neering, Vol. 16, 2011, pp. 365–395.

[25] B. Kitchenham, P. Brereton, D. Budgen, M. Tur-
ner, J. Bailey, and S. Linkman, “Systematic liter-
ature reviews in software engineering – a system-
atic literature review,” Information and Software
Technology, Vol. 51, No. 1, 2009, pp. 7–15.

[26] B. Kitchenham, R. Pretorius, D. Budgen, P. Brer-
eton, M. Turner, M. Niazi, and S. Linkman, “Sys-
tematic literature reviews in software engineer-
ing – a tertiary study,” Information and Software
Technology, Vol. 52, 2010, pp. 792–805.

[27] F.Q. da Silva, A.L. Santos, S. Soares,
A.C.C. França, C.V. Monteiro, and F.F. Maciel,
“Six years of systematic literature reviews in soft-
ware engineering: An updated tertiary study,”
Information and Software Technology, Vol. 53,
No. 9, 2011, pp. 899–913.

[28] M. Leitner and S. Rinderle-Ma, “A systematic
review on security in process-aware information
systems,” Information and Software Technology,
Vol. 56, No. 3, 2014, pp. 273–293.

[29] B.A. Kitchenham, D. Budgen, and P. Brereton,
Evidence-Based Software Engineering and Sys-
tematic Reviews, Innovations in Software Engi-
neering and Software Development. CRC Press,
2015.

[30] T. Dyb̊a, B. Kitchenham, and M. Jörgensen,
“Evidence-based software engineering for practi-
tioners,” IEEE Software, Vol. 22, No. 1, 2005,
pp. 58–65.

[31] B. Kitchenham, “Procedures for undertaking sys-
tematic reviews,” Joint Technical Report Keele
and Durham Universities, Tech. Rep., 2004.

[32] B. Kitchenham and S. Charters, “Guidelines for
performing systematic literature reviews in soft-
ware engineering,” Keele University and Durham
University Joint Report, Tech. Rep., 2007.

[33] P. Brereton, B.A. Kitchenham, D. Budgen,
M. Turner, and M. Khalil, “Lessons from ap-
plying the systematic literature review process
within the software engineering domain,” Jour-
nal of Systems and Software, Vol. 80, No. 4, 2007,
pp. 571–583.

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 31

[34] J. Biolchini, P. Mian, A. Natali, and G. Travas-
sos, “Systematic review in software engineering,”
COPPE/UFRJ, Tech. Rep. ES679/05, 2005.

[35] J.L. Fleiss, “Measuring nominal scale agree-
ment among many raters,” Psychological Bul-
letin, Vol. 76, 1971, pp. 378–382.

[36] M. Banerjee, M. Capozzoli, L. McSweeney, and
D. Sinha, “Beyond kappa: A review of inter-
rater agreement measures,” Canadian Journal
of Statistics, Vol. 27, No. 1, 1999, pp. 3–23.

[37] M. Staples and M. Niazi, “Systematic review of
organizational motivations for adopting CMM-
-based SPI,” Information and Software Technol-
ogy, Vol. 50, 2008, pp. 605–620.

[38] S. Beecham, N. Baddoo, T. Hall, H. Robinson,
and H. Sharp, “Motivation in software engineer-
ing: A systematic literature review,” Information
and Software Technology, Vol. 50, No. 9–10, 2008,
pp. 860–878.

[39] H. Sharp, N. Baddoo, S. Beecham, T. Hall, and
H. Robinson, “Models of motivation in software
engineering,” Information and Software Technol-
ogy, Vol. 51, 2009, pp. 219–233.

[40] H. Petersson, T. Thelin, P. Runeson, and
C. Wohlin, “Capture-recapture in software in-
spections after 10 years research – theory, evalu-
ation and application,” Journal of Systems and
Software, Vol. 72, 2004, pp. 249–264.

[41] W. Azfal, R. Torkar, and R. Feldt, “A systematic
review of search-based testing for non-functional
system properties,” Information and Software
Technology, Vol. 51, 2009, pp. 957–976.

[42] E. Engström, P. Runeson, and M. Skoglund,
“A systematic review on regression test selection
techniques,” Information and Software Technol-
ogy, Vol. 52, 2010, pp. 14–30.

[43] M. Jørgensen, “Forecasting of software develop-
ment work effort: Evidence on expert judgement
and formal models,” Int. Journal of Forecasting,
Vol. 23, No. 3, 2007, pp. 449–462.

[44] M. Jørgensen, “Evidence-based guidelines for
assessment of software development cost uncer-
tainty,” IEEE Transactions on Software Engi-
neering, Vol. 31, No. 11, 2005, pp. 942–954.

[45] P. Mohagheghi and R. Conradi, “Quality, pro-
ductivity and economic benefits of software reuse:
A review of industrial studies,” Empirical Soft-
ware Engineering, Vol. 12, 2007, pp. 471–516.

[46] F.J. Pino, F. Garcia, and M. Piattini, “Software
process improvement in small and medium soft-
ware enterprises: A systematic review,” Software
Quality Journal, Vol. 16, 2008, pp. 237–261.

[47] J. Hannay, T. Dyb̊a, E. Arisholm, and D. Sjøberg,
“The effectiveness of pair programming. A meta

analysis,” Information and Software Technology,
Vol. 51, No. 7, 2009, pp. 1110–1122.

[48] J.S. Persson, L. Mathiassen, J. Boeg, T.S. Mad-
sen, and F. Steinson, “Managing risks in dis-
tributed software projects: An integrative frame-
work,” IEEE Transactions on Engineering Man-
agement, Vol. 56, No. 3, 2009, pp. 508–532.

[49] A.H. Ghapanchi and A. Aurum, “Antecedents
to IT personnel’s intentions to leave: A system-
atic literature review,” Journal of Systems and
Software, Vol. 84, 2011, pp. 238–249.

[50] I. Steinmacher, M.A.G. Silva, M.A. Gerosa, and
D.F. Redmiles, “A systematic literature review
on the barriers faced by newcomers to open
source software projects,” Information and Soft-
ware Technology, Vol. 59, No. 67-85, 2015.

[51] Z. Li, H. Zhang, L. O’Brien, R. Cai, and S. Flint,
“On evaluating commercial cloud services: A sys-
tematic review,” Journal of Systems and Soft-
ware, Vol. 86, 2013, pp. 2371–2393.

[52] D. Radjenović, M. Heričko, R. Torkar, and
A. Živkovič, “Software fault prediction met-
rics: A systematic literature review,” Informa-
tion and Software Technology, Vol. 55, 2013,
pp. 1397–1418.

[53] H. Munir, M. Moayyed, and K. Peterson, “Con-
sidering rigor and relevance when evaluating test
driven development: A systematic review,” Infor-
mation and Software Technology, Vol. 56, 2014,
pp. 375–394.

[54] E. Kupiainen, M.V. Mäntylä, and J. Itkonen,
“Using metrics in agile and lean software de-
velopment – a systematic literature review of
industrial studies,” Information and Software
Technology, Vol. 62, 2015, pp. 143–163.

[55] B.J. Williams and J.C. Carver, “Characteriz-
ing software architecture changes: A systematic
review,” Information and Software Technology,
Vol. 52, No. 1, 2010, pp. 31–51.

[56] M.S. Ali, M.A. Babar, L. Chen, and K.J. Stol,
“A systematic review of comparative evidence
of aspect-oriented programming,” Information
and Software Technology, Vol. 52, No. 9, 2010,
pp. 871–887.

[57] C. Zhang and D. Budgen, “What do we know
about the effectiveness of software design pat-
terns?” IEEE Transactions on Software Engi-
neering, Vol. 38, No. 5, 2012, pp. 1213–1231.

[58] L.B. Lisboa, V.C. Garcia, D. Lucrédio, E.S. de
Almeida, S.R. de Lemos Meira, and R.P. de Mat-
tos Fortes, “A systematic review of domain analy-
sis tools,” Information and Software Technology,
Vol. 52, No. 1, 2010, pp. 1–13.

32 David Budgen et al.

[59] M. Turner, B. Kitchenham, P. Brereton, S. Char-
ters, and D. Budgen, “Does the technology ac-
ceptance model predict actual use? A system-
atic literature review,” Information and Software
Technology, Vol. 52, No. 5, 2010, pp. 463–479.

[60] T.B.C. Arias, P. van der Spek, and P. Avgeriou,
“A practice-driven systematic review of depen-
dency analysis solutions,” Empirical Software
Engineering, Vol. 16, 2011, pp. 544–586.

[61] T. Hall, S. Beecham, D. Bowes, D. Gray, and
S. Counsell, “A systematic literature review on
fault prediction performance in software engi-
neering,” IEEE Transactions on Software Engi-
neering, Vol. 38, No. 6, 2012, pp. 1276–1304.

[62] C. Pacheco and I. Garcia, “A systematic litera-
ture review of stakeholder identification methods
in requirements elicitation,” Journal of Systems
and Software, Vol. 85, 2012, pp. 2171–2181.

[63] S. Tiwari and A. Gupta, “A systematic litera-
ture review of use case specifications research,”
Information and Software Technology, Vol. 67,
2015, pp. 128–158.

[64] R. Jabangwe, J. Borstler, D. Smite, and
C. Wohlin, “Empirical evidence on the link be-
tween object-oriented measures and external
quality attributes: a systematic literature review,”
Empirical Software Engineering, Vol. 20, 2015,
pp. 640–693.

[65] K. Peterson, “Measuring and predicting soft-
ware productivity: A systematic map and review,”
Information and Software Technology, Vol. 53,
2011, pp. 317–343.

[66] J. Dı́az, J. Pérez, P.P. Alarcón, and J. Garbajosa,
“Agile product line engineering – A systematic
literature review,” Software – Practice and Ex-
perience, Vol. 41, 2011, pp. 921–941.

[67] Y. Rafique and V. Misic, “The effects of
test-driven development on external quality and
productivity: A meta-analysis,” IEEE Transac-
tions on Software Engineering, Vol. 39, No. 6,
2013.

[68] A.M. Magdaleno, C.M.L. Werner, and R.M. de
Araujo, “Reconciling software development mod-
els: A quasi-systematic review,” Journal of Sys-
tems and Software, Vol. 85, 2012, pp. 351–369.

[69] N.B. Ali, K. Peterson, and C. Wohlin, “A sys-
tematic literature review on the industrial use of
software process simulation,” Journal of Systems
and Software, Vol. 97, 2014, pp. 65–85.

[70] S.U. Khan, M. Niazi, and R. Ahmad, “Barriers
in the selection of offshore software development
oursourcing vendors: An exploratory study using
a systematic literature review,” Information and
Software Technology, Vol. 53, 2011, pp. 693–706.

[71] R. Giuffrida and Y. Dittrich, “Empirical studies
on the use of social software in global software

development – A systematic mapping study,”
Information and Software Technology, Vol. 55,
2013, pp. 1143–1164.

[72] N. Paternoster, C. Giardino, M. Unterkalm-
steiner, and T. Gorschek, “Software development
in startup companies: A systematic mapping
study,” Information and Software Technology,
Vol. 56, 2014, pp. 1200–1218.

[73] O. Al-Baik and J. Miller, “The Kanban approach
between agility and leanness: a systematic re-
view,” Empirical Software Engineering, Vol. 20,
2015, pp. 1861–1897.

[74] M. Zarour, A. Abran, J.M. Desharnais, and
A. Alarifi, “An investigation into the best prac-
tices for the successful design and implementa-
tion of lightweight software process assessment
methods: A systematic literature review,” Jour-
nal of Systems and Software, Vol. 101, 2015,
pp. 180–192.

[75] A. Nguyen-Duc, D.S. Cruzes, and R. Conradi,
“The impact of global dispersion on coordina-
tion, team performance and software quality – A
systematic literature review,” Information and
Software Technology, Vol. 57, 2015, pp. 277–294.

[76] F.S. Silva, F.S.F. Soares, A.L. Peres, I.M. de
Azevedo, A.P.L.F. Vasconcelos, F.K. Kamei, and
S.R. de Lemos Meira, “Using CMMI together
with agile software development: A systematic
review,” Information and Software Technology,
Vol. 58, No. 20–43, 2015.

[77] M. Bano and D. Zowghi, “A systematic review
on the relationship between user involvement
and system success,” Information and Software
Technology, Vol. 58, No. 148–169, 2015.

[78] A. Idri, F.A. Amazal, and A. Abran, “Anal-
ogy-based software development effort estima-
tion: A systematic mapping and review,” Infor-
mation and Software Technology, Vol. 58, 2015,
pp. 206–230.

[79] M. Brhel, H. Meth, A. Maedche, and K. Werder,
“Exploring principles of user-centered agile soft-
ware development: A literature review,” Infor-
mation and Software Technology, Vol. 61, 2015,
pp. 163–181.

[80] D. Heaton and J.C. Carver, “Claims about the
use of software engineering practices in science:
A systematic literature review,” Information and
Software Technology, Vol. 67, 2015, pp. 207–219.

[81] R. Rabiser, P. Grunbacher, and D. Dhungana,
“Requirements for product derivation support:
Results from a systematic literature review and
an expert survey,” Information and Software
Technology, Vol. 52, 2010, pp. 324–346.

[82] E. Tüzün, B. Tekinerdogan, M.E. Kalender, and
S. Bilgen, “Empirical evaluation of a decision
support model for adopting software product line

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 33

engineering,” Information and Software Technol-
ogy, Vol. 60, 2015, pp. 77–101.

[83] H.A. Simon, “The structure of ill-structured
problems,” Artificial Intelligence, Vol. 4, 1973,
pp. 181–201.

[84] G.H. Guyatt, A.D. Oxman, G.E. Vist,
R. Kunz, Y. Falck-Ytter, P. Alonso-Coello,
and H.J. Schünemann, “GRADE: an emerging
consensus on rating quality of evidence and
strength of recommendations,” British Medical
Journal, Vol. 336, 2008, pp. 924–926.

[85] J. Nelson and C. O’Beirne, “Using evidence in
the classroom: What works and why?” National
Foundation for Educational Research (NFER),
Tech. Rep., 2014.

[86] S. Hopewell, A. Aisinga, and M. Clarke, “Bet-
ter reporting of randomized trials in biomedi-
cal journal and conference abstracts,” Journal
of Information Science, Vol. 34, No. 2, 2008,
pp. 162–173.

[87] S.E. Rosenbaum, C. Glenton, and A.D. Oxman,
“Summary-of-findings tables in Cochrane reviews
improved understanding and rapid retrieval of
key information,” Journal of Clinical Epidemiol-
ogy, Vol. 63, 2010, pp. 620–626.

[88] S. Malick, K. Das, and K.S. Khan, “Tips for
teaching evidence-based medicine in a clini-
cal setting: Lessons from adult learning the-

ory,” Journal of the Royal Society of Medicine,
Vol. 101, No. 11, 2008, pp. 536–543.

[89] M. Coldwell, T. Greany, S. Higgins, C. Brown,
B. Maxwell, B. Stiell, L. Stoll, B. Willis, and
H. Burns, “Evidence-informed teaching: an eval-
uation of progress in England,” Department for
Education, Tech. Rep., 2017.

[90] C.L. Goues, C. Jaspan, I. Ozkaya, M. Shaw, and
K.T. Stolee, “Bridging the Gap: From research
to practical advice,” IEEE Software, Vol. 35,
No. 5, 2018, pp. 50–57.

[91] J. Lavis, G. Permanand, A. Oxman, S. Lewin,
and A. Fredheim, “SUPPORT tools for
evidence-informed health policy-making (STP)
13: Preparing and using policy briefs to support
evidence-informed policymaking,” Health Re-
search Policy and Systems, Vol. 7, 2009, p. S13.

[92] S. Oliver and K. Dickson, “Policy-relevant sys-
tematic reviews to strengthen health systems:
models and mechanisms to support their produc-
tion,” Evidence and Policy, Vol. 12, No. 2, 2016,
pp. 235–259.

[93] B. Cartaxo, G. Pinto, E. Vieira, and S. Soares,
“Evidence Briefings: Towards a medium to trans-
fer knowledge from systematic reviews to practi-
tioners,” in Proceedings of the 2016 Conference
on Empirical Software Engineering and Measure-
ment (ESEM), 2016, pp. 1–10.

34 David Budgen et al.

Appendix A. Examples of a one-page summary

What support do systematic reviews
provide for evidence-informed teaching
about software engineering practice?
– Implications & Messages

Implications

Systematic reviews provide a rigorous way of
gathering together evidence obtained from
empirical studies. Since 2004 systematic reviews
have been used quite extensively by software
engineering researchers to examine a range of
software engineering practices and the use of
different technologies.

The findings from a systematic review provide
objective and unbiased knowledge about using
a practice, that can underpin advice to practitioners,
teachers and students, and which can help them
assess the likely benefits of adopting it in
a particular context.

Key Messages

● Systematic reviews can provide useful guidance for practice and for teaching about
practice that can take a range of forms, including:

 a digest of the experiences of others (for example, related to adopting a new
practice such as agile development);

 a checklist of the factors that should be considered when thinking of adopting
a new practice or technique;

 comparisons between different options, such as occur when identifying the most
dependably effective practice to use for requirements elicitation.

● Much of the guidance and knowledge provided by the systematic reviews was derived
from primary studies that involved observing how practising software engineers
performed tasks 'in the field'.

● Researchers need to provide their findings in a more 'end-user-friendly' form (such as
by using a one-page summary like this one) that also explains what the implications of
the findings are. This will help teachers, students and practitioners to identify those
messages that are useful to them.

● A characteristic of software engineering is that, unlike other disciplines, topics for study
using a systematic review are chosen by researchers themselves, rather than being
selected to meet the needs of practitioners, policy-makers or funding agencies.

● There is a need to provide readily-available indexing of the findings from systematic
reviews to assist end-users with finding material that they need. This would also help
researchers to identify where new systematic reviews, or updating of existing ones,
would be useful. We suggest that this is a role that the professional bodies such as
ACM could assist with, working in collaboration with journal editors.

Characteristics of our
systematic review

From 276 candidate systematic
reviews published up to the end
of 2015 we selected 49 that
provide knowledge that we
considered useful for teaching
and practice. For each of these
we describe:
● the topic;
● The number of primary

studies used (and the types
of these, when known);

● how the outcomes from the
primary studies were
synthesised;

● key findings relevant to
teaching and practice.

Figure A1. Example 1, summarising this tertiary study

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 35

What do we know about the Effectiveness
of Software Design Patterns?

Implications

Object-oriented design patterns offer a mechanism
for transferring experience about useful design
structures (knowledge schemas). Our study sought
to determine how extensively the popular GoF
(Gang of Four) patterns have been studied
empirically, and what might be learned from these
studies. It also looked at the consequences that
might arise from using patterns when designing
software applications.

Activities such as software design pose a challenge
for empirical studies because of their creative
nature. Partly because of this, only a small number
of studies involving design patterns were available.
In turn, these could only provide limited guidance
about the usefulness of the relatively few patterns
that have been the subject of multiple studies, and
were unable to provide clear guidance about when
it is appropriate to make use of specific design
patterns.

Key Messages

With regard to the effective use of OO design patterns:
● There is reasonably good support for the claim that using patterns can provide

a vocabulary that improves communication between developers and maintainers, at least,
when the way that the patterns have been used in the design is well-documented.

● There is no support for any claims that using patterns help novices learn about how to
design applications.

● It appears likely that the successful use of patterns is highly dependent upon both the
nature of individual patterns and the experience of the developers concerned. Simply
using patterns does not ensure good design, they have to be used appropriately.

And for the studies themselves:
● The primary studies that were available mainly focused upon studying the ease with

which applications created using patterns could be understood and modified, and only
a few examined issues related to the use of patterns to create new software.

● Many of the experimental studies used students as participants, which may well be
inappropriate, and overall the variations observed in the findings may arise because of
the complications of having a large number of confounding factors.

● We recommend that future empirical studies focus upon studying the use of specific
patterns, and avoid making use of student participants or asking participants to perform
small-scale tasks. We also suggest that case studies may be more suitable vehicles for
exploring the complex cognitive issues involved in using patterns.

Characteristics of our
systematic review

Our study identified 10 papers
(from 611 candidates) that
described 11 experimental
studies about the use of OO
design patterns described by
the GoF. A further seven
informal observational studies
were used to help interpret their
findings. We noted that:
● Only Composite, Observer

and Visitor had been
studied fairly extensively.

● Few other patterns had
been studied in more than
two primary studies.

● Eight of the 23 GoF patterns
had not been the subject of
any empirical evaluation.

● Case studies appear to
provide greater insight than
formal experiments.

Figure A2. Example 2, summarising paper #154

36 David Budgen et al.

Appendix B. The findings and recommendations from the reviews

Table B1. Details for Review categorised as FND: #52

Characteristic Values
1. Knowledge Unit FND.ec (Engineering Economics for software)
2. Title Systematic Review of Organizational Motivations for Adopting CMM-based SPI
3. Citation [37]
4. DARE Score 2.5
5. Strength of Evidence No assessment was made. (Gives counts of studies that identify different reasons.)
6. #Primary Studies 49 (all explicit industry)
7. Synthesis used (Not assessed for Dataset1)
8. Findings 1. Organisations adopted CMM based SPI mainly to improve product quality

and project performance but also to improve process management.
2. Satisfying customers was not a common reason for adopting CMM-based SPI.
3. The two most common process related reasons for adopting SPI were to make
processes more visible and measurable.

9. Recommendations None
10. Author Response The authors observed that meeting “customer demands” in the form of contrac-

tual requirement was a fairly major reason for adoption, rather than “customer
satisfaction”. They also observed that providing assurance for customers through
high ratings was a legitimate reason for recommending the adoption of CMM(I).

Table B2. Details for Reviews categorised as PRF: #54

Characteristic Values
1. Knowledge Unit (no specific KU)
2. Title Motivation in Software Engineering: A systematic literature review
3. Citation [38]
4. DARE Score 5.0
5. Strength of Evidence No assessment was made. (Lists studies identifying specific motivators.)
6. #Primary Studies 79 (not described)
7. Synthesis used (Not assessed for Dataset1)
8. Findings 1. The most frequently cited motivators relate to the “need to identify with the

task” (clear goals, personal interest, understanding the purpose of a task, how
it fits with the whole, job satisfaction, and working on an identifiable piece of
quality work). Having a clear career path and a variety of tasks is also found
motivating.
2. Learning, exploring new techniques and problem solving appear to be moti-
vating aspects of SE.
3. Indicators of demotivation were mainly turnover and absenteeism.
4. Key de-motivators are poor working conditions and lack of resources

9. Recommendations None
10. Author Response None

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 37

Table B3. Details for Reviews categorised as PRF: #118

Characteristic Values
1. Knowledge Unit (no specific KU)
2. Title Models of motivation in software engineering
3. Citation [39]
4. DARE Score 5.0
5. Strength of Evidence No assessment was made. (See note for #54.)
6. #Primary Studies Same as #54 above.
7. Synthesis used (Not assessed for Dataset1)
8. Findings 1. A list of 21 motivators is provided in the paper.

2. A new model of motivation in SE (the MOCC model) is presented using the
results from the review reported in detail in paper #54)

9. Recommendations None
10. Author Response None

Table B4. Details for Reviews categorised as PRF: #135

Characteristic Values
1. Knowledge Unit PRF.psy (Group dynamics and psychology)
2. Title Antecedents to IT personnel’s intentions to leave: A systematic literature review
3. Citation [49]
4. DARE Score 3.0
5. Strength of Evidence No assessment was made.
6. #Primary Studies 72 (all implicitly using industry participants)
7. Synthesis used Thematic Analysis
8. Findings “Publications reviewed suggest that male IT workers are more likely to leave

an organisation than their female counterparts. Younger employees also appear
more inclined to leave (mainly due to lower job satisfaction) compared to their
older counterparts). Importantly, higher educated IT professionals are more
likely to leave a company because of low job satisfaction. Additionally, married
IT practitioners as well as those with a lower organisational tenure have a lower
tendency to leave an organisation. IT managers can use these insights to assist
with their recruitment decisions and employee retention initiatives.”

9. Recommendations 1. To overcome role ambiguity and role conflict, managers should: a. communicate
clearly and provide clear and precise information about what they expect from
their IT professionals. b. make sure that their personnel have the required training
and knowledge to carry out their jobs well. c. allow their IT professionals to
know the intent of and reasons for doing a specific task. d. better design and
define tasks so that the start and end of each task is clear. e. clearly define
the sequence in which sub-tasks are carried out. 6. determine task priorities
associated with the job.
2. To overcome perceived workload demands managers should maintain an aware-
ness of the workloads of their high valued IT professionals. Direct face-to-face
communications has been reported as the most effective means of overcoming
this problem.
3. IT managers should be conscious of the benefits of enhanced employee
autonomy because lack of autonomy can lead to turnover decision through work
exhaustion. Managers should provide IT professionals with enough autonomy
and flexibility to reduce exhaustion they might feel because of the structure
of their work and should design IT roles that offer enough freedom for IT
professional to be innovative and pursue their own thoughts and ideas.

38 David Budgen et al.

Table B4 continued

Characteristic Values
(plus five other recommendations, omitted for reasons of space)

10. Author Response None

Table B5. Details for Reviews categorised as PRF: #246

Characteristic Values
1. Knowledge Unit PRF.psy (Group dynamics and psychology)
2. Title A systematic literature review on the barriers faced by newcomers to open

source software projects
3. Citation [50]
4. DARE Score 3.5
5. Strength of Evidence No assessment was made. (Lists studies identifying specific barriers.)
6. #Primary Studies 20 (implicitly drawn from industry)
7. Synthesis used Grounded Theory
8. Findings 1. For projects, improvement in community receptivity and more appropriate

collaborative environments for OSS development can result in better support
for newcomers.
2. “Keeping the code simple and the documentation organized and up-to-date
could potentially increase the odds of receiving contributions from newcomers.”

9. Recommendations “..newcomers that wish to contribute must have a blend of domain knowledge,
technical skills, and social interaction, which can increase the odds of a successful
joining. The interactions are driven by artifacts that reflect the technical and
domain expertise. It is the result of these interactions that will allow both
newcomers and developers to perceive the level and possibly lack of background
that hinders effective contributions to the project.”

10. Author Response None

Table B6. Details for Reviews categorised as VAV: #15

Characteristic Values
1. Knowledge Unit VAV.rev (Reviews and static analysis)
2. Title Capture-recapture in software inspections after 10 years research – theory,

evaluation and application
3. Citation [40]
4. DARE Score 1.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 25 (1 explicitly from industry, the others not identified)
7. Synthesis used (Not assessed for Dataset1)
8. Findings 1. Most estimators underestimate.

2. Mh-JK (Jackknife) is the best estimator for software inspections.
3. Mh-JK is appropriate to use for 4 reviewers and more.
4. DPM is the best curve fitting method.
5. Capture-recapture estimators can be used together with perspective-based
reasoning (PBR).

9. Recommendations None
10. Author Response None

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 39

Table B7. Details for Reviews categorised as VAV: #66

Characteristic Values
1. Knowledge Unit VAV.tst (Testing)
2. Title A systematic review of search-based testing for non-functional system properties
3. Citation [41]
4. DARE Score 4.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 35 (17 explicitly from industry; 18 academic)
7. Synthesis used (Not assessed for Dataset1)
8. Findings 1. For performance, genetic algorithms (GAs) consistently outperform random

and statistical testing in a wide variety of situations, producing comparatively
longer execution times faster and also finding new bounds on best case execution
times.
2. GAs were also able to perform better than human testers, and where this
failed to occur, it could be attributed to the complexity of the test objects
inhibiting evolutionary testability.

9. Recommendations None
10. Author Response None

Table B8. Details for Reviews categorised as VAV: #82

Characteristic Values
1. Knowledge Unit VAV.tst (Testing)
2. Title A systematic review on regression test selection techniques
3. Citation [42]
4. DARE Score 4.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 36 (4 explicitly from industry; 32 not stated)
7. Synthesis used (Not assessed for Dataset1)
8. Findings 1. The minimization technique is the most efficient in reducing time and/or

number of test cases to run. However this is an unsafe technique and all but
one of six studies report significant losses in fault detection.
2. DejaVu (Rothermel and Harrold) is the most efficient safe technique for
reducing test cases. However, analysis time for this is shown to be too long
(exceeding the time for rerunning all test cases) in early experiments, although
in later ones (using different subject programs) it is shown to be good.
3. Regression test selection techniques have to be tailored to specific situations
e.g. initially based on the classification of techniques.

9. Recommendations None
10. Author Response None

Table B9. Details for Reviews categorised as VAV: #167

Characteristic Values
1. Knowledge Unit VAV.fnd (VAV terminology and foundations)
2. Title On evaluating commercial Cloud services: A systematic review
3. Citation [51]
4. DARE Score 4.0

40 David Budgen et al.

Table B9 continued

Characteristic Values
5. Strength of Evidence No assessment was made.
6. #Primary Studies 82 (all implicitly from industry)
7. Synthesis used Could not be identified
8. Findings 1. Existing evaluations have used a large number of metrics to measure perfor-

mance as well as cost.
2. There is still a lack of metrics for evaluating Cloud elasticity.
3. There are still no metrics that can be used to assess security.

9. Recommendations None
10. Author Response The authors suggest a further finding is:

4. Various traditional benchmarks have been employed to evaluate performance
of Cloud services.

Table B10. Details for Reviews categorised as VAV: #197

Characteristic Values
1. Knowledge Unit VAV.fnd (VAV terminology and foundations)
2. Title Software fault prediction metrics: A systematic literature review
3. Citation [52]
4. DARE Score 4.5
5. Strength of Evidence An informal assessment was provided.
6. #Primary Studies 106 (81 explicitly from industry; 25 academic studies)
7. Synthesis used Vote Counting
8. Findings 1. Cyclomatic complexity was fairly effective in large and OO environments.

Although not effective in all categories, the overall effectiveness was estimated
as moderate.
2. Halstead’s metrics were ineffective when compared with other metrics and
were estimated as inappropriate for software fault prediction.
3. The most frequently used and most successful among the OO metrics were
the CK metrics. From these, COB, WMC and RFC were effective across all
groups. LCOM is not not very successful at finding faults, DIT and NOC were
reported as untrustworthy.
4. OO and process metrics are more successful at fault prediction than traditional
size and complexity metrics.
5. Source code metrics do not perform well in finding post-release faults.
6. Process metrics were found to be successful at finding post-release faults.
7. Size measures like LOC metrics are simple and easy to extract; but as with
complexity metrics, have only limited predictive capabilities. They are partly
successful at ranking the most fault prone modules, not the most reliable or
successful metrics.

9. Recommendations 1. Industry practitioners looking for effective and reliable process metrics should
consider code churn, the number of changes, the age of a module and the change
set size metrics.
2. Not all OO metrics are good predictors of faults. NOC and DIT are unreliable
and should not be used in fault prediction models.
3. Industry practitioners looking for effective and reliable process metrics (in
large post-release systems) could also try static code metrics (e.g. CBO, RFC
and WMC) but should keep in mind that they have some limitations in highly
iterative and agile development environments.

10. Author Response None

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 41

Table B11. Details for Reviews categorised as VAV: #205

Characteristic Values
1. Knowledge Unit VAV.fnd (VAV terminology and foundations)
2. Title Considering rigor and relevance when evaluating test driven development: A sys-

tematic review
3. Citation [53]
4. DARE Score 4.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 41 (22 explicitly from industry; 19 academic studies)
7. Synthesis used Vote Counting
8. Findings 1. Studies with high rigour and relevance indicate that practitioners wanting to

adopt TDD will improve their code quality and at the same time maintain or
reduce their productivity levels.
2. Studies with high rigour and relevance indicate that practitioners wanting to
adopt TDD will reduce complexity and at the same time maintain or reduce
their productivity levels.
3. Studies with high relevance and low rigour suggest that there is a potential
to increase external quality, but at the expense of development time and pro-
ductivity.

9. Recommendations None
10. Author Response None

Table B12. Details for Reviews categorised as VAV: #252

Characteristic Values
1. Knowledge Unit VAV.fnd (VAV terminology and foundations)
2. Title Using metrics in Agile and Lean Software Development – A systematic literature

review of industrial studies
3. Citation [54]
4. DARE Score 3.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 30 (all explicitly from industry)
7. Synthesis used Thematic Analysis
8. Findings 1. The targets of measurement are the product and the process, but not the

people.
2. Documentation is not measured, instead the focus is on the actual product
and features.
3. The use of metrics can motivate people and change the way that people
behave in terms of which issues they pay attention to.
4. Industrial agile teams use situative metrics based on need.
5. Defect counts and customer satisfaction are two of the four high influence
metrics (after velocity and effort estimate), although not directly recommended
by Lean or Agile methods.
6. Areas where metrics are used are sprint and project planning, sprint and
project progress tracking, understanding and improving quality, fixing software
process problems and motivating people - so not dissimilar to use in plan driven.

9. Recommendations None
10. Author Response None

42 David Budgen et al.

Table B13. Details for Review categorised as DES: #124

Characteristic Values
1. Knowledge Unit DES.ar (Architectural design)
2. Title Characterising software architecture changes: A systematic review
3. Citation [55]
4. DARE Score 3.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 130 (not stated)
7. Synthesis used Thematic Analysis
8. Findings The Software Architecture Change Characterization Scheme (SACCS) was

developed as a result of the review and can (could?) be used to assist developers
and maintainers in assessing the potential impact of a proposed change and
deciding whether it is feasible to implement the change. Where the change is
crucial the scheme will (could?) help generate consensus on how to approach
change implementation and provide an indication of the difficulty.

9. Recommendations None
10. Author Response The authors reviewed our analysis and agreed with it.

Table B14. Details for Review categorised as DES: #130

Characteristic Values
1. Knowledge Unit DES.str (Design strategies)
2. Title A systematic review of comparative evidence of aspect-oriented programming
3. Citation [56]
4. DARE Score 4.5
5. Strength of Evidence The GRADE system was used. Overall the current strength of evidence about

benefits and limitations of AOP approaches compared to non-AOP approaches
is low.

6. #Primary Studies 22 (6 implicitly industry studies, 16 academic studies)
7. Synthesis used Narrative synthesis + Vote counting
8. Findings 1. Overall AOP provides improvement over non-AOP based solutions.

2. AOP has a positive effect on performance (within contexts similar to those
used in the evaluations).
3. In larger systems where concern scattering and tangling is expected to be
widespread, introducing aspects is likely to significantly reduce the number of
lines of code.
4. AOP has a positive effect on modularity (but context of use should be carefully
assessed).
5. AOP has the potential to develop evolvable and maintainable software.

9. Recommendations None
10. Author Response None

Table B15. Details for Review categorised as DES: #154

Characteristic Values
1. Knowledge Unit DES.dd (Detailed design)
2. Title What do we know about the Effectiveness of Software Design Patterns?
3. Citation [57]

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 43

Table B15 continued

Characteristic Values
4. DARE Score 2.0
5. Strength of Evidence No assessment was made.
6. #Primary Studies 18 (11 industrial and 7 academic studies)
7. Synthesis used Narrative Synthesis
8. Findings Patterns do not appear to help novices learn about design.
9. Recommendations None

10. Author Response The authors reviewed our analysis and agreed with it.

Table B16. Details for Review categorised as MAA: #123

Characteristic Values
1. Knowledge Unit MAA.tm (Types of models)
2. Title A Systematic review of domain analysis tools
3. Citation [58]
4. DARE Score 3.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 19 (7 are implicitly industry studies, 12 are academic studies)
7. Synthesis used Could not be determined.
8. Findings 1. No tools support all functionalities of a specific process.

2. The majority of the analysed tools have similar functionalities.
3. The majority of tools are still being developed and used in an academic
environment.
4. The documentation function is being explored more in the more recent tools
investigated.
5. The domain analysis process without tool support can lead to an unsuccessful
result but the use of any tool will not necessarily lead to an effective result.

9. Recommendations None
10. Author Response The authors observe that a finding could be to categorize functionalities as

essential, important and low.

Table B17. Details for Review categorised as MAA: #126

Characteristic Values
1. Knowledge Unit MAA.tm (Types of models)
2. Title Does the technology acceptance model predict actual use?
3. Citation [59]
4. DARE Score 5.0
5. Strength of Evidence No assessment was made.
6. #Primary Studies 79 (type not reported)
7. Synthesis used Vote counting
8. Findings Perceived usefulness (PU) and perceived ease of use (PEU) are less likely than

behavioural intention (BI) to be correlated with actual use.
9. Recommendations None

10. Author Response None

44 David Budgen et al.

Table B18. Details for Review categorised as MAA: #146

Characteristic Values
1. Knowledge Unit MAA.tm (Types of models)
2. Title A practice-driven systematic review of dependency analysis solutions
3. Citation [60]
4. DARE Score 2.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 65 (38 explicit industry, 27 not specified)
7. Synthesis used Narrative Synthesis
8. Findings 1. Source-code based solutions identify dependencies through code constructs

such as function calls and shared variables. Approaches that use this concrete
evidence have a high degree of accuracy when it comes to the dependencies they
identify, which makes them very reliable and very attractive for practitioners
as the resulting information is very tangible. However, they are less suited to
analyzing runtime system behaviour.
2. Solutions using diagrammatic and semi-formal descriptions are more appealing
for practitioners following architecture-driven approaches. Practitioners find
these solutions useful to describe dependency information at an architecture
level. However, for an efficient application of these solutions, it is necessary to
keep up-to-date and synchronize the system requirements, design, and imple-
mentation.
3. Solutions using run-time and configuration information are applicable in
practice due to two main characteristics. First, these solutions are non-intrusive
with respect to the development activities. Often, in a research setting, the
overhead and maintenance cost of an infrastructure to collect data for dependency
analysis is overlooked, whereas practitioners are more concerned about the
cost and overhead of maintaining a reliable and up-to-date instrumentation of
their system. This is even more important, in heterogeneous situations where
multi-vendor components are used and instrumentation cannot be inserted into
the system because of security, licensing, lack of knowledge, or other technical
constraints. Second, although these solutions are limited by their coverage and
links to the system source code, practitioners consider these solutions valid
approximations, especially for problem-driven approaches.

9. Recommendations None
10. Author Response None

Table B19. Details for Review categorised as MAA: #155

Characteristic Values
1. Knowledge Unit MAA.tm (Types of models)
2. Title A Systematic Literature Review on Fault Prediction Performance in Software

Engineering
3. Citation [61]
4. DARE Score 4.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 36 (35 explicit industry, 1 academic study)
7. Synthesis used Thematic Analysis
8. Findings 1. Models that work well tend to be built in a context where the systems are

large.
2. In terms of context, there is no evidence to suggest that the maturity of
systems or language used is related to predictive performance

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 45

Table B19 continued

Characteristic Values
3. It may be more difficult to build reliable prediction models for some application
domains (e.g. embedded systems).
4. The independent variables used by predictive models that work well seem to
be sets of metrics.
5. Models that use KLOC perform no worse than where only single sets of other
static code metrics are used.
6. The spam filtering technique based on source code performs relatively well.
7. Models that perform well tend to use simple, easy to use modeling techniques
such as Näıve Bayes or Logical Regression. More complex modeling techniques
such as SVM tend to be used by models which perform relatively less well.
8. Successful models tend to be trained on large datasets which have a relatively
high proportion of faulty units.
9. Successful models tend to use a large range of metrics on which feature
selection was implied.
10. For successful models, default parameters for the modelling technique were
adjusted to ensure the technique would perform effectively.

9. Recommendations None
10. Author Response Agreed with our extracted findings.

Table B20. Details for Reviews categorised as REQ: #134

Characteristic Values
1. Knowledge Unit REQ.er (Eliciting requirements)
2. Title Systematic Review and Aggregation of Empirical Studies on Elicitation Tech-

niques
3. Citation [22]
4. DARE Score 5.0
5. Strength of Evidence No assessment was made.
6. #Primary Studies 32 (7 explicit industry; 7 academic; 18 unclear)
7. Synthesis used Vote counting
8. Findings 1. Unstructured interviews (although it is reasonable to assume that the same

applies to structured interviews) are equally as or more effective than introspec-
tive technique (such as protocol analysis) and sorting techniques.
2. Unstructured interviews (although it is reasonable to assume that the same
applies to structured interviews) output more complete information than intro-
spective technique (such as protocol analysis), sorting techniques and Laddering.
3. Unstructured interviews (although it is reasonable to assume that the same
applies to structured interviews) are less efficient than sorting techniques and
Laddering but as efficient as introspective techniques (such as protocol analysis).
4. The introspective techniques (such as protocol analysis) are the worst of all the
tested techniques in all the dimensions (effectiveness, efficiency, completeness)
and are outperformed by unstructured interviews (although it is reasonable to
assume that the same applies to structured interviews), and sorting techniques
and Laddering.
5. Laddering is preferable to sorting techniques (as well as introspection tech-
niques).

9. Recommendations None
10. Author Response None

46 David Budgen et al.

Table B21. Details for Reviews categorised as REQ: #161

Characteristic Values
1. Knowledge Unit REQ.er (Eliciting requirements)
2. Title A systematic literature review of stakeholder identification methods in require-

ments elicitation
3. Citation [62]
4. DARE Score 4.5
5. Strength of Evidence No assessment was made. (Lists papers addressing specific practices and issues.)
6. #Primary Studies 42 (all implicitly industry)
7. Synthesis used Thematic Analysis
8. Findings None
9. Recommendations 1. Assign appropriate roles to stakeholders through analysis of skills, behaviors

in group dynamics and personality tests.
2. Establish constructive interaction between all stakeholders and between
stakeholders and the system.
3. Classify requirements elicited from stakeholders according to an evaluation of
their priorities in the project

10. Author Response The authors agreed with our interpretation.

Table B22. Details for Reviews categorised as REQ: #259

Characteristic Values
1. Knowledge Unit REQ.rsd (Requirements specification and documentation)
2. Title A systematic literature review of use case specifications research
3. Citation [63]
4. DARE Score 4.0
5. Strength of Evidence No assessment was made. (Lists papers addressing specific issues.)
6. #Primary Studies 119 (27 explicit industry; 11 academic; 81 unclear)
7. Synthesis used Could not be identified.
8. Findings 1. Use case specifications were typically employed in two perspectives: document-

ing the functional requirements (typically using informal tabular or paragraph
style formats); and for generating the lower-level software artifacts by using
greater formalism to support a model-transformation process.
2. Use cases have evolved from paragraph format textual descriptions to a more
formal keyword-oriented format for facilitating automated information retrieval.
3. Use cases have been applied and used in almost all the software development
life cycle activities. However, knowledge about their applicability in planning
and estimation and maintenance phases is limited, due to the limited number of
published studies.

9. Recommendations None
10. Author Response The authors suggested some rewording of the third conclusion (incorporated).

Table B23. Details for Review categorised as QUA: #219

Characteristic Values
1. Knowledge Unit QUA.pda (Product assurance)
2. Title Empirical evidence on the link between object-oriented measures and external

quality attributes: a systematic literature review

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 47

Table B23 continued

Characteristic Values
3. Citation [64]
4. DARE Score 4.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 99 (33 are implicitly from industry; 5 academic; and 61 could not be classified)
7. Synthesis used Vote counting
8. Findings 1. Measures for complexity, cohesion, coupling and size show better consistency

in their relationship with reliability and maintainability attributes across the
primary studies than inheritance.
2. Measures that quantify inheritance properties show poor links to reliability
and maintainability.

9. Recommendations None
10. Author Response The authors observed that for the second conclusion, the poor showing of the

inheritance measures might have stemmed from confounding factors in the
primary studies.

Table B24. Details for Review categorised as PRO: #39

Characteristic Values
1. Knowledge Unit PRO.con (Process Concepts)
2. Title Quality, productivity and economic benefits of software reuse: a review of

industrial studies
3. Citation [45]
4. DARE Score 3.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 11 (all explicit industry)
7. Synthesis used (Not assessed for Dataset1)
8. Findings 1. Defect, error or fault density is significantly reduced.

2. Rework effort is significantly reduced.
3. Apparent productivity improves significantly.

9. Recommendations None
10. Author Response None

Table B25. Details for Review categorised as PRO: #50

Characteristic Values
1. Knowledge Unit PRO.con (Process Concepts)
2. Title Software process improvement in small and medium software enterprises: a sys-

tematic review
3. Citation [46]
4. DARE Score 4.0
5. Strength of Evidence No assessment was made.
6. #Primary Studies 45 (all explicit industry)
7. Synthesis used (Not assessed for Dataset1)
8. Findings It is difficult to successfully apply formal SPI programmes which use models

such as CMM to SMEs.
9. Recommendations None

10. Author Response None

48 David Budgen et al.

Table B26. Details for Review categorised as PRO: #138

Characteristic Values
1. Knowledge Unit PRO.con (Process Concepts)
2. Title Measuring and predicting software productivity: a systematic map and review
3. Citation [65]
4. DARE Score 4.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 38 (25 explicit industry, 13 academic)
7. Synthesis used Narrative Synthesis
8. Findings 1. The variety of model forms means that strong recommendations cannot be

provided. However, the studies did not come to conclusions that contradicted
each other.
2. Simulation overall provided promising results.
3. Time-series analysis/statistical process control also shows good results in
identifying sharp shifts in process performance as well as shifts due to changes
in the process.
4. To be able to give a recommendation on the predictive accuracy of regression
for software productivity, the model should be built on a sub-set of data points
and then used to predict the remaining data points. Thereafter the difference
between prediction and actual values should be observed and measured.

9. Recommendations 1. When using univariate models it is important to be aware of high variances
and difficulties when comparing productivities. Hence it is important to carefully
document the context to be able to compare between products. Comparison
should not be on productivity value alone and it is recommended that a scatter
diagram be produced based on inputs and outputs to assure comparability of
projects with respect to size.
2. When comparing projects it should be made clear what output and input
consists of, for example, which lines are included in LOC measures.
3. When possible, use multivariate analysis when data is available, as throughout
the software process many outputs are produced. Otherwise, productivity is
biased towards one measure (eg LOC).
4. Managers need to be aware of validity threats present in the measures when
conducting a comparison. Data should be interpreted with care and awareness
of possible bias and noise in the data arising from measurement error.
5. No generic prediction model can be recommended as studies do not clearly
agree on what are the predictors for software productivity. In fact, the predictors
might differ between contexts. Hence companies need to identify and test
predictors relevant to their context.

10. Author Response The authors identify the following additional finding.
5. Data envelopment analysis is promising as it supports multivariate productiv-
ity measures, and allows identification of reference projects to which inefficient
projects should be compared. This helps with identifying projects from which
one can learn, and that are similar, so that evidence may be transferable.

Table B27. Details for Review categorised as PRO: #157

Characteristic Values
1. Knowledge Unit PRO.con (Process Concepts)
2. Title The Effects of Test-Driven Development on External Quality and Productivity:

A Meta-Analysis

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 49

Table B27 continued

Characteristic Values
3. Citation [67]
4. DARE Score 4.0
5. Strength of Evidence No assessment was made.
6. #Primary Studies 37 (10 explicit industry; 23 academic; 4 unclear)
7. Synthesis used Meta-analysis
8. Findings Use of TDD can result in a small improvement in quality (implicit).
9. Recommendations None

10. Author Response None

Table B28. Details for Review categorised as PRO: #160

Characteristic Values
1. Knowledge Unit PRO.con (Process Concepts)
2. Title Reconciling software development models: A quasi-systematic review
3. Citation [68]
4. DARE Score 2.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 42 (all implicit industry studies)
7. Synthesis used Thematic analysis
8. Findings 1. Three different levels of reconciliation are found: organisational, group and

process.
2. Main opportunities for reconciliation are derived from collaboration and code
availability.
3. There is a diversity of challenges – most salient is overcoming barriers to
culture change.

9. Recommendations None
10. Author Response Our findings were confirmed by the authors.

Table B29. Details for Review categorised as PRO: #174

Characteristic Values
1. Knowledge Unit PRO.con (Process Concepts)
2. Title A systematic literature review on the industrial use of software process simulation
3. Citation [69]
4. DARE Score 3.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 87 (all implicit industry studies)
7. Synthesis used Could not be determined
8. Findings No evidence of widespread adoption and impact of SPSM research on industry.
9. Recommendations When using software process simulation models for scientific purposes, need to

be sure that the appropriate steps with respect to model validity checking have
been conducted, and do not rely upon a single simulation run.

10. Author Response We have used a slight rewording of the recommendation suggested by the
authors.

50 David Budgen et al.

Table B30. Details for Review categorised as PRO: #228

Characteristic Values
1. Knowledge Unit PRO.con (Process Concepts)
2. Title An investigation into the best practices for the successful design and imple-

mentation of lightweight software process assessment methods: A systematic
literature review

3. Citation [74]
4. DARE Score 2.5
5. Strength of Evidence No assessment was made. (Lists papers identifying successful practices.)
6. #Primary Studies 22 (all explicit industry studies)
7. Synthesis used Thematic analysis
8. Findings A set of 38 best practices has been collected and classified into five main areas:

method, supportive tool, procedure, documentation and user best practices.
9. Recommendations The paper has identified a set of best practices to support and inform designers

and assessors for software process assessment.
10. Author Response We have used some rewording suggested by the authors.

Table B31. Details for Review categorised as PRO: #249

Characteristic Values
1. Knowledge Unit PRO.con (Process Concepts)
2. Title Exploring principles of user-centred agile software development: A literature

review
3. Citation [79]
4. DARE Score 4.5
5. Strength of Evidence No assessment was made. (Provides counts of papers identifying issues related

to principles.)
6. #Primary Studies 83 (26 implicit industry studies, 57 that could not be classified)
7. Synthesis used Content analysis
8. Findings None
9. Recommendations 1. User-centered agile software development should be based on separated

product discovery and product creation phases.
2. In user-centered agile approaches, design and development should proceed in
parallel interwoven tracks.
3. In user-centered agile approaches, tangible and up-to-date artifacts should be
used to document and communicate product and design concepts, and should
be accessible to all involved stakeholders.

10. Author Response None

Table B32. Details for Review categorised as PRO: #268

Characteristic Values
1. Knowledge Unit PRO.con (Process Concepts)
2. Title Requirements for product derivation support: Results from a systematic litera-

ture review and an expert survey
3. Citation [81]
4. DARE Score 2.0
5. Strength of Evidence No assessment was made.

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 51

Table B32 continued

Characteristic Values
6. #Primary Studies 118 (unclassified as no details provided)
7. Synthesis used Narrative synthesis
8. Findings Systematic Review followed by expert survey identified the following six require-

ments for product derivation support:
1. automated and interactive variability resolution
2. adaptability and extensibility
3. application requirements management support
4. flexible and user-specific visualisations of variability
5. end-user guidance
6. project management support

9. Recommendations None
10. Author Response The authors agreed with our extracted findings.

Table B33. Details for Review categorised as PRO: #276

Characteristic Values
1. Knowledge Unit PRO.con (Process Concepts)
2. Title Empirical evaluation of a decision support model for adopting software product

line engineering
3. Citation [82]
4. DARE Score 3.0
5. Strength of Evidence No assessment was made. (Lists papers identifying relevant factors.)
6. #Primary Studies 31 (all implicit industry)
7. Synthesis used Thematic Analysis + Vote Counting
8. Findings 1. The study identifies 25 factors that should be considered when investigating

adoption of SPLE (e.g. business motivation, market potential, software architec-
ture competence).
In all, 39 questions that might be asked and 312 rules that could be applied are
developed. Rules include recommendations and strategies (but only one example
provided)

9. Recommendations None
10. Author Response The authors agreed with our extracted findings.

Table B34. Details for Review categorised as PRO: #84

Characteristic Values
1. Knowledge Unit PRO.imp (Process Implementation)
2. Title The effectiveness of pair programming: A meta-analysis
3. Citation [47]
4. DARE Score 4.0
5. Strength of Evidence No assessment was made.
6. #Primary Studies 19 (5 explicit industry and 14 academic studies)
7. Synthesis used Meta-analysis
8. Findings None

52 David Budgen et al.

Table B34 continued

Characteristic Values
9. Recommendations If you do not know the seniority or skill levels of your programmers, but do

have a feel for task complexity, then employ PP either when task complexity is
low and time is of the essence, or when task complexity is high and correctness
is important.

10. Author Response The authors agreed with our extracted recommendations.

Table B35. Details for Review categorised as PRO: #150

Characteristic Values
1. Knowledge Unit PRO.imp (Process Implementation)
2. Title Agile product line engineering – a systematic literature review
3. Citation [66]
4. DARE Score 3.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 39 (14 explicit industry and 25 not specified)
7. Synthesis used Narrative synthesis
8. Findings 1. If software product line (SPL) developers do not have enough knowledge to

completely perform the domain engineering (DE), agile software development
(ASD) may facilitate the elicitation of further knowledge.
2. Trade-offs between SPLE and ASD provide the opportunity to apply the agile
product line engineering (APLE) approach to a wider variety of projects than
those served by only applying ASD or SPL methods.
3. When anticipated changes cannot be predicted and the product life cycle is
not known, it would be advantageous to use an incremental approach such as
APLE.
4. Agile processes may facilitate fast feedback cycles between requirements
engineering (RE), development and field trial in innovative business.

9. Recommendations None
10. Author Response The authors agreed with our extracted findings and observed that Table VII in

their paper does implicitly provide some recommendations for practice.

Table B36. Details for Review categorised as PRO: #193

Characteristic Values
1. Knowledge Unit PRO.imp (Process Implementation)
2. Title Empirical studies on the use of social software in global software development –

A systematic mapping study
3. Citation [71]
4. DARE Score 4.0
5. Strength of Evidence No assessment was made.
6. #Primary Studies 84 (61 explicit industry and 23 academic studies)
7. Synthesis used Narrative synthesis
8. Findings 1. Social Networking sites help identify experts and provide awareness of people’s

expertise.
2. It is necessary to develop structures, rules, good practices and agreements for
using SoSo in a work context and on a project basis.

9. Recommendations None
10. Author Response None

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 53

Table B37. Details for Review categorised as PRO: #215

Characteristic Values
1. Knowledge Unit PRO.imp (Process Implementation)
2. Title Software development in startup companies: A systematic mapping study
3. Citation [72]
4. DARE Score 4.5
5. Strength of Evidence No assessment was made. (Lists papers identifying factors.)
6. #Primary Studies 43 (30 implicit industry and 13 that could not be classified)
7. Synthesis used Thematic analysis
8. Findings 1. Light-weight methodologies to obtain flexibility in choosing tailored practices,

and reactiveness to change the product according to business strategies is a useful
process management practice in startups.
2. Fast releases to build a prototype in an evolutionary fashion and quickly learn
from the users’ feedback to address the uncertainty of the market is a useful
process management practice in startups.
3. The use of well-known frameworks able to provide fast changeability of the
product in its refactoring activities is a useful design and architectural practice
in startups.
4. The use of existing components, leveraging third party code reinforcing ability
to scale the product is a useful design and architectural practice in startups.
5. The use of ongoing customer acceptance with the use of focus groups of early
adopters, which aims to determine the fitness of the product for the market is
a useful quality assurance practice in startups.
(plus six further conclusions)

9. Recommendations None
10. Author Response The authors agreed with our interpretation.

Table B38. Details for Review categorised as PRO: #217

Characteristic Values
1. Knowledge Unit PRO.imp (Process Implementation)
2. Title Understanding the Influence of User Participation and Involvement on System

Success – A Systematic Mapping Study
3. Citation [20]
4. DARE Score 3.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 82 (all implicit industry)
7. Synthesis used Meta-analysis
8. Findings 1. “Given the vast amount of positive correlations, we can conclude that, even

though the results are not completely consistent, the amount of studies with
positive correlations of the various aspects of UPI on system success provides
evidence of a robust and transferable effect.”
2. Most studies with negative correlations from aspects of UPI on system success
were published more than 10 years ago.
3. UPI has a positive effect on user satisfaction and system use.

9. Recommendations None
10. Author Response The authors suggested some revisions which were partly adopted.

54 David Budgen et al.

Table B39. Details for Review categorised as PRO: #222

Characteristic Values
1. Knowledge Unit PRO.imp (Process Implementation)
2. Title The Kanban approach, between agility and leanness: a systematic review
3. Citation [73]
4. DARE Score 4.0
5. Strength of Evidence No assessment was made. (Lists papers identifying relevant benefits.)
6. #Primary Studies 37 (all implicit industry)
7. Synthesis used Case survey
8. Findings 1. There is a lack of of details and guidelines on how the Kanban approach can

be used by IT organisations.
2. The Kanban board is an efficient visualisation tool.

9. Recommendations Discuss Kanban elements together, based on the five pillars of the lean approach,
to minimize the risk of evolving contradictory elements and to facilitate establish-
ing guidelines and instructions on how to set up the Kanban approach, to give
practitioners an overall framework that increases the likelihood of successfully
implementing the Kanban approach in IT organisations.

10. Author Response None

Table B40. Details for Review categorised as PRO: #236

Characteristic Values
1. Knowledge Unit PRO.imp (Process Implementation)
2. Title The impact of global dispersion on coordination, team performance and software

quality – A systematic literature review
3. Citation [75]
4. DARE Score 4.5
5. Strength of Evidence No assessment was made. (Provides counts of studies addressing factors.)
6. #Primary Studies 43 (40 explicit industry and 3 academic)
7. Synthesis used Thematic analysis + Vote counting
8. Findings 1. The impact of each dispersion dimension on project outcomes is mediated by

a different set of coordination issues in GSD.
2. A distributed task takes a longer time to communicate and resolve than
a co-located task does in GSD.
3. Temporal dispersion has a positive impact on objective team performance
while it has a negative impact on perceived team performance in GSD.
4. Geographical dispersion has a negative impact on software quality, at both
file and project level in GSD.
5. Temporal dispersion has a negative impact on software quality, at both file
and project level in GSD.

9. Recommendations 1. Managers should be aware of the influence of dispersion dimension at different
organisational levels. At the individual level, lack of face-to-face interaction
and working in different time zones affects directly and negatively a developer’s
work. At the team and project level, the negative influences of these dispersion
dimensions might be underestimated in considering different goals and priorities.
This issue must be taken into account when aligning the objective of individuals
and teams with organizational goals.

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 55

Table B40 continued

Characteristic Values
2. Decisions on which coordination mechanisms to use should depend on the
current dispersion context setting, the current team coordination technology
and practices, and prioritized type of interdependencies. Our summary shows
that communication and shared artifacts should be used together as needed and
a defined process should be adopted at the team and organizational levels.

10. Author Response The authors agreed with our extracted findings.

Table B41. Details for Review categorised as PRO: #239

Characteristic Values
1. Knowledge Unit PRO.imp (Process Implementation)
2. Title Using CMMI together with agile software development: A systematic review
3. Citation [76]
4. DARE Score 4.5
5. Strength of Evidence Use of GRADE. Strength of evidence considered to be low for all findings.
6. #Primary Studies 60 (59 explicit industry and 1 academic)
7. Synthesis used Thematic analysis
8. Findings 1. Agile methodologies have been used by companies to enhance their efforts

to reach levels 2 and 3 of CMMI, with reports of applying agile practices to
achieve level 5.
2. Agile methodologies alone are not sufficient to achieve the level required, it
being necessary to resort to additional practices.
3. Organisations should seek to ensure that how CMMI and agile can be combined
is understood and undertaken by those involved.

9. Recommendations None
10. Author Response None

Table B42. Details for Review categorised as PRO: #241

Characteristic Values
1. Knowledge Unit PRO.imp (Process Implementation)
2. Title A systematic review on the relationship between user involvement and system

success
3. Citation [77]
4. DARE Score 4.5
5. Strength of Evidence No assessment was made. (Lists papers identifying specific benefits.)
6. #Primary Studies 87 (all implicit industry)
7. Synthesis used Thematic analysis + Vote counting
8. Findings 1. Identification of the right type of users who will be involved, and who will

participate, are important factors according to the literature, but the review
did not find enough empirical evidence about this to confirm it.
2. The perspective of user involvement is one of the most important factors.
Analysis identified five major perspectives for user involvement: psychological,
managerial, methodological, political, and cultural.
3. User involvement takes different forms for development of different types of
system.
4. User satisfaction leads to system success (the top cited factor).

56 David Budgen et al.

Table B42 continued

Characteristic Values
5. To achieve benefits in methodological and psychological perspectives, user
involvement in the requirements phases seems to be most effective.
6. To achieve benefits for political and cultural perspectives, users need to be
involved in the design and implementation phases.

9. Recommendations None
10. Author Response The authors provided some comments which we have used to modify the findings.

Table B43. Details for Review categorised as PRO: #260

Characteristic Values
1. Knowledge Unit PRO.imp (Process Implementation)
2. Title Claims about the use of software engineering practices in science: A systematic

literature review
3. Citation [80]
4. DARE Score 2.5
5. Strength of Evidence No assessment was made. (Lists papers addressing specific issues.)
6. #Primary Studies 43 (all academic)
7. Synthesis used Thematic analysis
8. Findings 1. Scientific software developers benefit from using a wide range of testing

practices from software engineering.
2. Open-source is especially useful to scientific software developers.
3. Documentation is a necessary enabler of software quality.
4. Version control software is necessary for research groups with more than one
developer.
(Note: These were the conclusions with strongest supporting evidence.)

9. Recommendations None
10. Author Response The authors provided some comments which we have used to modify the findings.

Table B44. Details for Review categorised as PRO: #8

Characteristic Values
1. Knowledge Unit PRO.pp (Project Planning and Tracking)
2. Title Forecasting of software development work effort: Evidence on expert judgement

and formal models
3. Citation [43]
4. DARE Score 1.0
5. Strength of Evidence Informally estimated as “modest”.
6. #Primary Studies 16 (14 explicit industry and 2 academic studies)
7. Synthesis used (Synthesis was not assessed for Dataset1)
8. Findings 1. The review does not support the view that we should replace expert judgement

with models.
2. The review does not support the view that software estimation models are
useless..
3. Models failed to systematically perform better than the experts when esti-
mating.

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 57

Table B44 continued

Characteristic Values
4. Two conditions for producing more accurate expert judgement-based effort
seem to be that the models are not calibrated to the organization using them,
and that the experts possess important contextual information not included in
the formal models and apply it efficiently.
5. The use of models, either alone or in combination with expert judgement,
may be particularly useful when i) there are situational biases that are believed
to lead to a strong bias towards overoptimism; ii) the amount of contextual
information possessed by experts is low; and iii) the models are calibrated to
the organization using them.

9. Recommendations It is best to use a combination of models and experts when estimating the level
of effort required to complete software development tasks.

10. Author Response None

Table B45. Details for Review categorised as PRO: #22

Characteristic Values
1. Knowledge Unit PRO.pp (Project Planning and Tracking)
2. Title Evidence-Based Guidelines for Assessment of Software Development Cost Un-

certainty
3. Citation [44]
4. DARE Score 2.5
5. Strength of Evidence An assessment was made for each guideline, identifying supporting papers.
6. #Primary Studies 40 (none could be classified)
7. Synthesis used (Synthesis was not assessed for Dataset1)
8. Findings None
9. Recommendations 1. Do not rely solely on unaided, Intuition-based processes. (Strong evidence.)

2. Do not replace expert judgement with formal models. (Medium evidence.)
3. Apply structured and explicit judgement-based processes. (Strong evidence.
4. Apply strategies based on an outside view of the project. (Medium evidence.)
5. Use motivational mechanisms with care and only if it is likely that more effort
leads to improved assessments. (Medium evidence.)
6. Frame the assessment problem to fit the structure of the uncertainty relevant
information and the assessment process. (Medium evidence.)

10. Author Response None

Table B46. Details for Review categorised as PRO: #102

Characteristic Values
1. Knowledge Unit PRO.pp (Project Planning and Tracking)
2. Title Managing risks in distributed software projects: An integrative framework
3. Citation [48]
4. DARE Score 2.5
5. Strength of Evidence No assessment was made.
6. #Primary Studies 72 (implicit industry studies)
7. Synthesis used (Synthesis was not assessed for Dataset1)

58 David Budgen et al.

Table B46 continued

Characteristic Values
8. Findings 1. Built framework demonstrating complex nature of risks in GDSP and offers

concepts and heuristics that practitioners can use to assess and control the risks
they face in specific projects. Can be used by project managers.
2. Provides a useful vocabulary.

9. Recommendations 1. Revisit risk management regularly during project lifetime.
2. Practitioners are advised to go through the steps of risk assessment, risk
control and risk management planning.

10. Author Response None

Table B47. Details for Review categorised as PRO: #121

Characteristic Values
1. Knowledge Unit PRO.pp (Project Planning and Tracking)
2. Title Empirical evidence in global software engineering: A systematic review
3. Citation [21]
4. DARE Score 3.0
5. Strength of Evidence No assessment was made.
6. #Primary Studies 56 (37 explicit industry studies, 16 academic, 3 not stated)
7. Synthesis used Narrative synthesis
8. Findings 1. Trust, cohesiveness and effective teamwork can be achieved through F2F

meetings, temporal colocation and exchange visits - but entail extra costs.
2. Greater awareness and process transparency can be achieved through the use
of a centralised repository and common configuration management tool support
- but requires overcoming heterogeneity.
3. Trust and cohesiveness can be improved through effective and frequent
synchronous communications – but entail extra costs.
4. Effective communications can be achieved if infrastructure is reliable and
communications media are rich.
5. Effective teamwork can be achieved through synchronous interaction – but
requires temporal proximity .
6. Effective teamwork can be achieved through task distribution based on
architectural decoupling and low dependencies across remote locations – but
requires full transition of parts of the work.
7. Early feedback and capability evaluation can be achieved through the use of
incremental short-cycle development – but requires frequent and transparent
communications.
There is still no recipe for successful and efficient performance in globally
distributed software engineering.

9. Recommendations None
10. Author Response The authors observe that since key practices that help minimise risk require

additional investments, global collaboration might not be suitable for companies
that enter global projects to reduce costs.

What Support do Systematic Reviews Provide for Evidence-informed Teaching . . . 59

Table B48. Details for Review categorised as PRO: #175

Characteristic Values
1. Knowledge Unit PRO.pp (Project Planning and Tracking)
2. Title Barriers in the selection of offshore software development outsourcing vendors:

An exploratory study using a systematic literature review
3. Citation [70]
4. DARE Score 3.5
5. Strength of Evidence No assessment was made. (Provides counts of papers identifying specific barriers.)
6. #Primary Studies 77 (All explicit industry studies)
7. Synthesis used Thematic analysis
8. Findings 1. Barriers vary with organisation size. These are summarised in Table 7 of their

paper. The one common barrier is “language and cultural barriers”.
2. Viewed over two decades, different barriers have “risen” and “fallen” in
importance.

9. Recommendations 1. Outsourcing vendors should focus on the identified barriers in order to have
a positive impact on outsourcing clients and to win outsourcing contracts:
language and cultural barriers.
2. Vendors should focus on the barriers identified in order to have a positive
impact on outsourcing clients and to win outsourcing contracts: country insta-
bility.
3. Vendors should focus on the barrier identified in order to have a positive
impact on outsourcing clients and to win outsourcing contracts: lack of project
management.
4. Vendors should focus on the barriers identified in order to have a positive
impact on outsourcing clients and to win outsourcing contracts: lack of protection
for IPR.
5. Vendors should focus on the barriers identified in order to have a positive
impact on outsourcing clients and to win outsourcing contracts:lack of technical
capability.

10. Author Response The authors agreed with our extracted data.

Table B49. Details for Review categorised as PRO: #244

Characteristic Values
1. Knowledge Unit PRO.pp (Project Planning and Tracking)
2. Title Analogy-based software development effort estimation: A systematic mapping

and review
3. Citation [78]
4. DARE Score 5.0
5. Strength of Evidence No assessment was made. (Lists studies identifying specific factors.)
6. #Primary Studies 61 (all were explicitly industrial)
7. Synthesis used Narrative synthesis
8. Findings 1. ASEE methods tend to yield acceptable estimates.

2. ASEE methods outperform regression based methods.
3. ASEE methods outperform ANN based methods.
4. ASEE methods outperform DT based methods.
5. One ASEE technique alone may not be the best estimation method in all
contexts. However, in any context, an appropriate effort estimation model can
be built by combining an ASEE technique with other techniques to overcome
the weaknesses.”

60 David Budgen et al.

Table B49 continued

Characteristic Values
6. The results suggest overall that the estimation accuracy of ASEE methods is
improved when used in combination with other techniques, especially FL and
GA. As has been found, SM improves the accuracy of ASEE techniques much
less than the other techniques. This suggests that using ML rather than non ML
techniques in combination with analogy would be preferable, in particular, fuzzy
logic, genetic algorithms, the model tree, and the collaborative filtering. The
limited number of studies on ASEE methods combined with these techniques
may account for these inconclusive results.
7. Taking into consideration the number of evaluations and based on the median
of the MMRE, MT is the technique that improves the accuracy of ASEE
methods the most (59.42% improvement), followed by CF combined with RSA
(51.85%) and LSR (41.03%). Based on the median of the MdMRE, MT has the
greatest impact (67.75%), followed by FL combined with GRA (40.80%) and GA
(37.93%). Based on the arithmetic median of Pred(25), ASEE techniques are
improved the most by MT (129.01% improvement), followed by CF (108.33%)
and GA (100.00%).
8. Results suggest overall that all the techniques listed in Section 3.5 improve
the estimation accuracy of ASEE methods, especially GA and FL, which are
supported by 4 studies each. There is much less improvement in the accuracy of
ASEE techniques when combined with SM.

9. Recommendations None
10. Author Response The authors agreed with our extracted findings.

e-Informatica Software Engineering Journal, Volume 14, Issue 1, 2020, pages: 61–76, DOI 10.37190/e-Inf200102

Technical Debt Aware Estimations in Software
Engineering: A Systematic Mapping Study

Paweł Klimczyk∗, Lech Madeyski∗∗
∗GEMOTIAL

∗∗Faculty of Computer Science and Management, Wroclaw University of Science and Technology,
Wyb.Wyspianskiego 27, 50-370 Wroclaw, Poland

pawel@klimczyk.pl, lech.madeyski@pwr.edu.pl

Abstract
Context: The Technical Debt metaphor has grown in popularity. More software is being created
and has to be maintained. Agile methodologies, in particular Scrum, are widely used by development
teams around the world. Estimation is an often practised step in sprint planning. The subject
matter of this paper is the impact technical debt has on estimations.
Objective: The goal of this research is to identify estimation problems and their solutions due to
previously introduced technical debt in software projects.
Method: The Systematic mapping study (SMS) method was applied in the research. Papers
were selected from the popular digital databases (IEEE, ACM, Scopus, etc.) using defined search
criteria. Afterwards, a snowballing procedure was performed and the final publication set was
filtered using inclusion/exclusion criteria.
Results: 42 studies were selected and evaluated. Five categories of problems and seven proposed
solutions to the problems have been extracted from the papers. Problems include items related
to business perspective (delivery pressure or lack of technical debt understanding by business
decision-makers) and technical perspective (difficulties in forecasting architectural technical debt
impact or limits of source code analysis). Solutions were categorized in: more sophisticated
decision-making tools for business managers, better tools for estimation support and technical
debt management tools on an architectural-level, portfolio approach to technical debt, code audit
and technical debt reduction routine conducted every sprint.
Conclusion: The results of this mapping study can help taking the appropriate approach in
technical debt mitigation in organizations. However, the outcome of the conducted research shows
that the problem of measuring technical debt impact on estimations has not yet been solved.
We propose several directions for further investigation. In particular, we would focus on more
sophisticated decision-making tools.

Keywords: Software estimation, technical debt, project management, decision making,
change impact

1. Introduction

Today software is present in all industries world-
wide. The Industry 4.0 [1, 2]1 or Internet of
Things [3] concepts are based on software to op-
erate and provide solutions. Agile methods were
proposed to better handle inevitable changes [4].

A number of practices have become popular, e.g.,
Continuous Integration, TDD, Pair Program-
ming, to ensure sufficient production code and
tests quality (e.g., [5–7]) and software develop-
ment productivity (e.g., [8]).

Cunningham [10] introduced the technical
debt term to describe shortcuts taken by soft-

1Note that two reference lists are included at the end of this paper: the first one includes papers found during our
systematic mapping, the second one is the main reference list.

Submitted: 10 March 2019; Revised: 20 January 2020; Accepted: 22 January 2020; Available online: 13 February 2020

62 Paweł Klimczyk, Lech Madeyski

Figure 1. Technical Debt Landscape (inspired by [9])

ware engineers in order to deliver value on time.
“A little debt speeds development so long as it
is paid back promptly with a rewrite.. . . The
danger occurs when the debt is not repaid. Ev-
ery minute spent on not-quite-right code counts
as interest on that debt.” [10]. The number of
software developers increases every year. That
implies creating more code and more technical
debt in the result. According to Google Trends2
technical debt metaphor has been growing in
popularity.

Software project features may be delivered
faster to users, but the effects of taking techni-
cal debt (e.g., storing application data in a file
instead of a database) will have to be addressed
in the future. As stated by Fowler [11], technical
debt can be taken intentionally or unintention-
ally. Along with technical debt there is a interests
concept. Interests can be considered as “the ex-
tra maintenance cost spent for not achieving the
ideal quality level.” [12]. It is a metaphor for un-
paid technical debt becoming more expensive to
repay over time. Technical debt grows during the
software development process as stated in [13].

Technical Debt Landscape (Figure 1) was
introduced by Kruchten et al. [9]. The land-
scape identifies mostly invisible area where poten-
tial problems affecting estimations exist. Mostly
invisible items are hidden to everybody apart
from software engineers. Other members of the
project team are aware of them, but might not
know the details. The authors state: Techni-
cal debt should not be treated in isolation from
adding new functionality or fixing defects and The
challenge is in expressing all software develop-

ment activities in terms of sequences of changes
associated with a cost and a value [9]. Soft-
ware development teams should communicate
the “technological gap” in effort estimation so
mostly invisible parts are known to the managers
and stakeholders.

Estimation is a process of rough calculation of
how much time is needed to deliver business value
related to the estimated task or feature. There
is a number of techniques helping developers to
provide more accurate estimation [14–16] (e.g.,
poker planning, smart use cases or bucket system).
Some of them use the developer’s experience in
a project to consider technical debt impact on
estimation accuracy.

Estimations are straightforward in well-spec-
ified projects. Development teams start from
scratch and will introduce technical debt. As new
features are implemented or as existing features
are extended, the project’s complexity increases.
The problem with estimations becomes visible
after the technical debt has been taken and has
to be addressed. It may be expected that forecast-
ing technical debt impact on a new or changed
feature is more difficult in later development
stages. Estimations are becoming inaccurate and
one of the reasons is improper technical debt
measurement. The problem has to be addressed.

The goal of this research was to conduct a sys-
tematic mapping study on technical debt in the
context of estimations. A number of publications
were collected, examined and categorized giving
several directions for further research.

The paper is organized as follows: Section 2
presents related work. Section 3 defines research

2https://trends.google.com/trends/explore?date=all&q=technicaldebt

Technical Debt Aware Estimations in Software Engineering: A Systematic Mapping Study 63

questions for this systematic mapping study
(SMS). Research methodology and crucial details
of the SMS protocol are described in Section 4.
Section 5 shows study results with a detailed
description. In Section 6 we interpret responses
to the posed study research questions. Section 7
presents threats to validity, while in Section 8 we
conclude the work and show directions of further
research. A list of primary sources found in our
SMS is presented before references.

2. Related work

The amount of produced software worldwide in-
creases every year which in turn affects technical
debt. A number of studies have been conducted
to address the problem of increasing technical
debt from various perspectives.

Fernández-Sánchez et al. [17] searched for ele-
ments required in the technical debt management.
They came up with a list of 12 items that will sup-
port decision making in managing technical debt.
Items are divided into three types:(T1) Basic
decision-making factors, (T2) Cost estimation
techniques and (T3) Practices and techniques
for decision-making. The result of this article is
a framework introduced to aid decision making
in technical debt management.

Another research by Fernández-Sánchez et
al. [18] covers available techniques and meth-
ods for technical debt management from a soft-
ware architecture perspective. In their systematic
mapping study authors discovered the impact of
various technical debt types, like code technical
debt, documentation technical debt etc. on archi-
tectural technical debt. The conclusion is that
further studies on architectural debt from a more
holistic approach are needed.

Ribeiro et al. [19] provides a list of 14 decision
criteria on which technical debt repayment can
be prioritized. Authors conclude that none of the
researched studies has performed an empirical
evaluation. In the authors’ opinion, this may in-
dicate a low level of maturity in decision-making
criteria itself.

Li et al. [20] in their mapping study on techni-
cal debt and its management identify a list of ten

technical debt types and 29 tools used as technical
debt management systems. They indicate, how-
ever, that only four tools are dedicated to technical
debt management. The rest is adapted in various
ways from other software development areas. They
conclude that there is a need for more sophisti-
cated and dedicated technical debt management
tools and further research on technical debt man-
agement. More high-level studies should be con-
ducted by the software engineering community.

In another related work, Behutiye et al. [21]
analyse the concept of technical debt in Agile
Software Development (ASD). A list of ten causes
and five consequences of incurring technical debt
in ASD was identified in the research. Authors
also classified a list of technical debt manage-
ment strategies in ASD. The research indicates
the need for more tools, models and guidelines
that support management of technical debt in
ASD [21] and the role of architecture in ASD.

The financial aspect is considered by Ampat-
zoglou et al. [22]. Authors introduced a glossary
of financial terminology and classification schema
of financial approaches used in technical debt
management. The publication also states that
it is easier for developers to communicate with
non-technical managers.

Systematic mapping study on identification
and management of technical debt was conducted
in [23]. Research enumerates strategies that have
been proposed to identify or manage technical
debt in software projects. The conclusion is that
most of the strategies are new but they lack
studies to evaluate their real applicability.

None of the mentioned publications addressed
the problem of technical debt impact on estima-
tions. The goal of our work differs from the other
secondary studies in terms of the research per-
spective and scope. Our study focuses on under-
standing how task delivery estimation is affected
by technical debt and what software development
teams do to develop software according to plan.

3. Research objectives

The objectives of this study were to identify prob-
lems in estimations due to existing technical debt

64 Paweł Klimczyk, Lech Madeyski

in software projects and collect ideas on how de-
velopment teams try to overcome the problems.
Following research questions were stated:

RQ1: What are the problems for the
development team during task estimation
due to technical debt?

The purpose of this question is to confirm
problem existence. Potentially it could be possi-
ble to identify groups of similar problems.

RQ2: What kind of solutions are pro-
posed to mitigate the impact of technical
debt on task estimation?

The purpose of this question is to collect the
actions taken by development teams to reduce
technical debt factor in estimations.

4. Research methodology

In software engineering, guidelines developed
by Kitchenham et al. [24] and Petersen et al. [25]
provide comprehensive instructions on how to
conduct systematic literature reviews (SLR) and
systematic mapping studies. They share some
commonalities (e.g., related to searching and
study selection). However, the difference between
both approaches is that systematic literature re-
views focus on synthesising the evidence and
gaining a new knowledge, while systematic map-
ping studies [25] are focused on structuring the
research area and creating an overview. System-
atic mapping study was chosen as a framework
for this research to answer the questions posed
in Section 3.

4.1. Systematic Mapping Study (SMS)
protocol

Our protocol defines the procedures we intended
to use for SMS including the following steps:
1. Define study objectives and research ques-

tions.
2. Define search query and digital source data-

bases.
3. Define publication selection criteria.
4. Define inclusion and exclusion criteria.
5. Conduct data extraction and assessment.
6. Conduct data synthesis.

After trialling the specified processes, the fi-
nal version of the protocol was agreed by both
authors. The following sections are based on the
processes defined in the protocol. However, it is
worth mentioning that we have added an addi-
tional exclusion criteria (short summary reports)
that was not mentioned in the protocol.

4.2. Search query

We performed a series of trial queries against elec-
tronic databases. In result the following search
query was formulated:
("software") AND ("technical debt" OR
"change impact") AND ("estimation" OR
"decision making" OR "management")

Such a search query will find publications
with a technical debt aspect in various contexts.

4.3. Digital source databases

Publication sources include all popular academic
databases. The year 1992 was chosen as the time-
frame limit since Cunningham published his pa-
per at that time [10]. Studies from following
digital source databases were included:
– IEEE Xplore [26],
– ACM Digital Library [27],
– Springer Link [28],
– Science Direct [29],
– Scopus [30].

4.4. Inclusion/exclusion criteria

Search query defined in Section 4.2 returned a to-
tal number of 2003 candidate documents for pri-
mary studies set. The distribution of documents
per source database is presented in Table 1.

Primary studies set contained many irrelevant
publications, due to query search generic nature.
Thus, following inclusion/exclusion criteria were
applied to select only relevant studies.

Inclusion criteria:
– Publications that describe the problem of

technical debt in software development and
technical debt management.

– Case studies and surveys based on industrial
examples of technical debt management.

Technical Debt Aware Estimations in Software Engineering: A Systematic Mapping Study 65

Table 1. Distribution of publications per source

Source No. of publications
returned by search query

No. of publications
included in our paper

IEEE Xplore 275 14

ACM Digital Library 652 10

Springer Link 341 5

Science Direct 369 5
Scopus 366 7

Snowballing n/a 1

– Technical debt management technique pro-
posals.

– Papers written since 1992 when Cunningham
[10] introduced the technical debt term3.

– Papers written in English – English is a com-
mon language used by researchers.
Exclusion criteria:

– Publications that only mention technical debt
as an issue, but do not focus on deeper elab-
oration/description of the problem.

– Short summary reports about what workshop
participants discussed instead of real research
contributions – short summaries do not pro-
vide enough information.

– Duplicate publications.
– Publications with only abstract available – we

were interested in the details of a particular
research.

– Papers not written in English.

4.4.1. Snowballing

The importance of the snowballing step in
SMS is described in [31]. Backward snowballing
was performed for this study. Papers found in
snowballing were checked using the same inclu-
sion/exclusion criteria list as primary papers.
The snowballing technique found one additional
publication.

4.5. Data extraction and assessment

Data extraction and assessment process focused
on collecting evidence that can formulate an an-

swer to RQs. All filtered publications were read
in full. Microsoft Excel was used to record and
organize the following data: title, source, citation
eligible for RQ1 or RQ2 and publication type.
The assessment was based on whether a study
provides evidence to answer one of the RQs.

4.6. Initial research set

Initial research set consisted of 45 articles. Af-
ter applying inclusion/exclusion criteria papers
[S1], [S2] and [S3] was excluded. Decisions were
discussed by both authors.

4.7. Rigor and relevance

We applied a checklist proposed by Ivarsson and
Gorschek [32] to access rigor and relevance of
the final dataset. The rating model consists of
two perspectives to measure: rigor and relevance.
Rigor refers to how an evaluation is performed
and how is it reported. Relevance measures the
industrial applicability in the usage context, used
research method, subjects/users and scalability.
Each item is scored by 0, 0.5 and 1 in rigor
perspective and 0 or 1 in relevance perspective.

The first author rated the studies for quality
assurance. The rigor and relevance scores distri-
bution in our SMS is presented in Figure 2.

In order to review the selection agreement
among the authors, a Kappa analysis [33] was
performed. Seven randomly selected4 publica-
tions were examined by the second author. Based
on the selected sample Kappa value was calcu-

3The technical debt knowledge, along with programming languages, has evolved over last 30 years, and we do not
expect that problems and solutions discussed in papers written before 1992, and not cited after that year, would add
value to the paper.

4https://www.random.org/sequences/?min=1&max=42&col=1&format=html&rnd=new

66 Paweł Klimczyk, Lech Madeyski

Figure 2. Mapping of selected papers with respect to rigor and relevance

lated – the strength of agreement was very good
(κ = 1.0).

4.8. Final set of papers

We selected 42 publications, see Table 2 and
the list of primary studies found in our sys-
tematic mapping, presented before references.
41 of the papers were filtered through digital
source databases using search query presented
in Section 4.2. An additional one was found dur-
ing the snowballing process. Table 1 presents
a distribution of publications per digital source
databases and snowballing procedure. It is worth
mentioning that case studies were the most
popular publication types among the accepted
primary studies.

At this point we assessed all evidence for eli-
gibility and divided into two groups: Identified
problem categories (G1 – addressing RQ1)
and Identified potential solution categories
(G2 – addressing RQ2). Groups would later
provide potential answers to RQs accordingly.
The next step was to synthesise the data.

4.9. Data synthesis

The purpose of data processing is to synthesize
extracted data in order to answer RQs from Sec-

tion 3. Data extracted in Section 4.5 was divided
into two groups. Each group contains a number
of categories that emerged from examined pub-
lications. Category names were deduced from
clustering items in each group.

Each category has its description and several
papers addressing a particular subject. Results
of data synthesis are available in Table 2.

5. Study results

We conducted a systematic mapping study ac-
cording to the procedure described in Section 4.
In total 42 publications were examined. During
data extraction and synthesis, five categories
of problems (corresponding to RQ1) and seven
categories of proposed solutions (corresponding
to RQ2) to the problems were identified for the
selected studies. RQs findings are discussed in
Sections 5.1 and 5.2.

5.1. Problems in estimation
due to technical debt (RQ1)

We gathered five categories of problems in
user-story estimation due to technical debt:
– Business pressure on delivery – 11 papers

(i.e., 44% of publications that identified prob-

Technical Debt Aware Estimations in Software Engineering: A Systematic Mapping Study 67

Table 2. Data synthesis results

Category Description No. of
studies

Sources

Id
en
tifi

ed
pr
ob

le
m

ca
te
go

rie
s
fo
r

de
ve
lo
pm

en
t
te
am

s
du

rin
g
es
tim

at
io
ns

(G
1) Business pressure

on delivery

Studies showing business pressure of any kind
on the project delivery (e.g., release project
ahead of competition, new regulations intro-
duced by public administration, raising com-
pany market value)

11

[S4], [S5], [S6],
[S7], [S8], [S9],
[S10], [S11], [S12],
[S13], [S14]

Lack of technical
debt awareness in
company

Studies showing that non-technical stakehold-
ers are now aware of technical debt impact on
estimations

5 [S11], [S15], [S16],
[S17], [S18]

No procedures for
technical debt
management

Studies stating a lack of any technical debt
management techniques incorporated in soft-
ware engineering process

3 [S16], [S19], [S20]

Architectural
technical debt
impact

Studies providing samples where architecture
technical debt had impact on software estima-
tion and delivery

9
[S8], [S9], [S15],
[S16], [S21], [S22],
[S23], [S24], [S25]

Source code
analysis is not
sufficient

Studies claiming that sole code analysis mea-
surements are not enough in task estimation
improvements

7
[S9], [S15], [S16],
[S21], [S26], [S27],
[S28]

Total distinct studies 25

Id
en
tifi

ed
pr
op

os
ed

so
lu
tio

n
ca
te
go

rie
s
to

m
iti
ga

te
te
ch
ni
ca
l

de
bt

in
es
tim

at
io
ns

pr
ob

le
m

(G
2)

Tools for decision
support

Studies indicating need of high level tools that
will help business people to take development
decision with technical debt consideration (e.g.,
which parts of the system will be affected by
implementing particular feature, how much
human resources needs to be involved)

14

[S7], [S8], [S9],
[S11], [S29], [S30],
[S31], [S32], [S23],
[S33], [S34], [S24],
[S18], [S35]

Tools for estimation
support

Studies stating the need of technical debt esti-
mation tool for development team. Such tool
would improve estimation accuracy

9
[S17], [S15], [S27],
[S36], [S37], [S38],
[S39], [S40], [S20]

Portfolio approach
(technical debt
Items)

Studies proposing various catalogues of techni-
cal debt items managed by development team
in structured manner. Newly introduced tech-
nical debt should be added to catalog

11

[S5], [S41], [S22],
[S28], [S29], [S32],
[S42], [S43], [S18],
[S35], [S44]

Architecture level
technical debt
visualization tool

Studies stating the need of managing technical
debt on architectural level. Overview tool of
a complex system that would show a map of
potentially affected areas by new changes

7
[S21], [S15], [S27],
[S9], [S16], [S22],
[S24]

Technical debt
reduction in every
sprint

Studies suggesting that a certain amount of
time should be devoted to reducing technical
debt by the development team

8
[S6], [S8], [S5],
[S19], [S32], [S45],
[S13], [S44]

Code audit activity Studies advising to conduct structured code
audit periodically 3 [S6], [S19], [S12]

Extra resources Studies claiming that more resources such as
people, infrastructure or budget are needed 2 [S45], [S22]

Total distinct studies 37

68 Paweł Klimczyk, Lech Madeyski

lems) emphasised that business pressure was
the key factor in estimations and therefore
technical debt introduction. Hence, we think
that this problem is widespread. In one of the
studies, authors say: The participants com-
monly acknowledged that technical debt is es-
sentially a balance between software quality and
business reality [S6]. Authors list a number
of reasons behind that statement: (1) being
contractually obligated to deliver the system
under a tight deadline, (2)meeting deadlines to
integrate with a partner product before release,
(3) delivering in time for an upcoming trade
show that presented food marketing opportu-
nities, (4) developing a working prototype to
secure investors funding [S6].

– Lack of technical debt awareness in com-
pany – Five studies notice that non-technical
stakeholders were unaware of technical debt
impact on the project. In one study authors
write: From developer’s perspective, manage-
ment remains largely unaware of technical debt
and the value of managing it [S15].

– No procedures for technical debt man-
agement – Authors of three publications in-
formabout lack of anymethodology in projects
they have investigated. In one study we can
find a statement: Neither of the product lines
had any specific approach for dealing with tech-
nical debt management and reduction [S19].

– Architectural technical debt impact
– Nine studies conclude that complex code
architecture structure and its technical debt
has an impact on estimations. Authors of
one of the studies stated: Architectural issues
are the greatest source of technical debt. . .
Architectural issues are difficult to deal with,
since they were often caused many years pre-
viously [S15].

– Source code analysis is not sufficient
– This problem is brought by seven stud-
ies. Software engineers see that source code
analysis does not show the whole picture of
the system. This has an impact on estima-
tions. One of the studies stated: . . . technical
debt is not only about code and code qual-
ity. Code analysis tools will identify a small

number of black elements. Therefore, code
analysis tools aren’t sufficient for identi-
fying technical debt. . . [S26]5. In another
study, authors write: Tools do not cap-
ture the key areas of accumulating problems
in technical debt [S15].

5.2. Proposed solutions to mitigate the
impact of technical debt on task
estimation (RQ2)

Conducted research provides seven techniques
for mitigating the impact of technical debt on
estimations:
– Tools for decision support – This finding

uncovers a communication gap between or-
ganisation units in an organisation. What was
not expected was how widespread is the opin-
ion that non-technical management should
have a tool for better decision support in the
project. As much as 14 of 37 papers (i.e., 38%
of papers that identified solutions) empha-
sised such need.

– Tools for estimation support – Nine pa-
pers propose introducing estimation support
tools for development teams. Authors of one
study say . . . by the later stages of the project
the algorithm is more reliable than manual
Planning Poker estimates and thus suitable
as a tool for augmenting human effort estima-
tion [S36].

– Portfolio approach (technical debt
Items) – As much as 11 of 37 papers that
identified solutions propose managing tech-
nical debt in a structured way. Develop-
ers should fill “technical debt Item” cards
so the team is aware of how much tech-
nical debt there is in the system. In one
of the papers, authors write: . . .managers
expressed that the backlog would be used
in the future. . . to reduce technical debt in
small iterations [S22].

– Architectural-level technical debt visu-
alisation tool – Seven publications indicate
the need for a high-level technical debt moni-
toring tool. A tool that will have the knowl-
edge about technical debt not only in separate

5The black element refers to technical debt which was visually presented in Figure 2 on page 20 [S26].

Technical Debt Aware Estimations in Software Engineering: A Systematic Mapping Study 69

system components but also between them
and the system as a whole. Authors of one
study stated: Making the architectural debt
visible provides the necessary information for
making informed decisions for managing the
potential impact of rework over time [S21].
This issue is also mentioned by others: The
lack of tool support for accurately managing
and tracking architectural sources of debt is
a key issue. . . [S15].

– Technical debt reduction in every
sprint – Eight publications propose contin-
uous technical debt reduction during every
sprint. A related excerpt in one of the papers
is as follows: one participant described a policy
of allocating 5 to 10 per cent of each release
cycle to addressing technical debt [S6].

– Code audit activity – Three papers ([S6],
[S19], [S12]) propose periodical and system-
atic code audit actions conducted by the de-
velopment team. Authors of one of the studies
conclude: . . . conduct audits with the entire
development team to make technical debt visi-
ble and explicit; track it using a Wiki, backlog,
or task board [S6]

– Extra resources – Two papers propose
adding extra resources such as people [S22],
infrastructure or budget [S45] to the project.
Such solutions may indicate a tight project
schedule or an attempt to reaching the project
deadline.

6. Discussion

The overall goal of this research was to identify
problems, as well as proposed solutions occurring
in estimations due to previously introduced tech-
nical debt. In this section we will present our in-
terpretation of systematic mapping study results
and their implications for academia and industry.

6.1. Problems in estimation
due to technical debt

Business pressure on delivery and lack of
technical debt awareness in management
are related to the business perspective in a par-

ticular software project. The main purpose of
building software is to support other processes.
Managers and business officers are focused on
growing the organization. Software support can
give them a competitive advantage and that is why
they force pressure on short software release cycles.

No procedures for technical debt man-
agement mentioned in three research papers
indicate immature development process. This
may be due to various reasons. Company owners
may not be aware of the technical debt problem
or may consider a particular project as a pro-
totype where technical debt is not considered
as a problem. On the other side, the project
can be so big that introducing new development
procedures is too cumbersome or too expensive.
Finally, the development team may not know
how to introduce such procedures.

Results such as architectural technical
debt impact and source code analysis is
not sufficient, can be interpreted differently.
Those problems are more related to technical as-
pects. The architectural technical debt im-
pact item is strongly bound to project evolution.
For instance, the mainstream in web development
is moving to cloud-based solutions and applica-
tion containers providing better scalability and
flexibility. Adjusting old software can be difficult
and can be considered as a sample of architec-
tural technical debt. Source code analysis is
also not sufficient because engineers would ad-
just their code in such a way that it will pass the
code analysis, but remind a poor quality.

Depending from which perspective we con-
sider the situation different problems are present.
In the worst-case scenario, all of them can oc-
cur in the organization and will slow down the
development process even further.

6.2. Solutions to mitigate technical debt
in estimations

Only one proposed solution focuses on non-techni-
cal stakeholders (tools for decision support).
However, 38% of examined studies (14 of 37) state
that this is the desired solution. This indicates the
complicated nature of modern software solutions.
Managers and decision-makers have difficulties

70 Paweł Klimczyk, Lech Madeyski

understanding the technical implications of their
business decisions. Especially in competitive
markets, where the software should be adjusted
quickly, managers should see the results fast and
be able to respond to them.Worthmentioninghere
are automatic code generators where solutions
can be created without software engineers.

Another interesting interpretation arises from
portfolio approach (technical debt items),
technical debt reduction in every sprint and
code audit activity. All of those solutions can
be concluded as a need for deeper software devel-
opment processes standardization and/or regula-
tions. In other industries like medicine, maritime,
aviation or automotive rules and regulations ac-
cording to which certain procedures have to be
conducted do exist. In IT there is ISO 25010 stan-
dard, but it is not mandatory to implement it.

The findings indicate that “Time To Market”
has the biggest impact on schedule and the de-
cision to repay or not the technical debt. The
software solutions are too complicated and can-
not be adapted fast enough in a rapidly changing
world. An interesting fact the study uncovers is
that source code analysis tools are not sufficient
to cope with technical debt in estimations.

Based on the information from the performed
SMS, we recommend focus future research on
various decision-support levels. The complexity
of software solutions grows and it is more diffi-
cult to get an overview from both business and
technical perspectives. We propose that such
decision-support research should take in consid-
eration software maintenance and evolution.

7. Threats to validity

A systematic mapping study is conducted by
people and thus an inevitable risk is related to
the bias that may come from the choice of search
engines/digital libraries and of search terms that
may favour finding some studies and perhaps
missing others. Hence, an important threat to
the validity of this SMS is related to the search
strategy employed and the possibility that we
have not identified all relevant papers. The com-
pleteness of the search depends on the search
string used, the scope of the search in terms

of selected search engines, as well as their lim-
itations Brereton et al. [34]. For example, it is
possible to extend the search query even further
by adding additional words like “managing”. We
do not think this is a significant threat. Neverthe-
less, it is still possible that after such extension
the result set of papers would be a different, but
(in our opinion) to a minor extent. To reduce this
threat we selected a range of digital libraries and
thus widened its scope. We also used a known
set of references to validate the search terms
before undertaking the mapping study and the
search terms were amended where necessary (e.g.,
we included “change impact” that we initially
missed).

The time window chosen by us (since 1992 till
now) can be seen as a threat. That said, we think
that the knowledge about technical debt, software
development and programming languages has
evolved to such extent thatwe probably do not lose
anything crucial excluding papers before 1992.

We also conducted snowballing to limit the
possibility of missing relevant papers. Only one
additional paper was identified by searching the
references of included studies.

A closely related threat is that “grey liter-
ature” may not be found due to the nature of
digital libraries used. Snowballing can be seen
as a partial solution to limit this threat as refer-
ences of the papers found in digital libraries may
include “grey literature” as well.

It is also worth mentioning that categories
synthesised from publications data extraction
emerged from our best understanding of the
topic. We proposed category names presented
in Table 2 based on our experience in software
engineering.

We limited the scope of our search to articles
written in English. Thus the presented results
can be biased by omitting publications written
in other languages (e.g., Chinese). However, we
based our research on the most popular language
among software engineering researchers and prac-
titioners.

A search-related limitation of this mapping
study is that the search only covers publications
that were included in the chosen digital libraries
before January 2019. This date is related to the
moment when the mapping study was performed.

Technical Debt Aware Estimations in Software Engineering: A Systematic Mapping Study 71

Table 3. Evaluation of our mapping process (see [25])

Rubric Score Description
Need for review 1 Partial evaluation – motivations and questions are provided.
Choosing the search strategy 1 Minimal evaluation – two search strategies (automated database

search and snowballing) have been used.
Evaluation of the search 2 Partial evaluation – at least one action has been taken to improve

the reliability of the search and the inclusion/exclusion.
Extraction and classification 2 Partial evaluation – at least one action has been taken to increase

the reliability of the extraction process, and research type and
method have been classified.

Study validity 1 Full evaluation – threats and limitations are described.

It is therefore probable (due to the fact that tech-
nical debt is perceived as an interesting topic)
that a number of other relevant papers will have
been published since this date that we have not
included in this mapping study. However, this
limitation is difficult to avoid and the common
solution is to conduct a new search and/or snow-
balling to update the results of the mapping
study.

Additionally, Table 3 presents an evaluation
of our mapping process on a basis of the qual-
ity checklist rubric criteria (defined by Petersen
et al. [25]) including: identifying the need for
SMS, study identification, data extraction and
classification, as well as validity discussion.

8. Conclusions

In this systematic mapping study, 42 out of
2003 relevant publications were selected. 41 from
query search in five digital databases and one
additional from the snowballing procedure. The
contribution of this study is a categorisation of
technical debt related issues in task estimations
and proposed solutions to the issues presented
in Section 5. Five problems and seven solutions
identified in literature have been categorised. Fur-
thermore, the majority of identified categories of
problems and solutions include real-life examples
describing industry cases.

The technical debt impact on task estima-
tion is an important issue to address. Our SMS
shows seven approaches to extend the current
state of technical debt management. We con-
clude that the task estimation accuracy can

be further improved in one of the following
directions:
– business direction – research on how the man-

agers can gain more insight into the software
system that is supporting their business. Un-
derstand the system’s current limitations and
the impact of new business decisions on it.
That implies research on how software engi-
neers can improve communication with “the
business.”

– operational direction – research on software
systems maintainability and development rou-
tines. That includes new ways of formalizing
and structuring software components, data
flows, integrations and others so that it would
be easy to analyse new requirements impact
on the software project.
The problem of business pressure on features

delivery has appeared in our findings on sev-
eral occasions. Our further research will focus
on decision-making tools. In our opinion, there
is a room for improvement that will potentially
help development teams to measure the impact of
technical debt on estimations with more accurate
precision.

References found during our
systematic mapping study

[S1] N. Brown, Y. Cai, Y. Guo, R. Kazman,
M. Kim, P. Kruchten, E. Lim, A. Mac-
Cormack, R. Nord, I. Ozkaya, R. Sangwan,
C. Seaman, K. Sullivan, and N. Zazworka,
“Managing technical debt in software-reliant
systems,” in Proceedings of the FSE/SDP

72 Paweł Klimczyk, Lech Madeyski

Workshop on Future of Software Engineering
Research, FoSER ’10. ACM, 2010, pp. 47–52.

[S2] C. Izurieta, I. Ozkaya, C. Seaman,
P. Kruchten, R.L. Nord, W. Snipes, and
P. Avgeriou, “Perspectives on managing
technical debt: A transition point and
roadmap from dagstuhl,” in Joint Proceed-
ings of the 4th International Workshop on
Quantitative Approaches to Software Quality
(QuASoQ 2016) and 1st International
Workshop on Technical Debt Analytics
(TDA 2016), 2016, pp. 84–87. [Online].
http://ceur-ws.org/Vol-1771/paper15.pdf

[S3] P. Kruchten, R.L. Nord, I. Ozkaya, and D. Fa-
lessi, “Technical debt: Towards a crisper defi-
nition report on the 4th international work-
shop on managing technical debt,” ACM SIG-
SOFT Software Engineering Notes, Vol. 38,
No. 5, 2013, pp. 51–54.

[S4] Y. Guo, C. Seaman, R. Gomes, A. Cavalcanti,
G. Tonin, F.Q.B. Da Silva, A.L.M. Santos,
and C. Siebra, “Tracking technical debt – An
exploratory case study,” in Proceedings of
the 27th IEEE International Conference on
Software Maintenance, ICSM ’11. IEEE Com-
puter Society, 2011, pp. 528–531.

[S5] K. Power, “Understanding the impact of tech-
nical debt on the capacity and velocity of
teams and organizations: Viewing team and
organization capacity as a portfolio of real op-
tions,” in Proceedings of the 4th International
Workshop on Managing Technical Debt, 2013,
pp. 28–31.

[S6] E. Lim, N. Taksande, and C. Seaman, “A bal-
ancing act: What software practitioners have
to say about technical debt,” IEEE Software,
Vol. 29, No. 6, 2012, pp. 22–27.

[S7] T. Klinger, P. Tarr, P. Wagstrom, and
C. Williams, “An enterprise perspective on
technical debt,” in Proceedings of the 2nd
Workshop on Managing Technical Debt, MTD
’11. ACM, 2011, pp. 35–38.

[S8] Z. Codabux and B. Williams, “Managing tech-
nical debt: An industrial case study,” in Pro-
ceedings of the 4th International Workshop
on Managing Technical Debt, MTD ’13. IEEE
Press, 2013, pp. 8–15.

[S9] A. Martini, J. Bosch, and M. Chaudron, “In-
vestigating architectural technical debt ac-
cumulation and refactoring over time,” In-
formation and Software Technology, Vol. 67,
No. C, 2015, pp. 237–253.

[S10] N. Ramasubbu, C.F. Kemerer, and
C.J. Woodard, “Managing technical debt:

Insights from recent empirical evidence,”
IEEE Software, Vol. 32, No. 2, 2015,
pp. 22–25.

[S11] J. Bohnet and J. Döllner, “Monitoring code
quality and development activity by software
maps,” in Proceedings of the 2nd Workshop
on Managing Technical Debt, MTD ’11. ACM,
2011, pp. 9–16.

[S12] J.C. Rocha, V. Zapalowski, and I. Nunes,
“Understanding technical debt at the code
level from the perspective of software devel-
opers,” in Proceedings of the 31st Brazilian
Symposium on Software Engineering, SBES,
2017, pp. 64–73.

[S13] R.K. Gupta, P. Manikreddy, and K.C. Arya,
“Pragmatic scrum transformation: Challenges,
practices and impacts during the journey A
case study in a multi-location legacy software
product development team,” in Proceedings
of the 10th Innovations in Software Engineer-
ing Conference, ISEC, 2017, pp. 147–156.

[S14] N. Rios, R.O. Spínola, M.G. de Men-
donça Neto, and C.B. Seaman, “A study of
factors that lead development teams to in-
cur technical debt in software projects,” in
Proceedings of the 44th Euromicro Confer-
ence on Software Engineering and Advanced
Applications, SEAA, 2018, pp. 429–436.

[S15] N.A. Ernst, S. Bellomo, I. Ozkaya, R.L. Nord,
and I. Gorton, “Measure it? Manage it? Ig-
nore it? Software practitioners and technical
debt,” in Proceedings of the 10th Joint Meet-
ing on Foundations of Software Engineering,
ESEC/FSE 2015. ACM, 2015, pp. 50–60.

[S16] J. Yli-Huumo, A. Maglyas, and K. Smolander,
“How do software development teams manage
technical debt? – An empirical study,” Jour-
nal of Systems and Software, Vol. 120, 2016,
pp. 195–218.

[S17] C.Y. Chen, C.W. She, and J.D. Tang, “An
object-based, attribute-oriented approach for
software change impact analysis,” in Proceed-
ings of the IEEE International Conference
on Industrial Engineering and Engineering
Management, 2007, pp. 577–581.

[S18] R.R. de Almeida, U. Kulesza, C. Treude,
D.C. Feitosa, and A.H.G. Lima, “Aligning
technical debt prioritization with business
objectives: A multiple-case study,” in Pro-
ceedings of the IEEE International Confer-
ence on Software Maintenance and Evolution,
ICSME, 2018, pp. 655–664.

[S19] J. Yli-Huumo, A. Maglyas, and K. Smolander,
“The sources and approaches to management

Technical Debt Aware Estimations in Software Engineering: A Systematic Mapping Study 73

of technical debt: A case study of two prod-
uct lines in a middle-size finnish software
company,” in Proceedings of the 15th Interna-
tional Conference Product-Focused Software
Process Improvement, 2014, pp. 93–107.

[S20] T. Besker, A. Martini, J. Bosch, and M. Tichy,
“An investigation of technical debt in auto-
matic production systems,” in Proceedings
of the XP2017 Scientific Workshops, 2017,
pp. 6:1–6:7.

[S21] R.L. Nord, I. Ozkaya, P. Kruchten, and
M. Gonzalez-Rojas, “In search of a metric
for managing architectural technical debt,” in
Proceedings of the Joint Working IEEE/IFIP
Conference on Software Architecture and Eu-
ropean Conference on Software Architecture,
WICSA-ECSA ’12. Washington, DC, USA:
IEEE Computer Society, 2012, pp. 91–100.

[S22] J. Yli-Huumo, A. Maglyas, K. Smolan-
der, J. Haller, and H. Törnroos, “Devel-
oping processes to increase technical debt
visibility and manageability – An action
research study in industry,” in Proceed-
ings of the International Conference on
Product-Focused Software Process Improve-
ment, Lecture Notes in Computer Science,
Vol. 10027. Springer International Publishing,
2016, pp. 368–378.

[S23] C. de Souza and D. Redmiles, “An empirical
study of software developers’ management of
dependencies and changes,” in Proceedings
of the 30th International Conference on Soft-
ware Engineering, 2008, pp. 241–250.

[S24] A. Martini, E. Sikander, and N. Madlani,
“A semi-automated framework for the identi-
fication and estimation of architectural tech-
nical debt: A comparative case-study on the
modularization of a software component,” In-
formation and Software Technology, Vol. 93,
2018, pp. 264–279.

[S25] T. Besker, A. Martini, and J. Bosch, “The
pricey bill of technical debt: When and by
whom will it be paid?” in Proceedings of the
IEEE International Conference on Software
Maintenance and Evolution, ICSME, 2017,
pp. 13–23.

[S26] P. Kruchten, R.L. Nord, and I. Ozkaya, “Tech-
nical debt: From metaphor to theory and
practice,” IEEE Software, Vol. 29, No. 6, 2012,
pp. 18–21.

[S27] Z. Li, P. Liang, and P. Avgeriou, “Architec-
tural technical debt identification based on ar-
chitecture decisions and change scenarios,” in
Proceedings of the 12th Working IEEE/IFIP

Conference on Software Architecture, 2015,
pp. 65–74.

[S28] N. Zazworka, R.O. Spínola, A. Vetro, F. Shull,
and C. Seaman, “A case study on effectively
identifying technical debt,” in Proceedings of
the 17th International Conference on Evalua-
tion and Assessment in Software Engineering,
EASE ’13. ACM, 2013, pp. 42–47.

[S29] C. Seaman, Y. Guo, C. Izurieta, Y. Cai, N. Za-
zworka, F. Shull, and A. Vetrò, “Using tech-
nical debt data in decision making: Potential
decision approaches,” in Proceedings of the
Third International Workshop on Managing
Technical Debt, MTD ’12. IEEE Press, 2012,
pp. 45–48.

[S30] C. Fernàndez-Sànchez, J. Garbajosa, and
A. Yagüe, “A framework to aid in deci-
sion making for technical debt management,”
in Proceedings of the 7th IEEE Interna-
tional Workshop on Managing Technical Debt,
MTD@ICSME, 2015, pp. 69–76.

[S31] H. Jason and R. Günther, “When-to-re-
lease decisions in consideration of technical
debt,” in Proceedings of the Sixth Interna-
tional Workshop on Managing Technical Debt,
MTD@ICSME, 2014, pp. 31–34.

[S32] R.K. Gupta, P. Manikreddy, S. Naik, and
K. Arya, “Pragmatic approach for managing
technical debt in legacy software project,” in
Proceedings of the 9th India Software Engi-
neering Conference, ISEC ’16. ACM, 2016,
pp. 170–176.

[S33] A. Pacheco, G. Marín-Raventós, and
G. López, “Designing a technical debt
visualization tool to improve stakeholder
communication in the decision-making
process: A case study,” in Proceedings of the
12th IFIP WG 8.9 Working Conference on
Research and Practical Issues of Enterprise
Information Systems, 2018, pp. 15–26.

[S34] T. Amanatidis, A. Chatzigeorgiou, and
A. Ampatzoglou, “The relation between tech-
nical debt and corrective maintenance in PHP
web applications,” Information and Software
Technology, Vol. 90, 2017, pp. 70–74.

[S35] M. M. Bomfim and V. A. Santos, “Strategies
for reducing technical debt in agile teams,”
in Proceedings of the Brazilian Workshop on
Agile Methods. Springer International Pub-
lishing, 2017, pp. 60—71.

[S36] K. Moharreri, A.V. Sapre, J. Ramanathan,
and R. Ramnath, “Cost-effective supervised
learning models for software effort estima-
tion in agile environments,” in Proceedings

74 Paweł Klimczyk, Lech Madeyski

of the Computer Software and Applications
Conference (COMPSAC), 2016, pp. 135–140.

[S37] A. Nugroho, J. Visser, and T. Kuipers, “An
empirical model of technical debt and inter-
est,” in Proceedings of the 2nd Workshop on
Managing Technical Debt, MTD ’11. ACM,
2011, pp. 1–8.

[S38] B. Tanveer, “Guidelines for utilizing change
impact analysis when estimating effort in ag-
ile software development,” in Proceedings of
the 21st International Conference on Evalua-
tion and Assessment in Software Engineering,
EASE, 2017, pp. 252–257.

[S39] S.J. Kabeer, M. Nayebi, G. Ruhe, C. Carlson,
and F. Chew, “Predicting the vector impact
of change – an industrial case study at bright-
squid,” in Proceedings of the ACM/IEEE In-
ternational Symposium on Empirical Software
Engineering and Measurement, ESEM, 2017,
pp. 131–140.

[S40] B. Tanveer, L. Guzmán, and U.M. Engel,
“Effort estimation in agile software develop-
ment: Case study and improvement frame-
work,” Journal of Software: Evolution and
Process, Vol. 29, No. 11, 2017.

[S41] K. Schmid, “A formal approach to technical
debt decision making,” in Proceedings of the

9th International ACM Sigsoft Conference on
Quality of Software Architectures, QoSA ’13.
ACM, 2013, pp. 153–162.

[S42] Y. Guo and C. Seaman, “A portfolio approach
to technical debt management,” in Proceed-
ings of the 2nd Workshop on Managing Tech-
nical Debt, MTD ’11. ACM, 2011, pp. 31–34.

[S43] Y. Guo, R.O. Spínola, and C. Seaman, “Ex-
ploring the costs of technical debt manage-
ment – A case study,” Empirical Software En-
gineering, Vol. 21, No. 1, 2016, pp. 159–182.

[S44] P. Mohagheghi and M.E. Aparicio, “An indus-
try experience report on managing product
quality requirements in a large organization,”
Information and Software Technology, Vol. 88,
2017, pp. 96–109.

[S45] Z.S. Hossein Abad, R. Karimpour, J. Ho,
S.M. Didar-Al-Alam, G. Ruhe, E. Tse,
K. Barabash, and I. Hargreaves, “Understand-
ing the impact of technical debt in coding
and testing: An exploratory case study,” in
Proceedings of the 3rd International Work-
shop on Software Engineering Research and
Industrial Practice, SER& IP ’16. ACM,
2016, pp. 25–31.

References

[1] E. Mueller, X.L. Chen, and R. Riedel, “Chal-
lenges and requirements for the application
of Industry 4.0: A special insight with the
usage of cyber-physical system,” Chinese
Journal of Mechanical Engineering, Vol. 30,
No. 5, 2017, pp. 1050–1057.

[2] M. Hermann, T. Pentek, and B. Otto, “De-
sign principles for Industrie 4.0 scenarios,”
in Proceedings of the 49th Hawaii Inter-
national Conference on System Sciences
(HICSS), 2016, pp. 3928–3937.

[3] J. Gubbi, R. Buyya, S. Marusic, and
M. Palaniswami, “Internet of things (IoT):
A vision, architectural elements, and future
directions,” Future Generation Computer
Systems, Vol. 29, No. 7, 2013, pp. 1645–1660.

[4] J. Highsmith and A. Cockburn, “Agile soft-
ware development: The business of inno-
vation,” Computer, Vol. 34, No. 9, 2001,
pp. 120–122.

[5] L. Madeyski, “On the effects of pair pro-
gramming on thoroughness and fault-finding
effectiveness of unit tests,” in Product-Fo-
cused Software Process Improvement, Lec-
ture Notes in Computer Science, J. Münch
and P. Abrahamsson, Eds. Springer Berlin
Heidelberg, 2007, Vol. 4589, pp. 207–221.

[6] L. Madeyski, “The impact of test-first pro-
gramming on branch coverage and muta-
tion score indicator of unit tests: An experi-
ment,” Information and Software Technol-
ogy, Vol. 52, No. 2, 2010, pp. 169–184.

[7] L. Madeyski, Test-Driven Development: An
Empirical Evaluation of Agile Practice. (Hei-
delberg, London, New York): Springer, 2010.

[8] L. Madeyski and Ł. Szała, “The impact of
test-driven development on software devel-
opment productivity – An empirical study,”
in Software Process Improvement, Lecture
Notes in Computer Science, P. Abrahams-
son, N. Baddoo, T. Margaria, and R. Mess-
narz, Eds. Springer Berlin Heidelberg, 2007,
Vol. 4764, pp. 200–211.

Technical Debt Aware Estimations in Software Engineering: A Systematic Mapping Study 75

[9] P. Kruchten, R.L. Nord, and I. Ozkaya,
“Technical debt: From metaphor to theory
and practice,” IEEE Software, Vol. 29, No. 6,
2012, pp. 18–21.

[10] W. Cunningham, “The WyCash portfolio
management system,” in Addendum to the
Proceedings on Object-oriented Program-
ming Systems, Languages, and Applications,
OOPSLA ’92. New York, NY, USA: ACM,
1992, pp. 29–30.

[11] M. Fowler, “Technical debt quadrant,” 2009.
[Online]. https://martinfowler.com/bliki/T
echnicalDebtQuadrant.html

[12] A. Nugroho, J. Visser, and T. Kuipers, “An
empirical model of technical debt and inter-
est,” in Proceedings of the 2nd Workshop on
Managing Technical Debt, MTD ’11. ACM,
2011, pp. 1–8.

[13] E. Tom, A. Aurum, and R. Vidgen, “An
exploration of technical debt,” Journal of
Systems and Software, Vol. 86, No. 6, 2013,
pp. 1498–1516.

[14] M. Cohn, Agile Estimating and Planning.
Pearson Education, 2005.

[15] S. Hoogendoorn, This is Agile: Beyond the
Basics. Beyond the Hype. Beyond Scrum.
Dymaxicon, 2014.

[16] “The bucket system,” 2017. [Online]. http:
//www.agileadvice.com/wp-content/uplo
ads/2013/07/H10-Estimation-The-Bucket-
System.pdf

[17] C. Fernàndez-Sànchez, J. Garbajosa, and
A. Yagüe, “A framework to aid in deci-
sion making for technical debt manage-
ment,” 2015 IEEE 7th International Work-
shop on Managing Technical Debt (MTD),
2015, pp. 69–76.

[18] C. Fernández-Sánchez, J. Garbajosa, C. Vi-
dal, and A. Yagüe, “An analysis of tech-
niques and methods for technical debt man-
agement: A reflection from the architecture
perspective,” in Proceedings of the Second
International Workshop on Software Archi-
tecture and Metrics, SAM ’15. Piscataway,
NJ, USA: IEEE Press, 2015, pp. 22–28.

[19] L.F. Ribeiro, M.A.d.F. Farias, M. Men-
donça, and R.O. Spínola, “Decision crite-
ria for the payment of technical debt in
software projects: A systematic mapping

study,” in Proceedings of the 18th Interna-
tional Conference on Enterprise Informa-
tion Systems, ICEIS 2016. SCITEPRESS -
Science and Technology Publications, Lda,
2016, pp. 572–579.

[20] Z. Li, P. Avgeriou, and P. Liang, “A system-
atic mapping study on technical debt and
its management,” Journal of Systems and
Software, Vol. 101, 2015, pp. 193–220.

[21] W.N. Behutiye, P. Rodríguez, M. Oivo, and
A. Tosun, “Analyzing the concept of techni-
cal debt in the context of agile software
development: A systematic literature re-
view,” Information and Software Technol-
ogy, Vol. 82, 2017, pp. 139–158.

[22] A. Ampatzoglou, A. Ampatzoglou,
A. Chatzigeorgiou, and P. Avgeriou, “The
financial aspect of managing technical
debt: A systematic literature review,”
Information and Software Technology,
Vol. 64, 2015, pp. 52—73.

[23] N.S. Alves, T.S. Mendes, M.G. de Men-
donça, R.O. Spínola, F. Shull, and C. Sea-
man, “Identification and management of
technical debt,” Information and Soft-
ware Technology, Vol. 70, No. C, 2016,
pp. 100–121.

[24] B.A. Kitchenham, D. Budgen, and P. Br-
ereton, Evidence-Based Software Engineer-
ing and Systematic Reviews. Chapman and
Hall/CRC, 2016.

[25] K. Petersen, S. Vakkalanka, and L. Kuz-
niarz, “Guidelines for conducting systematic
mapping studies in software engineering: An
update,” Information and Software Technol-
ogy, Vol. 64, 2015, pp. 1 – 18.

[26] “IEEE Xplore Digital Library,” 2017. [On-
line]. http://ieeexplore.ieee.org

[27] “ACM digital library,” 2017. [Online]. http:
//dl.acm.org

[28] “Springer Link,” 2017. [Online]. https://
link.springer.com

[29] “ScienceDirect,” 2017. [Online]. http://www
.sciencedirect.com

[30] “Scopus Preview,” 2017. [Online]. https:
//www.scopus.com

[31] C. Wohlin, “Guidelines for snowballing in
systematic literature studies and a repli-
cation in software engineering,” in Pro-

76 Paweł Klimczyk, Lech Madeyski

ceedings of the 18th International Confer-
ence on Evaluation and Assessment in Soft-
ware Engineering, EASE ’14. ACM, 2014,
pp. 38:1–38:10.

[32] M. Ivarsson and T. Gorschek, “A method
for evaluating rigor and industrial relevance
of technology evaluations,” Empirical Soft-
ware Engineering, Vol. 16, No. 3, 2011,
pp. 365–395.

[33] J. Cohen, “A coefficient of agreement for
nominal scales,” Educational and Psycho-
logical Measurement, Vol. 20, No. 1, 1960,
pp. 37–46.

[34] P. Brereton, B.A. Kitchenham, D. Budgen,
M. Turner, and M. Khalil, “Lessons from
applying the systematic literature review
process within the software engineering do-
main,” Journal of Systems and Software,
Vol. 80, No. 4, 2007, pp. 571–583.

e-Informatica Software Engineering Journal, Volume 14, Issue 1, 2020, pages: 77–95, DOI 10.37190/e-Inf200103

SIoT Framework: Towards an Approach for Early
Identification of Security Requirements

for Internet-of-things Applications

Ronald Jabangwe∗, Anh Nguyen-Duc∗∗
∗The Maersk Mc-Kinney Moller Institute, University of Southern Denmark, Software Engineering, Denmark

/ Software Improvement Group, SIG Nordics.
∗∗School of Business, University of South Eastern Norway, Norway, Department of Business and IT

rja@mmmi.sdu.dk / r.jabangwe@sig.eu, anh.nguyen.duc@usn.no

Abstract
Background: Security has become more of a concern with the wide deployment of Internet-of-things
(IoT) devices. The importance of addressing security risks early in the development lifecycle
before pushing to market cannot be over emphasized. Aim: To this end, we propose a conceptual
framework to help with identifying security concerns early in the product development lifecycle
for Internet-of-things, that we refer to as SIoT (Security for Internet-of-Things). Method: The
framework adopts well known security engineering approaches and best practices, and systematically
builds on existing research work on IoT architecture. Results: Practitioners at a Norwegian start-up
company evaluated the framework and found it useful as a foundation for addressing critical
security concerns for IoT applications early in the development lifecycle. The output from using the
framework can be a checklist that can be used as input during security requirements engineering
activities for IoT applications. Conclusions: However, security is a multi-faced concept; therefore,
users of the SIoT framework should not view the framework as a panacea to all security threats.
The framework may need to be refined in the future, particularly to improve its completeness to
cover various IoT contexts.
Keywords: security requirement; Internet-of-things; Software Engineering; Requirement
Engineering; Security Framework

1. Introduction

Within the past decade, we have witnessed the
rapid growth of commercial systems that deeply
integrate software, hardware and the contex-
tual environment. The most notable are Inter-
net-of-Things (IoT), Industry 4.0, cyber-physi-
cal systems, and smart wearable devices. The
number of (IoT) devices being introduced in
the market has been increasing drastically with
the number of connected devices approaching 15
billion [1]. This trend is expected to continue,
with an estimate of 26 billion network connected
devices by the year 2020 [1].

Security has become even more important
as the number of “things” connected increases

through the vulnerable internet and other net-
works. The border between software and hard-
ware parts is less visible when it comes to provid-
ing customer value. Internet-of-things integrate
both sensors, connectivity infrastructure and pro-
cessors with a software platform. The considera-
tion of security, therefore, needs to be in a holistic
view that combines both software and hardware
parts of the system. Security issues are not new
and have been a concern for years to manufac-
turers. However, security in software-intensive
products is often neglected or treated as an af-
terthought. Business pressure, time-to-market
and reduction of development costs are among
factors that drive the treatment of security as an
add-on feature.

Submitted: 20 November 2019; Revised: 30 March 2020; Accepted: 31 March 2020; Available online: 5 May 2020

78 Ronald Jabangwe, Anh Nguyen-Duc

Software Engineering (SE) researchers are
looking for a way to address security concerns
as early as possible in the development and op-
eration of software-intensive products [2, 3]. In
our study, we refer to “security concerns” for
a given system as vulnerabilities, risks or threats
that can negatively impact the security prop-
erties of the system, specifically, confidentiality,
integrity and availability. The aim is to promote
security-by-design, which leads to having a proac-
tive rather than a reactive approach for address-
ing security. The goal, which is also the same for
threat modeling [4, 5], is to help with identify-
ing security concerns for a given system. These
security concerns can potentially be mapped to
security requirements, which in-turn can help
with designing secure systems.

Security requirements affect all aspects of
the design, development, deployment, and main-
tenance of complex systems that provide cus-
tomer value. To address security early in the
development cycle, security aspects should be
considered from the planning and requirements
phase, and throughout all the other phases.
In response to the urgent need to deal with
security in software-intensive product develop-
ment [6–8], we aim at proposing a comprehensive
approach to identify security issues in the context
of cyber-physical systems, specifically focusing
on Internet-of-things. More importantly, the ap-
proach will handle data security issues as an
input for both product development and opera-
tion. Last but not least, the approach should be
lightweight and easy to adopt in various sizes of
organizations, particularly start-up companies.
This is due to the emerging number of Internet-
-of-things developed by start-ups.

A plethora of research work on software en-
gineering exists in relation to software security
and requirements engineering, and there is also
a growing interest in Internet-of-things. Internet-
-of-things development is challenging due to the
multiple cross-cutting concerns, such as connec-
tivity, security and the lack of high-level abstrac-
tions to address both the large-scale and hetero-
geneity [9]. The heterogeneousness of Internet-
-of-things introduces additional complexity to
software layer development, in particularly com-

plex data flow and architectural cross-cutting con-
cerns [6, 10]. Consequently, securing the Internet-
-of-things application development would require
joint knowledge from data security, requirements
engineering and Internet-of-things architecture.
Security should be addressed early in the devel-
opment process by ensuring that requirements
are clearly defined that when implemented, pre-
vent or mitigate security issues. It is noted that
we do not aim at generating specific security re-
quirements through our framework. As a prelim-
inary result from a qualitative survey of qual-
ity concerns and practices in Internet-of-things
startups, we identified the need for early con-
sideration of security requirements and map-
ping them into actual implementation. Address-
ing the issues early avoids costly rework late
in the development process. To this end, we
take a software engineering approach for ad-
dressing data security concerns early through
a lightweight framework, SIoT (Security for
Internet-of-things Applications). For Internet-of-
-things end-users, this can reduce safety risks and
potentially improves privacy and data protec-
tion.

Designing secure systems requires under-
standing the complex interaction between differ-
ent parts of architecture and the security threats
for those parts. The SIoT framework, which takes
a layered view of the architecture of Internet-
-of-things applications, provides a foundation
for promoting that thought process. The aim
is not to generate specific security requirements
through our framework. However, the output
from using the framework can be a checklist that
can be used to help with identifying security
requirements for IoT applications.

The remainder of the paper is organized as
follows: Section 2 introduces basic understanding
about Internet-of-things products and security
identification approaches. Section 3 describes the
need for a lightweight and early-stage framework
for Internet-of-things development via a prelim-
inary industrial survey. Section 4 describes our
framework. Section 4 presents the case company
for which the framework was developed and
would be evaluated. The discussion and conclu-
sion are in Section 5.

SIoT Framework: Towards an Approach for Early Identification of Security Requirements . . . 79

2. Background and related work

2.1. Existing IoT frameworks

The framework that is more similar to our frame-
work is work of Meridji et al. [11]. The frame-
work is intended to help developers identifying,
specifying and measuring security requirements.
The design of the overall framework is based
on the use of the interdependency graphs (SIG)
and the CIA triad, i.e., confidentiality integrity,
availability, confidentiality. Whilst the proposed
framework was systematically developed, it is,
however based on generic models and generic
view of security. As a result, the framework takes
a broad and generic view of system engineering.
In contrast, our framework is intended for a spe-
cific type of system, i.e., IoT systems. Another
aspect that differs between our framework and
the framework proposed by Meridji et al. [11] is in
how security aspects are derived. The framework
by Meridji et al. [11] relies on three international
standards (ECSS, IEEE and ISO) for deriving
security requirements. Whereas our framework
emphasizes the need to focus on the architec-
ture design in order to derive relevant security
concerns for the specific system. Our motivation
for going with this approach is that the archi-
tecture may differ from system to system, and
how a system is designed is crucial for under-
standing how best to strengthen the security
of the overall system. Because our framework
focuses more on the architecture of IoT systems,
it allows for more flexibility in terms of adopt-
ability and adaptability to various IoT systems.
Ammar et el. [12] report on a survey of exist-
ing IoT platforms that offer cloud-based services
such as AWS IoT. In the report they make an
assessment of eight platforms focusing on the
features offered by the platforms for developing
IoT applications, including hardware and secu-
rity features. Our framework takes a software
engineering and process approach for develop-
ing IoT applications. The overarching aim is to
provide developers with an approach that can
help them with identifying security concerns of
their specific IoT applications, irrespective of the
platform that they use.

2.2. Security requirement identification
in software development

Security requirements have traditionally been
considered to be non-functional or quality re-
quirements [2, 13]. Like other non-functional re-
quirements, security requirements need to be de-
scribed in the way that they can be implemented
later. Carnegie Mellon University was among
the first to propose a methodology (SQUARE)
to help organizations build security into the
early stages of the production life cycle [14]. The
SQUARE approach includes nine steps that re-
quire formal participation of requirements engi-
neers and other stakeholders of an IT project.
The team starts with outlining security goals,
threats identification and risk assessment based
on a full understanding of the relevant system.
After that, the team decides on the best method
for eliciting initial security requirements from
stakeholders, and to elicit an initial set of se-
curity requirements. In the final step, security
requirements are inspected to ensure consistency
and accuracy. However, the methodology is at
a high level of abstraction and is not specific to
a particular domain.

Several researchers have focused on tools and
methods for identification of security require-
ments, for instance, misuse cases [15], goal and
anti-goal analysis [16], and patterns of security
goals [17]. These approaches are proposed regard-
less of the context of software development and
operation. Security concerns should be considered
not only in the early stage of product development,
but also as a continuous integral element of prod-
uct development. Despite the benefits that Agile
software development promises, there are security
challenges facedwithin theparadigmthatcanman-
ifest intovulnerable softwareproducts [18]. In turn,
this can significantly impact the longevity of the
software product on the market. There are studies
that adopt and adapt agile approaches in order to
ensure that security initiatives are addressed, e.g.,
Beznosov’s work [19] and Ghani’s work [20]. How-
ever, it is also critical to have a framework that is
specific to Internet-of-things contexts thatnotonly
helps address security concerns but also can be
adopted into agile software development processes.

80 Ronald Jabangwe, Anh Nguyen-Duc

2.3. Non-functional requirement
modelling

Modelling and documentation techniques that
can also be used when implementing approaches
for collecting, categorizing and prioritizing secu-
rity requirements are attack trees, abuse cases,
abuser stories, misuse cases and fault trees [21].
An attack tree is a tree-like representation of
the different ways that an identified asset can
be attacked based on attack goals. Abuse cases
are descriptions of how a user of a system or
the system can be attacked or abused. Abuser
stories help capture and describe likely goals of
an attacker. Unlike user stories that are written
from the perspective of a user of a system, abuser
stories are written from the perspective of an at-
tacker. Misuse cases are based on use cases, but
they describe, using, for example, UML use case
diagrams, and how malicious activities can be
carried out on the system. A fault tree is a deduc-
tion approach for analyzing system failures and
security concerns using graphical Boolean logic.
These approaches can also be used to support
the SQUARE method or any similar approaches.
Nevertheless, modelling of security requirements
is out of the scope of this paper. We only fo-
cus on providing a framework to help with the
process of identifying security requirements in
Internet-of-things applications.

2.4. IoT product development

From a technological perspective, the implemen-
tation of Internet-of-things typically requires
the combination of hardware, software and mid-
dleware components collaborating with each
other [22]. Hardware used for Internet-of-things
include sensors, actuators, and processors that
can be added to existing core hardware com-
ponents, and integrated to manage and oper-
ate the functionality of connected things. Com-
munication protocols such as MQTT, AMQP,
XMPP, and Zigbee enable the communication
between the sensor devices and the cloud [23].
A typical Internet-of-things product will have
a “cloud” part including an application plat-
form that provides fundamental operating en-

vironments for Internet-of-things applications.
Internet-of-things applications, which employs
web or mobile interfaces, provide functionalities
to store, process and analyze a vast amount of
time series-based machine data. There exist vari-
ous architectural views on Internet-of-things sys-
tems depending on research goals. Based on exist-
ing classifications [22, 24], we adopted a 4-layer
view on Internet-of-things systems with the pur-
pose of differentiating security concerns and res-
olution techniques among layers. The layers are
Application tier, Network tier, Sensor tier, and
Data processing tier, which will be described in
the SIoT framework (Section 4).

Internet-of-things development is challenging
due to the multiple cross-cutting concerns, such
as connectivity, security and the lack of high-level
abstractions to address both the large-scale and
heterogeneity [9]. Patel et al. proposed a develop-
ment framework that separates Internet-of-things
into four concerns: architecture, domain, plat-
form and deployment concerns [9]. However, the
authors do not explicitly explore the elicitation
and implementation of security concerns.

2.5. Identification and modelling security
requirements in IoT development

There are other research articles that address se-
curity requirements for IoT applications [25–29].
Babar et al. proposed a framework that separates
security concerns for software and hardware parts
of embedded systems [25]. Although the need for
built-in security framework is emphasized, the
modelwas not validated. Jacobsson et al. proposed
a risk analysis for smart home systems based on
architectural views [26]. Gan et al. suggested sev-
eral security requirements for Internet-of-things
in their analysis [27]. Ahmad et al. proposed
amodel to capture security and privacy properties
in Internet-of-things [28]. They point out common
security challenges, but they are not categorized
into system architectural dimensions. Kim et al.
discussed the security concerns according to sys-
tem tiers and systemdevelopment phases [29]. The
proposal is however subjective without validation.

Apart from the industry evaluation, our
framework differs in that it adopts the well known

SIoT Framework: Towards an Approach for Early Identification of Security Requirements . . . 81

SQUARE methodology [14], and best practices
for security engineering (e.g., [5, 32]) and adapts
them for Internet-of-things contexts

3. Industrial demand on a security
modelling framework

In order to motivate the need of a security mod-
elling framework for industry, in this section, we
provide preliminary results of a qualitative survey
that we are currently performing on Internet-of-
-things startups. Early results support the notion
as they suggest that startups need assistance with
a framework for identifying security concerns early
in the software development process. The prelimi-
nary results are shown in Table 1. In the on-going
survey, we are surveying the state-of-practice of
Internet-of-things application development, focus-
ing specifically on exploring Internet-of-things de-
velopment practices among IT startups.We aim at
collecting as many participants as possible. There
is no limitation on the type of companies in our sur-
vey as wewould like to have a variety of the sample.
The surveywas designed in 2015 and is an on-going
effort. Participants are being searched from three
channels (1) our professional network, (2) regional
incubators and accelerator programs, (3) and
startup portal, i.e., Startup Norway and Crunch-
base. Participants who accept our invitation are
also invited to participate in a one-hour interview.

We used semi-structured interviews to en-
able open-end answers from participants. Our
interview process has four parts (1) background
information about business and product, (2) pro-
totyping and production development practices
and challenges (3) quality concerns and testing,
and (4) final reflection. The full interview ques-
tion list is shown in Appendix A. We found eleven
Internet-of-things startups that are relevant to
the scope of this study. This is a subset from

our IoT survey, from which we can extract infor-
mation about security requirements. It is possi-
ble that the other companies also have similar
concerns, but this is not explicitly mentioned
in the survey.

Our previous work reveals some of the pro-
totyping and development challenges of such
startups, i.e., insufficient testing, technical debt,
balancing agility and quality, etc. [33, 34]. Ta-
ble 1 summarizes how security concerns are con-
sidered and managed in the eleven Internet-of-
-things startups from our survey. In the table,
“foundation year” is the year the company was
officially formed. Regardless of the startups’ ac-
tive time, a startup can be in an idealization,
a prototyping or in a production state [35]. Ag-
ile approaches are clearly common across the
cases. Many companies report that they adopt
certain ways of Agile in developing (part of) their
products. Some report waterfall and adhoc ap-
proaches as their preferred approaches when deal-
ing with the production of the hardware parts.
In the right-most column in Table 1 we also
reveal as a part of the product quality assurance
practices, how security concerns were considered
and managed.

Table 1 reveals that 80% of our cases empha-
size the importance of security for their business,
regardless of the startup stage. Security goals
are often established in both startups at proto-
typing and production phases. Security is con-
sidered a significant concern, and in some cases
as an essential value proposition in the compa-
niesb́usiness models. The consideration occurs at
different levels, organizational, managerial and
technical levels, for instance:

Security is the main infrastructure of
Internet-of-things applications. As it is
everywhere and one cannot think of com-
promising the everyday equipment they
use (C03).

Table 1. Security goals

Goals Description
Confidentiality Ensure that data is not revealed to or accessed by unauthorized individuals [30, 31]
Availability Ensure that authorized users can access and use data on demand [30, 31]
Integrity Prevent unauthorized tampering of data when it is being processed, or in transit or when

at rest [30, 31]

82 Ronald Jabangwe, Anh Nguyen-Duc

Figure 1. The scope of SIoT framework

As shown in Figure 1, the SIoT frame-
work consists of the following three main
components:
1. Security goals.
2. Internet-of-things abstract model ar-

chitecture.
3. Internet-of-things security concerns.
Devices in Internet-of-things applications
communicate through Internet and share
their data over the network. So, there are
huge chances of vulnerability (C05).
However, there is a limited action on imple-

menting security concerns. 30% of the surveyed
companies did not implement any security-re-
lated features. 40% of the cases have their se-
curity dependent on external vendors or open
source components. There are only three cases
that implement security as a part of their com-
petitive strategy, as illustrated below:

Our data can be traced and exposed over
the network in case of lack of proper se-
curity measures. Security features play
a key role in Internet-of-things applica-
tions (C05).
The two pillars of simple access and secu-
rity must work in unison. The first pro-
vides a simple way to securely connect
devices to the Wi-Fi network, while the
second ensures only the IoT application
can traverse the Wi-Fi network from the
IoT device to the server. This can help
prevent malicious attacks (C07).
There is a lack of clarity of a systematic

approach for mapping security goals to actual
actions for addressing security concerns. For in-
stance, it is not clear how startups cooperate se-
curity concerns into the product architecture, at
different times of consideration (i.e., prototyping

or production). We also recognize some startups
(40% of the total number of cases) that perceive
security as a dependent concern on open source
community or third-party providers. All in all,
the preliminary observations of the 10 Internet-
-of-things startups suggest a methodological need
of a systematic approach for considering security
during Internet-of-things product development
life cycle and practices.

Overall, we found only one case in which
the company was taking steps to implement
a methodological approach for security assurance.
The company representatives explained that they
do it because of market demands in their domain.
Hence it helps them gain a competitive advantage
over its competitors. The company was willing
to participate in the evaluation of the framework
because of their interest in methods for effectively
addressing security concerns. More details of the
company are presented in Section 5 of the paper.

4. The proposed conceptual SIoT
framework

The SIoT (Security for Internet-of-things Ap-
plications) framework adopts the well known
SQUARE methodology [14], and best practices
for security engineering (e.g., [5, 32] and adapts
them for Internet-of-things contexts. The frame-
work also builds on existing work on Internet-of-
-things applications [22, 24, 36–38].

4.1. Security goals

Maintaining data confidentiality, integrity, avail-
ability are the primary goals for data security
initiatives [39–41]. The three goals are also re-

SIoT Framework: Towards an Approach for Early Identification of Security Requirements . . . 83

Table 2. Internet-of-things application and Security consideration in startups

ID Found Startup Startup product Development Thoughts Actions
year stage method

C01 2009 Prototyping A underwater
camera

Adhoc Security was not
considered at
this stage

Quality
perceived at
open source
module

C02 2013 Prototyping A tracking
device for
shipments

Agile Quality
consideration
i.e., robustness
and security at
software tier

Outsourced:
Quality testing
was done by
subcontractors

C03 2011 Production A mobile muscle
trainer

Agile After thought
on security at
software tier

Outsourced:
Quality testing
of the hardware
tier was
outsourced

C04 2015 Production connected smart
home solution

Waterfall and
Agile

Importance of
security at
software and
cloud tier

Depending on
security of third
party modules

C05 2015 Production Home electricity
usage
management
system

Agile for IoTs
related
development

Security
concerns at
three
components:
circuits, mobile
apps and cloud

Implementing
security features
at various tiers

C06 2016 Prototyping A navigating
device for
visually
impaired
individuals

Agile Security is the
most prominent
feature

No

C07 2016 Prototyping A car remote
controller

Agile at start,
Waterfall
afterward

Security as
a main concern

Implementing
security features
at various tiers

C08 2014 Production A predictive
analytic
platform for
vehicles

Agile Security is as
important as
usability.

Limited

C09 2012 Prototyping A body index
tracking

Agile Security
concerns at
methodological,
organizational
and technical
level

Experimenting
at
methodological
level

C10 2015 Prototyping A water farming
management
system

Adhoc Security
concerns at
organizational
level

No

C11 2013 Prototyping Glucose
monitoring
device

Adhoc Security
concerns at
organizational
and technical
level

No

84 Ronald Jabangwe, Anh Nguyen-Duc

ferred to as the CIA triad [40]. The definitions for
the security goals are in Table 2. Our proposal is
to break down security into the three goals and
then identifying security concerns that need to
be addressed in order to realize each goal. This
approach will help with addressing security from
different but critical perspectives for protecting
data for Internet-of-things applications.

There are other security attributes, such as
authorization, authentication, and non-repudia-
tion that can be perceived as independent cate-
gories. However, in line with Bass et al. [41], we
also believe these attributes support the security
goals outlined in Table 2. For example, autho-
rization is intended to ensure that access to data
is based on user privileges. This can be traced to
confidentiality. Authentication is about verifying
users to ensure confidentiality and integrity. Non
repudiation can be traced to confidentiality and
integrity as it relates to ensuring that users do
not deny accessing, editing or deleting data.

4.2. Internet-of-things abstract model
architecture

Decomposing the architecture of Internet-of-
-things applications into distinct layers provides
an overview of the idiosyncrasies associated with
the systems. This helps to better understand
how to tackle data security concerns of such
complex systems. Based on existing classifica-
tion Internet-of-things architecture, for example
in [22, 24, 36–38], we have identified the follow-
ing abstract layers as being the foundation of an
Internet-of-things system:
– Application tier [36, 38] This layer pro-

vides users access to the Internet-of-things
through, for example, a mobile device. The
control of the application and intelligent
decision-making is performed through this
tier. It provides the typical functions of the
whole system, including the APIs to con-
sumers, decision-making, task analysis, task
schedule and so on. In this tier, a number of
services are deployed and interact with each
other.

– Network tier [36–38] This layer is responsi-
ble for data transmission. The transmission

can be through, for example, a local area
network or a mobile cellular data network.
Hassanalieragh et al. refer to this layer as
data transmission [36].

– Sensor tier [36–38]: This layer is responsible
for collecting data from an object of inter-
est through sensors. The data can come from
a human-being, environment, or any object of
interest. Basically, the function of this layer is
to provide environment or situational aware-
ness. It is mainly achieved by sensors that
may or may not perform a preliminary data
pre-processing, which then transmit the data,
through the network layer, to the application
and eventually to the support layer. WSN
(Wireless Sensor Network) is one of the ba-
sic techniques of this sensor tier. This layer
can also be referred to as the data acquisition
layer [36], perceptual layer [38], and sensation
layer [37].

– Data processing tier [36]: This layer consists
of the computational devices and storage de-
vices, that provide heterogeneous data pro-
cessing such as normalization, noise reduction,
data storage and other similar functions. This
tier is the bridge between Producer and Ser-
vice. Hassanalieragh et al. refer to this layer
as the data cloud processing layer [36].

4.3. Identification of security concerns

4.3.1. General Internet-of-things security
considerations

Techniques to compromise data security keep
evolving just as fast as the countermeasures to
address them do. Thus ensuring data confiden-
tiality, integrity and availability is challenging
for Internet-of-things systems. The basic security
needs that should be taken into consideration
in each of the layers are listed in Tables 3–6.
The checklist provided in the tables, which in-
cludes particular vulnerable areas for each tier,
will help to ensure that security requirements
are formulated to address security from different
angles using the CIA triad. It also helps with
capturing well known issues that can compromise
data security, for example, eavesdropping and

SIoT Framework: Towards an Approach for Early Identification of Security Requirements . . . 85

unauthorized gathering of data, as well as caus-
ing data availability issues through distributed
denial-of-service attacks [22, 42].

4.3.2. Domain-specific Internet-of-things
security needs

The checklist listed in Tables 3–6 are measures
that should be taken into consideration to ensure
data security. However, it is important to note
that the checklist is not a comprehensive list.
This is because depending on the configuration
of the Internet-of-things the architecture tier, and
the types of security risks can differ across con-
texts. For example, distributed denial-of-service
is a common security issue across networks. But

because not all networks are based on the same
communication protocol, it is important to assess
each type of network that is used in the Internet-
-of-things application for any additional relevant
threats. For this reason, a context-specific secu-
rity modeling approach is needed. The applica-
tion tier involves integrated or individual specific
application business, such as smart grid, intelli-
gent transportation, smart security, smart home,
wearable devices, and smart city. There are cer-
tain security concerns that cannot be solved in
other tiers of Internet-of-things, such as privacy
protection issue, which does not occur in sensor
layer and network layer but can become a concern
in certain contexts of the application layer. More-
over, different applications might have a different

Table 3. Security Concerns for the Application tier

Goals Checklist Description
Confidentiality Access control for authorized users (i.e., user authentication)

Authorized user roles types
Least privilege (least functionality) for each user role/type
Verification of authorized users
Third party data and service integration

Availability Access to the system on demand by authorized user
Access to data on demand by authorized users
Data input validation

Integrity Verification of data source
Audit trail of user access into the system
Audit trail of user access to data
Audit trail of changes to data
Principle of separation of duties
Attribution of user access to application

Table 4. Security Concerns for the Network tier

Goals Checklist Description
Confidentiality/ Access control for authorized users (i.e., user authentication)
Integrity Authorized user roles/types

Least privilege (least functionality) for each user role/type
Verification of authorized users
Third party data and service integration

Availability Prevent distributed denial of service attack
Maintain connectivity
Detection and prevention of common network attacks (e.g., denial of service)

Integrity Verification of data source
Audit trail of user access into the system
Audit trail of user access to data
Audit trail of changes to data
Principle of separation of duties
Attribution of user access to application

86 Ronald Jabangwe, Anh Nguyen-Duc

Table 5. Security Concerns for the Sensor tier

Goals Checklist Description
Confidentiality Data anonymization

Encryption algorithm and protocol when data is in transit from sensors
Access control (user and device authentication)
Encryption key management
Node and device authentication RFID protocol security

Availability Access to data on demand by authorized users and devices
Detection and prevention of common sensor attacks (e.g., denial of service)
Audit of data collected
Audit of data sources

Table 6. Security Concerns for the Data tier

Goals Checklist Description
Confidentiality Encryption method when data is in transit from sensors

Access control (user and device authentication)
Encryption key management

Availability Access to data on demand by authorized users and devices Malware and virus
detection
Data recovery mechanism (in case of disaster or failure)
Mitigation strategy for disaster and data recovery

Integrity Verification of data source
Audit trail of user access to data
Audit trail of changes to data

priority on security requirements. For example,
data privacy would be of great importance for
Transportation and Healthcare sector, but, on
the other hand, data authenticity may be more
important for a Smart city.

In addition, in regulated domains, there are se-
curity requirements that need to be implemented
for data protection. A good example is medical
device software, which needs to comply with
specific data protection guidelines. In the United
States of America, for example, medical device
software needs to implement security measures
outlined in the Security Rule that is in the Health
Insurance Portability and Accountability Act
(HIPAA) [43]. Therefore, it is also essential to
consider the domain in which the Internet-of-
-things application will be used and understand
the unique data security demands and regulations.

4.3.3. Assessment of security concerns

Identifying and assessing security threats can be
performed by following a threat modeling ap-
proach [32]. We propose following the approach

shown in Figure 2, which adopts well known
threat modeling techniques in security engineer-
ing [5] that are used as a basis for deriving secu-
rity requirements [4, 32].

The approach shown in Figure 2 considers the
context of the system, the likelihood of threats
occurring and the impact that they have on the
system. This is essential for an effective threat
modeling approach. The decomposition of the
Internet-of-things application in Section 4.3.2 can
be used as Step 1 in Figure 3. Step 2 is a crit-
ical step because in order to identify relevant
security concerns it is important to understand
the complexities and mechanisms used to collect,
transmit and store data. Table 7 shows informa-
tion that should be defined during Step 2 in order
to characterize each tier and describe contextual
factors that are unique to a particular Internet-
-of-things application. The aim is to help identify
the contextual setting of product development.
Data flow diagrams can also help model and un-
derstand how data flows through each tier, which
is useful information for understanding data secu-
rity concerns in the Internet-of-things application.

SIoT Framework: Towards an Approach for Early Identification of Security Requirements . . . 87

Figure 2. Threat modelling for Internet-of-things application

Figure 3. The evaluation of the SIoT Framework
at ABC company

The characterization done in Step 2 should
then be used as input in Step 3, which involves
activities of identifying threats within each tier.
Assessment of the relevance to the Internet-of-
-things application being analyzed will then be
done in Step 4. The threats that are found to be
relevant can also be assessed on their likelihood
of occurrence and severity or extent of negative
impact on data security. The assessment can be
used for prioritization during the implementation
of security requirements.

Table 7. Security Concerns for the Data tier

Goals Checklist Description
Application Tier Types/roles of authorized users

Number of authorized users
Criticality of data that can be accessed (e.g., private and sensitive data)
Devices used (e.g., hand-held mobile devices and laptops)

Sensor tier Number of authorized users to connect to sensors
Number of authorized devices to connect to sensors
Criticality of data that can collected (e.g., private and sensitive data)
Data transmission method from the sensor layer to the application layer
(wireless personal networks [44], e.g., Bluetooth and Zigbee [45]

Network tier Data transmission method from the application layer to the data process-
ing layer, e.g., mobile cellular network, wireless local area networks [44]
Data transmission method from the data processing layer to the applica-
tion layer, e.g., mobile cellular network, Wireless Fidelity (i.e., WiFi).
Communication protocols

Data processing tier Use of local device storage system
Cloud storage model (e.g., the use of either private, public, community
or hybrid cloud [46]

88 Ronald Jabangwe, Anh Nguyen-Duc

5. Evaluation of the SIoT framework

5.1. The company context

To evaluate the SIoT framework, we apply it
in a company that we will refer to as ABC to
preserve its anonymity. ABC is a spin-off startup
from an international enterprise that provides
real-time industrial IT integration, automation
and manufacturing solutions. ABC has approx-
imately 20 employees, developing a system for
estimating glucose (blood sugar) based on the
combination of several non-invasive measurement
principles. The company adopts several engineer-
ing methodologies:
– Process-driven development: the company

was approved according to ISO 13485 (quality
management system for the development and
manufacturing of medical devices). Product
development involves a significant amount
of documentation for internal use and ex-
ternal communication. The company adopts
a tailored version of Agile with long-term
iterations. A lot of physical tests are per-
formed on hardware components, e.g., strap
test, temperature test and load test. Auto-
mated testing and continuous integration are
done for software components.

– Quality-driven development: the developed
product is classified as a Class IIa Medical
Device product, which highlights the criti-
cality of several quality attributes, such as
performance, safety and most importantly,
security.

– Software platform development: product de-
velopment involves the implementation of an
embedded platform using C++/ RTOS, Java,
noSQL and secured REST-API.
ABC was used to evaluate the SIoT frame-

work as a follow-up research activity after the
industrial survey (case C11 in the survey in Sec-
tion 3). Security has been recognized as a vital
quality attribute at ABC. The company also ex-
pressed the need for a framework for addressing
the security concerns of their product.

With the permission of the CTO we formed
a focus group consisting of developers from ABC
to evaluate the SIoT framework. The focus group

aimed at evaluating the SIoT framework on
its usefulness in practice, and to assess if SIoT
can help identify any additional security require-
ments apart from those that they already knew
and had documented. During the evaluation, the
focus group used the security requirements for
the current glucose estimator prototype. Some
of the security concerns that the company was
keen on addressing are data confidentiality and
integrity.

The glucose estimator device will be body
mounted in the form of a wearable device that
communicates with a mobile app for display-
ing and monitoring data. The system is simi-
lar to the Internet-of-things health monitoring
system presented by Hassanalieragh et al. that
is also based on WBAN and cloud-based pro-
cessing [36]. The prototyping development was
finished in the winter of 2017 and the product
is currently under European regulator evalua-
tion. The development team includes five peo-
ple with competences in electronic engineering,
software engineering and medical expertise. The
prototyping process started in Spring 2015. The
development approach is research-based with
long iteration. All R & D activities occurred
in-house.

5.2. Focus group
and the evaluation process

A focus group is a popular research method in
social science, that involves carefully planned dis-
cussions to obtain the perceptions of group mem-
bers on a defined topic [47]. Typically, there are
3 to 10 participants in a focus group, that are fa-
cilitated by a moderator, who guides a structured
discussion on a specific topic. The approach has
been used in requirements engineering to elicit
and to analyze requirements [48]. In our case, we
aim at discovering the security concerns of the
current prototypes by using the SIoT framework
as a proxy object. We followed the focus group
meeting guidelines proposed by Edmunds [49],
specifically:
– Defining the research problem: the group aims

at evaluating the current security concerns
for the prototype.

SIoT Framework: Towards an Approach for Early Identification of Security Requirements . . . 89

– Selecting participants: we include all stake-
holders who are involved in the development
of the prototype. In total four engineers par-
ticipated in the focus group

– Planning and conducting the focus group:
we hold a 120-minute discussion with partici-
pants. Each session started with an overview
of the objectives of the study and with a dis-
cussion on how participants should discuss
and act during the session. The first topic
was to discuss the current security level of
the prototype. A researcher, who acted as the
moderator, went through the four checklists
of security requirements. The second topic
was to discuss the usefulness and complete-
ness of our SIoT. Each participant would give
evaluation scores for the completeness and
usefulness of SIoT at the end of the activity.

– Analysis: the discussion was noted and sum-
marized into points. Each point was mapped
to (1) requirements that are already imple-
mented in the current prototype and (2) re-
quirements should be implemented in the
next version of the prototype.
SIoT helped the focus group identify security

requirements that they had missed when develop-
ing the prototype. The results of the focus group
were summarized in Table 8.

5.3. Evaluation results
and lessons learned

Figure 3 presents the boxplot (mean, min, max
and outliners) of the evaluation scores from fo-
cus group participants. As mentioned previously,
each participant gave a score for the complete-
ness of the framework (if SioT covers all relevant
aspects to them) and the usefulness of the frame-
work (if SIoT helps them in identifying security
requirements). The scores range from one to five,
with five being the highest degree. Figure 3 shows
that participants perceived SIoT positively and
very useful. They appreciate the framework in
facilitating the discussion on security concerns
for the product as well as helping with identifying
security requirements for future releases.

Nevertheless, the participants pointed out
three main issues when using the framework:
– Requirements of multiple expertise: it is re-

marked that the framework goes beyond
a singular tier of Internet-of-things system,
hence, the adoption of the framework needs
to involve software developers, hardware en-
gineers, business analysts, etc. to reflect the
comprehensive set of requirements.

– Abstraction of some security concerns: for
instance, common attacking approaches or

Table 8. Security requirements in ABC: “had” vs “should have” lists

Goals Requirements Implemented Requirements to be implemented
Application Tier
Having: Confidentiality, Availabil-
ity
Should have: Confidentiality

Access control for authorized users
(i.e., user authentication)
Access to the system on demand
by authorized user
Data input validation

Authorized user roles/types
Least privilege (least functional-
ity) for each user role/type
Verification of authorized users
Third party data and service inte-
gration

Sensor Tier
Having: Confidentiality
Should have: Confidentiality,
Availability

Encryption algorithm and proto-
col when data is in transit from
sensors

Node and device authentication
RFID protocol security
Access to data on demand by au-
thorized users and devices

Network Tier
Having: Confidentiality
Should have: Confidentiality,
Availability

Identity authentication N/A

Data processing tiers
Having: Confidentiality
Should have: Integrity

Access control (user and device
authentication)

Verification of data source

90 Ronald Jabangwe, Anh Nguyen-Duc

detection of a virus are elements that locate
in a high abstract level. These elements are
not directly transferred into implementable
requirements. Further discussions would be
required to identify specific security require-
ments.

– Domain-specific focus: the evaluation was
done on a prototype from the healthcare
domain. In such an application domain with
a lot of regulations, there are specific demands
on adhering to security standards and laws.
While the framework is useful as a starting
point to help address critical security concerns,
domain-specific concerns linked to regulations
and standards are not straightforward.

6. Discussions

In this section, we discuss and summarize the
SIoT framework (Section 6.1), and also discuss
the application of SIoT in iterative development
(Section 6.2) and opportunities for improvement
(Section 6.3).

6.1. Comprehensive vs. domain specific
security consideration

Our SIoT framework looks at security concerns
from the product architecture perspective. We
emphasize the security concerns of the entire sys-
tem, rather than just the security of a single piece
of software or a single Internet-of-things layer.
This incorporates the fact that Internet-of-things
application includes multiple tiers of software,
middleware and hardware. A multi-perspective
view has also been considered in existing mod-
els [25, 27]. Our model has been revised and vali-
dated by practitioners. Nevertheless, the real-life
scenario of Internet-of-things applications could
become an ecosystem, in which security is not
only considered at a technical level, but also at or-
ganizational level and ecosystem level. Therefore,
one might consider in future work, a comprehen-
sive framework that captures security concerns
at both technical, organizational and ecosystem
levels.

The SIoT framework consists of three main
components (See Section 4). We propose that
the first step in applying the framework should
be the “security goals”, which results in the char-
acterization of data security for the system. This
is necessary for performing actions within the
other two components, i.e., “IoT abstract model”
and “IoT security considerations”. These other
two components can be performed in parallel,
and their output is a list of security needs that
are then translated into security requirements.
The security requirements can be documented,
for example, using natural language [50].

The consensus within the focus group during
the evaluation in the industry was that SIoT is
useful and helps address security from different
key angles of Internet-of-things systems. As the
focus group participants pointed out the frame-
work goes beyond a singular tier of Internet-of-
-things system, hence promoting the notion of
having a holistic view of security for the sys-
tem. Developing and marking secure Internet-of-
-things systems requires that not only software
engineers are security-aware but all stakeholders
within the company. There are hardware con-
cerns and market considerations. Therefore, in
order to get a comprehensive set of security re-
quirements, we encourage that the adoption of
the SIoT framework should involve software and
hardware engineers, testers, business analysts,
architects, and any other personnel that is in-
volved directly or indirectly in the development
of the Internet-of-things system.

Overall SIoT addresses data security from
multiple perspectives in order to ensure that es-
sential security requirements are identified. This
includes, taking into account the idiosyncrasies
of the Internet-of-things application as well as
the regulatory requirements of the domain in
which it will be used. This provides a more
comprehensive view of security concerns for the
Internet-of-things application. However, there
will be some overlap in terms of security require-
ments in particular during the activities for the
Internet-of-things security considerations. Thus,
the security requirements should be aggregated,
analysed, and duplicates should be removed.

SIoT Framework: Towards an Approach for Early Identification of Security Requirements . . . 91

6.2. Fitting SIoT
into iterative development

The proposed SIoT framework can be used in an
iteration/ sprint plan to ensure security concerns
are addressed and captured by the security re-
quirements [51]. The output from the framework
can then be used as a starting point to develop
metaphors or user stories which then could be
added to the backlog. Schwaber provides a list of
questions to guide a retrospective meeting [51].
We propose to add the following to the list in
order to bring the topic of security into the meet-
ings: (1) which security concerns have been ad-
dressed, (2) which security concerns might have
been missed in the backlog, and (3) which secu-
rity concerns need to be added to the backlog. In
addition, an agile approach to continuous changes
and integration may introduce security vulnera-
bilities, which results in the development of inse-
cure software [18]. Hence, we suggest adopting
an agile and continuous assessment of security
requirements to ensure that they are appropriate
and in line with the best practices for addressing
the most current and sophisticated security risks
that are relevant to the Internet-of-things system.
This can be facilitated by adopting threat model-
ing within the development process, specifically
during the requirements and design phases [18].
Furthermore, having a role within the process
dedicated to overseeing software security related
aspects should also be considered, for example,
Ghani et al. suggest adding a “security master”
role in Extreme Programming (XP) [20].

Security risks and threats will keep evolving
as mitigation strategies and new technologies

emerge. Therefore, it is crucial to keep monitor-
ing and managing mechanisms that are intended
to protect data. Therefore, a continuous approach
of updating security requirements is paramount
for ensuring that appropriate risks are taken into
account as the software evolves. This can be done
by adopting an iterative continuous process for
addressing security requirements as captured in
Figure 4. Security goals need to be identified at
the beginning of the project, i.e., aligning with
business strategy. The first iteration (Sprint 1)will
identify the architectural model at the abstract
level, following by the identification of general
security concerns. Consequent iterations refine the
architectural model and re-evaluate the list of se-
curity concerns. At some point in time (Sprint N),
the domain-specific security concerns are identi-
fied and reflected in the architectural model.

6.3. Limitation of the framework

The framework provides a conceptual approach
that can be applied in any company context.
The security consideration (described in Table 1)
presents the need for such a framework. The
completeness and usefulness of the framework
is evaluated using quantitative forms. However,
the evaluation of the framework is preliminary
and only bases on a focus group. We are aware
of the limitation and plan for future work with
thorough validation of the model. Our main fu-
ture plan is to continue evaluating the frame-
work more cases industry, particularly in various
domains. At the moment we mitigate this is-
sue by carefully ensuring that SIoT is based on
existing best practices for security engineering,

Figure 4. Continuously considering security concerns

92 Ronald Jabangwe, Anh Nguyen-Duc

e.g., [5, 14, 32] and research on Internet-of-things
security, e.g., [16, 22, 24–29, 36–38].

While SIoT was perceived positively with
regards to its usefulness, there was an issue
regarding its completeness. This was pointed
out by practitioners in the focus group meeting.
This pertains to addressing security outlined for
regulatory environments, demanded by law or
specified in technical standards such as those in
a certain domain like the medical device industry.
This is a critical issue to note. Therefore, users
of the framework should also reflect on any other
requirements demanded in their own regulated
environment. Possible future work is to provide
a guideline formapping the SIoT framework to spe-
cific regulatory requirements in a specific domain.

7. Conclusions

In this paper, we proposed a systematic engi-
neering approach for identifying security require-
ments in Internet-of-things systems. The gaps
in requirements and system design were found
in Internet-of-thing startups. Considering an ab-
stract architecture of an Internet-of-things ap-
plication, we are able to come up with a SIoT
framework, that offers a systematic way to iden-
tify, maintain and to evaluate security aspects
in Internet-of-thing applications. The framework
has been used in a Norwegian startup with initial
positive feedback. However, it is worth mention-
ing that Internet-of-things security issues are
application specific, so the approach needs to be
adapted in a specific application domain, which
might introduce specific architectural elements.
Hence, this SIoT framework may need to be
refined in the future.

Our case company suggested that the frame-
work provides a good basis to help address critical
security concerns for Internet-of-things applica-
tions. However, security is a multi-faced con-
cept; therefore users of the framework should
not view the framework as a panacea to all
security threats. In addition, security threats
will keep evolving as technology evolves. There-
fore, there is a need to update SIoT accordingly

over time, as well as to conduct further valida-
tion with practitioners and improving the frame-
work based on feedback. Furthermore, we sug-
gest complementing the framework by adopting
supporting security activities, e.g., continuous
security considerations (e.g., shown in Figure
4), penetration testing and keeping up-to-date
with emerging security threats from resources
like OWASP foundation1. Designing secure sys-
tems requires understanding the complex interac-
tion between different parts of architecture and
the security threats for those parts. The SIoT
framework, which takes a layered view of the
architecture of Internet-of-things applications,
provides a foundation for promoting that thought
process.

Acknowledgments

We appreciate Prof. Tor Stalhane from NTNU
and Dr. Indira Nurdiani (University of South-
ern Denmark) for their constructive review and
feedback on the SIoT framework.

References
[1] S. Lucero, “IoT platforms: Enabling the Internet

of Things,” IHS Technology, Whitepaper, 2016.
[Online]. https://www.esparkinfo.com/wp-
content/uploads/2018/11/enabling-IOT.pdf

[2] L. Chung, B.A. Nixon, E. Yu, and J. Mylopou-
los, Non-Functional Requirements in Software
Engineering, International Series in Software
Engineering. Springer, 2000. [Online]. https:
//www.springer.com/gp/book/9780792386667

[3] A. Olmsted, “Secure software development
through non-functional requirements modeling,”
in International Conference on Information So-
ciety (i-Society), 2016, pp. 22–27.

[4] S. Myagmar, A.J. Lee, and W. Yurcik, “Threat
modeling as a basis for security requirements,”
in Proceedings of the IEEE Symposium on Re-
quirements Engineering for Information Security,
2005.

[5] F. Swiderski and W. Snyder, Threat Modeling.
Microsoft Press, 2004.

[6] A.N. Duc, R. Jabangwe, P. Paul, and P. Abra-
hamsson, “Security challenges in IoT develop-
ment: A software engineering perspective,” in

1The OWASP foundation can be found at this link: www.owasp.org

SIoT Framework: Towards an Approach for Early Identification of Security Requirements . . . 93

Proceedings of the XP2017 Scientific Workshops,
XP ’17. ACM, 2017, pp. 11:1–11:5.

[7] A.S. Sani, D. Yuan, J. Jin, L. Gao, S. Yu, and
Z.Y. Dong, “Cyber security framework for in-
ternet of things-based energy internet,” Future
Generation Computer Systems, Vol. 93, No. 4,
2019, pp. 849–859.

[8] I. Jacobson, I. Spence, and P.W. Ng, “Is there
a single method for the internet of things?”
Queue, Vol. 60, No. 11, 2017.

[9] P. Patel and D. Cassou, “Enabling high-level ap-
plication development for the Internet of Things,”
Journal of Systems and Software, Vol. 103, 2015,
pp. 62–84.

[10] B. Morin, N. Harrand, and F. Fleurey, “Model-
-based software engineering to tame the IoT
jungle,” IEEE Software, Vol. 34, No. 1, 2017,
pp. 30–36.

[11] K. Meridji, K.T. Al-Sarayreh, A. Abran,
and S. Trudel, “System security requirements:
A framework for early identification, specifica-
tion and measurement of related software re-
quirements,” Computer Standards and Inter-
faces, Vol. 66, 2019, p. 103346.

[12] M. Ammar, G. Russello, and B. Crispo, “Internet
of things: A survey on the security of IoT
frameworks,” Journal of Information Security
and Applications, Vol. 38, 2018, pp. 8–27.
[Online]. http://www.sciencedirect.com/science/
article/pii/S2214212617302934

[13] P. Devanbu and S. Stubblebine, “Software
engineering for security: A roadmap,” in ICSE
’00: Proceedings of the Conference on The
Future of Software Engineering, 2000. [Online].
https://www.researchgate.net/publication/239
3383_Software_Engineering_for_Security_a
_Roadmap

[14] N. Mead, “Security quality requirements engi-
neering (SQUARE),” Software Engineering In-
stitute, Tech. Rep., 2011.

[15] G. Sindre and A.L. Opdahl, “Eliciting security
requirements with misuse cases,” Requirements
Engineering, Vol. 10, No. 1, 2005, pp. 34–44.

[16] A. van Lamsweerde, “Elaborating security re-
quirements by construction of intentional anti-
-models,” in Proceedings. 26th International
Conference on Software Engineering, 2004,
pp. 148–157.

[17] Y. Yu, H. Kaiya, H. Washizaki, Y. Xiong, Z. Hu,
and N. Yoshioka, “Enforcing a security pattern
in stakeholder goal models,” in Proceedings of
the 4th ACM workshop on Quality of protection,
2008, pp. 9–14.

[18] S.H. Adelyar and A. Norta, “Towards a se-
cure agile software development process,” in
10th International Conference on the Quality
of Information and Communications Technology
(QUATIC), 2016, pp. 101–106.

[19] K. Beznosov, “eXtreme security engineering: On
employing XP practices to achieve “good enough
security” without defining it,” in First ACM
Workshop on Business Driven Security Engineer-
ing (BizSec), 2005.

[20] I. Ghani and N.I.A. Firdaus, “Role-based ex-
treme programming (XP) for secure software
development,” in Special Issue – Agile Sympo-
sium, 2013.

[21] M.R.R. Ramesh and A. Tadepalligudem, “A sur-
vey on security requirement elicitation meth-
ods: classification, merits and demerits,” Interna-
tional Journal of Applied Engineering Research,
2016.

[22] Q. Jing, A.V. Vasilakos, J. Wan, J. Lu, and
D. Qiu, “Security of the Internet of Things: Per-
spectives and challenges,” Wireless Networks,
2014.

[23] F. Wortmann and K. Fluchter, “Internet of
Things,” Business and Information Systems En-
gineering, Vol. 57, No. 3, 2015, pp. 221–224.

[24] H.J. La and S.D. Kim, “A service-based ap-
proach to designing cyber physical systems,”
in IEEE/ACIS 9th International Conference
on Computer and Information Science, 2010,
pp. 895–900.

[25] S. Babar, A. Stango, N. Prasad, J. Sen, and
R. Prasad, “Proposed embedded security frame-
work for internet of things (IoT),” in 2nd Interna-
tional Conference on Wireless Communication,
Vehicular Technology, Information Theory and
Aerospace Electronic Systems Technology (Wire-
less VITAE), 2011, pp. 1–5.

[26] A. Jacobsson, M. Boldt, and B. Carlsson, “A risk
analysis of a smart home automation system,”
Future Generation Computer Systems, Vol. 56,
2016, pp. 719–733.

[27] G. Gan, Z. Lu, and J. Jiang, “Internet of things
security analysis,” in International Conference
on Internet Technology and Applications, 2011,
pp. 1–4.

[28] A.W. Atamli and A. Martin, “Threat-based se-
curity analysis for the internet of things,” in
International Workshop on Secure Internet of
Things, 2014, pp. 35–43.

[29] D.H. Kim, J.Y. Cho, S. Kim, and J. Lim,
A Study of Developing Security Requirements
for Internet of Things (IoT), 2015. [Online].

94 Ronald Jabangwe, Anh Nguyen-Duc

https://www.semanticscholar.org/paper/A-
Study-of-Developing-Security-Requirements-
for-of-Kim-Cho/

[30] R.L. Kissel, Ed., Glossary of Key Informa-
tion Security Terms. National Institute of
Standards and Technology, 2013. [Online].
https://www.nist.gov/publications/glossary-
key-information-security-terms-1

[31] G. Stoneburner, “Underlying technical models
for information technology security,” National
Institute of Standards and Technology, Tech.
Rep. 800-33, 2001.

[32] A. Shostack, Threat Modeling: Designing for Se-
curity. Wiley, 2014.

[33] A. Nguyen Duc, K. Khalid, T. Lønnestad,
S. Bajwa Shahid, X. Wang, and P. Abrahams-
son, “How do startups develop internet-of-things
systems – A multiple exploratory case study,”
in IEEE/ACM International Conference on
Software and System Processes (ICSSP), 2019,
pp. 74–83.

[34] A. Nguyen-Duc, X. Weng, and P. Abrahamsson,
“A preliminary study of agility in business and
production: Cases of early-stage hardware star-
tups,” in Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software
Engineering and Measurement, ESEM ’18. ACM,
2018, pp. 51:1–51:4.

[35] A. Nguyen-Duc, S.M.A. Shah, and P. Ambra-
hamsson, “Towards an early stage software star-
tups evolution model,” in 42th Euromicro Con-
ference on Software Engineering and Advanced
Applications (SEAA), 2016, pp. 120–127.

[36] M. Hassanalieragh, A. Page, T. Soyata,
G. Sharma, M. Aktas, G. Mateos, B. Kantarci,
and S. Andreescu, “Health monitoring and man-
agement using Internet-of-Things (IoT) sensing
with cloud-based processing: Opportunities and
challenges,” in IEEE International Conference
on Services Computing, 2015, pp. 285–292.

[37] X. Sun and C. Wang, “The research of security
technology in the internet of things,” in Advances
in Computer Science, Intelligent System and
Environment, Advances in Intelligent and Soft
Computing, D. Jin and S. Lin, Eds. Springer,
2011, pp. 113–119.

[38] H. Suo, J. Wan, C. Zou, and J. Liu, “Security in
the internet of things: A review,” in International
Conference on Computer Science and Electronics
Engineering, Vol. 3, 2012, pp. 648–651.

[39] National Institute of Standards and Technology,
“Standards for security categorization of federal
information and information systems,” U.S. De-

partment of Commerce, Tech. Rep. Federal Infor-
mation Processing Standard (FIPS) 199, 2004.

[40] F.Y. Sattarova and T.H. Kim, “IT security re-
view: Privacy, protection, access control, assur-
ance and system security,” International Jour-
nal of Multimedia and Ubiquitous Engineering,
Vol. 2, No. 2, 2007, pp. 17–31.

[41] L. Bass, P. Clements, and R. Kazman, Software
architecture in practice. Addison-Wesley, 2003.

[42] D. Fischer, B. Markscheffel, S. Frosch, and
D. Buettner, “A survey of threats and security
measures for data transmission overGSM/UMTS
networks,” in International Conference for Inter-
net Technology and Secured Transactions, 2012,
pp. 477–482.

[43] M. Scholl, K. Stine, J. Hash, P. Bowen,
L. Johnson, C. Smith, and D. Steinberg, “An
introductory resource guide for implementing the
health insurance portability and accountability
act (HIPAA) security rule,” National Institute
of Standards and Technology, Tech. Rep. 800-66,
2008. [Online]. https://csrc.nist.gov/publicatio
ns/detail/sp/800-66/rev-1/final

[44] K. Scarfone, D. Dicoi, M. Sexton, K. Scarfone,
D. Dicoi, M. Sexton, C. Tibbs, and C.M. Gutier-
rez, “Guide to securing legacy IEEE 802.11 wire-
less networks recommendations of the national,”
NIST, Tech. Rep. 800-48 Rev 1, 2008.

[45] D. Gislason, Zigbee Wireless Networking.
Newnes, 2008.

[46] P. Mell and T. Grance, “The NIST definition
of cloud computing,” National Institute of Stan-
dards and Technology, Tech. Rep. 800-145, 2011.

[47] S. Caplan, “Using focus group methodology for
ergonomic design,” Ergonomics, Vol. 33, No. 5,
1990, pp. 527–533.

[48] K. Garmer, J. Ylven, and M. Karlsson, “User
participation in requirements elicitation compar-
ing focus group interviews and usability tests
for eliciting usability requirements for medical
equipment: A case study,” International Journal
of Industrial Ergonomics, Vol. 33, No. 2, 2004,
pp. 85–98. [Online]. http://www.sciencedirect.
com/science/article/pii/S0169814103001318

[49] H. Edmunds, Focus Group Research Handbook.
McGraw-Hill, 2000.

[50] P. Salini and S. Kanmani, “Survey and analysis on
security requirements engineering,” Computers
and Electricale Engineering, Vol. 38, No. 6, 2012,
pp. 1785–1797. [Online]. http://www.sciencedirec
t.com/science/article/pii/S0045790612001644

[51] M. Sliger, Agile project management with Scrum.
Project Management Institute, 2011.

SIoT Framework: Towards an Approach for Early Identification of Security Requirements . . . 95

Appendix A

– Part 1: General information
Q1a. Describe your product
Q1b. Describe your company, i.e history, cur-
rent head count
Q1c. What are the key software development
methods, processes, environments and tools?

– Part 2: Production development prac-
tices
Q2a. How did you build the first prototype?
Q2b. What were the reasons behind the first
prototype?
Q2c. How did you make other prototypes?
Q2d. What have you learnt from the proto-
typing process?

Q2e. When the actual development started?
Q2f. How does the final product different
from prototypes?
Q2g. Please name three most important chal-
lenges during product development
Q2h. How many significant pivots have you
encountered?

– Part 3: Quality concerns and testing
Q3a. What are quality attributes important
for your products? Q3b. How do you manage
your product quality? Q3c. How do you do
testing? Q3d. When did you last refactor your
codebase? Q3e. How do you consider Security
in your final product?

– Part 4 – final reflection
Q4. Any final interesting comment ?

e-Informatica Software Engineering Journal, Volume 14, Issue 1, 2020, pages: 97–115, DOI 10.37190/e-Inf200104

Extending UML Use Case Diagrams to Represent
Non-Interactive Functional Requirements

Saqib Iqbal∗, Issam Al-Azzoni∗, Gary Allen∗∗, Hikmat Ullah Khan∗∗∗
∗Department of Software Engineering and Computer Science, Al Ain University, Al Ain, UAE

∗∗Department of Computer Science, University of Huddersfield, UK
∗∗∗Department of Computer Science, COMSATS University Islamabad, Wah Campus, Pakistan

saqib.iqbal@aau.ac.ae, issam.alazzoni@aau.ac.ae, g.allen@hud.ac.uk,
hikmat.ullah@ciitwah.edu.pk

Abstract
Background: The comprehensive representation of functional requirements is a crucial activity
in the analysis phase of the software development life cycle. Representation of a complete set of
functional requirements helps in tracing business goals effectively throughout the development life
cycle. Use case modelling is one of the most widely-used methods to represent and document
functional requirements of the system. Practitioners exploit use case modelling to represent
interactive functional requirements of the system while overlooking some of the non-interactive
functional requirements. The non-interactive functional requirements are the ones which are
performed by the system without an initiation by the user, for instance, notifying something to
the user or creating an internal backup.
Aim: This paper addresses the representation of non-interactive requirements along with
interactive ones (use cases) in one model. This paper calls such requirements ‘operation cases’ and
proposes a new set of graphical and textual notations to represent them.
Method: The proposed notations have been applied on a case study and have also been empirically
evaluated to demonstrate the effectiveness of the new notations in capturing non-interactive
functional requirements.
Results and Conclusion: The results of the evaluation indicate that the representation of
operation cases helps in documenting a complete set of functional requirements, which ultimately
results in a comprehensive translation of requirements into design.

Keywords: Use Case modeling UML Requirements Engineering Functional Requirements

1. Introduction

Software Engineering is concerned with develop-
ing software as per the stakeholders’ expectations
(requirements). Gathering, eliciting and docu-
menting these requirements is the most crucial
phase of the software engineering process. Dur-
ing this phase, detailed software requirements
specification (SRS) documents are developed to
specify the system requirements. One of the most
widely used requirements specification tools is
use case modelling, which represents the system

users (actors) and their interactive requirements
(use cases). Use case modelling was proposed by
Jacobson [1] and was later adopted by the Unified
Modelling Language (UML) [2]. The purpose of
use case modelling is to represent requirements
in such a way that all stakeholders (from a tech-
nical or non-technical background) could easily
understand and review them [3]. Use case mod-
elling has been considered as an effective tool
by the academic research community [4, 5] and
industry [6, 7] to specify and model functional re-
quirements. There are, however, some functional

Submitted: 3 September 2019; Revised: 13 April 2020; Accepted: 4 June 2020; Available online: 24 June 2020

98 Saqib Iqbal et al.

requirements which often are not represented as
use cases as they are not initiated by an actor.
Examples of such requirements in a simple ATM
banking system would be ‘Check Cash Dispenser’,
‘Notify Bank About an Empty Cash Dispenser’ or
‘Display Promotional or Informational Messages’.
These functions are triggered either in response
to an interactive requirement (a use case), an
event, or at a specified time according to the
internal system clock. We may call these require-
ments non-interactive requirements as they are
triggered by the system without users’ initiation.
System specification is not complete without the
representation of these requirements along with
use cases.

A use case, as the name suggests, has always
been considered as a case of usage of the system,
a usage scenario in other words. The represen-
tation of a requirement that does not represent
a usage scenario (a non-interactive requirement)
as a use case would only lead to confusions. There
is a need for a separate representation for such
requirements which is graphically and textually
different from a use case. Both types of require-
ments, however, are needed to be represented
in one model because they are both functional
requirements and their representation in one
model would provide a single point of reference
for a complete list of functional requirements.

To cater for this need, we propose a new con-
struct called ‘Operation Case’. The Operation
Case is a system function which is not initiated
by an actor, rather is triggered either by a use
case or is initiated in response to an event or sys-
tem clock. Operation cases are modelled along
with the use cases in the same subject (system
or module) to represent a full set of functional
requirements of the subject. The construct has
been added to the use case models in addition to
other constructs by introducing a new profile to
UML. The proposed constructs have been applied
on a case study to show the comprehensiveness
of the approach in representing functional re-
quirements. In addition, an empirical evaluation
has been conducted. The evaluation focuses on
addressing the hypothesis that the proposed con-
structs and method represent a comprehensive
list of functional requirements which eventually

leads to a complete and consistent design. The
empirical evaluation demonstrates that use case
modelling without operation cases can lead to
overlooking of key functional requirements.

The rest of the paper is organized as follows:
Section 2 provides a review of the related litera-
ture. Section 3 outlines the problem and motiva-
tions behind the research. Section 4 describes op-
eration cases in detail. Section 5 provides details
of the implementation of the proposed concepts.
Section 6 illustrates the application of the new no-
tation via a worked case study. Section 7 reports
on the results of a controlled experiment. To
address possible internal validity threats to the
conclusion of the controlled experiment, a second
experiment was conducted and it is presented in
Section 8. Section 9 concludes the paper with
a discussion on the future work.

2. Related work

In [8], Glinz identifies and demonstrates several
deficiencies of UML, with emphasis on use case
models and system decomposition. Our work
attempts to address two of the deficiencies men-
tioned. The first deficiency is the omission of
active objects in UML use case diagrams. In-
clusion of active objects in use case diagrams
is needed to specify interaction requirements
where the system itself initiates an interaction
between the system and an external actor. The
use of observers in our new notation fills this
gap. The second deficiency is that UML use case
models cannot express state-dependent system
behaviour adequately. We address this issue by
introducing operation cases, which can be speci-
fied to capture the system state.

Several papers have also presented prob-
lems and limitations of use cases. The paper
by Génova et al. [9] identifies sources of ambi-
guity that exist in use case models. The paper
by Metz et al. [10] looks at the problem of use
case interleaving present in UML 1.3. In [11],
the authors highlight major problems associated
with the semantics of extension points and rejoin
points, which are used as branching and return
locations for a use case’s alternative interaction

Extending UML Use Case Diagrams to Represent Non-Interactive Functional Requirements 99

courses. The paper by Simons [12] traces the un-
stable semantics of use cases from Jacobson [13]
to UML 1.3.

The paper by Tiwari and Gupta [14] presents
a systematic literature review that examines the
evolution of use cases, their applications, quality
assessments, open issues and the future direc-
tions. In addition, the paper identifies a total
of twenty existing templates that are used to
specify use cases. In [15], the authors investi-
gate via empirical studies the comprehension
and learnability aspects of these templates.

The paper by Misbhauddin and Alshayeb [16]
proposes an extension to the UML use case meta-
model. The extended metamodel captures both
the structural and behavioural views of use cases.
The aim is to exploit the extended metamodel
for model composition, model evaluation, and
model interchange.

In [17], the authors propose an extension to
the UML metamodel for presenting a refinement
relationship between two use cases. The authors
discuss the differences between include and refine
relationships. The refinement of a use case results
in more detailed use cases. Refinement can be de-
fined by decomposing a use case according to the
parts that compose the object of that use case, or
according to the activities that compose the use
case being refined. In our new notation, we do
not attempt to represent use case refinement, but
rather we introduce the concept of operation case
to model non-interactive requirements. In [17],
both the refining and refined use cases represent
external functionality of the system and thus
they agree with the UML definition of use cases.
In our work, an operation case is not a type of
use case. Other work that builds on use case
refinement is [18]. There the authors present an
approach to decompose a use case model into
models at several levels of abstraction. The au-
thors extend the UML use case metamodel with
a refine relationship between a use case and a Use-
CaseModel. For each abstraction level, several
use case diagrams are used to capture the use
cases at that abstraction level.

Several authors have attempted to formal-
ize use case notations. In [19], the control-flow
semantics of use cases is described in terms of

control-flow graphs. The technical report by Hurl-
but [20] presents a survey of approaches for de-
scribing and formalizing use cases. The paper by
Metz et al. [21] provides definitions for different
types of alternative interaction courses in the
context of goal-driven requirements engineering.
Stevens [22] explores how UML use case nota-
tions can be formalized. Savic et al. in [23] pro-
pose the idea of use case specification at different
levels of abstraction: interaction, behaviour, and
user interface levels. Each abstraction level ex-
tends the previous level. The interactions in a use
case are specified using the SilabReq language,
which is a textual domain specific language.

The paper of Al-alshuhai and Siewe [24] pro-
poses an extension to the UML use case dia-
gram with new notations to model context-aware
applications. The proposed extension, called
a use context diagram, allows the modelling of
context-aware requirements in addition to the
functional requirements of a software application.
The new notations include new metamodel ele-
ments such as Context Sources and Use Contexts
as well as a new utilise relationship between Use
Contexts. This extension is useful to cater for
the modelling and analysis of the requirements of
context-aware applications. We note that our new
notation can also be used to model context-aware
requirements: an Operation Case can be used as
a Use Context to model sequences of actions
a system performs to acquire, aggregate, or infer
context information. A Context Source can be
represented as an Observer that measures context
information, and a trigger relationship replaces
the utilise relationship.

A systematic literature review on producing
high quality use case models is presented by
El-Attar andMiller [25]. In their work, twenty
six anti-patterns are suggested. A use case
anti-pattern explains a repeated pattern in use
case models that may initially appear beneficial
but ultimately may cause deficiencies [25]. Mod-
ellers can exploit these anti-patterns to improve
the quality of their use case models.

Identifying use cases can be very useful for
the subsequent phases in software development.
For instance, Yue et al. have created a tool to
automatically generate a UML analysis model

100 Saqib Iqbal et al.

comprising class, sequence, and activity diagrams
from a use case model [26]. The tool also supports
the automatic generation of traceability links
between model elements of the use case model
and the generated analysis model. Wang et al.
have proposed an approach for automatically gen-
erating executable test cases by exploiting the
behavioural information described in use case
specifications [27]. The use cases are assumed
to be specified in a restricted form of use case
specification called Restricted Use Case Mod-
elling (RUCM) [28]. Kesserwan et al. present an
approach for generating test artefacts from sce-
nario models through model transformation [29].
In the proposed approach, the scenarios are de-
duced from use case specifications written in the
Cockburn use case notation [30]. It is of interest
to apply such work on operation cases as well.

In the book by Smialek and Nowakowski [31],
the authors present a language specific for re-
quirements modelling, called the Requirements
Specification Language (RSL). RSL forms the
basis for the framework of model transformation
and code generation presented in the book. Func-
tional requirements in RSL are defined mostly
through use case models. Use cases in RSL are
derived from UML, but several new and changed
features exist. These changes are due to the am-
biguous semantics of the use case models, as
defined in the UML specification [31]. RSL is de-
signed to be a comprehensive language to model
use case scenarios while linking those scenarios
to their respective domain model elements. We
note that the authors define use cases in relation
to outside actors. In their definition, a use cases
starts with the interaction of an outside actor
with the system. Hence, RSL seems to capture in-
teractive functional requirements only. The abil-
ity of RSL to model non-interactive requirements
requires further investigation.

Use cases can also be useful for effort es-
timation in use case driven projects. Qi and
Boehm [32] have proposed an effort estimation
model based on a use case model that can be
used to estimate project effort during the early
iterations in system development. In their work,
the size metrics are defined based on the arte-
facts of a use case model. For example, the Early

Use Case Points (EUCP) metric is a size metric
that weights each use case with the number of
scenarios identified from the use case description.
We believe that operation cases can be dealt
with in a manner similar to use cases and they
can be useful in effort estimation as well. Use
Case Points (UCP) is a software effort estimation
technique based on the use case model. A review
of effort estimation frameworks and tools based
on UCP is provided in [33].

3. Problems and motivation

There have been a number of efforts to extend
use case models for representing non-functional
requirements [8, 34] along with use cases but
there is no evidence in the literature of addressing
representation of non-interactive requirements.
These requirements are the functional require-
ments, which are not initiated by an actor rather
are triggered by a use case, event or the sys-
tem clock. For instance, ‘turn on power saving
mode’ in a mobile phone operating system is
triggered in response to the battery level drop-
ping to a certain level. Similarly, messages to
the user, such as ‘battery fully charged’, ‘new
SMS received’, or ‘application update available’
are also triggered without the user’s involvement.
We may call these requirements non-interactive
requirement as they are performed by the system
without interaction with the user.

To illustrate these non-interactive require-
ments in more detail, let us consider Library
Management System with the use case diagram
in Figure 1. The functional requirements of the
system would be:
R1: The librarian shall be able to add items

such as books, journals and magazines to
the system.

R2: The librarian shall be able to issue a li-
brary item to a user.

R3: The librarian shall be able to return an
issued item.

R4: The librarian shall be able to send a re-
quest for a new library item to a vendor.

R5: The user shall be able to search for a li-
brary item.

Extending UML Use Case Diagrams to Represent Non-Interactive Functional Requirements 101

Figure 1. The use case diagram of Library Management System

R6: The user shall be able to request issuance
of an item that is available.

R7: The user shall be able to reserve an item if
the item is already issued to someone else.

R8: The user shall be able to pay fines where
these have been incurred.

R9: The user shall be able to make suggestions
for new library items.

R10: The system shall notify the user when
a reserved book becomes available.

R11: The system shall calculate fine for late
returns, with fines accruing each day after
15 days of issuance of an item.

R12: The system shall notify the user of any
fines every 3 days.

R13: The system shall notify the suggestions
provided by the users to the librarian.

R14: The system shall make backups at speci-
fied times.

The use case diagram of these functional re-
quirements, shown in Figure 1, captures the in-
teractive requirements, but is unable to capture
the system requirements, R10 to R14. These
requirements are as important for the complete
functionality of the system as any other require-
ment, but they cannot be captured/represented
by a use case model as they are not initiated by
an actor.

The design artefacts extracted from the use
case model would not include these requirements,

which would eventually lead to incomplete imple-
mentation. Representation of these requirements
at use case modelling level would make the re-
quirement specification complete and compliant
with the system goals. More detailed discussion
of this example is provided in Section 7.

4. Operation cases

We propose a new construct for the representa-
tion of non-interactive requirements, called ‘op-
eration cases’. An operation case is an internal
function which is initiated within the system
either by a system timer, an event observer, or
a use case. An operation case cannot initiate
other operation cases, but can interact with the
user, for instance, in case of a dialogue input
or a message display to the user. The rationale
behind the name of the operation case is that an
operation case will represent a complete scenario
of an internal operation. It has a separate nota-
tional representation to distinguish it from a use
case. A complete use case model would include
both use cases and operation cases representing
all functional requirements identified during the
analysis phase, which later will be translated into
design mechanisms and design constructs.

A complete list of new notations and related
associations is given in Table 1.

102 Saqib Iqbal et al.

Table 1. Notations and Descriptions of New Constructs

Construct Notation Description

Operation Case

An Operation Case specifies a set of actions performed by its subjects,
which may or may not yield an observable result that is of value for
one or more Actors or other stakeholders of each subject. The actions in
an Operation Case can only be triggered by an action in a Use Case or
initiated by an Observer or a Timer.

Timer A Timer represents an internal clock of the system or a specific interval
of time represented in the implementing software.

Observer An Observer represent a system component that initiates Operation Cases
in response to an internal or external event.

Trigger Trigger relationship defines that a Use Case triggers an Operation Case.

Initiate Initiate relationship defines that an Observer or a Timer initiates an
Operation Case.

5. Extension to use case modelling

The UML [1] is a widely used modelling lan-
guage for representing and designing structural
and behavioural properties of a system. It pro-
vides graphical models and notations that help
in modelling internal and external behaviour of
a system and representing the structural orga-
nization of system modules. Although UML is
the most popular visual modelling language in
software design, it only supports one paradigm of
software design, which is object-oriented design.
To counter this problem, the Object Management
Group (OMG), the proprietary owner of UML,
has proposed UML 2.0, which offers flexibility of
extending UML diagrams and design notations.
The extension is achieved through the introduc-
tion of profiles. A UML profile is an element of
the UML; it is defined inside the UML meta-
model [2]. Profiles are used to extend classes of
the UML metamodel with additional stereotypes,
tagged values, and constraints. The stereotypes
are used to distinguish similar design notations
representing different concepts; the tagged values
are new attributes attached to a design construct;
whereas constraints are used to introduce invari-
ants and semantic-related limitations on a design
diagram or a notation.

5.1. Operation cases profile definition

Since the operation cases introduce a new nota-
tional concept in the use case model, we intro-

duce a new profile, named OperationCasesProfile,
to extend UML metaclasses. The new profile de-
fines several stereotypes which extend standard
UML metaclasses. Figure 2 shows the new op-
eration cases profile. The new stereotypes are:
OperationCase, Trigger, Initiate, Observer, and
Timer. Their corresponding icons are shown in
Table 1.

An OperationCase extends the UML meta-
class UseCase. An OperationCase specifies some
behaviour that a subject can perform. An Opera-
tionCase defines an offered behaviour of the sub-
ject with possible reference to its internal struc-
ture. Similar to a UseCase, an OperationCase
may apply to any number of subjects.

An OperationCase may include or extend any
number of other OperationCases, but may not
include or extend any other BehaviouredClassi-
fiers (i.e. UseCases or Actors). In addition, an
OperationCase cannot be included or extended
by a UseCase. The definitions of the Include and
Extend relationships between OperationCases is
the same as those between UseCases.

A new relationship added by the profile is
the Trigger relationship. It is a relationship from
a UseCase to an OperationCase. It specifies that
a UseCase triggers an OperationCase. Trigger ex-
tends both Include and Extend metaclasses, such
that the source is the triggering UseCase and
the target is the triggered OperationCase. This
indicates that the behaviour of theOperationCase
is triggered while the behaviour of the UseCase is
being executed. In UML profiles, if a stereotype

Extending UML Use Case Diagrams to Represent Non-Interactive Functional Requirements 103

OperationCasesProfile <<import>>

«metaclass»
UseCase

«metaclass»
BehaviouredClassifier

«metaclass»
Include

«metaclass»
Extend

«stereotype»
OperationCase

«stereotype»
Observer

«stereotype»
Timer

«stereotype»
Trigger

<<metamodel>>
uml

«stereotype»
Initiate

«metaclass»
Association

Figure 2. The operation cases profile

extends several metaclasses, it can only be applied
to exactly one instance of one of those metaclasses
at any point of time. The rationale for extending
both Include and Extend metaclasses is that the
behaviour of a triggered operation case can be
inserted into the behaviour of the including opera-
tion case (in the case of Include), or can be added,
possibly conditionally, to the behaviour of the
extended operation case (in the case of Extend).

When an OperationCase applies to a subject,
it specifies a set of behaviours performed by the
subject. These behaviours can be triggered by an
action in a UseCase or initiated by an Observer
or a Timer. An Observer extends the UML meta-
class BehaviouredClassifier. Part of a subject, an
Observer observes events and when an observed
event occurs it causes (initiates) the execution
of the behaviour of an associated OperationCase.
A Timer also extends BehaviouredClassifier. Part
of a subject, a Timer initiates an operation case
when its time interval expires. Observers are
useful to model behaviours that are initiated by
internal or external events. Timers are useful to
model behaviours that are initiated at specified
times according to an internal system clock. The
OperationCasesProfile defines an Initiate stereo-
type which extends the UML metaclass Associa-
tion. An Initiate association is between a Timer
or an Observer on one end of the association and
an OperationCase on the other end.

An OperationCase cannot be associated with
Actors. Rather, it can only be associated with
Timers or Observers. An Actor interacts with
a subject through its associated UseCases which
can indirectly trigger OperationCases.

We also add the following constraints to the
operation cases profile:
– OperationCases can only be involved in bi-

nary associations.
context OperationCase
inv : As soc i a t i on . a l l I n s t a n c e s ()−>

f o rA l l (a | a .memberEnd . type −>
inc l ud e s (s e l f) imp l i e s
a .memberEnd−>s i z e () = 2)

– An OperationCase cannot include Opera-
tionCases that directly or indirectly include it.
context OperationCase
inv : not a l l Inc ludedOperat i onCase s ()

−> inc l ude s (s e l f)
Here, the operation allIncludedOpera-
tionCases() returns the transitive closure
of all OperationCases included by this Oper-
ationCase.

– An OperationCase must have a name.
context OperationCase

inv : name −> notEmpty ()
– An Observer must have a name. The same is

true for a Timer.
context Observer

inv : name −> notEmpty ()
– An Observer can only have Associations to

OperationCases. Furthermore, these Associ-
ations must be binary. The same is true for
Timers
context Observer
inv : As soc i a t i on . a l l I n s t a n c e s () −>

f o rA l l (a | a .memberEnd −>
c o l l e c t (type) −> inc l ude s (s e l f)
imp l i e s
(

a .memberEnd −> s i z e () = 2 and

104 Saqib Iqbal et al.

l e t
observerEnd : Property =
a .memberEnd −> any (type = s e l f)
in
observerEnd . oppos i t e . c l a s s .

oc l I sKindOf (OperationCase)
)

)

5.2. Operation case template

Jacobson [1] introduced a use case template to
represent and document the description of a use
case. Due to the complexity and unneeded for-
malism within the template, several variations
have been introduced [35–39]. Operation cases
are represented in a similar textual template, as
shown in Table 2. The template contains a de-
scription of constituent items of an operation
case, its associations, and related details. The
template also mentions the requirements which
are represented by the operation case. This helps
to improve documentation and traceability.

Table 2. Operation Case Template

Operation Case ID:
Operation Case Name:
Requirement ID:
Created By: Last Updated By:
Date Created: Date Last Updated:
Description:
Pre-conditions:
Post-conditions:
Priority:
Frequency of Use:
Normal Course of Events:
Alternative Courses:
Exceptions:
Includes:
Triggered/Initiated By:
Special Requirements:
Assumptions:
Notes and Issues:

6. Application of new notations

We have selected a subset of functional require-
ments of a simple mobile phone system for the
sake of simplicity. The selected subset of require-
ments is summarised according to their classifi-
cation below:

– Interactive Functional Requirements:
– Make a phone call,
– Receive a phone call,
– Send a message,
– Add a contact,
– Set an alarm.

– Non-Interactive Functional Require-
ments:
– Transmit data to the service provider,
– Manage Contact Book (This requirement

is concerned with system adding new con-
tacts and placing them in alphabetical
order),

– Receive Push Notifications,
– Turn on Power Saving Mode in the case

that the battery is lower than a threshold,
– Notify user of updates,
– Make the phone ring on receipt of an in-

coming call,
– Sound an alarm at the required time.
Figure 3 shows the traditional representa-

tion of these requirements in a use case dia-
gram. The non-interactive requirements are miss-
ing from this model as they do not represent
any usage scenario. This model is supposed to
be translated into design artefacts and models,
but if the model is taken as a complete set
of functional requirements, a number of criti-
cal requirements (non-interactive requirements)
may be overlooked. Figure 4, on the other hand,
shows a representation of a complete set of re-
quirements. The requirements, such as ‘Turn on
power saving mode’ or ‘Receive push notifica-
tion’, are represented along with other interactive
functional requirements in the same sub-system
boundary.

As can be seen, the basic use cases remain
the same, showing how the user will interact with
the system. However, we can also see that:
– The “Receive Call”, “Make Call”, and “Send

Message” use cases each trigger a “Transmit
Data” operation case. In traditional use case
modelling this could be modelled as a step in
the primary path of each of the three sepa-
rate use cases, but would not be shown on the
diagram. By triggering an operation case the
shared nature of this functionality becomes
explicit, thus both simplifying the descrip-
tions of the individual use cases and captur-

Extending UML Use Case Diagrams to Represent Non-Interactive Functional Requirements 105

Figure 3. Use case diagram of a mobile phone
system

Figure 4. Revised use case diagram of a mobile
phone system with operation cases

ing the relationships between these functional
concerns.

– The “Add Contact” use case triggers the
“Manage ContactBook” operation case. It
could be argued that the latter is simply
a step in the primary path of the former, how-
ever we would argue that our model is clearer
and it allows for reuse of the “Update Contact
Book” operation case. Additionally, the imple-
mentation of the operation case would need
to deal with issues such as poor network con-
nectivity and failure to connect to the server.
This functionality would sit more sensibly in
the “Update Contact Book” operation case
than in the “Add Contact” use case.

– Three observers have been implemented, two
of which monitor incoming connections (in-
coming calls and incoming push notifications),
and one of which monitors the battery and
turns on power saving mode when required.
This latter example is a classic case of func-
tionality that is difficult to represent clearly
using a traditional use case model. There is
no actor to drive the functionality, as it is not
an interactive use case, instead being event
driven. The use of the observer makes this
internal functionality explicit.

– One timer driven event has also been imple-
mented. This is the “Sound Alarm” operation
case, which is initiated by a timer. Again,

standard use case models do not allow for the
representation of such functionality.
Note that, while a use case can trigger an

operation case, the reverse is not true. Take as
an example the “Make Phone Ring” operation
case. It may, at first sight, appear that this could
in turn trigger the “Receive Call” use case. How-
ever, making the phone ring does not necessar-
ily cause the user to answer it. The user may
be away from the phone, the phone may be on
silent, or the user may simply choose to ignore
the incoming call. It is not, therefore, possible
to assume that the operation case will cause the
user to react. Similarly, the “Display Message”
operation case may cause the user to read that
message, but this is not certain, so the operation
case cannot trigger a “Read Message” use case,
nor can the operation case deliver data to the
user via a directed association. In essence, an
operation case may be triggered by use cases,
but not vice-versa.

Having modelled the use cases and operation
cases in a diagrammatic form, the next step is
to write up detailed use case and operation case
descriptions. Traditional use case modelling al-
ways includes this step, and several standards
have been suggested for the layout of use case
descriptions. These standards tend to be very
similar, and the one chosen for use here is one of
the selection that can be found at [40]. One exam-

106 Saqib Iqbal et al.

Table 3. Transmit Data Operation Case Description

Operation Case ID: MP_OC1
Operation Case Name: Transmit Data
Requirement ID: SR15, SR20, SR35
Created By: GA Last Updated By: GA
Date Created: 25 May, 2018 Date Last Updated: 29 May, 2018
Description: This is a background process running on the phone which receives data from

apps such as the dialler app and the messaging app and uploads those data
to the mobile network.

Pre-conditions: The phone must be switched on and connected to the mobile network.
Post-conditions: None.
Priority: High – this is a core piece of functionality.
Frequency of Use: Variable, depending on the usage patterns of the user.
Normal Course of Events: 1. The operation case receives a request to upload data from another use case

or operation case.
2. A connection to the mobile network is opened.
3. The data are uploaded.
4. The connection to the mobile network is closed.

Alternative Courses: 2.1 A connection cannot be established. Try again.
3.1 The data does not upload correctly. Try again.

Exceptions: If at any time the connection is lost and cannot be re-established within 1
second, then the operation case will return an error to the calling use case or
operation case.

Includes: None.
Triggered/Initiated By: Triggered by use cases MP1a Make Call; MP2a Receive Call; MP3a Send

Message.
Special Requirements: None.
Assumptions: None.
Notes and Issues: None at present.

ple operation case description, for the Transmit
Data operation case, is given in Table 3.

As can be seen, the primary, alternative, and
exception paths of several of the use cases can be
simplified by the use of operation cases, as their
use helps to partition the system behaviour, and
to identify and abstract out shared or common
functionality. As an example, the Send Message
use case in the traditional model contains the
following steps in the primary path:
5. The phone handset connects to the mobile net-

work and attempts to send the SMS message.
6. The message is sent successfully.

and the following alternatives or exceptions:
5.1. If the mobile network is unreachable then the

phone will retry at intervals until successful.
5.2. If the receiver’s phone is unreachable (e.g.

a wrong number or the phone is switched off)
then an error is displayed to the phone user.

All of this behaviour can be abstracted out to the
Transmit Data operation case, thus simplifying
the use case description.

In order to integrate Operation Cases fully
into the requirements model a small number of
amendments have been made to the use case de-
scription template. The template has also been

Extending UML Use Case Diagrams to Represent Non-Interactive Functional Requirements 107

adapted for the description of Operation Cases.
The changes proposed are:
– A new section, “Triggers:” has been added

to the Use Case Description template. This
section lists the Operation Cases that can
(optionally) be triggered by the use case.

– When describing Operation Cases, the “Use
Case ID” and “Use Case Name” have been
changed to “Operation Case ID” and “Oper-
ation Case Name”.

– When describing Operation Cases, the “Ac-
tor” section has been removed.

– When describing Operation Cases, a new
section, “Triggered/Initiated By:” has been
added to the template. This section is used to
list the use cases, operation cases, observers,
or timers that can trigger or initiate the op-
eration case.

With these modifications and additions to the
template, we have provided a clear mechanism
for the description of all use cases and operation
cases within the system model.

We can see that the operation case “Transmit
Data” is triggered by the “Make Call”, “Receive
Call”, and “Send Message” use cases. The clarity
of this information aids understanding of the
structure of the requirements, and helps software
engineers identify shared and core functional-
ity, in a way that traditional use case modelling
is unable to support. This should in turn help
software architects with the design of the soft-
ware, and help project managers to prioritise the
development of the system components.

7. A controlled-experiment based
evaluation

This section reports on a controlled experiment
that was conducted to test whether using use case
diagrams extended with operation cases results in
a comprehensive system design that incorporates
both interactive and non-interactive functional
requirements. Section 7.1 presents the research
question and hypothesis. Section 7.2 presents the
research design, and Section 7.3 presents and
discusses the results.

7.1. Research question and hypothesis

Our main proposition is that the UML use case
diagrams fail to represent non-interactive func-
tional requirements. Therefore, a systems ana-
lyst following an object-oriented development
methodology that uses these diagrams to design
the system, i.e., construct the class diagram,
will likely fail to include the necessary methods
to implement the system’s non-interactive func-
tional requirements. The end result is a design
and an implementation of a system that do not
implement all functional requirements and for
which late changes are likely to be costly.

We carried out a controlled experiment to
investigate the following research question:

Will using extended use case diagrams
help systems analysts to not miss incorpo-
rating non-interactive functional require-
ments in system design?
The experiment was structured as follows. We

developed a system story and asked the partici-
pants to draw the class diagram. We separated
the participants into two equal groups: partici-
pants in the UC group were requested to draw
the use case diagram for the system first and use
it to draw the class diagram, while participants
in the OC group were instructed on the use
of operation cases and extended use diagrams
and subsequently requested to draw the extended
use case diagram and use it to draw the class
diagram. More details on the participants are
provided in Section 7.2.

In relation to our research question, we for-
mulated the following hypothesis:

The number of correctly identified meth-
ods and classes related to non-interactive
functional requirements will be higher in
the OC group compared to the UC group.
The research variables are as follows. The

independent variable is the diagram used: the
use case diagram in the case of the UC group
or the extended use case diagram in the case
of the OC group. The dependent variable is the
completeness of the class diagram with respect
to incorporating the non-interactive functional
requirements. This is captured in a score that

108 Saqib Iqbal et al.

ranges from 0 to 9. The scoring system is de-
scribed in the next section.

7.2. Research design

There were 14 participants in the experiment.
The participants were asked to fill a consent form
before participating in the experiment. These
participants were undergraduate students taking
core courses in the program of Software Engi-
neering in the College of Engineering at Al Ain
University of Science and Technology. The OC
group consisted of 7 students taking the course
“Formal Specifications and Design Methods”, and
the UC group consisted of 7 students taking
the course “Software Measurement and Testing”.
These courses were selected because they are
advanced courses and the prerequisite course for
both courses is “Software Requirements and Spec-
ification”. In this prerequisite course the students
study capturing and representation of require-
ments. The students have completed courseworks
and projects in which they have gathered and
represented requirements using use case mod-
elling.

The experiment was conducted in the form
of two voluntary quizzes; one in each course.
The quizzes were conducted on separate days,
and involved the participation of the first two
authors. The students were given an incentive in
the form of bonus points, which would be added
to their final grade for the course. To encour-
age the students, the number of bonus points
for each student were tied with the student’s
score as follows: 3 points to scores of 7 or more,
2 points to scores of 4–6, and 1 point to scores of
3 or less. During the selection of students it was
also ensured that the average Cumulative Grade
Point Average (CGPA) of both groups was the
same (UC group = 2.54/4, OC group = 2.62/4).

The students had been informed of the vol-
untary quiz and the bonus points in the earlier
class. They were simply asked to show up in the
same classroom at the regular class time. There
were 10 students who attempted the quiz from
the course “Formal Specifications and Design
Methods”. On the other hand, only 7 students
attempted the quiz from the course “Software

Measurement and Testing”. Since the cumula-
tive degree averages of both groups are different,
we only scored a subset of the students who
attempted the quiz in the “Formal Specifica-
tions and Design Methods” class. We ranked
the 10 students in terms of their cumulative de-
gree averages, and then we selected a sequence
of 7 students such that the group’s cumulative
degree average was close to the that of the group
of the second course. The attempts by the other
students were discarded; these attempts were
never evaluated.

The experimental procedure was as follows:
the first author gave a half-an-hour tutorial re-
viewing use case modelling. For both groups,
the tutorial included a review of use cases and
use case diagrams. An example system story
was used in both tutorials. The instructor of
the tutorial worked out an exercise developing
a use case diagram that modelled the functional
requirements presented in the example system
story. The instructor presented how to create
a class diagram based on the identified use cases.
In particular, the instructor reminded the stu-
dents of the usefulness of use case scenarios in
identifying the classes and their methods. The in-
structor encouraged the students to apply what
they had learned in their earlier courses such
as the use of sequence diagrams to model the
use case scenarios and construct the class dia-
gram. The instructor worked with the students
on constructing the class diagram representing
the initial design of the example system story.

The contents mentioned earlier were common
in both tutorials. However, there were two key
differences between the two. In the tutorial in-
structing the UC group, there was no mention of
non-interactive requirements. The students were
simply asked to apply what they already knew.
On the other hand, operation cases and extended
use case diagrams were introduced in the tutorial
instructing the OC group. Non-interactive func-
tional requirements were defined and discussed
in this tutorial. These were also applied on the
example system story. The students were rec-
ommended to use the identified operation cases
in constructing the class diagram in a similar
fashion to what they would do using use cases.

Extending UML Use Case Diagrams to Represent Non-Interactive Functional Requirements 109

Figure 5 shows the system story. It describes
the functional requirements of an online library
management system. We selected this system
since undergraduate students at this level are
typically familiar with the services provided by
the University’s online library system. Therefore,
they are familiar with library concepts such as
searching for and reserving library items. The
figure includes the instructions handed to the
UC group’s students; for the OC group, the
students were given the same instructions but
were asked to first draw the extended use case
diagram with operation cases rather than the
standard UML use case diagram. The descrip-
tion includes a set of interactive requirements,
such as requesting an item for issuance and re-
questing new items from vendors, in addition
to a set of non-interactive requirements, such
as the weekly back-up and the fine’s calculation
and notification requirements.

An expert solution in the form of a class
diagram was created by the first author and
checked by the second author. The class diagram
includes five classes, including the class Library
which is used as a system class implementing
the methods that are necessary to realise some
non-interactive requirements. A total of 19 meth-
ods were identified, including 6 methods to realise
the non-interactive requirements. The form used
in the evaluation of each student’s work is pre-
sented in Figure 6. The six methods realising the
non-interactive requirements are shown in bold.

Since the experiment is concerned with
non-interactive requirements, we developed
a scoring method for these requirements only.
A student gets one point for each correctly iden-
tified non-interactive method, i.e., one of the
six methods realising the non-interactive require-
ments. If a student places a method in an incor-
rect class, they are not rewarded the point. The
justification for this is that the use case diagram
(or its extended diagram variant) should help the
systems analyst in building a complete and sound
design. The only class that is critical to imple-
ment the non-interactive requirements is the sys-
tem class Library. Four out of six non-interactive
methods are in this class. Given its relevance, we
assigned the weight of three points for identifying
the Library class. Thus, the maximum score is
nine points, including three points for the Library
class and one point for each correctly identified
non-interactive method. The presented scoring
method is similar to [41], but it only considers
non-interactive requirements.

The first author who presented the tutori-
als also evaluated the students’ class diagrams.
These were subsequently checked by the sec-
ond author. Since the expert solution is not the
only correct one, the evaluators were tolerant of
class diagram variations as long as the identified
classes and methods were in line with the criteria
mentioned earlier. For example, a student may
use different method and class names and/or
place a method in a different, but correct class.

Figure 5. The description of Library Management System used in the evaluation

110 Saqib Iqbal et al.

Evaluation Form

Student ID:

Completeness - Identification of Classes
Library 
LibraryItem 
User 
Librarian 
Vendor 
Score:

Completeness – Correct Allocation of Methods to the Classes
Library

notifySuggestion()
notifyLateReturn()
notifyFine()
createBackUp()

 User
reserveItem()
returnItem()
makeSuggestion()
payFine()
requestIssuence()

 
 
 
 

LibraryItem
searchItem()
reserveItem()
return()
issue()
calculateFine()
notifyAvailability()

 

 Librarian

 addItem()
 orderItem()
 issueItem()
 returnItem()

 
 
 
 

Vendor
supplyItem()



Score:
No. of Methods Identified:
No. of Non-Interactive Methods Identified:

Figure 6. The evaluation form used in evaluating a student’s work

7.3. Results and discussion

To address our research question presented in
Section 7.1, we tested the following hypothesis
which is similar to hypotheses in [41–43]:
H0: There is no difference between the scores of
the UC and OC groups.

We tested the research hypothesis using
the Mann–Whitney U test, as in [42, 44].
Mann–Whitney U test is a nonparametric test
for the difference in two means [45]. The results
of the test were obtained using XLSTAT which is
a statistical analysis tool for Microsoft Excel [46].
The findings indicate that the score of the OC
group is significantly higher than the score of
the UC group (p-value = 0.027), and therefore
hypothesis H0 is rejected. Note that a signifi-
cance level of α = 0.05 is chosen as the level

of significance. On average, participants in the
OC group scored significantly higher (X̄ = 4.286,
SD = 2.498) than participants in the UC group
(X̄ = 1.286, SD = 2.215; p = 0.027) (see Fig-
ure 7).

Below, we consider the four categories of
threats to validity:
1. Conclusion validity: A study has con-

clusion validity if the results are statisti-
cally significant using appropriate statistical
tests [47, 48]. We used the Mann–Whitney
U test to analyse the results. The assump-
tions of using this test have been checked.
In order to increase the reliability of mea-
sures [48], all student evaluations performed
by the first author were checked by the second
author. All solutions were checked against an
expert solution that was constructed prior

Extending UML Use Case Diagrams to Represent Non-Interactive Functional Requirements 111

to the evaluation and checked for correctness
and completeness by the authors.

2. Internal validity: Internal validity refers to
the cause and effect relationship between the
independent and dependent variables. One
factor affecting this kind of validity is having
any prior significant difference between the
groups. In the design of our experiment, there
was no significant difference between the
groups with respect to the cumulative degree
average. In addition, we believe that the exer-
cise of identifying operation cases causes the
systems analyst to identify non-interactive
functional requirements, and thereby not miss
incorporating them in system design. This is
our rationale for why the independent vari-
able would affect the dependent variable. One
could argue that the participants in the OC
group received direct training on identifying
and modelling non-interactive requirements
while the participants in the UC group did
not. This could represent a threat to the in-
ternal validity of the experiment. To address
this potential threat, we conducted a second
experiment (see Section 8) that demonstrates
that practitioner software engineers who typ-
ically create use case diagrams and follow
the unified process of constructing use case
diagrams first and using them to create the
analysis and design level class diagrams are

expected to miss some non-interactive require-
ments. This is because these non-interactive
requirements are not emphasized (in fact,
they are neglected) by the standard use case
notations.

3. Construct validity: Construct validity con-
cerns the use of measures that are relevant
to the study. One factor affecting construct
validity is how much the experimental setting
differed from a real-world setting. The par-
ticipants were not involved in a real-world
system with real clients and users. However,
with regards to the limitation of use case di-
agrams in modelling non-interactive require-
ments, the experimental setup highly resem-
bles real-world conditions. A systems analyst
cannot capture non-interactive requirements
using a use case diagram only; and this has
a significant impact on the completeness of
system design and implementation. Another
relevant factor is the use of meaningful mea-
sures of the completeness of design models
with respect to non-interactive requirements.
We used the same measure for completeness
in terms of the number of identified methods
in the class diagram as in [41]. We believe
that this is a relevant measure since missing
a method implies a design and an implemen-
tation that do not implement all functional
requirements.

OC

UC

0

1

2

3

4

5

6

7

8

9

Box plots

Figure 7. The box plots depicting the scores of the OC and UC groups

112 Saqib Iqbal et al.

4. External validity: External validity refers
to the generalisability of the results. One fac-
tor related to external validity concerns the
fact that all participants were students. How-
ever, the study in [49], as noted in [42], found
that there are minor differences between soft-
ware engineering students and professional
software developers suggesting the use of stu-
dents instead of professional developers in
software engineering experiments is valid un-
der certain conditions. A second factor is re-
lated to the number of participants which is
relatively small. Given the resources available
on hand, this is the best subject population
we could find. A third factor is related to the
size of the task which is relatively small and
does not reflect the typical work by a systems
analyst. However, most software engineering
experiments use such small tasks due to the
inherent difficulty of measuring attributes of
large and complex tasks [41–43, 47].

8. An Empirical evaluation using
a case study

To address the threats to the internal validity of
the controlled experiment presented in Section 7,
a second experiment was conducted. The experi-
ment was in the form of a case study analysing
the performance of 30 graduate students in the
Master of Science in Computer Science program
at COMSATS University Islamabad (Wah Cam-
pus) on identifying non-interactive requirements
of a system. All of the students who partici-
pated in the study had a bachelor’s degree and
had completed at least one undergraduate-level
course on object-oriented analysis and design.
The majority of the students were part-time
students who were actively working in indus-
try. They were taking the course Advanced Top-
ics in Object-Oriented Software Engineering at
the time of the experiment. The experiment
was conducted during regular class hours. All
students completed the tasks during the reg-
ular class hours, although they had been in-
formed that extra time would be given in case
it was needed.

This experiment used the same system story
as the one in the controlled experiment. The stu-
dents were handed the description of the Library
Management System shown in Figure 5. The
task was identical to the task performed by the
UC group in the controlled experiment, however
no tutorial was provided on use case modelling.
Information on each participant was collected
with the submission, including the student id
number, number of years since graduation, and
current employment if any. The class diagrams
developed by the students were collected and
evaluated following the same scoring procedure
as in the controlled experiment.

The same evaluation form was used as in the
controlled experiment (shown in Figure 6). With
respect to the number of non-interactive methods
identified, the average score was 1.1 out of 6. On
a 95%-confidence level, the confidence interval for
the average score was (0.66, 1.54). The analysis
was done using XLSTAT. This shows that many
non-interactive requirements were missed and
therefore not incorporated in the class diagram.
Furthermore, there were only 20 participants who
had identified at least one non-interactive method.
Of these, 13 participants (i.e., 65%) incorrectly
represented the system itself as an actor in the use
case diagram. This shows that the standard use
case notation as practised might be inadequate
in capturing non-interactive requirements.

Since the task done by the participants in this
experiment is identical to that of the UC group
in the controlled experiment, this experiment is
likely to suffer from the same threats to validity
as in the controlled experiment. However, the
number of participants is much higher in this
experiment. In addition, the participants have
higher proficiency on use case modelling since
they are graduate students with the majority
working in industry. This experiment demon-
strates that systems analysts who typically create
use case diagrams and follow the unified process
of constructing use case diagrams first and using
them to create the analysis-level class diagrams
are expected to miss some non-interactive re-
quirements. This is because these non-interactive
requirements are not emphasized (in fact, they
are neglected) by the standard use case notations.

Extending UML Use Case Diagrams to Represent Non-Interactive Functional Requirements 113

9. Conclusion and future work

The representation and documentation of func-
tional requirements at the analysis phase is the
most crucial activity in the software development
life cycle. Use case modelling solves this problem
by providing both textual and graphical methods,
which makes it the most widely-used methodol-
ogy. Use cases are designed into implementable
modules in the next phase of the development
life cycle. The problem, however, is the exclusion
of some of the functional requirements in the use
case models. These requirements are often not
represented as use cases as they are not initiated
by a user, and are thus known as non-interactive
requirements. Such requirements are often di-
rectly addressed in the design phase without hav-
ing any backward tracing to the use case models.
It is evident from the available literature and
existing software development practices that use
case models are considered as a complete repre-
sentation of all functional requirements of the sys-
tem. Due to this practice, non-interactive require-
ments are often overlooked and consequently re-
sult in implementation of an incomplete system.
To represent and document a complete system,
non-interactive requirements need to be com-
prehensively represented and documented along
with interactive requirements (use cases) in the
analysis phase. This paper addresses this problem
and proposes an extension to use case models
to accommodate non-interactive requirements.
These requirements have been named as Opera-
tion Cases and are represented with a new set of
graphical notations and textual templates. The
paper presents a new profile to extend UML’s
use case notation with operation cases and their
related constructs. The addressing of operation
cases at the analysis phase allows analysts and
designers to comprehensively document and trace
the functional requirements effectively.

We applied operation cases in modelling
a (partial) Mobile Phone operating system. For
the sake of keeping it concise, only a few relevant
functional requirements of the case study are dis-
cussed. In the case study, we showed that using
use case models alone cannot represent internal
non-interactive requirements of the system. Rep-

resentation of operation cases solves this problem
and makes use case models a more comprehensive
graphical representation of the functional require-
ments of the system. A controlled experiment
was also conducted to investigate the hypothesis
that using operation cases results in more com-
prehensive designs than when using traditional
use cases only. The results of the experiment
confirmed our hypothesis.

Acknowledgement

This work has not received any funding.

References

[1] I. Jacobson, “Object-oriented development in
an industrial environment,” in Proceedings of
the Conference on Object-oriented Program-
ming Systems, Languages and Applications, 1987,
pp. 183–191.

[2] “Unified modeling language,” 2015, [Accessed
September 2019]. [Online]. http://www.omg.or
g/spec/UML/2.5

[3] J. Rumbaugh, I. Jacobson, and G. Booch, The
Unified Modeling Language Reference Manual.
Addison-Wesley, 1999.

[4] B. Anda, K. Hansen, and G. Sand, “An investiga-
tion of use case quality in a large safety-critical
software development project,” Information and
Software Technology, Vol. 51, No. 12, 2009,
pp. 1699–1711.

[5] S. Tiwari and A. Gupta, “Does increasing for-
malism in the use case template help?” in Pro-
ceedings of the 7th India Software Engineering
Conference, 2014, pp. 6:1–6:10.

[6] D. Parachuri, A.S.M. Sajeev, and R. Shukla, “An
empirical study of structural defects in industrial
use-cases,” in Proceedings of the 36th Interna-
tional Conference on Software Engineering, 2014,
pp. 14–23.

[7] M. Ivarsson and T. Gorschek, “A method for
evaluating rigor and industrial relevance of tech-
nology evaluations,” Empirical Software Engi-
neering, Vol. 16, No. 3, 2011, pp. 365–395.

[8] M. Glinz, “Problems and deficiencies of UML as
a requirements specification language,” in Pro-
ceedings of the International Workshop on Soft-
ware Specification and Design, 2000, pp. 11–22.

[9] G. Génova, J.L. Morillo, P. Metz, R. Prieto-Díaz,
and H. Astudillo, “Open issues in industrial use

114 Saqib Iqbal et al.

case modeling,” Journal of Object Technology,
Vol. 4, No. 6, 2005, pp. 7–14.

[10] P. Metz, J. O’Brien, and W. Weber, “Against
use case interleaving,” in Proceedings of the In-
ternational Conference on the Unified Modeling
Language, Modeling Languages, Concepts, and
Tools, 2001, pp. 472–486.

[11] P. Metz, J. O’Brien, and W. Weber, “Specifying
use case interaction: Clarifying extension points
and rejoin points,” Journal of Object Technology,
Vol. 3, No. 5, 2004, pp. 87–102.

[12] A.J.H. Simons, “Use cases considered harmful,”
in Proceedings of the International Conference
on Technology of Object-Oriented Languages and
Systems, 1999, pp. 194–203.

[13] I. Jacobson, M. Christerson, P. Jonsson, and
G. Övergaard, Object-oriented software engineer-
ing – A use case driven approach. Addison-Wesley,
1992.

[14] S. Tiwari and A. Gupta, “A systematic litera-
ture review of use case specifications research,”
Information and Software Technology, Vol. 67,
2015, pp. 128–158.

[15] S. Tiwari and A. Gupta, “Investigating com-
prehension and learnability aspects of use cases
for software specification problems,” Informa-
tion and Software Technology, Vol. 91, 2017,
pp. 22–43.

[16] M. Misbhauddin and M. Alshayeb, “Extending
the UML use case metamodel with behavioral
information to facilitate model analysis and inter-
change,” Software and Systems Modeling, Vol. 14,
No. 2, 2015, pp. 813–838.

[17] S. Azevedo, R.J. Machado, A. Bragança, and
H. Ribeiro, “The UML «include» relationship
and the functional refinement of use cases,” in
Proceedings of the EUROMICRO Conference on
Software Engineering and Advanced Applications,
2010, pp. 156–163.

[18] E.F. Cruz, R.J. Machado, and M.Y. Santos, “On
the decomposition of use cases for the refinement
of software requirements,” in Proceedings of the
International Conference on Computational Sci-
ence and Its Applications, 2014, pp. 237–240.

[19] K. van den Berg and A.J.H. Simons, “Con-
trol-flow semantics of use cases in UML,” Infor-
mation and Software Technology, Vol. 41, No. 10,
1999, pp. 651–659.

[20] R.R. Hurlbut, “A survey of approaches for de-
scribing and formalizing use cases,” Department
of Computer Science, Illinois Institute of Tech-
nology, Tech. Rep., 1997.

[21] P. Metz, J. O’Brien, and W. Weber, “Specify-
ing use case interaction: Types of alternative

courses,” Journal of Object Technology, Vol. 2,
No. 2, 2003, pp. 111–131.

[22] P. Stevens, “On use cases and their relationships
in the unified modelling language,” in Proceed-
ings of the International Conference on Fun-
damental Approaches to Software Engineering,
2001, pp. 140–155.

[23] D. Savic, A.R. da Silva, S. Vlajic, S. Lazarevic,
V. Stanojevic, I. Antovic, and M. Milic, “Use case
specification at different levels of abstraction,” in
Proceedings of the International Conference on
the Quality of Information and Communications
Technology, 2012, pp. 187–192.

[24] A. Al-alshuhai and F. Siewe, “An extension of
the use case diagram to model context-aware ap-
plications,” in Proceedings of the SAI Intelligent
Systems Conference, 2015, pp. 884–888.

[25] M. El-Attar and J. Miller, “Constructing high
quality use case models: a systematic review of
current practices,” Requirements Engineering,
Vol. 17, No. 3, 2012, pp. 187–201.

[26] T. Yue, L.C. Briand, and Y. Labiche, “aToucan:
an automated framework to derive UML analysis
models from use case models,” ACM Transac-
tions on Software Engineering and Methodology,
Vol. 24, No. 3, 2015, pp. 13:1–13:52.

[27] C. Wang, F. Pastore, A. Goknil, L.C. Briand,
and M.Z.Z. Iqbal, “Automatic generation of
system test cases from use case specifications,”
in Proceedings of the International Sympo-
sium on Software Testing and Analysis, 2015,
pp. 385–396.

[28] T. Yue, L.C. Briand, and Y. Labiche, “Facili-
tating the transition from use case models to
analysis models: Approach and experiments,”
ACM Transactions on Software Engineering and
Methodology, Vol. 22, No. 1, 2013, pp. 5:1–5:38.

[29] N. Kesserwan, R. Dssouli, J. Bentahar, B. Stepien,
and P. Labrèche, “From use case maps to ex-
ecutable test procedures: a scenario-based ap-
proach,” Software and Systems Modeling, 2017.

[30] S. Adolph, A. Cockburn, and P. Bramble, Pat-
terns for Effective Use Cases. Addison-Wesley
Longman Publishing Co., 2002.

[31] M. Smialek and W. Nowakowski, From Require-
ments to Java in a Snap – Model-Driven Require-
ments Engineering in Practice. Springer, 2015.

[32] K. Qi and B.W. Boehm, “A light-weight in-
cremental effort estimation model for use case
driven projects,” in Proceedings of the IEEE
Software Technology Conference, 2017.

[33] M. Saroha and S. Sahu, “Tools and methods for
software effort estimation using use case points
model – A review,” in Proceedings of the Inter-

Extending UML Use Case Diagrams to Represent Non-Interactive Functional Requirements 115

national Conference on Computing, Communi-
cation and Automation, 2015, pp. 874–879.

[34] M. Grossman, J.E. Aronson, and R.V. McCarthy,
“Does UML make the grade? insights from the
software development community,” Information
and Software Technology, Vol. 47, No. 6, 2005,
pp. 383–397.

[35] D. Kulak and E. Guiney, Use Cases: Require-
ments in Context. ACM Press, 2000.

[36] D. Liu, K. Subramaniam, B. Far, and A. Eber-
lein, “Automating transition from use cases to
class model,” in Proceedings of the Canadian
Conference on Electrical and Computer Engi-
neering. Toward a Caring and Humane Technol-
ogy, 2003, pp. 831–834.

[37] P. Kruchten, The Rational Unified Process: An
Introduction, 3rd ed. Addison-Wesley, 2003.

[38] S.S. Somé, “Supporting use case based require-
ments engineering,” Information and Software
Technology, Vol. 48, No. 1, 2006, pp. 43–58.

[39] J. Kettenis, “Getting started with use case mod-
eling: White paper,” Oracle Corporation, Tech.
Rep., 2007.

[40] “40 use case templates and examples,” [Accessed
September 2019]. [Online]. http://templatelab.
com/use-case-templates/

[41] B. Anda and D.I.K. Sjøberg, “Investigating the
role of use cases in the construction of class dia-
grams,” Empirical Software Engineering, Vol. 10,
No. 3, 2005, pp. 285–309.

[42] D. Beimel and E. Kedmi-Shahar, “Improving the
identification of functional system requirements

when novice analysts create use case diagrams:
the benefits of applying conceptual mental mod-
els,” Requirements Engineering, 2018.

[43] F. Ricca, G. Scanniello, M. Torchiano, G. Reggio,
and E. Astesiano, “Assessing the effect of screen
mockups on the comprehension of functional
requirements,” ACM Transactions on Software
Engineering and Methodology, Vol. 24, No. 1,
2014.

[44] M. Dahan, P. Shoval, and A. Sturm, “Compar-
ing the impact of the OO-DFD and the use case
methods for modeling functional requirements
on comprehension and quality of models: a con-
trolled experiment,” Requirements Engineering,
Vol. 19, No. 1, 2014, pp. 27–43.

[45] D.C. Montgomery and G.C. Runger, Applied
Statistics and Probability for Engineers, 6th Edi-
tion. John Wiley and Sons, 2013.

[46] “XLSTAT,” [Accessed March 2019]. [Online].
https://www.xlstat.com/en/

[47] N. Fenton and J. Bieman, Software Metrics:
A Rigorous and Practical Approach, 3rd ed. CRC
Press, Inc., 2014.

[48] C. Wohlin, P. Runeson, M. Hst, M.C. Ohlsson,
B. Regnell, and A. Wessln, Experimentation in
Software Engineering. Springer Publishing Com-
pany, 2012.

[49] M. Höst, B. Regnell, and C. Wohlin, “Using
students as subjects-a comparative study of
students and professionals in lead-time impact
assessment,” Empirical Software Engineering,
Vol. 5, No. 3, 2000, pp. 201–214.

e-Informatica Software Engineering Journal, Volume 14, Issue 1, 2020, pages: 117–148, DOI 10.37190/e-Inf200105

System performance requirements:
A standards-based model for early identification,

allocation to software functions
and size measurement

Khalid T. Al-Sarayreh∗, Kenza Meridji∗∗, Alain Abran∗∗∗, Sylvie Trudel∗∗∗∗
∗Department of Software Engineering, Hashemite University
∗∗Department of Software Engineering, University of Petra

∗∗∗Department of Software Engineering and Information Technology , École de technologie supérieure (ETS),
Université du Québec

∗∗∗∗Département d’informatique, University of Quebec at Montreal
Khalidt@hu.edu.jo, kmeridji@uop.edu.jo, alain.abran@etsmtl.ca, trudel.s@uqam.ca

To be or not? To be! – Wally Shakelance
Abstract

Background: In practice, the developers focus is on early identification of the functional require-
ments (FR) allocated to software, while the system non-functional requirements (NFRs) are left
to be specified and detailed much later in the development lifecycle.
Aim: A standards-based model of system performance NFRs for early identification and measure-
ment of FR-related performance of software functions.
Method: 1) Analysis of performance NFR in IEEE and ECSS standards and the modeling of
the identified system/software performance functions using Softgoal Interdependency Graphs.
2) Application of the COSMIC-FSM method (e.g., ISO 19761) to measure the functional size of the
performance requirements allocated to software functions. 3) Use of the COSMIC-SOA guideline
to tailor this framework to service-oriented architecture (SOA) for performance requirements
specification and measurement. 4) Illustration of the applicability of the proposed approach for
specification and measurement of system performance NFR allocated to the software for an
automated teller machine (ATM) in an SOA context.
Result: A standards-based framework for identifying, specifying and measuring NFR system
performance of software functions.
Conclusion: Such a standards-based system performance reference framework at the function
and service levels can be used early in the lifecycle by software developers to identify, specify and
measure performance NFR.

Keywords: Non-functional requirements, (NFR) performance requirements, international
standards, Softgoal Interdependency Graphs(SIGs), COSMIC-FSM, COSMIC-SOA

1. Introduction

Over the years, system non-functional require-
ments (NFRs) from a variety of stakeholders
have significantly increased the urgency and ef-
fort required to deliver software systems with

very high-quality levels. The large and diverse
body of literature on software quality and NFR
makes it challenging for practitioners to figure
out detailed reference works to use as a baseline
for early identification, specification and mea-
surement of any of the large number of NFRs.

Submitted: 31 December 2019; Revised: 15 June 2020; Accepted: 22 June 2020; Available online: 7 August 2020

118 Khalid T. Al-Sarayreh et al.

Developers must take into consideration both
system functional user requirements (FURs) and
non-functional requirements (NFRs) early in
the system requirements analysis in order to
then allocate them at the software/hardware FR
level [1–6] (see Figure 1).

The success of a software project depends
heavily on its ability to be executed with the
required functionalities while under specific con-
straints. Software functionalities fall under the
concept of functional user requirements (FURs)
and refer to the set of functions or services re-
quired from the system and allocated to the
software, while constraints fall under the concept
of non-functional requirements (NFRs).

In practice, requirements are usually ad-
dressed at the system level [1–4] at the start
of the project either as high-level system func-
tional user requirements (system-FURs), or as
high-level system-NFRs. The latter must typically
be detailed, allocated, and implemented in either
hardware or software, or both – see Figure 1.

Software engineers focus on software-FURs
for the early development phases, while sys-
tem-NFRs are typically discussed at later de-
velopment phases, such as evaluation or test-
ing phases. To distinguish between these types
of requirements, the term system-FURs is used
to describe the required functions in a system,
while system-NFRs is used to describe how the
required functions must behave in a system.

In the software requirements engineering
phase, system-NFRs are analyzed and detailed,
and some may be specified as Software-FURs
to allow a software engineer to develop, test,
and configure the final software deliverables to
system users. It should be noted that a number
of such system constraints, while referred to as
system-NFRs by some authors, are referred to
as quality aspects by other authors.

A number of researchers have investigated
issues related to NFR, such as considering them
as measurable inputs to effort estimation mod-
els [1], which, although based on a different point
of view, can be used concurrently with FUR,
including their procedures and approaches.

This paper specifically addresses system per-
formance NFR and extends our previous re-
search on three other types of NFR: secu-
rity [2], portability [3] and maintainability [4].
A key strength of the approach in our pre-
vious work is that it is based on the con-
sensus documented in international standards,
such as the European Cooperation for Space
Standardization (ECSS), the Institute of Elec-
trical and Electronics Engineers (IEEE) and
ISO on a number of such NFR, and our pro-
posal for a standards-based reference model for
specific types of NFR.

The contribution of this work is a stan-
dards-based measurement framework of system
performance requirements to be used by de-

Figure 1. System performance-NFR allocated to software performance-FUR

System performance requirements: A standards-based model for early identification . . . 119

velopers in the early development stages as
a generic model for the identification, specifi-
cation and measurement of the system perfor-
mance requirements allocated to software func-
tions.

The proposed framework was developed in
four main steps:
1. Identifying, analyzing, and categorizing into

an integrated view the system performance
requirement functions and services described
from different perspectives into ECSS and
IEEE standards. Then, modeling the iden-
tified system/software performance require-
ments and clarifying the relations between
these requirements using SIGs.

2. Applying the COSMIC-FSM method to iden-
tify and measure the data movements derived
from the allocated software performance re-
quirements. This leads to handling the system
performance requirements allocated to the
measured software performance requirements
as quantitative requirements.

3. Developing the proposed framework in the
context of service-oriented architecture using
COSMIC-SOA guidelines to support a dis-
tinct business domain.

4. Illustrating the applicability of the proposed
approach for the specification and measure-
ment of system performance NFRs allocated
to the software for an automated teller ma-
chine (ATM) within an SOA context.
The rest of the paper is structured as fol-

lows. Section 2 presents related work. Section 3
discusses the system performance requirements
identification and related software performance
requirements in international standards. Sec-
tion 4 details the proposed standards-based sys-
tem performance reference framework at the
function and service levels in the context of
a service-oriented architecture (SOA). Section 5
presents an illustrative example using the pro-
posed standards-based framework for identifying
and specifying ATM banking system performance
requirements, allocating them to the software per-
formance functions in an SOA context and mea-
suring them with COSMIC, an ISO-recognized
measurement unit. Section 6 presents conclusions
and further work.

2. Related work

2.1. Non-functional requirements
in the literature
and international standards

A number of proposals for identifying and speci-
fying different types of NFR, including different
methods, approaches, views and terminologies
have been made [1–7].

To help software project teams make the best
tradeoff decisions for conflicting NFRs, Zhang
and Wang [8] proposed a tradeoff model for
conflicting software non-functional requirements
(CNFR) using a fuzzy ranking method to express
stakeholder assessments of each NFR.

To help developers prioritize such kinds of
requirements early in the project cycle, Shah et
al. [9] proposed an approach for specifying the
NFR conflicts from previous ontological repre-
sentations of the NFRs.

Daclin et al. [10] analyzed interoperability
as a single NFR as a part of a complex NFR
domain, linking interoperability and its impacts
on the system performance requirements into
a collaborative system in a crisis management
framework.

Cysneiros et al. [11] highlighted the challenges
facing developers of capturing NFR simultane-
ously with FR at the early phases of software
development. They suggested the integration of
NFR with FR into conceptual models based on
a goal oriented strategy aimed at reducing the
cost of software development as well as increasing
customer satisfaction.

Various studies have focused on NFR [12–15]
within the software product line process. Tawhid
and Petriu [16] for example, proposed a UML
model transformation framework to determine
and reuse the performance requirements for a spe-
cific product.

Siegmund et al.[17] proposed a holistic ap-
proach, named SPL Conqueror, for the optimiza-
tion of the specification and measurement of NFR
in the SPL domain. They also carried out an anal-
ysis of the quality attributes (i.e., NFR) in SPL
as well as a verification of product satisfaction
of the quality conditions and constraints.

120 Khalid T. Al-Sarayreh et al.

Danylenko and Lowe [18] studied a con-
text-aware recommender system with the objec-
tive to defer architectural decisions, thus permit-
ting concentration on the core system function-
ality design. In early development phases this
recommender system helps to ease the difficulties
of NFR efficiency.

Kyo and Gil-Haeng [19] proposed a system-
atic software development process to support
successful management and modeling for NFR.
This process allows NFR to be systematically
managed and efficiently modeled.

Industry, through its participation in inter-
national standards organizations, has also con-
tributed by describing and categorizing NFR. For
example: performance requirements are one of
sixteen NFR types in ECSS [20–25], which have
been categorized by IEEE [26] as one of thir-
teen NFR types, using different terms and views.
Although in academia and industry NFR per-
formance requirements are frequently discussed,
there is a lack of a performance model that
can be used in the early development stages. In
the research reported in this paper, we propose
a standards-based framework for early identifi-
cation and measurement of system performance
requirements by analyzing all the performance
NFR related terms and views dispersed through-
out the international standards, such as ECSS
and IEEE.

2.2. System performance requirements
in the literature

To develop new insights into performance, in this
research, we analyzed related works in standards
on performance in hardware domains where
there is considerable, accumulated expertise. We
looked for performance-related concepts and
sub-concepts that were also relevant to software.

System performance requirements have been
discussed from various viewpoints in the liter-
ature. Shang et al. analyzed [27] the VxWorks
real time operating system used in the aerospace
and medical fields including five significant per-
formance indicators: task switching time, pre-
emption time, interrupt latency time, message

communication time and semaphore shuffling
time.

Alwadi et al. [28] proposed a framework for
the quality of service (QoS) attributes and in-
cluded performance as one of the prime system
NFR, allowing performance requirements to be
decomposed and allocated to a set of the system’s
functionalities.

Zhiwei et al. [29] proposed an approach for
improving the concurrent system performance
on the dynamic weighted k-out-of-n system
(DWKNS). Subsequent to the state possibility
and request of system components over time,
this approach was combined with the Markov
process with the universal generating function
(UGF) method and the state probability for the
performance of the system components.

Al-Sarayreh [30] considered system perfor-
mance requirements to be more comprehensive
than typical hardware-centric systems and pro-
posed that dynamic system performance re-
quirements be included with maintainability,
upgradability, interface interoperability, relia-
bility, safety and security (MUIRSS). MUIRSS
should be analyzed and visibly connected to en-
sure that they are included with development.

The system dynamic performance of Kai and
Huamin [31] for control systems indicates a rela-
tional variance of the controller design method.
Their proposed method is used for the first order
plus delay time system.

Krishna and Abraham [32] discussed the im-
portance of the analysis of performance and mem-
ory NFR in real time embedded systems. Based
on agile using incremental development, their
development approach helps system engineers
track the system performance requirements and
related parameters throughout the development
cycle. Their results are taken as a reference for
a systematic analysis approach for memory and
system performance NFR parameters using the
most suitable mathematical methods.

Vila et al. [33] presented an approach for
estimating the radio resource requirements for
RAN slice admission control in order to describe
the interference conditions of resource estima-
tion method influences on system performance

System performance requirements: A standards-based model for early identification . . . 121

requirements extracted from data analytics col-
lected from management plans.

Ruberg et al. [34] proposed a data process-
ing and cleaning method for a performance and
energy consumption estimation approach to man-
age system performance requirements. Their ap-
proach links software component feature mea-
surements (SCFMs) and software performance
quality indicators (SPQIs) to diagnose the soft-
ware and functional requirements.

2.3. COSMIC functional size
measurement method

There are currently five functional size mea-
surement (FSM) methods adopted by ISO: the
COSMIC Function Points method is the only
second generation of such FSM methods, and
its design has corrected a number of the defects
identified in the other four FSM methods of the
first generation.

Measuring software functional size is an im-
portant factor for managing and estimating the
project budget early in the software development
lifecycle. The COSMIC functional size measure-
ment (FSM) method conforms to the measure-
ment requirements proposed in ISO 14143-1 [35]
and has been adopted as ISO 19761 [36]. This
subsection presents the COSMIC generic model
for software requirements and how such a model
can be used to measure software functionalities
with an ISO-recognized measurement unit.

In the COSMIC-FSM method, the functional
user requirements are decomposed into one or
more functional processes, each of which may be
comprised of sub-processes and include a number
of data movements.

Figure 2 illustrates the COSMIC generic
model of software FR. The front-end direction of
the model shows that users access the software
through input/output devices (such as mouse
and microphone) or engineered devices (such
as sensors). The back-end direction shows that
the software is accessed by storage hardware
(such as RAM memory). Figure 2 also illustrates
the following four types of data movement: EN-
TRIES (E): exchanges data groups from users or
engineered devices to software (left-hand side in
Figure 2). EXITS (X): exchanges data groups
from software to users or engineered devices
(left-hand side in Figure 2). READS (R): ex-
changes data groups fromhardware storage to soft-
ware (right-hand side in Figure 2). WRITES (W):
exchanges data groups from software to hardware
storage (right-hand side in Figure 2).

The core principle of the COSMIC-FSM
method is to measure the size of software FR by
identifying the recognized data movements (E, X,
R and W). Once the data movements are iden-
tified, each type of data movement is assigned
the value of one COSMIC Function Point (e.g.,
1 CFP). The functional size of the software to
be measured is obtained by summing the sizes of
all the corresponding data movements. Since the

Figure 2. COSMIC generic model for software FR

122 Khalid T. Al-Sarayreh et al.

COSMIC-FSM method aims to measure the size
of the software, only the functional user require-
ments allocated to the software are considered
in the measurement procedure.

Moreover, the COSMIC-FSMmethod is appli-
cable to all the software development phases, from
the analysis to implementation phases. Note that
the COSMIC generic model in Figure 4 is not spe-
cific to any type of software nor to any particular
method for describing functional user require-
ments. In the framework proposed in this paper,
the COSMIC-FSM method is applied to measure
the size of the software performance functional
requirements with an ISO-recognized size unit.

2.4. Service-oriented architecture (SOA)
and its COSMIC view

The service-oriented architecture (SOA) ap-
proach provides significant benefits to organi-
zations, such as reducing software development
and maintenance costs and increasing software
quality by reusing services [37]. Various defi-
nitions have been introduced to define SOA,
but none have been universally adopted. For
instance, SOA has been defined as: 1) A pro-
cess that involves the definition of the archi-
tecture, components, modules, interfaces, and

data for a system to satisfy specified require-
ments [36, 37]; 2) A paradigm for organizing and
utilizing distributed capabilities that may be un-
der the control of different ownership domains. It
provides means to offer, discover, interact with,
and use capabilities to produce desired effects
consistent with measurable preconditions and ex-
pectations [36]; 3) Utilization of loosely coupled
software services to support business processes
requirements and user requirements [37].

The COSMIC-SOA guidelines document il-
lustrates how to measure the size of software
services in an SOA context [37]. The term ser-
vices in the COSMIC guideline refers to a suite of
related functions of software FR and also to the
separation of functions into distinct units, where
these services are connected with each other by
exchanging data, shared format or by coordinat-
ing activities between two or more services [37].

COSMIC-SOA guidelines offer three types
of data movements – exchange services, inter-
mediary services and data exchanges, which are
described in more detail in the following sections.

2.4.1. COSMIC-SOA exchange messages

COSMIC-SOA exchanges messages (Figure 3)
when an application needs information from a dif-

Figure 3. COSMIC-SOA guidelines for modeling data movements

System performance requirements: A standards-based model for early identification . . . 123

ferent application. For instance, if application
A needs to exchange data with application B,
the services of application A will be invoked
by the functional process of A to communicate
with the services of application B to obtain the
needed information. These calls between the func-
tional processes of A and its services or between
A services and B services are known as messages,
where each message may involve one or more
data movements [37].

2.4.2. COSMIC-SOA intermediary services

When services (Figure 3) of any application re-
quire data from another application in the overall
SOA framework, the intermediary service will
be used. For instance, if services of application
A need data from services of application B, the
services of application A will invoke the interme-
diary services to obtain the required data from
the services of application B.

2.4.3. COSMIC-SOA data exchanges

For components in the same layer (e.g., in the
application service layer) (Figure 3), two types
of data movements can be used: direct and indi-
rect message exchanges. For instance, in direct
exchange, if the service of application A requires
to exchange a message with a service of applica-
tion B, it will use an Exit and/or an Entry for
exchanging messages with the service of applica-
tion B. While the indirect exchange occurs using
storage, for instance, the service of application
A writes the data in storage which is read later
by service B [37].

2.5. Softgoal Interdependency Graphs

Softgoal Interdependency Graphs (SIGs) [38]
have been proposed for analyzing and demon-
strating NFR as softgoals. Each softgoal can
be represented as decomposed into one or more
specific goals using interdependency relations
between the analyzed goals until arriving at so-
lutions that satisfy the assigned NFR.

SIGs [39] illustrate three different types of
goals at the high level: 1) Softgoals that satisfy

the NFR with the software, 2) Claim softgoals
which enhance the rationale between related soft-
goals, and 3) Operationalization of system soft-
goals (including a set of processes, data represen-
tations and system behavior).

These SIGs [39] at the low level (i.e., subgoals)
provide both positive and negative contributions
to the assigned softgoals at the high level.

Softgoals and subgoals can interact with each
other using the following relations [39]: 1) AND
means that each softgoal is decomposed into
more than one related goal and is satisfied if
all the related goals are satisfied. 2) OR means
that each softgoal is decomposed into one or
more related goals and is satisfied if at least one
related goal is satisfied. 3) EQUAL means that
each softgoal is decomposed into one related goal
and is satisfied if the linked goal is satisfied.

The SIGs [38, 39] approach uses the terms
goals and subgoals to represent the condi-
tions or criteria that the system should meet
(e.g., non-functional requirements or quality at-
tributes) instead of more commonly used terms
in software engineering, such as functions and
software specifications. In addition, the SIGs ap-
proach does not distinguish between the system
view and the software view.

This research provides a mapping between
some of the SIGs terms to the standards-based
terms used in this paper, as presented in Figure 1.
Therefore, the expression function to be specified
is used instead of a functional goal while both
are encoded as is in the SIG approach.

3. Performance requirements
identification

This section introduces and discusses perfor-
mance terms and views for identifying system per-
formance NFR and related software performance
FR, which may then be used for specifying and
measuring the system performance requirements.
Numerous terms and views are found throughout
the ECSS and IEEE international standards as
well as previous works in academia. These have
addressed software performance FR derived from
system performance FR and NFR (see Figure 1).

124 Khalid T. Al-Sarayreh et al.

Figure 1 also illustrates system performance re-
quirements expressed as either system perfor-
mance NFR or system performance FR.

3.1. ECSS concepts
for performance requirements

ECSS standards [20–25] mention the importance
of establishing performance requirements in de-
tail at both system and software levels during the
development phase so as to evaluate the consis-
tency and cohesion of the control system within
the required standards. This includes: 1) The
objective(s) for each designed control system,
which are normally created by the requirements
engineering process; 2) The formal mathematical
requirements, which are created by the require-
ments analysis.

Enhancing and regularly improving software
applications requires system monitoring and eval-
uation of system performance. The performance
monitor [23] provides information related to the
use of processor instruction execution and stor-
age control. For example, to provide information
related to the period of time passed between
events in a processing system.

The performance monitor can be used to de-
bug the software application and analyze system
faults and errors by defining a machine’s state at
a specific point in time. The information from the
performance monitor helps system engineers to
evaluate and improve the performance of a given
system, or by developing enhancements of per-
formance requirements in new system design.

ECSS standards [20–25] define the following
concepts and views for system performance re-
quirements allocated to software: 1) Frequency
domain requirements such as throughput time,
which includes: Workload and Bandwidth; 2) Re-
sponse to reference signals for command profiles,
which includes: Response time, Settling time, and
Tracking errors; 3) Accuracy and stability errors
in the presence of disturbances: Performance er-
rors (absolute and stability errors) for evaluating
the accuracy and Knowledge errors (absolute and
relative errors) for evaluating accuracy; 4) Pro-
cessing speed includes: System scalability, and
System concurrency; 5) Resource consumptions

include: Processor instruction execution, Main
memory time, and Storage device time.

3.2. IEEE concepts
for performance requirements

IEEE standard 830-1998 [26] describes the fol-
lowing terms and concepts for system perfor-
mance requirements allocated to software as dy-
namic and static numerical requirements: 1) Dy-
namic numerical requirements, such as workload;
2) Static numerical requirements, such as capac-
ity and concurrency. These two types of system
performance requirements should be quantified
with a measurable procedural method.

3.3. Describing system performance
and related software functions

This section presents a brief description of system
performance requirements and their allocated
software performance requirements.

3.3.1. Performance dynamic requirements

Performance dynamic numerical requirements
may involve the data amount, transaction num-
ber and tasks to be processed within a specific pe-
riod of time for both normal and peak workload
conditions [26]. The unified standards-based view
includes two types of system requirements for
dynamic requirements: the response to reference
signals and throughput time.

Response to reference signals (RRS):
Response to reference signals refers to the spe-
cific values that change to a new value in a rel-
atively short period of time, including response
time or settling time values. Enhancing the re-
sponse to reference signals is reflected positively
on the system performance level. The unified
standards-based view includes three types of
functions for response to reference signals [25]:
response time function, settling time function
and tracking error function.
– Response time function (RTF) The response

time is widely defined as the period of time
that the system takes to respond to the user
after receiving the user task. This relation

System performance requirements: A standards-based model for early identification . . . 125

between response time and performance is an
inverse relation, since a decrease in response
time leads to an increase in performance level.

– Settling time function (STF) The settling time
refers to the time required for the system to
recover from an overload and to reach steady
state. STF has also been called recovery time
or reaction time [40]. It is important to reach
steady state in as little time as possible.

– Tracking error function (TEF) Tracking er-
rors includes tracking performance error. The
knowledge error (KE) or errors resulting from
the central processing unit (CPU) and the
main memory are also important to minimize
system errors. System performance, therefore,
can be enhanced by increasing system accu-
racy and speed.
Throughput time (TT): Throughput time

is the number of event responses carried out
by the system in a specific period of time [41].
Thus, maximizing the throughput time leads to
increasing performance of the system. The uni-
fied standards-based view includes two types of
functions for throughput time:
– Bandwidth function (BF) The bandwidth

function refers to the maximum amount of
data that can be carried over a network or
data-transmission medium in a unit of time.
The throughput time is limited by the band-
width function. Large bandwidth leads to
more event responses over time [42].

– Workload function (WF) The workload func-
tion measures the number of transactions per-
formed by the system within certain periods
of time. The performance level is good when
the system workload is significantly lower
than its capacity [43]. Otherwise system per-
formance will be slow.

3.3.2. Performance static requirements

Performance static numerical requirements are
sometimes specified under a separate section.as
capacity. They may also involve information
types, the amount of time handled, the num-
ber of simultaneous users and terminals sup-
ported [26]. Based on IEEE standards, the uni-
fied standards-based view includes three types

of system requirements for static numerical re-
quirements: resource consumption, evaluation of
processing speed and evaluation of accuracy.

Resource consumption (RC): The effi-
ciency of system resources (such as CPU, main
memory and system storage) significantly affects
the system performance. Heavy resource con-
sumption can lead to the system’s inability to
effectively deal with its processes [44, 45], there-
fore, slowing down or crashing causing poor sys-
tem performance. Proper utilization of resources
leads to high system performance.

The unified standards-based view includes
three types of functions for resource consump-
tion: main memory time function, storage device
time function and processor instruction execution
function.
– Main memory time function (MMTF) The

main memory is also known as the system in-
ternal memory or primary memory; it is used
to store the data that is in use. When the
CPU requires access to specific data from the
storage device, the main memory will access
the storage device and retrieve the required
data to be processed by the CPU [46]. The
time spent to access data in the main memory
needs to be as small as possible in order to
optimize system performance.

– Storage device time function (SDTF) Storage
devices have a huge capacity to hold data in
a permanent way. Fast storage devices are
preferred to slower devices. Storage speed is
impacted by two factors: Access time: the
average time to locate data on the storage
medium, and Data transfer rate: the amount
of data transferred to or from the device per
second [47].

– Processor instruction execution function
(PIEF) Computer instructions are a set of
commands executed by the processor to per-
form specific functions. Increasing the speed
of executing such instructions can signifi-
cantly contribute to improving the system
performance level.
Evaluation of accuracy (EA): The devel-

oped system should achieve a high level of accuracy
(i.e., precision). The definition of accuracy varies
from one system to another. For instance: In satel-

126 Khalid T. Al-Sarayreh et al.

lite systems, accuracy refers to the positioning
accuracy provided by the system [48]. In radio
systems, accuracy refers to how closely the actual
output frequency matches the set frequency [48].

System accuracy may be determined through
measuring system error. Based on ECSS stan-
dards, the unified standards-based view includes
two error types: performance error and knowl-
edge error.
– Performance error (PE) is defined as the func-

tions that quantify the difference between the
system’s desired state and the system’s actual
state [27, 28]. In the unified standards-based
view, two common PE indices are used for
measuring performance error:
1. Absolute performance error function

(APEF) The absolute performance error is
defined as the instantaneous value of the
performance error at any given time [25].
Applying a specific mathematical oper-
ator on the performance error function
determines the APE. In addition, each
system has a maximum APE value, which
the calculated APE should not exceed.

2. Performance stability error function
(PSEF) The system stability is defined
as the ability of the system to maintain
a particular situation for a given time. The
stability error is the peak-to-peak varia-
tion of the system attitude during the
time period [25]. The PSEF is known as
the change of error over a given time [25].
In addition, applying a specific mathe-
matical operator to the performance er-
ror function and to the APE determines
such a function. Just like the APE, each
system has a maximum PSE value and
the calculated PSE should not exceed the
maximum APE.

It is possible to use other performance error
indices if the system so requires.

– Knowledge error (KE) is defined as the func-
tions that quantify the difference between
the system’s estimated (or known) state and
its actual state [27, 28]. In the unified stan-
dards-based view, two common knowledge
error indices are used for measuring knowl-
edge error:

1. Absolute knowledge error function
(AKEF) The absolute knowledge error
(AKEF) is defined as the instantaneous
value of the knowledge error at any given
time [29]. Applying a specific operator
to the KE function determines the AKE.
Just like the performance error indices,
each system has a maximum AKE value
and the calculated AKE should not exceed
the maximum APE.

2. Relative knowledge error function (RKEF)
The relative knowledge error (RKEF)
refers to the difference between the instan-
taneous knowledge error at a specific time
and its mean value over a time interval
containing that time [29]. It is possible to
use two other KE indices types should the
system require it.

Evaluation of processing speed (EPS):
The processing speed refers to how quickly the
processor handles instructions. The processing
speed for a CPU is measured by the CPU clock
rate. A CPU with a high clock rate leads to
high speed instruction processing. The unified
standards-based view includes two types of func-
tions for EPS: system scalability function and
concurrency function.
1. System scalability function (SSF) System

scalability function (SSF) is the system’s
ability to process increased workload while
maintaining the required system performance
level [48]. To make the system scalable, ad-
ditional hardware is added, such as CPU or
memory, without making any changes to the
system architecture.

2. Concurrency function (CF) The concurrency
function refers to executing several instruc-
tions simultaneously, which improves the use
of system resources while also reducing the
system response time [49, 50].

4. Measurement framework
for performance requirements

Figure 4 shows the four main phases used to
determine the proposed measurement framework
for system performance requirements:

System performance requirements: A standards-based model for early identification . . . 127

Figure 4. System performance requirements from four different views

Phase 1 (Logical view): Identify and analyze
the functions to be specified for system perfor-
mance requirements. In this phase, the logical
views are defined based on the functional user
requirements view.

Phase 2 (Process view): Design and integra-
tion of the identified system performance re-
quirements. In this phase, the process view is
developed which includes default, rationale and
component approaches. For more details, see Fig-
ure 4.

Phase 3 (Development view): Design a system
performance requirements model using SIGs at
the functional level. In this phase, the system
performance model is designed and built by inte-
grating the logical and process views [51].

Phase 4 (Deployment view): Design a mea-
surement context at functional and service levels
with COSMIC-SOA to measure the functional
size of the software performance requirements. In
this phase, the design measurement strategy is
used to develop the proposed generic model of the
system performance requirements allocated to
software based on functional user requirements

(FUR) views. Next, an architectural measure-
ment context for the service levels is designed by
applying the COSMIC-SOA guideline to develop
a framework in an SOA context.

“For preliminary design of the performance
requirements model, the SIGs tool is used. For
the performance measurement model, we used
another visualization tool called LibreOffice Draw
Tool. This tool extends the preliminary perfor-
mance model in SIGs by adding the generic
COSMIC measurement procedure and adopting
the detailed COSMIC-SOA to the proposed
performance model.”

4.1. Integration of system performance
functions to be allocated to software
(Phases 1 and 2)

The terms and views found in ECSS and IEEE
to describe the performance NFR in Section 3.3
are combined and integrated using both their log-
ical and process views. This leads to a dynamic
view (Figure 5) and a static view (Figure 6) of
the system performance functions and related

128 Khalid T. Al-Sarayreh et al.

Figure 5. Integrated model of ECSS and IEEE system performance dynamic requirements
and related functions

Figure 6. Integrated model of ECSS and IEEE system performance static requirements and functions

System performance requirements: A standards-based model for early identification . . . 129

software functions, which can then be used to
specify and measure them.

4.2. Design of system performance
requirements at the functional level
(Phase 3)

The proposed framework for system performance
requirements is established at two main levels:
the functions level and the services level. This
section illustrates and describes in detail the
framework at the functional level. In this section,
the software interdependency goals (SIGs) and
ISO 19761 are used to design the framework of
the system performance NFR allocated to soft-
ware at the functional level, divided into four
sub-models, see Figure 7.

4.2.1. System performance dynamic
requirements (SPDR)

The functions for the system performance dy-
namic requirements must address:

The throughput time (TT): The through-
put time (TT), which involves two functions: the
bandwidth function and the workload function.
Figure 7 illustrates the interdependency relation-
ships between these functions:
1. The bandwidth (BF) and the workload (WF)

functions may exchange data in a direct way
with each other, and/or

2. may exchange data in an indirect way through
the persistent storage, and as well

3. may require data from any function in the
overall performance framework through inter-
mediary services.
Theresponsetoreferencesignals (RRS):

The response to reference signals (RRS) involves
three functions: the response time function (RTF),
the settling time function (STF) and the tracking
error function (TEF). Figure 7 shows the inter-
dependency relations between these functions:
1. The response time, settling time and tracking

error functions may exchange data in a direct
way with each other;

2. may exchange data in an indirect way through
the persistent storage;

3. may require data from any function in the
overall performance framework through inter-
mediary services.

4.2.2. System performance static requirements
(SPDR)

The system performance static requirements in-
clude four function types – see Figure 7.

Resource consumption (RC): Resource
consumption (RC) which involves three func-
tions: the main memory time function (MMTF),
the storage device time function (SDTF) and the
processor instruction execution function (PIEF).
Figure 7 illustrates the interdependency relation-
ships between these functions:
1. They may exchange data in a direct way with

each other, and/or
2. may exchange data in an indirect way through

the persistent storage, and
3. may require data from any function in the

overall performance framework through inter-
mediary services.
The evaluation of accuracy (EA): The

evaluation of accuracy (EA) which is composed
of performance error (PE) and knowledge error
(KE). Performance error involves two specified
functions: the absolute performance error func-
tion (APEF) and the performance stability er-
ror function (PSEF). The knowledge error also
involves two specified functions: the absolute
knowledge error function (AKEF) and the rela-
tive knowledge error function (RKEF). Figure 7
illustrates the interdependency relationships be-
tween these functions:
1. They may exchange data in a direct way with

each other;
2. may exchange data in an indirect way through

the persistent storage;
3. may require data from any function in the

overall performance framework through inter-
mediary services.
The evaluation of accuracy (EA): The

EPS which is composed of two functions: the sys-
temscalability function (SSF)andtheconcurrency
function (CF). Figure 7 illustrates the interdepen-
dency relationships between these functions:

130 Khalid T. Al-Sarayreh et al.

Figure 7. Full view of the system performance NFR at the functional level

System performance requirements: A standards-based model for early identification . . . 131

1. They may exchange data in a direct way with
each other;

2. may exchange data in an indirect way through
the persistent storage;

3. may require data from any function in the
overall performance framework through inter-
mediary services.

4.3. Design of the measurement
framework for system performance
NFR (Phase 4)

This section introduces the framework in an SOA
context using the COSMIC-SOA guidelines. For
clarity, the proposed framework is divided into
the seven sub-models illustrated in Figures 8
to 13. Figure 14 shows the full view in the SOA.

Figure 8 shows that all the derived functions
from resource consumption have their own ser-
vices. The interdependency relations between
these functions and their services are:
– The main memory time function, the storage

device time function and the processor in-
struction execution function may require data
from their services using EXIT and ENTRY
data movements.

– The main memory time service may exchange
data at a service layer either in a direct
way with the storage device time service us-
ing COSMIC EXIT and ENTRY data move-
ments. Or it may exchange data in an indi-
rect way through the persistent storage using
COSMIC READ and WRITE data move-
ments.

– The storage device time service may exchange
data at a service layer either in a direct way
with the main memory time service and the
processor instruction execution service us-
ing COSMIC EXIT and ENTRY data move-
ments. Or it may exchange data in an indi-
rect way through the persistent storage using
COSMIC READ and WRITE data move-
ments.

– The processor instruction execution service
may exchange data at a service layer either
in a direct way with the storage device time
service using COSMIC EXIT and ENTRY
data movements. Or it may exchange data in

an indirect way through the persistent stor-
age using COSMIC READ and WRITE data
movements.

– The main memory time service, the storage
device time service and the processor instruc-
tion execution service may require data from
any service in the overall performance frame-
work through the intermediary service us-
ing COSMIC EXIT and ENTRY data move-
ments.
Figure 9 shows that all the derived functions

from the evaluation of processing speed have their
own services. The interdependency relations be-
tween these functions and their services are:
– The system scalability function and the con-

currency function may require data from their
services using EXIT and ENTRY data move-
ments.

– The system scalability service may exchange
data at a service layer either in a direct way
with the concurrency service using COSMIC
EXIT and ENTRY data movements. Or it
may exchange data in an indirect way through
the persistent storage using COSMIC READ
and WRITE data movements.

– The concurrency service may exchange data
at a service layer either in a direct way with
the system scalability service using COSMIC
EXIT and ENTRY data movements. Or it
may exchange data in an indirect way through
the persistent storage using COSMIC READ
and WRITE data movements.

– The system scalability service and the con-
currency service may require data from any
service in the overall performance framework
through the intermediary service using COS-
MIC EXIT and ENTRY data movements.
As mentioned in Section 4.1, the evaluation

of accuracy (EA) is comprised of two error types:
performance error (PE) and knowledge error
(KE). Figure 10 shows that all the derived func-
tions from performance error have their own
services. The interdependency relations between
these functions and their services are:
– The absolute performance error function and

the performance stability error function may
require data from their services using EXIT
and ENTRY data movements.

132 Khalid T. Al-Sarayreh et al.

Figure 8. Resource consumption sub-model in an SOA context

– The absolute performance error service may
exchange data at a service layer either in
a direct way with the performance stability
error service using COSMIC EXIT and EN-
TRY data movements. Or it may exchange
data in an indirect way through the persistent
storage using COSMIC READ and WRITE
data movements.

– The performance stability error service may
exchange data at a service layer either in
a direct way with the absolute performance
error service using COSMIC EXIT and EN-
TRY data movements. Or it may exchange
data in an indirect way through the persistent
storage using COSMIC READ and WRITE
data movements.

System performance requirements: A standards-based model for early identification . . . 133

Figure 9. Evaluation of processing speed sub-model
in an SOA context

Figure 10. Performance error sub-model
in an SOA context

– The absolute performance error service and
the performance stability error service may
require data from any service in the overall
performance framework through the inter-

mediary service using COSMIC EXIT and
ENTRY data movements.
Figure 11 shows that all the derived functions

from the knowledge error (KE)have their own

134 Khalid T. Al-Sarayreh et al.

services. The interdependency relations between
these functions and their services are:
– The absolute knowledge error function and

the relative knowledge error function may
require data from their services using EXIT
and ENTRY data movements.

Figure 11. Knowledge error sub-model
in an SOA context

– The absolute knowledge error service may
exchange data at a service layer either in a di-
rect way with the relative knowledge error
service using COSMIC EXIT and ENTRY
data movements or it may exchange data in
an indirect way through the persistent stor-
age using COSMIC READ and WRITE data
movements.

– The relative knowledge error service may ex-
change data at a service layer either in a di-
rect way with the absolute knowledge error
service using COSMIC EXIT and ENTRY
data movements. Or it may exchange data in
an indirect way through the persistent stor-
age using COSMIC READ and WRITE data
movements.

– The absolute knowledge error service and the
relative knowledge error service may require
data from any service in the overall perfor-
mance framework through the intermediary
service using COSMIC EXIT and ENTRY
data movements.
Figure 12 shows that all the derived functions

from the response to reference signals have their
own services. The interdependency relations be-
tween these functions and their services are:
– The response time function, the settling time

function and the tracking error function may
require data from their services using EXIT
and ENTRY data movements.

– The response time service may exchange data
at a service layer either in a direct way with
the settling time service using COSMIC EXIT
and ENTRY data movements or it may ex-
change data in an indirect way through the
persistent storage using COSMIC READ and
WRITE data movements.

– The settling time service may exchange data
at a service layer either in a direct way with
the response time service and the tracking er-
ror service using COSMIC EXIT and ENTRY
data movements or it may exchange data in
an indirect way through the persistent stor-
age using COSMIC READ and WRITE data
movements.

– The tracking error service may exchange data
at a service layer either in a direct way with
the settling time service using COSMIC EXIT
and ENTRY data movements. Or it may ex-

System performance requirements: A standards-based model for early identification . . . 135

change data in an indirect way through the
persistent storage using COSMIC READ and
WRITE data movements.

– The response time service, the settling time
service and the tracking error service may
require data from any service in the overall
performance framework through the inter-
mediary service using COSMIC EXIT and
ENTRY data movements.

Figure 12. Response to reference signals sub-model
in an SOA context

Figure 13 shows that all the derived functions
from the throughput time (TT) have their own
services. The interdependency relations between
these functions and their services are:
– The bandwidth function and the workload

function may require data from their services
using EXIT and ENTRY data movements.

– The bandwidth service may exchange data at
a service layer either in a direct way with the
workload service using COSMIC EXIT and
ENTRY data movements. Or it may exchange

data in an indirect way through the persistent
storage using COSMIC READ and WRITE
data movements.

Figure 13. Throughput time sub-model
in an SOA context

– The workload service may exchange data at
a service layer either in a direct way with the
bandwidth service using COSMIC EXIT and
ENTRY data movements. Or it may exchange
data in an indirect way through the persistent
storage using COSMIC READ and WRITE
data movements.

– The bandwidth service and the workload ser-
vice may require data from any service in the
overall performance framework through the
intermediary service using COSMIC EXIT
and ENTRY data movements.

136 Khalid T. Al-Sarayreh et al.

Figure 14. Full view of the system performance NFR model in an SOA context

Figure 14 illustrates the full view for the
measurement framework of the system perfor-
mance requirements on the basis of the previous
sub-models in Figures 8–13 at functional level
and in an SOA context.

From Figure 14, the following points can be
observed for measurement purposes:
– In the direct data exchange situation, each

EXIT and ENTRY data movement will be
assigned a size of 1 CFP.

– In the indirect data exchange situation, each
READ and WRITE data movement will be
assigned 1 CFP.

– Data required through intermediary services
that requires using 4 EXITS and 4 ENTRIES
will be assigned 8 CFP.

5. Illustrative example:
ATM banking system

5.1. Overview

Banking systems provide a variety of financial
services to individuals, businesses and govern-
ments. An automated teller machine (ATM) is

System performance requirements: A standards-based model for early identification . . . 137

a computerized system found in a public location.
Customers are identified by inserting a smartcard
that contains a unique number and some infor-
mation about the customer and their account
status. The services typically provided by ATM
banking systems include: accepting deposits, cash
withdrawal, issuing balance statements, pre-paid
mobile charges and money transfers. To achieve
high customer satisfaction, such systems must
demonstrate high quality levels including: excel-
lent performance, security and reliability.

5.2. Purpose and process

The purpose of this example is to present a “proof-
-of-concept” on a small-scale of the concepts pro-
posed in this paper by illustrating the use of the
proposed measurement framework for system per-
formance requirements allocated to software (as in
Figure 14). More specifically, to derive the system
performance requirements allocated to an ATM
system, and to measure the functional size of
these allocated requirements using the COSMIC
method. This illustrative example was realized
by applying the following steps:
– Analyze and specify the main components

of the ATM internal structure in a physical
view.

– Design the workflow scenario-based applica-
tion for the customer view.

– Identify the ATM functional user require-
ments for the customer and system views.

– Specify the ATM system requirements allo-
cated to software.

– Specify the ATM system performance require-
ments allocated to software as an extended
view to step 4.

– Map the allocated system performance re-
quirements with the proposed framework.

– Measure the functional size of the allocated
system performance requirements to the spec-
ified banking system with the COSMIC
ISO-recognized measurement unit.

5.3. ATM internal structure system

Here we detail the internal structure of the bank
ATM and the relationships among its various

parts. AnATMtypically consists of several devices
such as: central processor unit (CPU), crypto
processor, memory, customer display, function
key buttons (typically situated near the display),
smart chip card reader, encrypting PIN pad,
customer receipt printer, vault, and modem.

The vault stores all devices and parts that
require limited access, such as:
– Cash dispensing mechanism (CDM),
– Deposit mechanism (DM),
– Security sensors (SS) (e.g., magnetic, thermal,

seismic, gas),
– Electronic journal system (EJS) to keep sys-

tem log,
– Cash dispenser (CD) which includes several

removable cash cartridges, deposit mecha-
nism and removable deposit cartridges.
The software specifications for the ATM sys-

tem are: read the ATM card, count currency
notes, connect to bank network, take input from
user, validate user, dispense cash to user and
receive deposit envelopes from the user through
deposit slot.

5.4. ATM block diagram

The set of ATM system scenarios includes au-
thentication of the PIN entered with the one en-
crypted on the card. Once the PIN is confirmed,
the customer can access their bank account to
make the chosen transaction. Or else the system
shows a suitable message to clarify rejection of
access. Figure 15 illustrates the first instantia-
tion scenario for customer authentication for the
ATM as follows:
– The client inserts his/her smartcard; the card

reader processes the smartcard’s data using
the card transaction handler, and informs the
system that the smartcard is valid.

– The card transaction handler displays a mes-
sage on the ATM screen asking for the cus-
tomer PIN number.

– The ATM screen asks the customer to enter
the PIN and the customer enters PIN code
which is passed on to the card transaction
handler.

– The card transaction handler verifies and
gives authorization if the PIN is correct; if not,

138 Khalid T. Al-Sarayreh et al.

a message appears on the screen to inform
the customer that PIN number is invalid.

– The customer enters PIN again when the
message appears on the screen to enter the
PIN code number.

– If the customer has not provided the correct
PIN in three iterations, the card reader will
capture the customer smartcard and the ses-
sion is terminated.
The second instantiation scenario after cus-

tomer authentication for the ATM is as follows:
– The main menu that appears on the ATM sys-

tem screen contains three types of transactions:
”get account balance inquiry” (choice 1), “cash
withdrawal” (choice 2) and “money deposit”
(choice 3). A choice to allow the user to exit
the system (choice 4) appears as well.

– The user at that point chooses either to make
a transaction by entering one of the three
choices or exits the system.

– If the client enters “get account balance in-
quiry”, the ATM retrieves the balance from
the bank’s database and the screen displays
the client’s account balance.

– If the client enters “cash withdrawal”, the
ATM screen displays a menu holding typical
withdrawal amounts such as 50, 100, 200.

– The withdrawal menu also displays a choice to
permit the customer to cancel the transaction.

– If the withdrawal amount selected is larger
than the client’s account balance, the screen
displays a message telling the client to select
a smaller amount. The ATM then returns to
the beginning of this scenario.

– If the withdrawal amount selected is less
than or equal to the client’s account balance,
the ATM proceeds and issues the client’s re-
quested amount.

– Then the ATM subtracts the withdrawal
amount from the client’s account in the
bank’s database.

– The screen displays a message informing the
user to take money.

5.5. ATM functional requirements (FR)

The functional requirements (FR) represent the
system tasks from the stakeholder perspective
and are typically derived from the context of
use. The FR perspective can describe customer
scenarios, system goals and objectives within
the system environment and can connect these
perspectives with assigned hardware resources.

Customer requirements are a subset of stake-
holder requirements and can be collected in the
stakeholder requirements specification document
together with other perspective scenarios which
have been derived from the system block diagram

Figure 15. ATM functional requirements at the system level

System performance requirements: A standards-based model for early identification . . . 139

Figure 16. Customers and system scenarios identified from the ATM functional requirements

of Figures 15 and 16, including the identification
of related hardware performance.

5.6. ATM system requirements
allocated to software

Each system FR should be allocated to some
specific software and/or physical component. Allo-
cation should be defined in the early phases of the
system development life cycle. At a high level in
the systemNFR this allocation impacts the design
of the system architecture. Figure 17 illustrates
the customer FR perspectives connected with
software goals and sub software goals to derive
the system requirements allocated to software.

5.7. System performance NFR
allocated to software functions

This section presents an instantiation of some
system performance requirements, and an ex-
ample of their allocation to software. For this
example, the following system performance NFR
have been selected for the ATM system:
– Requirement 1: The maximum data trans-

mission over the system network shall be
100 megabits per second.

– Requirement 2: Themaximum time to respond
to a customer transaction shall be one second.

– Requirement 3: The main memory access
time in the system shall be 50 nanoseconds.

– Requirement 4: The system shall be scalable
to handle the increased workload while main-
taining the system performance level.

– Requirement 5: The system shall support
the concurrent execution to execute the cus-
tomer’s transactions in a concurrent way.

– Requirement 6: The maximum time to recover
the system from the instability state shall be
two minutes.

– Requirement 7: The storage device access
time in the system shall be 35 millisec-
onds and the data transfer rate shall be
156 megabytes per second.

– Requirement 8: The processor of the system
shall be able to execute 2000 instructions per
second.
For this example, these system performance

NFR were allocated to the following software
functions, see Figure 18:
– Requirement 1: to the bandwidth function

and its services.
– Requirement 2: to the response time function

services.
– Requirement 3: to the main memory time

function services.
– Requirement 4: to the system scalability func-

tion services.

140 Khalid T. Al-Sarayreh et al.

Figure 17. ATM customer and system scenarios allocated to software and ATM devices

Figure 18. ATM system performance NFR allocated to software functions

– Requirement 5: to the concurrency function
services.

– Requirement 6: to the settling time function
services.

– Requirement 7: to the storage device time
function services.

– Requirement 8: to the processor instruction
execution function.

System performance requirements: A standards-based model for early identification . . . 141

5.8. Mapping system performance NFR
to an SOA context

This section maps the specified system perfor-
mance requirements for the ATM system within
an SOA context – see Figure 19. It can then be
used to measure the instantiation case of the
specified system performance NFR allocated to
software for the banking ATM.

5.9. Measuring the specified system
banking performance NFR
(instantiation case)

This step identifies the detailed data movements
for the allocated software performance functions
in an SOA context. It is important to note that
the performance NFR may require additional re-
sources be added (i.e., hardware) to the system.

In this example, for illustrative purposes,
a single data group was selected for each spec-
ified performance function, while in an indus-
trial context these performance functions may
require more than one data group. Table 1 shows
the COSMIC measurement of the system per-
formance NFR allocated to the software require-
ments at functional and service levels.

This example shows the corresponding COS-
MIC size for the selected specified requirements
at the functional and services level (Figures 18
and 19). For measurement purposes they corre-
spond to COSMIC data movements as follows:

Requirement 1 (R1): is allocated to one
identified function (bandwidth function and its
services) for the following customer-FR (Insert
E-card, check if E-card is valid and Write E-card
PIN). It extracts the identification data from
the smartcard and invokes its own three services
between three customer-FR, and then uses the
persistence storage twice (once to check if the
card is valid and second to check if the PIN
number is correct. Here, we consider that the
PIN is entered correctly).

The measurement of the functional size using
ISO 19761 (COSMIC) for R1 is calculated based
on data movements between groups of processes
as follows:
– Three identification functions (3 ENTRY and

3 EXIT).

– Two identification services (4 ENTRY and
4 EXIT).

– Functional and services processes use per-
sistence storage twice to obtain information
about the card (2 READ and 2 WRITE).

The total functional size for R1 is 18 CFP.
Requirement 2 (R2): is allocated to one

identified function (response time function and
its services) for the following customer-FR
(Present transaction options, get account balance
and Write amount of money).
A. The main menu on the ATM system screen
displays three types of transactions options. The
measurement of the COSMIC functional size for
R2-A is as follows:
– One identification function (1 ENTRY and

1 EXIT).
– One identification service (2 ENTRY and

2 EXIT).
– Functional and services processes use per-

sistence storage once, which appears on the
main menu of the ATM application (1 READ
and 1 WRITE).

The total functional size for R2-A is 8 CFP.
B. In this instantiation the customer enters “get
account balance inquiry”. The ATM retrieves
the client’s account balance from the bank’s
database which is then displayed on the screen.
The measurement of the COSMIC functional size
for R2-B is as follows:
– One identification function (1 ENTRY and

1 EXIT).
– One identification service (2 ENTRY and

2 EXIT).
– Functional and service processes use persis-

tence storage once which appears on the main
menu for the ATM application (1 READ and
1 WRITE).

– One intermediary service is needed to retrieve
the customer account balance from the exter-
nal database (4 Entry and 4 Exit).

The total functional size for R2-B is 16 CFP.
C. When the customer enters “cash withdrawal”,
the ATM screen displays a menu showing typical
withdrawal amounts, such as 50, 100, 200. In this

142 Khalid T. Al-Sarayreh et al.

Figure 19. ATM system performance requirements allocated to software functions within an SOA context

instantiation, the customer can enter their own
desired amount. The measurement of the COS-
MIC functional size for R2-C calculated based
on data movements between groups of processes
is described as follows:
– One identification function (1 ENTRY and

1 EXIT).
– One identification service (2 ENTRY and

2 EXIT).

– One intermediary service is needed to sub-
tract the amount of money from the customer
account balance (i.e., the customer has 300,
takes 50, the remainder is 250) (4 ENTRY
and 4 EXIT).

– Functional and service processes use persis-
tence storage twice to obtain information
about the card (1 READ and 1 WRITE).

The total functional size for R2 (A, B, C) is (8 +
16 + 16) = 40 CFP.

System performance requirements: A standards-based model for early identification . . . 143

Requirement 3 (R3): is allocated to one
identified function (main memory time function
and its services) for the customer-FUR (Expel
money).

The measurement of the COSMIC functional
size for R3 is calculated based on data movements
between groups of processes and is described as
follows:
– One identification function (1 ENTRY and

1 EXIT).
– One identification service (2 ENTRY and

2 EXIT).
The total functional size for R3 is 6 CFP.

Requirement 4 (R4): is allocated to one
identified function (system scalability function
and its services), twice for the customer-FUR
(Register transaction to local DB and Register
capture to local DB).

The measurement of the COSMIC functional
size for R4 is calculated based on data movements
between groups of processes and is described as
follows:
– One identification function twice (2 ENTRY

and 2 EXIT).
– One identification service twice (4 ENTRY

and 4 EXIT).
– Twice the intermediary service while the

system uses the database (8 ENTRY and
8 EXIT).

The total functional size for R4 is 28 CFP.
Requirement 5 (R5): is allocated to one

identified function (settling time function and its
services) for the customer-FR (Process another
operation).

The measurement of the COSMIC functional
size for R5 is calculated based on data movements
between groups of processes and is described as
follows:
– One identification function (1 ENTRY and

1 EXIT).
– One identification service (2 ENTRY and

2 EXIT).
The total functional size for R5 is 6 CFP.

Requirement 6 (R6): is allocated to
one identified function (concurrency function
and its services) for the customer-FUR (In-
form rejection, Eject E-card, Take E-card and
Capture E-card).

The measurement of the COSMIC functional
size for R6 is calculated based on data movements
between groups of processes and is described as
follows:
– One identification function four times

(4 ENTRY and 4 EXIT).
– One identification service four times

(8 ENTRY and 8 EXIT).
The total functional size for R6 is 24 CFP.

Requirement 7 (R7): is allocated to one
identified function (storage device time function
and its services) for the customer-FUR (Register
capture to local DB).

The measurement of the COSMIC functional
size for this process is calculated based on data
movements between groups of processes and is
described as follows:
– One identification function (1 ENTRY and

1 EXIT).
– One identification service (2 ENTRY and

2 EXIT).
– Two intermediary services, one to use the lo-

cal ATM database and the second to give
order to storage to capture the customer
smartcard (8 Entry and 8 Exit).

The total functional size for R7 is 22 CFP.
Requirement 8 (R8): Requirement 8 (R8):

is allocated to one identified function (processor
instruction execution function and its services)
for the customer-FUR (Register transaction and
Inform not enough money).

The measurement of the COSMIC functional
size for R8 is calculated based on data movements
between groups of processes and is described as
follows:
– One identification function twice (2 ENTRY

and 2 EXIT).
– One identification service twice (4 ENTRY

and 4 EXIT).
The total functional size for R8 is 12 CFP.

5.10. Summary of findings

Table 1 lists the 17 software subgoals to be mea-
sured from the customer-FUR perspective. These
software subgoals call eight specified functions
and eight specified services processes of system
performance allocated to software in R1, R2 to R8.

144 Khalid T. Al-Sarayreh et al.

These are identified and presented in columns 1, 2
and 3. For each identified functional process, the
description of the measured resource represents
a data performance group moved by one data
movement type, each one measured as 1 CFP
(COSMIC function point).

The total functional size for the performance
requirements R1, R2 to R8 applied to this soft-
ware in a functional level is 34 CFP and in SOA
context is equal to 122 CFP, independent of the
languages and technologies used to implement
them. In further applications, this functional size
number can be used for effort estimation models
and for software benchmarking.

5.11. Limitations of the illustrative
example

The ATM example illustrates how the proposed
approach is applicable in a relatively simple con-
text. Future research is needed to investigate its
scalability to much larger contexts, such as com-
plex systems that perform millions of operations
per second. Naturally, for such large complex
systems, organizations have more resources and
can dedicate much more resources to make use
of this approach. In such contexts, additional
research on efficiency studies would be welcome.

5.12. Practical Implications

We think that this framework can be easily used by
someone knowledgeable in performance standards,
COSMIC measurement and SOA architecture.
Someone familiar with other environments, such
as cloud computing environments, could also
use and adapt this framework to a context-spe-
cific environment. More specifically, requirement
specialists, software architects, performance engi-
neers and project managers can use the proposed
standards-based performance framework.

The generic approach proposed in our re-
search program on standards-based identification,
specification and measurement of system NFRs
allocated to software had already influenced the
COSMIC Group when it published its initial
strategy on how to handle NFRs and Project Re-
quirements from a project management perspec-

tive [52]. To facilitate industry adoption of this
approach, including the performance framework
presented here, we recently edited, for the COS-
MIC Group, a practitioner’s guide on Non-Func-
tional Requirements and their Sizing with COS-
MIC [53]: it includes a set of templates based on
the performance framework documented in more
detail in this study. Organizations with a very
large NFR knowledge base as well as experts
in performance issues can also compare their
own practices with this framework and identify
gaps within their practices; such gaps can be
addressed, fully or partially, by using this frame-
work. If their own practices are not structured
and explicit, they can use the structure of this
framework to structure and document their own
related practices.

5.13. Threats to validity

The quality of an experimental case study is
important as it can substantiate the limits of
the study and identify threats to its validity,
which could impact the results. The key types of
validity threats as proposed by Wohlin [54] are:

Internal validity is concerned with the relia-
bility of the results and refers to the treatment
that caused the outcome [54]. There can be other
uncontrollable or not measured factors that in-
fluenced the results. The internal validity threat
in this example includes the change of the design
process for this example. Here, we believe that if
different researchers use the same method on the
same example, they will get the same results. In
contrast, in the absence of a full description of
some parts considered in this example, variability
in the results would be expected.

External validity [54] here refers to the gen-
eralization of the results outside the scope of the
example and whether or not the cause and effect
established hold in other situations. An external
validity threat is expressed at the outcomes level.
The proposed measurements framework of sys-
tem performance NFR was illustrated using only
the performance requirements specifications of
an ATM system. There is no claim in this study
on generalizability and scalability to much larger
contexts, such as complex systems that perform

System performance requirements: A standards-based model for early identification . . . 145

Table 1. ATM measurement of the system performance NFR allocated to software functions

millions of operations per second. Scalability
is outside the scope of the research presented
here. To alleviate the risk of this validity threat
additional examples and case studies could be
conducted using requirement specifications of dif-
ferent types of software products (e.g., business
application software, Telecom software, medical
embedded software, etc.).

Construct validity [54] refers to the relation
between the theory behind the experiment and
the observation(s). The treatment and the results
may not correspond to the cause and the effect
controlled and measured. A limited number of
standards and methods have been selected for
this example. Nevertheless, there exist other stan-
dards and methods, and future research could
investigate the use and relevance of such other
standards and methods.

6. Conclusion and further work

This paper proposed a measurement framework
of system performance NRF allocated to soft-
ware functions. This work on system performance
NFR extends our previous work on three types of

NFR (security, portability and maintainability)
to facilitate the early identification, specification
and measurement of such kinds of NFR.

The suggested framework includes some of
the consensual performance terms and concepts
used by two sets of international standards
(ECSS and IEEE) and some related works. They
were analyzed and integrated using different de-
sign views beginning with the logical view, fol-
lowed by process view, development view and
ending with physical views. Next, the set of
ISO 19761 (COSMIC) concepts and views were
adopted for describing the framework function-
ality at a lower level to illustrate that the pro-
posed framework is designed for measurement
purposes as well as for capture of the performance
concept. The proposed framework was designed
using SIGs.

This research considered system performance
requirements as both static and dynamic perfor-
mance types, each with its own set of candidate
sub-concepts.

Additionally, for a more complete software
view of a complex environment (i.e., functional ser-
vices in a service-oriented architecture), COSMIC-
-SOA was applied to the suggested framework.

146 Khalid T. Al-Sarayreh et al.

Finally, an ATM example was presented
to guide developers and software engineers to
use the measurement of system performance
NFR allocated as performance FUR at the soft-
ware level.

The main contribution of this work is its
ability to assist developers, system and software
engineers to specify system performance require-
ments early in the life cycle in order to address
the specified performance functions to be allo-
cated to software as functional requirements.

The proposed framework can also be used for
identification, specification and measurement of
system performance NFR using ISO 19761 inde-
pendently of any programming languages, and in
addition can address software performance FUR
early in their implementation.

In this paper, the proposed measurement as-
pects addressed the system requirements allo-
cated to software. It will be interesting in further
work to extend this measurement aspect to con-
sider other types of requirements at the system
level containing hardware requirements.

Some related issues were not addressed
and additional work is required such as using
these functional size measurement results of
system performance requirements allocated to
software-FURs as new input for estimating mod-
els in software engineering projects. Additional
empirical work is required to verify that such ex-
panded size can improve the estimation models,
including for testing and maintenance effort.

The ATM illustrative example showed that
the proposed measurement framework can help
to specify and measure the functional size of
system performance-NFR allocated to software
functions. Consequently, this may improve plan-
ning, managing and development of software at
different phases of the software development life
cycle. Furthermore, the measurement results of
the proposed framework may be used in bench-
marking studies.

This example was not built to learn but to
demonstrate that the framework was usable, and
the purpose in building this example was not
to evaluate the framework. This again, would
require much more empirical work with practi-

tioners to evaluate it in a number of contexts,
and with a set of criteria for evaluation.

This proposed measurement framework is
limited to measuring the system performance
requirements allocated to software at the func-
tional and service levels. It will be interesting
in further work to focus on its applicability to
different types of software products in order to
generalize the results reported in this illustra-
tive example. In addition, further work could
focus on automating the measurement of soft-
ware performance requirements through building
an automated measurement tool (or enhancing
an existing one).

Future work on the scalability of the frame-
work proposed in this study would be valuable
for industrial research where researchers look at
such practical scalability issues, with financial re-
sources much larger than the resources available
to university researchers.

References

[1] K.T. Al-Sarayreh, “Model of early specifications
of performance requirements at functional levels,”
Recent Advances on Electroscience and Comput-
ers, 2015, p. 236.

[2] K. Meridji, K.T. Al-Sarayreh, A. Abran,
and S. Trudel, “System security requirements:
A framework for early identification, specifica-
tion and measurement of related software re-
quirements,” Computer Standards and Inter-
faces, Vol. 66, 2019, p. 103346.

[3] A. Abran, K.T. Al-Sarayreh, and J.J. Cuadrado-
-Gallego, “A standards-based reference frame-
work for system portability requirements,” Com-
put. Stand. Interfaces, Vol. 35, No. 4, Jun. 2013,
p. 380–395. [Online]. https://doi.org/10.1016/j.
csi.2012.11.003

[4] K.T. Al-Sarayreh, A. Abran, and J.J. Cuadrado-
-Gallego, “A standards-based model of system
maintainability requirements,” journal of soft-
ware: evolution and process, Vol. 25, No. 5, 2013,
pp. 459–505.

[5] K.T. Al-Sarayreh, A. Abran, and J.J. Cuadrado-
-Gallego, “Measurement model of software re-
quirements derived from system portability re-
quirements,” in 9th International Conference
on Software Engineering Research and Practice
(SERP 2010), 2010, pp. 553–559.

System performance requirements: A standards-based model for early identification . . . 147

[6] K.T. Al-Sarayreh, I. Al-Oqily, and K. Meridji,
“A standard based reference framework for sys-
tem adaptation and installation requirements,”
in 2012 Sixth International Conference on Next
Generation Mobile Applications, Services and
Technologies, 2012, pp. 7–12.

[7] M. Kassab, O. Ormandjieva, and M. Daneva,
“An ontology based approach to non-functional
requirements conceptualization,” in 2009 Fourth
International Conference on Software Engineer-
ing Advances. IEEE, 2009, pp. 299–308.

[8] X. Zhang and X. Wang, “Tradeoff anal-
ysis for conflicting software non-functional
requirements,” IEEE Access, Vol. 7, 2019,
pp. 156 463–156 475.

[9] M. Dewi and Z. Didar, “An ontological frame-
work to manage the relative conflicts between
security and usability requirements,” in 2010
Third International Workshop on Managing Re-
quirements Knowledge. IEEE, 2010, pp. 1–6.

[10] N. Daclin, B. Moradi, and V. Chapurlat, “Ana-
lyzing interoperability in a non-functional re-
quirements ecosystem to support crisis man-
agement response,” Enterprise Interoperability:
Smart Services and Business Impact of Enter-
prise Interoperability, 2018, pp. 429–434.

[11] L.M. Cysneiros, K.K. Breitman, C. Lopez, and
H. Astudillo, “Querying software interdepen-
dence graphs,” in 2008 32nd Annual IEEE
Software Engineering Workshop. IEEE, 2008,
pp. 108–112.

[12] K.T. Al-Sarayreh, “Dependability model for de-
composition and allocation of system safety in-
tegrity levels of software quality,” International
Review on Computers and Software, Vol. 10,
No. 11, 2015.

[13] S. Al-Qudah, K. Meridji, and K.T. Al-Sarayreh,
“A comprehensive survey of software development
cost estimation studies,” in Proceedings of the in-
ternational conference on intelligent information
processing, security and advanced communica-
tion, 2015, pp. 1–5.

[14] R.E. Al-Qutaish and K.T. Al-Sarayreh, “Soft-
ware process and product ISO standards: a com-
prehensive survey,” European Journal of Scien-
tific Research, Vol. 19, No. 2, 2008, pp. 289–303.

[15] A. Abran and K.T. Al-Sarayreh, “Stan-
dards-based model for the specification of sys-
tem design and implementation constraints,” in
Industrial Proceedings, 17th European Systems
and Software Process Improvement and Innova-
tion, EuroSPI 2010 Conference. Publisher: Delta,
Denmark Grenoble (France), 2010, pp. 4–7.

[16] R. Tawhid and D. Petriu, “Automatic derivation
of a product performance model from a software

product line model,” in 2011 15th International
Software Product Line Conference. IEEE, 2011,
pp. 80–89.

[17] M. Noorian, E. Bagheri, and W. Du, “Non-func-
tional properties in software product lines: A ax-
onomy for classification.” in SEKE, Vol. 12, 2012,
pp. 663–667.

[18] A. Danylenko and W. Löwe, “Context-aware
recommender systems for non-functional require-
ments,” in 2012 Third International Workshop
on Recommendation Systems for Software Engi-
neering (RSSE). IEEE, 2012, pp. 80–84.

[19] H.T. Jung and G.H. Lee, “A systematic soft-
ware development process for non-functional re-
quirements,” in 2010 International conference
on information and communication technology
convergence (ICTC). IEEE, 2010, pp. 431–436.

[20] Gyro terminology and performance specification,
European Cooperation for Space Standardiza-
tion Std. ECSS-E-ST-60-21C, 2017.

[21] System engineering general requirements, Euro-
pean Cooperation for Space Standardization Std.
ECSS-E-ST-10C Rev. 1, 2017.

[22] Software product assurance, European Cooper-
ation for Space Standardization Std. ECSS-Q-
-ST-80C Rev.1, 2017.

[23] Space Engineering: Control Performance, Euro-
pean Cooperation for Space Standardization Std.
ECSS-E-ST-60-10C, 2008.

[24] Space engineering, Stars sensors terminology
and performance specification, European Coop-
eration for Space Standardization Std. ECSS-E-
-ST-60-20C Rev.2 DIR1, 2017.

[25] Satellite attitude and orbit control system
(AOCS) requirements, European Cooperation for
Space Standardization Std. ECSS-E-ST-60-30C:,
2013.

[26] Recommended Practice for Software Require-
ments Specifications, Institute of Electrical and
Electronics Engineers Std. 830-1998, 1998.

[27] L. Mo, S. Zhigang, H. Quan, Y. Guizhi, L. Ya,
and S. Fengli, “Analysis and testing of key perfor-
mance indexes of vxworks in real-time system,”
in 2018 19th IEEE/ACIS International Con-
ference on Software Engineering, Artificial In-
telligence, Networking and Parallel/Distributed
Computing (SNPD). IEEE, 2018, pp. 369–374.

[28] A. Ahmad, N. Abdulrahman, B. Sascha,
J. Naoum, and T. Klaus, “Toward a performance
requirements model for the early design phase of
IT systems,” in 2018 Sixth International Confer-
ence on Enterprise Systems (ES). IEEE, 2018,
pp. 9–16.

[29] Z. Chen, T. Zhao, J. Jiao, and H. Wu, “Availabil-
ity analysis of multi-state weighted k-out-of-n

148 Khalid T. Al-Sarayreh et al.

systems with component performance require-
ments,” in 2018 Annual Reliability and Maintain-
ability Symposium (RAMS). IEEE, 2018, pp. 1–5.

[30] K.T. Al-Sarayreh, I. Ibrahim Al-Oqily, and
K. Meridji, “A standard-based reference frame-
work for system operations requirements,” In-
ternational Journal of Computer Applications in
Technology, Vol. 47, No. 4, 2013, pp. 351–363.

[31] J. Kai, X. Ling, and Z. Huamin, “A parame-
ter tuning method of proportional integral con-
troller for the first-order plus delay time system
based on the desired dynamical performance,”
in Proceeding of the 11th World Congress on
Intelligent Control and Automation. IEEE, 2014,
pp. 6110–6115.

[32] K. Arun and A. Sunil, “Statistical analysis of
memory and performance non functional require-
ments in real time embedded system develop-
ment for agile methodology,” in 2015 Interna-
tional Conference on Industrial Instrumentation
and Control (ICIC). IEEE, 2015, pp. 300–305.

[33] I. Vila, J. Perez-Romero, O. Sallent, A. Um-
bert, and R. Ferrus, “Performance measure-
ments-based estimation of radio resource require-
ments for slice admission control,” in 90th Ve-
hicular Technology Conference (VTC2019-Fall).
IEEE, 2019, pp. 1–6.

[34] M. Anish, R. Anand, R. Srivaths, and J. Niraj,
“Automated energy/performance macromodeling
of embedded software,” IEEE Transactions on
Computer Aided Design of Integrated Circuits
and Systems, Vol. 26, No. 3, 2007, pp. 542–552.

[35] Software measurement – Functional size mea-
surement Part 1: Definition of concepts,
ISO/IEC Std. 14 143-1, 1998.

[36] COSMIC v 3.0 – A Functional Size Measurement
Method, I, ISO/IEC Std. 19 761, 2003.

[37] P. Fagg, A. Lesterhuis, G. Rule, G. Ungerer,
K. Galegaonkar, S.and Natarajan, L. San-
tillo, F. Vogelezang, P. Jain, M. O’Neill, and
C. Symons, “Guideline for sizing SOA software,”
The Common Software Measurement Interna-
tional Consortium (COSMIC), Tech. Rep., 2010.

[38] L. Santillo, “Seizing and sizing SOA applications
with COSMIC function points,” Proceedings of
SMEF, 2007.

[39] E. Marks, Service-oriented architecture gover-
nance for the services driven enterprise. John
Wiley and Sons, 2008.

[40] L. Chung, B. Nixon, and E. Yu, “Dealing with
change: An approach using non-functional re-
quirements,” Requirements Engineering, Vol. 1,
No. 4, 1996, pp. 238–260.

[41] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos,
Non-functional requirements in software engi-

neering. Springer Science and Business Media,
2012, Vol. 5.

[42] K. Hemenway, M. Iff, and T. Calishain, Spidering
Hacks: 100 Industrial-Strength Tips and Tools. "
O’Reilly Media, Inc.", 2004.

[43] I. Lee, J. Leung, and S. Son, Handbook of
real-time and embedded systems. CRC Press,
2007.

[44] K.T. Al-Sarayreh, L.A. Hasan, and K. Almakad-
meh, “A trade-off model of software require-
ments for balancing between security and us-
ability issues,” International Review on Com-
puters and Software, Vol. 10, No. 12, 2016,
pp. 1157–1168.

[45] C.M. Kozierok, The TCP/IP guide: a compre-
hensive, illustrated Internet protocols reference.
No Starch Press, 2005.

[46] A. Abran and K. Meridji, “Analysis of software
engineering from an engineering perspective,”
European Journal for the Informatics Profes-
sional, Vol. 7, No. 1, 2006, pp. 46–52.

[47] K. Meridji, K.T. Al-Sarayreh, and
A. Al-Khasawneh, “A generic model for the
specification of software reliability requirements
and measurement of their functional size,”
International Journal of Information Quality,
Vol. 3, No. 2, 2013, pp. 139–163.

[48] J. Carr, The technician’s radio receiver hand-
book: wireless and telecommunication technology.
Elsevier, 2001.

[49] J.J. Parsons and D. Oja, New Perspectives on
Computer Concepts 2014: Comprehensive. Cen-
gage Learning, 2013.

[50] B. Parkinson and J. Spilker, “Progress in as-
tronautics and aeronautics: Global positioning
system: Theory and applications. american in-
stitute of aeronautics/astronautics,” 1996.

[51] H. El-Rewini and M. Abd-El-Barr, Advanced
computer architecture and parallel processing.
John Wiley and Sons, 2005, Vol. 42.

[52] K.T. Al-Sarayreh and A. Abran, “Specification
and measurement of system configuration non
functional requirements,” in 20th International
Workshop on Software Measurement and Inter-
national Conference on Software Measurement,
IWSM/Metrikon/Mensura, Stuttgart, Germany,
2010, pp. 141–156.

[53] A. Abran and K.T. Al-Sarayreh, “Non-func-
tional requirements and their sizing with cosmic:
Practitioner’s guide,” in COSMIC Gruop, 2020,
pp. 1–14.

[54] W. Claes, P. Runeson, M. Höst, M. Ohlsson,
B. Regnell, and A. Wessln, Experimentation in
software engineering. Springer Science and Busi-
ness Media, 2012.

e-Informatica Software Engineering Journal (eISEJ) is an international, open access, no authorship fees, blind peer-reviewed
journal that concerns theoretical and practical issues pertaining development of software systems. Our aim is to focus on
experimentation and machine learning in software engineering.
The journal is published under the auspices of the Software Engineering Section of the Committee on Informatics of the
Polish Academy of Sciences and Wrocław University of Science and Technology.
Aims and Scope:
The purpose of e-Informatica Software Engineering Journal is to publish original and significant results in all areas of
software engineering research.
The scope of e-Informatica Software Engineering Journal includes methodologies, practices, architectures, technologies
and tools used in processes along the software development lifecycle, but particular stress is laid on empirical evaluation.
e-Informatica Software Engineering Journal is published online and in hard copy form. The on-line version is from the
beginning published as a gratis, no authorship fees, open access journal, which means it is available at no charge to the
public. The printed version of the journal is the primary (reference) one.
Topics of interest include, but are not restricted to:
— Software requirements engineering and modeling
— Software architectures and design
— Software components and reuse
— Software testing, analysis and verification
— Agile software development methodologies and practices
— Model driven development
— Software quality
— Software measurement and metrics
— Reverse engineering and software maintenance
— Empirical and experimental studies in software engineering (incl. replications)
— Evidence based software engineering
— Systematic reviews and mapping studies
— Meta-analyses
— Object-oriented software development
— Aspect-oriented software development
— Software tools, containers, frameworks and development environments
— Formal methods in software engineering.
— Internet software systems development
— Dependability of software systems
— Human-computer interaction
— AI and knowledge based software engineering
— Data mining in software engineering
— Prediction models in software engineering
— Mining software repositories
— Search-based software engineering
— Multiobjective evolutionary algorithms
— Tools for software researchers or practitioners
— Project management
— Software products and process improvement and measurement programs
— Process maturity models
Important information: Papers can be rejected administratively without undergoing review for a variety reasons, such as
being out of scope, being badly presented to such an extent as to prevent review, missing some fundamental components of
research such as the articulation of a research problem, a clear statement of the contribution and research methods via
a structured abstract or the evaluation of the proposed solution (empirical evaluation is strongly suggested).
Funding acknowledgements: Authors are requested to identify who provided financial support for the conduct of the
research and/or preparation of the article and to briefly describe the role of the sponsor(s), if any, in study design; in the
collection, analysis and interpretation of data; in the writing of the paper. If the funding source(s) had no such involvement
then this should be stated as well.
The submissions will be accepted for publication on the base of positive reviews done by international Editorial Board
(https://www.e-informatyka.pl/index.php/einformatica/editorial-board/) and external reviewers. English is
the only accepted publication language. To submit an article please enter our online paper submission site (https:
//mc.manuscriptcentral.com/e-InformaticaSEJ).
Subsequent issues of the journal will appear continuously according to the reviewed and accepted submissions.

https://www.e-informatyka.pl/index.php/einformatica/editorial-board/
https://mc.manuscriptcentral.com/e-InformaticaSEJ
https://mc.manuscriptcentral.com/e-InformaticaSEJ

